
PHYSICAL REVIEW E 103, 012414 (2021)

Evolution of populations with strategy-dependent time delays
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We study the effects of strategy-dependent time delays on the equilibria of evolving populations. It is well
known that time delays may cause oscillations in dynamical systems. Here we report a novel behavior. We
show that microscopic models of evolutionary games with strategy-dependent time delays lead to a new type
of replicator dynamics. It describes the time evolution of fractions of the population playing given strategies
and the size of the population. Unlike in all previous models, the stationary states of such dynamics depend
continuously on time delays. We show that in games with an interior stationary state (a globally asymptotically
stable equilibrium in the standard replicator dynamics), at certain time delays it may disappear or there may
appear another interior stationary state. In the Prisoner’s Dilemma game, for time delays of cooperation smaller
than time delays of defection, there appears an unstable interior equilibrium, and therefore for some initial
conditions the population converges to the homogeneous state with just cooperators.
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I. INTRODUCTION

Many social and biological processes can be modeled
as systems of interacting individuals within the framework
of evolutionary game theory [1–9]. The evolution of very
large (infinite) populations can then be given by differential
replicator equations that describe time changes of fractions
of populations playing different strategies [3,5,10,11]. It is
usually assumed (as in the replicator dynamics) that inter-
actions between individuals take place instantaneously and
their effects are immediate. In reality, all social and biological
processes take a certain amount of time. The results of biolog-
ical interactions between individuals may appear in the future.
In social models, individuals or players may act, i.e., choose
appropriate strategies, on the basis of information concerning
events in the past. It is natural, therefore, to introduce time
delays into evolutionary game models.

It is well known that time delays may cause oscillations
in dynamical systems [12–15]. One usually expects that inte-
rior equilibria of evolving populations, describing coexisting
strategies or behaviors, are asymptotically stable for small
time delays. Above a critical time delay, where Hopf bi-
furcation appears, they become unstable, and evolutionary
dynamics exhibits oscillations and cycles. Here we report a
novel behavior, namely the continuous dependence of equi-
libria on time delays.

The effects of time delays on replicator dynamics were
discussed in [16–27] for games with an interior stable equi-
librium (an evolutionarily stable strategy [1,2]). In [16], the
authors discussed the model in which individuals at time t im-
itate a strategy with a higher average payoff at time t − τ for
some time delay τ . They showed that the interior stationary
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state of the resulting time-delayed differential equation is
locally asymptotically stable for small time delays, while for
big ones it becomes unstable and there appear oscillations.
In [17] we constructed a different type of model, in which
individuals are born τ units of time after their parents played.
Such a model leads to a system of equations for the frequency
of the first strategy and the size of the population. We showed
the absence of oscillations—the original stationary point is
globally asymptotically stable for any time delay. In both
models, the position of the equilibrium is not affected by time
delays.

Here we modify the second of the above models by
allowing time delays to depend on strategies played by in-
dividuals, and we observe a new behavior of a dependence
of equilibria on delays. Recently there were studied models
with strategy-dependent time delays. In particular, Moreira
et al. [21] discussed a multiplayer Stag-hunt game, Ben Khal-
ifa et al. [27] investigated asymmetric games in interacting
communities, and Wesson and Rand [24] studied Hopf bi-
furcations in two-strategy delayed replicator dynamics. The
authors generalized the model presented in [16], and they
studied the asymptotic stability of equilibria and the presence
of bifurcations. Some very specific examples of three-player
games with strategy-dependent time delays were studied
in [28], in which a shift of interior equilibria was observed.

Here we present a systematic study of the effects of
strategy-dependent time delays on the long-run behavior of
two-player games with two strategies in models that are
generalizations of the one in [17]. We consider Stag-hunt-
type games with two basins of attraction of pure strategies,
Snowdrift-type games with a stable interior equilibrium (a
coexistence of two strategies), and the Prisoner’s Dilemma
game. We report a novel behavior, i.e., we show that station-
ary states depend continuously on time delays. Moreover, at
certain time delays an interior stationary state may disappear
or there may appear another interior stationary state.
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Below we present a general theory and particular examples.
In the Appendix, we provide proofs and additional theorems,
in particular general conditions for the existence and unique-
ness of interior states in Snowdrift-type games (Theorems A.3
and A.6).

II. METHODS

A. Replicator dynamics

We assume that our populations are haploid, that is, the
offspring have identical phenotypic strategies to those of their
parents. We consider symmetric two-player games with two
strategies, C and D, given by the following payoff matrix:

U =
C D

C a b
D c d

,

where the i j entry, i, j = C, D, is the payoff of the first (row)
player when it plays the strategy i and the second (column)
player plays the strategy j. We assume that both players are
the same and hence payoffs of the column player are given by
the matrix transposed to U ; such games are called symmetric.

Below we will consider all three main types of two-
player games with two strategies: Stag-hunt, Snowdrift, and
Prisoner’s Dilemma. They serve as simple models of social
dilemmas. Strategies C and D may be interpreted as coopera-
tion and defection.

Let us assume that during a time interval of length ε,
only an ε-fraction of the population takes part in pairwise
competitions, that is, plays games. Let pi(t ), i = C, D, be
the number of individuals playing at time t the strategy C
and D, respectively; p(t ) = pC (t ) + pD(t ) is the total number

of players; and x(t ) = pC (t )
p(t ) is the fraction of the population

playing C. Let

UC (t ) = ax(t ) + b[1 − x(t )]

UD(t ) = cx(t ) + d[1 − x(t )] (1)

be average payoffs of individuals playing C and D, respec-
tively.

