Heegaard Floer homologies and rational cuspidal curves
joint with Ch. Livingston

Maciej Borodzik
www.mimuw.edu.pl/~mcboro

Institute of Mathematics, University of Warsaw

Edinburgh, September 2013
For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.

If $p = 4$, $q = 7$, the semigroup is $S_{4,7} = \langle 0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots \rangle$.

The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.

We have $\#G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu - 1$.

The gap function is defined as $I(m) := \#\{x \in \mathbb{Z}, x \geq m, x \notin S_{4,7}\}$.

We have $I_{4,7}(5) = \#\{5, 6, 9, 10, 13, 17\} = 6$.

Always $I(0) = \mu/2$, $I(x) = 0$ for $x \geq \mu$ and $I(-n) = n + \mu/2$ for $n > 0$.

Maciej Borodzik
Heegaard Floer homologies and rational cuspidal curves
Semigroups of singular points

- For a singularity \(x^p - y^q = 0 \) with \(p, q \) coprime, the semigroup is generated by \(p \) and \(q \).
- If \(p = 4, q = 7 \), the semigroup is \(S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots) \).
Semigroups of singular points

- For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If $p = 4$, $q = 7$, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots)$.
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.
Semigroups of singular points

- For a singularity \(x^p - y^q = 0 \) with \(p, q \) coprime, the semigroup is generated by \(p \) and \(q \).
- If \(p = 4, q = 7 \), the semigroup is
 \[S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots) \].
- The gap sequence is \(G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\} \).
- We have \(\# G_{4,7} = \mu/2 \) and \(\max\{x \in G_{4,7}\} = 17 = \mu - 1 \).
Semigroups of singular points

- For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If $p = 4$, $q = 7$, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots)$.
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.
- We have $\#G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu - 1$. This is a special property of semigroups of singular points!
Semigroups of singular points

- For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If $p = 4$, $q = 7$, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots)$.
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.
- We have $\#G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu - 1$.
- The gap function is defined as

$$I(m) := \#\{x \in \mathbb{Z}, x \geq m, x \notin S_{4,7}\}.$$
Semigroups of singular points

- For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If $p = 4, q = 7$, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots)$.
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.
- We have $\# G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu - 1$.
- The gap function is defined as

$$I(m) := \# \{x \in \mathbb{Z}, \ x \geq m, \ x \notin S_{4,7}\}.$$

- We have

$$I_{4,7}(5) = \# \{5, 6, 9, 10, 13, 17\} = 6.$$
Semigroups of singular points

- For a singularity $x^p - y^q = 0$ with p, q coprime, the semigroup is generated by p and q.
- If $p = 4$, $q = 7$, the semigroup is $S_{4,7} := (0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, \ldots)$.
- The gap sequence is $G_{4,7} = \{1, 2, 3, 5, 6, 9, 10, 13, 17\}$.
- We have $\#G_{4,7} = \mu/2$ and $\max\{x \in G_{4,7}\} = 17 = \mu - 1$.
- The gap function is defined as

 $$I(m) := \#\{x \in \mathbb{Z}, \ x \geq m, \ x \notin S_{4,7}\}.$$

- We have
 $$I_{4,7}(5) = \#\{5, 6, 9, 10, 13, 17\} = 6.$$

- Always $I(0) = \mu/2$, $I(x) = 0$ for $x \geq \mu$ and $I(-n) = n + \mu/2$ for $n > 0$.

Maciej Borodzik
Heegaard Floer homologies and rational cuspidal curves
For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4, 7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

$$\Delta_{4, 7}(t) = 1 + (t - 1) (t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17}).$$

This is the Alexander polynomial of the knot of the singularity.

