1 Introduction

The main aim of this lecture is to give a polynomial kernel for the Odd Cycle Transversal problem parameterized by \(k \). Recall the problem formulation:

Odd Cycle Transversal

Input: A graph \(G = (V, E) \), a positive integer \(k \)

Problem: Does there exist \(X \subseteq V \) of size \(\leq k \) such that \(G \setminus X \) is bipartite?

Our strategy is going to be different than previously. We shall compress Odd Cycle Transversal to a language \(L \in NP \). Then, \(NP \)-completeness gives a polynomial reduction back to Odd Cycle Transversal. Recall the formal definition of compression.

Definition 1. Let \(L_1 \subseteq \Sigma^* \times \mathbb{N} \) be a parameterized language and \(L_2 \subseteq \Sigma^* \) be a language. A mapping \(f : \Sigma^* \times \mathbb{N} \to \Sigma^* \) computable in polynomial time (with respect to inputs size) is called a compression if \((I, k) \in L_1 \iff f(I, k) \in L_2 \). A compression is polynomial if \(|f(I, k)| \leq k^{O(1)} \).

Note that language \(L_2 \) in the definition of compression might be arbitrary, possibly undecidable. Kernelization can be viewed as special case of compression, where \(L_2 \) is equal to (the non-parameterized variant of) \(L_1 \).

In the following sections we give a polynomial compression of the Odd Cycle Transversal problem. We present an FPT algorithm, interpret it as a series of \(f(k) \) min-cut queries and finally use matroid tools to encode the graph in \(k^{O(1)} \) bits so that we can still answer all relevant min-cut queries.

2 FPT algorithm for Odd Cycle Transversal

We present an \(O^*(3^k) \) algorithm using iterative compression. This technique lets us reduce our problem to developing an \(O^*(3^{|Y|}) \) algorithm for the following problem:

OCT Compression

Input: A graph \(G = (V, E) \), a positive integer \(k \) and a set \(Y \subseteq V \) such that \(G \setminus Y \) is bipartite.

Problem: Find a minimum \(X \subseteq V \) such that \(G \setminus X \) is bipartite.

Let us recall how iterative compression works. For more details and applications see Lecture 2 of Parameterized and Moderately Exponential Algorithms course http://www.mimuw.edu.pl/~malcin/dydaktyka/2012-13/fpt/fpt_02_minors_iterative_compression.pdf. Let \(V = \{v_1, \ldots, v_n\} \) be the vertices of \(G \) and let \(G_i = G[\{v_1, \ldots, v_i\}] \). The algorithm below solves standard Odd Cycle Transversal using \(O(n) \) calls to the subroutine OCTCompression solving the compression variant.

Observe that the algorithm is correct, because if \(X \) is a solution in \(G \) (i.e. \(G \setminus X \) is bipartite), then \(X \cap \{x_1, \ldots, x_k\} \) is a solution in \(G_i \), and if \(X_i \) is a solution in \(G_i \), then \(X_i \cup \{v_{i+1}\} \) is a solution in \(G_{i+1} \).
Algorithm 1: Odd Cycle Transversal ($G = (\{v_1, \ldots, v_n\}, E), k$)

1. \[X_0 = \emptyset; \]
2. \[\text{for } i := 1 \text{ to } n \text{ do} \]
3. \[Y_i := X_{i-1} \cup \{v_i\}; \]
4. \[X_i := \text{OCTCompression}(G_i, Y_i, k); \]
5. \[\text{if } |X_i| > k \text{ then return NO; } \]
6. \[\text{return YES;} \]

2.1 An $O^*(3^k)$ algorithm for OCT Compression

Note that any solution X induces a (not necessarily unique) partition of $G \setminus X$ into two stable sets V_L and V_R. In particular, Y is divided into $T = Y \cap X$, $L = Y \cap V_L$ and $R = Y \cap V_R$. The algorithm iterates over all partitions of Y into three sets T, L, R. Let us fix a single partition. Observe that Y_L and Y_R can be assumed to be stable, while Y_T can be already removed from the graph.

Since $G \setminus Y$ is bipartite, this gives a graph G' with a partition of $V(G')$ into four stable sets A, B, L, R. Now, it suffices to solve the following problem.

<table>
<thead>
<tr>
<th>Auxiliary problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input: A graph $G = (V, E)$ with V partitioned into four stable sets A, B, L, R</td>
</tr>
<tr>
<td>Problem: Find the smallest $X \subseteq A \cup B$ such that $V \setminus X$ can be partitioned into stable sets V_L, V_R with $L \subseteq V_L, R \subseteq V_R$.</td>
</tr>
</tbody>
</table>

We shall see that the auxiliary problem can be solved in polynomial time. First, observe that it is equivalent to finding minimal X, which hits:

- all odd L to L and R to R walks,
- all even L to R walks.

