Problem 13.4
For any ¢t € C* we have an invertible matrix M; € M,,x,(C) such that for any v € C" we have t - v = Myv.

Observation 1. If ¢ is of finite order as a group element, i.e. t* =1 for some k € N, then M, is diagonalizable.
This is because M = id, so the Jordan form of M; cannot have 0 on the diagonal and cannot have 1 over the
diagonal.

Observation 2. Let pp C C* be the group of the k-th roots of unity. Then for ¢t € uj the matrix M; is
diagonalizable, because ¢ has a finite order. For all ¢ € pj matrices M; have a common diagonal basis, because
they all are powers of the group generator and the basis chosen for the generator works for all of them.

Observation 3. For any ¢;, ¢y of finite order there is a common diagonal basis of M;, and M;,. This is because
My, and M,;, commute. One may construct the common diagonal basis by taking ¢3 of finite order such that
both ¢, and t, are powers of t3, and diagonalizing M;,. Thus there is a common diagonal basis for any finite set
of groups pg,, ..., ptx, of roots of unity.

Observation 4. There is a common diagonal basis for elements of finite order in C*. To see this, for each k we
define By, as the subdivision into a direct sum of eigenspaces of C™ coming from the common diagonalization
for pa, ..., pr. If k1 > ko then By, is a refinement of By,. But in the chain By, Bs, By, ... there can be only
finitely many jumps, because we subdivide a finite-dimensional vector space.

Conclusion. The subset of all elements of finite order is dense in Zariski topology in C*, because it is infinite.
Thus its product witn C™ is dense in Zariski topology in C* x C™. Recall that the map defining the action
f:C* x C" — C" is polynomial. We take the map g: C* x C® — C" corresponding to the diagonal action of
the finite order elements: for an eigenvector with eigenvalue m we put ¢ on the matrix diagonal, then change
coordinates to the standard basis of C™ and write it as a map from C* x C" to C". Then f — g vanishes on
a dense subset, so it vanishes everywhere. That is, the decomposition of C™ into eigenspaces which we used to
describe ¢ is the desired grading.

Problem 12.4

We didn’t have a complete argument that for A = Clxz,y]/(y* — *) the cotangent module Q4 ,¢ has only one
relation coming from the equation, i.e. Q4,c ~ A%?/(2ydy — 3z*dz). One can prove it imitating the argument
that for S =k[zy,...,2,] we have Qg ~ Sdx1 @ ... ® Sdz,. Namely, we look at the diagram

A—— AP2/(A. (-322,2y))

)

Qyuc

The horizontal arrow is the gradient (in particular, a C-linear derivation), one checks easily that it is well
defined.

The map d: A — Q4 /¢ sends the classes of z and y to the corresponding elements denoted dz and dy respectively.
By definition Q4 ,c this elements are generators.

The map g is unique such that the diagram commutes, from the universal property of {24 ,¢. Since the diagram
commutes, g(dx) = e; and g(dy) = es.

The map 7 sends ey, ex (classes of standard basis vectors of A®2) to dx, dy respectively (thus, 7 is surjective).
To see that it is well defined one has to check that (—3z2,2y) is mapped to 0, but this is because in Qy/c we
have —3z2dx + 2ydy = d0 = 0.

We need to show that 7 is one-to-one. But g o m = id, which can be seen on the chosen generating sets. Thus 7
is one-to-one and onto, hence an isomorphism.

This reasonong works without change for any quotient of a polynomial ring over a field by a principal ideal.



