
Twierdzenie Riemanna o liczbach pierwszych.
Według książki Stein – Shakarchi

Głównym celem wykładu jest udowodnienie następującego twierdzenia.

Twierdzenie 1. Niech π : R → Z będzie funkcją zliczającą liczby pierwsze. To znaczy,

π(x) = #{p : p ≤ x p pierwsza}.
Wtedy istnieją stałe A,B > 0 takie, że dla x dostatecznie dużych

A
x

log x
≤ π(x) ≤ B

x

log x
.

Często twierdzenie formułuje się jako π(x) ∼ x
log x

.
Aby dowieść twierdzenia, wprowadzamy funkcję Czebyszewa:

ψ(x) =
∑
pm≤x

log p,

czyli sumujemy wielkość log p po tych liczbach, które są potęgami p mniejszymi od x.
Na przykład:

ψ(10) = log 2 + log 3 + log 2 + log 5 + log 7 + log 2 + log 3.

Można zapisać ψ(x) za pomocą funkcji von Mangolta

Λ(n) =

{
log p : n = pn

0: w przeciwnym przypadku.

Stwierdzenie 1. Funkcja π(x) asymptotycznie zachowuje się jak x
log x

jeśli ψ(x) ∼ x.

Dowód. Piszemy najpierw

ψ(x) =
∑
p≤x

⌊
log x

log p

⌋
log p ≤

∑
p≤x

log x

log p
log p = log x

∑
p≤x

1 = π(x) log x.

W szczególności, jeśli ψ(x) ≥ Ax dla dostatecznie dużych x, to π(x) ≤ Ax/ log x.
W drugą stronę, wybieramy α ∈ (0, 1). Wtedy

ψ(x) ≥
∑
p≤x

log p ≥
∑

xα≤p≤x

log p ≥ (π(x)− π(xα)) log xα.

To zaś oznacza, że
ψ(x) + απ(xα) log x ≥ απ(x) log x.

Wiemy, że π(x) ≤ x (bo π zlicza tylko część liczb). Możemy więc dobrać tak α,C, żeby
π(xα) log x było mniejsze niż Cx dla dostatecznie dużych C. Jeśli ψ(x) ≤ Bx, dostajemy
że

π(x) log x ≤ α−1(B + C)x.

To dowodzi tezy. □

Uwaga 1. Tak naprawdę pokazujemy trochę więcej. Jeśli lim ψ(x)
x

= 1, to limπ(x) log x
x

=
1.

Funkcja ψ nie jest idealna. Idealną funkcją będzie funkcja pierwotna ψ.

Stwierdzenie 2. Niech
ψ1(x) =

∫ x

1

ψ(y)dy.

Jeśli ψ1(x) ∼ x2

2
, to ψ(x) ∼ x.

1



Uwaga 2. Tak naprawdę moglibyśmy napisać ψ1(x) ∼ x2. Tak naprawdę pokazujemy
jednak, że jeśli limψ1(x)

2
x2

= 1, to limψ(x)/x = 1.

Dowód. Przyjmijmy 0 < α < 1 < β. Jako, że ψ jest niemalejąca, zachodzi
1

(1− α)x

∫ x

αx

ψ(u)du ≤ ψ(x) ≤ 1

(β − 1)x

∫ βx

x

ψ(u)du.

Wartość w mianowniku to długość przedziału.
Z tego wynika, że

ψ(x) ≤ 1

(β − 1)x
(ψ1(βx)− ψ1(x)).

Piszemy to inaczej
ψ(x)

x
≤ 1

β − 1

(
ψ1(βx)

β2x2
β2 − ψ1(x)

x2

)
.

Przykładamy lim sup do tej nierówności. Jeśli lim
∑ ψ1(x)

x2
= 1

2
, to otrzymujemy:

lim sup
ψ(x)

x
≤ 1

β − 1

(
1

2
β2 − 1

2

)
=

1

2
(β + 1).

Teraz β było dowolne większe od 1, stąd lim sup ψ(x)
x

≤ 1. Dowód w drugą stronę jest
analogiczny. □

Do tej pory właściwie nie używaliśmy funkcji analitycznych. Teraz wykorzystamy.

Definicja 1. Funkcja ζ(s) jest zadana wzorem
∑∞

n=1
1
ns .

