Khovanov invariants for knots

Maciej Borodzik

Institute of Mathematics, University of Warsaw

Warsaw, 2018
A knot is a possibly tangled circle in \mathbb{R}^3:

Maciej Borodzik

Khovanov invariants for knots
A knot is a possibly tangled circle in \mathbb{R}^3:

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is “a knot with more than one component”.

Maciej Borodzik

Khovanov invariants for knots
A knot is a possibly tangled circle in \mathbb{R}^3:

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \rightarrow \mathbb{R}^3$. A *link* is “a knot with more than one component”.

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
</table>
| A knot in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \rightarrow \mathbb{R}^3$. A link is “a knot with more than one component”.

![Knot diagram](image)
A knot is a possibly tangled circle in \mathbb{R}^3:

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is “a knot with more than one component”.

![Diagram of a knot and a link](image-url)
A knot is a possibly tangled circle in \mathbb{R}^3:

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is “a knot with more than one component”.

Maciej Borodzik

Khovanov invariants for knots
A knot invariant assigns a simpler (more tractable) object to a knot;
A *knot invariant* assigns a simpler (more tractable) object to a knot;
Should be the same no matter how the knot is drawn;
Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;
A knot invariant assigns a simpler (more tractable) object to a knot;
Should be the same no matter how the knot is drawn;
Should be computable;
Should have a meaning;
A knot invariant assigns a simpler (more tractable) object to a knot;

Should be the same no matter how the knot is drawn;

Should be computable;

Should have a meaning;

Should really distinguish knots.
Polynomial invariants

- Assign a polynomial to a knot.
Assign a polynomial to a knot.

- **Alexander polynomial** defined in 1928.
Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- **Jones polynomial** discovered in 1984.
Assign a polynomial to a knot.
Alexander polynomial defined in 1928.
Jones polynomial discovered in 1984.
HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.
Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1/2}$ and $t^{-1/2}$, so Laurent polynomials. HOMFLYPT is a two-variable polynomial.
Assign a polynomial to a knot.
Alexander polynomial defined in 1928.
Jones polynomial discovered in 1984.
HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1/2}$ and $t^{-1/2}$, so Laurent polynomials. HOMFLYPT is a two-variable polynomial.
There are many more polynomial invariants, but these are the most basic. They have a special property.
Definition (Informal)

A skein relation is a relation between the polynomials for links differing at a single place of the diagram.
A skein relation is a relation between the polynomials for links differing at a single place of the diagram.
Let A be the Alexander polynomial and J be the Jones polynomial.

Let A be the Alexander polynomial and J be the Jones polynomial.

Mathematical expressions:

\[A(L_+ + (t) - A(L_0 - (t)) = (t^{1/2} - t^{-1/2}) A(L_0(t)) \]

\[t - 1 J(L_+ + (t) - t J(L_0 - (t)) = (t^{1/2} - t^{-1/2}) J(L_0(t)) \]

Remark: There are various normalizations of the Alexander and Jones polynomials, which lead to different looking formulas.
Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L^+}(t) - A_{L^-}(t) = (t^{1/2} - t^{-1/2})A_{L_0}(t)$.

![Diagram of knots](image)
Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_+}(t) - A_{L_-}(t) = (t^{1/2} - t^{-1/2})A_{L_0}(t)$.

- For Jones: $t^{-1}J_{L_+}(t) - tJ_{L_-}(t) = (t^{1/2} - t^{-1/2})J_{L_0}(t)$.

Remark: There are various normalizations of the Alexander and Jones polynomials, which lead to different looking formulas.
Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_+}(t) - A_{L_-}(t) = (t^{1/2} - t^{-1/2})A_{L_0}(t)$.

- For Jones: $t^{-1}J_{L_+}(t) - tJ_{L_-}(t) = (t^{1/2} - t^{-1/2})J_{L_0}(t)$.

