Khovanov homology and periodic knots

Maciej Borodzik
www.mimuw.edu.pl/~mcboro
joint with Wojciech Politarczyk

Institute of Mathematics, University of Warsaw

Bern, June 2017
Periodic knots

Definition

A knot $K \subset S^3$ is p–periodic if it admits a rotational symmetry with the symmetry axis disjoint from K.
Periodic knots

Definition

A knot $K \subset S^3$ is p–periodic if it admits a rotational symmetry with the symmetry axis disjoint from K.
Theorem (Murasugi criterion)

Suppose $K \subset S^3$ is a p-periodic knot with p a prime. Let Δ be the Alexander polynomial of K and Δ' be the Alexander polynomial of the quotient knot K/\mathbb{Z}_p. Let l be the absolute value of linking number of K with the symmetry axis. Then $\Delta_0 | \Delta$ and up to multiplication by a power of t we have

$$\Delta \equiv \Delta_0^p (1 + t + \ldots + t^{l-1})^{p-1} \mod p. \quad (1)$$
Theorem (Murasugi criterion)

Suppose $K \subset S^3$ is a p-periodic knot with p a prime. Let Δ be the Alexander polynomial of K and Δ' be the Alexander polynomial of the quotient knot K/\mathbb{Z}_p. Let l be the absolute value of linking number of K with the symmetry axis. Then $\Delta_0 | \Delta$ and up to multiplication by a power of t we have

$$\Delta \equiv \Delta_0^p (1 + t + \ldots + t^{l-1})^{p-1} \mod p.$$ \hspace{1cm} (1)

Often one can find factors of Δ over integers.
Suppose \mathbb{Z}_p acts on S^3 keeping K;
Naik’s criterion

- Suppose \mathbb{Z}_p acts on S^3 keeping K;
- Then \mathbb{Z}_p acts on $\Sigma^m(K)$ – k–fold branched cover;
Naik’s criterion

- Suppose \mathbb{Z}_p acts on S^3 keeping K;
- Then \mathbb{Z}_p acts on $\Sigma^m(K) - k$–fold branched cover;
- Then \mathbb{Z}_p acts on $H_1(\Sigma^m(K))$.

Look at \mathbb{Z}_q^m summands of $H_1(\Sigma^m(K))$.

\mathbb{Z}_p can fix it, or permute different such summands. The number of fixed components is controlled by $|\Delta'(-1)|$.

Restrictions for $H_1(\Sigma^m(K))$ of periodic knots.
Naik’s criterion

- Suppose \(\mathbb{Z}_p \) acts on \(S^3 \) keeping \(K \);
- Then \(\mathbb{Z}_p \) acts on \(\Sigma^m(K) \) – \(k \)-fold branched cover;
- Then \(\mathbb{Z}_p \) acts on \(H_1(\Sigma^m(K)) \).
- Look at \(\mathbb{Z}_{q^m} \) summands of \(H_1(\Sigma^m(K)) \).
Naik’s criterion

- Suppose \mathbb{Z}_p acts on S^3 keeping K;
- Then \mathbb{Z}_p acts on $\Sigma^m(K)$ – k–fold branched cover;
- Then \mathbb{Z}_p acts on $H_1(\Sigma^m(K))$.
- Look at \mathbb{Z}_{qm} summands of $H_1(\Sigma^m(K))$.
- \mathbb{Z}_p can fix it, or permute different such summands.
Naik’s criterion

- Suppose \mathbb{Z}_p acts on S^3 keeping K;
- Then \mathbb{Z}_p acts on $\Sigma^m(K) – k$–fold branched cover;
- Then \mathbb{Z}_p acts on $H_1(\Sigma^m(K))$.
- Look at \mathbb{Z}_{q^m} summands of $H_1(\Sigma^m(K))$.
- \mathbb{Z}_p can fix it, or permute different such summands.
- The number of fixed components is controlled by $|\Delta'(−1)|$.
Naik’s criterion

- Suppose \mathbb{Z}_p acts on S^3 keeping K;
- Then \mathbb{Z}_p acts on $\Sigma^m(K)$ – k–fold branched cover;
- Then \mathbb{Z}_p acts on $H_1(\Sigma^m(K))$.
- Look at \mathbb{Z}_{q^m} summands of $H_1(\Sigma^m(K))$.
- \mathbb{Z}_p can fix it, or permute different such summands.
- The number of fixed components is controlled by $|\Delta'(−1)|$.
- Restrictions for $H_1(\Sigma^m(K))$ of periodic knots.
Consider $\Sigma^k(K)$;

