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Historia zmian. Pierwsza wersja tego pliku powstala w semestrze zimowym 2024/25.
W trakcie semestru zimowego 2025/26 by¢ moze bede cos§ poprawial lub uzupelnial,
ale planuje nie zmieniaé¢ kolejnosci ani numeracji zadan w danym rozdziale po tym,
jak zaczniemy go juz omawiaé¢ na ¢wiczeniach. Moga sie trafia¢ rozmaite btedy — bede
wdzieczny za informacje o wszystkich.

Ukfad tego pliku. Kazdy z rozdzialéw jest podzielony na dwie czeéci. Pierwsza
czesé zawiera zadania, ktore planuje omawiaé¢ podczas zajeé, a takze hastowy skrot
najwazniejszych tresci teoretycznych. Mozna to przejrzeé przed zajeciami (np. zeby
zorientowac sie, jaka tematyke bedziemy poruszaé i co nalezy powtorzyé¢ z wyktadu),
ale raczej nie warto rozwiazywaé zadan z czesci pierwszej w domu przed zajeciami.
Zadania oznaczone pelng kropka (e) omowimy prawie na pewno na ¢wiczeniach.

Druga czes¢ rozdziatu to zadania, z ktoérych wiekszosci — z réznych powodéw — nie
bedziemy omawia¢ na zajeciach (np. bo oméwimy inne podobne, bo sa za tatwe, bo sa
za trudne, bo sa za malo na temat, bo beda zadane w pracy domowej, bo sg pomyslane
jako zadania do pracy wlasnej, bo czas na ¢wiczeniach jest ograniczony). Te zadania
mozna wykorzystac jako zadania treningowe lub uzupekiajace (ale nie twierdze, ze
warto lub nalezy zrobi¢ wszystkie).

O przedmiocie. AM 2 bedzie troche innym przedmiotem niz AM 1. Bedziemy praco-
waé z funkcjami f: RF — R!. W wielu wymiarach bedzie trudniej korzysta¢ z geome-
trycznych intuicji (bo bedzie trudniej wyobrazi¢ sobie lub narysowaé¢ na komputerze
wykres funkeji). Niektore fakty, ktore byly praktycznie oczywiste dla funkeji f: R — R,
tu beda wymagaly bardziej uwaznych, skomplikowanych lub technicznych dowodow.
Niektore pojecia beda dosé abstrakcyjne. Ze wzgledu na charakter materialu same
¢wiczenia tez pewnie beda wygladaly troche inaczej niz na pierwszym roku.

Wiele os6b zniecheca sie przez ,znaczkologie” — faktycznie, czasami bedzie troche
indekséw, bo funkcja bedzie brata wektor o k wspolrzednych i zwracala wektor o [
wspohrzednych, a zamiast pochodnej funkcji w punkcie (czyli liczby) bedziemy mieli
przeksztalcenie liniowe (macierz). (A jesli bysmy mieli ciag funkeji i/lub ich pochodnych
wziety w jakims$ ciagu punktow i zaczeli wybiera¢ podciagi zbiezne, to ... ). Wielka
prosba: prosze nie daé sie zniechecié¢, zmyli¢ i zgubi¢! Za wiekszoscia pojeé, twier-
dzen i rozumowarni nadal beda staly konkretne geometryczne lub analityczne pomysty.
Poznamy rozne bardzo wazne fakty, bardzo piekne twierdzenia i bardzo mocne teorie.



Wymagania wstepne. Oczywiscie bedzie potrzebne rozsadne ogarniecie w tematyce
AM 1 (funkcje jednej zmiennej), ale zaktadam, ze z tym nie powinno by¢ problemow.

Po drugie, jesli ktos przez wakacje zupetnie zapomnial o GALu, to dobrze nabytoby
przypomnie¢ sobie, ze macierze zadaja przeksztalcenia liniowe, jak sie mnozy macierze
(i kiedy mozna to robi¢) i jak sie mnozy macierz przez wektor, a w dalszej kolejnosci,
ze byly takie rzeczy jak iloczyn skalarny, macierze symetryczne, formy kwadratowe,
oraz ze wyznacznik ma co$ wspoélnego ze zmiang objetosci.

Wreszcie, bedzie praktycznie od razu potrzebne troche topologii (zbiory otwarte
i domknigte [w przestrzeni R¥], ich wlasnosci), wiec prosze skupié¢ sie na szybkim
ogarnieciu podstawowych definicji, ktore pojawia sie na wykladzie z AM 2 (patrz
tez zadania 1.24, 1.25, 1.26, 1.38), oraz uwazaé zajeciach z topologii (i nie przespaé
twierdzenia Baire’a).

Zatozenia na ¢wiczenia. Moim celem, jako prowadzacego ¢wiczenia, jest utatwienie
Panstwu nauki AM 2. W szczego6lnosci planuje:

e przypominaé i ttumaczy¢ najwazniejsze nowe pojecia z wyktadu (ale nie wyktadaé
cala teorie),

e przerobi¢ standardowe typy zadan,

e pilnowaé, zeby$my nie utkneli w algorytmicznych, rachunkowych zadaniach i nie
zanudzili sie na $mieré,

e pilnowaé, zeby ¢wiczenia nie odstawaly za bardzo od wyktadu,

e dostarczy¢ troche rozsadnych zadan domowych.

Panstwa zadaniem jest:

e chodzenie na wyktad i robienie notatek (to formalnie nie jest obowiazkowe, ale
bardzo do tego zachecam),

e biezace czytanie tych notatek (lub skryptu) i przyswajanie wszystkich tresci
z wykladu,

e aktywne uczestnictwo w ¢wiczeniach, w tym zadawanie pytai,

e upewnienie sieg, ze przerobili Paiistwo odpowiednio duzo zadan, by nabraé¢ biegltosci
w operowaniu pojeciami z wykladu (potrzebnej do sensownego uczestnictwa
w dalszych wyktadach i éwiczeniach oraz pisania kolokwiow),

e pamietanie o tym, ze podstawowym celem ¢wiczen i wyktadow jest zaznajomie-
nie Panstwa z pojeciami teoretycznymi, a nie nabranie kosmicznej sprawnosci
rachunkowej w bezwiednym rozwigzywaniu algorytmicznych zadan,

e systematyczna nauka i zmaganie sie z trudnymi tresciami teoretycznymi,

e pamietanie o tym, ze za przedmiot AM I1.1 (semestr zimowy) przystuguje 10 punk-
tow ECTS (European Credit Transfer System), co wg zalozen tego systemu
odpowiada to okolo 250-300 godzinom pracy studenta, co przektada sie na okoto
17-20 godzin pracy tygodniowo przez 15 tygodni.



Spis tresci

1. Normy, granice, ciggtosc¢
Material do oméwienia na zajeciach [3-4 ¢w.] . . . .. .. ..o L.
Zadania treningowe, uzupelniajace, dodatkowe . . . . . . .. ... ...

2. Pochodne czastkowe, r6zniczkowalnosc
Material do omoéwienia na zajeciach [4+ ¢w. (??7)] . . . . . . .. ...
Zadania treningowe, uzupeliajace, dodatkowe . . . . . . ... ... 0L

3. Pochodne wyzszych rzedéw
Material do oméwienia na zajeciach [3+ ¢w. (?)] . . . .. ... ...
Zadania treningowe, uzupelniajace, dodatkowe . . . . . . ... ...

4. Teoria lokalna odwzorowan klasy C*
Material do oméwienia na zajeciach [3—4 éw. (?)] . . . . . . . .. ... ..
Zadania treningowe, uzupetniajace, dodatkowe . . . . . .. ... oL

5. Rozmaitosci
Material do oméwienia na zajeciach [34+ éw. (?7)] . . . . . .. ...
Zadania treningowe, uzupetiajace, dodatkowe . . . . . .. ..o

A. Teoria miary
Material do oméwienia na zajeciach [4+ ¢éw. (?)] . . . . . .. ... ...
Zadania treningowe, uzupetniajace, dodatkowe . . . . . .. ..o oL

B. Catki
Materiat do omoéwienia na zajeciach . . . . . . ... ... oL
Zadania treningowe, uzupekliajace, dodatkowe . . . . . . .. ... ...



1. Normy, granice, ciagtosc

Materiat do omoéwienia na zajeciach [3—4 ¢éw.]

Teoria (déja vu). Przestrzen liniowa R¥. Wiemy, ze:
o v = (z1,...,7;) € R¥ to punkty/wektory,
e v-y=(z,y) =ayl = 2521 x;y; to iloczyn skalarny,
lz|lz = v/{z,z) = (Z?:l x?)l/Q to norma euklidesowa (odlegtos¢ od zera),
|z — y||2 to odleglosé punktow x, y (spelnia aksjomaty przestrzeni metrycznej),
e zachodzi nieréwnos$é Cauchy’ego-Schwarza: [(x,y)| < ||z||2|y||2-

Teoria (déja vu). Definicja normy [na przestrzeni liniowej|.

1.1 (norma w /%), Dla x = (21,...,2;) € R" oraz p € [1,00) kladziemy

k 1/p
ol = (3 hosl?)
j=1

a) Co kladziemy dla p = co?
b) Uswiadomié sobie, ze || - ||, jest norma na R dla p € {1,2, 0o}.
¢) Dla k =2, p € {1,2, 00} naszkicowa¢ domkniete kule jednostkowe

{zr e R : lzfl, <1}

Naszkicowa¢ lub stownie opisaé te kule rowniez dla k = 3, p € {1,2,00}.

d) Uzasadni¢, ze ||z||, > ||z]|, dla 1 < p < g < 00, @ € R¥. Zrozumieé, co znaczy ta
nier6wno$é¢ w terminach kul jednostkowych.

e) Wykazaé, ze || - ||, jest norma na R* dla kazdego p € [1, o).

1.2 (uzupeklienie wiedzy podworkowej). a) Zalozmy, ze p,q € (1,00) spelniaja
zlv + % = 1. Wykazaé, ze dla z,y € R¥ zachodzi nieréwnosé¢ Holdera:
[z, u)| < llzllpllyllg-

Wskazowki. Dowodéw jest wiele. Mozna udowodnié najpierw nier6wnosé Younga: ab <
I%ap + %bq (a,b > 0) korzystajac z wypuklosci odpowiedniej funkcji. Alternatywnie
b) Uzasadnié, ze tak naprawde zachodzi tez ||z, = sup{(z,y) : |yll; < 1,y € R*}.
c) Uswiadomié sobie, ze wszystko dziata tez dla p,q € [1, 00].

mozna najpierw udowodnié¢ nier6wnosé Holdera dla p,q € Q, % =



1. Normy, granice, cigglosé

1.3. Dana jest pewna norma || - | na R*. Sprawdzi¢, ze domknieta kula jednostkowa
B = {z € R : ||z|| < 1} jest zbiorem wypuktym i symetrycznym (wzgledem 0, tzn.
B = —B). Uzasadni¢, ze dla kazdej prostej L C R¥ przechodzacej przez 0 € R* zbior
BN L jest odcinkiem skoriczonej [euklidesowej| dtugosci.

1.4. Dany jest zbior K C R¥, ktory jest wypukly, zwarty (tzn. — w przypadku R* —

domkniety i ograniczony), ma niepuste wnetrze, i jest symetryczny (K = —K). Dla
x € R* definiujemy

ek = int{t >0 %x € K).

a) Wykonaé rysunek pogladowy.
b) Wykazaé, ze || - |k jest norma, zas K domknieta kulg jednostkowa w tej normie.

$okk

Teoria (tatwe i naturalne). Definicja zbieznosci ciagu punktéw w R¥ (w normie [eukli-
desowej|); zbieznosé wspotrzednych.

Komentarz. Odtad bedziemy na ogot pracowac ze standardowa norma euklidesows, || - [|2
w RF, ale gdyby$my wybrali inng norme, to we wprowadzanych pojeciach zbieznosci,
cigglosci, otwartosci itp. niewiele by sie zmienito, bo okazuje sie, ze na przestrzeni R”
wszystkie normy sg réownowazne (patrz wyktad lub zadanie 1.10 ponizej).

Teoria (déja vu). Definicja granicy funkcji w punkcie (mamy A C R*, f: A — R, oraz
punkt p € R, ktory jest punktem skupienia zbioru A).

1.5. Obliczy¢ ponizsze granice lub wykazaé, ze nie istnieja:

. 2% + g2 ) zy . 3
lim _ lim —5—3 lim -
(z.9)—(0,0) || + |y] (z,y)—(0,0) 22 +y (z.9)—(0,0) 22 + 2y + ¥y
. sin(z? 4+ y*) , |x|/Py®
lim , im .
(z,y)—(0,0) exp(x? +y1) — 1 (2,9)—(0,0) 2 4 40

1.6. Funkcja f: R? — R ma te wlasnosé, ze dla kazdej prostej L C R? przechodzacej
przez (0,0) zachodzi

lim x, =0
o= e yer T &Y

(po obcieciu f do prostej L granica w punkcie (0, 0) istnieje i jest rowna 0). Rozstrzygnaé,
czy wynika z tego, ze istnieje granica lim, ) (0,0y f (%, ¥).

1.7. a) Poda¢ przyklad mozliwie najprostszej funkcji f: R? — R, ktora spetnia wszyskie
ponizsze warunki:
e dla kazdego y € R istnieje skoriczona granica lim,_,q f(z,y),
e dla kazdego x € R istnieje skoficzona granica lim,_.o f(z,y),
e istnieja skoiiczone granice iterowane
lim (lim f(2,y)),  lim (lim f(2,))

y—0 x—0

(i sa rowne),



1. Normy, granice, cigglosé

e granica lim(, ,y_(0,0) f(7,y) nie istnieje.
b) Funkcja f: R? — R jest zadana wzorem

0 jesliz,yeQ,
1w przeciwnym przypadku.

f(x,y)=(x2+y2)~{

Uswiadomi¢ sobie, ze lim(g ,)—(0,0) f(2,y) = 0, ale nie istnieje granica iterowana
limy ¢ (limxﬂo f(z, y))

¢) Zalozmy, ze dla funkcji f: R? — R zachodzi lim (g, ) —(0,0) f(7,y) = 0, a ponadto
dla kazdego x € R istnieje skoriczona granica g(z) == lim,_¢ f(z,y). Czy jest prawda,
ze lim, o g(z) =07
Teoria (déja vu). Mamy A C R* (dowolny), f: A — R!. Definicja ciaglosci funkcji
(ciagowa 1 epsilonowo-deltowa (w punkcie p € A, na caltym A)).
Uwaga (istotna). Mamy A C R*, f: A — R!. Twierdzeniem z wykladu jest, ze wtedy
powyzsza definicja funkcji ciaglej f: A — R! jest zgodna z ogolna definicja z wyktadu
topologii — w zbiorze A rozpatrujemy naturalng topologie indukowana z calej przestrze-
ni R¥, tj. zbiory otwarte w naszej mniejszej przestrzeni topologicznej A to doktadnie
zbiory postaci ANU, gdzie U C R¥ jest otwarty (w RF).

1.8. Zbadaé ciaglosé funkcji f,g: R? — R zadanych wzorami:

Yo—lul/z® gl z—y 3

re jesli x # 0, — dla y # z°,
x, =<7 x, =< Ty

f@y) {I 0 jesli x =0, 9(@.y) {1 dla y = 3.

Teoria (elementy topologii). Zbior otwarty, domkniety. Ciagowa charakteryzacja do-
mknigtogci. W R¥ (1) zbiér zwarty to zbior domkniety i ograniczony. Wnetrze, domknie-
cie, brzeg. Spojnosé.

Teoria (déja vu). Wiekszosé faktow o ciaglosé przenosi sie na przypadek funkcji wielu
zmiennych funkcji, m.in. te dotyczace operacji arytmetycznych, sktadania, osiagania
kreséw na zbiorach zwartych, jednostajnej ciaglosci na zbiorach zwartych, ale trzeba
troche uwazaé, patrz np. zadania 1.27, 1.28, 2.12, 2.13.

1.9 (klasyczne; por. zadanie 1.35). a) Funkcja f: R? — R jest zdefiniowana wzorem

_ [ dia(y) #(0,0),
fey) = {0 " dla (z,y) = (0,0).

Sprawdzi¢, ze f jest ciagta na R?\ {(0,0)}, nie jest ciagla w punkcie (0,0), ale jest
ciagta po obcieciu do dowolnej prostej przechodzacej przez (0, 0).
b) Podaé przyktad funkcji g: R? — R majacej dokladnie dwa [zadane z gory] punkty
niecigglosci (a, b), (c,d) i takiej, ze g jest ciagta po obcieciu do dowolnej prostej L C R2.
c¢) Podaé¢ przyklad funkcji h: R? — R nieciagtej dokladnie w [zadanych z gory]
punktach (a,,b,) € R? (n € N), i ciaglej po obcieciu do dowolnej prostej L C R2.

I Przeksztalcenie f: X — Y przestrzeni topologicznej (X, 7x )w przestrzen topologiczng (Y, 7y) jest
ciagle wtedy i tylko wtedy, gdy dla kazdego U € 7y mamy f~1(U) € Tx (przeciwobrazy zbiorow
otwartych [w Y] sg otwarte [w X]).



o

1. Normy, granice, cigglosé

1.10 (wazne). Dane jest k € N i pewna norma || - || na R*. Wykazaé, ze istnieja pewne
state A, B € (0, 00), zalezne tylko od k i || - ||, takie ze dla kazdego = € R¥ zachodzi

Allzllz < =]l < Bllz[l2-

W szczegolnosei, ciag punktow jest zbiezny w normie || - || wtedy i tylko wtedy, gdy jest
zbiezny w standardowej normie euklidesowe;.

1.11. Ustalmy niepusty zbior A C R¥. Dla 2 € R* definiujemy
dist(x, A) = inf{|lz —y|l2 : y € A}.

a) Wykazadé, ze dist(-, 4): R¥ — [0,00) jest funkcja ciagta na R¥, a nawet spelnia
warunek Lipschitza ze stata 1.

b) Wykazaé, ze jesli zbior A jest domkniety, to powyzsze infimum jest osiagane.

c) Wykazaé, ze jesli zbior A jest domkniety i wypukly, to powyzsze infimum jest
osiagane w dokladnie jednym punkcie.

d) Wykaza¢, ze jesli A, B C R* s niepuste, domknigte i roztaczne, to istnieje funkcja
ciagta f: R*¥ — [0,1], taka ze

f(z) =0 <= z €A, fx)=1 < z € B.

1.12. Zalézmy, ze funkcja f: R? — R spelnia nastepujace warunki:
1) dla kazdego y € R funkcja z — f(x,y) jest ciagta, rosnaca,
2) dla kazdego = € R funkcja y — f(z,y) jest ciagla.

Wykazaé, ze funkcja f: R2 — R jest ciggla.

Zadania treningowe, uzupetniajace, dodatkowe

1.13 (powtorka z GALu). Przypomnieé sobie z GALu hasta: forma dwuliniowa, iloczyn
skalarny, norma/dlugosé¢ wektora, tozsamosé rownolegtoboku.

1.14. Dana jest pewna norma || - | na R*. Uzasadni¢, ze wzor
]|« = sup{(z,y) : y € R, [lyll <1}, @ € R,

réwniez zadaje norme na R¥. [W szczegdlnosci uzasadnié, ze ||z« < oo dla kazdego
r € RV ]

1.15 (niekluczowe dla nauki AM 2, ale naturalne, choé¢ by¢ moze dosé abstrakcyjne).
Dla niepustego zbioru A C R¥ definiujemy zbior

A° ={y € R : (z,y) <1 dla kazdego z € A}.

Zbidér ten nazywa sie zbiorem polarnym albo polarem zbioru A.
a) Uzasadni¢, ze A° jest domknietym, wypuktym podzbiorem R¥ zawierajacym O.
b) Uzasadni¢, ze jesli A C B, to A° D B°.



1. Normy, granice, cigglosé

c) Wykazadé, ze jesli zbior K C R¥ jest wypukly, zwarty, ma niepuste wnetrze, i jest
symetryczny (K = —K), to zbior K° tez jest wypukly, zwarty, ma niepuste wnetrze,
i jest symetryczny, a ponadto (K°)° = K.

d) Wykazaé, ze || - || ko jest norma dualna do || - || &, tzn. dla 2 € R¥ zachodzi

| = sup{(z,y) : lyllx- < 1,y € R"}.
e) Zorientowac sie, ze || - ||k jest norma dualna do || - || ke.

1.16 (norma operatorowa). Dla przeksztalcenia liniowego A: R¥ — R! (ktére mozna
utozsamiaé z zadajaca je macierza (a;j)1<i<i,1<j<k rozmiaru ! X k) ktadziemy

1All2—2 = sup{||Az]2 : [lz]|l2 < 1, = € R*}.

a) Wykazac, ze
l k
IAlz—z < (305 a2) Y2
i=1j=1

Poda¢ przyktad macierzy 2 x 2, dla ktorej powyzsza nier6wnosé jest ostra.

b) Uswiadomié¢ sobie, ze dla kazdego = € R* zachodzi ||Ax|lz < ||All2—2||z|2, Ze
A: RF — R! spelnia warunek Lipschitza (i ze || A||2—2 jest najmniejsza stala z jaka on
zachodzi).

¢) Sprawdzi¢, ze || - ||2_2 jest norma [na przestrzeni przeksztalcen liniowych L(R¥ R!),
ktoéra mozna utozsamiaé z R'*|.

d) Uzasadnié¢, ze jesli A: RF — R!, B: RY — R™ to przeksztalcenia liniowe, to

[BA[l2—2 < || Bll2—2|All2—2-

e) Uzasadni¢, ze jesli A: R¥ — R” jest izomorfizmem liniowym, to

1

T lzllz < Azl < [|Afla—2ll2|l2 dla z € R".
A= 22

1.17. Dla przeksztalcenia liniowego A: R* — R! (ktére mozna utozsamiaé z zadajaca
je macierza (a;;)1<i<i,1<j<k rozmiaru | X k) ktadziemy
[Alli—2 = sup{[|[Az[]2 : 2] <1, = € R*},
<

[All2—00 = sup{[|Azlo : [lzll2 < 1, = € R*}.

Wykazaé, ze

|A]l1-2 = max{||(as;)i_ll2 : 1 < j
1<

K}
1}

(maksimum [euklidesowych| dtugosci kolumn i wierszy macierzy A, odpowiednio).

<
1<

1All2— 00 = max{|[(as;)5=1 12



1. Normy, granice, cigglosé

1.18. Niech A = {(x,y) € R? : y > 0}, f(z,y) = y* dla (z,y) € A. Zbada¢ istnienie
granicy

lim x,
(z,y)—(a,0) f@:9)
w zaleznosci od parametru a € R.
1.19. Obliczy¢ granice:
lim  xln(z? + 3y?), lim 2 492 2y,
(z,9)—(0,0) ( ) (w7y)—>(070)( )

1.20. Obliczy¢ ponizsze granice lub wykazaé, ze nie istnieja:

1 — cos(x +y) . 1 — cos*(|z| + |y|)
im —— lim ,
(@) —(00) 224332 (x.y)—(0,0) x? +y?
3 3 3
lm lm lm 5
(x.y)—(0,0) 22 + y (2,9)—(0,0) 22 + 24 +y (x,y)—(0,0) 22 + y
2 4 2 .2 2,2
lim Lz y4, im 7332 y4, im 753/ T
(z,4)—(0,0) 22 4y (z.y)—(0,0) 22 + y (x,y)—(0,0) 22 +y
1.10y10210

; 3.4 2
(Ly,z)—H}(O,O,O) Py na zbiorze {(z,y,2) € R° : z* + y“z # 0},

1.21. Obliczy¢ ponizsze granice lub wykazaé, ze nie istnieja:

sin(z)y ) sin(z)yz
i , lim —,
(@.9)—(0,0) 22 + 12 (..2)—(0,0,0) 22 4 32
lim sin(z)y . sin(z)y
(2,5,2)—(0,0,0) T2 + | 2|y’ (2,y,2)—(0,0,0) zx2 + y2~

(ostatni przyklad na ,naturalnej” dziedzienie, na ktorej zx? + y2 # 0).

1.22. Dla kazdego punktu (a,b) € R?, ktérego wspolrzedne spetniaja rownanie a+b = 1,
obliczy¢ granice
ysin(mx)
(@y)—=(ab) z+y—1
lub wykazaé jej nieistnienie. (Zakladamy ,naturalna” dziedzine funkcji, odpowiadajaca
niezerujacemu sie mianownikowi).

1.23 (kolokwium 2010). Obliczy¢ granice lub wykazaé, ze nie istnieje:

I \/ 1 + 1 \/ 1 n 1
im — ===+ -
(my)—O+0+) V2t +yt o 4yt oy

1.24 (kontrolne). a) Wskazaé¢ przyktad rodziny zbioréw domknietych w R? ktorej
suma jest zbiorem otwartym (ale nie calg przestrzenia).

b) Wskazaé¢ przyktad rodziny zbioréw otwartych w R?, ktorej przeciecie jest niepustym
zbiorem domknietym.




1. Normy, granice, cigglosé

1.25 (kontrolne). a) Uswiadomié sobie, ze kazdy zbior otwarty U C R* jest suma
pewnej rodziny kul otwartych.

b) Uzasadni¢, ze kazdy zbior otwarty U C RF jest suma pewnej przeliczalnej rodziny
kul otwartych.

¢) Uzasadni¢, ze kazdy zbior otwarty V' C R jest suma pewnej rodziny parami
roztacznych odcinkow otwartych [byé moze nieskoriczonej dtugosci].

