Twierdzenie Riemanna o liczbach pierwszych.
Wedlug ksigzki Stein — Shakarchi

Glownym celem wyktadu jest udowodnienie nastepujacego twierdzenia.
Twierdzenie 1. Niech 7: R — Z bedzie funkcjg zliczajacg liczby pierwsze. To znaczy,
m(x) = #{p: p < x p pierwsza}.

Wtedy istniejg stale A, B > 0 takie, ze dla x dostatecznie duzych

A < r(z) < B—
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Aby dowies¢ twierdzenia, wprowadzamy funkcje Czebyszewa:

U(x) =) logp,

p"<z

Czesto twierdzenie formutuje sie jako m(x) ~

czyli sumujemy wielko$é log p po tych liczbach, ktore sa potegami p mniejszymi od x.
Na przyktad:

¥ (10) = log2 + log 3 + log 2 + log 5 + log 7 + log 2 + log 3.
Mozna zapisa¢ 1(z) za pomoca funkcji von Mangolta
1 n=7p"
Ay = {loEpin=»
0: w przeciwnym przypadku.

z
log x

Stwierdzenie 1. Funkcja 7(z) asymptotycznie zachowuje si¢ jak jesli ¥ (x) ~ .

Dowad. Piszemy najpierw

P(x) = Z Vong logp < Z log @ logp = logxz 1 =m(z)logx.

log p log p

p<z p<z p<z

W szezegolnosci, jesli ¢(x) > Az dla dostatecznie duzych z, to w(z) < Az/logx.
W druga strone, wybieramy « € (0,1). Wtedy

Y(a) > logp> Y logp > (w(x) — m(2*))log .
p<w z*<p<z
To za$ oznacza, ze
Y(z) + am(z®)logz > ar(z)log .
Wiemy, ze m(z) < z (bo 7 zlicza tylko czes¢ liczb). Mozemy wiec dobraé¢ tak a, C, zeby
7(x%) log x byto mniejsze niz C'z dla dostatecznie duzych C'. Jesli ¢(z) < Bz, dostajemy
ze
m(z)logz < a (B + O)xr.

To dowodzi tezy. O
Y(x)

log ©
x

Uwaga 1. Tak naprawde pokazujemy troche wiecej. Jesli lim =1, to lim 7 (x) 2% =

1.
Funkcja v nie jest idealna. Idealng funkcja bedzie funkcja pierwotna 1.

Stwierdzenie 2. Niech

(o) = [ vy
Jesli ¢y (z) ~ %, to Y(x) ~ . .



Uwaga 2. Tak naprawde mogliby$my napisa¢ ¢ (x) ~ x2. Tak naprawde pokazujemy
jednak, ze jesli lim ¢ (z) % = 1, to lim¢(z)/z = 1.

Dowdd. Przyjmijmy 0 < o < 1 < 3. Jako, ze 9 jest niemalejgca, zachodzi

1 T Bx
m am?ﬂ(U)du < ’QD(.’L') < m i ¢(u)du
Wartosé w mianowniku to dtugos$é¢ przedziatu.
7 tego wynika, ze |

U(z) < m(%(ﬁ@ — 1 (x)).

Piszemy to inaczej
V) 1 (), ti(a)
xr ~ B—-1\ 22 2 )

Przyktadamy lim sup do tej nieréwnosci. Jesli lim > Ip;—(f) = %, to otrzymujemy:

lim sup w:(:") < % (%52 - %) = %(ﬁ +1).
¥(

Teraz 8 bylo dowolne wieksze od 1, stad lim sup Y@ < 1. Dowdd w druga strone jest

analogiczny. : U

Do tej pory wtasciwie nie uzywalismy funkcji analitycznych. Teraz wykorzystamy.

Definicja 1. Funkcja ((s) jest zadana wzorem >~ | nl
Wzor definiujacy funkcje ¢ ma sens dla s € R, s > 1. Poczynmy obserwacje.

Lemat 1. Jesli x € Rog oraz s € C, to |2%| = zes.

Rozwigzanie. Piszemy 1 = e oraz s = a + bi. Wtedy x° = e czyli |25 = e =
1% = ghes, U

7 Lematu wnosimy, ze szereg definiujacy funkcje ( jest zbiezny dla Res > 1 oraz
jednostajnie zbiezny na Res > 1+ ¢ dla dowolnego 6 > 0. Stad ( jest funkcja holomor-
ficzna.

Lemat 2. Dla dowolnego s takiego, ze Res > 1 zachodzi

SOR | Femrert

p

gdzie iloczyn bierzemy po wszystkich liczbach pierwszych.

Rozwigzanie. Kwestie zbieznodci iloczynu zostawiamy jako ¢wiczenie. Mamy

1
=14zx+a%+...

1—=zx
Stad:

— = 14ptFp 4.

1—p—s
A zatem .
Hl_p_s:(1+2‘S+2‘25+...)(1+3‘S+...)...

p
Ustalmy n. Zapiszmy n jako p’fl ---pkr. W iloczynie po lewej stronie, wyrazenie n~
pojawi sie dokladnie raz: wymnazajac skonczenie wiele wyrazen réznych od 1 i ki-te

wyrazenie przy p; itp. Il

S
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RYSUNEK 1. Kontur w dowodzie (2).

Teraz przyda si¢ nam jeszcze jeden lemat. Dalsze oszacowania beda podane, ale udo-
wodnione nastepnym razem.

Lemat 3. Zachodzi %(3) = -3 A0 5 ile Res > 1.

n=1 ns ?