Maciej Borodzik

Heegaard Floer homologies and rational cuspidal curves
The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$
The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have
The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is

$$\{1, 2, 3, 5, 6, 9, 10, 13, 17\},$$

so we have

$$\Delta_{4,7}(t) = 1 + (t - 1) \left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17} \right).$$
The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is $\{1, 2, 3, 5, 6, 9, 10, 13, 17\}$, so we have

$$\Delta_{4,7}(t) = 1 + (t - 1) \left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17}\right)$$

or:

$$\Delta_{4,7} = 1 - t + t^4 - t^5 + t^7 - t^9 + t^{11} - t^{13} + t^{14} - t^{17} + t^{18}.$$
The Alexander polynomial

For a semigroup S with a gap sequence G we define

$$\Delta_S(t) = 1 + (t - 1) \sum_{j \in G} t^j.$$

For the semigroup $S_{4,7}$, the gap sequence is

$$\{1, 2, 3, 5, 6, 9, 10, 13, 17\},$$

so we have

$$\Delta_{4,7}(t) = 1 + (t - 1) \left(t + t^2 + t^3 + t^5 + t^6 + t^9 + t^{10} + t^{13} + t^{17} \right)$$

or:

$$\Delta_{4,7} = 1 - t + t^4 - t^5 + t^7 - t^9 + t^{11} - t^{13} + t^{14} - t^{17} + t^{18}.$$

This is the Alexander polynomial of the knot of the singularity.
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^{9} + t^{7} - t^{5} + t^{4} - t + 1. \]
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

\[(0,9) \quad 9 = 18/2\]
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

\[9 = g(T_{4,7}) \]
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^{9} + t^{7} - t^{5} + t^{4} - t + 1. \]

Symmetry reflects symmetry of \(\Delta \).
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

9 = \(g(T_{4,7}) \)
18 - 17 = 1
17 - 14 = 3
The staircase

$$\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1.$$
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

9 = \(g(T_{4,7}) \)

18 - 17 = 1
17 - 14 = 3
14 - 13 = 1
13 - 11 = 2
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

\[9 = g(T_{4,7}) \]
\[18 - 17 = 1 \]
\[17 - 14 = 3 \]
\[14 - 13 = 1 \]
\[13 - 11 = 2 \]
\[\ldots \text{and so on} \]
The staircase

\[\Delta_{4,7} = t^{18} - t^{17} + t^{14} - t^{13} + t^{11} - t^9 + t^7 - t^5 + t^4 - t + 1. \]

9 = g(T_{4,7})

18 − 17 = 1

17 − 14 = 3

14 − 13 = 1

13 − 11 = 2

... and so on

Symmetry reflects
symmetry of \(\Delta \)
The staircase complex
The staircase complex

- Place \mathbb{Z}_2 for each vertex.

Type A vertices.

Type B vertices.

Bifiltration is given by coordinates.

Absolute grading of a type A vertex is 0, of type B is 1.

Maciej Borodzik

Heegaard Floer homologies and rational cuspidal curves
The staircase complex

- Place \mathbb{Z}_2 for each vertex.
- Differential is given by lines as depicted.

Type A vertices.

Type B vertices.

Bifiltration is given by coordinates.

Absolute grading of a type A vertex is 0, of type B is 1.
The staircase complex

- Place \mathbb{Z}_2 for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.

Bifiltration is given by coordinates.

Absolute grading of a type A vertex is 0, of type B is 1.
The staircase complex

- Place \mathbb{Z}_2 for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.

Maciej Borodzik
Heegaard Floer homologies and rational cuspidal curves
The staircase complex

- Place \mathbb{Z}_2 for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.
The staircase complex

- Place \mathbb{Z}_2 for each vertex.
- Differential is given by lines as depicted.
- Type A vertices.
- Type B vertices.
- Bifiltration is given by coordinates.
- Absolute grading of a type A vertex is 0, of type B is 1.
Now there comes something really scary

We will tensor the staircase complex by \(\mathbb{Z}_2[U, U^{-1}] \).
Now there comes something really scary

We will tensor the staircase complex by $\mathbb{Z}_2[U, U^{-1}]$. Are you ready for the challenge?
Tensoring

Tensor $\text{St}(K)$ by $\mathbb{Z}_2[U, U^{-1}]$.