Now we would like to take into account that individuals are
born some units of time after their parents played. We assume
that time delays depend on strategies and are equal to t − τC

or t − τD.
We propose the following equations:

pi(t + ε) = (1 − ε)pi(t ) + εpi(t − τi )Ui(t − τi ); i = C, D,

(2)

p(t + ε) = (1 − ε)p(t ) + ε(pC (t − τC )UC (t − τC )

+ pD(t − τD)UD(t − τD)). (3)

In the above, we assume that populations are large in order
to justify a continuous description of population sizes, but they
are not infinite as in classical replicator equations. The pa-
rameter ε represents the time length of game interactions and
therefore it multiplies the second terms in the above equations.
We assume the replacement of parents or equivalently a death
rate 1, and hence pi(t ) and p(t ) are multiplied by 1 − ε.

We divide (2) by (3) for i = A, obtain the equation for x(t +
ε) ≡ xC (t + ε), subtract x(t ), divide the difference by ε, take
the limit ε → 0, and get an equation for the frequency of the
first strategy,

dx

dt
= pC (t − τC )UC (t − τC )[1 − x(t )] − pD(t − τD)UD(t − τD)x(t )

p(t )
, (4)

which can also be written as

dx

dt
= x(t − τC )p(t − τC )UC (t − τC )[1 − x(t )] − [1 − x(t − τD)]p(t − τD)UD(t − τD)x(t )

p(t )
. (5)

Let us notice that unlike in the standard replicator dynam-
ics, the above equation for the frequency of the first strategy
is not closed; there appears in it a variable describing the size
of the population at various times. One needs equations for
populations sizes. From (2) and (3) we get

d pi(t )

dt
= −pi(t ) + pi(t − τi )Ui(t − τi ); i = C, D, (6)

d p(t )

dt
= −p(t ) + (pC (t − τC )UC (t − τC )

+ pD(t − τD)UD(t − τD)). (7)

To trace the evolution of the population, we have to solve
the system of equations (5) and (7) together with initial condi-
tions on the interval [−τM , 0], where τM = max{τC, τD}. We

assume that

x(t ) = ϕx(t ), p(t ) = ϕp(t ) for t ∈ [−τM, 0]. (8)

We have the following proposition concerning the exis-
tence of non-negative solutions.

Proposition 1. If the initial functions ϕx and ϕp are contin-
uous on [−τM , 0) and non-negative, then there exists a unique
non-negative solution of the system [(5) and (7)] with initial
conditions (8) well defined on the interval [0,+∞).

Proof. The local existence of the solution follows im-
mediately from a standard theory of delay differential
equations, [14]. The non-negativity follows from [29]. To
prove the global existence, it is enough to use the step method
and to observe that on the interval [0, τM ] the system [(5)
and (7)] becomes a system of nonautonomous ordinary differ-
ential equations. The equation for p becomes linear; it can be
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solved and then the equation for x becomes linear with respect
to x(t ).

B. Stationary states

We derive here an equation for an interior stationary state
(the stationary frequency of the first strategy). Let us assume
that there exists a stationary frequency x̄ such that x(t ) = x̄
for all t � 0 and for some suitably chosen function p(t ). Then
average payoffs of each strategy are constant and are equal to

ŪC = ax̄ + b(1 − x̄) and ŪD = cx̄ + d (1 − x̄). (9)

Thus, Eq. (7) becomes a linear delay differential equation,

d p

dt
= x̄(ax̄ + b(1 − x̄))p(t − τC )

+ (1 − x̄)(cx̄ + d (1 − x̄))p(t − τD) − p(t ). (10)

Note that solutions of (10) with non-negative initial conditions
are non-negative. This implies that the leading eigenvalue of
this equation is real. The eigenvalues λ of (10) satisfy

λ + 1 = x̄ŪCe−λτC + (1 − x̄)ŪDe−λτD . (11)

Assume now that λ is a solution of (11) (of course λ depends
on x̄) and p(t ) = p0 exp(λt ) for some p0.

We plug such p into (4) and we get two stationary solutions
of (4) [i.e., such that the right-hand side of (4) is equal to 0],
x̄ = 0, 1, and possibly interior ones—solutions to

ŪCe−λτC = ŪDe−λτD . (12)

If τC = τD and d < b < a < c, then (12) gives us a mixed
Nash equilibrium (an evolutionarily stable strategy [1,2]) of
the game,

x∗ = b − d

b − d + c − a
,

which represents the equilibrium fraction of an infinite popu-
lation playing C [3,5]. In the nondelayed replicator dynamics,
x∗ is globally asymptotically stable and there are two unstable
stationary states: x = 0 and 1.

If τC �= τD, then λ = ln(ŪC/ŪD)/(τC − τD). We plug it
into (11) and we conclude that x̄ satisfies an equation F (x̄) =
0, where

F (x) = 1

τC − τD
ln

(
ax + b(1 − x)

cx + d (1 − x)

)

+ 1 − (cx + d (1 − x))τC/(τC−τD )

(ax + b(1 − x))τD/(τC−τD )
. (13)

From the above we get the following proposition that explains
in what sense x̄ is a stationary state of the replicator dynamics
[(5) and (7)].

Proposition 2. Assume that τC �= τD. Let x̄ be a solution to
F (x) = 0, where F is defined by (13), and let

λ̄ = 1

τC − τD
ln

(
ax̄ + b(1 − x̄)

cx̄ + d (1 − x̄)

)
.

Then the functions

x(t ) = x̄, p(t ) = p0eλ̄t , t � 0

are solutions of the system [(5) and (7)] with the initial
conditions

ϕx(t ) = x̄, ϕp(t ) = p0eλ̄t for t ∈ [−τM, 0].

In this paper, we consider only examples of games with a
positive λ, that is, our populations grow exponentially with
time, hence the use of differential equations to describe time
evolution is appropriate. For a negative λ, the population be-
comes extinct.

