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Plan

1 Modelowanie
wstęp
model sharp interface (2001)
relaksacja: ε, δ0

2 Narzędzia
równania i nierówności, sformułowanie wariacyjne
aproksymacja: µ

3 Rozwiązanie
istnienie rozwiązania przybliżonego
oszacowanie BV
twierdzenie o istnieniu
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1. Agregacja biomasy — wstęp

mikroorganizmy żyjące w płynie przyczepiają się do powierzchni
agregacja
w płynach, również w wilgotnym powietrzu
odpowiedzialna za ok. 80% infekcji
odporna na antybiotyki
wykorzystywana w geologii, do regulacji przepływów, np. przy
wydobyciu ropy

Thermophilic bacteria in the outflow of Mickey Hot Springs, Oregon,
approximately 20 mm thick. By Amateria1121 - Own work
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Biofilm removal, Southwest Regional Wound Care Center, Lubbock, Texas
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1. Agregacja biomasy — wstęp

D. Davis - From: Looking for Chinks in the Armor of Bacterial Biofilms
Monroe D, PLoS Biology Vol. 5, No. 11, e307
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1. Agregacja biomasy — wstęp

Symulacja przepływu w obszarze, w którym następuje wzrost biomasy

M. Peszynska, A. Trykozko et al., Biofilm growth in porous media: Experiments,
computational modeling at the porescale, and upscaling,

Advances in Water Resources (2015)
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1. Agregacja biomasy — Sharp interface model

Ω: obszar ograniczony w R3,
Γ = ∂Ω,
Q := Ω× [0,T ]

u(x , t): gęstość biomasy,
0 ≤ u(x , t) ≤ u∗ in Q,

Qs{u > 0}
(stan stały),

Q` = Int {u = 0}
(stan płynny),

Σi := Qs ∩ Q` ∩ Q
(granica),

v(x , t): prędkość płynu w Q`,
v = 0 w Qs

w(x , t): koncentracja pokarmu,
0 ≤ w(x , t) ≤ 1 in Q
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1. Model matematyczny oryginalny — Sharp interface

H.J. Eberl, D.F. Parker, M.C.M. van Loosdrecht [3](2001)

(M) ut −∆β(u) + bu = f (w , u) w Q,

(H) vt − ν∆v + (v · ∇)v = −∇P
ρ
, div v = 0, w Q`,

v = 0 in Qs ,

(N) wt − div(d(u)∇w) + v · ∇w = −f (w , u) w Q,

(IB) warunki brzegowe i początkowe dla u, v,w ,

· b, ν, ρ stałe dodatnie (dysypacja biomasy, lepkość, gęstość),
· P ciśnienie, f (w , u) funkcja konsumpcji:

f (w , u) =
k1wu

k2 + w
ze stałymi k1, k2 > 0,

· β rosnąca, z degeneracją w 0: β(0) = β′(0) = 0,
· d współczynnik dyfuzji pożywienia — f. ograniczona, dodatnia, gladka.
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1. Model matematyczny — funkcje dyfuzji

Nasz wybór:

β rosnąca funkcja wielowartościowa (maks. monotoniczna) na [0, u∗),
zdegenerowana w 0: β(0) = β′(0) = 0,
d(u) ograniczona, dodatnia, gladka funkcja u ∈ [0, u∗].
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1. Relaksacja modelu

Postulujemy istnienie cienkiej (?..) warstwy pomiędzy fazą stałą i płynną.
Określona jest za pomoca uśrednienia u: uε := ρε ∗ u

δ0 ≤ uε(x , t) < u∗ (f.stała)
v = 0

0 < uε < δ0 (plankton)
0 ≤ v ≤ p0(uε)
biomasa i faza płynna

uε = 0 (f.płynna)
bez więzów na v
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1. Model z relaksacją

(M) ut −∆β(u) + v · ∇u + bu = f (w , u) w Q,

(H) vt − ν ∆v(v · ∇) v = −∇Pρ , |v| ≤ p0(uε(t)), div v = 0, w Q,

(N) wt − div (d(u)∇w) + v · ∇w = −f (w , u), 0 ≤ w ≤ 1 w Q,

gdzie uε = ρε ∗ u,

ρε funkcja wygładzająca.

Ze względu na więzy (H) i (N) zapisują się jako nierowności wariacyjne.
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2. Narzędzia — narzędzia do sformułowania modelu

Nasz wybór narzędzia do więzów na v i w : analiza wypukła
wprowadzamy zbiór

K (uε; t) := {v ∈ H1
0,σ(Ω) : |v| ≤ p0(uε(·; t))}

więzy =⇒ funkcje indykatorowe

IK (x) =

{
0 gdy x ∈ K
+∞ if x ∈ Ω \ K

pod–różniczki: jeśli ϕ : X → R ∪ {+∞} jest wypukła, półciągła z
dołu na X , u∗ ∈ X ∗, to

u∗ ∈ ∂ϕ(u)⇔ 〈u∗, z − u〉(X∗,X ) ≤ ϕ(z)− ϕ(u) ∀ z ∈ X

do (H) dodajemy składnik ∂ϕt = ∂IK(uε;t),
użyjemy analizy wypukłej dla ϕt — funkcji zależnych od czasu
funkcje wielowartosciowe, inkluzje
inkluzje i podróżniczki ⇔ nierówności wariacyjne
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2. Narzędzia – (M) –> (M)µ

H := L2(Ω); V := H1(Ω);

V ⊂ H ⊂ V ∗, F : V → V ∗, duality map,

< F ũ, z >:=

∫
Ω
∇ũ · ∇zdx + n0

∫
Γ
ũzdΓ

(F ũ ≈ −∆ũ in Ω,−∂ũ
∂n = n0ũ on Γ)

Dla w ∈ L2(0,T ;V ), u0 ∈ H mamy równanie:

(M;w , v)µ


u ∈W 1,2(0,T ;V ∗), ũ ∈ L2(0,T ;V ), ũ ∈ β(u) p.w. w Q,

u′(t) + F ũ(t) + v(t) · ∇(ρµ ? u)(t) + bu(t)

= f (ρµ ? w(t), u(t)) w V ∗,

u(·, 0) = u0 w V ∗.

