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§1. Introduction

We study the dynamics of substitution tiling systems, the most famous example be-
ing the Penrose tilings of the plane. These have been studied by many other authors
[Ga,GS,Ken,Mo,Ral,ERob2,Rud1,S]. We work in R?¢, d-dimensional Euclidean space. We
begin with a finite set of prototiles, each of which is a compact subset of R homeomorphic
to the unit ball. In all of our examples, each prototile is actually a CW-complex with a
unique d-dimensional cell which is its interior. That is, for d = 2, these are polygons, with
edges and vertices. We make this structure a hypothesis for much of the paper. A tiling
of R? is a cover of R¢ by sets, each of which is a translation of one of the prototiles (we
do not allow rotations), so that they overlap only on their boundaries. We also assume a
substitution rule: we have a constant A > 1 and, for each prototile, a rule for subdividing
it into pieces, each of which is another prototile, scaled down by factor A~!. This allows
us to define a space of tilings, 2, and a map w : Q — Q via the substitution rule. We
make three important hypotheses: a finite type condition, a primitivity condition and a
recognizability condition. These are explained in Section 2. This is the setting for several
authors [Ken,ERob1,S].

We begin analysing the dynamics of (Q,w) in Section 3. First, we define a metric on
Q, as in [RW,ERob1,Rud2,S], and observe that w is a homeomorphism. The rest of this
section is devoted to showing that (2,w) is topologically mixing and that it has a certain
hyperbolic structure — it is a Smale space. Although the term “Smale space” was not
used, these facts have been shown already by Kenyon [Ken] and E. Robinson [ERob2]. We
supply the relevant arguments here for completeness.

One of our motivations here is in the study of operator algebras associated with tilings.
This was first discussed by A. Connes [Co]. More recently, Kellendonk [Kell,Kel2,Kel3]
has considered these C*-algebras, their K-theory and implications in the study of quasi-
crystals. C*-algebras arising from tilings have also been constructed by Mingo [Mi]. We
will describe some results for these C*-algebras, although it is our intention that much of

the paper can be read with no knowledge of C*-algebra theory.

Section 4 is the heart of the paper. From our substitution tiling, we construct a
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natural CW-complex I'g and an expansive map g : I'g = I'g. In fact, I'g is very much like a
branched d-manifold as described by R.F. Williams [W1,W2], but we do not attempt to put
any differential structure on it. We let 2y denote the inverse limit of the system obtained
by repeating I'g and g, which has a natural shift homeomorphism wg. In Williams’s
terminology, this is a d-solenoid. Under a technical condition we show that (£9,wo) is
topologically conjugate to (£2,w). In the absence of this condition, we construct another
CW-complex I';, map v; and inverse limit system (£2;,w;). This system is shown to be
topologically conjugate to (Q,w), in general. From a computational point of view, the
space {2; is substantially more complicated, however.

In Section 5, we construct a shift of finite type which maps onto our system (Q,w),
and we show the factor map is right closing in the sense of Boyle, Marcus and Trow [BMT)].

The results of Section 4 have an important application. They make possible the com-
putation of Cech cohomology and K-theory of the space Q. (It also allows for computation
of the action w* on these groups, although we will not go into this.) The motivation for
such computations again comes from C*-algebraic considerations, but we also believe these
are relevant invariants for the dynamics. In Section 6, we make some basic remarks and
observations on this problem. Our attempts to describe the algebraic topology of the space
Q are not the first. Geller and Propp [GP] introduced a “projective fundamental group” for
shift dynamics. This is certainly in the same spirit as our work, although, at the moment,
it is not clear to us whether or not there is a precise relation. In Section 7, we discuss
the C*-algebras and their K-theory. We describe how our work provides an alternative
approach to the problems considered by Kellendonk [Kell,Kel2,Kel3]. In Section 8, we
discuss the special case d = 1 and the relation between our systems and substitution dy-
namical systems. In Section 9, we provide a formula for the zeta function for the system
(Q,w). Finally, in Section 10, we present several example, including the Penrose tilings,

and our computations of their cohomological invariants.
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§2. Substitution Tilings

We use a substitution rule to define a collection of tilings. This rule also defines an
inflation map on the collection.

A tile is a subset of R? homeomorphic to a closed ball in R. A partial tiling is a
collection of tiles in R? with pairwise disjoint interiors, and its support is the union of its
tiles. A tiling is a partial tiling with support R?. When we need different tiles that look
alike, we associate a label with each tile; in such cases, a tile is formally an ordered pair
consisting of the set and the label. We think of a tiling 7' as a multi-valued function: for
u € R? and U C R4, let

T(u)={teT|uect}
T) = | T(w).

uelU
Tilings T and T’ are said to agree on U if T(U) = T'(U). For any partial tiling T, we

define expansions and translations of T' by

AT ={)t|teT} for A e RY
TH+u={t+u|teT} foruecR

A collection of tilings €2 is now defined by a substitution rule. We call these tilings
substitution tilings. Let {p; | i = 1, -, npro} be a finite set of tiles, which we call prototiles.
Let 2 be the collection of all partial tilings that only contain translations of these prototiles.
We assume there is an inflation constant A > 1 and a substitution rule that associates to
each prototile p; a partial tiling P; with support p; such that AP, is in . An inflation

map & : 0 — Q) is defined by O(T) = A (P +u). Let £ be the collection of tilings T
pit+u€T
in 2 such that for any P C T with bounded support, we have P C oM ({p: + u}) for some

n, i, u. Also let w = ©|,; this maps a tiling in § to another in 2 obtained by applying the
substitution rule to each tile and expanding by the factor A.

The above definition is adapted from a standard one for symbolic substitution dynam-
ical systems; see [Mo] for example. C. Radin defines substitution tilings in a similar way.
He [Ral,Ra2] and others [Mo,RRob] add bumps and dents to the edges of two-dimensional

tiles so that they can fit together in a tiling precisely when it has a hierarchical structure
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similar to that defined above. An alternative approach is to start with one tiling and form
its orbit closure under translation, using the metric defined in the next section; we later
show that this is equivalent to our definition.

We thus have a collection of tilings Q and an inflation map w defined on it. At this
point, one can show that € is not empty and that w(Q2) = Q; the proofs are below. In the
next section, a metric will be defined on 2, and we will want w to be a topologically mixing
homeomorphism. We therefore make three assumptions about the substitution rule, which
are satisfied by most of the interesting examples.

The first assumption is that w is one-to-one, for we need an inverse of w. This as-
sumption comes under the broad idea of “recognizability.” Substitution rules that admit
periodic tilings do not satisfy this, an example being the rule defined by dividing a square
into four equal squares. Indeed, it is easy to show that if w is one-to-one then Q contains
no periodic tilings; this well-known proof is below.

The second assumption is that the substitution is primitive: there is a fixed positive
integer No such that for each pair of prototiles p; and p;, the partial tiling &™o({p;})
contains a translation of p;. We need this for w to be topologically mixing.

The third assumption is that {2 satisfies a finite type condition: for each positive real
number r, there are only finitely many partial tilings up to translation that are subsets of

tilings in €2 and whose supports have diameters less than r.

Proposition 2.1. € is not empty.

Proof. Since there are only a finite number of prototiles, it is not hard to see that for
some prototile p; and positive integer n, the partial tiling @™ ({p;}) contains a translation
of p; that does not meet the boundary of A\"p;. It readily follows that  contains a fixed

point for w™.