Further properties of the function F related to the existence
of zeros of this function in the interval (0,1) are analyzed in
Appendix A 1. In particular, we provide in Theorems A.3 and
A.6 general conditions for the existence and uniqueness of the
interior stationary state in Snowdrift-type games.

III. RESULTS

A. Stag-hunt games

Here we consider games with a unique unstable interior
equilibrium. We begin with a general Stag-hunt game given
by the following payoff matrix:

U1 =
[

a 0
βa βa

]
,

where a > 0 and β ∈ (0, 1). In this case, the function F takes
the form

F (x) = 1 + α

τC
ln

x

β
− aβαx1−α, α = τC

τC − τD
. (14)

Note that if x̄ ∈ (0, 1) is an interior stationary frequency,
then the leading eigenvalue is given by the following formula
(see Proposition 2):

λ̄ = 1

τC − τD
ln

x̄

β
. (15)

Thus λ̄ > 0 if and only if τC > τD and x̄ ∈ (β, 1) or τC < τD

and x̄ ∈ (0, β ).
For τC > τD it is easy to see that F is increasing from −∞

to F (1) = 1 − aβα . Thus, the interior stationary frequency
x̄ ∈ (0, 1) exists if and only if F (1) > 0, which is equivalent
to the inequality β < a−1/α . The leading eigenvalue is positive
if x̄ > β, which is equivalent to the inequality F (β ) < 0.
This gives a condition aβ > 1. Finally, we obtain a necessary
condition for the existence of an interior stationary frequency
with a positive leading eigenvalue:

1

a
< β <

1

a1/α
�⇒ a > 1. (16)

For τC < τD it is easy to see that F is decreasing from ∞
to F (1) = 1 − aβ−|α|. Thus, the interior stationary frequency
x̄ ∈ (0, 1) exists if and only if F (1) < 0, which is equivalent
to the inequality β < a1/|α|. Similarly, the leading eigenvalue
is positive if x̄ < β, which is equivalent to the inequality
F (β ) < 0. This gives a condition aβ > 1. Again we see that a
necessary condition for the existence of an interior stationary
frequency with a positive leading eigenvalue is a > 1.

For general Stag-hunt games, we can derive an explicit
formula for the interior stationary state x̄ using the Lambert
W function Wp. Namely, we solve F (x) = 0, where F is given
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(a) (b)

(c)

(d)

FIG. 1. Numerical solutions of F (x) = 0 for the matrix U1 for
the classical Stug-hunt game, that is, for a = 3 and β = 3/5. (a) The
interior stationary state as a function of τ , when τC = τ , τD = 2τ .
(b) The interior stationary state as a function of τC , while τD = 4
is fixed. (c) The interior stationary state as a function of τ , when
τC = 2τ , τD = τ . (d) The interior stationary state as a function of τC

and τD. The dash-dotted line indicates the cross-section presented in
panel (a), the black dotted line indicates the cross-section presented
in panel (b), while the dotted line indicates the cross-section pre-
sented in (c).

by (14), and after some algebraic calculations we get

x̄ =
(

τDaβ
τC

τC −τD

Wp(τDβaeτD )

) τC −τD
τD

. (17)

For a = 5 and β = 3/5, we get the classical Stag-hunt
game.

In Fig. 1 we present the dependence of the unstable interior
stationary state on time delays. We see that the bigger a time
delay of a given strategy is, the smaller is its basin of attrac-
tion. Moreover, if the time delay of the strategy C increases,
at a certain point the interior stationary state ceases to exist
and therefore the strategy D becomes globally asymptotically
stable (the internal equilibrium hits x = 1, destabilizing this
solution). For τC = τ, τD = 2τ we get α = −1 and therefore

(14) simplifies and in the limit τ → ∞ one obtains x̄ =
√

β

a .

For the classical Stag-hunt game, x̄ =
√

3
5 ≈ 0.346 as it is seen

in panel (a).
Figure 1(d) indicates the existence of a curve τ ∗

D(τ ∗
C ) such

that for τC > τ ∗
C and fixed τD = τ ∗

D there is no interior sta-
tionary frequency, and for τC < τ ∗

C there is a unique one. The
curve τ ∗

D(τ ∗
C ) that splits the plane (τC, τD) into two regions

(below this curve there is no interior stationary frequency,
above it there is a unique one) is given by the following
formula:

τ ∗
D = τ ∗

C

(
1 + ln β

Wp(aτ ∗
Ceτ ∗

C ) − τ ∗
C

)
, τ ∗

C � − ln β

aβ − 1
. (18)

The formula can be easily obtained from F (1) = 0 (detailed
calculations can be found in Appendix A 2). For the classical
Stag-hunt game, the curve given by (18) is almost a straight

line. Its derivative with respect to τ ∗
C changes from

aβ − 1

aβ − 1 − aβ ln β
≈ 0.566

for τ ∗
C = − ln β

aβ−1 ≈ 0.255 to

1 + ln β

ln a
≈ 0.683

for τ ∗
C → ∞.

Note also that if τC is fixed, and we take τD → +∞, then
we get α → 0 and the formula (14) simplifies to 1 − ax,
which implies that the interior stationary frequency for suf-
ficiently large τD is close to 1

a .
Let us summarize the results. When we parametrize both

delays by τ , if the delay of defection is bigger than that of
cooperation, then in the limit of infinite τ the interior unstable
equilibrium tends to some value. Both strategies have some
basin of attraction; see Fig. 1(a). However, if the delay of
cooperation is bigger than that of defection, then above some
critical τ the unstable interior equilibrium ceases to exist
and the defection becomes globally asymptotically stable; see
Fig. 1(c). Under no circumstances does cooperation become
globally asymptotically stable.

