Commutative algebra

preparation for the 2nd midterm exam, for 15.01.2020

Problem 1.

Give an example of a finitely generated \mathbb{C} -algebra A and maximal ideals $\mathfrak{p} \subset A$ and $\mathfrak{q} \subset A$ such that $\dim(A_{\mathfrak{p}}) \neq \dim(A_{\mathfrak{q}})$.

Problem 2.

Find a Noether normalization of $\mathbb{C}[x, y, z, t]/I$ for the ideal

$$I = (x^{2} + xy - z, xy^{2} - t^{2} + z, x^{2}y + xy^{2} + t^{2}).$$

Problem 3.

Give an example of a prime ideal $\mathfrak{p} \subset \mathbb{C}[x, y]$ such that the corresponding algebraic set $V := V(\mathfrak{p}) \subset \mathbb{C}^2$ satisfies the following condition: $V \cap \mathbb{R}^2 \subset \mathbb{R}^2$ is non-empty and is not connected in the Euclidean topology.

Problem 4.

Let $\omega \in \mathbb{C} \setminus \mathbb{R}$ be a third root of 1. Let $i: \mathbb{Z} \to \mathbb{Z}[\omega]$ be the canonical inclusion. Prove that the fibers of $i^*: \operatorname{Spec}(\mathbb{Z}[\omega]) \to \operatorname{Spec}(\mathbb{Z})$ have at most two elements. Do all the fibers have two elements?

Problem 5.

Let \Bbbk be a field and $I=(y^2-x^3-x^2)\subset \Bbbk[x,y].$

- 1. Prove that the normalization of k[x, y]/I is isomorphic to k[y/x].
- 2. Compute the fibers of i^* : Spec $(\Bbbk[y/x]) \to$ Spec $(\Bbbk[x,y]/I)$ associated to the normalization $i: \Bbbk[x,y]/I \hookrightarrow \&[y/x]$.

Problem 6.

Let A be a discrete valuation ring and K its field of fractions. Prove that there is $a \in A$ such that $S^{-1}A = K$ for $S = \{1, a, a^2, \dots, a^n, \dots\}$.

Problem 7.

Let A be a discrete valuation ring and K its field of fractions. Let $B \subset K$ be a subring. Prove that if $A \subset B$, then either B = A or B = K.

Problem 8.

Find all singular points of the surface in \mathbb{C}^3 defined by $xy^2 = z^2$.

Problem 9.

Let $I = (xy - z, x^2z - y^2) \subseteq \mathbb{C}[x, y, z].$

- 1. Find the dimension of V(I).
- 2. Find irreducible components of V(I).
- 3. Find parametrizations of components.
- 4. Find radicals of ideals of components.