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Living cells are systems of a very small volume. 

● E. coli volume: ~ 1 μm3 (Volume occupied by water: ~70%)

● Yeast volume: ~ 40 μm3 (Volume occupied by water:~70%)

● Yeast nuclear volume: ~ 3 μm3

http://bionumbers.hms.harvard.edu

E. coli cells, scale 2μm
Rocky Mountain Laboratories, NIAID, NIH - NIAID

Saccharomyces cerevisiae cells, 
numbered ticks are 11 µm apart
Bob Blaylock CC BY-SA 3.0



  

The abundance of particular types of proteins can 
be as low as hundreds, tens, or even single 
molecules.

Ishihama et al. (2008). Protein abundance profiling of the Escherichia coli cytosol. BMC 
Genomics, 9, 102. 



  

The abundance of particular types of proteins can 
be as low as hundreds, tens, or even single 
molecules.

Ishihama et al. (2014). Intracellular concentrations of 65 species of transcription 
factors with known regulatory functions in Escherichia coli. Journal of Bacteriology, 
196(15), 2718–2727. 



  

Xie, X. S. (2010). Enzymology and life at the single molecule 
level. Springer Series in Chemical Physics, 96, 435–448;
Yu, Ji, et al. Probing gene expression in live cells, one protein 
molecule at a time. Science 311.5767 (2006): 1600-1603.

● Proteins are produced in 
random bursts

● Cell division results in 
uneven distribution of 
inherited molecules in 
daughter cells



  

Regulation of gene expression by effectors 
(here: corepressor)

http://www.nature.com/scitable/nated/topicpage/gene-expression-14121669



  



  

Sources of noise in gene expression

P.J. Ingram et al. PloS Comput Biol 2005 e1000192

● Transcription factor binds 
to DNA

● Transcription: 
RNA polymerase reads 
DNA and produces mRNA 

● RNA degradation
● Translation: Ribosome 

reads mRNA and produces 
protein

● Protein degradation
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● Transcription factor binds 
to DNA

● Transcription: 
RNA polymerase reads 
DNA and produces mRNA 

● RNA degradation
● Translation: Ribosome 

reads mRNA and produces 
protein

● Protein degradation
We assume that RNA degradation is fast, 
this step is also lumped into the description 

of protein bursts
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● Transcription factor binds 
to DNA

● Transcription: 
RNA polymerase reads 
DNA and produces mRNA 

● RNA degradation
● Translation: Ribosome 

reads mRNA and produces 
protein

● Protein degradationWe assume that proteins are produced in
exponentially-distributed bursts
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Sources of noise in gene expression

P.J. Ingram et al. PloS Comput Biol 2005 e1000192

● Transcription factor binds 
to DNA

● Transcription: 
RNA polymerase reads 
DNA and produces mRNA 

● RNA degradation
● Translation: Ribosome 

reads mRNA and produces 
protein

● Protein degradation

We assume a continuous
degradation



  

This is different than
the traditional modeling by

Master equations



  

Traditionally, gene expression has been modeled 
using Master equations. 
● Difficult; solutions to only a few simplest models. 
● Analysis of the solutions is complicated: 

probability distributions are discrete.

→ 
Shahrezaei, V., & Swain, P. (2008). Analytical distributions for stochastic gene expression. PNAS 105(45), 17256–17261. 



  

→ Solution by generating functions

Grima, R., Schmidt, D. R., & Newman, T. J. (2012). Steady-state fluctuations of a genetic feedback loop: an 
exact solution. The Journal of Chemical Physics, 137(3), 035104.



  

Our approach:
Continuous variables

&
Hill kinetics



  

We use an alternative approach:
● Number of molecules assumed to be large 

enough: continuous variable. 



  

We use an alternative approach:
● Number of molecules assumed to be large 

enough: continuous variable. 

Ishihama et al. (2008). Protein abundance profiling of the Escherichia coli cytosol. BMC 
Genomics, 9, 102. 

Ishihama et al. (2014). Intracellular concentrations of 65 species of transcription 
factors with known regulatory functions in Escherichia coli. Journal of Bacteriology, 
196(15), 2718–2727. 



  

We use an alternative approach:
● Number of molecules assumed to be large 

enough: continuous variable.
● Gene-transcription factor binding reactions can 

be accurately described by Hill kinetics. 