1.26 (topologia indukowana, wazne). a) W zbiorze A = {(z,y) € R? : y > 0} zadajemy
naturalng topologie indukowang z R? (zbiory otwarte w A to zbiory postaci AN U,
gdzie U C R? jest otwarty). Dla kazdego z nastepujacych zbioréw okresli¢, czy jest on
otwartym, domknietym, zwartym podzbiorem A:

{(z,y) e A: 0 <y <1},
{(z,y) € A: 0 <y < 1},
{(z,y) € A:2® + (y—1)2 < 1}.
b) W zbiorze B = {(x,y) € R? : y > 0} zadajemy naturalna topologie indukowang
z R? (zbiory otwarte w B to zbiory postaci BN U, gdzie U C R? jest otwarty). Dla

kazdego z nastepujacych zbioré6w okreslié, czy jest on otwartym, domknietym, zwartym
podzbiorem B:

{(z,y) e B: 0 <y <1},
{(z,y) e B:0< y<1},
{(z,y) e B: 0 <y <1},
{(z,y) e B: 0 <y <1},
{(z,y) € B:2® + (y — 1) < 1}.

1.27. a) Przypomnieé sobie, ze jesli P jest wielomianem jednej zmiennej o wspotezyn-
nikach rzeczywistych, to obrazem prostej jest potprosta domknieta, cata prosta lub
punkt.

b) Podaé¢ przyktad wielomianu dwoch zmiennych o wspoétezynnikach rzeczywistych
Q: R? — R, ktorego obrazem jest polprosta otwarta (0, co).

1.28. a) Przypomnie¢ sobie, ze jesli I C R jest przedzialem, to f: I — R jest roz-
nowartosciowa wtedy i tylko wtedy gdy jest $cisle monotoniczna. Ponadto, jesli f
jest roznowarto$ciowa i ciagla, to jest bijekcja na swoj obraz, a funkcja odwrotna
f7t: f(I) — R tez jest ciagta.

b) Podaé przyktad przedziatu I C R i funkcji g: I — R?, ktora jest ciagta i r6zno-
wartosciowa, ale funkcja odwrotna g~!: g(I) — I nie jest ciagta.

1.29. Zbada¢ ciaglosé funkcji f: R? — R zadanej wzorem:
y—x

f(z,y) = {y—sin(z) jesli y # sin(x),

1 jesli y = sin(z).
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1. Normy, granice, cigglosé

1.30. Zbadaé ciagtosé¢ funkeji f: R? — R3 zadanej wzorem:
x + sin(y) xyz 1- cos(xyz))
dl 0,0,0
o) — (e r e i) e @) #(0,00),
(0,0,0) dla (z,y,2) # (0,0,0).

1.31. Niech k > 2. Zalozmy, ze funkcja f: R* — R jest ciagla i istnieja a,b € R* takie,
ze f(a) < 0 < f(b). Uzasadni¢, ze funkcja f ma nieskonczenie wiele miejsc zerowych.

1.32. Dla (z,y, 2) € R? niech
f(x,y,2) =In(1+ 2 +y* + 2%) cos(a® + y* + 2%) exp(—(2” +y* + 2%)),
g(x,y,2) = In(1 + 2% + y* + 2%) cos(wyz) exp(—(z? + y* + 2%)).
Uzasadnié, ze kazda z tych funkcji osiaga swoje kresy.
1.33. a) Funkcja f: R¥ — R/ jest ciagla. Uzasadni¢, ze jej wykres, tj. zbior
{(z, f(x)) € REXR :z e Rk},

jest domkniety [w przestrzeni RF x Rl = RFH.
b) Podaé¢ przyktad funkcji g: R — R, ktora nie jest cigglta w punkcie 0, ale ktorej
wykres {(z,g(r)) € R? : x € R} jest domknietym podzbiorem R2.

1.34. a) Funkcja f: R¥ — R jest ciggla, punkt xp € R” jest ustalony. Wykazaé, ze
poziomica funkcji f przechodzaca przez punkt zg, tj. zbior

{z e R¥: f(z) = f(0)},

jest domkniety.
b) Poda¢ przyktad zbioru A C R*, funkcji ciggtej g: A — R i punktu x¢ € A, takich
ze {v € A:g(x) = g(wo)} nie jest domknietym podzbiorem R*.

1.35 (por. zadanie 1.9). Funkcja f: R* — R jest zdefiniowana wzorem
exp(—1/z7)1 o
foy) = A sotzrmrE iz,
0 jesli 2 = 0.

a) Sprawdzi¢, ze f jest ciagla po obcieciu do dowolnej krzywej postaci y = cx™/m
(c € R, m,n € N — wzglednie pierwsze, > 0 w przypadku gdy n jest parzyste).
b) Rozstrzygnaé, czy f jest ciagla w punkcie (0,0).

1.36. Zalozmy, ze funkcja f: [0,1]?> — R jest ciagta. Niech

g(z) =sup{f(z,y):y € [0,1]} dlaz € [0,1].

Wykazaé, ze funkcja g: [0,1] — R jest ciagla.

11



1. Normy, granice, cigglosé

1.37. Zalézmy, ze funkcja f: R? — R spelnia nastepujace warunki:
1) dla kazdego y € R funkcja x — f(z,y) spelnia warunek Lipschitza ze stala 7,
2) dla kazdego z € R funkcja y — f(x,y) jest ciagla.

Wykazaé, ze funkcja f: R2 — R jest ciagla.

1.38 (kontrolne z topologii). Zatézmy, ze zbior A C R? jest spojny. Wiadomo z wyktadu
topologii, ze wowczas domkniecie zbioru A tez jest zbiorem sp6jnym.?

a) Czy wnetrze zbioru A moze by¢ zbiorem niespojnym?

b) Czy brzeg zbioru A moze by¢ zbiorem niespéjnym?

1.39 (informacyjnie). Rozwazmy [nieskoniczeniewymiarowa| przestrzen liniowa

a(N) = {(zi)ien - 2 €R, Y a? < 00}
=1

znorma ||zl|z = (350, #2)V/2 dla @ = (21,29, ...) € £2(N).

a) Wskazaé ciag roznych punktow w [domknietej] kuli jednostkowej {x € £5(N) :
llzll2 < 1}, z ktorych kazde dwa sa w odleglosci v/2.

b) Wywnioskowaé, ze [domknieta] kula jednostkowa nie jest zwarta.

Uwaga. Okazuje sie, ze prawdziwe jest nastepujace twierdzenie: przestrzen unormowa-
na jest skonczenie wymiarowa wtedy i tylko wtedy, gdy jej domknieta kula jednostkowa
jest zwarta.

c) Potozmy ||z]|o = sup;ey |2:| dla = (21, 29,...) € l2(N). Uswiadomié sobie, ze
to tez jest norma [na przestrzeni f2(N)]. Uzasadnié, ze normy || - |2 1 || - || nie sa
rownowazne (np. wskazujac dla kazdego n € N punkt z € ¢5(N), taki ze ||z||2 = 1, ale
Jalloc = 1/m).

2Wrecz: dowolny zbiér spetniajacy A C B C A jest spojny (i jest to prawda w ogélnej przestrzeni
topologicznej).
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2. Pochodne czgstkowe,
rozniczkowalnosé

Umowa. W przestrzeni euklidesowej mamy naturalne bazy i bedziemy utozsamiaé
przeksztalcenie liniowe A: R¥ — R! z zadajaca je macierza A rozmiaru I x k (w bazach
standardowych, mnemotechnicznie: [ linii/wierszy, k kolumn). Wektory bedziemy na
ogol zapisywaé poziomo, x = (z1,...,2k), ale wektor mozna utozsamié¢ z ,pionowa”
macierzg rozmiaru k x 1 (i nazywaé go wtedy wektorem kolumnowym) i interpretowac
Az jako mnozenie dwoch macierzy (ktorego wynikiem jest wektor kolumnowy). [Nie
bedziemy tego na ogodl zaznaczaé i rozréznia¢ w notacji].

Materiat do omoéwienia na zajeciach [4+ ¢w. (?77)]

Teoria. Pochodne czastkowe (ozn. (%i = 8(27, f=1fi,=fe, =1 =fi=Dif =D, f),
pochodna kierunkowa. ' '

2.1. a) Znalez¢ pochodne czastkowe funkcji f(z,y) = sin(z) + y%e*¥, (z,y) € R2.
b) Obliczy¢ pochodne czastkowe i kierunkowe (jesli istnieja) funkeji
2

1 jesli y = x* oraz = > 0,

T,y) = 17,— =
9(zy) {y=a?2>0} {O w przeciwnym przypadku.

¢) Obliczy¢ pochodne czastkowe (jesli istnieja) funkeji h(z,y) = /23 + y3, (z,y) €
R2. Znalezé pochodne kierunkowe w punkcie (0, 0).

2.2. a) Zbiér A C R? jest otwarty i wypukly. Pochodne czastkowe funkcji f: A — R
istnieja w zbiorze A i sa funkcjami ograniczonymi: |f; (z,y)l, |f, (%, y)| < C. Wykazac,
ze funkcja f spelnia warunek Lipschitza.

b) Poda¢ przyktad zbioru otwartego, spdjnego B C R? i funkcji g: B — R, ktéra
jest ciagta, ma [wszedzie w zbiorze B| pochodne czastkowe, pochodne czastkowe sa
ciagte i ograniczone na B, ale funkcja g nie jest jednostajnie ciagta.

Teoria. Mamy U = intU C RF, f: U — R}, p € U. Definicja rozniczkowalnosci.!
Wtasnosci:

Mstnieje przeksztatcenie liniowe D f(p): R¥ — R!, takie ze:

i {240 = F(0) = DF@A _
w E

(po lewej stronie R¥ 3 h — 0 € R*, po prawej stronie 0 € R?).
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2. Pochodne czastkowe, rézniczkowalnosé

e rozniczkowalnos¢ = ciagtosé (déja vu);

e rozniczkowalno$¢é — istnienie pochodnych czastkowych (kierunkowych);

e jesli pochodne czastkowe istniejg [wszedzie| w otoczeniu p i sa ciggle w p, to f
jest rézniczkowalna w p.

2.3. Niech f(z,y) = /4 + |z| — |y| (na ,naturalnej” dziedzinie: (z,y) € R?, takie ze
4+ |x| — |y| > 0). Zbadaé rozniczkowalnosé w wewnetrznych punktach dziedziny.

2.4. Niech f(z,y) = y* dla y > 0, = € R. Policzy¢ (w mozliwie najprostszy sposob)
f(’475)(2, 3), tj. pochodna kierunkowsa funkcji f w punkcie (2,3) w kierunku wektora
(4,5).

2.5. Czy funkcja f(z,y) = ¥/z3 + 3, (z,y) € R?, jest rézniczkowalna w punkcie (0,0)?

2.6. Rozwazamy przestrzeni Myxr(R) (macierze wymiaru k x k o wyrazach rzeczywi-
stych), ktora utozsamiamy z RF”. Funkcja F: My« (R) — Mg« (R) zadana wzorem
F(A) = A? oczywiscie musi byé rézniczkowalna — rozpisaé definicje i sprawdzié¢, czy
DF(A) = 2A. [Jesli nie, to zrozumie¢, jakim przeksztatceniem liniowym jest DF(A).]

2.7. Zbadaé¢ rozniczkowalnosé funkceji f(z,y) = |22 — y|In(1 + y) (na ,naturalnej”
dziedzinie: (z,y) € R?, takie ze y > —1).

Teoria (déja vu?). Rozniczka zlozenia. Rézniczka funkeji odwrotnej (k =1, f~! istnieje
iciagltaw f(p), f(U) otwarty, D f(p) to izomorfizm). Przeksztalcenia wieloliniowe.

k%%

Teoria (déja vu). Punkty krytyczne, szukanie kreséw funkcji rézniczkowalnych.

2.8. Znalez¢ kresy funkcji f(x,y) = 22 +xy+2y? na zbiorze {(z,y) € R? : 22 +y? < 1}.

Co by sie zmienilo, gdyby$my rozwazali f(z,y) = 2% + 2y — 2y*?
2.9. Znalez¢ kresy funkcji f(z,y) = (3x + 2y) exp(—4a? — y?), (v,y) € R2.

2

2.10. Niech A = {(z,y) € R* 1 y > = > 0}, f(x,y) = o 457 dla (z,y) € A. Wiadomo,

z14y?
ze funkcja f nie ma punktéw krytycznych we wnetrzu A. Znalezé sup 4 f.

2.11. Niech A= {(z,y) €ER?:y >0, y> 2 — 1, 22 > 4y, 0 < z < 2} oraz

(1—y)*(2? —y — 22y + 2°)
(7 —2y)?

flz,y) =

dla (x,y) € A. Znalezé sup4 f, inf4 f.
Sugestia. Naszkicowaé zbior A, zbadaé¢ znak f.(z,y).

2.12 (klasyczne, por. zadanie 2.34). Niech f(z,y) = (y — 2?)(y — 32?) dla (z,y) € R2.
Sprawdzi¢, ze funkcja f obcieta do dowolnej prostej L C R? przechodzacej przez punkt
(0,0) ma w punkcie (0,0) minimum lokalne, ale punkt (0,0) nie jest minimum lokalnym
funkcji f.
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2. Pochodne czastkowe, rézniczkowalnosé

2.13 (patrz tez zadanie 2.33). Niech f(z,y) = 2?(1+y)>+y? dla (z,y) € R?. Sprawdzic,
ze jedynym punktem krytycznym funkeji f jest (0,0), ze f ma w (0,0) minimum lokalne,
ale f nie jest ograniczona ani z gory, a ani z dotu.

Komentarz. W szczegolnosci punkcie swojego jedynego ekstremum lokalnego funkcja
f nie osiaga ani kresu dolnego, ani kresu gornego — czy taka sytuacja moze sie zdarzy¢
dla funkcji jednej zmiennej?

K%k

Teoria. Gradient, ,kierunek najszybszego wzrostu”, prostopadlosé¢ do poziomicy.

Teoria. Wektor styczny do zbioru; stozek styczny.

2.14. a) Jakie wektory sa styczne do wykresu funkcji R 5 = — \/m w punkcie (0,0)?

b) Jakie wektory sa styczne do zbioru (Q N[0, 00))? w punkcie (0,0)?

¢) Narysowaé poziomice {(z,y) € R? : 2 +5? = 1} funkcji f(z,y) = 2% +y?, obliczy¢
V f(z,y) i zaznaczy¢ ten wektor na rysunku dla wybranego punktu z poziomicy — jakie
wektory sa styczne do poziomicy w tym punkcie?

d) Rozwazmy paraboloide obrotowa w R? opisang réwnaniem z = 22 + y2, tj. wy-
kres {(z,y, f(z,y)) : (x,y) € R?} C R3 funkcji z poprzedniego podpunktu. Opisaé
[geometrycznie/stownie], jak wygladaja [afiniczne] plaszczyzny styczne [do parabolo-
idy /do wykresu| w punktach (0,0,0) i (1,0,1). Niech p(z,y) = (z,y, 2> + y*) bedzie
parametryzacja paraboloidy. Wypisa¢ D¢(0,0) oraz Dp(1,0) i sprawdzi¢, ze wek-
tory Dp(0,0)e1, Dp(0,0)es oraz Dp(1,0)e1, Dp(1,0)es tworza baze odpowiednich
[liniowych] przestrzeni stycznych.

*okok
Teoria. Rozniczka ztozenia, chain rule.

2.15. a) Funkcja g: R® — R jest rozniczkowalna, a jej pochodne czastkowe spelniaja
zaleznosé

9 _ 9 _ 9
or Oy 0z
Udowodni¢, ze g(z,y,2) = ¢(x + y + 2) dla pewnej rozniczkowalnej funkeji ¢: R — R.

b) Jak zmieni sie teza, jesli zalozymy, ze g—g = 22—; = 3%?

2.16. a) Funkcja g: R? — R jest rozniczkowalna, a jej pochodne czastkowe spelniaja
zaleznosé

99 _ 9
Yor — Oy’
Udowodnié, ze g(z,y) = p(2? + y?) dla pewnej funkeji ¢: [0,00) — R (ciaglej, réznicz-
kowalnej na (0, 00)).
b+c+d) Patrz zadanie 2.51.

2.17. Funkcja f: {(z,y) € R? : 2 > 0} — R jest rozniczkowalna i spetnia zaleznosé

afy +uyfy =1

Udowodni¢, ze f(z,y) = z¢(y/x) dla pewnej rozniczkowalnej funkeji p: R — R.
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2. Pochodne czastkowe, rézniczkowalnosé

*okk

Teoria. Tw. Lagrange’a o wartosci $redniej.

Zadania treningowe, uzupetniajace, dodatkowe

2.18. a) Niech U C R? bedzie zbiorem otwartym, takim ze dla kazdego ¢ € R czes¢
wspolna prostej {(c,y) : y € R} izbioru U jest odcinkiem lub zbiorem pustym. Zalozmy,
ze funkcja f: U — R spehia f;(z,y) = 0 dla (z,y) € U (pochodna czastkowa istnieje
w kazdym punkcie dziedziny i jest rowna 0). Uswiadomié¢ sobie, ze, ze wowczas funkcja
f nie zalezy od zmiennej y, tzn. jesli (z,y1), (z,y2) € U, to f(z,y1) = f(x,y2).

b) Niech L = {(x,y) € R? : 2 > 0 oraz y = 0}. Poda¢ przyklad [mozliwie prostej]
funkcji g: R?\ L — R, ktora ma ciagte pochodne czastkowe oraz gy (7, y) = 0 dla kazdego
(z,y) € R?\ L, ale mimo to nie jest prawda, ze funkcja g nie zalezy od zmiennej y (tzn.
nie jest prawda, ze dla kazdych (x,41), (z,y2) € R? \ L mamy g(z,y1) = g(z,y2)).

2.19. Niech U = {(z,p,a,b,c) € R® : x > 0} i niech f(x,p,a,b,c) = aP + b — 4ac dla
(z,p,a,b,c) € U. Obliczy¢ pochodne czastkowe funkcji f.

2.20. a) Obliczy¢ macierz Jacobiego i jakobian? przeksztalcenia
(r,a) — (rcosa,rsina).
b) Obliczy¢ macierz Jacobiego przeksztalcenia
(rya, B) — (rcosacos 3, rcosasin 3, rsin a).

W ramach autosprawdzenia sprawdzi¢, ze kolumny macierzy Jacobiego sa wektorami
prostopadtymi. Nastepnie obliczy¢ jakobian (mozna do tego wykorzystaé prostopadtosé
kolumn (jak zorientowana jest taka baza?)).

¢) Zrozumieé interpretacje geometryczna poprzedniego podpunktu (patrz Rysu-
nek 2.1): punkt (z,y, z) = (7 cos acos 3,7 cos asin 3, 7 sin a) spetnia 22 + y? + 22 = r?,
tzn. lezy na sferze o promieniu r. Trzecia wspotrzedna, 2z = rsin(«), moze si¢ zmieniaé
od —r do r, wiec a € [—7/2,7/2] jest szerokoscia geograficzna. Z kolei 8 € [—7, 7]
jest dhugoscia geograficzna. Prostopadto$é kolumn macierzy Jacobiego jest zwiazana
z tym, ze promieni sfery jest do niej prostopadty, wiec jest prostopadly do potudnikéw
i rownoleznikéw, ktore tez sa wzajemnie prostopadte.

d) Ewentualnie obliczy¢ macierz Jacobiego przeksztalcenia

(ryaq,...,ak-1) — (T1,22,...,2k),
gdzie

L1 = T COS (1 COS Qg . ..COS Qo COS (Vj_1,

2Przypomnienie: macierz Jacobiego to macierz pochodnych czastkowych (w i-tej kolumnie s pochodne
czastkowe po i-tej zmiennej), jakobian to jej wyznacznik.
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2. Pochodne czastkowe, rézniczkowalnosé

Lo = T COS(\1 COS Qg . . . COS Qg2 SIN g1,

T3 = T COS (1 COS Qg . ..Sinay_g,

Tp—_1 = T COS (1 Sin g,

T = rsinog.

W ramach autosprawdzenia, sprawdzi¢, ze kolumny macierzy Jacobiego sa wektorami
prostopadlymi. Nastepnie obliczy¢ jakobian.

Z )

T

Rysunek 2.1.: Wspolrzedne biegunowe z zadania 2.20 b). Zaznaczone wektory to kolum-
ny macierzy Jacobiego (przeskalowane dla zwigkszenia czytelnosci). Za-
adaptowane z [Juan Castafio, How to draw a 3D sphere and a 3D cone for
Spherical coordinates, https://tex.stackexchange.com/questions/
676181/, licensed under CC BY-SA 3.0].

2.21. Funkcja f: R? — R jest rozniczkowalna w punkcie (1,1) i %(1, 1) = 2. Ponadto
f(z,2?) = 0 dla kazdego x € R. Znalez¢é g—l;(l, 1). Znalez¢ rowniez pochodng kierunkows
funkeji f w punkcie (1,1) w kierunku wektora (—1,1).
2.22. Dane s funkcje F: R* — R! oraz G: R¥ — R™. Uzasadni¢, ze funkcja
(F,G): R¥ — RM*™ jest rozniczkowalna w punkcie p € R wtedy i tylko wtedy gdy,
F:RF — R! oraz G: R¥ — R™ sa rozniczkowalne w punkcie p € R¥. Jak rézniczka
funkeji (F, G) wyraza sie w terminach rozniczek F oraz G?

Uwaga. To prawie na pewno bylo w jakiejs postaci dowodzone na wyktadzie, ale
warto to jeszcze raz przemyslec.
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2. Pochodne czastkowe, rézniczkowalnosé

2.23. Zbadaé, w ktorych punktach plaszczyzny rézniczkowalne sa funkcje:

xy
x? = )
Flay) =17 P

g(z,y) =In(1 + |zy|?) (p > 0 jest parametrem),

Liery — 1) jesli 0
e = {HE ) e
x jesli y = 0.

Plan pracy. Jest jasne, ze w niektorych punktach trzeba sprawdzaé istnieje pochod-
nych czastkowych i rézniczkowalnosé z definicji. Punkt (0,0) moze wymagaé dodatkowej
czujnosci — rachunki moga byé nieco inne (niekoniecznie trudniejsze).

W ramach autosprawdzenia. W przypadku fukcji g parametr p wplywa na odpowiedz
(przynajmniej w niektorych punktach).

2.24. Czy funkcja f(z,y) = /22 +y* — /22 + ¢ jest rozniczkowalna w punkcie
(0,0)?

2.25. Podac¢ przyktady pokazujace, ze w ponizszym ciagu warunkéw zaden warunek
nie jest rownowazny poprzedniemu.
(i) pochodne czastkowe (%_’2, cee % istnieja w pewnym otoczeniu p i sg ciagle w p,
(ii) funkcja f jest rozniczkowalna w punkcie p,
(iii) dla kazdego v € R* pochodna kierunkowa f/(p) istnieje oraz f/(p) zalezy liniowo
od v oraz funkcja f jest ciaglta w punkcie p,

(iv) dla kazdego v € R* pochodna kierunkowa f!(p) istnieje oraz f/(p) zalezy liniowo

od v,
(v) dla kazdego v € R* pochodna kierunkowa f/(p) istnieje,
vi) pochodne czgstkowe ﬁ, ceey o istniejg w punkcie p.
& Oz Oz 4

(Wszedzie zakladamy, ze funkcja f jest okreslona w pewnym otoczeniu punktu p € R¥;
wymiary przestrzeni mozna w kazdym z przykladéw wybraé¢ dowolnie).

Wskazowka. Wiekszosé przykltadéw mozna pewnie odnalezé¢ w materiatach z zajeé
(wyktad, zadania z éwiczeni, zadania z pracy domowej, inne zadania z tego pliku).

2.26 (déja vu?). Funkcja f: R? — R jest zdefiniowana wzorem

x?sin(1/x) + y?sin(1/y)  jesli xy # 0,

2?sin(1/z) jesli y = 0 oraz = # 0,
flz,y) =4 5 . o

y?sin(1/y) jesli x = 0 oraz y # 0,

0 jesliz =y =0.

Uswiadomi¢ sobie, ze funkcja f ma pochodne czastkowe [wszedzie], ale nie sa one ciagle
w punkcie (0,0). Uzasadni¢, ze f jest rozniczkowalna w punkcie (0,0).

2.27. Rozwazmy funkcje f: R? — R zadang wzorem

e dla(ey) £ (0,0),
fay) = {0 " dla (2.y) = (0,0).
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2. Pochodne czastkowe, rézniczkowalnosé

a) Sprawdzié, ze pochodne czastkowe funkcji f istnieja [w kazdym punkcie plaszczy-
znyl].

a) Sprawdzi¢, ze pochodne czastkowe funkcji f sa ograniczone na R2. Przypomnieé
sobie, ze z tego wynika, ze funkcja f jest lipschitzowska.

b) Sprawdzi¢, ze dla kazdego wektora v € R?, ||v]| = 1, istnieje pochodna kierunkowa
£3(0,0) oraz [£,(0,0)] < 1.

c) Zalézmy, ze v: R — R? jest funkcja rézniczkowalna, taka ze v(0) = (0,0) oraz
D~(0) # (0 0).2 Sprawdzi¢ |z definicji], ze funkcja t — f(y(t)) jest rézniczkowalna
wt=0.

d) Uzasadnié, ze funkcja f nie jest rozniczkowalna w punkcie (0,0).

2.28 (nieco trudniejsze (?)). Dana jest funkcja f: R? — R i punkt (x¢,y0) € R
Wykazaé, ze jesli f istnieje w pewnym otoczeniu punktu (zg,yo) i jest ciagta w tym
punkcie oraz f, istnieje w punkcie (zo, yo), to funkcja f jest rozniczkowalna w (zo,yo).

2.29. Wyznaczy¢ wszystkie punkty, w ktorych funkcja f: R¥ — R dana wzorem
f(z1,...,xk) = |1 ... 2k nie jest rozniczkowalna.

