International Banach Prize PTM Conference

18-19 May 2023 Banach Center Warsaw

Invited lecture

Stanisław Kasjan

Nikolaus Copernicus University in Toruń (Poland)

Title:

Dynamics of \mathscr{B} -free systems generated by Behrend sets

Abstract:

This is a joint work with Mariusz Lemańczyk and Sebastian Zuniga Alterman. Given a set \mathscr{B} of natural numbers, not containing 1, we denote by $\mathscr{F}_{\mathscr{B}}$ the set of \mathscr{B} -free numbers, that is, $\mathscr{F}_{\mathscr{B}} = \mathbb{Z} \setminus \bigcup_{b \in \mathscr{B}} b\mathbb{Z}$. Let X_{η} be the \mathscr{B} -free subshifts, that is the subshift induced by η , where η denotes the characteristic function of $\mathscr{F}_{\mathscr{B}}$. That means, X_{η} is the closure of the set of all shifts of η in the space $\{0,1\}^{\mathbb{Z}}$ equipped with the product topology. We are interested in the case when \mathscr{B} is a Behrend set, that is, when the set of \mathscr{B} -free numbers has zero density. It turns out that this happens precisely when X_{η} is proximal and has zero entropy. We prove that the complexity of X_{η} , with \mathscr{B} being a Behrend set, can achieve any subexponential growth. We also estimate the complexity for some classical subshifts (prime and semiprime subshifts). The lower estimates are obtained conditionally on Hardy-Littlewood Conjecture or Dickson Conjecture. Toghether with the \mathscr{B} -free shift we investigate the \mathscr{B} -admissible shift $X_{\mathscr{B}}$ and we provide a dynamical characterization of the subshifts generated by the Erdös sets \mathscr{B} (i.e. infinite, coprime and not Behrend).