  

Hill / Michaelis-Menten kinetics

Repression:
Transcription when the operator is free

O: probability that the operator is free

Transcription factor binding and unbinding 
are fast



  

Hill / Michaelis-Menten kinetics

O: probability that the operator is free

OR: probability that the operator is occupied

At steady state:



  

Hill / Michaelis-Menten kinetics

Probability that the 
operator is free → 
transcription occurs



  

Hill kinetics, binding of 
n transcription factors at a time

● Detailed balance

● Probabilities sum up to 1

● Full dose-response function

● At strong cooperativity, Hill function:



  

Repressor

Repressor concentration

mRNA production rate

Hill function



  

Assumptions of Hill kinetics:
● Transcription factor binding/unbinding is fast 

compared to other time scales in the system
● Cooperativity is strong (only n transcription 

factors, bound simultaneously, give a non-
negligible effect)



  

Friedman’s model of a self-regulating gene

h(P):

, P



  

Friedman’s model

● Hybrid model (Friedman et al., PRL 2006)

● Deterministic degradation
● Production in stochastic bursts
● Exponential distribution of burst sizes

h(P’)



  

● Production in stochastic bursts
● Exponential distribution of burst sizes

Friedman’s model

h(P’)



  

● Production in stochastic bursts
● Exponential distribution of burst sizes

Friedman’s model

h(P’)

Regulatory function (Hill function)



  

Friedman’s model

Steady state solution (Friedman, PRL 2006):
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...

Probability density function of b:  g(b)  

b

g(
b)

All cells have the same mean burst size

b

g(
b)

Each cell has a different mean burst size

Mean burst size:Mean burst frequency at h(P)=1: α = k
m
/k

dp

Mean burst size: β



  

Our analysis of Friedman’s model

Multiple copies of a self-regulated gene



  



  

: x



  



  

Leaky transcription



  

Transcriptional leakage 
(basal expression)

No tight control over the promoter.
– Some level of transcription is maintained even 

when the promoter is in the off state. 



  



  



  

k
1j
 h

j
(x) = transcription rate dependent on protein concentration x



  

leaky transcription rate / max. regular transcription rate
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Identical gene copies



  

Result 1

Ambiguity of the measures of noise



  



  



  

● Self-regulating gene:

Mean does not depend 
linearly on the number of 
gene copies G.

Gene copy number
M

ea
n 

pr
ot

ei
n 

co
nc

en
tr

at
io

n

Negative feedback

Positive feedback



  

● Self-regulating gene:

Mean does not depend 
linearly on the number of 
gene copies G.



  

● Self-regulating gene:

Mean does not depend 
linearly on the number of 
gene copies G.



  

Self-regulating gene: Fano Factor and CV 
vary in a different manner as G is varied.

Negative feedback Positive feedback

Fano factor,
variance/mean

Coefficient
of variation,
variance/mean2

increasing

decreasing



  

Self-regulating gene: Fano Factor and CV 
vary in a different manner as G is varied.

Negative feedback Positive feedback

Fano factor,
variance/mean

Coefficient
of variation,
variance/mean2

non-monotonic

decreasing



  

Self-regulating gene: Fano Factor and CV 
vary in a different manner as G is varied.

Negative feedback Positive feedback

Fano factor,
variance/mean

Coefficient
of variation,
variance/mean2

no decrease

sharp
decrease

transition
through
bimodal
distribution



  

Self-regulating gene: Fano Factor and CV 
vary in a different manner as G is varied.

This demonstrates that experimental assessments of the influence 
of gene expression noise on cell fitness may be ambiguous because 
they are dependent on the particular function used to quantify noise.



  

Result 1

Ambiguity of the measures of noise



  

Result 2

One-reporter assay cannot be used 
for experimental measurement of noise 

in self-regulated genes



  

2-reporter assay

Compares the variability of expression of two reporter genes

This method is often used to determine intrinsic and extrinsic contributions to 
gene expression noise.