Proposition 2.2. w(Q) =Q

Proof. This proof is essentially the one given by S. Mozes for two-dimensional symbolic
substitution systems [Mo]. That w(2) C Q is clear. To show that Q C w(2), suppose T

is in Q. Since T maps one-to-one into Q?, we can order its tiles, say by {£;}%2,. Now let
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So = {(sk,nk)}32, where each s is a tile and ny a positive integer such that @™ ({sx})
agrees with T' on the ball of radius k centered at the origin. We now inductively define a
sequence {S;}$2; of subsequences of Sy and a sequence of tiles {t.}2,. For i = 1,2,..,
we note that there are only finitely many tiles ¢; such that t; € &({t}}). Therefore, we
can choose a subsequence S; of S;—; and a tile £; such that for each term (s,n) of S;, we
have t; € O({t}}) € @™~ 1({s}). Let T” be the collection of tiles appearing in the sequence
{t;}:2,. One then verifies that 7" is in © and that T = w(T").

Proposition 2.3.  contains no periodic tilings.

Proof. Suppose T is in Q. We must show that T # T + v for each nonzero v in
R?. Given such a v, let n be a positive integer such that some ball of diameter A~" ||v|| is
contained in each prototile. Let t be any tile in w™"(T"). Then the interiors of t and t+A~"v
meet, and, since these tiles are bounded, ¢ % t 4+ A~"v; therefore w™"(T") # w™™(T) + A"
sothat T# T +v.

For convenience in some of the later developments, we will also make the assumption
that each prototile carries the structure of a d-dimensional CW-complex [Do,Ma] with a
unique d-cell which is the interior of the prototile. Each tile, which is a translation of a
prototile, obtains the structure of a CW-complex in an obvious way.

We require that our substitution rule respect the cellular structure in the following
sense. Suppose T is a tiling in §. Declare a subset of R? to be a k-cell if it is contained
in some tile in T and is a k-cell in that tile. We assume that this yields a well-defined
CW -structure on R%. Thus, the substitution rule must only allow two tiles to be adjacent
if their intersection defines the same set of faces in each tile — that is, vertices match to
vertices, edges match to edges, and so forth.

It seems to the authors that this condition implies the finite type condition. Unfor-
tunately, the method of proof we have in mind is very tedious. It is more convenient to

assume both conditions as hypotheses.
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§3. Dynamics

We give 2 a topology and show that w is a topologically mixing homeomorphism.
Then we prove that the resulting dynamical system is a Smale space. Other authors
[S,ERob2] study the different tiling dynamical system consisting of {2 and the action of R¢
by translation. We shall see that these two dynamical systems are closely related in that
the unstable equivalence classes in the Smale space are the orbits in the tiling dynamical
system.

We define a metric on the space of tilings €2, in which two tilings are close if they
almost agree on a large ball about the origin. Several equivalent metrics and topologies
arise from this notion of distance [RW,ERob1,Rud2,S], and our definition is almost identical
to Solomyak’s [S]. We define, for any tilings T' and T of R¢,

d(T,T") = mf({1/v/2} U {e | T + u and T’ + v agree on By (0) for some |ul], ||v]| < €}).
Here ||.|| is the usual norm on R? and B,(z) is the open ball of radius r centered at z
in R%. One can easily show that d is a metric. One can also show that the metric space
(R, d) is sequentially compact, by an argument very similar to that given in [RW]; thus,
(2, d) is a compact metric space.

E.A. Robinson [ERob2] and R. Kenyon [Ken] have noted that the inflation map is
hyperbolic: with each inflation, tilings that agree around the origin become exponentially
closer together, while those that are translations of each other become exponentially farther
apart. Robinson has used an algebraic theory of de Bruijn to prove some measure theoretic
results about this for the Penrose tilings [ERob2]. We extend this idea by showing, for
substitution tilings, that (Q,d,w) is a Smale space. First we prove that the inflation map

v miying

is topologicall

[ERob2].

; Robinson proved this f

or the Penrose tilings in a different way

Proposition 3.1. w is a topologically mizing homeomorphism of (2, d).

Proof. We have shown that w(Q2) = Q and assumed that w is one-to-one. One can

easily show that
d(w(T),w(T") < X(T,T")

d(w™HT),wHT") < M (T, T"),
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and it follows that w is bicontinuous.

To see that w is topologically mixing, suppose we are given non-empty open sets
U,V C Q. We require a positive integer N such that w™(U)NV is not empty for all
n > N. Choose tilings T € U, T € V and 0 < € < 1/+/2 such that we have open balls
B¥(T) C U and BY(T") C V. Since the substitution rule is primitive, there is a positive
integer Ny such that for each prototile p;, the partial tiling ©™ ({p;}) contains a translation
of every prototile. Let P CT” be a partial tiling that covers B; /¢(0) and has bounded
support. By definition of Q, we have P C &1 ({p; + v}) for some positive integer N; and
translation of a prototile p; +v. Since there are only finitely many prototiles, each of
which is bounded, we can choose a positive integer N, such that, for all m > Ny, w™(T)
contains a tile that is a subset of Bey=(0). Let N = Ny + N; + N, and suppose n > N.
Since n — Ny — Ng > N3, we have that w™ V1=No(T) contains a tile t, € Byn-n;-n (0).
As t, is a translation of a prototile, we have, by definition of N, that w™= N1 (T") contains
some translation p; + u, of p; such that p; + u, C B.yn-n, (0). It then follows from the
definition of N; that P + v, C w™(T') for some ||v,|| < eA™. Thus, P C w™(T — A~ "vy,), so
that d(w™(T—A""uv,,), T') < ¢; therefore w™(T—A""v,,) € BY(T’) C V. Since ||-A~"v,|| <
€, we also have that w™(T — A™"v,) € w™(B¥(T)) C w™(U). Hence w™(U)NV is not
empty.

A Smale space is a compact metric space with a homeomorphism, that has a certain hy-
perbolic structure: each point in the space is the intersection of a local stable set, on which
the homeomorphism is contracting, and a local unstable set, on which the homeomorphism
is expanding; moreover, the product of these sets is homeomorphic to a neighbourhood
of the point. The local stable set for a tiling consists of tilings that agree with it on a
large ball about the origin, while the local unstable set consists of tilings that are small

translations of it.

The formal definition of a Smale space may be found in [Put] or [Rue]; it will also
become apparent in the discussion to follow. This definition requires local canonical coor-

dinates, given by a continuous function defined on pairs of sufficiently close points; this is
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written

LIATCT) T, T €Q, dT,T)<e}—Q,

where €g is a small positive parameter to be determined. For tilings T and 7" in Q with
d(T,T') < €g, we let [T,T'] = T" + v — v where T + u and T” + v agree on B;/,(0) and
llull, ]l < €.
The proofs that this is well-defined and continuous — and, indeed, all parts of the

proof that (€, d,w) is a Smale space — rest on the identities

(T+uww)=Tv—u)+u

T(u+v)=(T—-v)(u)+v

T(u)+v=(T+v)(u+v)
and this easy consequence of the finite type condition:

Lemma 3.2. There is a positive constant v such that if T(u) — u = T'(v) — v where

T € Q and ||ul], ||v]] < 7 then u = v.

Here, and throughout this sketch of the proof, we omit the tedious details, but comment

that for the several uses of the lemma and identities, it suffices to let e be smaller than
both r/3X and 1/+/2.

We require that
[T, 7)=T

(7,7, T"] =T, T"]

[T, [T, T")] = [T, T"]

[w(T),w(T")] = w([T, T"]),
for T,T',T" in Q, whenever both sides of the equation are defined. The first of these is
clear. The other three use the lemma and the identities.

