

LABELLED WELL QUASI ORDERED CLASSES OF BOUNDED LINEAR CLIQUE-WIDTH

Aliaume Lopez

UNIVERSITY OF WARSAW

MFCS'2025
Warsaw, Poland

ZYGMUNT
ZALESKI
STICHTING

LABELLED WELL QUASI ORDERED CLASSES OF BOUNDED LINEAR CLIQUE-WIDTH

Aliaume Lopez

UNIVERSITY OF WARSAW

Presented by Maël Dumas

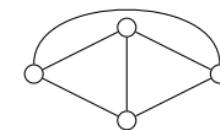
MFCS'2025
Warsaw, Poland

ZYGMUNT
ZALESKI
STICHTING

Graphs and Induced Subgraphs

Graphs and Induced Subgraphs

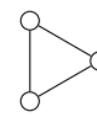
- ▷ Graphs are undirected, without self-loops



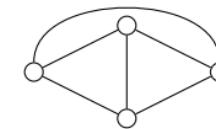
H

Graphs and Induced Subgraphs

- ▷ Graphs are undirected, without self-loops



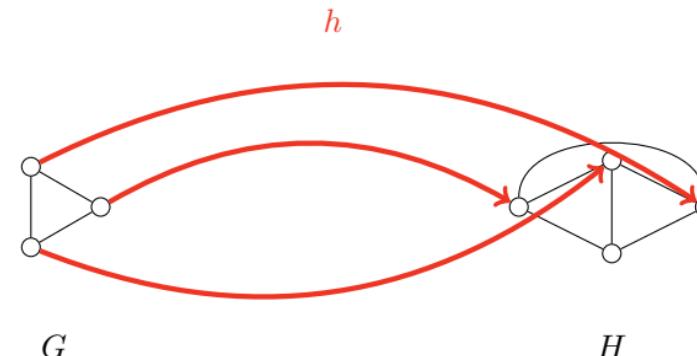
G



H

Graphs and Induced Subgraphs

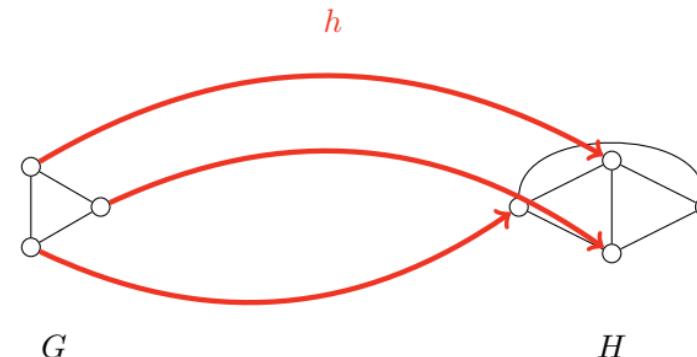
- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*



$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$

Graphs and Induced Subgraphs

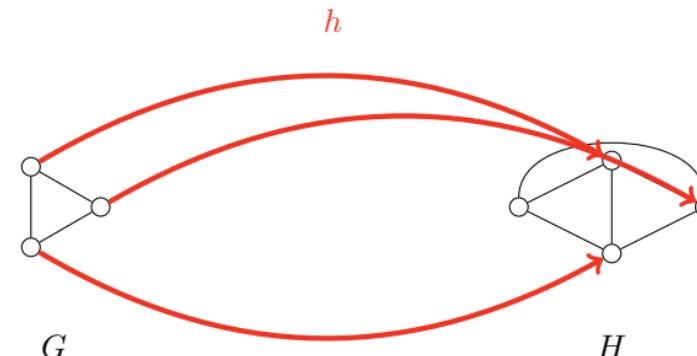
- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*



$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$

Graphs and Induced Subgraphs

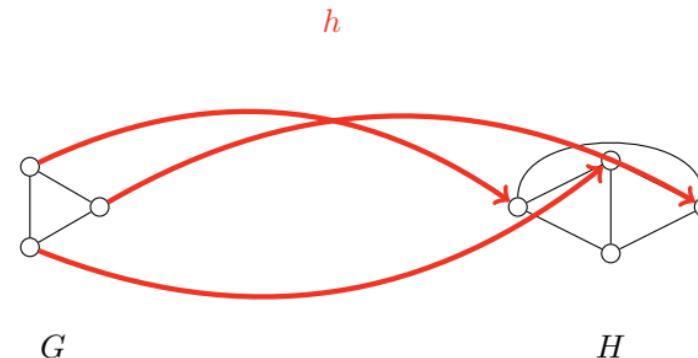
- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*



$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$

Graphs and Induced Subgraphs

- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*

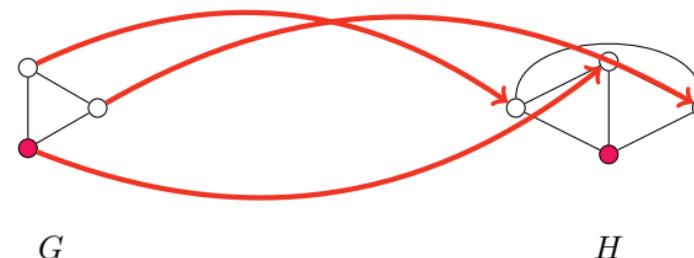


$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$

Graphs and Induced Subgraphs

- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*
- ▷ Vertices can be labelled by a finite set