Problem: Equivalence between the two fluorescent proteins



  

1-reporter assay

Fluorescence
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1 copy of the gene 2 copies

Stewart-Ornstein et al:
Compares the variability in gene expression between these two cell populations
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Something is wrong with this interpretation of noise: 
Negative number under square root...
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If the gene is self-regulated, the histogram of its expression in the 1-copy strain 
can be wider than the histogram for the 2-copy strain
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It can also happen that var(2 copies) - 2*var(1 copy) = 0
but extrinsic noise is present
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x
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p1(x)
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std. dev. (b) = 0:  
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std. dev. (b) = 8.528:
q1(x)
q2(x)

g(
b)

Mean burst size is 
the same in each cell
(no extrinsic noise)

Mean burst size 
differs from cell to cell
(extrinsic noise)

If interpreted according to Stewart-Ornstein et al., 
this would mean that extrinsic noise is zero, 
which is not true!
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Result 2

One-reporter assay cannot be used 
for experimental measurement of noise 

in self-regulated genes



  

Result 3

Imperfect gene duplication may lead to 
mixed, binary+graded response 
of the gene system to a signal
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Two non-identical gene copies 
(imperfect duplication)

h
1

h
2

weaker promoter

stronger promoter

Probability density function for x proteins:



  

Response to a signal

Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704



  

Response to a signal

Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Signal increases or decreases TF affinity



  

Binary / graded response

Kringstein, AM (1998) PNAS 95(23), 13670–5



  

● Graded: Precise

● Binary: Bet hedging

Possible functions 
of binary/graded responses



  

It can be easily shown that 
extrema of distribution (for a single gene)

 are given by geometric construction

Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Protein number, P Protein number, P



  

It can be easily shown that 
extrema of distribution (for a single gene)

 are given by geometric construction

Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Binary response
to increasing signal



  

It can be easily shown that 
extrema of distribution (for a single gene)

 are given by geometric construction

Ochab-Marcinek, Tabaka (2015) Phys Rev E, 91, 012704

Graded response
to increasing signal



  

Two non-identical gene copies 
(imperfect duplication)
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Two non-identical gene copies 
(imperfect duplication)

h
1

h
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weaker promoter

stronger promoter

Probability density function for x proteins:

When a
1
=a

2
=a, its extrema are given by the geometric construction:



  

2

1

weaker 
promoter

stronger 
promoter

Both genes, taken separately, show a binary response

Increasing
signal intensity



  

Two gene copies together:
Mixed, binary+graded response

1
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Two gene copies together:
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Two gene copies together:
Mixed, binary+graded response
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Two gene copies together:
Mixed, binary+graded response

1



  

Result 3

Imperfect gene duplication may lead to 
mixed, binary+graded response 
of the gene system to a signal



  

Result 4

Accumulation of gene duplication depends on the 
fold-change of mean gene expression

before and after duplication.
The fold-change depends non-monotonically 

on gene's noisiness



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

● 1/K1, 1/K2: regulation strength

K increasing: weaker regulation



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

We compare strengths of the two promoters: K
2
/K

1

Negative feedback

Positive feedback



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedback



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Identical gene copies

Negative feedback

Positive feedback



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

● After duplication, gene expression is not necessarily twice 
as high as before duplication

● Large fold-change may be detrimental 

● Mutants with small changes have a greater chance to 
survive

● The relative change depends on the burst frequency, a, in 
a non-monotonic manner



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedback



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedback
Maximal 
mean burst frequency,
measure of noisiness



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedbackIdentical gene copies



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedback
Promoter of the new gene
is weaker than the old one



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

Negative feedback

Positive feedback
Promoter of the new gene
is stronger than the old one



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Mean protein concentration:
After gene duplication / before duplication

If large change in gene 
expression is detrimental, then 
the gene duplication can survive 
as long as it introduces a small 
change.

Mutations introducing small 
changes are more probable to be 
accumulated.



  

Relative change in average protein number 
due to gene duplication, depending on 

how the genes differ in the regulation strength

Negative autoregulation:

● Gene 2 has a stronger regulation than Gene 1 : 
Accumulation of gene duplications is more 
probable at larger a (smaller noise)

● Gene 2 has a weaker regulation than Gene 1 : 
Accumulation of gene duplications may be most 
probable at an optimal a 

Positive autoregulation:

● Intermediate values of a give the greatest 
change in gene expression (one gene is 
uninduced, but two genes induce each other)

● Accumulation of gene duplications more 
probable for very small or very large a



  

Result 4

Accumulation of gene duplication depends on the 
fold-change of mean gene expression

before and after duplication.
The fold-change depends non-monotonically 

on gene's noisiness



  

Result 5

Fano factor and CV vary differently.
Therefore, it does not make sense to say that 

„evolution optimizes a gene system 
to minimize noise”

(unless we really know 
how evolution measures noise)



  

Fano factor and CV vary in a different manner 
as the relative difference 

in regulation strengths is varied

Fano factor

Coefficient
of variation

Neg. Pos.