2.30 (do$¢ wazne). a) Niech f(x) = ||z||3 dla x € R¥. Znalez¢ V f(x) — odpowiedz
wyrazi¢ bez odwolywania sie do wspotrzednych punktu z.

b) Niech A bedzie pewng macierza rozmiaru k X k o wspotezynnikach rzeczywistych.
Niech g(x) = (Az, ) dla x € R¥. Znalezé¢ Vg(z) — odpowiedz wyrazi¢ bez odwolywania
sie do wspolrzednych punktu x. Silna sugestia. Przeprowadzi¢ rachunki bez odwotywania
sie w ogodle do wspotrzednych punktu x czy wspodlezynnikéw macierzy A.

2.31. Rozwazamy przestrzen My (R) (macierze wymiaru k X k o wyrazach rzeczy-

wistych), ktora utozsamiamy z RF*: T e My« (R) to macierz jednostkowa.
a) Wykazac, ze dla A € Mg« (R),

Ddet(I)A = tr(A)

(funkcja det: RF S R jest rézniczkowalna w punkcie I, a jej rézniczka w tym punkcie
(tj. Ddet(I)) jest przeksztalceniem linjowym z R¥’ w R zadanym przez A — tr(A)).
Koto ratunkowe. Moze by¢ tatwiej zaczaé od przypadku k = 2 lub 3.
b) Wykaza¢, ze jesli macierz B € My« (R) jest odwracalna, to

Ddet(B)A = det(B) tr(B~*A)
dla A € kak(R).

2.32. Rozwazamy przestrzen My (R) (macierze wymiaru k X k o wyrazach rzeczywi-
stych); I € Myxx(R) to macierz jednostkowa. Niech

U= {A € kak(R) :det A 75 0},

3Krzywa 7 jest postaci y(t) = (u(t),v(t)) dla pewnych funkcji u,v: R — R. Rézniczkowalnosé ~y
[jako przeksztalcenia z R w R?| oznacza doktadnie, ze funkcje u, v sa rézniczkowalne. Warunek
niezerowania si¢ roézniczki v w punkcie ¢ = 0 oznacza dokladnie, ze (u/(0),v'(0)) # (0,0).
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2. Pochodne czastkowe, rézniczkowalnosé

i niech ®: U — U bedzie dane wzorem ®(A) = A~! dla A € U. Ponizej | - [l2—2 to
norma operatorowa (patrz zadanie 1.16), ale prosze pamietaé, ze przestrzen My (R)
mozna utozsamié z sz, wiec wszystkie normy sa réwnowazne.

a) Wykazac, ze jesli macierz B € My, (R) spetia ||Bllo—2 < 1, to macierz [ — B
jest odwracalna oraz

(I-B) = i B".
n=0

Uswiadomi¢ sobie, ze to w szczegdlnosci oznacza, ze I nalezy do wnetrza zbioru U.
b) Sprawdzi¢, ze przeksztalcenie ® jest rézniczkowalne w I oraz

D®(I)B =—-B

(rozniczka ® w punkcie I to przeksztalcenie liniowe z My (R) w My, (R) zadane
przez B — —B).

¢) Uswiadomié¢ sobie, ze U jest otwartym podzbiorem My (R). Sprawdzi¢, ze
przeksztalcenie ® jest rozniczkowalne oraz dla A € U zachodzi

D®(A)B = —A"'BA.

2.33 (por. zadanie 2.13). Motywacja. Zadanie 2.13 w podanej wyzej wersji (spraw-
dzi¢, ze podana funkcja ma jakies wlasnosci) jest tatwe, ale byloby chyba trudnawe,
gdyby sformutowaé je: ,Rozstrzygnaé, czy istnieje funkcja, taka ze ...”. Ponizej alterna-
tywne i chyba bardziej wymy$lalne podejscie do konstrukeji funkcji o odpowiednich
wlasnosciach.

a) Niech g(x,y) = 23 +y® —3zy dla (z,y) € R2. Sprawdzi¢, ze funkcja g ma doktadnie
dwa punkty krytyczne i ze w jednym z nich jest minimum lokalne, a drugi jest punktem
siodtowym. Sprawdzi¢ tez, ze funkcja g nie jest ograniczona ani z gory, a ani z dohu.

b) Niech f(z,y) == g(z,e¥) = 23 + €3¥ — 3xe¥ dla (x,y) € R2. Sprawdzi¢, ze funkcja
f ma dokladnie jeden punkt krytyczny i uzasadnié¢, ze ma w nim minimum lokalne.
Sprawdzié tez, ze funkcja f nie jest ograniczona ani z gory, ani z dohu.

Komentarz. Dobrze by byto sprébowaé wyobrazié sobie, co sie stato i jak wyglada
wykres funkcji f. Funkcja f ma jedno minimum lokalne i nie jest ograniczona z gory — to
nie jest dziwne. Dziwniejsze jest to, ze z tego minimum lokalnego funkcja f jest w stanie
wykrecié tak, by zej$é¢ z warto$ciami do —oo, i odbywa sie bez przechodzenia przez
punkty krytyczne (siodta lub maksima lokalne). Punkt siodtowy funkeji g zostal wystany
do ,,[minus?] nieskoriczonosci”, na ,brzeg” plaszczyzny (limy_,_ e¥ = 0). Siodla juz nie
mamy, ale w pewnym sensie mozna do niego podejsé i to wystarcza. [Lepsze intuicje
chetnie przyjme].

2.34 (por. zadanie 2.12). Niech
Flany) = (y—exp(—l/x2)) (y—3exp(—1/x2)) dla x #£0, y € R,
’ y? dlaz=0, yeR.

Sprawdzi¢, ze funkcja f ma po obcieciu do dowolnej krzywej postaci y = cz™/™ (¢ € R,
m,n € N — wzglednie pierwsze, x > 0 w przypadku gdy n jest parzyste) minimum
lokalne w punkcie (0,0), ale punkt (0,0) nie jest minimum lokalnym funkcji f.
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2. Pochodne czastkowe, rézniczkowalnosé

2.35. Wykaza¢, ze funkcja f: R? — R dana wzorem
f(z,y) = (14 €) cos(x) — ye?
ma nieskoriczenie wiele maksiméw, ale nie ma zadnego minimum lokalnego.

2.36. Niech A = {(z,y) e R?:y >0}, f(z,y) = % dla (z,y) € A. Wyznaczy¢
supy f, infa f. '

2.37. Niech A =[0,00)2\ {(0,0)}, f(z,y) = T;;i\y/? dla (z,y) € A. Wyznaczy¢ sup 4 f,
ian f

2.38. Zmnalezé kresu funkcji f(z,y,2) = 6y — 3xz — 2yz na zbiorze {(z,y,2) € R? :
0<z<1,0<y<l1 0<z<1}

2.39. Niech A = {(z,y) € R> : 9z > 4y > 0}, f(z,y) = “2" dla (z,y) € A
Wyznaczy¢ sup 4 f, inf 4 f.

2.40. Niech A = {(z,y,2) € R3: 22 = 4+ 22 +y?}. Znalezé w zbiorze A punkt, ktorego
odleglosé od punktu (2,4,0) jest najmniejsza.

2.41. Sposrod basendéw prostopadtosciennych o ustalonej objetosci V' > 0 znalezé basen
o najmniejszym polu powierzchni (podstawa plus cztery $ciany boczne).

2.42. Dana jest macierz nieosobliwa A rozmiaru k X k o wspotczynnikach rzeczywistych
i wektor b € R¥. Niech f(z) = ||Az|* — 2(Az,b) dla x € R*. Wykazaé, ze f osiaga
swoje minimum globalne w doktadnie jednym punkcie.

Drobna wskazowka. Jesli beda ktopoty rachunkowe, to warto najpierw zrobié¢ zada-
nie 2.30.

2.43 (fajne). Ustalmy dwa punkty a,b € R?, a # b, i niech

Lot
[l = b2

flz) = dla z € R\ {a,b}.

[l = all2

Znalez¢ punkty krytyczne funkcji f.
Wskazowka (). Mozna rachowaé, ale moze lepiej mysle¢ o poziomicach i gradientach?

2.44. Funkcja f: R¥ — R jest rézniczkowalna i spetnia warunek:

k
ije%f(x) >0 dlakazdego o = (a1,...21) € R".
=1 I

Wykazaé, ze funkcja f jest ograniczona z dotu.

2.45 (kolokwium 2010). Zbior A C R* jest zwarty i wypukly. Funkcja f: A — R jest
ciagla na A i rézniczkowalna w int A. Ponadto istnieja liczby aq, ..., ax, nie wszystkie
réwne 0, takie ze

Zaj—l(x) <0 dlakazdego x = (x1,...x1) € int A.
j
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2. Pochodne czastkowe, rézniczkowalnosé

Wykazaé, ze funkcja f osiaga swoja warto$¢ najwieksza i najmniejsza w pewnych
punktach brzegu zbioru A.

2.46. Niech p > 0. Méwimy, ze funkcja funkcja f: (0,00)* — R jest jednorodna stopnia
p, jesli dla kazdego x € (0,00) i kazdego A > 0 zachodzi f(A\x) = AP f(x).

a) Wykazaé, ze jesli funkcja f: (0,00)" — R jest jednorodna stopnia p i rézniczko-
walna, to spelnia warunek:

k
Zx];{](aﬁ) =pf(z) dlakazdego z = (x1,...21) € (0,00)F. (2.1)
j=1

b) Odwrotnie, pokazaé¢ ze jesli rézniczkowalna funkcja f: (0,00)F — R spelnia
warunek (2.1) [dla pewnego p > 0], to jest jednorodna stopnia p.

Uwaga. W podpunkcie b) zapewne pojawi sie potrzeba skorzystania z jakiejs wiedzy
z RRZ — mozna na kredyt przyjaé, ze rozwiazanie, ktére Panstwo zgadna, jest jedyne
(z doktadnoscia do mnozenia przez stala) i ze nie ma zadnych problemow.

2.47. Dana jest funkcja rézniczkowalna f: R? — R. Wiadomo, ze:

e gradient funkcji f w punkcie (0,0,0) to wektor (1,1,1),

e gradient funkeji f w punkcie (1,1, 1) to wektor (1,2, 3),

e gradient funkcji f w punkcie (1,2, 3) to wektor (0,0,0),

e gradient funkcji f w punkcie (e + 1,e+ 1,e + 1) to wektor (—1,—1,—1).
Funkcja g: R? — R jest okre§lona wzorem

9(z,y,2) = f(e" +y,e* +x,e¥ + 2).

Znalezé gradient funkeji ¢ w punkcie (0,0,0) oraz pochodng kierunkows funkeji g
w punkcie (0,0,0) wzgledem wektora (1,1, 1).

2.48. Funkcja F': R2 — R? jest zadana wzorem
F(x,y) = (e + €% 4 23y*e™ sin(3z) + 4y + 2° + cos®(y)).

a) Uzasadni¢, ze funkcja F' jest rézniczkowalna.

b) Wiadomo, ze istnieja zbiory otwarte U,V C R2, takie ze (0,0) € U, (2,1) € V,
funkcja F jest réznowartosciowa na U, F(U) =V, za$ funkcja G == (F|U)*1 VU
jest rézniczkowalna. Wyznaczy¢ rozniczke funkcji G w punkcie (2, 1).

Komentarz. Zeby uzasadni¢ czesé¢ ,Wiadomo . ..” potrzeba twierdzenia o odwzorowa-
niu odwrotnym, ktérego jeszcze nie znamy, ale jesli zalozymy istnienie i rozniczkowalnosé
G, to do znalezienia DG(2,1) wystarczy nam twierdzenie o rézniczce funkeji odwrotnej
lub o rézniczce ztozenia, z ktorego wynika wzor na rozniczke funkeji odwrotnej (nawet
jesli funkcja G nie wypisuje sie jawnym wzorem).

2.49. Znalez¢ dowolne trzy plaszczyzny styczne do paraboloidy obrotowej opisanej
réwnaniem z = x2 + 32, ktére sa do wzajemnie prostopadle.

Uwaga. To zadanie nie powinno by¢ trudne — jesli komus wydaje sie by¢ straszne, to
warto, zeby je zrobit.
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2. Pochodne czastkowe, rézniczkowalnosé

Wskazowka. Wiemy, jak szukaé plaszczyzny stycznej do wykresu funkcji rézniczko-
walnej, wiec trzeba tylko zrozumieé, jaki sposéb opisywania tych dwuwymiarowych
przestrzeni liniowych /afinicznych bedzie najwygodniejszy, jesli chcemy sprawdzaé ich
prostopadtosé. Nie bedzie potrzebna zadna wyobraznia przestrzenna, przyda sie pod-
stawowa wiedza z GALu, ale nie powinno byé¢ zadnych skomplikowanych rachunkéow.

2.50. Znalez¢ wszystkie plaszczyzny [afiniczne], ktore sa styczne do paraboloidy hiper-
bolicznej opisanej rownaniem z = xy, i ktore jednoczesnie zawieraja punkt (0,0,1).

Uwaga. Podobnie j.w.: to zadanie nie powinno by¢ trudne, nie bedzie konieczna zadna
wyobraznia przestrzenna, przyda sie podstawowa wiedza z GALu, ale nie powinno by¢
zadnych skomplikowanych rachunkow.

2.51 (c.d. zadania 2.16). b) Funkcja g: R?® — R jest rézniczkowalna, a jej pochodne
czastkowe spelniaja zaleznosci
99 _ 9g dg _ dg

@*x@ 22 = =z
Yor — oy’ By_yaz’ 0z "oz’

Udowodnié, ze g(z,y) = p(x? + y? + 22) dla pewnej funkcji ¢: [0,00) — R (ciagtlej,
rozniczkowalnej na (0, 00)).
c¢) Jak zmieni sie teza, jesli zalozymy, ze
(] 99 _, 0dg g 9 .

2y% = xa—y, 3za—y = 2y$, xa = 3Z8:E !

d) Jak uogélnié¢ tresé¢ z podpunktéw a), b) na przypadek RF?

2.52. Funkcja g: {(z,y) € R? : & > 0,y > 0} — R jest rézniczkowalna i spetnia
réwnanie
zg;, + 2yg, = 0.

Udowodnié, ze g(x,y) = ¢(y?/z) dla pewnej rézniczkowalnej funkeji ¢: (0,00) — R.

2.53 (metoda charakterystyk). Znalezé¢ rézniczkowalng funkcje u: R? — R spehiajaca
warunki

% + y% =0, u(0,y) =1In(1+y?).

W tym celu postapi¢ nastepujaco. Dla kazdego punktu (0, ¢) znalezé tzw. charakte-
rystyke, tzn. — w naszym przypadku — krzywa postaci « — (x,1(z)), ktora spelnia
' (x) = ¥(x) i przechodzi przez punkt (0,c). Sprawdzié, ze funkcja z — u(z, 9 (z))
jest stala. Nastepnie dla kazdego punktu (z,y) dobraé¢ takie ¢, by charakterystyka
wypuszczona z punktu (0, ¢) przechodzila przez (x,y) 1 wyznaczyé wzor jawny na u.

Komentarz. Podobne rozumowanie mozna tez stosowaé¢ w przypadku bardziej skom-
plikowanych rownan rozniczkowych [czastkowych| (bedzie na RRCz) .
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2. Pochodne czastkowe, rézniczkowalnosé

Y

,4
—

Rysunek 2.2.: Charakterystyki z zadania 2.53

2.54 (ksztalcace). Funkcje f; j: R — R, 4,5 € {1,..., k}, sa rozniczkowalne. Kladziemy

fii@) o fie(e)
o) = : : dla z € R.

fk,l.(x) . fk,k(-'ff')

Zrozumieé, ze % det(p(x)) jest rowne sumie k wyznacznikow: i-ty z nich powstaje
przez zastapienie i-tego wiersza () przez (f;1(z), ..., fi .(¥)).

Plan pracy. Przypomnieé¢ sobie, ze wyznacznik jest wieloliniowa funkcja wierszy
macierzy. Zastosowaé twierdzenia o roézniczce zlozenia i pochodnej przeksztalcenia
wieloliniowego.

2.55. Funkcja f: R¥ — R jest zadana wzorem

1 1 1

T T2 Tk

2 2 2

fx1, ... z,) = det 1 2 k
k—1 —1 k—1

’Il I'Q iEk

a) Uzasadni¢ mozliwie krotko (najlepiej jednym stowem — jakim?), ze funkcja f jest
rézniczkowalna.
b) Niech v = (1,...,1) € R¥. Wykaza¢, ze f!(x) = 0 dla kazdego x € RF.

2.56. Podaé¢ przyklad funkcji rézniczkowalnej f: R — R? i punktéow z,y € R, dla
ktorych w twierdzeniu Lagrange’a o wartosci $redniej mamy ostra nieréwnosc.
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3. Pochodne wyzszych rzedéw

Materiat do oméwienia na zajeciach [3+ éw. (7)]

Teoria (déja vu?). Jesli funkcja jest odpowiednio porzadna, to po policzeniu pochodnej
czastkowej, mozemy dalej rozniczkowaé (po tej samej lub po innej zmiennej). Piszemy

;l?;Z = ((fﬂlb’)l) lub Bzayaxf = i%(('?y(aaxf)) i az2f = mf

8.1. a) Niech f(x,y) = 2°€% + sin(4x). Obliczy¢ fi,, fi, foes fiy-
b) Niech

[, dla(2,) # (0,0),
g(w,y) = {0 e (z,y) = (0,0).

Znalez¢ g;, (0,0) oraz gy, (0,0).

Teoria. Twierdzenie Schwarza! [o réwnoséci pochodnych mieszanych].?

3.2. a) Czy istnieje funkcja rézniczkowalna f: R? — R spelniajaca
of
oz
8.f 2,2 T
a—y(m,y) = 32°y” + 4y + e” cos(y) ?

(z,y) = 1+ 22y” + " sin(y),

b) Czy istnieje funkcja rézniczkowalna g: R? — R spelniajaca

dg o dg T ()0
B (& Y) = € cos(y), ay(ﬂc,y)—e sin(y) 7

+) Patrz zadania 3.13, 3.14.
Teoria. Dwukrotna rozniczkowalnosé (patrz tez: zadania 3.18, 3.19). Twierdzenia Schwa-
rza [o symetrii drugiej rézniczki].
Teoria. Rozniczki jeszcze wyzszych rzeddéw. Symetria n-tej rézniczki. Funkcje klasy C”.
3.3 (wecale nie takie straszne). a) Zalozmy, ze funkcje f: R¥ — Rl g: Rl — R™ sg

dwukrotnie rézniczkowalne. Dla x € R¥ znalezé D?(g o f)(z), tzn. dla dowolnych
wektorow u, v € R¥ wyznaczyé D?(g o f)(z)(u,v).

IW literaturze angielskiej mozna si¢ tez spotkaé z nazwami: Clairaut’s theorem, Young’s theorem.
2Jeden z mozliwych zestawow zalozen: f klasy C!, jedna z pochodnych mieszanych istnieje i jest
ciagta.
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3. Pochodne wyzszych rzedéw

Koto ratunkowe. Jesli k =1 = m = 1, to bez trudu mozna policzy¢ (g(f(x))"” — zrobié
to (AM 1). Przez analogie mozna zapostulowaé¢ wzor na D?(go f)(z)(u,v) — trzeba
pamietaé, ze drugie rézniczki [w danym punkceie| to przeksztalcenia dwuliniowe, wiec
trzeba je nakarmié¢ dwoma wektorami, i trzeba przypilnowaé, zeby napisy sie parsowaly
(wymiary i dziedziny wszystkiego musza sie zgadzac).

b) Ewentualnie, dla u, v, w € R¥ wyznaczyé¢ D?(go f)(x)(u,v,w) [przy zalozeniu, ze
f, g sa trzykrotnie rézniczkowalne].

KKk

Teoria (déja vu?). Praktyczne wnioski ze wzoru Taylora — macierz drugiej rézniczki
a ekstrema lokalne (funkcja dwukrotnie rozniczkowalna o wartosciach rzeczywistych,
D?f jest symetryczna, wiec ma rzeczywiste wartosci wlasne). Kryterium Sylvestera.

Uwaga. Wazne przyklady, ktére trzeba mie¢ w pamieci: 22 + y?, —22 — 92, 22 — 92,

ot +yt, —a2t — yt, 2* — y? w otoczeniu (0,0).

3.4. Znalez¢ punkty krytyczne funkcji
flz,y) =t — y* — 423 + day® + 42 — 49)?
i rozstrzygnaé, czy sa w nich lokalne ekstrema.

3.5. Niech f(x,y,z) = sin(x) + sin(y) + sin(z) — sin(z + y + 2).
a) Wyznaczy¢ punkty krytyczne funkeji f.
b) Czy w punktach (0,0,0) i (7, 7, 7) funkcja ma lokalne ekstrema?
3

c¢) Czy w punkcie (37, 27, 37) funkcja ma lokalne ekstremum?

d) Czy w punkcie (1,1, —1) funkcja ma lokalne ekstremum?
Teoria. Wzor Taylora [doktadniej]. Wielowskazniki (multiindeksy).

3.6. Niech f(z,y,2) = sin(z)eY=* dla (z,y, z) € R3.

a) Wypisaé [z definicji] wielomian Taylora drugiego stopnia, Tx(x,y, z), dla funkcji f
wokol punktu (g, yo, 20) = (0,0, 0).

b) Dla |z|, |y|, |z| < 0 podaé konkretne szacowanie |f(z,y, 2) — Ta(z,y, 2)|.

¢) Wypisaé¢ [w dowolny sposob| wielomian Taylora trzeciego stopnia, T3(x,y, 2), dla
funkcji f wokot punktu (xo, yo, 2z0) = (0,0, 0).

3.7. W zaleznosci od wartosci parametru a € R ustali¢, czy funkcja

fz,y) = cos(z +y) + atg(zy), (x,y) € R?,

ma w punkcie (0,0) ekstremum lokalne (i jakie) czy tez go nie ma.

Zadania treningowe, uzupetniajace, dodatkowe
3.8 (powtorka z GALu). Przypomnie¢ sobie z GALu material dotyczacy form kwadra-

towych: macierze symetryczne, kongruencja macierzy, diagonalizacja przez kongruencje,
sygnatura formy kwadratowej itp.
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3. Pochodne wyzszych rzedéw

3.9. a) Niech f(x,y) = ¢* — 3z*y dla (x,y) € R?. Sprawdzi¢, ze f;, + f; = 0.
b) Niech g(z,y) = e® cos(y) dla (x,y) € R%. Sprawdzi¢, ze g7, + Gy = 0.
¢) Niech h(z,y) = In((z%+y?)/?) dla (z,y) € R\ {(0,0)}. Sprawdzi¢, ze Wy +hy, =
0.
3.10. Zalézmy, ze dla funkcji f: R2 — R pochodna mieszana a%(a%f) istnieje wszedzie
i ciggta. Czy wynika z tego istnienie a%f?
3.11 (siodlo dla... modliszki?). Motywacja. Na wykladzie pojawila sie funkcja

27 2 ..
faay) = W4 jesli (z,y) # (0,0),
’ 0 jesli (z,y) = (0,0),

dla ktorej 88;)—6@(0, 0)=-1# 188;6]; (0,0) (przyktad Peano). Niniejsze zadanie ma byé
[czesciowa| proba zrozumienia, jak wyglada wykres tej funkcji i dlaczego pochodne
mieszane sg rozne.

a) Wypisa¢ f(r cos a, 7 sin @) i uprosci¢ wynik.

b) Zrozumieé, jak wyglada wykres funkcji f: gdy r jest ustalone i « zmienia sie od 0
do 27, to wartosci f(r cos a, rsin(«)) zmieniaja sie okresowo i mamy cztery maksima
(,,gorki”) i cztery minima (,dotki”). Zatem, jesli uwzglednimy zmiane r to zobaczymy
powierzchnie, ktore ma cztery ,grzbiety” (faldy”?), a pomiedzy nimi cztery ,doliny”.
Powierzchnia ta wyglada nieco jak siodlo, tylko takie dla stworzenia, ktére ma cztery
nogi (mogtaby w nim siedzie¢ np. modliszka — cztery odnoza w czterech strzemionach,
lejce trzymane w pierwszej parze odnozy, ktéra jest przeksztalcona w narzad chwytny
(by¢ moze byloby jej niewygodnie z odwtokiem, ale trudno)).

¢) Uswiadomi¢ sobie, ze jesli obrocimy wykres funkcji f [w R3] wokot osi OZ o 90°,
to otrzymamy te samg powierzchnie. Przy takim obrocie 0§ OX przejdzie na o$ OY,
za$ 0§ OY — na minus 0§ OX.

d) Nasza funkcja spelnia f(z,y) = f(—y, ). Zrozumiec,
ze stad wynika, ze %(07 0)=- ;jgy (0,0). Sprobowac to zrozumieé¢ rowniez czysto

geometrycznie, korzystajac z poprzedniego podpunktu c)...(?)
e) Czy da sie jako$ tatwo — z pomoca wykresu, ale bez rachunkéw — zrozumieé,
82
dlaczego W&J;(O’ 0) # 07 (77)

3.12 (Schwarz, 1873). Funkcja f: R? — R jest dana wzorem

x?arctg(y/x) —y?arctg(z/y)  jesli zy # 0,
fa,y) = (/) (o) Jesie 7
0 jesli zy = 0.

Obliczy¢ fy,(0,0) oraz f,.(0,0).
3.13 (por. zad. 3.14). Funkcje f1, fo: R? — R sg klasy C' i spelniaja zaleznoéé

0 0
T‘Z(x,y) = %(x,y)
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3. Pochodne wyzszych rzedéw

a wszystkich z,y € . Wykazag, ze istnieje funkcja f: — asy , taka ze
dl kich z,y € R?]. Wyk ze istnieje funkcj R? — R kl C?, taka 7

) = fiew) G @) = falo)

Wskazowka. Jesli istnialaby taka funkcja f, to wtedy mozna by zapisaé
f(z,y) = £(0,0)+ [ —=(s,0)ds + ...
0 61’

(by¢ moze dobrze jest zrobié rysunek, zeby zrozumieé, co (i dlaczego) bedzie w miejscu
wielokropka).