Remark

There are various normalizations of the Alexander and Jones polynomials, which lead to different looking formulas.
<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Multiplicative for connected sums</td>
<td></td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
</tbody>
</table>
Alexander polynomial vs. Jones polynomial

<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
</tbody>
</table>

Maciej Borodzik

Khovanov invariants for knots
Jones vs. Alexander

<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td></td>
</tr>
</tbody>
</table>

Maciej Borodzik

Khovanov invariants for knots
<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicative for connected sums</td>
<td>as well</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order $2, 3, 4$</td>
</tr>
</tbody>
</table>
Alexander polynomial vs. Jones polynomial

<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order 2, 3, 4</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td></td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots</td>
<td>as well</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order $2, 3, 4$</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order 2, 3, 4</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>There are knots with $A(t) \equiv 1$</td>
<td></td>
</tr>
<tr>
<td>Alexander polynomial</td>
<td>Jones polynomial</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Satisfies $A(t^{-1}) = A(t)$</td>
<td>No such relation</td>
</tr>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order $2, 3, 4$</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>There are knots with $A(t) \equiv 1$</td>
<td>??</td>
</tr>
</tbody>
</table>
Alexander polynomial vs. Jones polynomial

<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order $2, 3, 4$</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>There are knots with $A(t) \equiv 1$</td>
<td>??</td>
</tr>
<tr>
<td>Topological meaning perfectly understood</td>
<td>??</td>
</tr>
</tbody>
</table>

Maciej Borodzik

Khovanov invariants for knots
Alexander polynomial

$\Delta_K(t) = \pm 1$ for knots

All polynomials satisfying above points can be realized

There are knots with $A(t) \equiv 1$

Topological meaning perfectly understood

Jones polynomial

J determined on roots of unity of order $2, 3, 4$

??

??

We know very little beyond combinatorics
Alexander polynomial vs. Jones polynomial

<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order 2, 3, 4</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>There are knots with $A(t) \equiv 1$</td>
<td>??</td>
</tr>
<tr>
<td>Topological meaning perfectly understood</td>
<td>We know very little beyond combinatorics</td>
</tr>
<tr>
<td>Computable in polynomial time</td>
<td></td>
</tr>
</tbody>
</table>

Note:
- $\Delta_K(t)$ is the Alexander polynomial.
- J is the Jones polynomial.
- $A(t)$ is another polynomial related to knots.
- The Alexander polynomial's condition is a general property that holds for all knots.
- The Jones polynomial's condition is specific to knots determined on roots of unity of certain orders.
- The existence of knots satisfying certain polynomial conditions is an open question.
- The topological meaning of these invariants is understood to a limited extent.
- Computationally, these invariants can be computed efficiently.
<table>
<thead>
<tr>
<th>Alexander polynomial</th>
<th>Jones polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta_K(t) = \pm 1$ for knots</td>
<td>J determined on roots of unity of order $2, 3, 4$</td>
</tr>
<tr>
<td>All polynomials satisfying above points can be realized</td>
<td>??</td>
</tr>
<tr>
<td>There are knots with $A(t) \equiv 1$</td>
<td>??</td>
</tr>
<tr>
<td>Topological meaning perfectly understood</td>
<td>We know very little beyond combinatorics</td>
</tr>
<tr>
<td>Computable in polynomial time</td>
<td>Most likely exponential time needed</td>
</tr>
</tbody>
</table>
We specify *resolutions* of a knot diagram.
We specify resolutions of a knot diagram.
We specify *resolutions* of a knot diagram.

Take a knot.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.

0-resolution of the first crossing.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.

1-resolution of the first crossing.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.

0-resolution of the second crossing.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.

010 resolution.

Any triple \(\{0, 1\} \) gives a resolution.
We specify *resolutions* of a knot diagram.

Take a knot. Enumerate its crossings.

010 resolution.

Any triple \(\{0, 1\}^3 \) gives a resolution.
Cube of resolution

000

001
2 circles

010
2 circles

100
2 circles

110
1 circle

111
2 circles

011
1 circle

101
1 circle

111
2 circles
Cube of resolution

000
3 circles

001
2 circles

010
2 circles

011
1 circle

100
2 circles

101
1 circle

110
1 circle

111
2 circles

Maciej Borodzik
Khovanov invariants for knots
Cube of resolution

000 \((q + q^{-1})^3 \)
010 \((q + q^{-1})^2 \)
100 \((q + q^{-1})^2 \)
110 \((q + q^{-1})^2 \)
001 \((q + q^{-1})^2 \)
011 \((q + q^{-1}) \)
101 \((q + q^{-1}) \)
111 \((q + q^{-1})^2 \)