Note, that if $G \setminus X$ does not have such walks, then we can set V_L as the set of vertices connected (in $G \setminus X$) to L by an even walk, or to R by an odd walk or disconnected both from L and R and belonging to A. Simultaneously V_R can be defined symmetrically as the set of vertices connected to R with an even walk, or to L an with odd walk or disconnected both from L and R and belonging to B.

Let $A_L = N(L) \cap A$ and analogously define A_R, B_L, B_R. Observe that if $X \subseteq A \cup B$ is a solution, then X must hit the following types of walk in $G[A \cup B]$

- from A_L to B_L,
- from A_L to A_R,
- from A_R to B_R,
- from B_L to B_R.

For example, in $G[A \cup B]$ any walk from A_L to B_L is odd. Extending such a walk by elements of L gives an odd walk from L to L. By similar arguments X must hit the remaining types of walks.

Observe that sets hitting these walks are exactly S, T-cuts in $G[A \cup B]$ for $S = A_R \cup B_L$ and $T = A_L \cup B_R$. We shall prove that the minimum S, T-cut C is an optimal solution to the auxiliary problem. We have already shown that any solution must be an S, T-cut, so it suffices to prove the following lemma.
Lemma 2. If \(C \) is an \(S,T \)-cut, then \(C \) hits each odd walk from \(L \) to \(L \), each odd walk from \(R \) to \(R \), and each even walk from \(L \) to \(R \).

Proof. We shall give an inductive proof with respect to walk’s length. Let \(P \) be a walk for which we need to show that \(C \) hits \(P \). Observe, that if \(P \) contains an inner vertex from \(L \cup R \), which divides \(P \) into \(P_1 \) and \(P_2 \), then \(P_1 \) or \(P_2 \) is also a walk \(C \) must hit, and by inductive hypothesis it does. Therefore, we may assume that all inner vertices of \(P \) lie within \(A \cup B \). In this case, we remove the first and last vertex from \(P \) to obtain a walk \(P' \) in \(G[A \cup B] \), which is of one of the following types:

- odd walk from \(A_L \cup B_L \) to \(A_L \cup B_L \),
- odd walk from \(A_R \cup B_R \) to \(A_R \cup B_R \),
- even walk from \(A_L \cup B_L \) to \(A_R \cup B_R \) (or vice versa).

Since \(G[A \cup B] \) is bipartite with color classes \(A, B \), an easy case-analysis shows that each kind of walk is either impossible in \(G[A \cup B] \) or joins \(S \) with \(T \), and then \(C \) hits it by definition.

Consequently, to solve the auxiliary problem it suffices to perform a single min-cut computation. Together with the reductions described before, we obtain an FPT algorithm.

Theorem 3 (\([3]\)). The Odd Cycle Transversal problem can be solved in \(O^*(3^k) \) time.

3 Polynomial kernel for Odd Cycle Transversal

3.1 Matroid tools

The matroid tools we use are described in Part I and first section of Part II of scribe notes from WorKer’s tutorial on matroids. We need Theorems 36 and 38 from these notes:

Theorem 4 (\([2]\)). Let \(G = (V, A) \) be a digraph and let \(S,T \subseteq V \). The corresponding gammoid has a representation using \(O(\min(|T|, |S| \log |T|) + \log(\frac{1}{\varepsilon}) + \log |V|) \)-bit integers. Such a representation can be found in \((n + \log(\frac{1}{\varepsilon}))\cdot O(1)\) time with error probability \(\varepsilon \).

Theorem 5. Let \(G = (V, A) \) be a digraph and \(X \subseteq V \) be a set of terminals. There exists a gammoid with ground set of size \(2|X| \), which gives maximum \(S,T \)-flow values in \(G \setminus R \) for any partition \(X = S \cup T \cup R \cup U \). Moreover, such a gammoid can be constructed in polynomial time.

To use Theorem 5 for undirected graphs, we replace each edge with a pair of arcs, one in each direction.

3.2 Reformulation of FPT algorithm

Observe that the FPT algorithm we have presented reduces finding OCT to computation of \(O^*(3^k) \) minimum cuts in induced subgraphs of \(G \). Nevertheless the sizes of the source and sink sets could be large, so Theorem 5 cannot be applied yet.

We were looking for the minimum \((A_R \cup B_L), (A_L \cup B_R)\)-cut in \(G[A \cup B] \). Instead, we consider a graph \(G' \), whose vertices are \(A \cup B \cup Y_A \cup Y_B \), where \(Y_A \) and \(Y_B \) are copies of \(Y \). Edges within \(G'[A \cup B] \) are as in \(G \), while for \(y \in Y \) vertex \(y_A \) is connected to \(N_D(y) \cap A \) and \(y_B \) to \(N_D(y) \cap B \).

