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@ Modelowanie

e wstep
o model sharp interface (2001)
o relaksacja: ¢, dg
@ Narzedzia
e réwnania i nieréwnosci, sformutowanie wariacyjne
e aproksymacja: p
© Rozwiazanie
o istnienie rozwiazania przyblizonego
e oszacowanie BV
e twierdzenie o istnieniu
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1. Agregacja biomasy — wstep

mikroorganizmy zyjace w ptynie przyczepiaja sie do powierzchni
agregacja

w ptynach, réwniez w wilgotnym powietrzu

odpowiedzialna za ok. 80% infekg;ji

odporna na antybiotyki

wykorzystywana w geologii, do regulacji przeptywéw, np. przy
wydobyciu ropy

Thermophilic bacteria in the outflow of Mickey Hot Springs, Oregon,
approximately 20 mm thick. By Amateriall21 - Own work
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1. Agregacja biomasy — wstep

mikroorganizmy zyjace w ptynie przyczepiaja sie do powierzchni
agregacja

w ptynach, réwniez w wilgotnym powietrzu

odpowiedzialna za ok. 80% infekcji

odporna na antybiotyki

wykorzystywana w geologii, do regulacji przeptywéw, np. przy
wydobyciu ropy

Biofilm removal, Southwest Regional Wound Care Center, Lubbock, Texas
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1. Agregacja biomasy — wstep

i z IR 2o 2
D. Davis - From: Looking for Chinks in the Armor of Bacterial Biofilms
Monroe D, PLoS Biology Vol. 5, No. 11, €307
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1. Agregacja biomasy — wstep

Symulacja przeptywu w obszarze, w ktérym nastepuje wzrost biomasy

t=10h t=18h t=20h t=22h

M. Peszynska, A. Trykozko et al., Biofilm growth in porous media: Experiments,
computational modeling at the porescale, and upscaling,
Advances in Water Resources (2015)
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1. Agregacja biomasy — Sharp interface model

; —p 9B) _
interface (u=0, an =0)

Q: obszar ograniczony w R3,
r=0Q,
Q:=Qx][0,T]
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1. Agregacja biomasy — Sharp interface model

u(x, t): gestos¢ biomasy,
0<u(x,t)<u*in Q,

interface ( u=0,%(nu)=0) Qs{u >0}
t (stan staty),
Q¢ = Int {u=0}
(stan ptynny),
Li=QNn&NA
(granica),

Q: obszar ograniczony w R3,
r=0Q,
Q:=Qx][0,T]
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1. Agregacja biomasy — Sharp interface model

u(x, t): gestos¢ biomasy,
0<u(x,t)<u*in Q,

interface (u=0, %@:O) Qs{u >0}
t (stan staty),
Q¢ = Int {u=0}
(itan p_’(ynny),
Z,’ = Qs N Qz N Q
(granica),
< v(x, t): predkos¢ ptynu w Qy,
v=0w Qs
Q: obszar ograniczony w R3,
M= 0Q, w(x, t): koncentracja pokarmu,
Q:=Qx[0,T] 0<w(x,t)<1linQ

M. Gokieli Model agregacji biomasy 8.12.2016 7/ 22



1. Model matematyczny oryginalny — Sharp interface

H.J. Eberl, D.F. Parker, M.C.M. van Loosdrecht [3](2001)
(M) ur—AB(u)+ bu=f(w,u) w Q,

H vy — VAV + v-Vv:—E, divv=0, w Q,
P

v=20in Qs,
(N) we — div(d(v)Vw) +v-Vw = —f(w,u) w Q,
(/1B) warunki brzegowe i poczatkowe dla u,v, w,

- b, v, p state dodatnie (dysypacja biomasy, lepkos¢, gestosc),
- P cisnienie, f(w, u) funkcja konsumpcji:
k1WU
k2 + w
- 3 rosnaca, z degeneracja w 0:  5(0) = /(0) =0,
- d wspétczynnik dyfuzji pozywienia — f. ograniczona, dodatnia, gladka.
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1. Model matematyczny — funkcje dyfuzji

Nasz wybér:

@ /3 rosnaca funkcja wielowartosciowa (maks. monotoniczna) na [0, u*),
zdegenerowana w 0:  3(0) = 8/(0) =0,
e d(u) ograniczona, dodatnia, gladka funkcja u € [0, u™].

B(r) d(n
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1. Relaksacja modelu

Postulujemy istnienie cienkiej (7..) warstwy pomiedzy faza stata i ptynna.
Okreslona jest za pomoca usrednienia u: u® := p. x u

do < uf(x,t) < u* (f.stata)
v=20

ml()BtzLe€<60) 0 < u® < dg plankton

0 <v < po(uf)
biomasa i faza ptynna
(60£u€< U*)

u® = 0 (f.ptynna)
bez wiezéw na v
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1. Model z relaksacja

(M) ur—AB(u)+v-Vu+bu = f(w,u) wQ,

(H) vi—vAv(v-V)v = —%, lv|] < po(ue(t)), dive=0, w Q,
(N) we —div(d(u)Vw) +v-Vw = —f(w,u), 0<w<1 wQ@Q,
Po(D

gdzie v = p.*u,

pe funkcja wygtadzajaca.

g 50 u* r

Ze wzgledu na wiezy (H) i (N) zapisuja sie jako nierownosci wariacyjne.
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2. Narzedzia — narzedzia do sformutowania modelu