  

Fano factor and CV vary in a different manner 
as the relative difference 

in regulation strengths is varied

This demonstrates that experimental assessments of the influence 
of gene expression noise on cell fitness may be ambiguous because 
they are dependent on the particular function used to quantify noise.



  

Result 5

Fano factor and CV vary differently.
Therefore, it does not make sense to say that 

„evolution optimizes a gene system 
to minimize noise”

(unless we really know 
how evolution measures noise)



  

Model of a single, 
non-regulated gene

Time-dependent solutions



  

Model of a single, 
non-regulated gene

Time-dependent solutions



  



  



  

Result 1

All parameters time-dependent:
Solution for time evolution of cumulants



  

Moment-generating function

Cumulant-generating function



  

r-th cumulant of the distribution of protein concentration depends only 
on the r-th moment of burst size distribution 



  

Result 1

All parameters time-dependent:
Solution for time evolution of cumulants



  

Result 2

Only transcription rate time-dependent:
Oscillating transcription rate: 

The amplitude of cumulants depends on 
frequency 



  

Time-independent, but otherwise arbitrary burst size probability distribution
ν(u), constant decay rate γ and molecule production rate (burst frequency) k(t)



  

Gene mRNA Protein

Transcription
factors

γ



  

Gene mRNA Protein

Transcription
factors

γ



  

Gene mRNA Protein

Transcription
factors

TF concentration oscillating in time

Time

[TF]

k(t)

γ



  



  

Physical analogy 1: Resistor-capacitor (RC) low-pass filter: 
Fast oscillations of the external driving of gene expression 

have less effect than the slow ones



  

Physical analogy 2:  motion of a particle moving with velocity v = κ
r
 in a 

viscous medium under the influence of both the drag force [−rγκ
r
(t), with 

constant γ] and the external periodic force m
r
(t)k(t).



  

Result 2

Only transcription rate time-dependent:
Oscillating transcription rate: 

The amplitude of cumulants depends on 
frequency 



  

Result 3

All parameters time-independent:
Simple form of cumulants.

Measures of noise are again ambiguous.



  

All parametes time-independent

Time evolution of cumulants:

r-th cumulant of the distribution of protein concentration depends only 
on the r-th moment of burst size distribution 



  



  

The gene was at a certain 
level of expression

Then, the expression is 
reduced:

● By the reduction of mean 
burst size

or

● By the reduction of mean 
burst frequency



  

Relative change in mean/variance:

where cumulants are:



  

Fano factor and CV vary in 
a different manner



  

If we propose any biological 
hypothesis about 
optimization with respect to 
noise, we need to justify 
why the specific measure of 
noise has been chosen. 



  

Result 3

All parameters time-independent:
Simple form of cumulants.

Measures of noise are again ambiguous.



  

Conclusions 1
● Stochastic model of an autoregulated gene, present in 

multiple copies.

● One-reporter assay may not measure correctly the 
extrinsic noise in self-regulated genes.

● Imperfect duplication of auto-activated gene: mixed, 
binary+graded response possible.

● Accumulation of gene duplications: non-trivial 
dependence on inherent noisiness of gene.

● Measurement of noise using Fano Factor or coefficient 
of variation is ambiguous.



  

Conclusions 2

● Stochastic model of a single non-regulated gene, 
arbitrary burst distribution, time-dependent parameters

● Time-dependent solutions for cumulants of probability 
distribution of protein concentrations

● r-th cumulant depends on the r-th moment of burst 
distribution

● Oscillatory gene regulation: Low-pass filter

● Measurement of noise using Fano Factor or coefficient 
of variation is ambiguous.



  

Open problem

● If the amount of noise in gene expression is 
optimized by the evolution, how is it measured?
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