B. Snowdrift-type games

We consider here two examples of games with a unique
stable interior equilibrium state. Because of the nonlinearity
of our equations, we could not treat general cases analytically.

Example 1

Here we discuss a classical Snowdrift game (with the re-
ward equal to 5 and the cost equal to 2) with the following
payoff matrix:

U2 =
[

4 3
5 0

]
.

We have that x∗ = 0.75 is the stable stationary state of the
nondelayed replicator dynamics.

When delays are parametrized in the form τC = τ, τD = 2τ

and τ increases, then the interior stationary state increases
until it disappears at some value of τ . Above that point,
x = 1, the equilibrium when all players cooperate, becomes
globally asymptotically stable [see Fig. 2(a)]. In the case of
τC = 2τ, τD = τ , the interior stationary state decreases and
approaches the value 1+√

301
50 ≈ 0.37 [see Fig. 2(c)].

We see in Fig. 2(b) that for fixed τD = 2, there is a value
of τC below which there is no interior stationary point; x = 1
is globally asymptotically stable. Above this point, the stable
interior stationary state decreases.

In Fig. 2(d) we present the unstable interior stationary
state as a function of τC and τD. If τC = τD, then the stable
stationary frequency does not depend on time delay and is
equal to x∗ = 0.75. For fixed τD, if τC � τD, the stationary
state decreases approaching the value 0.2 [that can be easily
calculated taking a limit τC → +∞ in (13)]. Similarly, ana-
lyzing the graph of the function F for τD = 0, one can easily
find that the stationary state decreases in this case from 0.75
for τC = 0 to 0.2 for τC → +∞. On the other hand, if we
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(a) (b)

(c)

(d)

FIG. 2. Numerical solutions of F (x) = 0 for the matrix U2 for
the classical Snowdrift game. (a) The unstable interior stationary
state as a function of τ , when τC = τ , τD = 2τ . (b) The interior
stationary state as a function of τC , while τD = 2 is fixed. (c) The
interior stationary state as a function of τ , when τC = 2τ , τD = τ .
(d) The interior stationary state as a function of τC and τD. The yellow
dash-dotted line indicates the cross-section presented in panel (a),
the black dotted line indicates the cross-section presented in panel
(b), while the dotted line indicates the cross-section presented in
panel (c).

fix τD, then the stationary state is a decreasing function of
τC [see Fig. 2(b)]. Additionally, if τD is large enough [greater
than ln(5/4)/3, see Remark A.10 in the Appendix], then there
exists a value τ ∗

C of τC , such that for τC < τ ∗
C there exists no

interior stable frequency and all individuals are playing C. The
critical value τ ∗

D = 1
3 ln 5

4 for τC = 0 depends on τC almost
linearly [see the implicit formula (A5) in the Appendix for the
relation between τ ∗

C and τ ∗
D].

We see that the situation here is in a sense a reverse one to
that in the Stag-hunt game. When we parametrize both delays
by τ , if the delay of defection is bigger than that of coopera-
tion, then above some critical τ the stable interior equilibrium
ceases to exist and the cooperation becomes a globally asymp-
totically stable equilibrium; see panel (a). However, if the
delay of cooperation is bigger than that of defection, then in
the limit of infinite τ the stable interior equilibrium tends to
some value. Both strategies coexist; see panel (c). Under no
circumstances does defection become globally asymptotically
stable.

Example 2

Here we study another particular example that illustrates a
complex behavior of games with asymmetric time delays. The
game has the following payoff matrix:

U3 =
[

2 0.5
2.95 0

]
.

Now, x∗ ≈ 0.345 is the stable stationary state of the nonde-
layed replicator dynamics.

In Fig. 3(a), we set τC = τ , τD = 2τ . We see that there
exists a threshold τ ∗ ≈ 1.1 such that for τ < τ ∗ there exists

(a) (b)

FIG. 3. Numerical solutions of F (x) = 0 for the matrix U3: the
stable interior stationary state as a function of τ , when τC = τ , τD =
2τ (a) and when τC = 2τ , τD = τ (b).

a unique interior stationary state. Numerical simulations sug-
gest that this state is stable. For τ > τ ∗ and τ < τ ∗ there are
two interior stationary states, one of them stable and the other
unstable. Notice that x = 1 is another stable equilibrium. Nu-
merical simulations suggest that if the initial frequency of the
strategy C is large enough, then the D strategy is eliminated.
Let us also observe that there are two asymptotically stable
equilibria in the system. Cooperation becomes an alternative
equilibrium, and then the only equilibrium when both delays
increase.

In Fig. 3(b), we present the stable interior stationary state
as a function of τ , τC = 2τ , τD = τ . In this case, the stationary
state is almost constant. In fact, for this set of parameters one
can easily see that the function F is decreasing to 1 as both
terms of F decrease. Because only the first term depends on τ

(and it decreases with increasing τ ), one can deduce that the
stationary state is a decreasing function of τ . For τ → +∞ it
converges to the positive solution of the quadratic equation
(2.95x)2 − 1.5x − 0.5 = 0, so it is approximately equal to
0.341. Thus, x̄ ∈ [0.341, 0.345], so it is almost constant. Here
the states 1 and 0 are unstable.

C. Prisoner’s Dilemma

Here we consider the Prisoner’s Dilemma game with the
following payoff matrix:

U4 =
[

3 0
5 1

]
.

The function F takes the following form:

F (x) = 1

τC − τD
ln

(
3x

4x + 1

)
+ 1 − 3x

(
4x + 1

3x

) τC
τC −τD

.