Maciej Borodzik
Khovanov invariants for knots
Cube of resolution

Maciej Borodzik
Khovanov invariants for knots
Cube of resolution

\[(q + q^{-1})^3\] \(3(q + q^{-1})^2\) \(3(q + q^{-1})\) \((q + q^{-1})^2\)
Cube of resolution

Maciej Borodzik
Khovanov invariants for knots
Cube of resolution

\[(q + q^{-1})^3 q^0 - 3(q + q^{-1})^2 q^1 + 3(q + q^{-1})q^2 - (q + q^{-1})^2 q^3 \]
We have

$$(q^{-1} + q)^3 - 3q(q^{-1} + q)^2 + 3q^2(q^{-1} + q) - q^3(q^{-1} + q) =$$

$$- q^6(q^{-2} - q^{-3} + q^{-4} - q^{-9})$$
We have

\[(q^{-1} + q)^3 - 3q(q^{-1} + q)^2 + 3q^2(q^{-1} + q) - q^3(q^{-1} + q) =
\]
\[- q^6(q^{-2} - q^{-3} + q^{-4} - q^{-9})\]

In this way we obtain the Jones polynomial for the (negative) trefoil. Factor \(-q^{-6}\) is a normalization.
Khovanov’s approach
Khovanov’s approach

Main Idea

Replace factor $q + q^{-1}$ in the cube of resolution by a two-dimensional vector space V.
Khovanov’s approach

Khovanov invariants for knots

Maciej Borodzik

1 circle

1 circle

2 circles

2 circles

3 circles

2 circles

1 circle

2 circles

1 circle

2 circles

1 circle

1 circle

2 circles

1 circle

2 circles
Khovanov’s approach

Maciej Borodzik
Khovanov invariants for knots
Explanation

The meaning of V^3 is the tensor product. An element in V^3 is a linear combination of triples (a, b, c) (written usually $a \otimes b \otimes c$).

We have $a_1 \otimes b \otimes c + a_2 \otimes b \otimes c = (a_1 + a_2) \otimes b \otimes c$, but not $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 = (a_1 + a_2) \otimes (b_1 + b_2) \otimes (c_1 + c_2)$.

$\dim V^\otimes 3 = (\dim V)^3$ and not $3 \dim V$!
Khovanov’s approach

Maciej Borodzik

Khovanov invariants for knots
Khovanov’s approach

$V \otimes^3 V \otimes^2 V \oplus V \otimes^2 V \oplus V \otimes^2 V \oplus V \oplus V \oplus V \oplus V \otimes^2$
Khovanov’s approach

\[V^3 \oplus V^2 \oplus V^2 \oplus V^2 \oplus V \oplus V \oplus V \oplus V \]
Khovanov’s approach

\[V \otimes^3 \oplus V \otimes^2 \oplus V \otimes^2 \oplus V \oplus V \oplus V \oplus V \otimes^2 \]
An arrow can either merge two circles into one.
Maps in Khovanov’s approach

- An arrow can either merge two circles into one.
- Or split one into two circles.
An arrow can either merge two circles into one.
Or split one into two circles.
In the first case we need a map $V \otimes V \rightarrow V$.
An arrow can either merge two circles into one.
Or split one into two circles.
In the first case we need a map $V \otimes V \to V$.
In the second case we need a map $V \to V \otimes V$.
Maps in Khovanov’s approach

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \to V$.
- In the second case we need a map $V \to V \otimes V$.
- Without extra structure, it is hard to define such maps consistently.
Think of V as a space of affine functions $ax + b$ with $a, b \in \mathbb{Z}$.
Maps in Khovanov homology

Think of V as a space of affine functions $ax + b$ with $a, b \in \mathbb{Z}$.

The map $V \otimes V \rightarrow V$ is the linear part of the product:

$1 \otimes 1 \mapsto 1$, $x \otimes 1 \mapsto x$, $1 \otimes x \mapsto x$, $x \otimes x \mapsto 0$.
Think of V as a space of affine functions $ax + b$ with $a, b \in \mathbb{Z}$.

The map $V \otimes V \to V$ is the linear part of the product:

- $1 \otimes 1 \mapsto 1$, $x \otimes 1$, $1 \otimes x \mapsto x$, $x \otimes x \mapsto 0$.

