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Random walks with asymmetric time delays
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It is usually expected that time delays cause oscillations in dynamical systems—there might appear cycles
around stationary points. Here we study random walks with asymmetric time delays. In our models, the
probability of a walker to move to the right or to the left depends on the difference between two state-dependent
fitness functions evaluated at two different times. We observe a different behavior—a dependence of the mean
position of the walker on time delays. Moreover, the effect of time delays is reversed when one shifts (in a
symmetric way) fitness functions. This is a joint effect of both stochasticity and time delays present in the
system. The position of a random walker may be interpreted as a frequency of a given strategy in discrete
replicator dynamics of evolutionary games. Then our results show that the effect of asymmetric time delays
on the equilibrium structure of a population depends not only on time delays, but also on details of the fitness
functions.

DOI: 10.1103/PhysRevE.105.064131

I. INTRODUCTION

Many social and biological processes can be described
by deterministic population dynamics [1,2]. It is usually
assumed that interactions between individuals take place in-
stantaneously and their effects are immediate. In reality, all
processes take a certain amount of time. Results of biological
interactions between individuals may appear in the future,
and in social models, individuals or players may act, that is,
choose appropriate strategies, on the basis of the informa-
tion concerning events in the past. It is natural therefore to
introduce time delays to describe such processes. It is well
known that time delays may cause oscillations in dynamical
systems [3–6]. One usually expects that interior equilibria of
evolving populations—describing a coexistence of strategies
or behaviors—are asymptotically stable for small time delays
and above a critical time delay, where the Hopf bifurcation
appears, they become unstable.

The effects of time delays in replicator dynamics describ-
ing the evolution of populations of individuals interacting
through playing games [7] were discussed in [8–21] for games
with an interior stable equilibrium (an evolutionarily stable
strategy [22]). Recent models have studied strategy-dependent
time delays. In particular, Moreira et al. [15] discussed a mul-
tiplayer Stag Hunt game with time delays, Khalifa et al. [19]
investigated asymmetric games in interacting communities,
and Wesson and Rand [16] studied Hopf bifurcations in two-
strategy delayed replicator dynamics. A systematic analysis of
two-player games with two strategies and strategy-dependent
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time delays is presented in [21]. A different behavior—the
continuous dependence of equilibria on time delays—was
observed.

In finite populations, one has to take into account stochas-
tic fluctuations [2]. One of the simplest models involving
both stochasticity and time delays is a delayed random walk
[23,24]. In such a walk, transition probabilities depend on
the position of the walker at some earlier time. In [23], a
delayed random walk was considered, where, in the absence
of delays, the transition toward the origin (a stable state) is
more probable than the outward transition. The authors show
that the mean square displacement of the walker, that is, the
variance, approaches a stationary value in an oscillatory man-
ner for large time delays and in a monotonic way for small
ones. Moreover, the stationary value of the variance is a linear
function of the delay and the coefficient of the proportionality
is a linear function of the transition probability.

Here we consider a modification of the above model.
Namely, transition probabilities depend on the difference be-
tween two functions (which can be interpreted as fitness
functions in discrete replicator dynamics) evaluated at differ-
ent times in the past. To simplify our model, we set one of
the time delays to zero. We will use hyperbolic-tangent and
step functions. In the absence of time delays and stochasticity,
our models are discrete (in time and space) replicator-type dy-
namics of evolutionary games with an interior asymptotically
stable stationary state.

It should be noted here that such dynamics are not Marko-
vian. However, we may restore Markovianity if we consider
transition probabilities not between states, but between his-
tories of states. Such Markov chains are called higher-order
Markov chains [25]. Although a stationary probability distri-
bution is defined on histories, we will still be interested in
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the stationary probability of visiting particular states of the
physical space. Our main object of study is the expected value
of such a stationary probability distribution, its dependence
on time delays, and other parameters of our models. We have
performed stochastic simulations for hyperbolic-tangent and
step-function models and we have derived analytical formulas
in the step-function case for some small time delays.