Jabuka–Naik criterion
Jabuka–Naik criterion

- Consider $\Sigma^k(K)$;
- \mathbb{Z}_p acts on the spin-c structures.
Jabuka–Naik criterion

- Consider $\Sigma^k(K)$;
- \mathbb{Z}_p acts on the spin-c structures.
Jabuka–Naik criterion

- Consider $\Sigma^k(K)$;
- \mathbb{Z}_p acts on the spin-c structures.
- These invariants appear with multiplicities.
Jabuka–Naik criterion

- Consider $\Sigma^k(K)$;
- \mathbb{Z}_p acts on the spin-c structures.
- These invariants appear with multiplicities.
- If K is quasi-alternating, then $\Sigma^2(K)$ is an L–space and d-invariants are computable.
Hillman, Livingston and Naik generalize the Murasugi’s periodicity criterion for twisted Alexander polynomials.
Hillman, Livingston and Naik generalize the Murasugi’s periodicity criterion for twisted Alexander polynomials.

Computable, if we know a representation.
Twisted Alexander Polynomial criterion

- Hillman, Livingston and Naik generalize the Murasugi’s periodicity criterion for twisted Alexander polynomials.
- Computable, if we know a representation.
- It is known when knot group admits a representation into a dihedral group.
Hillman, Livingston and Naik generalize the Murasugi’s periodicity criterion for twisted Alexander polynomials.

Computable, if we know a representation.

It is known when knot group admits a representation into a dihedral group.

Other representations are sometimes harder to find.

None of the above criteria can be used for $\Delta = 1$ knots. The TAP criterion is possible, but requires finding non-trivial representations.
Theorem

If K is p–periodic, then $J_K(q) - J_K(q)^{-1} \equiv 0 \mod (q^p - q^{-p}, p)$.
Theorem

If K is p–periodic, then $J_K(q) - J_K(q)^{-1} \equiv 0 \mod (q^p - q^{-p}, p)$.

Effective for $p > 3$.

Jones and HOMFLYPT
Theorem

If K is p–periodic, then $J_K(q) - J_K(q)^{-1} \equiv 0 \mod (q^p - q^{-p}, p)$.

Effective for $p > 3$.

Theorem (HOMFLYPT criterion)

Let \mathcal{R} be a unital subring in $\mathbb{Z}[a^{\pm 1}, z^{\pm 1}]$ generated by $a, a^{-1}, \frac{a + a^{-1}}{z}$ and z. For a prime number p let \mathcal{I}_p be the ideal in \mathcal{R} generated by p and z^p. If a knot K is p-periodic and $P(a, z)$ is its HOMFLYPT polynomial, then

$$P(a, z) \equiv P(a^{-1}, z) \mod \mathcal{I}_p.$$
Theorem

If K is p–periodic, then $J_K(q) - J_K(q)^{-1} \equiv 0 \mod (q^p - q^{-p}, p)$.

Effective for $p > 3$.

Theorem (HOMFLYPT criterion)

Let \mathcal{R} be a unital subring in $\mathbb{Z}[a^{\pm 1}, z^{\pm 1}]$ generated by a, a^{-1}, $\frac{a + a^{-1}}{z}$ and z. For a prime number p let \mathcal{I}_p be the ideal in \mathcal{R} generated by p and z^p. If a knot K is p-periodic and $P(a, z)$ is its HOMFLYPT polynomial, then

$$P(a, z) \equiv P(a^{-1}, z) \mod \mathcal{I}_p.$$

Przytycki shows an effective way of applying Theorem 4.
Equivariant Khovanov homology

For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.

Definition (Politarczyk)
For any Λ–module M define the equivariant Khovanov homology as

$$EKh(L; M) = \text{Ext}_\Lambda(M, \text{CKh}(D; \mathbb{R}))$$

Does not depend on the choice of the diagram.

In a similar way one can show the existence of equivariant Lee theory.

Most important example: $M = \Lambda$.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)
Khovanov homology and periodic knots
Bern, June 2017
Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.
- Take a ring R. Then $\text{CKh}(D; R)$ has a structure of $\Lambda = R[\mathbb{Z}_p]$–module.