For a partition \(Y = L \cup R \cup T \) we are going to compute the minimum \((R_A \cup L_B), (L_A \cup R_B)\)-cut in \(G' \setminus (T_A \cup T_B) \). This is sufficient due to the following lemma:
Lemma 6. Let \(G = (V, G) \) be a graph and \(Y \subseteq V \) be such that \(G \setminus Y \) is bipartite with color classes \(A, B \). Then, the size of the minimum odd cycle transversal is the minimum over all partitions \(Y = L \cup R \cup T \) of the following value:

\[
|T| + \mincut_{G \setminus (T_A \cup T_B)}(R_A \cup L_B, L_A \cup R_B).
\]

Proof. First, consider a minimum odd cycle transversal \(X \). Let \(T = Y \cap X \) and let \(V \setminus X = V_L \cup V_R \) be the partition color classes of \(G \setminus X \). As we have seen before, \(X \setminus T \) is a \((A_R \cup B_L), (A_L \cup B_R) \)-cut in \(G[A \cup B] \). It is easy to see that this implies it is also an \((R_A \cup L_B), (L_A \cup R_B) \)-cut in \(G'[T_A \cup T_B] \).

Now, consider the partition \(Y = L \cup R \cup T \) minimizing the value we compute. If there are many optimal partitions, let us choose one maximizing \(|T|\). Observe that in \(H = G' \setminus (T_A \cup T_B) \) set we have \(N_H(R_A \cup L_B) = A_R \cup B_L \) and \(N_H(L_A \cup R_B) = A_L \cup B_R \). Thus, the minimum cut \(C \) either is also an \((A_R \cup B_L), (A_L \cup B_R) \)-cut and it gives an odd cycle transversal as before, or contains an element of \(y_A \in Y_A \) or \(y_B \in Y_B \). In the latter case, if we move \(y \) to \(T \), then \(C \setminus \{ y_A, y_B \} \) would be a cut we consider, so the value would not increase. By maximality of \(|T|\) among optimal partitions, this is impossible. \(\square \)

3.3 Polynomial compression for OCT Compression

Note that Theorem 5 to \(G' \) and \(Y_A \cup Y_B \) shows that the values of all minimum cuts considered in Lemma 6 can be encoded within a gammoid over a ground set of size \(O(|Y|) \) for a graph with \(O(|V|) \) vertices.

Using Theorem 4, this matroid can be represented in \(\tilde{O}(|Y|^3 + \log |V|) \) bits and such a representation can be computed in polynomial time with high probability.

This is does not give a polynomial compression yet, since the size cannot be bounded by a function of \(|Y|\). Nevertheless, if \(|Y| \leq \log |V|\), then the \(O^*(3^{|V|}) \)-time algorithm works in time polynomial in \(|V|\). Thus, in this case we can solve the problem and return a trivial positive or negative instance. Otherwise \(\log |V| \leq |Y| \), so the representation has \(\tilde{O}(|Y|^3) \) bits, i.e. we have obtained a polynomial compression.

3.4 Polynomial compression for Odd Cycle Transversal

Observe that iterative compression technique does not give a polynomial compression for Odd Cycle Transversal. This is because subsequent calls of the subroutine solving OCT Compression depend on each other. Instead, we shall use an approximation algorithm:

Theorem 7 \([1]\). The Odd Cycle Transversal problem admits an \(O(\log n) \) approximation algorithm.

Theorem 8 \([2]\). The Odd Cycle Transversal problem can be compressed to \(\tilde{O}(k^{4.5}) \) bits.

Proof. As before, if \(k \leq \log n \), we solve the problem using \(O^*(3^k) \) algorithm and return trivial instances. Otherwise, we apply the approximation algorithm, which returns a set \(Y \). If \(|Y| = \omega(k\sqrt{\log n})\), we return a trivial negative instance, since no odd cycle transversal of size \(\leq k \) may exist. Otherwise we apply the polynomial compression for OCT Compression. We have \(|Y| = O(k\sqrt{\log n}) = O(k^{1.5}) \), so the compression outputs an instance of size \(\tilde{O}(k^{4.5}) \). \(\square \)
3.5 Polynomial kernel for Odd Cycle Transversal

As we have announced in the introduction, the polynomial kernel for Odd Cycle Transversal is relies on NP-completeness of the non-parameterized version of the problem.

Theorem 9 ([4]). *The Odd Cycle Transversal problem is NP-complete.*

It suffices to show that the output language of the polynomial compression we have presented is in NP, so that there is a polynomial reduction back to Odd Cycle Transversal. Indeed, it suffices to make a non-deterministic choice of a partition of Y into $L \cup R \cup T$. Then,

$$|T| + \mincut_{G \setminus (T_A \cup T_B)}(R_A \cup L_B, L_A \cup R_B)$$

can be computed from the gammoid in polynomial time and depending on whether this value is larger than k, we return the result.

Corollary 10. *The Odd Cycle Transversal problem parameterized by k admits a polynomial kernel.*

Note that the kernel is polynomial, but we cannot directly control the degree of the polynomial, since we use the generic reduction of NP problems to SAT.

References