Now, for any tiling 7' in Q and for any 0 < € < ¢p, we define the local stable and

unstable sets:
V3T, e)={T" € Q|[T,T|=T and d(T,T') <¢e}
VU(T,e)={T" Q| [T, T)=T" and d4(T,T') <e}.
It is easy to show that
{T" € Q| T’ and T agree on B.-1(0)} C V5(T,e¢)
V3(T,e) C{T" € Q| T and T agree on B.-1_(0)}
VU(T,e) = {T' € Q| T' = T + w for some |lw| < 2¢}.
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We require that w be contracting on V(T ¢) and that w™?! be contracting on VU(T,e);

that is,
d(w(T"), w(T") < Xod(T', T, T T" € V3(T,e)

d(w™H(T"), w™HT")) < Ao d(T', T"), T,T"e VU(T,e),
where Ag is a positive constant less than 1; we fix A™! < )\g < 1. These are also proved

using the lemma and the identities, but, for the first one, we also need ¢; to be less than

1/1 — A=1A5t. Putting this all together yields

Theorem 3.3. (2,d,w) is a Smale space.

Now, given a Smale space, one defines three equivalence relations on it: stable equiv-
alence, unstable equivalence, and asymptotic equivalence. See [Put] for the development.
We consider unstable equivalence here. Two tilings T' and T” are unstably equivalent if

im d(w™(T), w™(T")) = 0.

n——00

One shows [Put] that the equivalence classes are given by

[s.¢]

vIT) = | v (VY (0™ (T), e0))

n=0
and considers the unstable equivalence relation G, as a topelogical groupoid: let
Go={(T,.TYeQxQ|T e VY (T,e0)}
G = (W xw)*(Gy)
for each n = 1,2, 3, - -, with the relative topology from Q x 2, and give G,, = | Joo, G the

inductive limit topology. For the Smale space (€2, d,w), the unstable equivalence relation

has a simple characterization:

Proposition 3.4. Two tilings are unstably eguivalent if and oniy if they are trans-

lations of each other; indeed, there is a topological groupoid isomorphism from Q x R? to

Ga.

Proof. If tilings T and T are unstably equivalent then w™™(T") € VU (w="(T), )

for some positive integer n, so that w™™(T") = w™™(T) + w for some |lw|| < 2, and
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T' = T + A™w; therefore T and T’ are translations of each other. Read backwards,
this establishes the converse. Therefore the unstable equivalence relation G, is the orbit
equivalence relation of the action of R? by translation. Thus, there is a natural map ¢
from © x R? onto G,, which sends (T, u) to (T, T +u). Since 2 contains no periodic tilings,
R? acts freely on it, and ¢ is one-to-one.

One defines the product of points (T, %) and (77,%') in Q x R? whenever 7/ =T + %,
(T, u)(T',u') = (T,u+ '),

and one defines an inverse,

(T,u)™' = (T + u, ~u).

It is easy to verify that these are the correct definitions for ¢ to be a groupoid isomorphism,
where G, has its usual partially defined product and inverse.

We previously defined a topology on G, and we give  x R¢ the product topology,
where (2 has the topology determined by its metric, and R has the usual topology. A basis
for the topology on £ x R® consists of sets of the form {(T",u’) | T" € BY(T), v’ € B.(u)}
where ¢ > 0, T' € Q, and u € R?. One can show that a basis for the topology on G,
consists of sets of the form {(T",7" + ') | T € B*(T), v’ € B:(u)} where e >0, T € Q,
and v € R%; note that the topology here is not the same as that induced by the product

topology on €2 x Q. Then, it is easy to see that ¢ is a homeomorphism. J

Corollary 3.5. The action of R® on Q by translation is minimal.

Proof. By Proposition 3.4, the R? orbit of any T in € is the same as its unstable
equivalence class. It follows from [Rue] that for any mixing Smale space, each unstable

equivalence class is dense. Hence the R? orbit of any 7" in  is dense and the conclusion

follows,

This result has some important consequences. As mentioned earlier, some authors
[ERob1,S] obtain a single tiling via inflation and look at the closure of its orbit under the

R? action. By Corollary 3.5, this space of tilings is the same as ).
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As another consequence, let T' and T by any two tilings in Q. Fix an r > 0. Since
the R? orbit of T is dense, we have d(T + u,T’) < 1/r for some u in R®. It follows that,
for some u’ in RY, T + «' and T’ agree on B,(0). That is, if we fix T' and consider any
bounded partial tiling contained in some 7", this occurs somewhere in 7. We have this

result:

Corollary 3.6. Any bounded partial tiling that occurs in a tiling in ) occurs some-

where in every tiling in Q.

Some authors discuss the more general property that the partial tiling occurs infinitely

often in every tiling and with bounded gaps between the occurrences; see [S] for example.

§4. Inverse Limit Spaces

We construct a compact Hausdorff topological space I'y by gluing together the pro-
totiles in all ways in which the substitution rule allows them to be adjacent. When the
prototiles are d-cells, I'g is a branched d-dimensional manifold that comes from a cell com-
plex. The inflation map induces a continuous surjection -y on the space, with respect to
which we take the inverse limit to obtain the space €2g. Under an additional hypothesis
on the substitution rule, this inverse limit space with the right shift map is topologically
conjugate to ({2,w). As we shall see, the hypothesis may be dropped by using a larger
complex, I';.

We begin by defining Ty for k = 0,1. If t is a tile in a tiling T, we let T(O(t) = {t}
and TM(t) = T(t). Thus T®)(¢) is the set of tiles in T’ that are within k tiles of t; in
fact, everything we do works for every nonnegative integer k, but there is no need to go
beyond k = 1. Now, consider the space Q x R? with the product topology, where {2 has the
discrete topology and R® has the usual topology. We let ~;, be the smallest equivalence
relation on 2 x R? that relates (T3, u;1) to (Th,us) whenever Tl(k) (t1) —uy = TZ,(k) (ta) — use
for some tiles u; € t; € T} and uy € ty € Ty. The equivalence class of a point (T, u) is

denoted (T, u)x. Let I'y = Q x RY/ ~, with the quotient topology.
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We use ) with the discrete topology in the above definition because this is the most
convenient way to ensure that every possible small patch of tiles is represented. Alterna-
tively, we could use a single tiling to define the equivalence relation just on R%, and then
use Corollary 3.6 to show that the corresponding definition of I'y is independent of the
tiling selected.

Let us see what this definition means when the prototiles are 2-cells. The cell complex
can be described by drawing a picture of each cell and naming its vertices and edges to
show how the cells are joined together. To do this, first give a name to each tile in each
tiling in  so that two tiles t; € Ty and t, € T have the same name if and only if Tl(k) (1)
and Tz(k) (t3) are the same up to translation. Thus, for £ = 0, we are just naming the
different prototiles, and, for £ = 1, we are naming ‘collared tiles’; see, for example, Fig. 7.
Of course, by Corollary 3.6 and the finite type condition, it suffices to do this just for those
tiles that cover a large open ball in a single tiling; but the ball must be large enough that
every possible adjacency of two named tiles is represented. Draw a picture of each named
tile; these are the cells that make up the complex. Then name their vertices and edges in
the obvious way: start with any edge of any cell, give it a name, and give this same name
to all the edges of the other cells that may be adjacent to the given edge; keep repeating
this for each edge that has been so named, until no more edges may be given this name.
Repeat this for the other edges and vertices, using different names, until all have been
named. It should be clear that this procedure gives the right identifications.

Formally, the cell complex is a collection of cells, and the space ' is the set of points
in these cells. As it is clear that 'y, may be given this structure, it is convenient to also
call T’y a cell complex. We also note that all the results in this section would still be true

if the prototiles did not have the assumed cellular structure.

Proposition 4.1. 'y is a compact Hausdor{f space.

Proof. (outline) By Corollary 3.6 and the finite type condition, I'y is the image of
a compact subset {T'} x B,(0) of Q x R? under the continuous quotient map that sends
(T, u) to (T,u); therefore Ty is compact. To show that for any distinct points (T7,u1)k

and (T, ug)x there are disjoint neighbourhoods of them, one considers separately the case
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in which both u; and u; lie on boundaries of tiles in T} and T; respectively. [

Proposition 4.2. The inflation map w induces a continuous map v from Ty onto

Uy defined by v ((T,w)x) = (w(T), Au).