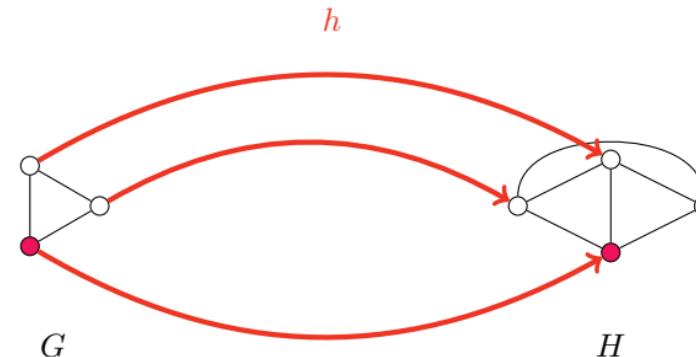
1



$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$

Graphs and Induced Subgraphs

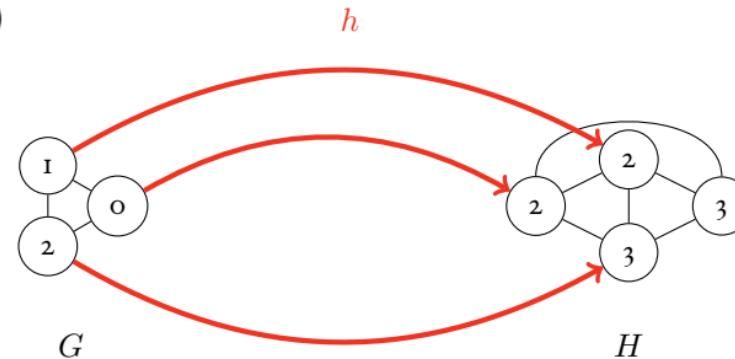
- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*
- ▷ Vertices can be labelled by a finite set



$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H)$$
$$\text{label}(x) = \text{label}(h(x))$$

Graphs and Induced Subgraphs

- ▷ Graphs are undirected, without self-loops
- ▷ Embeddings represent subsets of *vertices*
- ▷ Vertices can be labelled using (X, \leq)



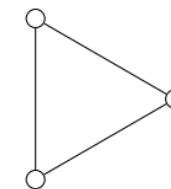
$$(x, y) \in E(G) \iff (h(x), h(y)) \in E(H) \text{ and } \text{label}(x) \leq \text{label}(h(x))$$

Freely Labeled Graphs

$\text{Label}_X(\mathcal{C})$ is the collection of all possible X -labellings of graphs in \mathcal{C}

Freely Labeled Graphs

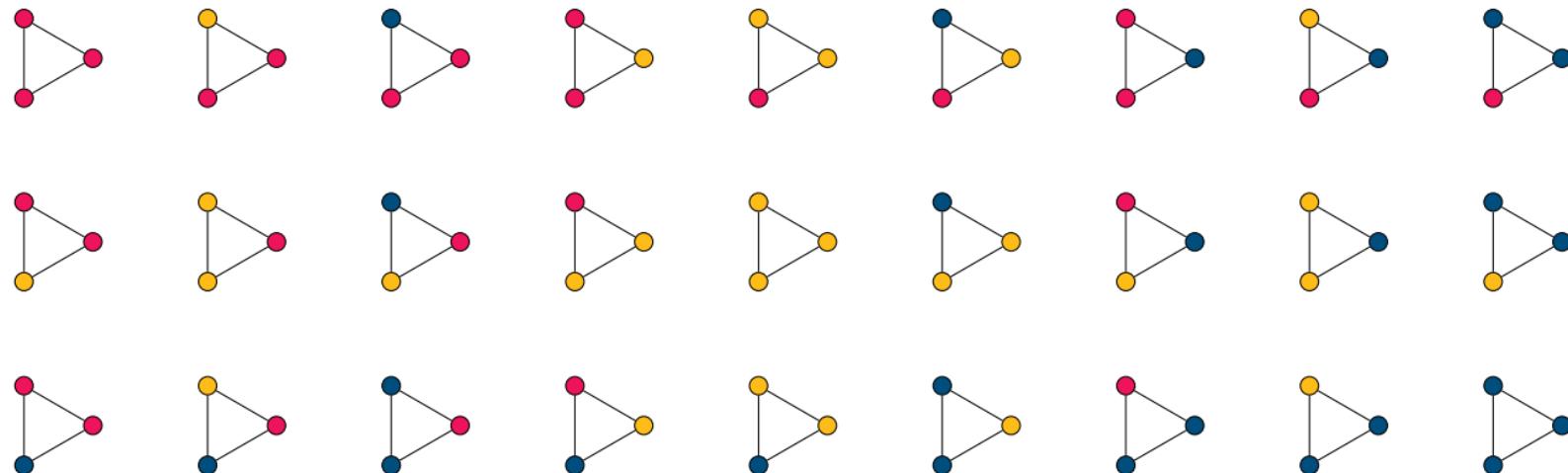
$\text{Label}_X(\mathcal{C})$ is the collection of all possible X -labellings of graphs in \mathcal{C}



Freely Labeled Graphs

$\text{Label}_X(\mathcal{C})$ is the collection of all possible X -labellings of graphs in \mathcal{C} .