Definition (Politarczyk) For any Λ–module M define the equivariant Khovanov homology as $\text{EKh}(L; M) = \text{Ext}^\Lambda(M, \text{CKh}(D; R))$. Does not depend on the choice of the diagram. In a similar way one can show the existence of equivariant Lee theory. Most important example: $M = \Lambda$.

Maciej Borodzik (Institute of Mathematics, University of Warsaw)

Khovanov homology and periodic knots

Bern, June 2017 8 / 20
Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.
- Take a ring R. Then $\text{CKh}(D; R)$ has a structure of $\Lambda = R[\mathbb{Z}_p]$–module.

Definition (Politarczyk)

For any Λ–module M define the equivariant Khovanov homology as

$$\text{EKh}(L; M) = \text{Ext}_\Lambda(M, \text{CKh}(D; R)).$$
For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.

Take a ring R. Then $\text{CKh}(D; R)$ has a structure of $\Lambda = R[\mathbb{Z}_p]$–module.

Definition (Politarczyk)

For any Λ–module M define the equivariant Khovanov homology as

$$\text{EKh}(L; M) = \text{Ext}_\Lambda(M, \text{CKh}(D; R)).$$

Does not depend on the choice of the choice of the diagram.
Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.
- Take a ring R. Then $\text{CKh}(D; R)$ has a structure of $\Lambda = R[\mathbb{Z}_p]$–module.

Definition (Politarczyk)

For any Λ–module M define the equivariant Khovanov homology as

$$\text{EKh}(L; M) = \text{Ext}_\Lambda(M, \text{CKh}(D; R)).$$

- Does not depend on the choice of the diagram.
- In a similar way one can show the existence of equivariant Lee theory.
Equivariant Khovanov homology

- For a periodic diagram D, the group \mathbb{Z}_p permutes the cube of resolution.
- Take a ring R. Then $\text{CKh}(D; R)$ has a structure of $\Lambda = R[\mathbb{Z}_p]$–module.

Definition (Politarczyk)
For any Λ–module M define the equivariant Khovanov homology as

$$\text{EKh}(L; M) = \text{Ext}_\Lambda(M, \text{CKh}(D; R)).$$

- Does not depend on the choice of the diagram.
- In a similar way one can show the existence of equivariant Lee theory.
- Most important example: $M = \Lambda$.
We can define $EKh_d(L) = EKh(L; \mathbb{Z}[\xi_d])$ for any $d|p$. This is the third gradation, coming from representations of \mathbb{Z}_p.
Equivariant Khovanov. Properties.

- We can define $\text{EKh}_d(L) = \text{EKh}(L; \mathbb{Z}[\xi_d])$ for any $d|p$. This is the third gradation, coming from representations of \mathbb{Z}_p.
- If $R = \mathbb{Z}_m$ and p is invertible in R, then $\text{Ext}^i_{\Lambda} = 0$ for $i > 0$ and $\text{EKh}(L; \Lambda) = \text{Kh}(L; R)$.
Equivariant Khovanov. Properties.

- We can define $EKh_d(L) = EKh(L; \mathbb{Z}[\xi_d])$ for any $d|p$. This is the third gradation, coming from representations of \mathbb{Z}_p.
- If $R = \mathbb{Z}_m$ and p is invertible in R, then $\text{Ext}^i_\Lambda = 0$ for $i > 0$ and $EKh(L; \Lambda) = Kh(L; R)$.
- On the other hand we have a Schur decomposition of $\text{Hom}_\Lambda(\Lambda; CKh(D))$.
There exists an equivariant Lee spectral sequence (if $R = \mathbb{Z}_q$, $q > 2$, or $R = \mathbb{Z}$ or $R = \mathbb{Q}$).
Equivariant Lee spectral sequence

- There exists an equivariant Lee spectral sequence (if $R = \mathbb{Z}_q$, $q > 2$, or $R = \mathbb{Z}$ or $R = \mathbb{Q}$).
- Equivariant Lee homology for knots is easy.
There exists an equivariant Lee spectral sequence (if $R = \mathbb{Z}_q$, $q > 2$, or $R = \mathbb{Z}$ or $R = \mathbb{Q}$).

Equivariant Lee homology for knots is easy.

