Commutative algebra

problem set 7, for 20.11.2019 Artinian rings, fibers

You do not have to write the solutions, but please be prepared to present your solutions smoothly at the board.

A module M over a ring A is an Artinian module if every descending chain $M_0 \supset M_1 \supset M_2 \supset \ldots$ of submodules of M stabilises. A ring A is called an Artinian ring if it is an Artinian A-module (i.e. descending chains of ideals stabilise).

Recall that the *nilradical* $\mathfrak{N}(A)$ of a ring A is the radical of (0), i.e. the set of all nilpotent elements.

Let $f: A \to B$ be a ring homomorphism and $\mathfrak{p} \in \operatorname{Spec}(A)$. Let $\kappa(\mathfrak{p}) = \operatorname{Frac}(A/\mathfrak{p}) = A_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})$ be the residue field of $\mathfrak{p} \in \operatorname{Spec}(A)$. Recall that one may identify the fiber of $f^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$ over a point \mathfrak{p} with $\operatorname{Spec}(B \otimes_A \kappa(\mathfrak{p}))$.

Problem 1.

Let A be an Artinian ring. Prove that $\mathfrak{N}(A)$ is nilpotent.

Hint: Assume that the chain $\mathfrak{N}(A)^k$ stabilises at an ideal $I \neq 0$. Consider the set of all ideals J such that $I \cdot J \neq 0$. What can one say about a minimal element of this set?

Problem 2. [2 points for questions 1-4; 5 and 6 are extra points exercises, 1 point each] Let A be an Artinian ring.

- 1. Assume that A is a domain. Prove that A is a field. Hint: consider $x \in A$ and ideals (x^n) .
- 2. Prove that every prime ideal in A is maximal. (Thus dim A = 0.)
- 3. Prove that $\operatorname{Spec}(A)$ is a finite set. Denote $\{\mathfrak{p}_1, \ldots, \mathfrak{p}_r\} = \operatorname{Spec}(A)$. Hint: if $\mathfrak{q} \supset I_1 \cap \ldots \cap I_i$ are ideals where \mathfrak{q} is prime, then $\mathfrak{q} \supset I_i$ for some *i*.
- 4. Prove that Spec(A) is a finite discrete topological space.
- 5. Show that there exists n such that $\mathfrak{p}_1^n \cdot \ldots \mathfrak{p}_r^n = 0$. Conclude that there is a chain of ideals

$$A \supsetneq I_1 \supsetneq I_2 \supsetneq \dots \supsetneq I_s = 0$$

such that for every *i* the module I_i/I_{i+1} is a vector space over A/\mathfrak{p}_{k_i} for some $k_i \in \{1, \ldots, r\}$.

6. Use the sequence above to show that A is a Noetherian A-module. Conclude that A is a zero-dimensional Noetherian ring. Hint: if $0 \to M \to N \to P \to 0$ is a sequence of A-modules and M, P are Noetherian then N is also Noetherian.

Remark: the converse is true, i.e. every zero-dimensional Noetherian ring is Artinian.

Problem 3.

Prove that if k is a field and A is a k-algebra, which is a finite dimensional vector space over k, then A is Artinian. Show that $|\operatorname{Spec}(A)| \leq \dim_{\mathbb{K}} A$.

Problem 4.

Let $f: A \to B$ be a ring homomorphism. Assume that B is a finite A-module, generated by b_1, \ldots, b_r . Prove that the $\kappa(\mathfrak{p})$ -module $B \otimes_A \kappa(\mathfrak{p})$ is generated by images of those elements. Show that $B \otimes \kappa(\mathfrak{p})$ is an Artinian ring and the fibers of f^* are finite sets.

Problem 5.

Let $i: A \hookrightarrow B$ be an integral ring extension. Consider $i^*: \operatorname{Spec}(B) \to \operatorname{Spec}(A)$.

- 1. For $A = \mathbb{Z}$, $B = \mathbb{Z}[i] \subset \mathbb{C}$ find the fibers $(i^*)^{-1}(0)$, $(i^*)^{-1}(2)$, $(i^*)^{-1}(5)$ and $(i^*)^{-1}(7)$.
- 2. Prove that i^* is a closed map. *Hint: it was proved at the lecture that* i^* *is surjective.*

Problem 6.

Let $A = \mathbb{C}[t]$ and $B = \mathbb{C}[x, y, t]/(ty - x^2)$. Consider a \mathbb{C} -algebra homomorphism $f: A \to B$, f(t) = t. Find the fibers of f^* : Spec $(B) \to$ Spec(A).