$\mathcal{C} = \{C_3\}$ and $X = \{\cdot, \cdot, \cdot\}$



Well Quasi Ordered Clases of Graphs

Well Quasi Ordered Classes of Graphs

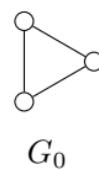
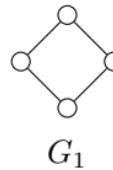
- ▷ A sequence of graphs G_1, G_2, \dots is a **good sequence** if there exists a pair $i < j$ such that G_i embeds in G_j .

G_0 G_1 G_2 \dots G_i \dots G_j \dots

Well Quasi Ordered Classes of Graphs

- ▷ A sequence of graphs G_1, G_2, \dots is a **good sequence** if there exists a pair $i < j$ such that G_i embeds in G_j .

Bad Sequence



...

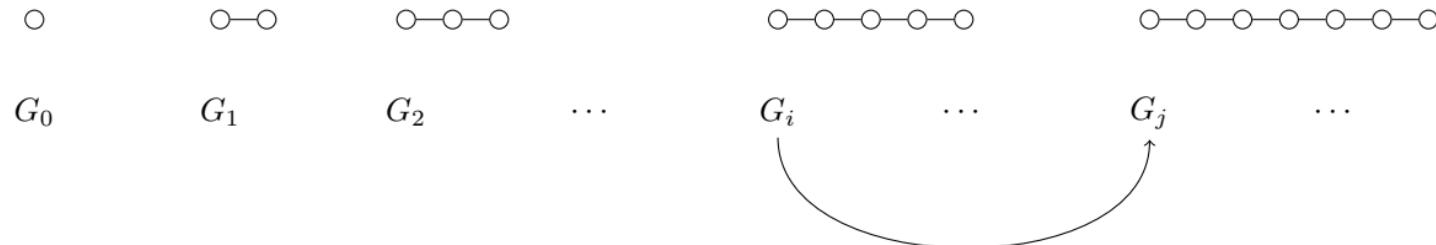
...

...

Well Quasi Ordered Classes of Graphs

- ▷ A sequence of graphs G_1, G_2, \dots is a **good sequence** if there exists a pair $i < j$ such that G_i embeds in G_j .
- ▷ A class is **well-quasi-ordered** (wqo) if every sequence is a *good sequence*.

Good Sequence



Well Quasi Ordered Classes of Graphs

- ▷ A sequence of graphs G_1, G_2, \dots is a **good sequence** if there exists a pair $i < j$ such that G_i embeds in G_j .
- ▷ A class is **well-quasi-ordered** (wqo) if every sequence is a *good sequence*.
- ▷ A class \mathcal{C} is X -**well-quasi-ordered** (X -wqo) if $\text{Label}_X(\mathcal{C})$ is wqo.

Bad Sequence

Well Quasi Ordered Classes of Graphs

- ▷ A sequence of graphs G_1, G_2, \dots is a **good sequence** if there exists a pair $i < j$ such that G_i embeds in G_j .
- ▷ A class is **well-quasi-ordered** (wqo) if every sequence is a *good sequence*.
- ▷ A class \mathcal{C} is X -**well-quasi-ordered** (X -wqo) if $\text{Label}_X(\mathcal{C})$ is wqo.

Bad Sequence

Examples.

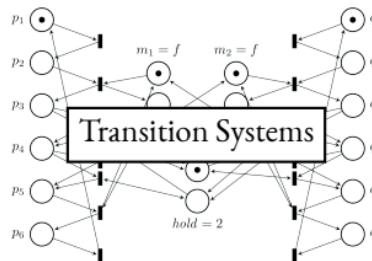
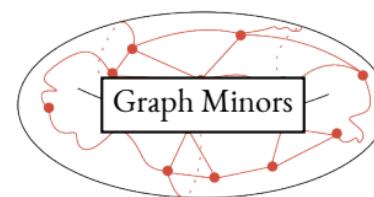
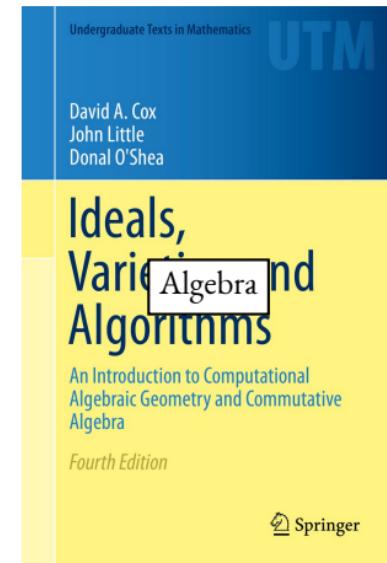
Cycles (NO), Paths (YES), Colored paths (NO)

Examples.