3.14 (por. zad. 3.13). Sprawdzié, ze funkcje fi, fo: R?\ {(0,0)} — R dane wzorami

Y X
fl(%y):ma f2($ay):*x2+y27

spelniaja [dla wszystkich (z,y) € R? \ {(0,0)}] zaleznosé

0 0
Py = D)

Uzasadnié, ze nie istnieje funkcja rézniczkowalna f: R? \ {(0,0)} — R taka ze

) = fiew), G @) = falo)

Wskazowka. Rozwazy¢ g(t) = f(cost,sint).

3.15 (réwnania Cauchy’ego-Riemanna). Funkcje u,v: R? — R sa dwukrotnie réznicz-
kowalne i spetniaja uj, = vy, u;, = —v;, [we wszystkich punktach dziedziny|. Sprawdzic,
7€ Uy, +uy, = 0= vy, + vy,
3.16. Oznaczenia i terminologia. Dany jest zbior otwarty Q C R3 (wspohrzedne ozna-
czamy 1, T2, x3). Pole wektorowe to funkcja okreslona na € o wartosciach w R3.

Rotacja pola wektorowego F = (Fy, Fp, F3): Q — R? [klasy C'] nazywamy pole
wektorowe

orp — (B2 0P DR _ Oy 0y _0Riy
6372 6.133’ 8.1?3 8331’ 8.131 61‘2

(kilka uwag pobocznych w stopce?). Jedli rot F' = (0,0,0) [we wszystkich punktach
zbioru ], to méwimy, ze pole F' jest bezwirowe.

Jesli istnieje funkcja U: Q — R [klasy C!], taka ze F' = VU, to méwimy, ze F jest
polem gradientowym, a funkcje U nazywamy potencjalem tego pola.

a) Zalézmy, ze pole wektorowe F = (Fy, Fy, F3): © — R3 klasy C! jest polem
gradientowym pewnego potencjatu U: Q — R klasy C?: F = VU. Uzasadni¢, ze
wowcezas rot F' = (0,0,0).

3Formalnie mamy rot F = Vx F = [%, %, %] X [F1, F», F3] (iloczyn wektorowy). Inne oznaczenie

na rotacje to curl F'.
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3. Pochodne wyzszych rzedéw

b) Zalézmy, ze zbior Q € R3 jest gwiazdzisty, tzn. istnieje punkt zo € €2, taki ze
dla kazdego x € Q odcinek taczacy punkty z i x¢ jest zawarty w Q. Zalézmy, ze
pole wektorowe F' = (Fy, Fy, F3): Q — R? klasy C? jest bezwirowe: rot F' = (0,0,0).
Uzasadnic¢, ze fukcja U: 0 — R zadana wzorem

U(x) ::/O (f(zo + t(z — m0)), @ — x0)dt.

jest potencjatem pola wektorowego F.

3.17. Niech A = {(z,y) € R? : > 0}. Funkcja f: A — R jest klasy C? i spelnia
2 2
rownanie %(m,y) = %(ax,y) [dla wszystkich (z,y) € A]. Ponadto wiadomo, ze dla

wszystkich > 0 zachodzi

1
f(z,e") =sinz, —(z,€e") = 5 cos .
Obliczy¢ macierz drugich pochodnych czastkowych funkeji f w punkcie (z,e*) dla
2 > 0 (lub ewentualnie wykazac, ze nie istnieje funkcja spelniajaca zatozenia zadania).
Sugestia. By¢ moze warto najpierw zerkna¢ na zadanie 2.21. Ponadto by¢ moze oplaca
si¢ wprowadzié¢ funkcje jednej zmiennej g(z) = f(x,e”) (a moze lepiej g(t) = f(¢,e)?).

3.18 (woko! definicji drugiej rozniczki, cz. 1). Motywacja. Przy okazji definicji rozniczek
wyzszych rzedow pojawiaja sie przeksztalcenia wieloliniowe (i przeksztalcenia liniowe
o wartosciach w przestrzeni przeksztalcen liniowych). To zadanie ma pomoc w oswojeniu
sie z tymi obiektami.

Notacja. Przez L(V, W) oznaczamy przestrzen przeksztalcen linowych z przestrzeni
liniowej V' w przestrzen liniowa W. Przez L(Vi,...,V,; W) oznaczamy przestrzen
przeksztalcen n-liniowych z przestrzeni liniowej Vi X -+ X V,, w przestrzen liniowg W.

a) Przemysled, ze przestrzenie liniowe L(RF, L(R*2 RY)) oraz L(R*, R¥2; RY) s izo-
morficzne. W tym celu zrozumieé, ze jest jeden rozsadny i kanoniczny sposéb wypisania
izomorfizmu (oraz izomorfizmu odwrotnego) miedzy tymi przestrzeniami. [W razie
potrzeby skonsultowaé sie np. z notatkami do wyktadu lub wybranym skryptem.]

a) Przypomnieé¢ sobie rowniez definicje normy przeksztalcenia liniowego i wielolinio-
wego 1 sprawdzié, ze wypisane izomorfizmy sa izometriami.

b) Ewentualnie przemysleé, ze przestrzenie liniowe

L(R*, L(R™, L(R*,R")))

oraz L(R¥ RF2 RFs; R!) sg izomorficzne.

¢) Dane s przestrzenie liniowe V, W (powiedzmy skoriczeniewymiarowe). Dla S €
L(V,W) oraz Ty, Ty € L(W, V) ktadziemy g(T1,T2)(S) := T1.5T>. Zrozumie¢ ponizsze
napisy [i sprawdzi¢ ich poprawnosd]:

9(Ty, Ty) € L(L(V,W), L(W,V)),
g€ L(LIW,V), LIW,V); L(L(V,W), L(W,V))).

29



o

3. Pochodne wyzszych rzedéw

3.19 (wokot definicji D?f, cz. 2). Motywacja. Ponizszy tekst ma pomoc w przetra-
wieniu definicji drugiej rézniczki z wykladu; na samym koncu jest tez minizadanko
(podpunkt b). Pewnie warto najpierw zerknaé¢ na zadanie 3.18.

Rozniczkowalnosé (powtdrzenie). Wszedzie ponizej zakladamy, ze mamy funkcje
f: RF — R!, rozniczkowalna.* Dla kazdego punktu p € R istnieje wiec przeksztalcenie
liniowe D f(p) € L(R¥,R!). W bazach standardowych mozemy utozsamiaé je z macierza
rozmiaru [ X k; bierze ono wektor h € R* i zwraca wektor Df(p)h € R,

R* 5 h — Df(p)h € R%;

jest ono liniowym przyblizeniem naszej funkcji: f(p + h) =~ f(p) + Df(p)h.

Plan. Zeby zrozumie¢, co to znaczy, ze funkcja f jest dwukrotnie rézniczkowalna
w punkcie p, musimy na pewno mie¢ D f(x) okreslone w pewnym otoczeniu punktu p
[u nas istnieje wszedzie|, a dalej nada¢ jakis sens przyblizonej réwnosci

Df(p+h)~Df(p)+...h

[m.in. zrozumieé, co wpisa¢ w miejscu kropek]|.
Zaleznosé od x. Rozwazamy wiec teraz funkcje, ktora punktowi 2 € R* przyporzad-
kowuje przeksztalcenie liniowe Df(z) € L(R¥,R!). Oznaczamy te funkcje przez

Df: RF — L(R* R
— jest ona zadana po prostu przez
R* 5 x — Df(x) € L(R*, RY).

Sama funkcja Df oczywiscie [zazwyczaj| nie jest liniowa — dopiero jesli nakarmimy
ja argumentem x € R¥, to dostaniemy przeksztalcenie liniowe (ktore z kolei mozemy
nakarmi¢ wektorem h € R¥, zeby dosta¢ wektor w R?).

Formalna definicja. Poniewaz przestrzen L(R; R!) mozemy utozsamiaé¢ z R¥| to
umiemy powiedzieé, co to znaczy, ze funkcja D f jest rézniczkowalna w jakim$ punkcie
swojej dziedziny. Méwimy zatem, ze funkcja f: R¥ — R! jest dwukrotnie rézniczkowalna
w pewnym punkcie p € R¥, jesli funkcja Df: RF — L(R* R!) jest rézniczkowalna
w punkcie p € R¥.

Przejscie do przeksztatcen dwuliniowych. Znaleziona w ten sposob rozniczka

D?*f(p) = D(Df)(p)

to formalnie element przestrzeni L(]Rk, L(RF, Rl)): jesli nakarmimy ja wektorem hy €
R*, to dostaniemy przeksztalcenie liniowe (element przestrzeni L(R* R!)), ktore dalej
mozemy nakarmié¢ wektorem hy € R¥, Zeby dosta¢ wektor w R!. Poniewaz zaleznosé
iod hy,iod hs jest liniowa (por. zadania 3.18 a)), to mozemy — i bedziemy tak robi¢ —
mysle¢ o D? f(p) jako o elemencie przestrzeni L(R¥, R*;R!), tj. jako o przeksztalceniu
dwuliniowym

D?f(p): R* x R*¥ — R!

4Mozna zatozyé, ze f jest okreslona na pewnym otwartym podzbiorze U = int U C R¥, ale bedzie
nam wygodniej §ledzi¢ wszystko dla U = RF.
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3. Pochodne wyzszych rzedéw

(ktore trzeba nakarmié¢ dwoma wektorami hy € R¥ hy € R¥, zeby dosta¢ wektor w RY).
a) Spokojnie przemysleé¢ teorie z wyktadu i krytycznie przeczyta¢ odpowiednie
fragmenty skryptu lub powyzszy tekst.
b) [Nadal przy zalozeniu, ze f: R¥ — R! jest rézniczkowalna [wszedzie||. Ustalmy
p € RF. Udowodnié¢ lub uzasadni¢ lub uswiadomi¢ sobie, ze nastepujace warunki sa
réwnowazne:
(i) Funkcja f jest dwukrotnie rézniczkowalna w punkcie p € R* [w wyzej opisanym
sensie].
(ii) Dla kazdego ustalonego h; € R* funkcja R* 3 2+ Df(x)h; € R! jest réznicz-
kowalna [jako przeksztalcenie z R¥ w R!| w punkcie p € R*.

3.20 (w miare ksztalcace i ogolnorozwojowe). Ponizej pracujemy z [dwukrotnie roz-
niczkowalnymi| funkcjami okreslonymi na R*, o wartosciach rzeczywistych. Laplasjan
to operator rézniczkowy

0? 0?
A= —5 4+ —5,
Oz3 o3
czyli, dla h: RF — R iz € R¥,
2 2
Ah(x)_ah 0°h

=@+ -+ =)
8x%() 8xi()

Zalozmy, ze macierz A, rozmiaru k x k, jest ortogonalna: AAT = I [oraz ATA = I|,
za$ funkcja f: R¥ — R jest dwukrotnie rozniczkowalna. Wykazaé, ze laplasjan jest
niezmienniczy przy ortogonalnej zamianie zmiennych:

A(f o 4) = (Af) o A,
tzn., jesli oznaczymy g(z) := (f o A)(x) = f(Ax) dla z € R¥, to
Ag(z) = (A(f o A))(z) = (Af)(Az).

Plan pracy i sugestia. Mozna — ale prosze raczej tego nie robi¢ — rozpisa¢ wszystko we
wspohrzednych A = (ai;), g(x) = f((32; aijx;)i), a potem dwukrotnie przylozy¢ regule
tancuchowsg. Chyba prosciej — a na pewno bardziej przejrzyscie, bardziej ksztalcaco
i bardziej uczenie — jest zrozumieé¢ jak D?g(z) [tj. macierz drugich pochodnych czastko-
wych funkeji g (ktéra zadaja forme dwuliniowa)| wyraza sie w terminach D? f(Az) i A
(por. zad. 3.3), a nastepnie zauwazy¢, ze Ag(z) = tr(D?g(z)).

3.21 (bedzie na RRCz; nie jestem przekonany, ze jest bardzo pouczajace lub istotne).
Wyrazi¢ dwuwymiarowy laplasjan we wspotrzednych biegunowych: zalézmy, ze funkcja
f:R2\ {(0,0)} — R jest dwukrotnie rézniczkowalna, niech x = rcosa, y = rsina,
g(r,a) = f(rcosa,rsina) (dla r > 0). Sprawdzié, ze

1 1
f;/m + fgl;/y = g;‘/r + ;gwlv + ﬁgga’
Plan pracy. Mozna po prostu przylozy¢ dwa razy reguta taricuchowa, zeby obliczyé

prawg strone.
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3.22 (z zaje¢ na Wydziale Chemii UW). Niech f(z,y) = (2? +y? — 25)(2? —y — 5)
dla (z,y) € R%. Zachodza wtedy réwnosci

%(w,y) =2z(2% —y — 5) + 2x(x? +y* — 25),
of 2 2., .2
9y &) = 2" —y = 5) = (&% +y7 — 25).

a) Znalez¢ wszystkie punkty, w ktorych gradient funkcji f jest wektorem zerowym.

b) Znalez¢ ekstrema lokalne funkji f.

¢) Znalez¢ najmniejsza i najwieksza warto$é funkcji f na zbiorze D = {(z,y) € R? :
22 +y? < 25, > 0} [lub uzasadnié, ze funkcja ktorej$ z nich lub obu nie przyjmuje].

3.23. Znalezé wszystkie punkty krytyczne funkcji
fz,y) = 3z — §y3 + 222y — 222 + 42
Dla kazdego z tych punktéw rozstrzygnaé, czy funkcja f ma w tym punkcie lokalne
ekstremum [a jesli tak, to czy jest to minimum czy maksimum)].
3.24. Znalez¢ wszystkie punkty krytyczne funkcji
fla,y) =2’y — 32y + ¢

Dla kazdego z tych punktéw rozstrzygnaé, czy funkcja f ma w tym punkcie lokalne
ekstremum [a jesli tak, to czy jest to minimum czy maksimum].

3.25. Wypisa¢ wielomian Taylora Ts(x,y) stopnia 2 dla funkcji f(z,y) = e sin(y)
wokol punktu (zo,y0) = (0,0). Wykazaé, ze dla |z|,|y| < § < 1/4 spelnione jest
oszacowanie
[ (z,y) = Ta(z,y)| < &°.
3.26. Funkcja f: R? — R jest dwukrotnie rézniczkowalna w punkcie (0,0) i spelnia
flzy) —e™Y
(@y)—00) 2% +y?

Wyznaczyé D f(0,0) oraz D?£(0,0).

=1

3.27. Funkcja f: R? — R jest dwukrotnie rézniczkowalna w punkcie (0, 0) i spetnia

I f(z,y) + cos(2z + 3y) + 222
im
(@,y)—(0,0) 2 +y?

=1

a) Uzasadni¢, ze (0,0) jest punktem krytycznym funkcji f, ale funkcja f nie ma
w nim lokalnego ekstremum.

b) Uzasadni¢, ze funkcja g: R — R zdefiniowana wzorem ¢(y) = f(0,y) ma w punkcie
y = 0 lokalne minimum wtasciwe.

¢) Niech h: R — R bedzie dana wzorem h(z) = f(z,0). Podaé¢ przyklady funkcji f
[spetniajacych zalozenia zadania], $wiadczace o tym, ze w punkcie z = 0 funkcja h moze
mieé¢ zaréwno lokalne minimum wtasciwe, lokalne maksimum wtasciwe, jak i punkt
przegiecia.
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3.28. Funkcja f: R?2 — R jest dana wzorem

f(@y) = (@, y) =1, D2+l (2, )= (=L Dll2+[[(z, y) = (1, =D 2+ (2, ) = (=1, =1 2.

Znalezé¢ — najlepiej w mozliwie prosty sposéb i wykonujac mozliwie najmniej rachunkéw
— wielomian Taylora stopnia 3 funkeji f wokot punktu (0,0); odpowiedz oczywiscie
uzasadni¢. (Moze — przy pewnej dozie zawzietosci i skupienia — da si¢ przeprowadzic
wszystkie konieczne obliczenia w pamieci, bez kartki?).

3.29. W zaleznosci od wartosci parametru a € R ustali¢, czy funkcja
f(z,y) =ay(e® —1) +axsinz + 1 —cosy, (x,y) € R?,
ma w punkcie (0,0) ekstremum lokalne (i jakie) czy tez go nie ma.

3.30. Zbiér A C RF jest wypukly i otwarty. Funkcja f: A — R jest dwukrotnie
rézniczkowalna w zbiorze A i D?f(z) > 0 dla z € A [rézniczka rzedu 11, tj. D?f(x),
wyznacza w kazdym punkcie € A forme kwadratowa polokreslong nieujemnie].
Udowodni¢, ze funkcja f jest wypukta.

3.31. Funkcja f: RF — R jest dwukrotnie rézniczkowalna, zas p € R¥ jest punktem
krytycznym: V f(p) = 0. Udowodnié¢, ze jesli istnieje otoczenie U = int U C R¥ punktu
p, takie ze D?f(x) < 0 dla o € U [r6zniczka rzedu 11, tj. D?f(x), wyznacza w kazdym
punkcie x € U forme kwadratowa potokreslona niedodatnio|, to f ma w punkcie p
maksimum lokalne [niekoniecznie wlasciwe/ciste].
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4. Teoria lokalna odwzorowan
klasy C!

Materiat do oméwienia na zajeciach [3—4 ¢w. (7)]
Teoria. Twierdzenie o odwzorowaniu odwrotnym.

4.1. Zbadaé lokalng bijektywno$é odwzorowaii f, g, h: R? — R? zadanych wzorami

f(ﬂ?,:lj) = (xQ - y27 2.13:(/),
g(z,y) = (2° + 2%,y + arctg(y)),
h(z,y) = (e” cos(y), e” sin(y)).

Teoria. oDyfeomorfizm. Przeksztalcenie odwrotne do dyfeomorfizmu jest dyfeomorfi-
zmem. Zlozenie dyfeomorfizmoéw jest dyfeomorfizmem

4.2. Rozstrzygnaé, ktore z ponizszych [otwartych| podzbioréw plaszczyzny R? sa
dyfeomorficzne: kwadrat, cata plaszczyzna, pierwsza ¢wiartka, gorna polplaszczyzna,
plaszczyzna z wyjeta polprosta, plaszczyzna z wyjeta prosta, nakluta ptaszczyzna.

Poda¢ przyklady dyfeomorfizmow (jesli istnieja) — wypisaé je wprost wzorem lub
jako ztozenie kilku dyfeomorfizméw wyrazonych wzorem.

4.3. Skonstruowaé¢ dyfeomorfizm kwadratu na trojkat.

4.4. Powiemy, ze zbior A C RF jest tukiem regularnym, jesli istnieje istnieje przedziat
J C R oraz réznowartogciowa funkcja ¢: J — R¥ klasy C*, taka ze ¢/(t) # 0 dla
kazdego t € J oraz o(J) = A.

a) Zbiory U,V C R¥ sg otwarte, F jest dyfeomorfizmem U na V, A C U jest tukiem
regularnym. Wykazaé, ze F'(A) jest tukiem regularnym.

b) Wskazaé¢ dyfeomorfizm zbioru B = {(z,y) € R? : y > v/3|z|} na otwarta gorna
potptaszczyzne H. Czy istnieje dyfeomorfizm F: R? 23 R?, taki ze F(B) = H?

¢) Niech C = {(z,y) € R? : y > 22}. Czy istnieje dyfeomorfizm F: R? 23 R?, taki ze
F(C)=H?

4.5. a) Wypisa¢ wzorem dyfeomorfizm R* na kule jednostkowa (i odwrotny).
a) Wypisaé¢ wzorem dyfeomorfizm R* na kule jednostkowa w normie ¢, (i odwrotny).
b) Podaé¢ przyklad dyfeomorfizmu R? na poétkole.

*okk
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4. Teoria lokalna odwzorowaii klasy C!

Teoria. Twierdzenie o funkcjach uwiklanych (TFU).!

4.6. Wykazaé, ze uktad rownan

r+y+2=0
22+t =2

wraz z warunkami y(0) = 1, z2(0) = —1 wyznacza w otoczeniu punktu z = 0 zmienne y,
2 jako funkcje klasy C' zmiennej . Obliczy¢ y'(0), 2(0).

4.7. a) Wykazaé, ze rownanie
ze¥ +ye’ =2

wyznacza w otoczeniu punktu xz = 0 zmienna y jako funkcje klasy C!' zmiennej x.
Obliczy¢ y'(0).
b) Czy funkcja y = y(z) jest dwukrotnie rézniczkowalna w punkcie z = 07

4.8. a) Wykazaé, ze istnieje ¢ > 0 i funkcje u,v: (—¢,¢)? — R?, klasy C!, takie ze dla
wszystkich (z,y) € (—¢,¢)? zachodzi

(L4 y)et@n) + (14 z)erlon) =2,
2u(z,y)e¥ + v(z,y)e® = 0.

a) Czy moze sie zdarzy¢, ze znalezione funkcje u, v sa okreslone nie tylko w otoczeniu
punktu (0, 0), ale wrecz na catym R? [i sa klasy C, i spelniaja powyzszy uktad réwnan]?

b) Czy istnieje € > 0, taki ze funkcje u,v klasy C! spemiajacy powyzszy uklad
rownan sa wyznaczone jednoznacznie?

4.9. Wykaza¢ twierdzenie o funkcji odwrotnej bezposrednio z twierdzenia o funkcji
uwiklane;j.

Zadania treningowe, uzupetniajace, dodatkowe

4.10. Odzworowanie F': R? — R? jest dane wzorami F(z,y) = (u,v), u = z(z? — 3y?),
v =y(y? — 32%). Wyznaczyé¢ wszystkie takie punkty (x¢,y0) € R?, ze F odwzorowuje
bijektywnie pewne otoczenie punktu (xg, o) na otoczenie punktu (ug,vo) = F (o, yo)-

Jednym z takich punktow jest (1,2), zatem w pewnym otoczeniu punktu (—11,2) jest
okreslone odzworowanie odwrotne © = z(u,v), y = y(u,v), przeksztalcajace otoczenie
%unktu (—11,2) na otoczenie punktu (1,2). Uzasadni¢, ze jest ono klasy C* i obliczy¢
F2(—-11,2).

4.11. Odwzorowanie F': (—7/2,7/2) x R — R? jest dane wzorem

F(s,t) = (Fi(s,t), Fa(s,t)) = (s + tsins,In(cos s) + t cos s).

IPo angielsku: implicit function theorem (IFT).
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4. Teoria lokalna odwzorowaii klasy C!

a) Sprawdzi¢, ze jesli sg € (—7/2,7/2) oraz ty € R spelniaja tocossg # —1, to
DF(sg,tp) jest izomorfizmem liniowym.

b) Uzasadnié¢, ze w pewnym otoczeniu V' punktu (zg,y0) = (0,0) jest okreslone
odwzorowanie G = (G, G3), klasy C!, bedace lokalnym odwrotnym do F'. Uzasadni¢
roéwniez — najlepiej w mozliwie prosty sposob, bez wypisywania explicite DG (z,y) — ze
dla kazdego punktu (z,y) € V wektory VG (z,y) oraz VGa(x,y) sa prostopadle.

¢) Rozstrzygnaé, czy w pewnym otoczeniu punktu (0, —1) funkcja F jest réznowarto-
$ciowa.

4.12. Zbiér U C R* jest otwarty, funkcja f: U — RF jest rozniczkowalna w sposob
ciagly. Zalozmy, ze istnieje stata A > 0, taka ze dla kazdych z,y, € U zachodzi

1 (@) = fW)ll2 = Allz = yll2-

Wykazaé, ze dla kazdego x € U rozniczka D f(x) jest izomorfizmem liniowym. Wywnio-
skowaé, ze f jest dyfeomorfizem U na f(U).

4.13 (ksztalcace). Funkcja f: R¥ — RF jest klasy C'. Dla kazdego = € R* zachodzi
|IDf(x)||2—2 < 1/2 (tzn. rézniczka D f(x) jest przeksztalceniem liniowym o normie
[operatorowej| < 1/2). Wykazaé, ze funkcja dana wzorem g(z) = z + f(z) jest dyfe-
omorfizmem R na R¥.

Wskazowka. Postepowaé podobnie jak w dowodzie waznego twierdzenia z wyktadu
(w szczegolnosei to zadanie jest dlatego ksztalcace, ze zmusza do przesledzenia tego
dowodu).

4.14. Zbior U C RF jest otwarty, funkcja f: U — R* jest rézniczkowalna w sposob
ciggly. Zbior A C U jest zwarty, funkcja f jest roznowartosciowa na A i dla kazdego
a € A rozniczka D f(a) jest izomorfizmem liniowym. Wykazaé, ze istnieje zbior otwarty
V, ACV CU,taki ze f jest roznowartosciowa na V', zbior f(V) jest otwarty, zas
funkcja odwrotna (fj)~': f(V) — V jest rézniczkowalna w sposob ciagly.

4.15. Niech F(z,y) = (e + €Y, e — e*7¥) dla (z,y) € R?. Znalez¢ F(R?)
i ustali¢, czy F jest dyfeomorfizmem (na swoj obraz).

4.16. Rozwazmy nastepujace [otwarte, niejednospojne| podzbiory plaszczyzny:

Ap oo = {r €R?:0 < |z[]2} = R*\ {(0,0)}
AO,l = {.’,E S RQ :0< ||J?||2 < 1}

(naktuta plaszczyna),
(
Al oo ={r €R?: 1 < |22} (zewnetrze dysku),
(
(
(

naktuta kula),

Arz={zeR*:1 < |z|s <3}
B={zeR: |zf> <13\ ([-1/2,1/2] x {0})
C={zeR:|lz]> <13\ ([0,1/2] x {0})

pierscieri),
kula bez odcinka),

kula bez innego odcinka).