The equivariant Khovanov polynomial and the equivariant Lee polynomial differ by a specific polynomial.
There exists an equivariant Lee spectral sequence (if $R = \mathbb{Z}_q$, $q > 2$, or $R = \mathbb{Z}$ or $R = \mathbb{Q}$).

Equivariant Lee homology for knots is easy.

The equivariant Khovanov polynomial and the equivariant Lee polynomial differ by a specific polynomial.

And $EKh(L; \Lambda)$ splits as a sum over different representations of Λ.
Main criterion

Theorem (—, Politarczyk, 2017)

Let K be a p^n-periodic, where p is an odd prime. Suppose that $F = \mathbb{Q}$ or F_r, for a prime r such that $r \neq p$, and r has maximal order in the multiplicative group mod p^n. Set $c = 1$ if $F = F_2$ and $c = 2$ otherwise. Then the Khovanov polynomial $KhP(K; F)$ decomposes as

$$KhP(K; F) = P_0 + \sum_{j=1}^{n} (p^j - p^{j-1})P_j,$$

(2)

where

$$P_0, P_1, \ldots, P_n \in \mathbb{Z}[q^{\pm 1}, t^{\pm 1}],$$

are Laurent polynomials such that
1 \quad \mathcal{P}_0 = q^{s(K,F)}(q + q^{-1}) + \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{0j}(t, q), \text{ and the polynomials } S_{0j} \text{ have non-negative coefficients;}
Main criterion

1. $P_0 = q^{s(K,F)}(q + q^{-1}) + \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{0j}(t, q)$, and the polynomials S_{0j} have non-negative coefficients;

2. $P_k = \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{kj}(t, q)$ and the polynomials S_{kj} have non-negative coefficients for $1 \leq k \leq n$,

If the width of $K_h(K,F)$ is equal to w, then $S_{kj} = 0$ for $j > c_2w$.

Without (4) the condition is trivial!
Main criterion

1. $P_0 = q^{s_{(K,F)}}(q + q^{-1}) + \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{0j}(t, q)$, and the polynomials S_{0j} have non-negative coefficients;

2. $P_k = \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{kj}(t, q)$ and the polynomials S_{kj} have non-negative coefficients for $1 \leq k \leq n$,

3. If the width of $Kh(K; \mathbb{F})$ is equal to w, then $S_{kj} = 0$ for $j > \frac{c}{2}w$.

Main criterion

1. \(P_0 = q^{s(K; \mathbb{F})}(q + q^{-1}) + \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{0j}(t, q) \), and the polynomials \(S_{0j} \) have non-negative coefficients;

2. \(P_k = \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{kj}(t, q) \) and the polynomials \(S_{kj} \) have non-negative coefficients for \(1 \leq k \leq n \),

3. If the width of \(Kh(K; \mathbb{F}) \) is equal to \(w \), then \(S_{kj} = 0 \) for \(j > \frac{c}{2}w \).

4. \(P_k(-1, q) - P_{k+1}(-1, q) \equiv P_k(-1, q^{-1}) - P_{k+1}(-1, q^{-1}) \pmod{q^{p^{n-k}} - q^{-p^{n-k}}} \);
Main criterion

1. $P_0 = q^{s(K, F)}(q + q^{-1}) + \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{0j}(t, q)$, and the polynomials S_{0j} have non-negative coefficients;

2. $P_k = \sum_{j=1}^{\infty} (1 + tq^{2cj})S_{kj}(t, q)$ and the polynomials S_{kj} have non-negative coefficients for $1 \leq k \leq n$,

3. If the width of $Kh(K; F)$ is equal to w, then $S_{kj} = 0$ for $j > \frac{c}{2}w$.

4. $P_k(-1, q) - P_{k+1}(-1, q) \equiv P_k(-1, q^{-1}) - P_{k+1}(-1, q^{-1}) \pmod{q^{p^{n-k}} - q^{-p^{n-k}}}$;

Without (4) the condition is trivial!
Example

Consider knot $15n135221$.
Example

Consider knot $15n135221$.
\[\Delta(15n1335221) = 1. \text{ No Alexander criterion.} \]
\[\Delta(15n1335221) = 1. \text{ No Alexander criterion.} \]
\[\text{No Naik criterion either.} \]
△(15n1335221) = 1. No Alexander criterion.

No Naik criterion either.

No Jabuka–Naik criterion.
\(\Delta(15n1335221) = 1 \). No Alexander criterion.

No Naik criterion either.

No Jabuka–Naik criterion.

