Commutative algebra

preparation for the 1st midterm exam, for 13.11.2019

Problem 1.

Let A be a ring and I its ideal. By I[x] we define a set of all polynomials with coefficients in I:

 $\{a_n x^n + \ldots + a_1 x + a_0 \colon n \in \mathbb{N}, a_0, \ldots, a_n \in I\} \subseteq A[x].$

- 1. Prove that if I is prime then I[x] is a prime ideal of A[x].
- 2. Assume that I is maximal. Is I[x] a maximal ideal of A[x]?

Problem 2.

Describe points and open subsets of Spec $(\mathbb{C}[x, y]/(xy(x^2 - y^2))).$

Problem 3.

Let k be a field, A a finitely generated k-algebra and $S \subset A$ a multiplicatively closed subset. Is $S^{-1}A$ a finitely generated k-algebra?

Problem 4.

Let A be a domain. Assume that for any non-trivial finitely generated A-module M we have $\text{Hom}_A(M, A) \neq 0$. Prove that A is a field.

Problem 5.

Give an example of a ring A, an injective A-module homomorphism $f: M \to M'$ and an A-module N such that the homomorphism $id \otimes f: N \otimes_A M \to N \otimes_A M'$ is not injective.

Problem 6.

Let A be a ring, $S \subset A$ a multiplicatively closed system and M a finitely generated A-module. Prove that $S^{-1}M = 0$ if and only if there exists $s \in S$ such that sM = 0.

Problem 7.

Let A be a ring and $\mathfrak{p} \in \operatorname{Spec}(A)$. Prove that the ring $A_{\mathfrak{p}}/(\mathfrak{p}A_{\mathfrak{p}})$ is a field. Describe this field for $A = \mathbb{C}[x, y]$ and a. $\mathfrak{p} = (x, y)$ b. $\mathfrak{p} = (x)$ c. $\mathfrak{p} = (0)$.

Problem 8.

Let M_i for $1 \leq i \leq n$ be Noetherian A-modules. Prove that $\bigoplus_{i=1}^n M_i$ is also Noetherian.

Problem 9.

Let $R = \mathbb{C}[x^3, y^3, x^2y] \subseteq \mathbb{C}[x, y]$. Is R integrally closed in its field of fractions? If not, find its integral closure.

Problem 10.

Let $f: M \to N$ be an A-module homomorphism. Prove that f is injective (resp. surjective) if and only if for each prime ideal $\mathfrak{p} \subset A$ the homomorphism of localisations $f_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective (resp. surjective).

Problem 11.

Give an example of a module M over a Noetherian ring A such that $M_{\mathfrak{p}}$ is finitely generated for each $\mathfrak{p} \in \operatorname{Spec}(A)$, but M is not finitely generated.

Problem 12.

Let A be a ring and M a finitely generated A-module. Take a surjective homomorphism $f: M \to M$.

- 1. Show that M is also an A[x]-module, where we define multiplication by a polynomial $p(x) \in A[x]$ as: $p(x) \cdot m := p(f)(m)$ (product x^k corresponds to the k-fold composition $f \circ \cdots \circ f$).
- 2. Prove that M and the ideal $(x) \subseteq A[x]$ satisfy the assumptions of the Nakayama's lemma.
- 3. Conclude that f is injective.