Poda¢ przyktady dyfeomorfizmoéw tych zbioréw (wypisaé wprost wzorem lub jako
zlozenie kilku dyfeomorfizmow, z ktorych kazdym jest wyrazony wzorem).
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4. Teoria lokalna odwzorowaii klasy C!

Sugestia. W przypadku zbioréw B, C nie brna¢ w straszne rachunki (poskladaé rézne
proste dyfeomorfizmy). By¢ moze (7) pomocne bedzie wypisanie dla kazdej pary zbiorow
Ap .00y 4015 A1 0oy A1z bezpodredniego dyfeomorfizmu (bez przechodzenia przez inne
zbiory).

4.17. Poda¢ przyklad dyfeomorfizmu odwzorowujacego ptaszczyzne R? na zbiér
{(u,v) €R?* : > 0,0 >0} U{(u,v) €R?:u < 0,0 > —1}.

(Wypisa¢ wprost wzorem lub jako zlozenie kilku dyfeomorfizmow, z ktorych kazdy jest
Wyrazony wzorem).

4.18. Poda¢ przyklad dyfeomorfizmu odwzorowujacego plaszczyzne R? na zbiér
{(u,v) €ER*:u > v >0, uv < 1}.

(Wypisa¢ wprost wzorem lub jako zlozenie kilku dyfeomorfizméw, z ktorych kazdy jest
wyTrazony wzorem).

4.19. Poda¢ przyklad dyfeomorfizmu odwzorowujacego ptaszczyzne R? na zbiér
{(u,v) €R?*:u >0 >0, u+v<6}.

(Wypisa¢ wprost wzorem lub jako zlozenie kilku dyfeomorfizmow, z ktorych kazdy jest
Wyrazony wzorem).

4.20. W R* rozwazamy zbiory otwarte

U={(u,v,s1t) e R* : u*> 402 >0, t > 0},
X ={(z,y,z,w) € R*: 2> + 4% > 0, w > 0}

(rozne nazwy wspotrzednych dla wygody) oraz odwzorowanie F': U — X zadane przez

T = tu,
=t

F(u,v,5,t) = (2,9, z,0), y=rm
z =S8,

w = u? + v2.
Wykazaé, ze F jest dyfeomorfizmem U na X (sugestia: wyznaczyé¢ wzorem F~1). Niech
T ={(z,y, 2 w) EX:x2+y2+22+3:4\/m, w=1}.
Wyznaczy¢ F~1(T) (opisaé¢ za pomoca prostych réwnan w zmiennych u, v, s, t).

4.21 (TFU - tagodny przykladzik). Rozwazamy réwnanie

F(z,y) =2 +y> — 32y = 0.

37



4. Teoria lokalna odwzorowaii klasy C!

a) Z pomoca komputera sprawdzi¢, jak wyglada zbioér opisany tym réwnaniem (mozna
np. wpisa¢ w Wolframa plot x~3 + y~3 - 3xy = 0).

b) Uzasadni¢ — formalnie, za pomoca jakich$ rachunkéw — ze w otoczeniu punktu
(0,0) nasze rownanie nie wyznacza jednoznacznie zmiennej y jako funkeji zmiennej x.

¢) Czy w otoczeniu punktu (4/4, ¥/2) nasze rownanie wyznacza jednoznacznie zmienna
y jako funkcje zmiennej x? Plan pracy: sprawdzi¢, co daje TFU, poréwnaé z obrazkiem
z pierwszego podpunktu (moze warto co$ dorysowad) i zrozumieé, co si¢ nam nim dzieje,
a na koniec uzasadnié $cisle ostateczna odpowiedz.

d) Zalozmy, ze mamy punkt (xo,yo) speliajacy F(zo,yo) = 0, w ktorego pewnym
otoczeniu nasze rownanie wyznacza jednoznacznie y jako funkcje zmiennej x:

23+ y(x)® - 3zy(x) =0 (lokalnie, w pewnym otoczeniu (zg, yo))-

Znalez¢ punkty krytyczne funkcji y = y(z). Plan pracy: mozna zaczaé od zrozumienia,
co sie dzieje na rysunku, albo mozna najpierw zrézniczkowaé powyzsza rownosé po x,
rozwiazaé otrzymane rownanie (pamietajac, ze mamy takze rownanie F'(x,y(x)) = 0),
a nastepnie otrzymany wynik skonfrontowaé¢ z rysunkiem (znowu, moze warto co$
dorysowac) i wtedy zrozumie¢, co sie na nim dzieje.

e) Czy w znalezionym punkcie krytycznym funkcja y = y(x) ma ekstremum lokal-
ne? Odczytaé¢ odpowiedz z rysunku oraz uzasadnié ja formalnie, za pomoca jakichs
rachunkéw.

f) Co by sie¢ zmienito, gdybysmy rozpatrywali réwnanie

23 +9y® —3axzy =0 (a > 0 to ustalona liczba) ?

4.22 (dydaktyczne). Niech P(x,y) = 23y? + 32%y3 — xy — 20 — y? + 1 dla (x,y) € R2.

a) Wykaza¢, ze istnieja funkcje rzeczywiste g, h klasy C!, okreslone na pewnym
przedziale otwartym J C R zawierajacym 0, takie ze P(x,g(z)) = 0= P(x, h(x)) oraz
g(x) < h(z) dla kazdego = € J. Znalez¢ ¢'(0), h'(0).

b) Wykazac, ze istnieje pewien przedzial otwarty I C R zawierajacy 0, taki ze istnieje
doktadnie jedna funkcja f: I — R klasy C*, taka ze P(f(y),y) = 0.

Uwagowskazowka do obu podpunktéw. Zadanie jest proste, jak sie zrozumie, co trzeba
mieé, zeby zaczaé¢ odpala¢ TFU.

4.23. Wykazaé¢, ze w otoczeniu punktu (zo, yo,20) = (2,1, —1) rownanie zy = 2 +
zIn(y) wyznacza y jako funkcje klasy C'' pozostatych zmiennych: y = y(z, z). Obliczy¢
pochodne czastkowe tej funkeji w punkeie (zg, z9) = (2, —1). Obliczy¢ takze ¢’ (0), gdzie
o(t) = y(2e3, —et) (dla t w pewnym otoczeniu zera).

4.24. Wykaza¢, ze uklad rownan

3x2y + 2z —ty? =3
te? +xy? —2t2y =0

wyznacza w otoczeniu punktu (¢g, 2o, yo) = (1,1,1) zmienne x, y jednoznacznie jako
funkcje klasy C! zmiennej t: z = z(t), y = (t). Obliczy¢ 2/(1), y'(1).
W ramach autosprawdzenia. Pochodne czastkowe spetniaja |2'(1)] + |y’ (1)] < 9.
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4. Teoria lokalna odwzorowaii klasy C!

4.25. Wykazaé, ze ukltad rownan

e'+v—zxy=0
2u+e'+zxr—-2y=0

wraz z warunkami u(1,1) = 0, v(1,1) = 0 wyznacza w otoczeniu punktu (xg,yo) = (1,1)
zmienne u, v jako funkcje klasy C! zmiennych z, y. Znalezé pochodne czastkowe u’,(1,1),
uy (1,1), v (1,1), vy, (1,1).

W ramach autosprawdzenia. Pochodne czastkowe spetniaja |ul, (1, 1)[ + [uy, (1, 1)] +
v (1, )] + [, (1,1)] < 6.

4.26. Rozwazamy wielomian x — x° + ez +1n(s), gdzie s > 0 jest parametrem. Wyka-
zaé, ze [dla kazdego s > 0] wielomian ten ma dokladnie jeden pierwiastek rzeczywisty
xo = xo(s). Wykazaé, ze zq jest funkcja klasy C! parametru s € (0, 00) i obliczy¢ x{(1).

4.27. Zatozmy, ze F': R? — R jest funkcja klasy C2, zas punkt (zg,%0) € R? spenia:

oF oF
F(xo,y0) =0, %(xo,yo) =0, aiy(x()vyo) # 0.

Wtedy w pewnym otoczeniu punktu (zg,yo) rownanie F(z,y) = 0 wyznacza funkcje
uwiklana y = y(x). Wykazac, ze [przy powyzszych zalozeniach] © = x¢ jest punktem
krytycznym funkcji uwiktanej. Wykazaé réwniez, ze jesli

82F( )
— 3.3 L0, Y0
gﬁ’lz # 07

@($07y0)

to funkcja uwiktana y = y(x) ma w punkcie w = xg ekstremum lokalne [wlasciwe].
Jak odczytaé, czy jest to minimum lokalne czy maksimum lokalne?
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5. Rozmaitosci

Uwaga. Ten rozdzial jest cile zwiazany z twierdzeniem o funkcjach uwiktanych.

Komentarz (motywacja). Definicja rozmaitosci bedzie nam potrzebna m.in. do dwoch
waznych zastosowan. Po pierwsze, chcieliby$my wiedzie¢, jak szukaé¢ ekstremow funk-
cji k zmiennych, ktore nie sg okreslone na otwartym podzbiorze R*, tylko np. na
jakiejs ,mniejwymiarowej” ,powierzchni”’, bo zmienne x1, ...,z sa zwiazane jakimis
dodatkowymi warunkami.

Po drugie, chcielibyémy umieé¢ okreslié, czym jest i jak znajdowaé np. pole powierzchni
obiektéw takich jak np. sfera czy torus, ktore sa podzbiorami R¥. [Ich k-wymiarowa
miara Lebesgue’a jest rowna zero.|

Materiat do omoéwienia na zajeciach [3+ éw. (?77)]
Teoria. Rownowazne definicje rozmaitosci (parametryzacja, wykres, rownanie; patrz
tez zadanie 5.7).

Teoria. Przestrzen styczna do rozmaitosci (patrz zadanie 5.7 b).

5.1. Niech
M = {(z,y,2) € R®: (2% +¢y* + 22 +3)? = 16(2* + y*)}.

a) Wykazaé, ze M jest dwuwymiarowa rozmaitoscia.

b) Wyjasni¢ [stownie/geometrycznie]|, jakim zbiorem jest M.

¢) Znalezé réwnanie plaszezyzny stycznej do M w punkcie p = (3v/2/4, 3v/2/4,/3/2).

d) Ktoére ze zmiennych x, y, z sa w pewnym otoczeniu [w M| punktu p z poprzedniego
podpunktu funkcjami klasy C! pozostatych zmiennych? A w otoczeniu punktu ¢ =
(1,0,0)?

e) Poda¢ przyktad uktadu parametryzacji M.

5.2. Kazdy punkt galezi hiperboli zy = 1, x > 0, y > 0, z = 0 laczymy odcinkiem
z punktem (0,0, 1). Niech M bedzie suma tych odcinkéow (bez konicow). Wykazaé, ze
M jest rozmaitoscig i znalezé jej parametryzacje.

5.3. Rozstrzygnaé, czy nastepujace zbiory sa dwuwymiarowymi rozmaitoéciami w R3:

M = {(z,y,2) e R®: x5 +y* +2° =0},
N ={(z,y,2) € R®: 25 +¢° + 2% =0}.
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5. Rozmaitosci

5.4. Zalézmy, ze n € N, n > 1. Niech
O(n) ={A € My, : ATA=1T}

bedzie zbiorem macierzy ortogonalnych [rozmiaru n x n, o wspolczynnikach rzeczy-
wistych|. Wykaza¢, ze O(n) jest rozmaitoscia wymiaru n(n — 1)/2. Opisa¢ przestrzen
styczna 1 afiniczna przestrzen styczna do O(n) w punkcie I.

*okk

Teoria. Ekstrema warunkowe — warunek konieczny (mnozniki Lagrange’a).

5.5. Znalez¢ kresy funkcji f(x,y, z) = xy — 2z na zbiorze
A={(r,y,2) eR?:2? + 92 +2°< L,z +y+2 >0}
5.6. Znalez¢é maksimum funkcji
J(x1, 02,23, 24, T5) = T10203 + ToT3T4 + T3T4T5 + T4T5T1 + T5T1T2
na zbiorze
Az{x€R5:x1 +xotastastas=1, 2, >0dlai=1,...5}.
K*oxk

Teoria. Twierdzenie o rzedzie.

Zadania treningowe, uzupetniajace, dodatkowe

5.7 (wokol definicji rozmaitosci). Zatozenia. Dane sa liczby naturalne k > m > 1 oraz
niepusty zbiér M C R*. W zbiorze M rozpatrujemy naturalng topologie indukowana,
z RF: zbiory otwarte w M to doktadnie zbiory postaci M N U, gdzie U C RF jest
otwarty.

Motywacja. Na wykltadzie pojawity sie rézne rownowazne definicje rozmaitosci: ten
tekst ma pomoc w przetrawieniu ich i zrozumieniu, co to znaczy, ze M jest m-wymiarows,
rozmaitoscia [zanurzona w R¥]. Sytuacja, ktéra warto mie¢ w pamieci: k = 3, m = 2;
M = §? (sfera w R3).

Definicja, wersja 0. Zbior M jest m-wymiarows rozmaitocia [zanurzona w R¥], jesli
lokalnie istnieje parametryzacja: dla kazdego punktu p € M istnieje zbiér otwarty
U C R*, taki ze p € U, zbiér otwarty G C R™, oraz homeomorfizm ¢: G M N U,
ktory jest klasy C!, taki ze dla kazdego x € G rozniczka Dep(z): R™ — RF jest
przeksztatceniem roznowartosciowym (ma rzad rowny m (maksymalny mozliwy)).

e Przeksztalcenie ¢ nazywamy parametryzacja, zas ¢! — mapa.
e Zbior U jest otoczeniem punktu p (w R¥), zbior M NU jest otoczeniem punktu p
w M.
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5. Rozmaitosci

e Przeksztalcenie ¢: G — M N U ma za dziedzine otwarty podzbiér R™ i jest
klasy C'. Przeksztalcenie ¢~': M NU — G jest ciagle, ale nic nie méwimy o
jego rozniczkowalnosci — dziedzing jest zbior M NU € M C R*, ktoéry nie musi
by¢ otwartym podzbiorem R* [a nawet: nie jest, bo m < k|, cho¢ jest otwartym
podzbiorem M.

e Rozniczka Dip(x): R™ — RF jest zadana przez macierz ,pionowsa”, rozmiaru
k x m, wiec nie moze by¢ izomorfizmem liniowym [bo m < k], ale chcemy, zeby
byta przeksztalceniem réznowarto$ciowym.

e Intuicja: do opisania M potrzebnych jest [dokladnie] m parametrow (nie musza
by¢ one bardzo §cigle zwiazane ze zmiennymi w naszej wyjsciowej przestrzeni R¥).

Definicja, wersja 1. Zbiér M jest m-wymiarows rozmaitoécia [zanurzona w R¥], jesli
lokalnie M jest wykresem: dla kazdego punktu p = (p1,...,px) € M istnieje zbior
otwarty U C R¥, taki ze p € U oraz zbior MNU jest wykresem funkcji m zmiennych, tzn.
istnieje m [parami réznych| numerdw iy, ..., 4y € {1,...,k} oraz k—m [parami roznych|
numerow ji, ..., jk—m € {1,...,k}, takich ze {i1,...,ém U{j1,- - s Jk—m} = {1,..., k},
a takze istnieje zbior otwarty G C R™ bedacy otoczeniem punktu (p;,,...,p;,, ) € R™
oraz funkcja f = (fj,,---, fir_,.): G — RF"™ klasy C1, taka ze x € M NU wtedy
i tylko wtedy, gdy z;, = f;, (@iy,...,2,) dlase {1,...,k —m}.

e Sytuacja jest notacyjnie najbardziej przejrzysta, jesli {i1,...,im} ={1,...,m},
zas$ {j1, .-y jk—m} ={m+1,...,k} —wowczas M NU = {(x, f(x)) : © € G}, tzn.
M N U jest wykresem funkcji f: G — RF~™, funkcja f zalezy od m zmiennych.

e Intuicja: do opisania M potrzebnych jest m zmiennych — jest to pewnych m
wspolhrzednych naszej wyjéciowej przestrzeni R* (pozostale k — m zmiennych jest
ich funkcja).

Definicja, wersja 2. Zbior M jest m-wymiarowa rozmaitoscia [zanurzona w R¥], jesli
lokalnie jest zadany réwnaniem: dla kazdego punktu p € M istnieje zbiér otwarty
U C R, taki ze p € U oraz funkcja F: U — R¥=™ klasy C', taka ze dla kazdego
r € M NU réziczka DF(x): RF — RF™™ jest przeksztatceniem ,na” (tj. ma rzad
rowny k —m (maksymalny mozliwy)), oraz

MNU=FY0)={zeU: F(z)=0}.

e Rozniczka DF(x): R¥ — R¥=™ jest zadana przez macierz ,pozioma”, rozmiaru
(k —m) x k, wiec nie moze by¢ izomorfizmem liniowym [bo m > 1], ale chcemy,
zeby byta przeksztalceniem ,na’.

e Intuicja: w naszej wyjsciowej przestrzeni R¥ mamy co prawda k wspotrzednych,
ale M jest opisane przez k — m réwnan; kazde réwnanie zabiera jeden ,stopien
swobody”, wiec zostaje nam faktycznie tylko m stopni swobody.

a) Spokojnie przemysleé¢ teorie z wyktadu i krytycznie przeczyta¢ odpowiednie
fragmenty skryptu lub powyzszy tekst. W szczegblnosci zrozumiec:
— ze jesli zalozymy warunek z definicji numer 1, to warunki z definicji numer 0 i 2
dostajemy praktycznie za darmo;
— ze warunek z definicji numer 2 implikuje warunek z defnicji numer 1 na mocy

TFU;
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— co sig dzieje, jesli k =3, m =2, M =S? = {(z,y,2) e R3: 2?2 +¢y2 +22 -1 =0}
jest sfera, p = (0,0,1) € M;

— co by sie zmienilo, gdyby$my zamiast zamiast bieguna pétnocnego p € S? wzieli
biegun ,wschodni” (?) p = (1,0,0) € S2.

b) Wykazaé, sprawdzi¢, zrozumieé, przypomnieé sobie lub uswiadomi¢ sobie, ze:

— jesli mamy punkt p € M, [lokalng| parametryzacje p: G C R™ — R* z definicji
numer 0 oraz punkt x € G, taki ze p(x) = p, a takze standardowa baze e1, ..., en,
przestrzeni R™, to wektory Do(x)eq, ..., Do(x)en, € RF sa kolumnami macierzy
Dyp(x), sa liniowo niezalezne oraz sa baza T, M, tj. przestrzeni stycznej do M
w punkcie p, ktora jest m-wymiarowa podprzestrzenia liniows R¥;

— jesli mamy punkt p € M, [lokalne| réownanie F = (Fy,..., Fy_,,): U C RF —
R*=™ 7 definicji numer 2, to wiersze DF (p), tzn. wektory VFy(p), ..., VFi_m(p) €
R*, sa liniowo niezalezne i sa baza (T, M), tj. przestrzeni prostopadlej [do prze-
strzeni stycznej] do M w punkcie p, ktora jest (k—m)-wymiarowa podprzestrzenia

liniowa, R¥;
— jesli mamy p € M, [lokalna] parametryzacje p: G C R™ — RF z definicji numer 0
oraz [lokalne] rownanie F = (Fy,..., F_,,): U C R¥ — R¥~™ 7 definicji numer

2, to Fop(x) =0, wiec
DF(p(x))Dp(x) =0 [czym jest to zero po prawej stronie?],
co oznacza dokladnie, ze wiersze DF(p(z)) sa prostopadte do kolumn Dy(x).

5.8. Punkt P porusza sie ruchem jednostajnym wzdtuz odcinka od punktu O = (0,0, 0)
do punkt A = (1,0,0). W tym samym czasie punkt @) porusza sie, tez jednostajnie,
od punktu B = (0,1,0) do punktu C = (0,1,1). Niech M bedzie suma wszystkich
odcinkéw PQ (bez konicow), taczacych punkty P i @ w jednoczesnych potozeniach.
Poda¢ przyktad parametryzacji uzasadniajacej, ze M jest dwuwymiarowa rozmaitoscia
w R3. [Oczywiscie sprawdzi¢ wymagane warunkil.

5.9 (wstega Mobiusa i prace reczne, patrz tez zadanie 5.18). Uwaga. Podpunkty
wymagajace uzycia kleju, kredek i nozyczek sa silnie zalecane dla wszystkich, ktorzy
nigdy ich samodzielnie nie wykonywali.

a) Wycinamy pasek papieru. Gdybysmy skleili jego krotsze boki, to otrzymaliby$my
powierzchnie bocznag [skoniczonego| walca. Przed sklejeniem krotszych bokow, obracamy
jednak jeden koniec o 180° (patrz Rysunek 5.1). Otrzymana powierzchnia nazywa sie
wstega Mdobiusa.

b) Wykazaé, ze wstega Mobiusa jest dwuwymiarowa rozmaitoécia w R, wypisujac
jej parametryzacje. [Chodzi tu o wstege Mobiusa bez brzegu — intuicyjnie rozumianego
jednowymiarowego brzegu, co odpowiada brzegowi wzgledem naturalnej topologii
indukowanej z R3]

Wskazowka. Chyba najprosciej jest mysle¢, ze obracamy odcinek w plaszczyznie zz
i jednoczesnie obracamy [w odpowiednim tempie| te plaszczyzne w R? wzgledem osi z.
[Powierzchnia zakreslana przez $migto samolotu lecacego po okregul.

c¢) Przekonag¢ sie, ze otrzymana powierzchnia ma tylko jedna ,strone”, np. kolorujac
ja kredka bez odrywania kredki od papieru.
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A B

B A

Rysunek 5.1.: Zadanie 5.9 — sklejamy krotsze boki wycietego paska papieru, ale przed
sklejeniem skrecamy pasek (pot obrotu), tak zeby pokryly sie zaznaczone
strzaltki, punkty A i A’, a takze punkty B i B’. [Zaznaczone przerywane
linie maja charakter pomocniczy i beda potrzebne dopiero w dalszych
podpunktach.]

d) Co sie stanie, jesli wezmiemy nozyczki i przetniemy sklejona wstege Mobiusa
wzdluz przerywanej linii zaznaczonej na Rysunku 5.17 Dlaczego tak si¢ dzieje? Opisaé
uwaznie i starannie, co doktadnie otrzymamy.

Wskazowka. Kropkowane linie na Rysunku 5.1.

e) Bierzemy nowy pasek papieru i ponownie sklejamy jego krotsze boki, ale tym
razem przed sklejeniem dokonujemy skrecenia o 360°. Co sie stanie, jesli weZmiemy
nozyczki i przetniemy tak otrzymana wstege przez srodek, wzdhuz przerywanej linii?
Dlaczego tak sie dzieje?

5.10. Zalozmy, ze M C R jest rozmaitoscig wymiaru m, za§ N C R! jest rozmaitoscia
wymiaru n. Wykaza¢, ze M x N C RF* jest rozmaitosciag wymiaru m-+n. Jak przestrzer
styczna do rozmaitosci M x N w punkcie (z,y) wyraza sie w terminach przestrzeni
stycznych T, M oraz T,N?

5.11. Dla jakich wartosci parametru ¢ € R zbior
M = {(z,y) € R? : exp(z? + 2¢%) = ¢}
jest jednowymiarows, rozmaitoscia?

5.12. Kazdy z nastepujacych podzbioréw przestrzeni R? jest opisany jednym réwna-
niem:

A={(z,y,2) eR®: 2% —y? =0},

B ={(z,y,2) € R®: 2% +¢* =1},

C={(z,y,2) € R®: 2% 4 9? = 2},

D = {(x,y,2) € R®: 2% + 4 = 2?},
E={(v,y,2) eR¥:2? + ¢y + 2% =1},
F={(z,y,2) eR®:2? +y* — 22 =1},

G={(z,y,2) €ER®: (2% +y> + 22 — 1) + 22 *O}
H={(z,y,2) eR®: (2" +9° = 1)+ (y* + 2° — 1)* = 0},

I={(z,y,2) eR®: (x® + 4% — )4 + (y? 1)+ (2422 -1t =0}
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Ustali¢, ktore z tych zbioréow sg dwuwymiarowymi rozmaitosciami, ktore sa jednowy-
miarowymi rozmaito$ciami, a ktore rozmaito$ciami nie sa. Opisaé kazdy z tych zbiorow
za pomocg odpowiedniego stowa [lub stow].

5.13. Niech
M ={(z,y,2) eR®: 22y? + %% + 2%2° —a2yz=0,2 >0,y >0, z > 0}.

Uzasadnié, ze jest to rozmaito$é. Wypisaé réwnanie plaszczyzny stycznej do M w punkcie
(1/4,/3/4,+/3/8). Podaé przyktadowa parametryzacje (lub uktad parametryzacji) M.

5.14. Niech

M = {(z,y,2) € R®: 2% + 9> +32% = ay + 6213, 2 #0},
N =MU{(0,0,0)}.

Czy zbiér M jest rozmaitoscia? Czy zbior N jest rozmaitoscia?

5.15. Dana jest liczba a > 0 i funkcja f: [0,a) — R, ktora jest ciagla na [0,a)
i rézniczkowalna w sposob ciagly na (0,a). Niech M bedzie powierzchnia obrotowa,
otrzymana w wyniku obrotu wykresu funkcji f wokoél osi wartosci funkeji [o kat 27, w
R3]. Znalezé [rozsadnie sformulowany| warunek konieczny i dostateczny na to, by M
bylo dwuwymiarowa rozmaitoscia w R>.