Proof. Observe that if Tl(k) (t1) —uy = Tz(k) (t2) —ug withwu; €ty €Ty anduy €t € Ty
then £; — uy = #3 — up so that we can choose tiles Au; € t) € @({t1}) and \ug € t; €
& ({t2}) such that w(T1)® () — Aus = w(T2)®(t)) — Agus. That 75 is well-defined
follows by a finite induction. Since the map on  x R? that sends (T, u) to (w(T), Mu) is
continuous, so also is the map <, obtained by passing to the quotient. - is surjective

since (w™(T'), A\~ u)y is a preimage of (T, u).

i

We now define an inverse limit space, which is similar to the solenoids studied by
R.F. Williams [W2]. Let Q; = 1i£1 I'z, the inverse limit relative to the bonding map ;.
Thus, O consists of all infinite sequences {x;}32, of points in T'y, such that v (z;) = z;—; for
i=1,2,-.., with the relative topology from the product topology. A basis for this topology
is the collection of sets of the form Bg,k;? ={z € Q| z; € y7HU) for i = 0,1,---,n},
where U C T’y is open and n is a nonegative integer. We define a right shift wy : O — O
by wi(z); = v(z:) for i = 0,1,2,---. This map has an inverse, defined by wi(z); = zi41
for i = 0,1,2,-+ Clearly, wy is a homeomorphism, so that it generates a Z action on
{l. We thus have a dynamical system (Qg,wy). We will show that (Q,w) is topologically
conjugate to (Q1,w;).

(£2,w) is also topologically conjugate to (Qg,wg) under the additional hypothesis of
J. Kellendonk that the substitution forces its border. This means there is a fixed positive
integer N such that for any tile #, and any two tilings T and 7" containing t, w™(T)
and w™ (T") coincide, not just on & ({t}), but also on all tiles that meet @™ ({t}). This

condition is satisfied by the Penrose tilings, for example [Kell].

‘Theorem 4.3. The dynamical systems (Q,w) and (Q1,w;) are topologically conjugate.
If the substitution forces its border then (,w) and (g, wp) are topologically conjugate too.

Proof. First, we show that ({2,w) is topologically conjugate to (2;,w;). Define 7 :
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Q — Q by n(T) = z = {;}2,, where z; = (w™*(T),0);. This is well-defined since
v1(z;) = zi—1. We claim 7 is a homeomorphism that conjugates the two actions.

Let us describe the construction for the inverse of w. This will not be rigourous — the
precise proofs of surjectivity and injectivity of = will follow. Let z = {z;}3° be any element
of Qg. We wish to find a tiling T such that #(T") = z. Since zg = (T, 0)g, Zo specifies
the tile in 7" that contains the origin, which we denote {q. Similarly z; specifies the tile in
w™I(T) that contains the origin, which we denote ¢;. This means T' contains the partial
tiling @(¢;). This partial tiling contains the tile g, since vo(z;) = zo. Continuing in this
way, we obtain a nested sequence of partial tilings. If the union of these covers the plane,
then this is T. Even if this is not the case, the forcing the border condition guarantees
that there is a unique tiling T which contains this union. More generally, if we repeat
this argument, replacing “tiles” with “collared tiles,” then the union above does cover the
plane.

To see that 7 is one-to-one, suppose w(Ty) = n(Ty). Let r = inf dist(¢,& U TM)(2)),
taken over all t € T' € 2. This is positive since {2 satisfies a finite type condition. Suppose
v is in R%. Let n be a positive integer such that rA™ > ||v]|. Now, n(T1), = n{T2)s, and a
finite induction reduces to the case w™"(T1) M (t1) = w™™(T2) Y (t3) where ¢; and t; contain
the origin. Since these are collared tiles, this implies that w™"(7}) and w™™(T5) agree on
B,.(0), and, consequently, 77 and T, agree on Byyn(0), which contains v. Therefore T} and
T> agree everywhere, and 7 is one-to-one. ' '

To see that 7 is onto, suppose we are given =z = {(Ti,u:)1}52, € 1. Let T =
G Gﬁ'(ﬂTi(l) (t) —u;). One verifies that this is a partial tiling, and, using the r in the
;‘Sevioz;se tpegliagraph, one sees that it is actually a tiling. It is then clear that 7" is in €2, and
one easily verifies that n(T) = z.

One can show that = is bicontinuous by standard methods, and it is easy to check that
7 ow = w; o T, as required. Therefore (2, w) is topologically conjugate to (£21,w;).

Second, we assume that the substitution rule forces its border, and show that (21, ws1)
is topologically conjugate to (g,wp). There is a natural map f : ; — Qg defined by
FU(T,u)1) = (T,u)o. Observe that if TV (t1) — ug = T8 (t2) — ug then T (1) — uy =
Téo) (t3) — ug; a finite induction then shows that f is well-defined. Clearly, f is onto, but is
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generally not one-to-one. A simple calculation shows that yg0 f = f o1, so that the map
f determines a map F : Q1 — o, defined by F(z); = f(z;) for i = 0,1, We claim F
is a homeomorphism that conjugates the actions of w; and wy.

To show that F' is one-to-one, we require the forcing the border condition. Suppose
F({z:}320) = F({yi}2,) where z; = (T;,u;)1 and y; = (T7,u;)1. We must show that
z; = y; for each j. Observe that if v; € s; € S; and vy € s3 € Sy, where S; and S are
any tilings, and S§°) (s1) —v1 = Séo) (s2) — ve, then the forcing the border condition im-
plies that (w?(S1),ANv1)1 = (W (S2),ANvy)1. Since (Tjyn,ujrn)o = (Tiin uiin)os
it follows from this observation and a finite induction that (W™ (Tj4n), \WNujen)1 =
(WM (Tjn), ANujpn) 1 that s, (Tj,u;)1 = (T}, u})1, as required. Therefore F is one-
to-one.

The compactness of Q implies that F' is onto, by an argument similar to one given in
[Kell]. Suppose we are given a point {(T3, u;)o0}{2g in 2. Since {2 is compact, the sequence
of tilings {w™(Ty — un)}, has a subsequence {w™ (T, — un,)}5e, that converges to
some tiling T in . Now, {(w™¥(T), 0)1}2, is in 1, and we claim that it is a preimage
of {(Ts,u:)0}2, under F. We must show that (w™*(T"),0)e = (T}, ui)o for i = 0,1,--+; so
fix such an i. A simple calculation shows that (w™(T, — un),0)0 = (To, uo)o for all n. It
follows by the finite type condition that in all the tilings w™(T,, — un), only finitely many
different tiles contain the origin. Therefore, given any positive ¢, there is a k sufliciently
large so that w™(T),, —u,,) agrees with T on By,.(0). Let R be a constant greater than
the diameter of each prototile, and choose k so that ny > 7 and w™ (T),, —u,, ) agrees with
T on Byig(0). Then (w™i(T),0)0 = (W™~ (Tn, —tny ) 0)0 = 15* " (Tnys UniJo = (Tis i )o,
as required.

Clearly F is bicontinuous, and a simple calculation shows that it conjugates the actions

of wy and w;. Hence (Qg,wp) is topologically conjugate to (§2;,w;) which, as we have

already seen, is topologically conjugate to (€2,w).
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§5. Symbolic Dynamics

We have seen that the space of tilings with the inflation map is the same as the inverse
limit of a cell complex with the right shift map; indeed, let £ be 0 or 1 such that the
topological conjugacy of the previous section holds. Now, since the d-cells partition the cell
complex I'x, and the bonding map ~yx respects the cellular structure, one can use symbolic
dynamics to study the dynamics of the inverse limit space, where each symbol corresponds
to a d-cell. We will construct a shift of finite type (X, 0) that maps continuously onto
(2%, wx) by a semi-conjugacy a. This is not one-to-one because the cells overlap on their
boundaries.