Cliques : $\forall X$ wqo, X -wqo,
 Paths : wqo, but not 2-wqo, Cycles : not wqo

Why care about Well-Quasi-Ordered Classes?

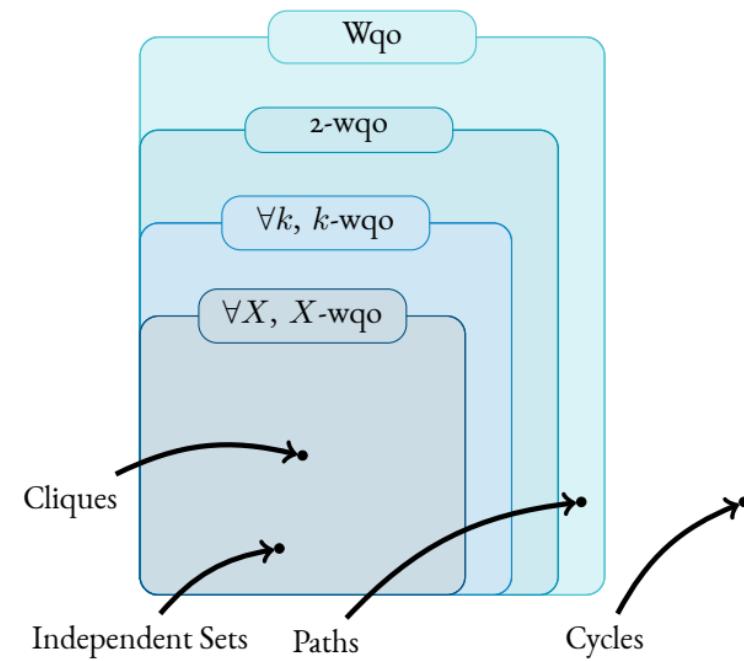
Why care about Well-Quasi-Ordered Classes?



Related Work

Related Work

Inclusions of Properties



Related Work

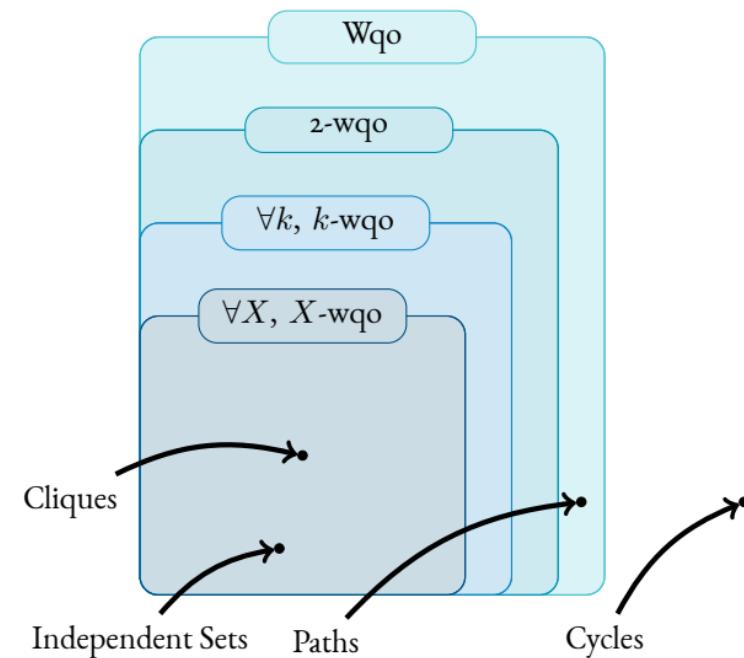
Conjecture 1 [Pouzet'72].

$$(2\text{-wqo}) \implies (\forall k \in \mathbb{N}, k\text{-wqo})$$

Conjecture 2 [Pouzet'72].

$$(\forall k \in \mathbb{N}, k\text{-wqo}) \implies (\forall X \text{ wqo}, X\text{-wqo})$$

Inclusions of Properties



Related Work

Conjecture 1 [Pouzet'72].

$$(2\text{-wqo}) \implies (\forall k \in \mathbb{N}, k\text{-wqo})$$

Conjecture 2 [Pouzet'72].

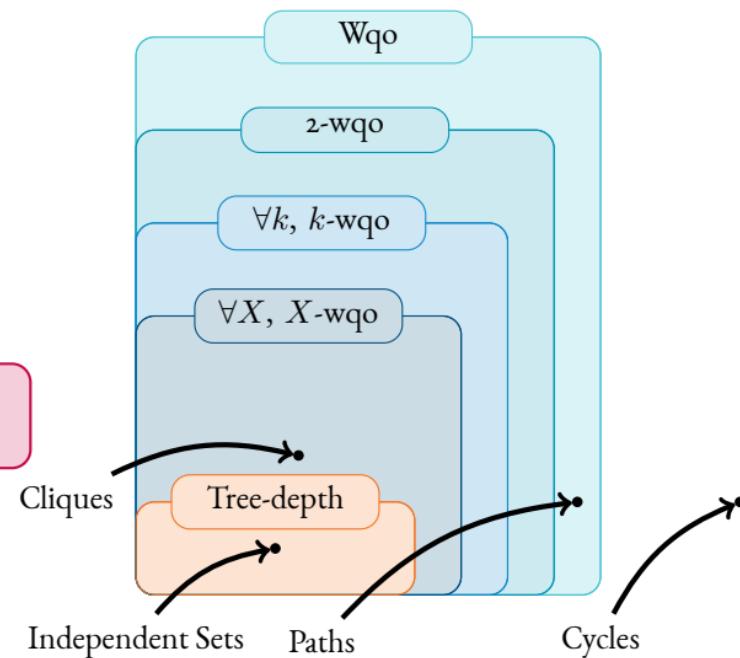
$$(\forall k \in \mathbb{N}, k\text{-wqo}) \implies (\forall X \text{ wqo}, X\text{-wqo})$$