5.16. a) Zalozmy, ze M, N C R¥ sg rozmaitoéciami wymiaréw m, n (odpowiednio),
przy czym m +n >k, M NN # () oraz dla kazdego x € M N N zachodzi

T.M+ToN = {v+w:veT.M weT,N}=RF

Wykazaé¢, ze M N N jest rozmaitoscig wymiaru m + n — k.

b) Podaé przyktad takich dwuwymiarowych rozmaitosci M, N C R3, ze M NN C
R? jest jednowymiarowa rozmaitoécia, choé istnieja takie punkty x € M N N, ze
T.M +T,N C R3.

5.17 (tatwe). Dana jest funkcja F: R¥ — R oraz punkt p € R¥, taki ze F(p) = 0 oraz
g—i(p) #0dlaie€ {1,...,k}. Oznaczmy M = {z € R* : F(z) = 0}. Bezposrednio
z tych zalozen i twierdzenia o funkcjach uwiklanych wynika, ze w pewnym otoczeniu
[w M| punktu p kazda ze zmiennych z; jest funkcja klasy C' pozostatych k — 1
zmiennych x;, j # 7, tzn. istnieje zbiér otwarty U C RE, p € U, a takze zbiory otwarte
U; C R¥=! oraz funkcje ¢ : U; — R klasy C1, i € {1,...,k}, takie ze

MﬂU:{xeRk: 1 = @1(22, X3, T4, ..., Tk), (T2, 23,24...,2) €EUr}

={zeR": xy=oy(x1,23,%4,...,21), (T1,23,24,...,71) € U}
={ze RF: 4= p3(r1, T2, 4, - -, k), (T1,%2,T4,...,2) € Us}
={z e RF: 1) = or(r1, 22,03 .., 281), (T1,22,73...,251) € Uy}
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A\ A\ L
rr 7 A))
A A ~ A ~ A
A\ A\ A\
rr 7 rr

Rysunek 5.2.: Zadanie 5.18 — sklejamy (?) przeciwlegte boki kartki papieru, zgodnie
z zaznaczonymi strzatkami.

Oznaczmy y1 = (22,...,Tk), ¥i = (X1, .., Ti—1,Tix1,...,2) dla i € {2,...,k — 1},
yr = (21,...,2Tk—1). Sprawdzié, ze

LN TR L NN L LY S Y

0xo 4 Oxs 4 Oz, ({971’1

5.18 (plaszczyzna rzutowa, butelka Kleina i przyjaciele). Uwaga. Fragmenty tego
zadania mogg by¢ nieco trudniejsze — warto zaczaé¢ od zrozumienia zadania 5.9.

a) Bierzemy kartke papieru [niegniotliwego i rozciagliwego]. Na Rysunku 5.2 przed-
stawiono pewne sposoby sklejenia przeciwleglych bokéw kartki. Ktory sposoéb sklejania
doprowadzi do powstania torusa?

b) Uswiadomi¢ sobie, ze dwa pozostale sposoby sklejenia sa — nawet przy rozciagliwym
papierze — trudne do fizycznego przeprowadzenia w R3.

¢) Doczytaé, czym jest plaszczyzna rzutowa i butelka Kleina, np. w pliku ,,Rozma-
itodci — przyklady” dostepnym na https://www.mimuw.edu.pl/ krych/matematyka/
AM2skrypt/ [dostep: 10.01.2025]. W szczegolnosei zrozumiec:

— jak mozna zdefiniowaé te obiekty jako pewne podzbiory R*;

— 7e sg one dwuwymiarowymi rozmaitoéciami zanurzonymi w R*;

— ktory ze sposobdéw sklejania przedstawionych na Rysunku 5.2 odpowiadaltby
plaszczyznie rzutowej, a ktéry — butelce Kleina;

— ze plaszczyzna rzutowa zawiera wstege Mobiusa;

— ze wstegi Mdbiusa mozna uzy¢ do zaklejania pewnych dziur;

— ze butelka Kleina ,z pewnych przyczyn nie nadaje sie do noszenia piwa ani nawet
mleka”.

5.19. Zalézmy, ze n € N, n > 1. Wykazaé, ze

SL(n) ={A € My, : det(4) =1}
jest rozmaitoscia wymiaru n? — 1 oraz

T;SL(n) = {A € Myxy : tr(A) = 0},

[Rozpatrujemy macierze rozmiaru n X n, o wspolezynnikach rzeczywistych, I to macierz
identycznosci].
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5.20 (tatwiutkie). Udowodnié¢ nier6wnos$¢ miedzy $rednig arytmetyczng i geometryczna,
korzystajac z mnoznikow Lagrange’a: znalez¢ maksimum funkcji

flxi, o, ... xp) = 2122 ... Ty
na zbiorze

A={zeR":z1+x2+ - +x,=1, z; >20dlai=1,...n}.

5.21. Wykazacé, ze jesli liczby rzeczywiste x1, 2, . . ., Tk spelniaja z1 +xo+- - -+ = a,
to 1 1
2
Z Iﬂ,‘jgf(l—*)a .
1<i<j<k 2 k

5.22. Dane sa a,b € R¥ \ {0}, ktore sa liniowo niezalezne. Oznaczmy f(r) = ||z|? dla
T € R,

a) Znalez¢ minimum funkeji f(x) przy warunku (z,a) = 1. Niezaleznie od metody
rozwiazania zrozumie¢ [elementarnie/geometrycznie/GALowo]|, dlaczego minimum jest
osiggane akurat w znalezionym punkcie.

b) Znalez¢ minimum funkeji f(z) przy warunkach (z,a) =1 oraz (z,b) = 0.

5.23 ($wietne). Zalozmy, ze M C R” jest rozmaitoscig wymiaru m (1 < m <k — 1),
a ¢ M, zas xop € M spehia |la — zgll2 = inf{]ja — z||2 : © € M}. Wykazac, ze
a — Xo 1 TIOM

Uwaga. To zadanie dobrze sprawdza zrozumienie tematyki — mozna je rozwigzaé
w pamieci (bez trudnych rachunkow, skomplikowanych oznaczen, machania rekami)
i przedstawié¢ rozwiazanie prawie pozbawione ,znaczkow”.

5.24. Niech

E={(z,y,2) €R® 1 2® + 4y® + 2° =1, 32° + 29> + 22> = 1},
f(z,y,2) =102+ 6z dla (z,y,2) € R®.
Uzasadni¢, ze E jest rozmaitoscig (jakiego wymiaru?). Uzasadni¢, ze funkcja fig: E — R

osigga w pewnym punkcie zbioru E swa warto$é minimalng i wyznaczy¢ te wartosc.
W ramach autosprawdzenia. Wychodzi troche mniej niz —28/5.

5.25. Niech

A:{(x,%z,t) €R4:$2+y2 = 1, Z2+t2: 1}7
flwy,2) =22t +yz dla (z,y,21) € RY

a) Uzasadnié¢, ze A jest rozmaitodcia (jakiego wymiaru?).

b) Uzasadni¢, ze funkcja f|4: A — R osiaga w pewnym punkcie zbioru A swa wartosé
minimalna i wyznaczy¢ te wartosé.

Sugestia. Nie zawsze trzeba korzysta¢ z twierdzenia o lokalnych ekstremach warunko-
wych.

47



5. Rozmaitosci

5.26. Niech
P={(z,y,2) €ER®: 2% +9* + 2% —ay +yz + 22 =1}

Uzasadnié¢, ze zbiér P jest rozmaitoscia. Znalezé kres gérny odlegtosci punktow zbioru
P od osi 0z.

Sugestia. Nie zawsze trzeba korzysta¢ z twierdzenia o lokalnych ekstremach warunko-
wych.

5.27. Znalez¢ kres dolny odlegtosci punktu (1,1,2) od punktéw zbioru
A={(v,y,2) € R3: zy + 2% = 0}.

5.28. Niech H = {(z,y,2) € R®: 2% + y*> — 22 + 4 = 0}. Znalez¢ w zbiorze H punkt,
ktorego odlegtosci od punktu (2,4,0) jest najmniejsza.

5.29. Wyznaczy¢ liczby z1,...,2, > 0 o sumie Y., x; = 1, dla ktorych wartos¢
2

iloczynu z175 . ..z, jest najwieksza.

5.30. W przestrzeni R¥ rozwazamy sfere S = {z € R* : ||z = 1} oraz funkcje
f: R¥ — R zadang wzorem f(z) = (Az,z) dla x € R¥, gdzie A jest pewna macierza
symetryczng rozmiaru k X k o wspolczynnikach rzeczywistych. Wykazaé, ze punkty,
w ktorych funkcja f|s osiaga swoje wartosci ekstremalne, sa pewnymi wektorami
wlasnymi macierzy A. Czym sa mnozniki \;, ktore daje metoda Lagrange’a?
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A. Teoria miary

Komentarz. Wchodzimy w XX wiek. Na wyktadzie wystapia (m.in., w kolejnosci
alfabetycznej): Emile Borel (1871-1956), Constantin Carathéodory (1873-1950), Pierre
Fatou (1878-1929), Maurice Fréchet (1878-1973), Guido Fubini (1879-1943), Henri
Lebesgue (1875-1941), Nikotaj Luzin (1883-1950), Giuseppe Vitali (1875-1932).

Materiat do oméwienia na zajeciach [4+ éw. (?)]

Teoria. Zbior Vitaliego (!).
Teoria. Definicja o-ciata (zbior pusty, dopekienia, przeliczalne sumy). Definicja o-ciala

generowanego przez rodzine zbioréw.

A.1. a) Znalez¢ U({1,2,3,4}, {3,4,5}) (w przestrzeni {1,2,3,4,5}).

b) Uzasadnié, ze jesli o-cialo jest skoriczone, to liczba jego elementéw wynosi 2™ dla
pewnego n € N.

c) Wykazaé, ze nie istnieje o-ciato nieskoriczone przeliczalne.

A.2. Ponizej X, Y to dowolne zbiory, F to o-cialo w X, f: X — Y to pewne
przeksztalcenie.

a) Czy {B CY : f~Y(B) € F} musi by¢ o-cialem [w Y]|?

b) Zalézmy, ze f jest ,na”. Czy {f(4) : A € F} musi by¢ o-ciatem [w Y]?

c+d) Patrz zadanie A.15.

Teoria. Definicja o-ciala zbioréw borelowskich (sita rzeczy w przestrzeni topologicznej).
Zbiory typu Gs, zbiory typu F,.2

A.3. Dane s funkcje ciagte f,,: R — R, n € N. Niech
A={zeR: lim f,(z) =0},
B={zeR: lim f,(z)=+oo},
n—oo

C={xeR: cag (f,
D={zeR: ciag (fn

())n>1 jest zbiezny i granica jest liczba wymierna},
(

x))n>1 jest zbiezny i granica jest liczba niewymierna},

IDla poréwnania (wybor subiektywny, kolejnosé z grubsza chronologiczna): Gottfried Wilhelm Leibniz
(1646-1716), Isaac Newton (1642-1726/27), Brook Taylor (1685-1731), Joseph-Louis Lagrange
(1736—1813), Augustin-Louis Cauchy (1789—1857), Karl Weierstrass (1815-1897), Bernhard Rie-
mann (1826-1863), Jean-Gaston Darboux (1842-1917).

2Notacja pochodzi od Hausdorffa: G od niem. Gebiet ‘obszar’, § od D jak Durchschnitt ‘przeciecie’;
F od fr. fermé ‘zbiér domkniety’, o od S jak somme ‘suma’.
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E={zecR: ciag (fn(z))n>1 jest zbiezny (do granicy wtasciwej)}.
Rozstrzygnaé, ktore z tych zbioréw sa borelowskie.

A.4. a) Uswiadomié sobie, ze Q@ C R jest zbiorem typu F,, zas R\ Q C R jest zbiorem
typu Gs.

b) Wykaza¢, ze Q C R jest nie jest zbiorem typu Gg, zas§ R\ Q C R nie jest zbiorem
typu F,.  Wskazowka. Twierdzenie Baire’a z wykltadu topologii.

¢) Poda¢ przyktad zbioru borelowskiego, ktory nie jest ani typu Gy, ani typu F,.

kK%

Teoria. Miara zewnetrzna (okreslona na wszystkich podzbiorach, zero na (), monoto-
niczna, przeliczalnie podaddytywna), miara (okreslona na pewnym o-ciele, zero na {),
przeliczalnie addytywna [na zbiorach roztacznych]).

Teoria (ogolna). Warunek Carathéodory’ego.® Dowodzi sie, ze:
e zbior F(u*) ztozony ze zbioréw spelniajacych warunek Carathéodory’ego jest
o-ciatem (),
e po obcieciu p* do F(u*) dostaniemy miare (1),
e zbiory o mierze zewnetrznej 0 naleza do F(u*) (1),
e jesli nasza miara zewnetrzna jest metryczna,* to zbiory borelowskie naleza do
F(pr) ().
Teoria (konkretna). Miara zewnetrzna Lebesgue’a w R¥ (ozn. Af; infimum sum objetosci
przedzialow [k-wymiarowych| stanowiacych pokrycie zbioru). Sprawdza sie, ze jest
to miara zewnetrzna metryczna na R*, wiec z ogolnej teorii wynika istnienie o-ciata
(zawierajacego zbiory borelowskie i zbiory miary [zewnetrznej| zero), po obcieciu do
ktorego dostajemy miare (ozn. Ag).

Uwaga. Popularne oznaczenia na miare Lebesgue’a to m.in.: Ag(+), k(+), Lx(+), volg(+)
(lub po prostu vol(-) z k w domysle), | - | (nawet gdy jednoczes$nie oznacza tez norme
euklidesowa).

Umowa. Ponizej w przypadku podzbioréw R* domyslna miare jest [odpowiedniowy-
miarowa] miara Lebesgue’a (i domyslnym o-cialem jest o-ciato zbioréw mierzalnych
w sensie Lebesgue’a).

A.5 (por. zad. A.24). a) Zbiér A C R? jest mierzalny, P jest rzutem ortogonalnym R?2
na o$ OX. Czy zbior P(A) [traktowany jako podzbior R] musi by¢ mierzalny?
b) Zbiér B C R? jest spojny. Czy musi by¢ mierzalny?

A.6 (patrz tez zadanie A.30). Znalez¢ miary zbiorow:
A={z€]0,1]: wrozwinieciu dziesietnym x nie wystepuje cyfra 3},
C = standardowy [trojkowy| zbior Cantora,

E ={z €]0,1] : w rozwinieciu dziesietnym x nie wystepuje blok 5050}.

3Niech p*: 2% — [0, +00] bedzie miara zewnetrzna. Zbior A C X spetnia warunek Carathéodory’ego
wtedy i tylko wtedy, gdy dla kazdego zbioru Z C X zachodzi p*(Z) = p*(Z N A) + pu*(Z \ A).

4Tyzn. jestesémy w przestrzeni metrycznej oraz dist(A, B) = inf{d(x,y) : * € A,y € B} >0 =
1 (AU B) = u*(A) + u* (B).
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Uwaga. Zbiér Cantora jest zwarty, brzegowy (ma puste wnetrze, tzn. nie zawiera zadnego
przedzialu otwartego (szczegdlnosci jest tez nigdziegesty (jego domkniecie tez ma puste
wnetrze))) i ma moc ¢. W szczegdlnosci zawiera co$ wiecej, niz tylko przeliczalnie wiele
konicow odcinkéw otwartych wyrzucanych w kolejnych krokach konstrukeji. Kazdy jego
punkt jest jego punktem skupieniem. Patrz tez zadanie A.33 o ,ttustych” zbiorach
Cantora.

A.7 (funkcja Cantora, diabelskie schody). a) Skonstruowaé funkcje f: [0, 1] — [0, 1],
ktora jest ciagla, niemalejaca, ,na” i prawie wszedzie f’(x) = 0 (pochodna istnieje poza
zbiorem miary zero i tam, gdzie istnieje, jest réwna zero).

b) Znalezé przyktad zbioru mierzalnego A C [0, 1], takiego ze f(A) jest niemierzalny.
Teoria. Tw. charakteryzujace zbiory mierzalne w sensie Lebesgue’a.

Uwaga. Mozna udowodnié¢, ze zbioréw borelowskich w R* jest ¢. Zbioréw mierzalnych
w sensie Lebesgue’a jest 2° (podzbiory zbioru Cantora maja miare zero). Z drugiej
strony, zbiory mierzalne w sensie Lebesgue’a to zasadniczo — z dokladnoscia do zbioru
miary zero — zbiory typu F,, (patrz charakteryzacja z wyktadu).

A.8. Funkcja f: R — R jest lipschitzowska, zbior A C R jest mierzalny [w sensie
Lebesgue’al. Wykazaé, ze zbior f(A) jest mierzalny [w sensie Lebesgue’al.

A.9. Dany jest [mierzalny| zbiér A C [0, 1], taki ze A;(A) > 0. Wykaza¢, ze dla kazdego
b € [0, A\1(A)] istnieje [mierzalny] zbior B C A, taki ze A\ (B) = b.

A.10 (standardowe). Znalez¢ miary zbiorow:

A={(z,y) eR* :x —y e Q},
B = {(z,y) € R? : istnieja a,b € Q takie, ze (x — a)? + (y — b)* € Q},
C={(r,y) eR* :zy —x —y e R\ Q}.

Teoria. Liniowy obraz zbioru mierzalnego. Iloczyn kartezjanski zbioré6w mierzalnych.

*okk

Teoria. Definicja funkcji mierzalnej.> Wtasnosci (przeciwobrazy innych zbioréw; wia-
snosci arytmetyczne, supremum /infimum przeliczalnej rodziny f. mierzalnych, granica
punktowa f. mierzalnych).

Umowa. W przypadku funkcji okreslonych na X = R* [w dziedzinie| domyglnie rozwa-
zamy o-ciato zbioré6w mierzalnych w sensie Lebesgue’a.

Komentarz. Przygotowujemy sie do wprowadzenia calki [Lebesgue’al, ale ponizsze
zadania tematycznie pasuja do tego rozdzialu (bo na razie zadnych calek jeszcze nie
ma, a jest duzo o-cial).

SMamy (X, F) oraz f: X — [—o0o,+o0]; zbiory {z € X : f(z) > a} = f~!((a,+cc]) maja byé
mierzalne (naleze¢ do F).
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A.11. a) Poda¢ przyktad mierzalnej funkcji f: R — R, ktora nie ma zadnego punktu
ciggloscei.

b) Poda¢ przyklad funkeji f: R — R, ktora nie jest mierzalna.

¢) Poda¢ przyklad swiadczacy o tym, ze jesli funkcje f; : R — R sa mierzalne (i € I),
to funkcja sup;c; f; nie musi by¢ funkcja mierzalna, jesli zbior indekséw I nie jest
przeliczalny.

d) Poda¢ przyktad funkcji f: R — R, ktora jest mierzalna [jesli w dziedzinie rozwa-
zamy o-ciala zbior6w mierzalnych w sensie Lebesgue’al, ale nie jest jest mierzalna, jesli
w dziedzinie rozwazamy o-cialo zbioré6w borelowskich.

e) Wykazad, ze jesli funkcja f: X — R jest mierzalna [w szczegdlnosci w zbiorze X
mamy jakie§ o-ciato F|, to dla dowolnego zbioru borelowskiego A € B(R) zbior f~1(A)
jest mierzalny [nalezy do F].

A.12. a) Dane sg funkcje mierzalne f,g: X — [—00, 400] oraz zbior [mierzalny| A € F.
Sprawdzié, ze funkcja h: X — [—o0, +00] zdefiniowana wzorem

x jesli x € A,
h(z) = f()l{zeay + 9(2)1zex\a} = {i;((x)) ;eéh reX\A
jest mierzalna.
b) Uswiadomié sobie, ze gdyby$smy mieli nieco dtuzsza klamerke (przeliczalnie wiele
funkcji [mierzalnych|, przeliczalnie wiele [mierzalnych] kawatkow), to nic sie nie zmienia.
¢) Uswiadomi¢ sobie, ze w szczegolnosei jest sens moéowié o mierzalnodci, jesli funkcja
jest okreslona ,tylko” prawie wszedzie.

A.13. a) Funkcja f: R — R jest rozniczkowalna. Uzasadnié, ze funkcja f’ jest mierzal-
na.

b) Czy jesli zalozymy tylko, ze f jest rozniczkowalna prawie wszedzie, to mozna co$
powiedzie¢ o f'?

Teoria. Funkcje proste. Przyblizanie nieujemnych funkcji mierzalnych.

Teoria. Twierdzenia Luzina (obciecie ciagte [na duzym zbiorze domknietym]), Frécheta
(granica punktowa funkcji ciaglych), Jegorowa (zbieznosé jednostajna); miara regularna.

Zadania treningowe, uzupetniajace, dodatkowe

A.14. Niech F bedzie rodzing wszystkich takich zbiorow A C X, Ze co najmniej jeden
ze zbiorow A, X \ A jest [co najwyzej| przeliczalny. Sprawdzi¢, ze F jest o-ciatem
[w X].

A.15 (c.d. zadania A.2). Ponizej X, Y to dowolne zbiory, G to o-cialow Y, f: X - Y
to pewne przeksztalcenie.

¢) Czy {f~!(B) : B € G} musi by¢ o-cialem |w X|?

d) Zalézmy, ze f jest ,na”. Czy {A C X : f(A) € G} musi byé¢ o-cialem [w X]?
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A.16 (FYI, bedzie na RP, na razie nie jest kluczowe). Rodzine zbiorow P nazywamy
m-uktadem, jesli
A/ BeP = ANBeP.

Rodzine zbiorow L nazywamy A-uktadem, jesli spelnia nastepujace warunki: (i) X € L,
(ii) jesli A,B € L oraz B C A, to A\ B € L, (iii) jesli A, € £ dlan € N oraz
Al C Ay C ..., to UnENAn eL

a) Uzasadnié, ze rodzina zbioréw, ktora jest jednoczesnie m- i A-uktadem, jest o-
cialem.

b) Poda¢ przyktad m-ukladu, ktory nie jest A-ukladem, oraz A-uktadu, ktory nie jest
m-uktadem.

c) Wykazac, ze jesli A\-uktad £ zawiera m-uklad P, to £ zawiera o(P).

A.17. Dana jest funkcja f: R — R (dowolna). Wykazaé, ze zbior
{z € R: funkcja f jest ciaglta w z}
jest zbiorem borelowskim (a wrecz zbiorem typu Gs).

A.18. Uswiadomié sobie, ze |w przestrzeni topologicznej X| zbiér A C X jest zbiorem
typu Gy [wzgledem X| wtedy i tylko wtedy, gdy X \ A jest zbiorem typu F, [wzgledem
X].

A.19.

A.20 (pushforward; oczywiste, ale wazne). Dana jest przestrzen z miara (X, F, u) oraz
pewne przeksztatcenie f: X — Y. Niech
G={BcCY:fYB)eF}
v(B) = u(f~*(B)) dlaBecg.

Sprawdzi¢, ze G jest o-cialem [w Y], za§ v: G — [0, 4+00] jest miara.

A.21. Na przestrzeni X = {1,2,3} definiujemy p*(0) =0, p*(X) =2, p*(4) =1 jesli
AC X, A#0D+# X\ A. Sprawdzié, ze p* jest miara zewnetrzna na X i ze jedynymi
zbiorami speliajacymi warunek Carathéodory’ego sg ) oraz X.

A.22 (zgrabne). Dany jest zbior X i miara zewnetrzna p* okreslona na jego podzbiorach,
taka ze p*(X) < co. Dla A C X definiujemy

*(A
1+ p*(A)
Wykazaé, ze v* jest miara zewnetrzng na X.

A.23. Komentarz/motywacja. Zatozmy, ze okredliliémy sobie jaka$ miare zewnetrzna
p* (np. miare zewnetrzng Lebesgue’a w R¥) i zastanawiamy sie, czy da sie znalezé
jakie$ nietrywialne o-ciato, na ktérym ta miara zewnetrzna jest prawdziwa miara

(przeliczalnie addytywna, a nie tylko podaddytywna), ale konstrukcja przez warunek
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Carathéodory’ego wydaje nam sie zbyt mistyczna i dziwaczna. Na pewno powinno by¢
tak, ze jesli zbior A jest mierzalny, to zbior X \ A tez i ponadto

p(X) = p(x) =
Niniejsze zadanie pokazuje, ze — przy pewnych drobnych zalozeniach technicznych
(z ktérymi czesto nie ma probleméw, por. zadanie A.38) — taki naturalny warunek
implikuje juz sformutowany na wyktadzie warunek Carathéodory’ego.

Wtasciwa tresé zadania. Zalozmy, ze p* jest miara zewnetrzna na X, taka ze p*(X) <
0. Zalézmy ponadto, ze dla kazdego zbioru Z C X istnieje zbior Z C B C X, ktory
jest mierzalny (tj. spelnia warunek Carathéodory’ego) i p*(Z) = p*(B). Przypusémy,
ze A C X jest zbiorem, takim ze

H(A) + p(X \ A) = 1" (A) + u* (X \ A).

1 () = 1 (A) + (X \ A).

Wykazaé, ze zbidr A jest mierzalny.

Ogdlny plan pracy i pierwszy krok. Oczywiscie trzeba sprawdzi¢, ze A spelnia warunek
Carathéodory’ego. W tym celu bierzemy dowolny zbiér Z C X, mozna do niego dobraé
mierzalny zbiér B jak wyzej. Wykazaé najpierw, ze

w*(B) = p*(BNA) + ' (B\ A).

Wskazowka do pierwszego kroku. Zbior B spelnia warunek Carathéodory’ego — trzeba
wypisaé ten warunek dla zbiorow testowych A 1 X \ A (zadnych innych [rozsadnych]
kandydatow na zbiory testowe nie mamy) i troche pozonglowaé¢ podaddytywnoscia
i prawami de Morgana.

Drugt krok. Wywnioskowaé, ze takze

1W(Z) = 1 (Z 0 A) 4+ 1(Z\ A).