We report a different behavior—the dependence of station-
ary probability distribution on time delays.

II. DETERMINISTIC DYNAMICS WITH TIME DELAYS

The state space S of the walker is the set of all integers. We
introduce two fitness functions on S, i.e., fA and fB, such that
fA is a nonincreasing decreasing function of the position of the
walker on S and fB is a nondecreasing one, fA(x) = fB(−x),
and hence fA(0) = fB(0), fA � fB on (−∞, 0], and fA � fB

on [0,∞). Deterministic dynamics is given by the following
rules: If fA[x(t − τ )] − fB[x(t )] > 0, then the walker moves
to the right at t + 1; in the case of the reverse inequality, it
moves to the left; and in the case of the equality, it stays at
its current position. We have to specify the initial conditions.
For systems with time delays, it is a history {x(−τ ), x(−τ +
1), . . . , x(−1), x(0)}.

Obviously, the origin is a stationary state of such dynamics
(if the walker stayed there for τ previous steps). However, it is
unstable. One can see that if the walker moves to the right or
to the left of the origin, then there immediately appears a cycle
around the origin, with the period 2τ + 2 and the amplitude 1.
It is also easy to see that if we start with initial conditions
entirely on the right or on the left of the origin, then in a
finite number of steps the system develops a cycle with the
period 2τ + 2 and the amplitude equal to the smallest integer
bigger or equal to τ/2. Because the set of reachable states is
finite for any initial condition, after a finite number of steps,
the system moves along a cycle; there are no other stationary
states besides the origin.

Now we will show that any such cycle has the period 2τ +
2; it is symmetric around the origin and therefore the average
walker position along its trajectory is equal to 0.

We introduce a state space of our system: � = {(x(t −
τ ), x(t )} = {(m, n) ∈ Z2, |m − n| � τ }. The dynamics can be
represented by walks over edges or diagonals of elementary
squares of �; see Fig. 1. Let T = {(m, n), |m + n| � 1}. It
follows from the phase portrait in Fig. 1 that T ∩ � is the
attractor and the invariant set of the dynamics.

We will show that if the system moves on T ∩ � from (i, j)
to (k, l ) in one step, then l = −i. It follows from the dynam-
ics on T ∩ � that either i = − j − 1, i = − j, or i = − j + 1.

Moreover, monotonicity and their relative symmetry gives
us that if i = − j − 1, then l = j + 1 = −i; if i = − j, then
l = j = −i; and if i = − j + 1, then l = j − 1 = −i. From
the definition of the phase space, we have that after τ steps,
the system moves from (m, n) to (n, p) for some m, n, and p.

Assume now that the system moves from (i, j) to (m,−i)
in a single step. Then it moves to ( j, n) in τ − 1 steps. It
follows that it has to be at the state (−i,− j) in the next step.
It can be written schematically as

(i, j)
1−→ (m,−i)

τ−1−−→ ( j, n)
1−→ (−i,− j). (1)

FIG. 1. Phase portrait in the state space � = {(x(t − τ ), x(t )} =
{(m, n) ∈ Z2, |m − n| � τ } for the deterministic dynamics with τ =
3. Arrows show the directions in which the system can move. The
attractor is shown in a darker shade.

Hence, every cycle is symmetric around the origin and
the average position of the walker is 0. After 2(τ +
1) = 2τ + 2 steps, the system returns to the initial state.
Hence any cycle must have a period which is a divisor of
2τ + 2.

III. STOCHASTIC DYNAMICS WITH TIME DELAYS

In the stochastic dynamics without time delays, we assume
that a probability of the walker to move to the center, being
at a position x, is proportional to the absolute value of the
difference fA(x) − fB(x) and such that a probability of moving
to the center is higher than the one of moving outward. In
this way, we constructed an ergodic Markov chain with a
unique stationary probability distribution symmetric around
the origin and with the expected value of the walker position
equal to zero.