Rozwigzanie. Mamy % = % log ((s). Piszemy

1 1 .
logg(s)zlogl_[1 7£=Zlog1 75:—Zlog(1—p ).
p b p P p

Teraz ) ,
T T

—log(l —z) = — ...

og( x) x+2+3+ ,

czyli

(1) log(¢) = = log(1—p~*) = D d(n)n"",

gdzie §(n) = % jeslin = p™, i 0(n) = 0 w przeciwnym przypadku. Rézniczkujemy (1)
wyraz po wyrazie. Przypusémy, ze n = p™
d S

—s __ -5 __ i -5 __ —s
E(S(n)n = —lognd(n)n=° = mlogpmn =—A(n)n""°.

Stwierdzenie 3. Dla dowolnego ¢ > 1 oraz z > 0 zachodzi:

i =5 /: s(filw (‘ iz ) o

Dowad. Najpierw udowodnimy nastepujacy wzor:

) L/w a? dS:{O:ae(O,l]

27 Jo_ino S(s+1) 1—Ltra>1.

a

Aby dowiesé¢ tego wzoru wybieramy kontur I'g jak na rysunku. Sktada sie on z odcinka
' g i polokregu I'yp. Zapiszmy x = €' dla pewnego ¢ > 0. Zapisujemy

ts
/ ¢ ds
rp S(s+1)




Na calym I'g zachodzi |e*| < [e’¢|, wiec mamy ograniczenie gorne przez staly. Z tego
wynika, ze catka po potokregu I'yp zbiega przy R — oo do zera. To oznacza, ze catka
po I'g zbiega do szukanej catki. Catke po I'g liczymy jednak przez residua. Funkcja ma
bieguny w s = 0 i s = 1. Elementarny rachunek daje teze.

Przypominamy sobie, ze ¢(z) = >_, ., A(n). To oznacza, ze

/¢ )ds =Y " A(n)(x — n)

n<x

Dowod tej tozsamosci pozostawiam jako é¢wiczenie (mozna zapisaé ¢ jako sume funkeji
indykatorowych). Korzystajac ze wzoru

Co--g

uzyskujemy:

[ e Cag) = [ oo [ = Sm (1 1) =i

100 100 ,n<$
U

Stwierdzenie 4. Wzor ((s) sie przedtuza do funkcji meromorficznej na C majacej
biegun wytacznie w s = 1. Funkcja ¢ nie zeruje si¢ na zbiorze Re s = 1. Ponadto:

e Dla dowolnego ¢ > 0, istnieje Cs taka, ze jesli o > 1, |7| > 1, to przy s = o + it
1
((s)
e Dla dowolnego ¢ > 0, istnieje Cs taka, ze jesli o > 1, |7| > 1, to przy s = o + it

¢ (s)| < Csl7)°.

' S C§|T|(S.

W szczegolnoscei, ze Stwierdzenia 4 wyniknie sensowne oszacowanie na pochodng lo-
garytmiczna (, z ktorego skorzystamy.

Stwierdzenie 5. Zachodzi ¢ (z) ~ %2
Dowad. Skorzystamy ze Stwierdzenia 4. Oznaczmy:
s+1 /
F(s) = — (—<($>>.
s(s+1) ¢(s)

Ustalmy kontury catkowania jak na rysunku ?7. Pozostawiamy jako ¢wiczenie przeko-
nanie sie, ze fﬂ{ F(s) = va F(s). Z drugiej strony, na mocy twierdzenia o residuach.

L. F(s)ds = ress—1 F(s) + L/ F(s)ds.

211 271

Residuum F' jest tatwe do policzenia, gdyz s — ﬁ jest holomorficzna w 1, a pochodna

logarytmiczna ¢ ma residuum réwne rzedowi bieguna (z zasady argumentu), czyli —1.

To oznacza, ze

l,Z

ress—; F'(s) = 5

Zatem, Stwierdzenie 5 bedzie udowodnione, jesli wyszacujemy, ze

[ﬂ F(s)ds
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RYSUNEK 2. Trzy kontury catkowania. 7. to Re z = ¢. 71+ to kontury w
wiekszosci zawarte w Re z = 1, ale obchodzace punkt 1 (biegun () z lewej
lub prawej strony.
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RYSUNEK 3. Podzial konturu +;_ na kawalki.

z2

jest male w poréwnaniu z %

Aby wyszacowal catki,
dzielimy kontur na kawatki.

Zielony kontur v;_ z rysunku 2 na fragmenty. Dokltadniej, ustalamy 7" > 0 oraz ¢
(dobrane do T') tak aby w prostokacie:

{z€C: Reze[1—-46,9], [Imz| <T}

funkcja ¢ nie miata zer. Odcinki s, v3, 74 sa fragmentami tego konturu. Kluczowe jest
szacowanie catki po v i v5. W tym celu, na mocy Stwierdzenia 4 mozemy dobrac takie
A, zeby dla s € v1 U~s, s = 1 + it zachodzilo

¢'(s)
¢(s)

oo |t 1/2
/ |F(s)|ds < C’le/ ||—2dt.
V5

r t

< AJt|2,

A wiec



Jako, ze caltka jest zbiezna, mozemy wzia¢ tak duze T', zeby

/ |F(s)|ds < ex”.
V5

Analogiczne szacowanie dziala dla ;. Dla 73, szacujemy pochodng logarytmiczna (
przez stata. No i wtedy mamy

T
/ F(s)|ds < / Coa? .
73 =T

Biorac teraz = dostatecznie duze (w stosunku do 7T'), mozemy przyjaé, ze ta calka jest
mniejsza niz ex?. Calke po 7, i v4 rowniez doéé latwo szacujemy. Koriczac dowod. [