A.24 (o pewnym stynnym bledzie). Motywacja. Niech P: R? — R bedzie rzutem
na pierwsza wspotrzedna: P(x,y) = z dla (z,y) € R% Okazuje sie, ze jesli zbior
A C R? jest borelowski, to zbiér P(A) nie musi by¢ borelowski [w R]. Przy odrobinie
nieuwagi latwo jednak uwierzy¢ w nastepujacy [bledny!| szkic dowodu [nieprawdziwego
(1) twierdzenial: ,Jesli zbior U C R? jest otwarty, to zbiér P(U) jest otwarty [w R].
Poniewaz zbiory otwarte generuja o-ciato zbioréw borelowskich, to jesli A € B(R?), to
P(A) € B(R)".

Ponizsze proste podpunkty maja pokaza¢, nad jakimi [m.in.| szczegoélami zupelnie
przeslizgnieto sie w powyzszym ,dowodzie”.

a) Uzasadni¢, ze jesli zbior U C R? jest otwarty, to zbior P(U) jest otwarty [w R|.

b) Podaé przyktad zbioru domknietego F' C R?, takiego ze zbior P(F) nie jest
domkniety [w R].

¢) Podaé przyktad [dowolnych| zbiorow A, B,C' C R? takich, ze P(AN B) # P(A) N
P(B) oraz P(R?\ C) #R\ P(O).

d) Uswiadomié sobie, ze jesli A C B C R? , to P(AN B) = P(A) N P(B).
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e) Poda¢ przyktad zstepujacej przeliczalnej rodziny zbiorow otwartych Uy D Us D ...
[w R?|, takiej ze P((or, Un) # Moy P(Un). Uswiadomié sobie w szczegdlnosci, ze jest
pewien klopot z kontrolowaniem rzutéw zbioréw typu Gs.

f) Uzasadni¢, ze jesli ' C R? jest zbiorem domknigtym, to P(F) jest zbiorem
borelowskim [w R]. Wywnioskowaé, ze jesli F' C R? jest zbiorem typu F,, to P(F")
jest zbiorem borelowskim [w R].

Informacja (bez dowodu). Nawet rzut zbioru typu Gs nie musi by¢ zbiorem borelow-
skim. Korzystajac z teorii zbiorow analitycznych Suslina mozna jednak wykazaé, ze

obraz zbioru borelowskiego [przy rzucie ortogonalnym)] jest zbiorem mierzalnym.

A.25. Zbiér A C R? jest spojny (ale by¢ moze niemierzalny), funkcja f: R? — R jest
ciggla. Czy mozna co$ powiedzie¢ o mierzalnosci [w sensie Lebesgue’a] zbioru f(A)?

A.26. Niech B(0,1) bedzie kula jednostkowa w R®. Banach i Tarski wykazali, ze
istnieja parami roztaczne zbiory Ai,...,As C B(0,1) oraz izometrie f;: R? — R3,
i€{1,2,3,4,5}, takie ze

B(0,1) = fi(A1) U fa(A2) U f3(A3) = fa(As4) U f5(As5),

gdzie obie powyzsze sumy sg sumami zbiorow parami roztacznych. Uzasadnié¢ — ele-
mentarnie, bez odwotywania sie do szczegétow konstrukeji — ze co najmniej cztery ze
zbiorow Aq, ..., A5 muszg by¢ niemierzalne.

A.27. Niech A C R bedzie zbiorem [mierzalnym| o dodatniej mierze Lebesgue’a.
Wykazaé, ze istniejg liczby x,y € A takie, ze x —y € Q.
Wskazowka. Przypomnieé sobie przyktad Vitaliego.

A.28. Czy liczby 1/5, 1/4, 1/7 naleza do [standardowego trojkowego] zbioru Cantora?

A.29. a) Niech C to [standardowy trojkowy| zbior Cantora. Wykazac, ze C'+C = [0, 2]
(tuC+C={z+y:zeC,ye C} tosuma Minkowskiego zbioréw).
b) Czym jest C —C={x—y:x € C,ye C}?

A.30. Znalez¢ miary Lebesgue’a nizej opisanych zbioréw [w szczegolnosei uzasadnic
ich mierzalno$¢|. Wskazdwka. Nie warto brnaé¢ w straszne rachunki (a warto zerknaé¢ na
rozwiazania zadania A.6).

a) Zbior tych liczb z przedziatu [0, 1], ktérych rozwiniecie dziesietne zawiera bloki
cyfr 123, 456 oraz 789.

b) Zbior tych liczb z przedziatu [0, 1], w ktoérych rozwinieciu dziesietnym cyfra 3
wystepuje nieskoniczenie wiele razy.

¢) Zbior tych liczb z przedziatu [0, 1], w ktorych rozwinieciu dziesietnym wystepuje
kazdy z [przeliczalnie wielu| blokow

3, 31, 314, 3141, 31415, 314159, 3141592, 31415926,

d) Zbior tych liczb z przedziatu [0, 1], w ktorych rozwinieciu dziesietnym wystepuje
kazdy z [przeliczalnie wielu] blokow

11, 101, 1001, 10001, 100001, 1000001, 10000001,
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Rysunek A.1.: Zadanie A.32 — dwa pierwsze kroki konstrukeji.

e) Zbior tych liczb z przedziatu [0, 1], w ktérych rozwinieciu dziesietnym kazdy
7 |przeliczalnie wielu] blok6w wymienionych w podpunkcie d) wystepuje nieskoriczenie
wiele razy.

A.31. Ponizej rozwazamy rozwiniecia czworkowe 0, ¢icacs . .. (z cyframi¢; € {0,1,2,3}).
Niech A bedzie zbiorem tych liczb z przedziatu [0, 1], ktorych rozwiniecie czworkowe

0,cicacs ... spelnia warunek c¢,c,+1 = 0 dla kazdego n € N.
Niech B bedzie zbiorem tych liczb z przedziatu [0, 1], ktorych rozwiniecie czworkowe
0,cicoc3 ... spelnia warunek coy—1C2p41C2n+3 = 0 dla kazdego n € N.

Wykazaé, ze oba te zbiory sa miary zero.

Wskazéwka. Nie warto brnaé w straszne rachunki (a warto zerknaé¢ na rozwiazania
zadania A.6 (i A.30 (7))).

A.32 (dywan Sierpinskiego). Kwadrat [0, 1]? dzielimy na 9 przystajacych kwadratow
i wyrzucamy $rodkowy. Nastepnie w kazdym z pozostatych o§miu mniejszych kwadratow
powtarzamy te procedure (patrz Rysunek A.1) — i tak dalej. Doprecyzowaé opis
konstrukcji i obliczy¢ dwuwymiarowa miare Lebesgue’a powstalej figury.

Pytanko dodatkowe z topologii. Czy otrzymany zbior jest spojuy? (A tukowo spojny?)

A.33 (,tlusty” zbior Cantora). a) Uswiadomic¢ sobie, ze modyfikujac konstrukcje zbioru
Cantora (zmieniajac dtugosci odcinkéw wyrzucanych w kolejnych krokach) mozna
uzyskaé zbioér o dodatniej mierze Lebesgue’a.

b) Uzasadnié, ze otrzymany zbior jest homeomorficzny ze standardowym zbiorem
Cantora. W szczego6lnosci uswiadomié sobie, ze zbiér miary dodatniej nie musi zawieraé
zadnego odcinka otwartego.

A.34. Poda¢ przyktad zstepujacego ciagu zbioréw mierzalnych R D A; D A; D ...,
takiego ze

lim Ay (An) # A () An)-

n—oo
neN

A.35. Ustalmy § > 0. Wykazaé, ze

A = {.T S [071] . El (pn);.zozla (Q’n)zo:la Pn,Adn S N; q1 < q2 < qs < sy

takie ze |z — pn/qn| < 1/‘1$L+6}

jest zbiorem miary zero.
W ramach autosprawdzenia (wskazowka?). Rozwiazanie powinno sie psu¢ dla § = 0.
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A.36 (mite). a) Funkcja f: [0,1] — R jest niemalejaca. Wykazaé, ze jej wykres jest
podzbiorem miary [Lebesgue’a] zero w R2.

b) Czy teza pozostaje w mocy, jesli dziedzina funkcji bedzie inny przedzial (nieko-
niecznie jest domkniety, niekoniecznie skonczony)?

A.37. a) Funkcja f: R — R jest ciagta. Wykazaé, ze jej wykres {(z, f(z)) : x € R}
jest podzbiorem miary zero plaszczyzny.

Sugestia. Nie machaé¢ rekami — dla kazdego € > 0 wskaza¢ odpowiednie pokrycie
wykresu prostokatami.

b) Przemysleé¢, czy co$ sie zmienia, jesli rozwazamy przypadek wielowymiarowy
((k + I)-wymiarowa miara Lebesgue’a wykresu funkcji ciagtej f: R¥ — RY).

c¢) Czy wykres funkcji (0,00) © x +— sin(1/x) jest podzbiorem plaszczyzny miary
zero?

d) Czy wykres funkcji (0,00) > z —
zero?

%sin(%) jest podzbiorem plaszczyzny miary
A.38. Niech A C R* bedzie zbiorem, takim ze A} (A) < oo (nie zakladamy, ze A jest

mierzalny w sensie Lebesgue’a). Wykazaé, ze istnieje zbior borelowski B C R*, taki ze
A C B oraz \[(A) = M\ (B).

A.39. a) Zalozmy, ze P C RF jest [k-wymiarowym]| przedziatem, A C P, zbior A jest
domkniety oraz A\i(A) = A\ (P). Wykazaé, ze A = P.

b) Zalozmy, ze Q C RF jest [k-wymiarowym]| przedziatem otwartym, zbiér B C Q
jest otwarty oraz Ag(B) = A\, (Q). Czy musi by¢ B = Q?

A.40. Dany jest zbior [mierzalny] A C R, taki ze A\ (A4) > 0. Wykazaé, ze dla kazdego
c € (0,1) istnieje pewien k-wymiarowy przedziat P, taki ze Ap(A N P) > cAg(P).

A.41 (nieco trudniejsze, ale robialne). Zal6zmy, ze zbiér [mierzalny] A C R ma miare
dodatnia. Wykaza¢, ze istnieje 6 > 0, taka ze [—0,0] C A — A.

Uwaga. To zadanie nie jest trywialne. W szczegédlnosci nie jest prawda, ze jesli
A jest miary dodatniej, to musi zawiera¢ pewien przedzial (przyklad?). Prosze tez
zwrocié uwage, ze A — A moze zawiera¢ pewien przedzial nawet, jesli A ma miare zero
(przyktad?).

A.42. Zalozmy, ze zbior [mierzalny] A C R ma miare dodatnia. Wykazaé, ze istnieje
zbiér niemierzalny E C A.
Wskazowka (?). By¢ moze warto najpierw zrobi¢ zadanie A.41.

A.43. Rozstrzygnaé, czy brzeg obszaru (tj. zbioru otwartego i spojnego) w R¥ musi
mieé¢ miare Lebesgue’a zero.

A.44 (szczegolny przypadek tw. Sarda). Funkcja f: R — R jest klasy C*. Niech
Z ={z eR: f'(x) = 0}. Wykazac, ze f(Z) jest zbiorem miary [Lebesgue’al zero.
Wskazéwka (7). By¢ moze warto zerknaé¢ na rozwiazanie zadania A.8.

A.45 ((bardzo?) trudne, por. zad. A.7). Skonstruowaé funkcje f: [0,1] — [0, 1], ktora
jest ciagla, $cisle rosnaca, ,na” i prawie wszedzie f'(z) = 0 (pochodna istnieje poza
zbiorem miary zero i tam, gdzie istnieje, jest rowna zero).

57



A. Teoria miary

A.46 (kolokwium 2024). Niech p bedzie miara okreslona na borelowskich podzbiorach
R. Zalozmy, ze u(A) = 1 dla dowolnego zbioru borelowskiego A C R takiego, ze
A(4)=1.

a) Wykazaé, ze u(Z) = 0 dla dowolnego zbioru borelowskiego Z takiego, ze A\1(Z) = 0,

b) Wykazac, ze p([a,a + 3]) = & dla dowolnego a € R.

c) Wykazaé, ze u([a,b]) = b — a dla dowolnych a,b € R, a < b.

A .47 (lagodny wstep do miary Hausdorffa). Dla « > 0, § > 01 zbioru A C R kladziemy

HE(A) = inf{Z(diam(Ei))a . Ac|JE, diam(E) < 5},
i=1 i=1
gdzie diam(E) = sup{|z — y| : z,y € E} dla @ # E C R (i diam(@) = 0).
a) Uswiadomi¢ sobie, ze jesli 0 < do < 41, to H§, (A) > HE (A), wiec W szczegdlnosci
mozna zdefiniowaé
HY(A) =sup H§(A) = lim H(A).
§>0 =0+
b) Uswiadomié¢ sobie, ze H® jest miara zewnetrzna.
¢) Niech C' C [0, 1] bedzie standardowym trojkowym zbiorem Cantora. Przyjrzeé
sie konstrukeji i uswiadomic sobie, jakie [coraz drobniejsze] pokrycia jest naturalnie
rozwazaé w definicji H§ (C'). Nastepnie zapostulowad, jakie o € (0, 1) nalezaloby dobraé,
zeby [przy 6 — 07| otrzymaé 0 < H*(C) < oo.
e) Wykazaé¢ (lub co najmniej zaagitowac), ze
o jesli H*(A) =0, to HA(A) =0dla 38 > a,
e jesli HY(A) > 0, to H?(A) = co dla 8 < a.
(W szczegodlnosei, dla kazdego dla kazdego zbioru A C R istnieje co najwyzej jedna
liczba o taka, ze H*(A) € (0,00)). Liczbe

dimg (A) = inf{a > 0: HY(A) =0}

nazywamy wymiarem Hausdorffa zbioru A).

f) Uswiadomié¢ sobie, ze miare zewnetrznag H* (oraz wymiar Hausdorffa) mozna
praktycznie tak samo zdefiniowa¢ w R™ (w definicji érednicy bierzemy ||z — y||2), a
wrecz w dowolnej przestrzeni metrycznej (X, d) (w definicji $rednicy bierzemy d(z,y)).

FYI Ponadto H® jest miarg zewnetrzna metryczng (wiec zbiory borelowskie spetniaja
warunek Carathéodory’ego, tj. sa mierzalne).

Dla chetnych. Uscisli¢ wszystko i uzupekié brakujace szczegoly, w szczegdlnosci
wykazaé¢ metrycznosé (w ogdlnym przypadku).

A.48. Na wyktadzie prawdopodobnie zostaly co najmniej sformulowane jakies fakty
w stylu: jesli funkcje f,g: X — R oraz h: X — (0,00) sa mierzalne, to takze funkcje
|f|a f +9, f -9 f 9, f/hv hf 58 mierzalne.

a) Udowodnié¢ te fakty, ktore nie zostaly udowodnione na wykladzie.

b) Uswiadomi¢ sobie, ze jesli dopuszczamy by f, g przayjmowaly takze wartosci +oo,
to teza jest nadal prawdziwa (o ile nie ma probleméw z okreslonoscia (tzn. wykluczamy
np. sytuacje f + g dla f = 400, g = —00); uswiadomic sobie w szczegolnosci, ze jesli
problemy z okreslonoscia sa tylko na zbiorze miary zero, to nie ma zadnych problemow).
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A. Teoria miary

A.49. Dana jest funkcja f: X — R [oraz pewne o-cialo F podzbioréow X].
a) Zalozmy, ze funkcja f jest mierzalna. Czy funkcja f2 musi byé mierzalna?
b) Zalézmy, ze funkcja funkcja f? jest mierzalna. Czy funkcja f musi by¢ mierzalna?
¢) Zatozmy, ze funkcja funkcja f3 jest mierzalna. Czy funkcja f musi by¢ mierzalna?

A.50. Sprawdzi¢, ze funkcja niemalejaca f: R — R jest mierzalna.

A.51. a) Uswiadomi¢ sobie, ze funkcja ciagta g: R — R jest mierzalna.
b) Uzasadnié, ze jesli zbior punktow niecigglosci funkeji f: R — R ma miare zero, to
funkcja f jest mierzalna.

A.52. Funkcje f,,: X — R sa mierzalne [w szczegdlnosci w X mamy pewne o-ciato F;
n € N]. Uzasadni¢, ze zbiory
A={ze X: lim f,(z) =0},
n—oo

B={ze€ X: lim f,(z) =400},

C={zxeX: ciag (fn(x))n>1 jest zbiezny i granica jest liczba wymierna},
D ={x € X : ciag (fn(x))n>1 jest zbiezny i granica jest liczba niewymierna},
E={x e X : ciag (fn(2))n>1 jest zbiezny (do granicy wlasciwej)}

sa mierzalne.

A.53. a) Uzasadni¢ starannie, ze jesli funkcja f: R — R jest mierzalna, to jej wykres
{(z, f(x)) : € R} jest mierzalnym podzbiorem plaszczyzny i ze jego dwuwymiarowa
miara Lebesgue’a wynosi zero.

b) Zalozmy, ze wykres [pewnej| funkcji g: R — R jest mierzalnym podzbiorem
plaszczyzny [poza tym o g nie zakladamy nic wiecej|. Wykazaé, ze Ao ({(x, g(x)) : x €
R}) =0.

Wskazowka do b). Moze warto spojrze¢ na wykresy funkcji = — g(z) + c.

Uwaga. Jesli funkcja h: R — R jest niemierzalna, to moze si¢ zdarzyé, ze jej wykres
jest niemierzalnym podzbiorem plaszczyzny i jego [dwuwymiarowa| miara zewnetrzna
Lebesgue’a jest dodatnia.
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B. Catki

Umowa. W tym dziale przyjmujemy, ze
0 (+00) =0 = (+00) - 0.

(Pozostale dziatania z symbolami +0o0 zgodnie ze zdrowym rozsadkiem, uwazamy na
symbole nieoznaczone).

Komentarz. Calka z funkeji stalej, tozsamosciowo réwnej 0, ma by¢ rowna 0 (nawet jesli
catkujemy po duzym zbiorze o mierze nieskoriczonej). Rézne funkeje, ktore bedziemy
catkowaé, beda okreslone tylko prawie wszedzie, tzn. wszedzie poza pewnym zbiorem
miary zero, i to ma nie wptywaé ani na to, czy mozna je catkowaé, ani na wartosé caltki.
(W szczegodlnosci na zbiorze miary zero mozna sobie zmieni¢ wartosci funkcji, nawet na
+00, 1 to nic nie bedzie zmieniaé¢ (por. zadanie A.12)).

Komentarz. Prosze zwroci¢é uwage, ze jesli w zalozeniach zadania/twierdzenia pojawia
sie jakie§ odwotanie do wartosci funkcji w punktach (np. nieujemnosé [funkeji], zbieznosé
punktowa [ciagu funkcji]), a w tezie jakies stwierdzenie o caltkach, to rownie dobrze
mozna zakladaé, ze wlasnos¢ z zatozenia zachodzi ,tylko” prawie wszedzie, tj. wszedzie
poza pewnym zbiorem miary zero.

Jesli w zalozeniach zadania/twierdzenia pojawia sie jakie§ odwotanie do wartosci
calek (np. typu nieujemnosé, skonczonosé [catki/calek]), a w tezie jakie$ stwierdzenie
o punktowych wartosciach funkcji, to wlasno$é¢ z tezy zachodzi prawie wszedzie, tj.
wszedzie poza pewnym zbiorem miary zero.

Materiat do omdéwienia na zajeciach

Teoria. Funkcje proste. Przyblizanie nieujemnych funkcji mierzalnych. Funkcje schodko-
we (na R¥ przedziaty). Calka z funkcji nieujemnej. Wiasnoéci (m.in. monotonicznosé,
liniowos¢).

B.1. Zalozmy, ze p jest miara na (R, B(R)), taka ze p(R\ [0,1]) = 0 oraz

N([07 1]) =1,
u([0,1/3]) = u([2/3,1]) =1/2,
([0,1/9]) = p([2/9,1/3]) = u(2/3, 7/9]) = u([8/9, 1)) = 1/4 it

tzn. jedli [a, b] jest jednym z 2™ odcinkéw dtugoscei 1/3™, ktore widzimy na n-tym etapie
konstrukcji zbioru Cantora, to u([a,b]) = 1/2™. Obliczyé

/]R xdu(x).
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B. Calki

B.2 (niero6wno$¢ Czebyszewa itp.). Dana jest przestrzen z miarg (X, F, p).
a) Wykazaé, ze jesli funkcja mierzalna f: X — [0,00) jest nieujemna [lub: f: X — R
spelia p-p.w. f >0, tzn. p({z € X : f(z) < 0}) =0], to

Jx fdu
t

dla t > 0.

p({z e X : f(z) >t}) <

b) Wywnioskowaé, ze dla dowolnej funkcji mierzalnej f: X — R zachodzi

2

d
p({z e X |f(2)] = 1}) <% dlat >0,

)\fd
M({xeX:f(a;)>t})<% dlat € R,\ > 0.

Teoria. Dla funkcji nieujemnych: tw. o zbieznosci monotonicznej [tw. Lebesgue’a—
Leviego], lemat Fatou.

Teoria. Calka z funkcji dowolnej. Wtasnosci (m.in. liniowos$é, monotonicznosé, nierow-
nosé trojkata). [Zwiazki z catka Riemanna patrz uwaga na str. 62].

Teoria. Dla dowolnych funkcji: tw. Lebesgue’a o zbieznosci zmajoryzowane;.

B.3. Obliczy¢

oo

lim (14 22"~/ dz.

n—oo 0

B.4. a) Zgadnag¢, ile wynosi granica

n

lim (1 + £>ne_2‘"”dx,
0

n— o0 n

a nastepnie uzasadnié, ze zgadniety wynik jest poprawny.
b) Obliczy¢

n

n+1
lim (1 + E) e~ 2% dg.
0

n—00 n

B.5. Obliczy¢ nastepujace granice:

1
dx
I a/m 1y 4T
2 Jy M D
" d
lim n(e®/™ —1) v
n—oo Jq 14+ x4

Znalez¢ wartosé parametru a € (0, 00), dla ktorej granica

2n
d
dm e =D

istnieje oraz jest dodatnia i skoriczona.
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B. Calki

B.6. a) Zalozmy, ze f: [a,b] — R jest rozniczkowalna (na koricach przedzialu pochodne
jednostronne) oraz istnieje M € [0,00), takie ze dla kazdego = € [a,b] zachodzi
|f'(z)| < M. Wykazaé, ze wowczas

f(x)d\i(z) = f(b) — f(a) |calka wzgledem miary Lebesgue’al.
[a,b]

b) Podaé przyklad, ze teza nie musi zachodzi¢, jesli f nie jest rozniczkowalna w chocby
jednym punkcie. Jakie zalozenie wystarczy dodaé, zeby teza byta nadal prawdziwa?

¢) Podaé przyktad pokazujacy, ze teza nie musi zachodzié, jesli pochodna f” istnieje
prawie wszedzie (nawet jesli zatozymy dodatkowo, ze f jest jednostajnie ciggla).

Uwaga (funkcje jednej zmiennej: catka Riemanna vs. catka Lebesgue’a). Zachodza
nastepujace fakty:

e wiadomo, ze f: [a,b] — R jest calkowalna w sensie Riemanna [na [a,b]] wtedy
i tylko wtedy, gdy jest ograniczona, a zbiér jej punktow nieciaglosci ma miare
[Lebesgue’a) zero;

— w szczegolnoscei funkcje catkowalne w sensie Riemanna sa mierzalne;

— jesli f: [a,b] — R jest catkowalna w sensie Riemanna, to jest tez catkowalna
wzgledem miary Lebesgue’a i obie calki sa rowne [bo odpowiednie sumy
dolne/gorne s zbiezne];

— istnieja funkcje catkowalne wzgledem miary Lebesgue’a, dla ktorych nie
istnieje catka Riemanna, np. 1q,

e jesli f: [a,b] — R jest rézniczkowalna [wszedzie (!) na (a,b) i ma powiedzmy
pochodne jednostronne na kraricach], to fab f(x)dM(x) = f(b) — f(a);

— jesli f: [a,b] — R jest rozniczkowalna prawie wszedzie, to nie musi tak byé,
nawet jesli f jest ciagta;

e na AM 1 calki niewlasciwe po przedzialach [a,b), w tym po poélprostych, np.
[0, 00), sa zdefiniowane jako granice calek [Riemanna lub Newtona-Leibniza] po
przedziatach zwartych; catka wzgledem miary Lebesgue’a po [a, b) czy [0,00) jest
czym$ innym (patrzymy od razu na caly dziedzing); w szczegolnosei ze zbieznosci
caltki niewlasciwej [w sensie AM 1] nie wynika calkowalnos¢ [wzgledem miary
Lebesgue’al;

— jedli jednak f jest nieujemna lub wiadomo, ze jest calkowalna [wzgledem
miary Lebesgue’al i f jest na tyle porzadna, by mozna byto méwié o calce
niewltasciwej [w sensie AM 1], to obie calki istnieja i sa rowne.

B.7 (calki z parametrem). Dana jest przestrzen z miara (X, F, u), przedzial J C R
i funkcja f: X x J — R, taka ze dla kazdego t € J funkcja x — f(z,t) jest calkowalna
na X. Definiujemy

o(t) = /X flz, t)dp(x) dlate J.

a) Zalozmy, ze dla kazdego = € X funkcja t — f(z,t) jest ciagla oraz istnieje funkcja
catkowana g: X — [0,00), taka ze |f(x,t)| < g(z) dla kazdego z € X. Wykazac, ze
funkcja ¢ jest ciagta.
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B. Calki

b) Zalozmy, ze dla kazdego x € X funkcja t — f(x,t) ma pochodng [wszedzie]
oraz istnieje funkcja catkowalna h: X — [0, 00), taka ze \%f(:c, t)| < h(x) dla kazdego
x € X. Wykazag, ze

_[9f

"t)= [ = (z,t)du(z).
&) = [ Gl tdu
B.8. Obliczy¢
/2
/ In(1 + cos®(x))dzx.
0
Wskazowka. Calki z parametrem.