Theorem [Ding'92].

Bounded tree-depth implies $\forall X, X\text{-wqo}$

the converse fails
(ex : cliques)

Inclusions of Properties



Related Work

Conjecture 1 [Pouzet'72].

$$(2\text{-wqo}) \implies (\forall k \in \mathbb{N}, k\text{-wqo})$$

Conjecture 2 [Pouzet'72].

$$(\forall k \in \mathbb{N}, k\text{-wqo}) \implies (\forall X \text{ wqo}, X\text{-wqo})$$

Theorem [Ding'92].

Bounded tree-depth implies $\forall X, X\text{-wqo}$

the converse fails
(ex : cliques)

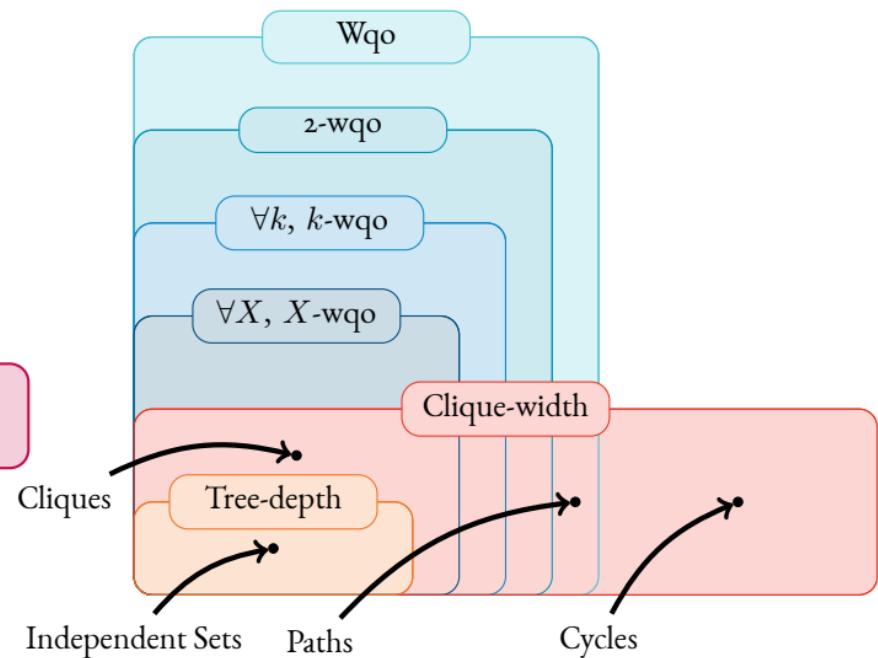
Theorem [Daligault, Rao, Thomassé'10].

For **some** classes of bounded clique-width,
both conjectures hold

Conjecture 3 [Daligault, Rao, Thomassé'10].

$$2\text{-wqo} \implies \text{bounded clique-width}$$

Inclusions of Properties



Related Work

Conjecture 1 [Pouzet'72].

$$(2\text{-wqo}) \implies (\forall k \in \mathbb{N}, k\text{-wqo})$$

Conjecture 2 [Pouzet'72].

$$(\forall k \in \mathbb{N}, k\text{-wqo}) \implies (\forall X \text{ wqo}, X\text{-wqo})$$

Theorem [Ding'92].

Bounded tree-depth implies $\forall X, X\text{-wqo}$

the converse fails
(ex : cliques)

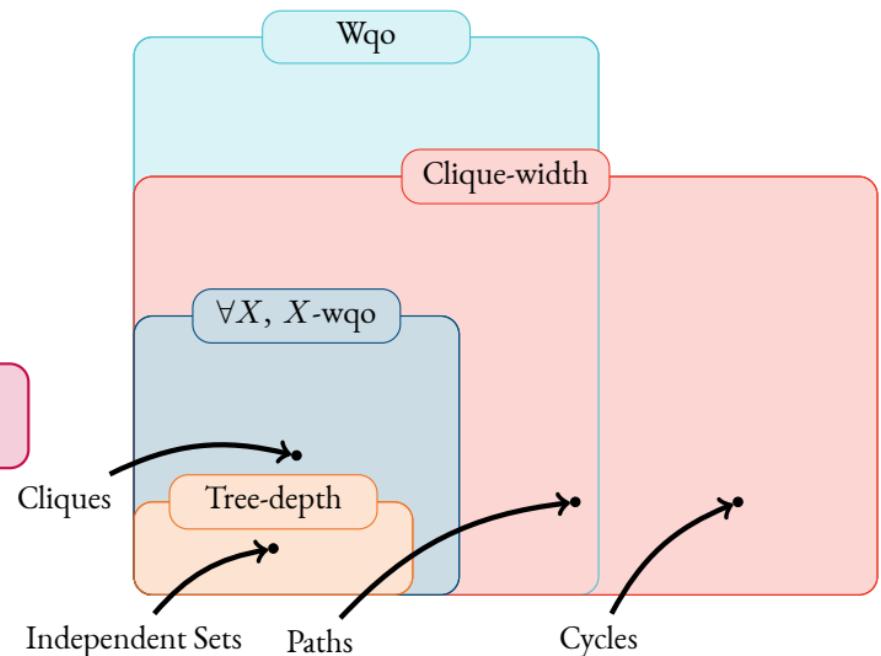
Theorem [Daligault, Rao, Thomassé'10].