U changes the filtration level by $(-1, -1)$ and the absolute grading by -2.

The resulting complex is $\text{CFK}^\infty(K)$ if K is an algebraic knot. Actually, it is enough that K is so-called an L–space knot.
Tensoring

Tensor $\text{St}(K)$ by $\mathbb{Z}_2[U, U^{-1}]$.

U changes the filtration level by $(-1, -1)$ and the absolute grading by -2.

The resulting complex is $\text{CFK}^\infty(K)$ if K is an algebraic knot.

Actually, it is enough that K is so called an L–space knot.

Maciej Borodzik

Heegaard Floer homologies and rational cuspidal curves
Tensoring

Tensor $\text{St}(K)$ by $\mathbb{Z}_2[U, U^{-1}]$.

U changes the filtration level by $(-1, -1)$ and the absolute grading by -2.

The resulting complex is $\text{CFK}^\infty(K)$ if K is an algebraic knot. Actually, it is enough that K is so-called an L–space knot.
Tensoring

- Tensor $\text{St}(K)$ by $\mathbb{Z}_2[U, U^{-1}]$.
- U changes the filtration level by $(-1, -1)$ and the absolute grading by -2.
- The resulting complex is $\text{CFK}^\infty(K)$ if K is an algebraic knot.
Tensoring

Tensor $\text{St}(K)$ by $\mathbb{Z}_2[U, U^{-1}]$.

U changes the filtration level by $(-1, -1)$ and the absolute grading by -2.

The resulting complex is $\text{CFK}^\infty(K)$ if K is an algebraic knot.

Actually, it is enough that K is so called an L–space knot.
The function $J(m)$

$m \in \mathbb{Z}$. Here $m = 1$.

Maciej Borodzik
Heegaard Floer homologies and rational cuspidal curves
The function $J(m)$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$.
- Look at the quotient C_+.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves
The function $J(m)$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$. Look at the quotient C_+.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
The function $J(m)$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$. Look at the quotient C_+.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
The function $J(m)$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$. Look at the quotient C_+.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
The function $J(m)$

$$J(m) = \min_{(v_1, v_2) \in \text{Vert}_A} \max(v_1, v_2 - m)$$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$. Look at the quotient C_+.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.
The function $J(m)$

- $m \in \mathbb{Z}$. Here $m = 1$.
- The subcomplex $C(i < 0, j < m)$.
 Look at the quotient C_+.
- Define $J(m)$ as the minimal absolute grading of an element non-trivial in homology of the quotient.

$$J(m) = \min_{(v_1,v_2) \in \text{Vert}_A} \max(v_1, v_2 - m)$$
The function \(J(m) \)

\[
J(m) = \min_{(v_1, v_2) \in \text{Vert}_A} \max(v_1, v_2 - m)
\]

- \(m \in \mathbb{Z} \). Here \(m = 1 \).
- The subcomplex \(C(i < 0, j < m) \).
- Look at the quotient \(C_+ \).
- Define \(J(m) \) as the minimal absolute grading of an element non-trivial in homology of the quotient.

\[
J(m) = l(m - g).
\]
Now you may start wondering:
Now you may start wondering:

Oh where, oh where has the true mathematics gone?
Proposition

Let K be an L–space knot.
Proposition

Let K be an algebraic knot.
Proposition

Let K be an L–space knot. Let $q > 2g(K)$ and $m \in [-q/2, q/2]$. Then

$$d(S^3_q(K), s_m) = \frac{(q - 2m)^2 - q}{4q} - 2J(m).$$
Proposition

Let K be an L–space knot. Let $q > 2g(K)$ and $m \in [-q/2, q/2]$. Then

$$d(S^3_q(K), s_m) = \frac{(q - 2m)^2 - q}{4q} - 2l(m + g).$$

Theorem

If M^3 bounds a smooth negative definite manifold W^4 and s is a spinc structure on M^3, that is a restriction of a spinc structure t on W, then