Wzór definiujący funkcję ζ ma sens dla s ∈ R, s > 1. Poczyńmy obserwację.

Lemat 1. Jeśli x ∈ R>0 oraz s ∈ C, to |xs| = xRe s.

Rozwiązanie. Piszemy x = eβ oraz s = a + bi. Wtedy xs = eaβ+bβi, czyli |xs| = eaβ =
xa = xRe s. □

Z Lematu wnosimy, że szereg definiujący funkcję ζ jest zbieżny dla Re s > 1 oraz
jednostajnie zbieżny na Re s ≥ 1 + δ dla dowolnego δ > 0. Stąd ζ jest funkcją holomor-
ficzną.

Lemat 2. Dla dowolnego s takiego, że Re s > 1 zachodzi

ζ(s) =
∏
p

1

1− p−s
,

gdzie iloczyn bierzemy po wszystkich liczbach pierwszych.

Rozwiązanie. Kwestię zbieżności iloczynu zostawiamy jako ćwiczenie. Mamy
1

1− x
= 1 + x+ x2 + . . .

Stąd:
1

1− p−s
= 1 + p−s + p−2s + . . . .

A zatem ∏
p

1

1− p−s
= (1 + 2−s + 2−2s + . . . )(1 + 3−s + . . . ) . . .

Ustalmy n. Zapiszmy n jako pk11 · · · pkrr . W iloczynie po lewej stronie, wyrażenie n−s

pojawi się dokładnie raz: wymnażając skończenie wiele wyrażeń różnych od 1 i k1-te
wyrażenie przy p1 itp. □



c+ iR

c− iR

0−1

Rysunek 1. Kontur w dowodzie (2).

Teraz przyda się nam jeszcze jeden lemat. Dalsze oszacowania będą podane, ale udo-
wodnione następnym razem.

Lemat 3. Zachodzi ζ′

ζ
(s) = −

∑∞
n=1

Λ(n)
ns , o ile Re s > 1.

Rozwiązanie. Mamy ζ′

ζ
= d

ds
log ζ(s). Piszemy

log ζ(s) = log
∏
p

1

1− p−s
=

∑
p

log
1

1− p−s
= −

∑
p

log(1− p−s).

Teraz

− log(1− x) = x+
x2

2
+
x3

3
+ . . . ,

czyli

(1) log(ζ) = −
∑
p

log(1− p−s) =
∑

δ(n)n−s,

gdzie δ(n) = 1
m

jeśli n = pm, i δ(n) = 0 w przeciwnym przypadku. Różniczkujemy (1)
wyraz po wyrazie. Przypuśćmy, że n = pm

d

ds
δ(n)n−s = − log nδ(n)n−s = −m log p

1

m
n−s = −Λ(n)n−s.

□

Stwierdzenie 3. Dla dowolnego c > 1 oraz x > 0 zachodzi:

ψ1(x) =
1

2πi

∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds.

Dowód. Najpierw udowodnimy następujący wzór:

(2)
1

2πi

∫ c+i∞

c−i∞

as

s(s+ 1)
ds =

{
0: a ∈ (0, 1]

1− 1
a
: a > 1.

Aby dowieść tego wzoru wybieramy kontur ΓR jak na rysunku. Składa się on z odcinka
Γ1R i półokręgu Γ2R. Zapiszmy x = et dla pewnego t > 0. Zapisujemy∫

ΓR

ets

s(s+ 1)
ds.



Na całym ΓR zachodzi |etz| ≤ |etc|, więc mamy ograniczenie górne przez stałą. Z tego
wynika, że całka po półokręgu Γ2R zbiega przy R → ∞ do zera. To oznacza, że całka
po ΓR zbiega do szukanej całki. Całkę po ΓR liczymy jednak przez residua. Funkcja ma
bieguny w s = 0 i s = 1. Elementarny rachunek daje tezę.

Przypominamy sobie, że ψ(x) =
∑

n≤x Λ(n). To oznacza, że∫ x

0

ψ(s)ds =
∑
n<x

Λ(n)(x− n).