(19)
It is easy to see that lim

x→0+
F (x) < 0 for τC > τD and

lim
x→0+

F (x) > 0 for τC < τD. However, the sign of

F (1) = 1 − 1

τC − τD
ln

5

3
− 3

(
5

3

) τC
τC −τD

(20)

cannot be easily determined. Plots of the function F suggest
that it has no zeros inside the interval [0,1] for τC > τD and it
can have one for some set of delays τC < τD. However, we can
deduce that F (1) > 0 if τD is sufficiently large, thus then there
exists an interior stationary frequency. In Fig. 4(a), we plotted
the value of this interior stationary frequency for τD = 1. The
limiting values of τ ∗

C and τ ∗
D are given by the implicit formula
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(a) (b)

(c) (d)

FIG. 4. Numerical solutions of F (x) = 0 for the matrix U4 for the
classical Prisoner’s Dilemma game. (a) Interior stationary state as a
function of τC , when τD = 1 is fixed. The interior stationary state
exists for τC < 0.459. (b) The interior stationary state as a function
of τD, while τC = 0 is fixed. An interior stationary state exists for
τD > 0.2554. (c) The interior stationary state as a function of τC and
τD. The dotted line indicates the cross-section presented in panel (a).
(d) The region of delays for which there exists the interior stationary
state and the region where there is no interior stationary state. The
solid curve denotes the border between these two regions. The curve
is almost a straight line (the dashed line), plotted for comparison, and
it has the same slope as the solid curve for τ ∗

C → +∞.

F (1) = 0, which can be solved,

τ ∗
D = τ ∗

C

(
1 − ln 3

5

ln
(

1
3τ ∗

C
WL

(
3τ ∗

Ceτ ∗
C

))
)

. (21)

The curve is plotted in Fig. 4(d) (solid line). It is almost a
straight line with the slope given by

1 − ln 3
5

ln
(

1
3τ ∗

C
WL(3τ ∗

Ceτ ∗
C )

) → ln 5

ln 3
≈ 1.465 as τ ∗

C → ∞.

(22)

On the other hand, τ ∗
D → 1

2 ln 5
3 ≈ 0.255 as τ ∗

C → 0. If a
point (τC, τD) is above the curve (τ ∗

C , τ ∗
D), then there exists

an interior stationary state (which is unstable as suggested by
numerical simulations). This means that the system is bistable
and that it goes to all cooperation or all defection depending
on the initial condition.

In Fig. 4(c), we presented the interior stationary frequency
for various τC’s and τD’s.

If τC = 0, then we have

F (x) = 1

τD
ln

4x + 1

3x
+ 1 − 3x, (23)

which is a decreasing function that has a zero inside the inter-
val [0,1] for τD > 1

2 ln 5
3 . A numerical solution of the equation

1

τD
ln

4x + 1

3x
+ 1 − 3x = 0 (24)

is plotted in Fig. 4(b).

We see that when one introduces asymmetric delays with
a delay of cooperation smaller than a delay of defection, then
there appears an interior unstable equilibrium. Hence the state
with just cooperators becomes locally asymptotically stable.

IV. DISCUSSION

We studied the effects of strategy-dependent time delays
on stationary states of evolutionary games. Recently, the ef-
fects of the duration of interactions between two players on
their payoffs, and therefore on evolutionary outcomes, were
discussed by Křivan and Cressman [30]. In their models, the
duration of interactions depends on the strategies involved.
This can be interpreted as strategy-dependent time delays.
They showed that interaction times change stationary states
of the system.

Another approach is to consider ordinary differential equa-
tions with time delays. It was pointed out in [17] that in
the so-called biological model, where it is assumed that the
number of players born in a given time is proportional to
payoffs received by their parents at a certain moment in the
past, the interior state is asymptotically stable for any time
delay. In such models, microscopic interactions lead to a new
type of replicator dynamics that describes the time evolution
of fractions of the population playing given strategies and the
size of the population.

Here we studied biological-type models with strategy-
dependent time delays. We observed a novel behavior. We
showed that interior stationary states depend continuously
on time delays. In particular, in games with two pure Nash
equilibria (Stag-hunt-type games), the bigger the time delay
of a given strategy is, the smaller is its basin of attraction.

When we parametrize both delays by τ , if the delay of
defection is bigger than that of cooperation, then in the limit
of infinite τ the interior unstable equilibrium tends to some
value. Both strategies have some basin of attraction. However,
if the delay of cooperation is bigger than that of defection,
then above some critical τ the unstable interior equilibrium
ceases to exist and the defection becomes globally asymp-
totically stable. Under no circumstances does cooperation
become globally asymptotically stable.

In games with a stable interior equilibrium, the bigger the
time delay of a strategy is, the less frequent it is in the popula-
tion. Moreover, at certain time delays the interior stationary
state ceases to exist, or there may appear another interior
stationary state.

We see that the situation here is in a sense a reverse one
to that in the Stag-hunt game. When we parametrize both
delays by τ , if the delay of defection is bigger than that of
cooperation, then above some critical τ the stable interior
equilibrium ceases to exist and the cooperation becomes a
globally asymptotically stable equilibrium. However, if the
delay of cooperation is bigger than that of defection, then in
the limit of infinite τ the stable interior equilibrium tends to
some value. Both strategies coexist. Under no circumstances
does defection become globally asymptotically stable.

In the Prisoner’s Dilemma game, for time delays of coop-
eration smaller than the time delay of defection, there appears
an unstable interior equilibrium. Therefore, for some initial
conditions, the population converges to the homogeneous
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state with just cooperators. This shows an asymptotic stability
of cooperation in a simple model of a social dilemma.

It would be interesting to analyze strategy-dependent time
delays in stochastic dynamics of finite populations. The work
in this direction is in progress.
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APPENDIX

We provide here propositions, theorems, and their proofs,
which support the results presented in the paper.