Passes MPT criterion for period 5.
\[\Delta(15n1335221) = 1. \] No Alexander criterion.
No Naik criterion either.
No Jabuka–Naik criterion.
Passes MPT criterion for period 5.
Let’s check Khovanov.
\[\Delta(15n1335221) = 1. \text{ No Alexander criterion.} \]
\[\text{No Naik criterion either.} \]
\[\text{No Jabuka–Naik criterion.} \]
\[\text{Passes MPT criterion for period 5.} \]
\[\text{Let’s check Khovanov.} \]
\[\text{We do not need to calculate equivariant Khovanov.} \]
\[\Delta(15n1335221) = 1. \] No Alexander criterion.
No Naik criterion either.
No Jabuka–Naik criterion.
Passes MPT criterion for period 5.
Let’s check Khovanov.
We do not need to calculate equivariant Khovanov.
We work over \(\mathbb{Z}_3\).
Khovanov homology
Khovanov Polynomial

$$\text{KhP} = q + q^{-1} + (1 + tq^4)(t^{-7} q^{-15} + 3t^{-6} q^{-13} + t^{-5} q^{-11} +$$
$$+ 3t^{-4} q^{-9} + t^{-3} q^{-9} + 3t^{-2} q^{-7} + t^{-1} q^{-5} + 3t^{-1} q^{-3} + q^{-3} + q^{-1} + 3tq +$$
$$+ t^2 q^3 + 3t^3 q^3 + t^4 q^5 + 3t^5 q^7 + t^6 q^9 + 4(t^{-5} q^{-11} + t^{-4} q^{-9} + 2t^{-3} q^{-7} + 2t^{-2} q^{-5} +$$
$$+ t^{-1} q^{-5} + t^{-1} q^{-3} + 2tq^{-1} + q^{-3} + q^{-1} + 2t^2 q + t^3 q^3 + t^4 q^5)).$$
Tentative decomposition

\[\text{KhP} = q + q^{-1} + (1 + tq^4)S'_01 + 4(1 + tq^4)S'_11, \]

where
Tentative decomposition

\[\text{KhP} = q + q^{-1} + (1 + tq^{4}) S'_{01} + 4(1 + tq^{4}) S'_{11}, \]

where

\[S'_{01} = t^{-7} q^{-15} + 3t^{-6} q^{-13} + t^{-5} q^{-11} + 3t^{-4} q^{-9} + t^{-3} q^{-9} + 3t^{-2} q^{-7} + t^{-1} q^{-5} + 3t^{-1} q^{-3} + q^{-3} + q^{-1} + 3tq + t^2 q^3 + 3t^3 q^3 + t^4 q^5 + 3t^5 q^7 + t^6 q^9, \]

\[S'_{11} = t^{-5} q^{-11} + t^{-4} q^{-9} + 2t^{-3} q^{-7} + 2t^{-2} q^{-5} + t^{-1} q^{-5} + t^{-1} q^{-3} + 2tq^{-1} + q^{-3} + q^{-1} + 2t^2 q + t^3 q^3 + t^4 q^5. \]
Main criterion

According to the main criterion define

$$\tilde{\Xi}(q) = (q + q - 1 + (1 + tq^4)(S'_0 - S'_1)) \mid t = -1$$

and set $$\Xi := (\tilde{\Xi}(q) - \tilde{\Xi}(q - 1)) \mod q^5 - q^7$$

We have then $$\Xi = -10q^5 + 5q^3 - 5q^7 + 10q^9$$

$$\Xi$$ is not zero, but we might get zero if we choose different $$S'_0$$ and $$S'_1$$.

In general checking all possibilities requires 20736 possibilities.
According to the main criterion define
\[\tilde{\Xi}(q) = \left(q + q^{-1} + (1 + tq^4)(S'_{01} - S'_{11}) \right)_{t=-1} \]
and set
\[\Xi := (\tilde{\Xi}(q) - \tilde{\Xi}(q^{-1})) \mod q^5 - q^{-5}. \]
Main criterion