For **some** classes of bounded clique-width,
both conjectures hold

Conjecture 3 [Daligault, Rao, Thomassé'10].

$$2\text{-wqo} \implies \text{bounded clique-width}$$

Conjectured Inclusions of Properties



$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

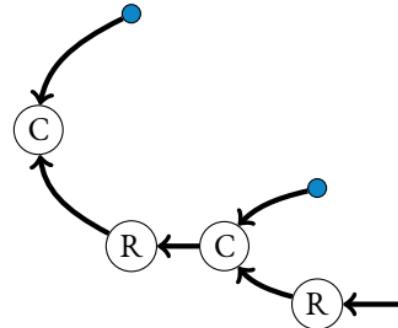
- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

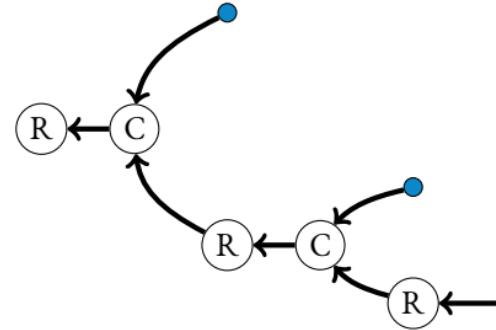


$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

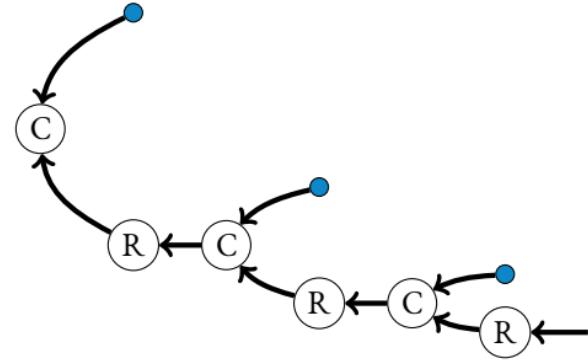
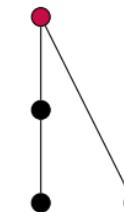


NLC $_{\mathcal{Q}}^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

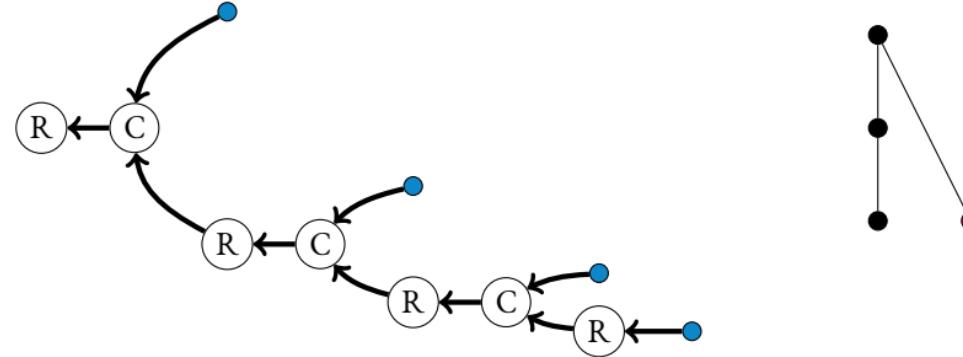


$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

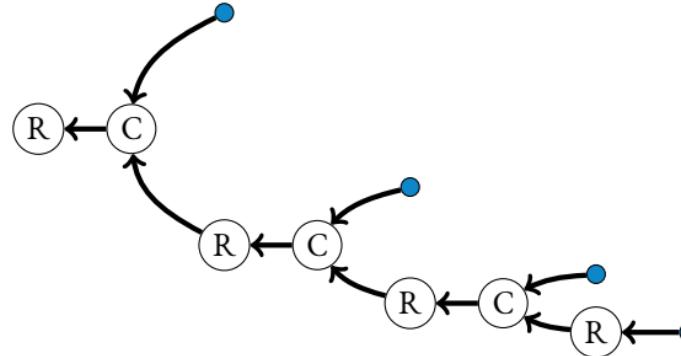


$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.