The map from $V \to V \otimes V$ ‘copies’ the function on the generators:

- $x \mapsto x \otimes x$, $1 \mapsto 1 \otimes 1$.
Maps in Khovanov homology

Think of V as a space of affine functions $ax + b$ with $a, b \in \mathbb{Z}$.

The map $V \otimes V \rightarrow V$ is the linear part of the product:

$1 \otimes 1 \mapsto 1$, $x \otimes 1$, $1 \otimes x \mapsto x$, $x \otimes x \mapsto 0$.

The map from $V \rightarrow V \otimes V$ ‘copies’ the function on the generators: $x \mapsto x \otimes x$, $1 \mapsto 1 \otimes 1$.

Combining these maps (and after some sign adjustments) we obtain maps replacing $+$ and $-$ signs.
Global maps. Revised

\[V^3 \xrightarrow{d_0} V^2 \oplus V^2 \oplus V^2 d_1 \xrightarrow{d_2} V^2 \]
Theorem (Khovanov 2000)

The maps d_0, d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups $\ker d_i / \im d_{i-1}$ are independent of the knot diagram.
Theorem (Khovanov 2000)

The maps d_0, d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups $\ker d_i / \im d_{i-1}$ are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_0, \ldots, V_s together with linear maps $d_i : V_i \rightarrow V_{i+1}$ satisfying $d_i \circ d_{i-1} = 0$ for all i is called a cochain complex. The groups $\ker d_i / \im d_{i-1}$ are called cohomology groups.
Theorem (Khovanov 2000)

The maps d_0, d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups $\ker d_i/ \text{im } d_{i-1}$ are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_0, \ldots, V_s together with linear maps $d_i: V_i \to V_{i+1}$ satisfying $d_i \circ d_{i-1} = 0$ for all i is called a cochain complex. The groups $\ker d_i/ \text{im } d_{i-1}$ are called cohomology groups.

Yes, I know, saying ‘a vector space over \mathbb{Z}’ is an abuse.
Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor’s conjecture (on the unknotting number of torus knots).
- Computational complexity is daunting.
Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor’s conjecture (on the unknotted number of torus knots).
Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor’s conjecture (on the unknotting number of torus knots).
- Computational complexity is daunting.
We said that Khovanov invariant is cohomology of a chain complex.
We said that Khovanov invariant is cohomology of a chain complex.

Many people are familiar with cohomology of topological spaces.
We said that Khovanov invariant is cohomology of a chain complex.

Many people are familiar with cohomology of topological spaces.

Question

Given a knot K can one construct a topological space X such that the cohomology of X is the Khovanov invariant of K? Is there a consistent construction?
First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).
First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).

New invariants of knots coming from cohomological operations (2013).

Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).
First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).

New invariants of knots coming from cohomological operations (2013).

Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).

Invited to the ICM in 2018.
A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z}/p.

Periodic knots
A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z}/p.

Which knots are p-periodic?
A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z}/p.
Which knots are p-periodic?
A knot is \(p \)-periodic if it admits a diagram invariant under rotation by \(\mathbb{Z}/p \).

Which knots are \(p \)-periodic?

periodic

\[\text{periodic} \]
A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z}/p.

Which knots are p-periodic?
A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z}/p.

Which knots are p-periodic?
Politarczyk 2014: Construction of equivariant Khovanov invariants;
Politarczyk 2014: Construction of equivariant Khovanov invariants;
Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.
Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.

Question

Does there exists equivariant Khovanov homotopy type?
Equivariant Khovanov homotopy type

Theorem (B. — Politarczyk — Silvero 2018, Stoffregen — Zhang 2018)

There exists equivariant Khovanov homotopy type.
Theorem (B. — Politarczyk — Silvero 2018, Stoffregen — Zhang 2018)

There exists equivariant Khovanov homotopy type.

BPS approach proves also that equivariant cohomology of this space is Politarczyk’s equivariant Khovanov invariant.
Construct HOMLYPT homotopy type;
Construct HOMLYPT homotopy type;
Construct a homotopy type that reflects and intertwines the quantum grading.
Construct HOMLYPT homotopy type;
Construct a homotopy type that reflects and intertwines the quantum grading.
Understand, why Khovanov invariants work.
Perspectives

- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Understand, why Khovanov invariants work.
- Find a simpler way to calculate Khovanov invariants.