Dowód tej tożsamości pozostawiam jako ćwiczenie (można zapisać ψ jako sumę funkcji
indykatorowych). Korzystając ze wzoru

ζ ′

ζ
(s) = −

∞∑
n=1

Λ(n)

ns

uzyskujemy:∫ c+i∞

c−i∞

xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
ds = x

∞∑
n=1

∫ c+∞

c−∞
Λ(n)

∫ c+i∞

c−i∞

(x/n)s

s(s+ 1)
ds = x

∑
n≤x

Λ(n)
(
1− x

n

)
= ψ1(x)

□

Stwierdzenie 4. Wzór ζ(s) się przedłuża do funkcji meromorficznej na C mającej
biegun wyłącznie w s = 1. Funkcja ζ nie zeruje się na zbiorze Re s = 1. Ponadto:

• Dla dowolnego δ > 0, istnieje Cδ taka, że jeśli σ > 1, |τ | ≥ 1, to przy s = σ + iτ∣∣∣∣ 1

ζ(s)

∣∣∣∣ ≤ Cδ|τ |δ.

• Dla dowolnego δ > 0, istnieje Cδ taka, że jeśli σ > 1, |τ | ≥ 1, to przy s = σ + iτ

|ζ ′(s)| ≤ C ′
δ|τ |δ.

W szczególności, ze Stwierdzenia 4 wyniknie sensowne oszacowanie na pochodną lo-
garytmiczną ζ, z którego skorzystamy.

Stwierdzenie 5. Zachodzi ψ1(x) ∼ x2

2
.

Dowód. Skorzystamy ze Stwierdzenia 4. Oznaczmy:

F (s) =
xs+1

s(s+ 1)

(
−ζ

′(s)

ζ(s)

)
.

Ustalmy kontury całkowania jak na rysunku ??. Pozostawiamy jako ćwiczenie przeko-
nanie się, że

∫
γc
F (s) =

∫
γ1+

F (s). Z drugiej strony, na mocy twierdzenia o residuach.

1

2πi

∫
γ1+

F (s)ds = ress=1 F (s) +
1

2πi

∫
γ1−

F (s)ds.

Residuum F jest łatwe do policzenia, gdyż s 7→ xs+1

s(s+1)
jest holomorficzna w 1, a pochodna

logarytmiczna ζ ma residuum równe rzędowi bieguna (z zasady argumentu), czyli −1.
To oznacza, że

ress=1 F (s) =
x2

2
.

Zatem, Stwierdzenie 5 będzie udowodnione, jeśli wyszacujemy, że∫
γ1−

F (s)ds



γcγ1+γ1−

Rysunek 2. Trzy kontury całkowania. γc to Re z = c. γ1± to kontury w
większości zawarte w Re z = 1, ale obchodzące punkt 1 (biegun ζ) z lewej
lub prawej strony.

γ1−

γ1

γ2γ4

γ3

γ5

Rysunek 3. Podział konturu γ1− na kawałki.

jest małe w porównaniu z x2

2
.

Aby wyszacować całki,
dzielimy kontur na kawałki.

Zielony kontur γ1− z rysunku 2 na fragmenty. Dokładniej, ustalamy T > 0 oraz δ
(dobrane do T ) tak aby w prostokącie:

{z ∈ C : Re z ∈ [1− δ, δ], | Im z| ≤ T}
funkcja ζ nie miała zer. Odcinki γ2, γ3, γ4 są fragmentami tego konturu. Kluczowe jest
szacowanie całki po γ1 i γ5. W tym celu, na mocy Stwierdzenia 4 możemy dobrać takie
A, żeby dla s ∈ γ1 ∪ γ5, s = 1 + it zachodziło∣∣∣∣ζ ′(s)ζ(s)

∣∣∣∣ ≤ A|t|1/2.

A więc ∫
γ5

|F (s)|ds ≤ C1x
2

∫ ∞

T

|t|1/2

t2
dt.



Jako, że całka jest zbieżna, możemy wziąć tak duże T , żeby∫
γ5

|F (s)|ds ≤ εx2.

Analogiczne szacowanie działa dla γ1. Dla γ3, szacujemy pochodną logarytmiczną ζ
przez stałą. No i wtedy mamy∫

γ3

|F (s)|ds ≤
∫ T

−T
C2x

2−δdt.

Biorąc teraz x dostatecznie duże (w stosunku do T ), możemy przyjąć, że ta całka jest
mniejsza niż εx2. Całkę po γ2 i γ4 również dość łatwo szacujemy. Kończąc dowód. □