Observe that by partitioning the cell complex into its component cells, we have effec-
tively constructed a Markov partition of Qj or §2; see [Bow] for a definition. R. Kenyon
has previously used Markov partitions in this context [Ken]. Each cell defines a rectangle
in the Markov partition, consisting of those tilings in which a tile corresponding to the
given cell contains the origin. We could begin by proving we have a Markov partition,
and then use it to define the shift of finite type, as is done in [Bowen]; however, there is a
minor difficulty in that we have not defined the local canonical coordinates for every pair
of points in a rectangle. So we begin with the shift of finite type.

Let us number the d-cells in I'y by 1,2,--+,n. Define an n by n matrix A = (A;;) by
letting A;; be the number of times cell ¢ occurs in the inflation of cell 7. This defines a
shift of finite type (3, 0): Let G be the directed graph with vertices {1,2,---,n} and 4;;
edges from vertex i to vertex j. Let F be the set of edges and give it the discrete topology.
One edge is said to follow another if the tail of the one is at the tip of the other. Let
% = {e € EZ | e; follows e; for all i}, with the product topology. Define the right shift
map o : X — X by letting o(e); = e;—; for all 7. Most of the notation here is borrowed
from [BMT].

We comment here that the matrix A will show up in a different context later, when
we calculate cohomology groups. Indeed, since the inflation map 7, respects the cellular
structure of I'y, it induces a natural homomorphism on the group of i-chains, for i =

0,1,---,d. Each homomorphism can be represented by a ¢; by ¢; matrix of integers, where
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¢; is the number of 4-cells in the complex. When i = d, this is just the matrix A. As we
will look more at cohomology than homology, we will actually use the transposes of these
matrices.

We now define the surjection o : ¥ — Q. Suppose {e;}$2__ is a point in ¥. For
each 1 = 0,1,2,---, the edge e; determines the cell at its tail, and it is easy to see that
the sequence e;,e;_1,€;_9, - determines a point in this cell; we define (e); to be the
corresponding point in I'y. Clearly v (a(e);) = a(e)i—1 for i = 1,2, - so that a(e) is in
Q.

To any point = €  there corresponds a tiling T' in . It is easy to see that for any
tile o in T that contains the origin, there is a doubly infinite sequence of tiles {£;}$2_ ..
such that 0 € ¢; € @({ti+1}) € w™*(T) for all 4; this sequence determines a point in
which « sends to z. Note that there is at least one such sequence for each tile in 7" that
contains the origin. Therefore o is onto, but is not one-to-one. One easily checks that o
is continuous and that & o o = wy, o @, as required.

Now, suppose two points e and e’ in ¥ are left asymptotic; that is, there is an integer
M such that e, = e;, for all m < M. Suppose, also, that a(e) = a(e’), so that both points
correspond to the same tiling I'. Then, one can easily show inductively that e,, = el for
all m > M; therefore e = €¢’. Thus, « is a continuous shift-commuting map that never
identifies two distinct left asymptotic points. Such a map is called right closing [BMT],

although, technically, this term is only used when both the map’s domain and range are

shifts of finite type. Thus, we have shown:

Theorem 5.1. The shift of finite type (X, 0) maps continuously onto (Qp,ws) by the

right closing semi-conjugacy o.
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§6. Cohomology and K-theory

In this section, we make some remarks concerning various cohomology theories for the
space . Our interest will be in the K-theory of Q, K*(Q), i = 0, 1, and the Cech cohomol-
ogy with integer coefficients, H*(Q2,Z), i = 0,1,2,---. There are several motivations. First
of all, these are invariants which may contain interesting dynamic information — we will
have more to say about this at the end of the section. Second, these are readily computable
for tilings of interest, as we explain here and demonstrate in Section 10. Finally, these
are relevant to the study of some associated C*-algebras. We will address this in the next
section.

For the rest of this section we will assume the CW-complex structure on our prototiles
as described in Section 2. The spaces I'g and I'; are both d-dimensional CW-complexes
in the obvious way. The maps «g and <y; of 4.2 are then cellular maps. The homology and
cohomology of I'y and I'; are both readily computed as well as the homomorphisms induced
by 40 and 7. If we now turn to the space {2, which is homeomorphic to £2; and to 2o, if
the substitution forces its border, we may use 4.3 to compute its cohomology. Homology,
on the other hand, is not as well-behaved under inverse limits and so we abandon it at this

point.

Theorem 6.1. For any substitution tiling system, we have that H*(Q), Z) is isomorphic

to the direct limit of the system of abelian groups
Hz(rl’Z) — Hi(F17Z) — Hi(rlv Z)'_—_> )
" 24

fori=0,1,2,---.
Also, K*(Q2) is isomorphic to the direct limit of the system

Ki[,) — K¥ (') — KY[)— -+,
iy ReN

fori=20,1.
If the substitution forces its border, then the same conclusions hold replacing I’y and

71 by Ty and vo.
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Remark. The statement is also valid without the hypothesis of the CW-structure
on the tilings, but we will not prove this. Given 4.3, these are fairly standard facts in

topology, but we provide a proof (at least for the first statement) for completeness.

Proof. By 4.3, Q is homeomorphic to Q, for £ = 1 and for £ = 0 if the substitution
forces its border. The definition of Cech cohomology of Q. is to consider all finite open
covers of Q, and to form the inductive system of the cohomology groups of their nerves
and to take the direct limit of this system [Do]. Now {2 is defined as the inverse limit of
I, under the map ;. There is an obvious way to use the cellular structure on I'y to find
s finite open cover of I'y, whose nerve is homeomorphic to I';. For each I'y in the inverse
system, we may pull back this open cover to Q. Since 2 is the inverse limit, these open
covers generate the topology of Qp and so the direct limit of the cohomology groups is

isomorphic to the cohomology of .

The proof for the K-theory also relies on j being the inverse limit of the system with
I'; and ;. For a proof that
K*(Qk) = ]ip:l K*(Fk),

Yk
we refer the reader to [Bla], although the proof given there is for the C*-algebras of
continuous functions C(I'y) and C(S).

It is also worth observing that the maps on cohomology and K-theory induced by the
homeomorphism w of Q correspond, under the above isomorphisms, to the natural shift
automorphism of the direct limit groups.

Since many examples of interest (and all the ones we consider in Section 10) occur in

dimension d = 1 or d = 2, we also want to make note of the following.

Proposition 6.2. IfT' is any one or two dimensional CW-complez, then there are

natural isomorphisms
Ko = HYI') @ H*(T)

KY(T) = HY(D).

Proof. We will consider the case when T is two-dimensional. Let I'° and I'* denote the

0-skeleton and 1-skeleton, respectively. Then I'C consists of V' points, I'' /T'0 is the wedge
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of E circles and I'/T'! is the wedge of F' two-spheres. Thus, we have [At]

KT =2z KY(I'% =0
KT =0 KHIr0)=272*
KNI /TY) = ZF KXT/TY) = 0.

The six-term exact sequence in K-theory [At] for the sequence
Y —rt—rtre
is
KT —— KT —— KXY
KHryr9y —em— KY¥r') —— K}

Under the isomorphisms above, this becomes

ZV — KTY) +—— 0

ZE s K1 (1‘\1) ¢
We leave it as an exercise to verify that, after the identifications K%(I'°) = ZY and
KY(T1) 2 ZF, the connecting homomorphism coincides with the (co)boundary map
0, :2" — ZF
in cellular cohomology. Hence, we have
K°(I) & ker(84)

K TY) = coker(8}).
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In a similar way, from the sequence
‘' —r—ro/mt

we obtain the six-term exact sequence

K°T?) +—— K°0T) +——0 zZF

|

0 — KYI) — KYIY).

