Problem 13.4

For any $t \in \mathbb{C}^{*}$ we have an invertible matrix $M_{t} \in M_{n \times n}(\mathbb{C})$ such that for any $v \in \mathbb{C}^{n}$ we have $t \cdot v=M_{t} v$.
Observation 1. If t is of finite order as a group element, i.e. $t^{k}=1$ for some $k \in \mathbb{N}$, then M_{t} is diagonalizable. This is because $M_{t}^{k}=i d$, so the Jordan form of M_{t} cannot have 0 on the diagonal and cannot have 1 over the diagonal.
Observation 2. Let $\mu_{k} \subset \mathbb{C}^{*}$ be the group of the k-th roots of unity. Then for $t \in \mu_{k}$ the matrix M_{t} is diagonalizable, because t has a finite order. For all $t \in \mu_{k}$ matrices M_{t} have a common diagonal basis, because they all are powers of the group generator and the basis chosen for the generator works for all of them.
Observation 3. For any t_{1}, t_{2} of finite order there is a common diagonal basis of $M_{t_{1}}$ and $M_{t_{2}}$. This is because $M_{t_{1}}$ and $M_{t_{2}}$ commute. One may construct the common diagonal basis by taking t_{3} of finite order such that both t_{1} and t_{2} are powers of t_{3}, and diagonalizing $M_{t_{3}}$. Thus there is a common diagonal basis for any finite set of groups $\mu_{k_{1}}, \ldots, \mu_{k_{i}}$ of roots of unity.
Observation 4. There is a common diagonal basis for elements of finite order in \mathbb{C}^{*}. To see this, for each k we define B_{k} as the subdivision into a direct sum of eigenspaces of \mathbb{C}^{n} coming from the common diagonalization for μ_{2}, \ldots, μ_{k}. If $k_{1}>k_{2}$ then $B_{k_{1}}$ is a refinement of $B_{k_{2}}$. But in the chain $B_{2}, B_{3}, B_{4}, \ldots$ there can be only finitely many jumps, because we subdivide a finite-dimensional vector space.

Conclusion. The subset of all elements of finite order is dense in Zariski topology in \mathbb{C}^{*}, because it is infinite. Thus its product witn \mathbb{C}^{n} is dense in Zariski topology in $\mathbb{C}^{*} \times \mathbb{C}^{n}$. Recall that the map defining the action $f: \mathbb{C}^{*} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is polynomial. We take the map $g: \mathbb{C}^{*} \times \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ corresponding to the diagonal action of the finite order elements: for an eigenvector with eigenvalue m we put t^{m} on the matrix diagonal, then change coordinates to the standard basis of \mathbb{C}^{n} and write it as a map from $\mathbb{C}^{*} \times \mathbb{C}^{n}$ to \mathbb{C}^{n}. Then $f-g$ vanishes on a dense subset, so it vanishes everywhere. That is, the decomposition of \mathbb{C}^{n} into eigenspaces which we used to describe g is the desired grading.

Problem 12.4

We didn't have a complete argument that for $A=\mathbb{C}[x, y] /\left(y^{2}-x^{3}\right)$ the cotangent module $\Omega_{A / \mathbb{C}}$ has only one relation coming from the equation, i.e. $\Omega_{A / \mathbb{C}} \simeq A^{\oplus 2} /\left(2 y d y-3 x^{2} d x\right)$. One can prove it imitating the argument that for $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ we have $\Omega_{S / \mathbb{k}} \simeq S d x_{1} \oplus \ldots \oplus S d x_{n}$. Namely, we look at the diagram

The horizontal arrow is the gradient (in particular, a \mathbb{C}-linear derivation), one checks easily that it is well defined.
The map $d: A \rightarrow \Omega_{A / \mathbb{C}}$ sends the classes of x and y to the corresponding elements denoted $d x$ and $d y$ respectively. By definition $\Omega_{A / \mathbb{C}}$ this elements are generators.
The map g is unique such that the diagram commutes, from the universal property of $\Omega_{A / \mathbb{C}}$. Since the diagram commutes, $g(d x)=e_{1}$ and $g(d y)=e_{2}$.
The map π sends e_{1}, e_{2} (classes of standard basis vectors of $A^{\oplus 2}$) to $d x, d y$ respectively (thus, π is surjective). To see that it is well defined one has to check that $\left(-3 x^{2}, 2 y\right)$ is mapped to 0 , but this is because in $\Omega_{A / \mathbb{C}}$ we have $-3 x^{2} d x+2 y d y=d 0=0$.
We need to show that π is one-to-one. But $g \circ \pi=i d$, which can be seen on the chosen generating sets. Thus π is one-to-one and onto, hence an isomorphism.
This reasonong works without change for any quotient of a polynomial ring over a field by a principal ideal.