The main results for Snowdrift-type games are included
in Theorem A.3 and following Corollary A.4. We present
there a set of conditions that guarantee the existence of at
least one interior stationary state. In Theorem A.6 we give
a condition for the monotonicity of a function which zeros
give us stationary states. Finally, in Proposition A.9 we state
conditions for the absence of stationary states for small time
delays.

In Remark A.1 we give an explicit formula for the leading
eigenvalue λ for pure stationary states, x̄ = 0 and 1. This
eigenvalue determines the growth rate of the whole popula-
tion. In Remark A.10 we state some results about the existence
of stationary states for d = 0.

We provide here also additional calculations concerning
Stag-hunt type games.

1. General results for Snowdrift-type games

Interior stationary states are given by zeros of the function
F (x) defined by (13). Let ŪC = ax̄ + b(1 − x̄) and ŪD = cx̄ +
d (1 − x̄).

Remark A.1. We see that for x̄ = 0 we have

λ + 1 = de−λτD �⇒ λ = Wp(dτDeτD )

τD
, (A1)

while for x̄ = 1 we have

λ + 1 = ae−λτC �⇒ λ = Wp(aτCeτC )

τC
, (A2)

where Wp is the Lambert W function, which is a principal
branch of the relation Wp(x) exp(Wp(x)) = x.

We show that if τC �= τD, then the value of an interior
stationary state depends on time delays. Moreover, for some
payoff matrices and some values of a delay, multiple interior
stationary states exist. We would like to point out that these
relations are not linear. Thus, contrary to the case without
time delays or with equal delays (i.e., τC = τD), adding a
constant to a column of a payoff matrix or multiplying the
matrix by a constant changes interior stationary states or even
may change the number of interior stationary states. Thus, the
intuition from nondelayed games about the asymptotics of the
dynamics of replicator equations is not necessarily valid for
the case of nonequal delays.

It turns out that if the eigenvalue λ(x̄) corresponding to the
stationary state x̄ is positive, then the frequency of the given
strategy is smaller than the frequency of this strategy in a
nondelayed case if the delay corresponding to this strategy is
larger than the time delay of the other strategy. We have the
following proposition.

Proposition A.2. Let a < c and d < b. Assume that x̄ ∈
(0, 1) and let λ be the leading eigenvalue that corresponds to
x̄. Then if λ > 0 we have the following:

(i) If τC > τD, then x̄ < x∗.
(ii) If τC < τD, then x̄ > x∗.
Proof. Assume that τC > τD. Then the sign of λ is the same

as the sign of

φ(x) = ln

(
ax + b(1 − x)

cx + d (1 − x)

)
.

Note that φ(x∗) = 0 and

φ′(x) = ad − bc

(ax + b(1 − x))(cx + d (1 − x))
< 0

because ad < bc. Thus, φ(x) > 0 for x < x∗, so x̄ < x∗. Sim-
ilarly, if τC < τD, then the sign of λ is opposite to the sign of
φ(x) and therefore x̄ > x∗.

We will study general properties of F , which will help us
to determine a number of stationary states of our replicator
dynamics. First, we determine conditions that would imply
the sign of F at x = 0 and 1. Let us define

c∗(a) = a−τD/τC

(
Wp(aτCeτC )

τC

)1−τD/τC

,

d∗(b) = b−τD/τC

(
Wp(bτCeτC )

τC

)1−τD/τC

,

(A3)

where Wp is the Lambert W function, which is a principal
branch of the relation Wp(x) exp(Wp(x)) = x.

Theorem A.3. (A) If a < c, then F (1) > 0 if and only if one
of the following conditions holds:

(i) τC > τD, a < 1, and c < c∗(a).
(ii) τC < τD, a < 1, or c > c∗(a).
(B) If b > d , then F (0) > 0 if and only if one of the

following conditions holds:
(i) τC > τD, b < 1 or d < b∗(b).
(ii) τC < τD, b < 1 and d > b∗(b).
Proof. First we study the sign of F (1). It is easy to see that

F (1) = 1

τC − τD
ln

(a

c

)
+ 1 − a

(
c

a

)τC/(τC−τD )

.

Assume that τC > τD. Due to the assumption a < c, there
exists z ∈ (0, 1) such that a = zc. We plug this into the ex-
pression for F (1) and we obtain

1

τC − τD
ln z + 1 − a

(
1

z

)τC/(τC−τD )

. (A4)

Let us introduce u = zτC/(τC−τD ). Then the above expression
simplifies to

fa(u) = 1

τC
ln u + 1 − a

u
.
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It is easy to see that fa is a continuous, strictly increasing
function of u and lim

u→0+
fa(u) = −∞. Thus we have two possi-

bilities. Either fa(1) < 0 and fa(u) < 0 for all u ∈ (0, 1) [thus
F (1) < 0 for all a < c] or there exists a unique u∗ ∈ (0, 1)
such that fa(u∗) = 0 [ fa(u) < 0 for 0 < u < u∗ and fa(u) > 0
for u∗ < u < 1] due to monotonicity [and this implies an
appropriate sign of F (1) depending on the value of a with
respect to c].

Note that fa(1) � 0 is equivalent to a � 1. Assume now
that a < 1 and we find u∗. We have

1

τC
ln u∗ + 1 = a

u∗ ⇐⇒ τC − aτC
1

u∗

= ln
1

u∗ ⇐⇒ aτC
1

u∗ eaτC
1

u∗

= aτCeτC .