From our earlier result K(I'!) = coker(8}), we have a surjection Z¥ —s K1(T'!), whose
kernel is 81‘(ZV). We leave it to the reader to verify that composing this surjection with
the connecting map above yields the (co)boundary map 84 : ZE —s ZF. We have the

commutative diagram (with top row exact)

0 — KYI) —— KY[Y) —s ZF

|

61 2
zv  — VA — ZF.

Now a standard diagram chase shows that

771y
L)

IR

ker(03),/Em(8})

Turning now to K°(T'), we use the fact that KO(I'!) = ker(d}) & H(I') which is free
abelian and hence a summand of K%T). From the computation we have just completed
we also see that the image of K*(I'!) under the connecting homomorphism to Z¥ is the

same as the image of Z¥ under 85. Hence, we have

K°(I) 2 H(I) @ (27 /Im(83))

~ HO(T) @ H(T).
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Theorem 6.3. For a substitution tiling system in dimension d =1 or 2, we have

K°(Q) = H°(Q) ® H?(Q)

KYQ) =~ HY(Q).

Proof. This follows at once from 6.1 and 6.2. [

We close this section with some speculations on the réle of the cohomology of 2. Let us
start with a simple example of a (non-substitution) space of tilings of the plane. Suppose
our lone prototile is a unit square with sides parallel to the co-ordinate axes. Assume it
has the obvious structure as a CW-complex and let §2 be the space of all tilings satisfying
the CW-structure condition. Each such tiling is uniquely determined by the point in the
square determined by the location of the origin. It is easy to see, in this way, that Q is
homeomorphic to the two-torus. Hence, we can compute the homology of €; H; () = Z2,
In fact, in this example one can see that this is exactly the translational symmetry group of
the tiling. In the case of our substitution tilings, one can show H;(f2) = 0 as a consequence
of aperiodicity. What about cohomology?

For a relatively simple space such as the two-torus, homology and cohomology are
related fairly closely. This is not true for the solenoid-like spaces of substitution tilings.
Our point of view here is that it is Cech cohomology which is really measuring the almost
periodic structure of these tilings.

We will not make this remark precise, except to make the following observation. Let

us make use of Bruchlinsky’s Theorem (see [Hu]) which asserts that H*(f, Z) is isomorphic
h

o+
=]
-t
D

oTroun
o+ ¥

C(Q,T)/ {exp(2mif) | feClQR)},

where T is the unit circle in the complex plane and C(2,Y) denotes the set of continuous
functions from Q to Y. If f is any element of C(Q2, T) and T is any tiling in Q , we may
define fT : R — T by fT(u) = f(T +u). It is a straightforward application of the
Arzela-Ascoli theorem to see that f7 is an almost periodic function on R* [HR].
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§7. C*-Algebras and Their K-Theory

Since (R, w) is a mixing Smale space, we may associate several C*-algebras to it [Put].
Our main interest here is in the C*-algebra of the unstable equivalence relation, U =
C*(Gy). This is partly because unstable equivalence is just translational equivalence (3.4).

In fact, we obtain from 3.4 that
U= C(Q) xR,

the crossed product C*-algebra. As an immediate consequence of Connes’s analogue of

the Thom isomorphism, we have
Theorem 7.1. Fori=0,1, we have

K;(U) = K*4(Q).

We will not discuss the order structure on Ky(U) here, except to say that it seems
likely that one can make use of the map « of 5.1 to relate Ko(U) with the K-theory of the
unstable C*-algebra of the shift of finite type (X, o) to obtain some information. This is
analogous to computations of Kellendonk [Kel2].

As we mentioned in the introduction, the computation of Kq(U) by application of 7.1,
6.3 and 6.1 duplicates results obtained by Kellendonk [Ke12]» using other methods.

We now want to describe a concrete relationship between our work and Kellendonk’s.
Let us begin with a substitution tiling as we have been considering.

For each prototile p, fix a point z(®) in its interior. This is referred to as a “puncture”.
For each tile ¢t = p + z, its puncture is the point z® + z3, which we denote z(¥). We
define

af =P = {Teq o=},

That is, QF is the collection of all tilings such that 0 is a puncture. A word is in order
about our notation 0 = {T(®), It may be that 7'(0) has more than one value, but in this
case, 0 lies on the boundary of the tiles containing it and hence is not a puncture, since

the punctures are in the interior of the tiles.



Substitution Tilings 25

Proposition 7.2. In the groupoid G, QF is an abstract transversal in the sense of
Muhly et al. [MRW]. Equivalently, QF is transverse to the R%-action on by translation,

each R%-orbit meets QF and, for some ¢ > 0,

{T+u|TeQrf, ||lul <€} is openin Q.

Proof. The equivalence of the two statements is fairly routine in the context of [MRW)]
and using 3.3. We leave this to the reader, and we prove the second part only. To do this,
we take Ty in QF and find a neighbourhood W of T in QF and an € > 0 such that the
map

Wx{reR||r| <e} —Q
defined by
(Tyry — T +r

is 2 homeomorphism to its image. Let W = {T € QF | T(0) = T5(0)} and choose € suffi-
ciently small so that the ball of radius 2¢ around z7°(% is contained in Tp(0). We leave

B

the verification of the desired conclusion to the reader. §

Let us take a few moments to explain the notion of abstract transversal to readers
in dynamics who may be unfamiliar with this concept of groupoids. If one considers a
flow with no periodic orbits (i.e. a free R-action) on a space, one can hope to find a
closed transversal to the flow and study the Poincaré first return map. The difficulties are
well-known: first a point may fail to return to the transversal; second, for Ré-actions, the
notion of “first” return is not so clear. However, we may view the R? action as a topological
equivalence relation (i.e. a principal groupoid) whose equivalence classes are simply the
orbits. One can reduce the equivalence relation on a closed transversal as in Muhly et al.
[MRW] in an obvious way. The conditions of the theorem are needed to guarantee that
this groupoid has the necessary structure.

In the case of the transversal Qf in §, the reduction of the groupoid G,, on QF is
just the translational equivalence relation on QF. This is denoted by R in [Kell]. By the
results of Muhly et al., our C*-algebra U = C*(G,) and Kellendonk’s Ay = C*(R) are
strongly Morita equivalent. In particular, they have isomorphic K-theory [Ri].

In the one-dimensional case, we will have more to say about this in the next section.
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§8. One-dimensional Substitution Tilings

There is a general theory of symbolic substitution dynamical systems [Q], the definition
of which parallels that for our substitution tilings. One begins with a finite alphabet and
a substitution rule, which is used to define a space of symbolic sequences. Here we show
how it also naturally defines a space of substitution tilings of the real line.

Suppose we are given a finite alphabet A and a substitution rule that associates a
word to each letter in it. For each letter and positive integer n, one can construct its n-th
iterated substitution in the obvious way: recursively use the substitution rule n times by
applying it to every letter in the word at each step. We assume that the lengths of these
substitutions go to infinity as n does. One could now define a symbolic substitution system
by forming the space of all doubly infinite sequences of letters in which every subword is
a subword of some iterated substitution of a letter; but we do not pursue this here — we
want a tiling space.