*kk

Teoria. Twierdzenie Fubiniego (na tym wyktadzie tylko dla miary Lebesgue’a, w RE+
ale patrz zadanie B.39).

Teoria. Twierdzenie o zamianie zmiennych (w R¥).

B.9. Niech p,q > 1 i niech A bedzie zwartym podzbiorem R? ograniczonym przez
krzywe y = 22, y = z3. Obliczy¢

/ 2Pty g (2, y).
A

B.10. Znalezé wartosci caltek (lub uzasadnié, ze podane funkcje nie sa catkowalne):

2 2
x—y 2 —y
——=dA\ ———=dA .
/('0)1)2 22 y2 Q(xu y)v /(0’1)2 (.’132 y2)2 2(1'7 y)

B.11. Zbiér A C [0,1] jest mierzalny. Niech f(xz) = A (AN[0,z]) dla =z € [0,1].

Obliczy¢
A

B.12. Niech A C R? bedzie zbiorem ograniczonym prostymi y =z +1iy =2 — 1.
Obliczy¢

/ e 1T ANy (2.y).

A

B.13. Znalez¢ miare zbioru A = {(z,y) € R? : (22 + ¢y?)? < 4(2? — y?)}.

Teoria. Srodki ciezkosci, reguta Pappusa-Guldina, zasady Cavalieriego itp.

B.14. Znalez¢ $rodek ciezkosci potkuli {(z,y,2) € R3 : 22 + 4% + 22 < R% 2 > 0}.
sk

Teoria. Przestrzeni L'. Przestrzen LP.

Teoria. Splot.
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B. Calki

Zadania treningowe, uzupetniajace, dodatkowe

B.15. Zalozmy, ze p jest miara na (R, B(R)), taka ze dla kazdego n € N zachodzi
p([n?, (n+1)%)) = 1/2". Wykazac, ze

2< Vzdu(z) < 3.

[1,00)

B.16. a) Dana jest przestrzen z miara (X,F, ), taka ze pu(X) < oco. Zalézmy, ze
funkcja f: X — R jest mierzalna. Uzasadni¢, ze jesli dla pewnego p € [1,00) zachodzi

[ 1#ran < .
X

/ |f|%dp < 0o dla dowolnego g € [1,p).
X

to

b) Poda¢ przyklad funkeji mierzalnej f: R — R, takiej ze

/f%ul < oo, ale /|f\d)\1 = +o0.
R R

c) Patrz zadanie B.27.

B.17 (ciekawsze, dla chetnych). Dana jest przestrzen z miarg (X,F,pu), taka ze
w(X) = 1. Zalézmy, ze funkcja mierzalna f: X — [0,00) jest nieujemna i fX fidy €
(0,00) [tzn. funkcja f? jest catkowalna i f nie jest réwna zero p.w.|. Wykazaé, ze dla
kazdego 6 € [0, 1],

(1—- 9)2(IX fdp)?
Ix fPdp

Motywcja @ wskazowka. Nierownosé Czebyszewa (zadanie B.2) pozwala szacowaé z gory
miare zbioru, gdzie funkcja f jest ,duza” [jesli umiemy kontrolowa¢ catke z f]. Ta
nier6wnosé pozwala [przy pewnych zalozeniach| szacowaé¢ miare zbioru, gdzie funkcja f
jest ,duza”, z dotu.

p({z € X : f(x) >0 fdu}) >

B.18 (z cyklu: wazne przyklady). Poda¢ przyklad swiadczacy o tym, ze w lemacie
Fatou nier6wnos$¢ moze by¢ ostra.

B.19 (z cyklu: wazne przyklady). Poda¢ przyklad nieujemnych funkeji mierzalnych
fn: R —1]0,00), n € N, zbieznych punktowo do funkcji f: R — [0, 00) [wszedzie], takich
ze |wszedzie|

fizfoz---2f2>20,

ale

lim | fad\ # / fd.
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B. Calki

B.20 (sic). Wykazaé, ze w twierdzeniu o zbieznosci monotonicznej zalozenie o mo-
notonicznosci jest zbedne: Zal6zmy, ze nieujemne funkcje mierzalne f,,: X — [0, co],
n € N, sg zbiezne punktowo do f: X — [0, 0] i dla kazdego n € N zachodzi f, < f.
Wowczas

Jim [ fudu= [ gan
Uwaga. Nie zakladamy, ze funkcja f Jest catkowalna.

B.21. Obliczy¢
1
/ (1)) + 2 — 1) 1/z)dx
0
[catka wzgledem jednowymiarowej miary Lebesgue’a].

B.22. Dany jest ciag (a,)52, taki ze a,, € [0,1] dla kazdego n € N. Funkcja f: [0,1] —
R jest okreslona wzorem

anm

[dla z € {a1,as,...} kladziemy cokolwiek lub nie definiujemy f w tych punktach].
Rozstrzygnac, czy funkcja f jest catkowana na [0, 1] [i czy zalezy to od wyboru ciagu

(an)nZal-

B.23 (arcywazne, szczegolnie na RP). a) Zalozmy, ze (X, F,u) jest przestrzenia
7z miarg [niekoniecznie skonczonal, zas g: X — [0, 00] jest nieujemna funkcja mierzalna
[niekoniecznie catkowalna]. Niech

v(A) ::/gdu dla A € F.
A

Wykazaé lub sprawdzi¢ lub uswiadomié sobie, ze v : F — [0, 0o] jest miarg na (X, F).
Uwaga. To prawie na pewno bylo w jakiejs postaci dowodzone na wyktadzie, ale
warto to jeszcze raz przemysle¢ — w szczegdlnosci, jesli byto juz twierdzenie o zbiezno-
$ci monotonicznej, to dowod jest natychmiastowy (ale sam fakt mozna wykazaé tez
niezaleznie od niego).
b) Wykaza¢ ponadto, ze jedli funkcja f: X — [0, 00] jest mierzalna, to

/deV=/fgdu~

Uwaga i plan pracy. To by¢ moze tez bylo w jakiejs postaci dowodzone na wykltadzie,
ale warto to jeszcze raz przemysle¢ — wystarczy sprawdzi¢ dla indykatorow: f = 14,
A € F (dlaczego?).

B.24 (arcywazne, m.in. na RP i na AM przy mierze rozmaitosciach). Dana jest
przestrzen z miara (X, F, u) oraz pewne przeksztatcenie T: X — Y. Niech

G={BcCY:TYB) e F},
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B. Calki

v(B) =T YB)) dlaBeg

(patrz Rysunek B.1). Sprawdzi¢, ze G jest o-cialem [w Y], zas v: G — [0, +00] jest
miara. Wykaza¢ ponadto, ze jesli funkcja f: Y — [0,00] jest mierzalna [wzgledem

o-ciata G|, to
/ fonu:/ fdv.
X Y

Czy jesli f jest catkowalna (ale niekoniecznie nieujemna), to teza nadal zachodzi?
T f

(X, F, ) (Y,G,v) R

Rysunek B.1.: Zadanie B.24: za pomoca przeksztalcenia 7" transportujemy miare pu z X
do Y. Zamiast calkowa¢ funkcje f po Y [wzgledem miary v| mozemy
catkowaé funkcje f o T po X [wzgledem wyjSciowej miary pul.

B.25. Dana jest przestrzeni z miara (X, F, u). Wszedzie ponizej zakladamy, ze funkcje
fo: X — [0,00), n € N, sa nieujemne i mierzalne (reszta zalozen w zaleznosci od
podpunktu).

a) Wykazac, ze jesli szereg > | [ fndp jest zbiezny, to szereg > | f, jest zbiezny
prawie wszedzie (1 w szczegolnosei f,, — 0 p.w.).

b) Wykazaé, ze jesli fX fadp — 0 dla n — oo, to ciag (f,)52, posiada podciag
zbiezny do zera prawie wszedzie.

c) Wykazaé, ze jesli fX f2dp < 5 dla kazdego n € N, to %fn — 0 prawie wszedzie.
Rozstrzygnaé, czy szereg » - % fn musi by¢ zbiezny prawie wszedzie.

B.26 (z cyklu: wazne przyklady). a) Podaé przyktad funkeji ciagltych f,: [0,1] — [0, 1],
n € N, takich ze lim,_, o fol fu(z)dz = 0, ale ciag (fn(x))52; nie jest zbiezny dla
zadnego z € [0,1].

b) Podaé przykltad funkeji cigglych g, : [0,1] — [0,00), n € N, takich ze dla kazdego
z € [0, 1] zachodzi lim,,—,o0 gn(z) = 0, ale lim, fol gn(z)dr = +00.

B.27 (c.d. zadania B.16). Dana jest przestrzen z miara (X, F, u), taka ze u(X) < oo.
Ustalmy funkcje mierzalng f: X — R. Niech

J={pe[l,00): /X|f|pd,u< oo},
1/
Il = ([ Arean)”™ a@ape
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Z zadania B.16 wynika, ze zbior J jest przedzialem [by¢ moze nieskoriczonym lub
pustym). Udowodnié¢, ze || f||, jest ciagla funkcjg zmiennej p € J.

B.28 (trudniejsze). Dana jest przestrzen z miara (X, F, u), taka ze pu(X) = 1, liczba
nieparzysta n oraz zbiory Ai,..., A, € F spelniajace u(A;) > 1/2 dla kazdego i €
{1,...,n}. Wykazac, ze istnieja i,j € {1,...,n}, i # j, takie ze pu(A4; N A4;) > 2L,

B.29. Funkcja f: R — R jest mierzalna i spelia

/ F(@)2(1 + ) dh () < .
R

Wykazaé, ze f jest calkowalna na R (wzgledem miary \p).
B.30. Obliczy¢

o) 00 2 n
lim l/ d—x’ lim Mdz.
n—oon f;  x2In(l+x/n) n—oo J, na?
B.31. Obliczy¢
) " dx
lim

n—co [y m+n2sin(z/n?)’
W ramach autosprawdzenia. Odpowiedz nalezy oczywiscie starannie uzasadnié¢ (nie
wychodzi 0).
B.32. a) Zgadnad, ile wynosi granica
lim (1 — 7> e*/2dz,
0

n—oo n
a nastepnie sprawdzié, czy odgadniety wynik jest poprawny.
b) Rozstrzygnaé, czy istnieje granica
2n

lim (1 — %)ne”md:ﬁ.

n—oo n
Jesli tak, to obliczy¢ ja, a jesli nie, to znalezé
2n
X n
limsup/ (1 — 7) "% dz.
n— o0 n n
[Wszystkie odpowiedzi bardzo starannie uzasadnic.|

B.33. Obliczy¢

. *  (sinz 4 cosx)”
im
n—oo | 1+ (sinx + cos .’IJ)

5 exp(—z —sinz — cos x)dx

B.34. Funkcja f: [0,00) — R jest ciagta i ograniczona. Obliczy¢ granice

= 6f(x)
dx.
50t Jo 02+ a2 *
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1
*—1
/a: dz
o Inz

dla wszystkich a € R, dla ktérych jest ona skoiiczona.
Wskazowka. Rézniczkowaé po parametrze.

B.35. Obliczy¢ warto$é¢ catki

B.36. Dane sa liczby 0 < a < b. Obliczy¢

oo —ax —bx
e —e
/ e g,
0 X

Wskazowki. Mozna przestawi¢ calki (jakie?), mozna probowaé rozniczkowaé wzgledem
czego$ (czego?). [Oczywiscie nalezy uzasadnié legalnosé wykonywanych manewrow.|

B.37. Stosujac [m.in.] twierdzenie Fubiniego i zwiazek 1 = [° e *'dt (dla z > 0)
udowodnié, ze
A .
lim / wdz .
A—oo J T 2
[Oczywiscie uzasadni¢ wszystkie przejscial.

B.38 (o-cialo produktowe). Zalozmy, ze mamy dwie przestrzenie wyposazone w o-ciala:
(X, F), (Y,G). W zbiorze X x Y wprowadzamy o-cialo F ® G, ktore jest generowane
przez wszystkie ,prostokaty mierzalne’

FoG=0c({AxB:AeF, Beg}).

a) Dlanp. X =Y =R (z F = G bedacym np. o-cialem zbioréw borelowskich na
prostej lub mierzalnych w sensie Lebesgue’a) podaé¢ przyklad mozliwie prostego zbioru
C € F ® G, ktory nie jest postaci produktowej A x B.

b) Wykazaé, ze jesli C € F ® G, to dla kazdego = € X zbior

Cr={yeY:(x,y) €C} (a-przekroj zbioru C)

jest mierzalnym podzbiorem Y (nalezy do G).
b’) Wykazac, ze jesli C € F @ G, to dla kazdego y € Y zbior

CV={zreX:(x,y) eC} (y-przekroj zbioru C)

jest mierzalnym podzbiorem X (nalezy do F).

c) Niech £} oznacza o-cialo zbioréw mierzalnych w sensie Lebesgue’a w R¥. Poda¢
przyktad zbioru C C R?, takiego ze C' € Lo, ale C ¢ L1 ® L.

d) Wykazaé, ze dla o-cial zbiorow borelowskich zachodzi

B(R* x R") = B(R*) @ B(R').
d*) Wykazaé, ze rownos¢ B(X x Y) = B(X) ® B(Y) zachodzi przy zalozeniu, ze

przestrzenie X, Y sa polskie, tj. metryczne, osrodkowe i zupetne. [W X XY rozpatrujemy
oczywiscie topologie produktowa).
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e) Wykazaé, ze jesli mamy trzy przestrzenie wyposazone w o-ciata: (X, ), (X2, F2),
(Xg, fg), to

(.7:1 ®f2) ®f3 =F1® (.7:2 ®.7:3) = J({Al X A2 X A3 : A1 S .7:1, A2 S .7:2, Ag S .7:3})
(wiec w szczegdlnosei mozna pisaé po prostu Fy @ Fo @ F3).

B.39 (ogolne twierdzenie Fubiniego). Notacja. Zalozmy, ze mamy dwie przestrzenie
mierzalne (X, F,u), (Y,G,v). Zalozmy rowniez [na razie, gtéwnie dla wygody]|, ze
miary u, v sa probabilistyczne: pu(X) =1 = v(Y). W zbiorze X x Y wprowadzamy
o-cialo F ® G, ktore jest generowane przez wszystkie ,prostokaty mierzalne” (patrz
zadanie B.38).

Plan. Wykazemy najpierw kilka lematéw o mierzalnosci, potem twierdzenie o istnieniu
miary produktowej, a potem twierdzenie Fubiniego.

a) Wykazaé, ze jesli funkcja f: X x Y — R jest mierzalna [wzgledem o-ciala
produktowego F ® G|, to dla kazdego x € X funkcja f,: Y — R zdefiniowana wzorem

fo(y) = flz,y) dlayey,
jest mierzalna [wzgledem o-ciala GJ.

a’) Wykazaé, ze jedli funkcja f: X x Y — R jest mierzalna [wzgledem o-ciala
produktowego F ® G], to dla kazdego Y € Y funkcja f¥: X — R zdefiniowana wzorem
fUx) = f(z,y) dlazelX,

jest mierzalna [wzgledem o-ciata FJ.

b) Wykaza¢, ze jesli funkcja f: X x Y — [0,00) jest mierzalna |[wzgledem o-ciala
produktowego F ® G| i nieujemna, to funkcja zdefiniowana wzorem

Xoz— /fo(y)dV(y)

jest mierzalna [wzgledem o-ciata FJ.
b’) Wykazadé, ze jesli funkcja f: X x Y — [0,00) jest mierzalna [wzgledem o-ciala
produktowego F ® G| i nieujemna, to funkcja zdefiniowana wzorem

Y 3y /X FY(X)du(a)

jest mierzalna [wzgledem o-ciala GJ.
¢) Wykazaé, ze miara 7: F ® G — [0, 1] zdefiniowana na o-ciele F ® G wzorem

w(0)= [ [[ 1e.t)avis)]duta)

jest jedyna miara probabilistyczna spetniajaca warunek:

m(Ax B)=u(Aw(B) dlaAeF, Beg.
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[W szczegdlnodci zrozumieé, ze z poprzednich podpunktow i z zadania B.38, w ktorym
zostaly zdefiniowane przekroje C,, wynika, ze definicja 7 ma sens|. Wykaza¢ rowniez,
ze dla F ® G zachodzi

7(C) = /Y [ /X Low (e)dp(x) | du(y).

Uzywa sie oznaczenia m = p @ v.
e) Wykazaé twierdzenie Fubiniego dla funkcji nieujemnych: jesli funkcja f: X x Y —
[0,00) jest mierzalna [wzgledem o-ciala produktowego F ® G] i nieujemna, to

| temduonen = [ [[ e 1)

= [ s aduta)]avt) (52)

[W szczegolnoscei zrozumieé, ze z poprzednich podpunktéw wynika, Ze te napisy maja
sens. |

f) Wykaza¢ twierdzenie Fubiniego dla funkeji catkowalnych: jesli funkcja f: X xY —
[0,00) jest calkowalna [wzgledem miary produktowej p ® v (w szczeg6lnosci mierzalna
wzgledem o-ciala produktowego F ® G)], tzn.

/ (@)l ® v) (@, y) < oo,
XxXY
to

p{e e X [ If@alavty) <o) =1,
vy ey [ 1) <o) =1

oraz zachodza rownosci (B.1), (B.2).

B.40. Obliczy¢ objetosé czesci wspolnej dwoch walcow o promieniach 1 1 prostopadlych
osiach.

B.41. Obliczy¢ calki (up. stosujac twierdzenie Fubiniego):

/ reV dho(a,y)  dla A={(z,y) €R: o +y| <1y >0},
A

xd)\g(x,y,z) 3
TV dla B = R? - L o1
/B 1+ (zyz)* . {(z,9,2) € x>0, y>1,2>1}

d)\g(l’,y,Z) 3
—0 5 dal= R3:0 1,0 1
/c(ac+y+1)2 ° {(@.9,2) € <z<lU<z+y<l

0<z(z+y+1) <1}

W ramach autosprawdzenia. Wéréd odpowiedzi jest: jedna liczba ujemna, jedna liczba
niewymierna, jedna liczba catkowita.
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B.42. Funkcja f: R — R jest calkowalna [wzgledem jednowymiarowej miary Lebes-
gue’al. Okreslamy

y+1
©(y) :=/ f(z)dz dlayeR.
Yy

Uzasadni¢, ze funkcja ¢ jest dobrze zdefiniowana, catkowalna oraz

[ ety = [ sz,
R R
B.43. Obliczy¢ objetosé bryty

{(l‘,y,Z) €R3:4$2+y2 <4,$>0, .732 >Z>0}.

Wskazéwka (7). Oczywiscie warto sprobowaé sobie wyobrazié, jak ta bryta wyglada, ale
nie jest to potrzebne do zrobienie zadania.
W ramach autosprawdzenia. Wychodzi mniej niz 4/5.

B.44 (egzamin 2007). Dane sg zbiory mierzalne A, B C [0,1]. Niech f(z) = M (4AN
[0,2]), g(z) = A (BN[0,2]) dla = € [0, 1]. Obliczy¢

/fd>q+/ gd)\.
B A

B.45. Fragmenty nastepujacych powierzchni:
20y =1, zy=2, y=2x, x=2y, 2=0, yz=1 [x,y > 0],

dziela zbior {(z,y,2) € R® : 2z > 0, y > 0} na kilka obszaréw. Jeden z tych obszarow
jest ograniczony — obliczy¢ jego objetosc.

B.46. Obliczy¢ wartosé érednia! funkcji f(z,y,2) = 22 + y? + 22 na zbiorze
A={(z,y,2) eR®:2? + 2 + 22 <x+y+2}.

W ramach autosprawdzenia. Trzeba policzy¢ dwie calki, ich wartosci to — w przyblizeniu,
w kolejnosci rosnacej — ok. 2,721 3, 26.

B.47. Dany jest kat dwuscienny o rozwartosci 2, 0 < v < 7/2, ktorego krawedz
przechodzi przez §rodek kuli [w R3] o promieniu 1. Niech C' bedzie czeécia kuli zawarta
w tym kacie dwusciennym. Obliczyé¢ odleglosé srodka ciezkosci zbioru C od krawedzi
kata.

B.48. Niech L: R¥ — R* bedzie przeksztalceniem liniowym nieosobliwym i niech E C
R* bedzie zbiorem mierzalnym ograniczonym. Wykazaé, ze obrazem |[w odwzorowaniu
L] érodka ciezkosci zbioru E jest srodek ciezkosci zbioru L(FE) [obrazu zbioru E.

1Tzn. fdXs.

AS%A) fA
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B.49. Niech A = {(z,y) € R? : max{—2z,z — 1} <y < min{l — 22,z + 1} }. Obliczy¢

lim

n—oo

(w) " dwdy.
A n
[Odpowiedz oczywiscie starannie uzasadnid].
B.50 (egzamin 2011/12). Obliczy¢ granice
2mn 4 .6 220

nh_)rr;o o (142*+ % + 3 NI F) COS(%) exp(—227)dz.

B.51. Niech A = {(z,y,2) € R®: \/22 + 2 + 22 < 21/3}. Obliczy¢
| exp(a? + 32 + 2%)
lim
n—oe Ja nsin(Ly/22 +y2 + 22)

[Oczywiscie starannie uzasadni¢ wszystkie kroki].
W ramach autosprawdzenia. Wychodzi wiecej niz 9/4.

d)\3(1'7y, Z)

B.52 (catkiem fajne). Niech A = {(z,y,2) € R®: 22 4+ 32 + 22 < 2'/3}. W zaleznosci
od warto$ci parametru p € R obliczy¢ caltke

/ 2Pdrs(z,y, 2).
A

Uwagi. Czasem wyjdzie +00. Na pewno mozna od razu podstawiaé sferycznie w R3.
A moze da sie zrobi¢ nieco sprytniej?

//// 2 dtdxdydz
12 + 222 + 3y2 + 4y2°

t2 4222 43y% +4y°% <1

B.53. Obliczy¢ catke

W ramach autosprawdzenia. Wychodzi wiecej niz 1/4.
B.54. Obliczy¢ miare zbioru
{(z,9,2) ER*: x>0,y >0, 2> 0, zy < 2z, o* + 2* < 2?2},

B.55. Dla jakich par wyktadnikow p, ¢ > 0 funkcja f(z) = ||z[|37(1 — ||z[]2) 79, = € R¥,
jest catkowalna po kuli B = {z € R¥ : ||lz||s < 1}?

B.56. W przestrzeni R rozwazamy podprzestrzen ,rownikows”
H={(z1,...,2) € R* : 2, = 0}

[ktora jest izomorficzna i izometryczna z RE¥~1]. Niech C bedzie stozkiem, ktorego
podstawg jest zbior B C H (ograniczony i mierzalny wzgledem k — 1-wymiarowej miary
Lebesgue’a), a wierzchotkiem punkt lezacy w odlegtosci h od H. W jakiej odlegtosci od
H lezy srodek ciezkosci zbioru C7
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B.57. Niech A C R3 bedzie zbiorem mierzalnym, ograniczonym, lezacym w polprze-
strzeni z > 0. Niech m := A3(A) i niech (a, b, ¢) bedzie srodkiem ciezkosci zbioru A.
Dane sa liczby 0 < o < 8. Dla t > 0 niech f(t) oznacza miare czesci zbioru A zawartej
pomiedzy plaszczyznami o rownaniach z = at i z = Bt. Obliczy¢ calke

/ " fwa,

B.58. Jedli funkcja f: [0,00) — R jest catkowalna, to definiujemy funkcje £(f): [0, 00) —
R wzorem

tj. wyrazi¢ ja przez wielkosci dane.

L(f)(x) ::/ f@)e ™ dt dlaz € [0,00).
0
a) Uzasadnié¢, Zze to poprawna definicja.
b) Udowodni¢, ze jesli funkcja f jest calkowalna, to funkcja L(f) jest klasy C°.

¢) Udowodni¢, ze jesli funkcje f,g: [0,00) — R sa calkowalne, to wowczas funkcja
f#*g:1]0,00) — R zdefiniowana wzorem

(F+9)@) = [ fo—tgtidt  dlae o)
0
tez jest calkowalna i dla kazdego x € [0, 00) zachodzi réwnosé

L(fxg)(x) = L(f) (@) - L(g)(x)-

Uwaga. W pewnym momencie na zajeciach pojawia sie sploty i wtedy podpunkt c)
stanie sie pewnie latwiejszy (ale mozna go robi¢ wezesniej).

73



	Normy, granice, ciaglosc
	Material do omówienia na zajeciach [3–4 cw.]
	Zadania treningowe, uzupelniajace, dodatkowe

	Pochodne czastkowe, rózniczkowalnosc
	Material do omówienia na zajeciach [4+ cw. (??)]
	Zadania treningowe, uzupelniajace, dodatkowe

	Pochodne wyzszych rzedów
	Material do omówienia na zajeciach [3+ cw. (?)]
	Zadania treningowe, uzupelniajace, dodatkowe

	Teoria lokalna odwzorowan klasy C1
	Material do omówienia na zajeciach [3–4 cw. (?)]
	Zadania treningowe, uzupelniajace, dodatkowe

	Rozmaitosci
	Material do omówienia na zajeciach [3+ cw. (??)]
	Zadania treningowe, uzupelniajace, dodatkowe

	Teoria miary
	Material do omówienia na zajeciach [4+ cw. (?)]
	Zadania treningowe, uzupelniajace, dodatkowe

	Calki
	Material do omówienia na zajeciach
	Zadania treningowe, uzupelniajace, dodatkowe