It was shown in [13] that when one introduces a discrete
time delay τ , that is, the transition probabilities depend on
the difference fA[x(t − τ )] − fB[x(t − τ )], then there appears
a cycle around the origin with the amplitude τ and the time
period 4τ + 2 which is stochastically stable [26–28]. It means
that the stationary probability is concentrated on the cycle
with the probability converging to one in the limit of zero
stochasticity.

Here we will consider asymmetric time delays—we as-
sume that transition probabilities depend on the difference
fA[x(t − τ )] − fB[x(t )]. Formally, our Markov chain is de-
scribed by transition probabilities on the set of consistent
histories, {x(t − τ ), x(t − τ + 1), . . . , x(t − 1), x(t )}. We de-
fine the transition probabilities in the following way. When
the walker is at state x, then the probability of moving to the
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FIG. 2. Hyperbolic-tangent fitness functions; d = −20 on the
left and d = 20 on the right.

right is given by

p+[x(t )] = 1

2
+ ω

fA[x(t − τ )] − fB[x(t )]

2
, (2)

where ω � 1 measures the strength of selection—the impor-
tance of fitness functions: In the case of ω = 0, our dynamics
becomes an unbiased random walk. From now on, we will
set ω = 1. The probability of moving to the left, p−[x(t )], is
given by 1 − p+[x(t )].

For fitness functions, we use hyperbolic tangents:

fA(x) = 1
2 [tanh(x − d ) + 1], (3a)

fB(x) = 1
2 [tanh(x + d ) + 1], (3b)

where d is the length of the half of the interval of an almost
nonbiased random walk—where transition probabilities are
close to 1/2. Figure 2 shows plots of the fitness functions for
d = −20, 20.

In this way, we defined a Markov chain on histories with a
unique stationary probability distribution which we denote by
πh. Although states of our Markov chain are time histories,
we are interested in frequencies in which particular physical
states in S are visited in the long run—in the stationary proba-
bility distribution. We denote by π a stationary probability of
visiting physical states in S.

We performed stochastic simulations of our dynamics; the
frequencies of the positions of the walker are presented in
Fig. 3. One can see that they are skewed for nonzero d’s,
for negative d’s, the walker visits positive integers more fre-
quently, and the situation is reversed for negative d’s.

In Fig. 4, we show the dependence of the expected value of
the walker’s position on the time delay τ . It is an increasing
function of τ for d = −20 and a decreasing one for d > 0.
This can be understood in the following way. Assume that
d > 0. If a random walker is on the right of −d , it essentially
performs the unbiased random walk. However, on the left of
d , with the history to the right of it, the walker moves to the
left with a probability close to one. As a consequence of this,

FIG. 4. The dependence of the expected value of the walker’s po-
sition μ on the time delay τ with hyperbolic-tangent fitness functions
τ = 0, 1, 2, . . . , 68. d = −20 on the left and d = 20 on the right.

the walker spends more time around −d than around d , and
hence its mean position is negative. The situation is reversed
for negative d’s.

In Fig. 5, we show the dependence of the expected value of
the walker’s position on d , the size of the space region with an
almost unbiased random walk. We see that the expected value
is a decreasing function of d .

We see in Figs. 4 and 5 that the expected value of the
walker position is symmetric with respect to d : μ(d ) =
−μ(−d ) and hence μ(0) = 0. This result follows im-
mediately from symmetries of fitness functions, namely,
fA(x, d ) = 1 − fA(−x,−d ) and fB(x, d ) = 1 − fB(−x,−d ).

Our results show a different behavior not observed in any
previous models. The shift of the expected value of the sta-
tionary probability distribution is a joint effect of both time
delays and stochasticity; compare the frequencies in Fig. 3
and the results for the corresponding deterministic dynamics
with time delays.

IV. ANALYTICAL RESULTS

Here we present some analytical results for fitness step
functions which approximate hyperbolic tangents:

fA(x) =
⎧⎨
⎩

1 for x < d
1
2 for x = d
0 for x > d,

(4a)

fB(x) =
⎧⎨
⎩

0 for x < −d
1
2 for x = −d
1 for x > −d.

