
Problem 13.4

For any t ∈ C∗ we have an invertible matrix Mt ∈Mn×n(C) such that for any v ∈ Cn we have t · v = Mtv.

Observation 1. If t is of finite order as a group element, i.e. tk = 1 for some k ∈ N, then Mt is diagonalizable.
This is because Mk

t = id, so the Jordan form of Mt cannot have 0 on the diagonal and cannot have 1 over the
diagonal.

Observation 2. Let µk ⊂ C∗ be the group of the k-th roots of unity. Then for t ∈ µk the matrix Mt is
diagonalizable, because t has a finite order. For all t ∈ µk matrices Mt have a common diagonal basis, because
they all are powers of the group generator and the basis chosen for the generator works for all of them.

Observation 3. For any t1, t2 of finite order there is a common diagonal basis of Mt1 and Mt2 . This is because
Mt1 and Mt2 commute. One may construct the common diagonal basis by taking t3 of finite order such that
both t1 and t2 are powers of t3, and diagonalizing Mt3 . Thus there is a common diagonal basis for any finite set
of groups µk1 , . . . , µki of roots of unity.

Observation 4. There is a common diagonal basis for elements of finite order in C∗. To see this, for each k we
define Bk as the subdivision into a direct sum of eigenspaces of Cn coming from the common diagonalization
for µ2, . . . , µk. If k1 > k2 then Bk1 is a refinement of Bk2 . But in the chain B2, B3, B4, . . . there can be only
finitely many jumps, because we subdivide a finite-dimensional vector space.

Conclusion. The subset of all elements of finite order is dense in Zariski topology in C∗, because it is infinite.
Thus its product witn Cn is dense in Zariski topology in C∗ × Cn. Recall that the map defining the action
f : C∗ × Cn → Cn is polynomial. We take the map g : C∗ × Cn → Cn corresponding to the diagonal action of
the finite order elements: for an eigenvector with eigenvalue m we put tm on the matrix diagonal, then change
coordinates to the standard basis of Cn and write it as a map from C∗ × Cn to Cn. Then f − g vanishes on
a dense subset, so it vanishes everywhere. That is, the decomposition of Cn into eigenspaces which we used to
describe g is the desired grading.

Problem 12.4

We didn’t have a complete argument that for A = C[x, y]/(y2 − x3) the cotangent module ΩA/C has only one
relation coming from the equation, i.e. ΩA/C ' A⊕2/(2ydy − 3x2dx). One can prove it imitating the argument
that for S = k[x1, . . . , xn] we have ΩS/k ' Sdx1 ⊕ . . .⊕ Sdxn. Namely, we look at the diagram
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The horizontal arrow is the gradient (in particular, a C-linear derivation), one checks easily that it is well
defined.

The map d : A→ ΩA/C sends the classes of x and y to the corresponding elements denoted dx and dy respectively.
By definition ΩA/C this elements are generators.

The map g is unique such that the diagram commutes, from the universal property of ΩA/C. Since the diagram
commutes, g(dx) = e1 and g(dy) = e2.

The map π sends e1, e2 (classes of standard basis vectors of A⊕2) to dx, dy respectively (thus, π is surjective).
To see that it is well defined one has to check that (−3x2, 2y) is mapped to 0, but this is because in ΩA/C we
have −3x2dx+ 2ydy = d0 = 0.

We need to show that π is one-to-one. But g ◦ π = id, which can be seen on the chosen generating sets. Thus π
is one-to-one and onto, hence an isomorphism.

This reasonong works without change for any quotient of a polynomial ring over a field by a principal ideal.
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