$$d(M, s) \geq \frac{c_1^2(t) - 2\chi(W) - 3\sigma(W)}{4}.$$
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in \mathbb{CP}^2.
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- N neighbourhood of C, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. W is rational homology ball.
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in \mathbb{CP}^2.
- N neighbourhood of C, $M = \partial N$, $W = \mathbb{CP}^2 \setminus N$. W is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities.
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- N neighbourhood of C, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. W is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
Applications. The FLMN conjecture.

- \(C\) degree \(d\) rational cuspidal curve in \(\mathbb{C}P^2\).
- \(N\) neighbourhood of \(C\), \(M = \partial N\), \(W = \mathbb{C}P^2 \setminus N\). \(W\) is rational homology ball.
- Then \(M = S^3_{d^2}(K)\), \(K\) is connected sum of links of singularities. Suppose that \(C\) is unicuspidal.
- The \(\text{spin}^c\) structures that extend over \(W\) are those with \(m = kd\) for \(d\) odd or \(kd/2\) for \(d\) even, \(k \in \mathbb{Z}\).
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- N neighbourhood of C, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. W is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
- The spin^c structures that extend over W are those with $m = kd$ for d odd or $kd/2$ for d even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, d–invariant must vanish for s_m.

Theorem (—,Livingston, 2013)

If l is the gap function associated with the single singular point, $j = 0, \ldots, d - 3$. Then

$$l(jd + 1) = \frac{(d - j - 1)(d - j - 2)}{2}.$$
Applications. The FLMN conjecture.

- C degree d rational cuspidal curve in $\mathbb{C}P^2$.
- N neighbourhood of C, $M = \partial N$, $W = \mathbb{C}P^2 \setminus N$. W is rational homology ball.
- Then $M = S^3_{d^2}(K)$, K is connected sum of links of singularities. Suppose that C is unicuspidal.
- The spin^c structures that extend over W are those with $m = kd$ for d odd or $kd/2$ for d even, $k \in \mathbb{Z}$.
- By Ozsváth and Szabó, d–invariant must vanish for s_m.

Theorem (—, Livingston, 2013)

If I is the gap function associated with the single singular point, $j = 0, \ldots, d - 3$. Then

$$I(jd + 1) = \frac{(d - j - 1)(d - j - 2)}{2}.$$

Generalizations apply for many singular points.
Applications. Semigroup semicontinuity.

- K_1, K_2 two knots. Suppose there is a PSI cobordism from K_1 to K_2 with k double points.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L–space knots, g_1 and g_2 their genera, I_1 and I_2 gap functions, then for any $m \in \mathbb{Z}$:

$$I_2(m + g_2 + k) \leq I_1(m + g_1).$$

Example

Set K_1 unknot, $K_2 = T_{p, q}$, $m = 0$, $k = g_2 - 1$. Then

$$I_2(2g_2 - 1) = 1 \neq I_1(g_1) = 0.$$

This detects the unknotting number of torus knots.
Applications. Semigroup semicontinuity.

- K_1, K_2 two knots. Suppose there is a PSI cobordism from K_1 to K_2 with k double points.
- W_q is a cobordism between $S^3_q(K_1)$ and $S^3_{q+4k}(K_2)$.
Applications. Semigroup semicontinuity.

- K_1, K_2 two knots. Suppose there is a PSI cobordism from K_1 to K_2 with k double points.
- W_q is a cobordism between $S^3_q(K_1)$ and $S^3_{q+4k}(K_2)$.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L–space knots, g_1 and g_2 their genera, l_1 and l_2 gap functions, then for any $m \in \mathbb{Z}$:

$$l_2(m + g_2 + k) \leq l_1(m + g_1).$$
Applications. Semigroup semicontinuity.