Thus,

u∗ = aτC

Wp(aτCeτC )
,

where Wp is the Lambert function. Because a
c = u(τC−τD )/τC ,

then F (1) � 0 if a � 1 or c > c∗(a), where c∗(a) is given
by (A3). Thus, if a > 1 and c < c∗(a), then F (1) > 0 and
point (i) is proven. Finally, note that if τC < τD, then the
variable u changes from 1 to +∞ instead of from 0 to 1, and
very similar arguments lead to the assertion of point (ii).

Let us calculate the value

F (0) = 1

τC − τD
ln

(
d

b

)
+ 1 − b

(
b

d

)τC/(τC−τD )

.

Note that this situation is analogous to the previous one, and
analogous arguments prove this part of the theorem.

From Theorem A.3 and its proof, the following corollary
can be easily deduced.

Corollary A.4. (A) If a < c, then F (1) < 0 if and only if
one of the following conditions holds:

(i) τC > τD, a � 1 or c > c∗(a).
(ii) τC < τD, a � 1 and c < c∗(a).
(B) If b > d , then F (0) > 0 if and only if one of the

following conditions holds:
(i) τC > τD, b � 1 and d > b∗(b).
(ii) τC < τD, b � 1 or d < b∗(b).
Corollary A.5. Theorem A.3 and Corollary A.4 give

conditions that guarantee the existence of at least one in-
terior stationary state. Namely, if a < c and b > d , then
we need F (1) > 0 [Theorem A.3(A)] and F (0) < 0 [Corol-
lary A.4(B)] or, reversely, F (1) < 0 [Corollary A.4(A)] and
F (0) > 0 [Theorem A.3(B)].

If the function F is monotonic, then the previous theorem
gives us a condition guaranteeing the existence of a solution
of F (x) = 0 on (0,1), that is, the existence of an interior
stationary state.

Theorem A.6. If a < c, d < b, and additionally a < d < c
or d < a < b, then the function F is monotonic. Moreover,
if additionally τC > τD, then it is decreasing and if τC < τD,
then it is increasing.

Proof. It is enough to calculate the first derivative of F . It
reads

F ′(x) = 1

τC − τD

(
ad − bc

(ax + b(1 − x))(cx + d (1 − x))

+
(

τC (d − c) + τD(a − b)
cx + d (1 − x)

ax + b(1 − x)

)

×
(

cx + d (1 − x)

ax + b(1 − x)

)τD/(τC−τD ))
.

The assumptions guarantee that ad − bc < 0, d − c < 0, a −
b < 0, and the thesis follows.

Corollary A.7. If a = b or c = d , then the function F is
monotonic and there is at most one solution of F (x) = 0 in
the interval [0,1].

Remark A.8. Theorems A.3 and A.6 give a complete de-
scription of the existence of the unique stationary state x̄
inside the interval (0,1) if a < d < c or d < a < b (under the
assumption that a < c, d < b).

Now, we give a condition that guarantees the existence
of the interior stationary point x̄ when τD is fixed and τC

converges to zero.
Proposition A.9. Assume that 0 < b < a < c and d = 0. If

one of the following conditions holds:
(a) τD � b

a(a−b) , a > 1, and τD >
ln ( c

a )
a−1 .

(b) τD > b
a(a−b) and b > 1.

then for τC < τD close enough to 0, there exists no interior
equilibrium state x̄ ∈ (0, 1).

Proof. We check if the equation F (x) = 0, where F is given
by (13), has a solution x̄ ∈ (0, 1) for fixed τD and small τC . It
is easy to see that the function F is continuous with respect to
τC and x for τC < τD. Thus, it is enough to check the existence
of a solution to F (x) = 0 for τC = 0. In this case, the function
F simplifies to

F0(x) = 1

τD
ln

(
cx

ax + b(1 − x)

)
+ 1 − (ax + b(1 − x)).

We calculate the derivative of F0,

F ′
0 (x) = b

τD

1

x((a − b)x + b)
− (a − b).

We see that it is a decreasing function of x ∈ (0, 1) (as a >

b) and therefore F0 is concave. Moreover, lim
x→0+

F ′
0 (x) = +∞

thus
(i) If τD � b

a(a−b) , then F0 is increasing in (0,1).

(ii) If τD > b
a(a−b) , then F0 has exactly one maximum at

(0,1) at the point

xmax = b

2(a − b)

(√
1 + 4

bτD
− 1

)
.

Let us consider the first case. Here F ′
0 (x) > 0 for all x ∈

(0, 1) because it is decreasing and F ′
0 (1) > 0. Thus F0 is an

increasing function of x and as lim
x→0+

F0(x) = −∞ it has a

zero in the interval (0,1) if and only if F (1) > 1. An easy
calculation allows us to derive the condition (a).
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Now let us consider the second case. Some algebraic ma-
nipulations lead to

F0(xmax)

= 1

τD

[
ln

c

a − b
+ ln

(
4

bτD

)
− 2 ln

(
1+

√
1+ 4

bτD

)]

+ 1 − b

2

(
1 +

√
1 + 4

bτD

)
.

We show that F0(xmax) approaches its supremum either for
τD → +∞ or for τD → b

a(a−b) . Let us introduce a new vari-

able z = 4
bτD

and denote c̃ = c
a−b . Now, writing F0(xmax ) in

variable z we have

F0(xmax) = h(z) = b

4
z(ln c + ln z − 2 ln(1 + √

1 + z))

+ 1 − b

2
(1 + √

1 + z),

where 0 < z < 4(a−b)b
b2 as τD > b

(a−b)b . We calculate the
derivative of h with respect to z and obtain

h′(z) = b

4
ln

(
cz

(1 + √
1 + z)2

)
.