(4b)

Figure 6 shows the plots of the functions for d = −20, 20.
It is easy to see that it is enough to consider the physical

space state S′ = {−(d + 1), . . . , d + τ + 1} for d > 0 and
S′ = {d − τ − 1, . . . ,−d + 1} for d < 0, of the position of
the walker which is the attractive and invariant set of dynam-

FIG. 3. Frequencies of positions of the walker for the hyperbolic-tangent models for τ = 20 and 108 simulation steps in each case: d = −20
on the left, d = 0 in the middle, and d = 20 on the right.
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FIG. 5. The dependence of the expected value of the walker’s
position μ on d with hyperbolic-tangent fitness functions with τ =
20, d = −40, . . . , −1, 0, 1, . . . , 40.

ics defined in Eq. (2). Stochastic simulations with the above
fitness step functions provide the same qualitative dependence
of the expected value of the walker’s position on τ and d as in
the hyperbolic-tangent case.

Let us first discuss the higher-order Markov chain on
histories. Let us consider the case of τ = 1 and d >

0. The state space �′ consists of pairs: A position of
a walker in S′ and its position one unit time in the
past. Namely, �′ = {(x,−), (x,+); −d � x � d + 1, (−d −
1,+), (d + 2,−)}. The transition probabilities of such
Markov chain are given in Eq. (2) with ω = 1 and therefore
assume the following values: 0, 1

4 , 1
2 , 3

4 , and 1. We denote by
πh the stationary probability distribution of our higher-order
Markov chain, which can be calculated as usual by solving
the system of linear algebraic equations—total probability
formulas present in the definition of the stationary probability
distribution. Having πh, one can easily calculate the sta-
tionary probability distribution on the physical state S′—the
stationary frequency of visiting states by the walker. Technical
details are provided in the Appendix. Then one can calculate
the expected value of the walker’s position as a function of d
for τ = 1,

μ(d ) = 7sgn(d ) − 6d

48|d| + 10
for d ∈ Z. (5)

In Fig. 7, we graph the above function and compare it to the
simulation results.

FIG. 6. Step functions with an interval of a nonbiased random
walk in the middle; d = −20 on the left and d = 20 on the right.

FIG. 7. The expected value of the position of the walker, μ(d ),
for the fitness step function given in Eq. (4), τ = 1: Graph of Eq. (5)
and results of simulations. Points • show the results of the simula-
tions. The dashed orange line represents the formula in (5) for d < 0.
The star � represents the value in (5) for d = 0; it coincides with the
simulation data point. The blue unbroken line represents the formula
in (5) for d > 0.

V. DISCUSSION

We studied random walks with asymmetric time delays.
In our models, the probability of a walker to move to the
right or to the left depends on the difference between two
state-dependent fitness functions fA and fB evaluated at states
of the walker at two different times. We observed a different
behavior—a dependence of the mean position of the walker
on time delays. Moreover, the effect of time delays is reversed
when one shifts (in a symmetric way) fitness functions.

If both fitness functions are almost (or exactly in the step-
function case) equal to 1 on the interval of the length 2d
around the origin, then the mean position of the walker is
negative and a decreasing function of the time delay. It is also
a decreasing function of d . However, if both fitness functions
are almost equal to 0 on this interval, then the mean position
of the walker is positive, an increasing function of the time
delay, and an increasing function of d .

This is a joint effect of both stochasticity and time de-
lays present in the system. In the deterministic version of
our model (where the walker moves deterministically), there
appear symmetric cycles around the stationary point so the
mean position of the walker is equal to the stationary point
of the corresponding dynamics without time delays. In the
stochastic version without time delays, the expected value of
the position of the walker is given by the stationary point of
the deterministic dynamics.