Cf. Brézis [1] (1973), Damlamian-Kenmochi [2] (1999).

M. Gokieli Model agregacji biomasy 8.12.2016 13 / 22



2. Narzędzia — (H) –> (H)εµ

Przestrzenie solenoidalne:
Hσ := {z ∈ (L2(Ω))3 | div z = 0 w Ω},

z := (z(1), z(2), z(3)),
Vσ := {z ∈ (H1

0 (Ω))3 | div z = 0 w Ω},
V∗σ: przestrzeń dualna do Vσ,

Vσ ⊂ Hσ ⊂ V∗σ zanurzenia zwarte.
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2. Narzędzia — (H) –> (H)εµ

Nierówność wariacyjna typu Naviera–Stokesa

(H; uε)µ



v ∈W 1,2(0,T ; Hσ), |v| ≤ pµ(uε) p.w. w Q;∫
Ω

v′(t) · (v(t)− η)dx + ν

∫
Ω
∇v(t) · ∇(v(t)− η)dx

+

∫
Ω

(v(t) · ∇)v(t) · (v(t)− η)dx ≤ 0,

∀η ∈ Vσ, |η| ≤ pµ(uε(·, t)) p.w. w Ω,

v(·, 0) = v0 in Hσ,

Cf. Fukao-Kenmochi [3](2015).
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2. Narzędzia — (N) –> (N)µ

Nierówność wariacyjna:

(N; u, v)µ



w ∈W 1,2(0,T ;H) ∩ C ([0,T ];V ), 0 ≤ w ≤ 1;

(w ′(t),w(t)− z) +

∫
Ω
d(ρµ ? u(t))∇w(t) · ∇(w(t)− z)dx

+

∫
Ω

v(t) · ∇w(t)(w(t)− z)dx ≤ −(f (w(t), u(t)),w(t)− z),

∀z ∈ V , 0 ≤ z ≤ 1,

w(0) = w0.
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2. Narzędzia — aproksymacja całości

Ustalamy ε > 0 oraz bierzemy µ > 0 jako parametr aproksymacji.

{uµ, vµ,wµ} jest rozwiązaniem Pεµ,

jeśli uµ, vµ i wµ spełniają układ (M;wµ, vµ)µ, (H; uεµ)µ, (N; uµ, vµ)µ.

Cf. Fukao-Kenmochi [3](2015) i Kenmochi -Niezgódka [4](2016).
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3. Rozwiązanie — dla aproksymacji µ > 0

Zalózmy, że

u0 ∈ H, β̂(u0) ∈ L1(Ω) (stąd 0 ≤ u0 ≤ u∗),

v0 ∈ Vσ ∩ C(Ω),

v0 = 0 w pobliżu {x ∈ Ω | uε0(x) > δ0}

w0 ∈ V , 0 ≤ w0 ≤ 1.

Wówczas:

Dla małych µ > 0 zagadnienie Pεµ ma co najmniej jedno rozwiązanie
{uµ, vµ,wµ}.
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3. Rozwiązanie— dla aproksymacji µ > 0

Dowód. Twierdzenie Schaudera o punkcie stałym dla S :

uµ −→ vµ rozwiązując (H; uµ)ε −→ wµ rozwiązując (N; uµ, vµ)
↑ ↓
↑ ūµ = Suµ ↓
←−←−←−←−←−←−←−←− ū rozwiązując (M;wµ, vµ)
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3. Rozwiązanie: zbieżność µ→ 0, ε ustalony

Istnieje ciąg µn → 0 taki że

uµn → u słabo w W 1,2(0,T ;V ∗), uµn(t) → u(t) slabo w H,

wµn → w w C ([0,T ];V ), słabo w W 1,2(0,T ;H),

vµn → v w L2(0,T ; Hσ) i słabo w L2(0,T ; Vσ).
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3. Rozwiązanie: zbieżność µ→ 0, oszacowanie BV

Granica {u, v,w} spełnia (M;w), (N; u, v) oraz

v = 0 p.w. w Q(uε ≥ δ0) (faza stała);

i dla każdego η ∈ K(uε)∫ t

0
(η′, v − η)σdτ + ν

∫ t

0

∫
Ω
∇v · ∇(v − η)dxdτ

+

∫ t

0

∫
Ω

(v · ∇)v · (v − η)dxdτ +
1
2
|v(t)− η(t)|2Hσ ≤

1
2
|v0 − η(0)|2Hσ ,

(v, η)σ ∈ BV (0,T ), (v(0), η(0))σ = (v0, η(0))σ,

gdzie

K(uε) :=

{
η ∈ C 1([0,T ]; W1,4

0,σ(Ω))

∣∣∣∣ supp(η) ⊂ Q(uε < δ0),
|η| ≤ p0(uε) w Q

}
.
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