Let A = (A;;) be the square matrix that defines the substitution; Ai; is the number
of times letter ¢ occurs in the substitution for letter 7. We assume that the substitution is
primitive so that some power of A contains only positive entries. Then the transpose of 4
is also primitive, and, by the Perron-Frobenius Theorem [Q], it has a positive eigenvalue X
corresponding to a positive eigenvector [ = (/;). This means that, for each letter %, we have
3 j Ajil; = M;. So, if we make a prototile of length I; for each letter ¢, then we have a well-
defined substitution rule for one-dimensional tiles, with inflation constant X. Conversely,
it is clear that any substitution rule for one-dimensional tilings defines one for symbolic
sequences. We note here that one can also apply the Perron-Frobenius Theorem to A,
instead of its transpose, to obtain the relative frequencies of the letters in the symbolic
substitution [Q).

This procedure can be generalized to obtain higher dimensional substitution tilings.
One essentially forms the Cartesian product of several one-dimensional systems, so that
the prototiles are rectangles or blocks. Of course, the Penrose tilings and other higher
dimensional tilings do not arise in this way. Let us describe the relation of our tiling

system with the minimal substitutions of [Q,F,Ho|. Introduce punctures in our tiles as in
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the last section and let QF be as defined there. Define a map p from QF to AZ as follows.
Begin with a tiling T' in Q. Let {zI |n € Z} be the set of punctures in 7" arranged so
that zI < I, for all n, and = = 0. For each n, the tile T'(z]) is associated with an
element of our alphabet .4, which we call p,. We define p(T), = pn, for all n in Z. One
checks easily that p is one-to-one and continuous. Moreover, it is fairly routine to see that
p (©2F) is exactly the substitution space X defined in [Q).

Now consider the R-action on 2 defined by translation. As in the last section Q¥
is a closed transversal to the flow. Here, the situation is even better, for the Poincaré
first return map is easily seen to be well-defined and continuous on QF. Indeed, it is

topologically conjugate to the shift map, o, on X via p. In this case, we have
Z=2 HY Q)2 K°Q) 2 K1 (C(Q) < R)
~ K, (C(X) = z)

and
HY Q)= KYQ) = Ky (C(Q) M R)

~ Ky (C(X) b Z) .

The computation of K, (C’ (X) > Z) has been carried out by A. Forrest [F]. An alter-
native method of computing this group has also been obtained by B. Host [Ho]. It would
seem that, in terms of actual computations, Host’s method amounts to the same thing as
our construction of the space I';, the computation of its first cohomology group and then
of the inductive limit of Theorem 6.1. (We are indebted to A. Forrest and C. Skau for

explanations of Host’s method.)
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§9. Zeta Functions

In this section, we compute the zeta function, ((z), for a substitution tiling system
(Q,w). (We are grateful to D. Lind for bringing this question to our attention.) Our
techniques are routine and the statement and proof of Theorem 9.1 is probably known to
experts. |

Let us first recall the definition. For each m = 1,2, 3, -, let IV,,, denote the number
of fixed points of w™. Then, we have

o]

¢(z) = exp (Z %ﬁm)

m=1
at least formally [Fra,Fri,W3].

We assume throughout this section that our tiling has a CW-structure. Let k =1, or
k = 0 if the substitution forces its border. Now I'y is a CW-complex with, say, ¢; cells
of dimension 7, 0 < 7 < d. In the cellular cohomology complex for I'y, we may identify
the group of cochains in dimension 7 with Z¢. The cellular map v induces a map on the
cochains and in dimension ¢ we may identify this map with a ¢; X ¢; integer matrix which

we denote by A. Note that A/, is the transpose of the matrix A in Section 5.

Theorem 9.1. For a substitution tiling system (2, w) as above, we have

[T det(I-z4,_;)

0<i<d
_io0dd
¢z) = [T det(I-=24,_)

0<i<d

i even

_det (I —zA)_;) det (I —zA)_5)- -
 det (I — zA}) det (I — zAY_,) -+

Proof. First, we appeal to 4.3, that (Q,w) is topologically conjugate to (Q,wx) and so
we may count the periodic points of (Q,wy) instead. It is clear that a point (z3, z2,z3,- **)
in Qp is a fixed point of w}* if and only if z; = z;ym,, for all i. The map sending x
in T to (z, vy~ *(z), -, %(z),z, ) is a bijection between {z € I'y | v™(z) = =} and

{(z;) € Qg | WP ((z:)) = (z5)}. That is, N, = |{z € Tk | 77*(z) = z}].
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Let us keep m fixed. We say that an open set U in I'y, is an I-set (I for “inflating”) if
it is contained in some cell in I'y and 4™ is a homeomorphism from U to that same cell.
It is straightforward to see that the number of I-sets of dimension i is Tr(A™). It follows
from the Brower fixed point theorem that each I-set has a fixed point of %' in its closure.
Moreover, since the cells of I'x can be seen as subsets of R¢ where vk is expanding, such
a fixed point is unique. Thus, we have each fixed point contained in the closure of some
I-set and each I-set has a unique fixed point in its closure. Of course, one fixed point may
occur in the closure of several I-sets. We may partition the I-sets into classes according
to their fixed points: if y7*(z) = z, let U(z) denote the collection of I-sets with z in their

closures.

Let z be a fixed point of 7*. Let T be the tiling 7~ (z, v7*~(z),--). Recall that T
induces a CW-structure on R%. Using the finite type condition, we may find § > 0 so that
B5(0) meets only those cells with 0 in their closure. List these cells e, - -, ep. It is easy to
see that each ¢; corresponds to a unique I-set with z in its closure. Moreover, each such

I-set arises in this way. This correspondence also preserves dimension.

The {e1, -, €} form a CW-structure on B;(0). Adjoining one more cell of dimension
zero gives a C'W-structure on the d-sphere, S¢, seen here as the one-point compactification

of Bs(0). The Euler characteristic of the d-sphere is 2 for d even and 0 for d odd. We have

£
L+ (-1 = x(8%) = S (-1)%" 41

=1

so that
4
(__1)d — E(_l)dim €5
Jj=1
_ Z (—1)dimU
Uel(z)
and

1= Z (_l)d—dimU.

Uel(z)
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Now, we sum over z such that v[*(z) = z,

N,, = Z Z (_l)d—dimU

z Uel(z)
— Z (_l)d—dimU
I-sets

d

> (=D Te(AP).

i=0

The formula of the conclusion of the theorem then follows by standard calculations — see

5.2 of [Fra]. f

Remark. To compute the number of fixed points of 75, we could also have appealed
to the Lefschetz fixed point formula [Fra,Fri], showing, in the process, that each fixed point
has index one. It seems easier to re-prove the special case of the Lefschetz formula as we

have done above.

§10. Examples

Let us look at some examples. All of these can be shown to satisfy the assumptions
that we made earlier. One can easily check that the substitutions below are primitive
and satisfy a finite type condition. To show that the inflation map is invertible, one must
do more work, but the result is known for the examples below: for the one-dimensional
tilings, one uses the property of ‘recognizability’ [Q]; for the Penrose and Ammann tilings,

we refer to [GS]; and for the triomino tiling, we refer to [S].
1. Fibonacci Tilings
The Fibonacci tilings are derived from the symbolic substitution rule, 0 — 01,1 — 0,

1 0
has Perron-Frobenius eigenvalue A = (1 ++/5)/2 and eigenvector (A +1,))". Thus, the

as described in section 6. The matrix for the substitution is [1 1] whose transpose

substitution rule for the Fibonacci tilings is
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.0 . . 0 1

L 0

— S e—

and a typical tiling looks like
G_ﬁﬁD‘ﬁ_ﬂ‘ﬂn‘ﬁﬂGA‘E_OMG_‘E‘D-G_E“@_'EW“
dcdb adcdb adb ad

Below it, we have named the collared tiles, which are needed because the substitution does

o000 B

&

not force its border. These are the edges in the one-dimensional complex. There are 4
edges and 3 vertices: E = {a,b,¢,d}, V = {o,8,7v}. The left side of Fig. 1 shows the
complex I';, and the right side shows what the inflation map -y; does. All of the matrices

01, A}, A, may be read off of this diagram. They are

Ay =

- O O
o O o

S = o
| I

O = = O
-0 OO
OO O
[ QI S ST

with
rank(8]) = 2

rank(A}) = 3
rank(A4g) = 2.