Nasz wybor narzedzia do wiezéw na v i w: analiza wypukta

@ wprowadzamy zbiér
K(u%t) == {v e H3,(Q) : v| < po(u (1))}
e wiezy = funkcje indykatorowe
/0 gdy x € K
’K(X)_{ oo ifxeQ\K

@ pod-rézniczki: jesli ¢ 1 X — RU {+o0o} jest wypukta, pétciagta z
dotu na X, u* € X*, to

ut € 0p(u) & (U™, z — u)(x= x) S @(2) —p(u) YzeX

o do (H) dodajemy sktadnik 0" = Oly(e¢),

@ uzyjemy analizy wypuktej dla ¢t — funkcji zaleznych od czasu
o funkcje wielowartosciowe, inkluzje

@ inkluzje i podrézniczki < nieréwnosci wariacyjne
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2. Narzedzia — (M) —> (M),
H:=1%(Q); V:=HYQ);
VcHcCV* F:V — V* duality map,

< Fii, z >::/VL7-Vzdx+no/ﬁzdr
Q r

(Fi~ —Aiin Q, —g—g = noidion ')

Fig.1

Dla w € L2(0, T; V), up € H mamy réwnanie:

ue W20, T;V*), i€ 20, T;V), icpu)pw. wQ,
u'(t) + Fi(t) + v(t) - V(pu * u)(t) + bu(t)

(M w,v), = F(pyx wlt), u(t)) w V"

u(+,0) =up w V*.

Cf. Brézis [1] (1973), Damlamian-Kenmochi [2] (1999).
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2. Narzedzia — (H) —> (H)7,

Przestrzenie solenoidalne:
H, == {z € (L?(Q))® | div z= 0w Q},
z:= (21,22 z(3)),
V, = {z € (H}Q))? | divz=0w Q},
V¥ przestrzen dualna do Vg,

V, C H, C V) zanurzenia zwarte.

Po(n) Py
0eu
p
r r
5 u H 5 u*
0 ° Fig.4 0 | o
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2. Narzedzia — (H) —> (H)7,

Nieréwnos¢ wariacyjna typu Naviera—Stokesa

ve W20, T Hy), v < pu(uf) pw.w Q;

/Qv'(t) <(v(t) —n)dx + V/QVv(t) -V(v(t) — n)dx
(H; o°), + /Q (v(t) - V)(t) - (v

Ve Vo, In| < pu(ue(-,t)) pw.wQ,

(t) o 77)dX S 07

v(-,0) =vg in H,,

Cf. Fukao-Kenmochi [3](2015).
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2. Narzedzia — (N) —> (N),

Nieréwno$¢ wariacyjna:
we W20, T; H)n C([0, T]; V), 0 < w < 1;

(w'(t), w(t) —z) + /Q d(pu* u(t))Vw(t) - V(w(t) — z)dx

+ /Q V(1) - Vw()(w(t) — 2)dx < —(F(w(t), u(t)), w(t) — 2),
VzeV, 0<z<1,

(N; u,v),

w(0) = wp. d(u®)
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2. Narzedzia — aproksymacja catosci

Ustalamy £ > 0 oraz bierzemy p > 0 jako parametr aproksymacji.

: o .
{up, vy, wy,} jest rozwiazaniem P,

jesli uy,, v, i wy, spetniajg uktad  (M; w,. v,),.. (H; ”Z)m (N; ups V) -

Cf. Fukao-Kenmochi [3](2015) i Kenmochi -Niezgédka [4](2016).
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3. Rozwigzanie — dla aproksymacji ;# > 0

Zalézmy, ze
u € H, B(up) € L1(Q) (stad 0 < up < u*),
vo € V, NC(Q),
vo =0 w poblizu {x € Q | uj(x) > do}
wpeV, 0<w <1.
Wéwczas:
Dla matych ji > 0 zagadnienie P;, ma co najmniej jedno rozwigzanie
{ups v, Wyt
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3. Rozwigzanie— dla aproksymacji > 0

Dowdd. Twierdzenie Schaudera o punkcie statym dla S :

u, — v, rozwigzujac (H; u,)® — w,, rozwiazujac (N; uy,v,,)
T \:
T b, =Su, 4
———4—<—<——<— 1 rozwigzujac (M; wy,v,,)
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3. Rozwigzanie: zbieznos¢ 1 — 0, € ustalony

Istnieje ciag i, — 0 taki ze

U, — u stabo w WH2(0, T; V*), u,,.(t) — u(t) slabow H,
wy, = w w C([0, T]; V), stabo w W12(0, T; H),

Vu, = v w L2(0, T;H,) istabow L2(0, T; V,).
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3. Rozwigzanie: zbieznos¢ p — 0, oszacowanie BV

Granica {u,v, w} spetnia (M; w), (N;u,v) oraz
v=0 pw. w Q(u° > d) (faza stata);

i dla kazdego n € K(u®)

ot ot
/ (n',v —n)edr + 1// / Vv - V(v —n)dxdr
0 o Ja

+/0 /{;(V-V)V-(V—n)dXdT-‘r %|v(t) —n(t)ﬁ'a < %|Vo _77(0)|12407

(Vﬂ?)g € BV(07 T)a (V(O)vn(o))o = (VO,W(O))a,

gdzie

ey 1 lé supp(n) C Q(u® < o),
K(u) = {77 € ¢ ([o, T]vWO,a(Q)) Il < po(vf) w Q }
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