Commutative algebra

preparation for the 1st midterm exam, for 13.11.2019

Problem 1.

Let A be a ring and I its ideal. By $I[x]$ we define a set of all polynomials with coefficients in I :

$$
\left\{a_{n} x^{n}+\ldots+a_{1} x+a_{0}: n \in \mathbb{N}, a_{0}, \ldots, a_{n} \in I\right\} \subseteq A[x]
$$

1. Prove that if I is prime then $I[x]$ is a prime ideal of $A[x]$.
2. Assume that I is maximal. Is $I[x]$ a maximal ideal of $A[x]$?

Problem 2.

Describe points and open subsets of $\operatorname{Spec}\left(\mathbb{C}[x, y] /\left(x y\left(x^{2}-y^{2}\right)\right)\right)$.

Problem 3.

Let \mathbb{k} be a field, A a finitely generated \mathbb{k}-algebra and $S \subset A$ a multiplicatively closed subset. Is $S^{-1} A$ a finitely generated \mathbb{k}-algebra?

Problem 4.

Let A be a domain. Assume that for any non-trivial finitely generated A-module M we have $\operatorname{Hom}_{A}(M, A) \neq 0$. Prove that A is a field.

Problem 5.

Give an example of a ring A, an injective A-module homomorphism $f: M \rightarrow M^{\prime}$ and an A-module N such that the homomorphism id $\otimes f: N \otimes_{A} M \rightarrow N \otimes_{A} M^{\prime}$ is not injective.

Problem 6.

Let A be a ring, $S \subset A$ a multiplicatively closed system and M a finitely generated A-module. Prove that $S^{-1} M=0$ if and only if there exists $s \in S$ such that $s M=0$.

Problem 7.

Let A be a ring and $\mathfrak{p} \in \operatorname{Spec}(A)$. Prove that the ring $A_{\mathfrak{p}} /\left(\mathfrak{p} A_{\mathfrak{p}}\right)$ is a field. Describe this field for $A=\mathbb{C}[x, y]$ and a. $\mathfrak{p}=(x, y)$ b. $\mathfrak{p}=(x)$ c. $\mathfrak{p}=(0)$.

Problem 8.

Let M_{i} for $1 \leqslant i \leqslant n$ be Noetherian A-modules. Prove that $\bigoplus_{i=1}^{n} M_{i}$ is also Noetherian.

Problem 9.

Let $R=\mathbb{C}\left[x^{3}, y^{3}, x^{2} y\right] \subseteq \mathbb{C}[x, y]$. Is R integrally closed in its field of fractions? If not, find its integral closure.

Problem 10.

Let $f: M \rightarrow N$ be an A-module homomorphism. Prove that f is injective (resp. surjective) if and only if for each prime ideal $\mathfrak{p} \subset A$ the homomorphism of localisations $f_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow N_{\mathfrak{p}}$ is injective (resp. surjective).

Problem 11.

Give an example of a module M over a Noetherian ring A such that $M_{\mathfrak{p}}$ is finitely generated for each $\mathfrak{p} \in \operatorname{Spec}(A)$, but M is not finitely generated.

Problem 12.

Let A be a ring and M a finitely generated A-module. Take a surjective homomorphism $f: M \rightarrow M$.

1. Show that M is also an $A[x]$-module, where we define multiplication by a polynomial $p(x) \in A[x]$ as: $p(x) \cdot m:=p(f)(m)$ (product x^{k} corresponds to the k-fold composition $f \circ \cdots \circ f$).
2. Prove that M and the ideal $(x) \subseteq A[x]$ satisfy the assumptions of the Nakayama's lemma.
3. Conclude that f is injective.