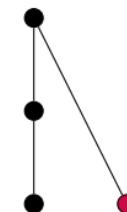


Theorem [Dalgault, Rao, Thomassé'10].

For every Q, \mathcal{F} , one can decide whether $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo. Furthermore, the following are equivalent :

- $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo,
- $\text{NLC}_Q^{\mathcal{F}}$ is X -wqo, $\forall X$,
- $\text{NLC}_Q^{\mathcal{F}}$ does not contain arbitrarily large paths

Therefore, conjectures 1 and 2 are true for classes $\text{NLC}_Q^{\mathcal{F}}$

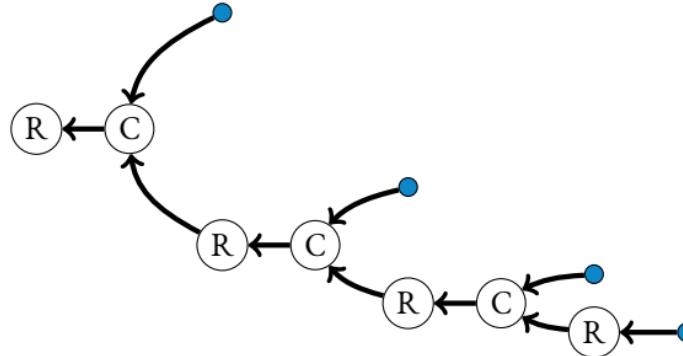


$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.



Theorem [Daligault, Rao, Thomassé'10].

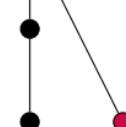
For every Q, \mathcal{F} , one can decide whether $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo. Furthermore, the following are equivalent :

- $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo,
- $\text{NLC}_Q^{\mathcal{F}}$ is X -wqo, $\forall X$,
- $\text{NLC}_Q^{\mathcal{F}}$ does not contain arbitrarily large paths

Therefore, conjectures 1 and 2 are true for classes $\text{NLC}_Q^{\mathcal{F}}$

Theorem [Courcelle].

A class has *bounded clique-width* if and only if it is **contained** in some $\text{NLC}_Q^{\mathcal{F}}$.

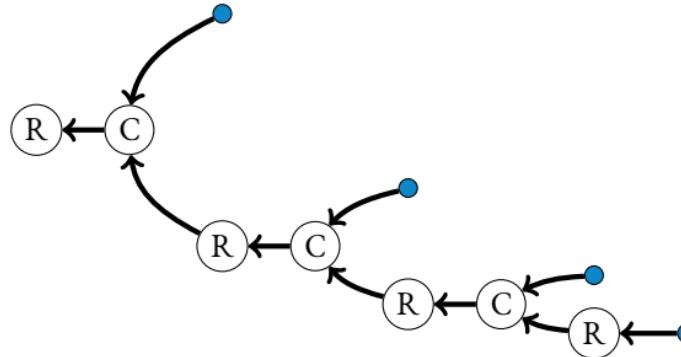


$\text{NLC}_Q^{\mathcal{F}}$ Expressions and Bounded Clique-Width

Relabel Expressions.

Select a finite set Q of colors, and a finite set \mathcal{F} of functions from Q to Q .

- $\text{vertex}(q)$ for $q \in Q$,
- $\text{relabel}_f(g)$ for $f \in \mathcal{F}$, g an expression,
- $\text{combine}_P(g_1, g_2)$ for $P \subseteq Q \times Q$, and g_1, g_2 expressions.



Theorem [Dalgault, Rao, Thomassé'10].

For every Q, \mathcal{F} , one can decide whether $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo. Furthermore, the following are equivalent :

- $\text{NLC}_Q^{\mathcal{F}}$ is 2-wqo,
- $\text{NLC}_Q^{\mathcal{F}}$ is X -wqo, $\forall X$,
- $\text{NLC}_Q^{\mathcal{F}}$ does not contain arbitrarily large paths

Therefore, conjectures 1 and 2 are true for classes $\text{NLC}_Q^{\mathcal{F}}$

Theorem [Courcelle].

A class has *bounded clique-width* if and only if it is **contained** in some $\text{NLC}_Q^{\mathcal{F}}$.

Problem.

This does not prove conjectures 1 and 2 for classes of bounded clique-width : subsets could still be WQO!

Results

Results

Setting.

We restrict ourselves to the **linear** NLC expressions, and we fix **how we add edges** once and for all :

$$\text{linNLC}_Q^{\mathcal{F}, \textcolor{brown}{P}}$$

Results

linear shaped expression trees!

Setting.

We restrict ourselves to the **linear** NLC expressions, and we fix **how we add edges** once and for all :

$$\text{linNLC}_Q^{\mathcal{F}, \mathcal{P}}$$

Results

linear shaped expression trees!

Setting.

We restrict ourselves to the **linear** NLC expressions, and we fix **how we add edges** once and for all :

$\text{linNLC}_Q^{\mathcal{F}, P}$

Theorem.

Given Q, \mathcal{F}, P , the following properties are equivalent and **decidable** :

- $\text{linNLC}_Q^{\mathcal{F}, P}$ is X -wqo, for all X ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is k -wqo, for all k ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is $(|\mathcal{F}|^3 \times 2)$ -wqo.