One can interpret our models as discrete replicator dynam-
ics with two strategies A and B, fitness functions given by fA

and fB, and strategy-dependent time delays. This can be done
exactly in models with a finite state space as in our models
with fitness step functions. The position of a random walker
may then be interpreted as a frequency of a given strategy.
Our results show that the effects of strategy-dependent time
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delays on the equilibrium structure of populations may depend
not only on time delays, but also on the details of fitness
functions.
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APPENDIX: DERIVATION OF STATIONARY
FREQUENCIES FOR τ = 1

For the random walk with fitness functions given by
Eq. (4a), and transition probabilities by Eq. (2) with ω = 1
and τ = 1, S′ = {−d − 1, . . . , d + 2} is the state space of the
walker. We denote, by πh(x,−) and πh(x,+), the stationary
probabilities of visiting the state x at time t and, respectively,
the state x − 1 and x + 1 at time t − 1. πh satisfy the system of
linear algebraic equations—total probability formulas present
in the definition of the stationary probability distribution—and
it is given by

⎡
⎢⎢⎢⎢⎣

πh(−d − 1,+)
πh(−d,−)
πh(−d,+)

πh(−d + 1,−)
πh(−d + 1,+)

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 1
4

1
4 0 0 0 0

1 0 0 0 0 0 0
0 0 0 1

2
1
2 0 0

0 3
4

3
4 0 0 0 0

0 0 0 0 0 1
2

1
2

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

πh(−d − 1,+)
πh(−d,+)
πh(−d,−)

πh(−d + 1,−)
πh(−d + 1,+)
πh(−d + 2,−)
πh(−d + 2,+)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1a)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

πh(d − 1,−)
πh(d − 1,+)

πh(d,−)
πh(d,+)

πh(d + 1,−)
πh(d + 1,+)
πh(d + 2,−)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2 0 0 0 0 0 0 0

0 0 0 0 1
2 1 0 0 0

0 0 1
2

1
4 0 0 0 0 0

0 0 0 0 0 0 3
4 1 0

0 0 0 0 1
2 0 0 0 0

0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1

4 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

πh(d − 2,−)
πh(d − 2,+)
πh(d − 1,−)
πh(d − 1,+)

πh(−d + 2,−)
πh(−d + 2,+)

πh(d,−)
πh(d,+)

πh(d + 1,−)
πh(d + 1,+)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A1b)

and, for −d + 2 � x � d − 1,

πh(x,+) = 1/2πh(x + 1,+) + 1/2πh(x + 1,−), (A2a)

πh(x,−) = 1/2πh(x − 1,+) + 1/2πh(x − 1,−). (A2b)

The stationary probability distribution π on S′ and the stationary probability distribution πh on histories are related by standard
expressions,

π (x) = πh(x − 1, x) + πh(x + 1, x), −d � x � d + 1, (A3a)

π (−d − 1) = πh(−d,−d − 1), (A3b)

π (d + 2) = πh(d + 1, d + 2). (A3c)

One can solve Eqs. (A1), (A2) and, using Eqs. (A3a), (A3c), one gets

π (−d − 1) = 2

24d + 5
, (A4a)

π (−d ) = 8

24d + 5
, (A4b)

π (−d < x < d − 1) = 12

24d + 5
, (A4c)

π (d − 1) = 10

24d + 5
, (A4d)

π (d ) = 6

24d + 5
, (A4e)

π (d + 1) = 5

48d + 10
, (A4f)

π (d + 2) = 1

48d + 10
. (A4g)
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[9] J. Alboszta and J. Miękisz, Stability of evolutionarily sta-
ble strategies in discrete replicator dynamics with time delay,
J. Theor. Biol. 231, 175 (2004).

[10] H. Oaku, Evolution with delay, Japan Econ. Rev. 53, 114
(2002).

[11] R. Iijima, Heterogeneous information lags and evolutionary
stability, Math. Soc. Sci. 61, 83 (2011).

[12] R. Iijima, On delayed discrete evolutionary dynamics, J. Theor.
Biol. 300, 1 (2012).
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