According to the main criterion define
\[\tilde{\Xi}(q) = (q + q^{-1}) + (1 + tq^4)(S_{01}' - S_{11}')|_{t=-1} \]
and set
\[\Xi := (\tilde{\Xi}(q) - \tilde{\Xi}(q^{-1})) \mod q^5 - q^{-5}. \]
We have then
\[\Xi = -10q + 5q^3 - 5q^7 + 10q^9. \]
According to the main criterion define
\[\tilde{\Xi}(q) = (q + q^{-1} + (1 + tq^4)(S'_{01} - S'_{11})|_{t=-1} \text{ and set} \]
\[\Xi := (\tilde{\Xi}(q) - \tilde{\Xi}(q^{-1})) \mod q^5 - q^{-5}. \text{ We have then} \]
\[\Xi = -10q + 5q^3 - 5q^7 + 10q^9. \]

\(\Xi \) is not zero, but we might get zero if we choose different \(S'_{01} \) and \(S'_{11} \).
According to the main criterion define
\[\widetilde{\Xi}(q) = (q + q^{-1}) + (1 + tq^4)(S'_{01} - S'_{11})|_{t=-1} \] and set
\[\Xi := (\widetilde{\Xi}(q) - \widetilde{\Xi}(q^{-1})) \mod q^5 - q^{-5}. \] We have then
\[\Xi = -10q + 5q^3 - 5q^7 + 10q^9. \]

\(\Xi \) is not zero, but we might get zero if we choose different \(S'_{01} \) and \(S'_{11} \). In general checking all possibilities requires 20736 possibilities.
Speed up

Let $\delta = at^u q^i$. The change $S'_{11} \mapsto S'_{11} - \delta$, $S'_{01} \mapsto S'_{01} + 4\delta$ induces the change

$$\Xi \mapsto \Xi + aT_{ij},$$

where

$$T_{ij} = (-1)^i5(-q^{-j-4} + q^{-j} - q^{i} + q^{i+4}) \mod (q^5 - q^{-5}).$$
Let $\delta = at^u q^i$. The change $S'_{11} \mapsto S'_{11} - \delta$, $S'_{01} \mapsto S'_{01} + 4\delta$ induces the change

$$\Xi \mapsto \Xi + aT_{ij},$$

where

$$T_{ij} = (-1)^i 5(-q^{-j-4} + q^{-j} - q^j + q^{j+4}) \mod (q^5 - q^{-5}).$$

Reducing modulo $q^5 - q^{-5}$ we get $T_{ij} = (-1)^i R_{j'}$ with $j' = j \mod 10$ and

$$R_1 = R_5 = 5(q - q^9),$$

$$R_3 = 10(q^3 - q^7),$$

$$R_7 = R_9 = 5(-q - q^3 + q^7 + q^9).$$
δ is such that $S_{11}' - \delta$ and δ have non-negative coefficients. Hence the question is, whether

$$\Xi = a_1 R_1 + a_3 R_3 + a_7 R_7$$

with

- $a_1 \in \{-1, 0, 1, 2, 3, 4, 5, 6\}$,
- $a_3 \in \{-3, -2, -1, 0\}$,
- $a_7 \in \{-4, -3, -2, -1, 0, 1, 2\}$.
\(\delta \) is such that \(S'_{11} - \delta \) and \(\delta \) have non-negative coefficients. Hence the question is, whether

\[
\Xi = a_1 R_1 + a_3 R_3 + a_7 R_7
\]

with

\[
\begin{align*}
 a_1 & \in \{-1, 0, 1, 2, 3, 4, 5, 6\}, \\
 a_3 & \in \{-3, -2, -1, 0\}, \\
 a_7 & \in \{-4, -3, -2, -1, 0, 1, 2\}.
\end{align*}
\]

This is impossible. The knot is not periodic.
Questions

- Khovanov-Rozanski homology?
Questions

- Khovanov-Rozanski homology?
- Linking form on $H_1(\Sigma^2(K))$ (generalize Naik)?
Questions

- Khovanov-Rozanski homology?
- Linking form on $H_1(\Sigma^2(K))$ (generalize Naik)?
- Blanchfield form of periodic links (A. Conway)?
Questions

- Khovanov-Rozanski homology?
- Linking form on $H_1(\Sigma^2(K))$ (generalize Naik)?
- Blanchfield form of periodic links (A. Conway)?
- Twisted Blanchfield forms?
Questions

- Khovanov-Rozanski homology?
- Linking form on $H_1(\Sigma^2(K))$ (generalize Naik)?
- Blanchfield form of periodic links (A. Conway)?
- Twisted Blanchfield forms?
- Is $15n166130$ 5–periodic?