Results

linear shaped expression trees!

Setting.

We restrict ourselves to the **linear** NLC expressions, and we fix **how we add edges** once and for all :

$\text{linNLC}_Q^{\mathcal{F}, P}$

Lemma.

The theorem extends to **subsets**, unlike the result of [Daligault, Rao, Thomassé'10].

Theorem.

Given Q, \mathcal{F}, P , the following properties are equivalent and **decidable** :

- $\text{linNLC}_Q^{\mathcal{F}, P}$ is X -wqo, for all X ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is k -wqo, for all k ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is $(|\mathcal{F}|^3 \times 2)$ -wqo.

Results

linear shaped expression trees!

Setting.

We restrict ourselves to the **linear** NLC expressions, and we fix **how we add edges** once and for all :

$\text{linNLC}_Q^{\mathcal{F}, P}$

Lemma.

The theorem extends to **subsets**, unlike the result of [Daligault, Rao, Thomassé'10].

Theorem.

Given Q, \mathcal{F}, P , the following properties are equivalent and **decidable** :

- $\text{linNLC}_Q^{\mathcal{F}, P}$ is X -wqo, for all X ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is k -wqo, for all k ,
- $\text{linNLC}_Q^{\mathcal{F}, P}$ is $(|\mathcal{F}|^3 \times 2)$ -wqo.

Corollary.

For all classes \mathcal{C} of bounded **linear** clique-width, \mathcal{C} is X -wqo (for all X) if and only if it is k -wqo (for all k).

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.

Prove that it is X -wqo for all X wqo.

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.

Prove that it is X -wqo for all X wqo.

$\forall \quad G_0 \quad G_1 \quad G_2 \quad \dots \quad G_i \quad \dots \quad G_j \quad \dots$

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.

Prove that it is X -wqo for all X wqo.



By definition.

$\forall G_i, \exists w_i$

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.

Prove that it is X -wqo for all X wqo.

By definition.

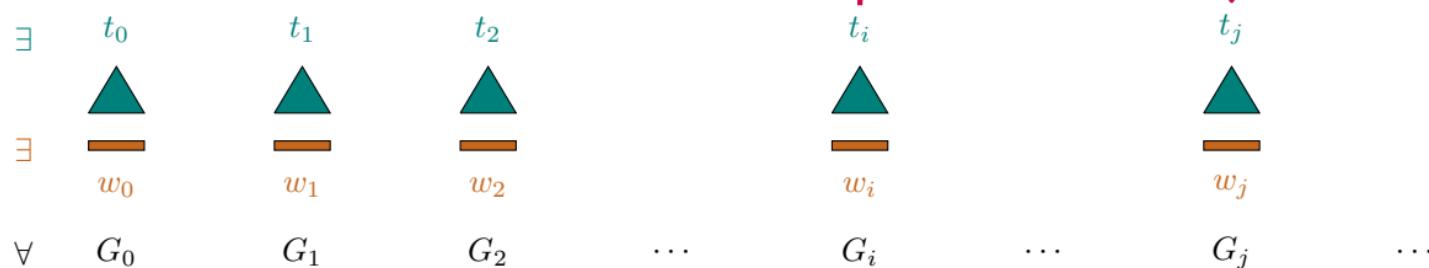
$\forall G_i, \exists w_i$

Theorem [Simon].

$\exists d \in \mathbb{N}, \forall w_i, \exists t_i$
of depth at most d

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.
 Prove that it is X -wqo for all X wqo.



By definition.

$\forall G_i, \exists w_i$

Theorem [Simon].

$\exists d \in \mathbb{N}, \forall w_i, \exists t_i$
 of depth at most d

Theorem [Higman].

$\exists i < j, t_i \leq t_j$
 words of words of words...

Proof Sketch

Let $\mathcal{C} = \text{linNLC}_{\mathcal{Q}}^{\mathcal{F}, \mathcal{P}}$, be $(|\mathcal{F}|^3 \times 2)$ -wqo.
 Prove that it is X -wqo for all X wqo.

By definition.
 $\forall G_i, \exists w_i$

Theorem [Simon].
 $\exists d \in \mathbb{N}, \forall w_i, \exists t_i$
 of depth at most d

Theorem [Higman].
 $\exists i < j, t_i \leq t_j$
 words of words of words...

Conclusion(s)

FUTURE WORK

Theorem.

Half of Pouzet's conjecture holds for classes of bounded linear clique-width :
 $\forall k \implies \forall X$

Remark.

In their paper, Daligault, Rao, and Thomassé reproved part of Simon's factorisation theorem.

Motto.

Automata / Semigroup theory applied to well-quasi-orders and structural properties of graph classes

Towards 2-wqo.

Better analysis of the proof should lead to 2-wqo

Towards trees.

Higman's lemma \implies Kruskal's tree theorem

Simon's word factorisation \implies Colcombet's tree factorization

Interpretations.

It is conjectured that for all hereditary classes \mathcal{C} :

\mathcal{C} is 2-wqo

\iff

one cannot interpret all **paths** using existential first order formulas