Now it is easy to see that h′ has at most one zero for z > 0
and it is negative for z close to 0. Hence, the function h is
decreasing for small z and it may increase for large z having
at most one minimum for z > 0. Thus it approaches its supre-
mum either for z → 0 (i.e., τD → +∞) or for z → 4(a−b)b

b2 . In
the latter case, we have

τD → b

a(a − b)
�⇒ xmax → 1,

and we arrive at the case considered earlier. On the other hand,

lim
z→0+

h(z) = 1 − b < 0

if the condition (b) holds. Thus, F0(x) < 0 for all x ∈ (0, 1)
and no interior stationary state exists.

Remark A.10. Note that if τD � b
a(a−b) and either a < 1 or

τD <
ln ( c

a )
a−1 , then there exists exactly one interior stationary

state x̄ ∈ (0, 1) for τC < τD close enough to 0. On the other
hand, if τD > b

a(a−b) and b < 1, then there exist one or two
interior stationary states x̄ ∈ (0, 1) for τC < τD close enough
to 0 if τD is large enough. In fact, if a < 1 for a sufficiently
large τD, then there exist two stationary states x̄ ∈ (0, 1).

If τC is small enough (for a fixed τD) or, reversely, if τD is
large enough (for a fixed τC), there exists no interior stationary
state. Thus, it is possible to calculate these threshold values
τ ∗

C and τ ∗
D. It can be seen that the interior stationary state

disappears when it merges with the stationary state 1. Thus,
looking for τ ∗

C and τ ∗
D such that F (1) = 0, after some algebraic

calculations we obtain the implicit formula

τ ∗
C = −

(τ ∗
D − τ ∗

C ) ln
( ln(c/a)

4(τ ∗
D−τ ∗

C ) + 1
a

)
ln(c/a)

. (A5)

We have that for τC < τ ∗
C or for τD > τ ∗

D there exists no inte-
rior stationary state.

2. Calculations concerning Stag-hunt-type game

In this part of the Appendix, we provide some details of
calculations that allowed us to formulate statements about the
slope of the curve (τ ∗

C , τ ∗
D) given by formula (18) in the paper.

Let us recall this formula here,

τ ∗
D = τ ∗

C

(
1 + ln β

Wp(aτ ∗
Ceτ ∗

C ) − τ ∗
C

)
. (A6)

First note that τ ∗
D > 0 for τ ∗

C > τ ∗
A,0, where

τ ∗
A,0 = − ln β

aβ − 1
. (A7)

We also have τ ∗
D = 0 for τ ∗

C = τ ∗
A,0. We have then

Wp(aτ ∗
A,0eτ ∗

A,0 ) = τ ∗
A,0 − ln β. (A8)

We calculate two quantities:
(i) The derivative of the right-hand side of (A6) with re-

spect to τ ∗
C at the point τ ∗

A,0.
(ii) The slope of the right-hand side of (A6) for τ ∗

C → +∞.
Here we calculate g′(τ ∗

A,0), where

g(τ ∗
C ) = τ ∗

C

(
1 + ln β

Wp(y(τ ∗
C )) − τ ∗

C

)
, y(τ ∗

C ) = aτ ∗
Ceτ ∗

C .

We have

g′(τ ∗
A,0) =

(
1 + ln β

Wp(y(τ ∗
A,0)) − τ ∗

A,0

)

− τ ∗
A,0 ln β

[Wp(y(τ ∗
A,0)) − τ ∗

A,0]2
(W ′

p(y(τ ∗
A,0))y′(τ ∗

A,0) − 1).

(A9)

Because of (A8), the first parenthesis of (A9) is equal
to 0. Moreover, Wp(y(τ ∗

A,0)) − τ ∗
A,0 = − ln β. Thus, the for-

mula (A9) simplifies to

g′(τ ∗
A,0) = − τ ∗

A,0

ln β
(W ′

p(y(τ ∗
A,0))y′(τ ∗

A,0) − 1). (A10)

Now we calculate the expression in the parentheses. To
shorten the notation, we write y and y′ omitting the depen-
dence of y on τA,0. Using (A8) and (A7), we get

W ′
p(y) = Wp(y)

y[1 + Wp(y)]

=
− lnβ

aβ−1 − ln β

y aβ−1−aβ ln β

aβ−1

= −aβ ln β

y(aβ − 1 − aβ ln β )

= aβ − 1

aβ − 1 − aβ ln β
βaβ

because

y = aτA,0eτ ∗
A,0 = −a ln β

aβ − 1
β1−aβ .

On the other hand, we have

y′(τ ∗
A,0) = (1 + τ ∗

A,0)eτ ∗
A,0 = β − 1 − ln β

aβ − 1
β1−aβ.
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JACEK MIĘKISZ AND MAREK BODNAR PHYSICAL REVIEW E 103, 012414 (2021)

Plugging formulas for W ′
p(y) and y′ into (A10), we get the final

formula

g′(τ ∗
A,0) = aβ − 1

aβ − 1 − aβ ln β
. (A11)

To calculate the slope of the right-hand side of (A6) for
τ ∗

C → +∞, we note (see Ref. [31], Eq. 4.13.10) that

Wp(y) = ln y− ln ln y+ r(y), where r(y) → 0 as y →+∞.

We have then
Wp(aτ ∗

Ceτ ∗
C ) − τ ∗

C

= ln(aτ ∗
Ceτ ∗

C ) − ln ln(aτ ∗
Ceτ ∗

C ) + r(aτ ∗
Ceτ ∗

C ) − τ ∗
C

= ln a + ln
τ ∗

C

τ ∗
C + ln a + ln τ ∗

C

+ r(aτ ∗
Ceτ ∗

C )

→ ln a

as τ ∗
C → +∞. Thus, the slope of the right-hand side of (A6)

for τ ∗
C → +∞ is equal to 1 + ln β

ln a .
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