One calculates

and
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o Y
b

B Y o
\2/ a

Figure 1: Cell complex for Fibonacci tilings

(010)

(110) (011)

S B

Figure 2: Cell complex for Thue Morse tilings
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2. Thue Morse Tilings

The Thue Morse tilings are derived from the rule 0 — 01,1 — 10. The matrix

for the substitution is [i ” whose transpose has Perron-Frobenius eigenvalue A = 2

and eigenvector (1,1)’. Note that the two prototiles here have the same length, so that,
formally, labels are needed to distinguish them. The substitution rule is

_ 0 . 0 1

L N 1 0

P
@

)
[}

and a typical tiling looks like
0011001011001 1010
bcdabfecdabecdef

00

3 008

Again, the collared tiles are named below it because the substitution rule does not force
its border. The complex has 6 edges and 4 vertices: E = {a,b,c,d, ¢, f}, V = {a, 8,7, 6}.

Both it and the inflation map are shown in Fig. 2. The matrices are

r—1 0 1 0 7 rO 1 0 0 0 17
0 1 -1 0 0 61 6 10 6 0 1 0
;10 -1 0o 1 , {0001 1 0 , o0 01
61__100——1 AI_IOOOOIAO—IOOO
-1 1 0 0 011 0 00 01 0 O
L1 -1 0 0 J L1 0 0 1 0 0
with
rank(0]) = 3
rank(A}) =5
rank(Ag) = 4.
One calculates
HY(Q)=7Z
HY Q) 2zZ[1/)2]eZ
and
1-2
() = —L=2)

I+2)1-22)
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3. Ammann Tilings

We consider one of the aperiodic tilings discovered by R. Ammann. These tilings are
described in [GS], and we use a variant of his set of tiles ‘A2’ Actually, the substitution
rule below is the one in [GS] iterated twice, so that it is primitive. Then there are only
eight prototiles, four of each of two similar hexagons. Part of a tiling is shown in Fig. 3.
The darker lines illustrate that the substitution forces its border with N = 4,

The cell complex has 8 faces, 8 edges, and 3 vertices; F = {A,B,C,D,E,F,G,H},E =
{a,b,¢c,d,e, f,g,h}, V = {a, B,7}. The left side of Fig. 4 shows its faces and how they are
glued together, and the right side illustrates the substitution rule and the inflation map.
One way to partially see what the two-dimensional complex looks like is to realize that each
group of four tiles shown forms the space T2#T?2 (a donut with two holes) when just those
edges on the boundary of the group are identified. Of course, many more identifications
are then made to form the complex. The calculations are easy because each matrix A} has

determinant +1 and therefore defines a group isomorphism. The matrices are

-1 0 17 Tl 1 -1 -1 1 1 0 071
-1 0 1 -1 -1 1 1 -1 -1 0 0
-1 1 0 -1 -1 1 1 -1 -1 0 o0
go—|—-11 0 o |1 1 -1 -1 1 1 0 o
o1 -1 Tl 0 101 -1 -1 1 1
0 1 -1 0 0 -1 -1 1 1 -1 -1
1 0 -1 0 0 -1 -1 1 1 -1 -1
L1 0 -1 Lo 0 1 1 -1 -1 1 1]
001110 0 0 0 -1 0 0 -1 0 0 01
00110100 -1 0 0 6 0 -1 0 o0
11000010 0 0 0 -1 0 0 -1 0
A=|1 1000001} , 10 0 -1 0 0 0 0 -l
00100100 lo 1 0 0 0 0 0 o0
00011000 1 0 0 0 0 0 0 0
100000GO0 1 0 0 0 1 0 ©0 0 o0
L0001 0000 1 0J L0 0 1 0 0 0 0 o]
01 0
Ab=10 0 1
100



with

and one calculates

and

((2) =
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rank(8}) = 2
rank(9;) = 2
rank(A45) = 8
rank(A]) =8
rank(A4jp) = 3,

H(Q) =7
HY(Q) =24
H?(Q) =278

(22 + 2 —1)2

(22 =32+ 1)(22—2—-1)2(1-2)
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Figure 3: An Ammann Tiling
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: b
o gﬁ T
d 8y, d C
f d e
Y
gv’Y B B 'Y..g
?0 A B B o D C
dv cH vd
[ 4 @ 'b & -2 > 2 E
By « T B
Cd\ dv l\C G
80 C 8 D o B A
h“\ Ah
Y
f B Cn B ¢ 'Y 3
c Lo Ic A
hl\
o maY —Y
a b
a b
5 @ —
. hz gy Ih ;
; Y oo Y
p B C
CA E dv ' F AC F E
a f e b
[ Ca B &) < iy € ®
a Y B Y a H G
[\ (oF <+
d 5 G H 5 d A
Y ¢ o Y
g hi [t
éoc 5 @Y ¢ al
a b

Figure 4: Cell complex for Ammann tilings
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4. Penrose Tilings

The most famous substitution tilings were discovered by R. Penrose. There are several
variants of these Penrose tilings [Ga,GS,Kel2,P], and we use the one with forty triangular
prototiles. Part of such a tiling is shown in Fig. 5. The darker lines illustrate that the
substitution forces its border with IV = 4.

The cell complex has 40 faces, 40 edges, and 4 vertices: F = {1,2,3,. -+, 401 E =
{1,2,3,-..,40}, vV = {e, B,7,8}. The left side of Fig. 6 shows its faces and how they
are glued together, and the right side illustrates the substitution rule and the inflation
map. As with the Ammann tilings, one obtains the space T2#T? when just those edges
at the boundary of each group of ten tiles are identified. The calculations are again easy
because each matrix A; has determinant +1 and therefore defines a group isomorphism.

The matrices are too large to list here, but may be read off of Fig. 6; their ranks are

rank(8y) = 32

rank(87) = 3
rank(A%) = 40
rank(A}) = 40
rank(4p) = 4.
One calculates
HY Q) >~z
HY(Q) =75
H?*(Q) = 78

and
(22 +2-1)2(241)
(22 =824+ 1)(22 -~ 2 —1)3(z — 1)’

¢(z) =
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Figure 5: A Penrose Tiling
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Figure 6: Cell complex for Penrose tilings
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5. Triomino Tilings
We end with an example of a two-dimensional substitution which does not force its

border, but we do not carry out the computations. There are four L-shaped prototiles,

and the substitution rule is illustrated here for one of them:

—

We show part of a triomino tiling below. The letter on each tile is the name of the

corresponding collared tile. Thus, the cell complex would have 4 x 14 = 56 faces.

L T T T

A, Aq
C H. | K, D, | D, L, | G, C,

‘B. o | R, Bo || L

L, Y H| G, C, L] K,

D L,| G, G| G| L D,

L T T
L
—
|

E, S
I1 ] Aa Hz N1 CZ Lz

T_TTL_IAL_Lf

Figure 7: Collared tiles for the Triomino tiling

|
.

There are many other substitutions that do not force their borders; see [GS,S] for some
examples. We do not do the computations for these, because they are too long to be done
easily by hand. This is, of course, because the cell complex is much larger when we must

use collared tiles. We note, however, that this procedure could be programmed into a
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computer; the algorithm would involve beginning with one tile and repeatedly inflating it

until, at some stage, no new collared tiles are formed.
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