- K_1, K_2 two knots. Suppose there is a PSI cobordism from K_1 to K_2 with k double points.
- W_q is a cobordism between $S^3_q(K_1)$ and $S^3_{q+4k}(K_2)$.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L–space knots, g_1 and g_2 their genera, I_1 and I_2 gap functions, then for any $m \in \mathbb{Z}$:

$$I_2(m + g_2 + k) \leq I_1(m + g_1).$$

Example

Set K_1 unknot, $K_2 = T_{p,q}$, $m = 0$, $k = g_2 - 1$. Then $I_2(2g_2 - 1) = 1 \not\leq I_1(g_1) = 0$.

Maciej Borodzik
Heegaard Floer homologies and rational cuspidal curves
Applications. Semigroup semicontinuity.

- K_1, K_2 two knots. Suppose there is a PSI cobordism from K_1 to K_2 with k double points.
- W_q is a cobordism between $S^3_q(K_1)$ and $S^3_{q+4k}(K_2)$.

Theorem (—, Livingston 2013)

If K_1 and K_2 are two L–space knots, g_1 and g_2 their genera, l_1 and l_2 gap functions, then for any $m \in \mathbb{Z}$:

$$l_2(m + g_2 + k) \leq l_1(m + g_1).$$

Example

Set K_1 unknot, $K_2 = T_{p,q}$, $m = 0$, $k = g_2 - 1$. Then $l_2(2g_2 - 1) = 1 \not\leq l_1(g_1) = 0$.

This detects the unknotting number of torus knots.
In the case of δ–constant deformation, $k = g_2 - g_1$.

Maciej Borodzik Heegaard Floer homologies and rational cuspidal curves
Applications. Semigroup semicontinuity.

- In the case of δ–constant deformation, $k = g_2 - g_1$.
- We get $\#\Gamma_2 \cap [0, m) \leq \#\Gamma_1 \cap [0, m)$. Semigroup semicontinuity property.
Applications. Semigroup semicontinuity.

- In the case of δ–constant deformation, $k = g_2 - g_1$.
- We get $\#\Gamma_2 \cap [0, m) \leq \#\Gamma_1 \cap [0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).
Applications. Semigroup semicontinuity.

- In the case of δ–constant deformation, $k = g_2 - g_1$.
- We get $\# \Gamma_2 \cap [0, m) \leq \# \Gamma_1 \cap [0, m)$. Semigroup semicontinuity property.
- First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).
- Another proof by Javier Fernandez de Bobadilla.
In the case of δ–constant deformation, $k = g_2 - g_1$.

We get $\# \Gamma_2 \cap [0, m) \leq \# \Gamma_1 \cap [0, m)$. Semigroup semicontinuity property.

First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).

Another proof by Javier Fernandez de Bobadilla.

In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.
In the case of δ–constant deformation, $k = g_2 - g_1$.

We get $\#\Gamma_2 \cap [0, m) \leq \#\Gamma_1 \cap [0, m)$. Semigroup semicontinuity property.

First obtained by Gorsky–Némethi in January 2013 (without δ–constant assumption).

Another proof by Javier Fernandez de Bobadilla.

In general weak, but it uses smooth structure, unlike semicontinuity of spectrum.

$(6; 7)$ cannot be perturbed to $(4; 9)$, even though the spectrum allows it.
...you must have been waiting long time for this slide.
...you must have been waiting long time for this slide.

Thank you!
... you must have been waiting long time for this slide.

Thank you!
...you must have been waiting long time for this slide.

Thank you!
Thank you!

...you must have been waiting long time for this slide.
...you must have been waiting long time for this slide.

Thank you!
Perspectives

- Generalize for curves with higher genus (joint project with Ch. Livingston).
- Generalize for curves in Hirzebruch surfaces (joint project with K. Moe).
- Relate staircases to lattice homology by András Némethi.
- Can one classify all the rational unicuspidal curves in $\mathbb{C}P^2$? For many cusps other tools are more useful.