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Preface

The goal of this textbook is twofold. First, the book serves as an introduction
to the �eld of parameterized algorithms and complexity accessible to graduate
students and advanced undergraduate students. Second, it contains a clean
and coherent account of some of the most recent tools and techniques in the
area.

Parameterized algorithmics analyzes running time in �ner detail than clas-
sical complexity theory: instead of expressing the running time as a function
of the input size only, dependence on one or more parameters of the input in-
stance is taken into account. While there were examples of nontrivial param-
eterized algorithms in the literature, such as Lenstra's algorithm for integer
linear programming [319] or the disjoint paths algorithm of Robertson and
Seymour [402], it was only in the late 1980s that Downey and Fellows [149],
building on joint work with Langston [180, 182, 183], proposed the system-
atic exploration of parameterized algorithms. Downey and Fellows laid the
foundations of a fruitful and deep theory, suitable for reasoning about the
complexity of parameterized algorithms. Their early work demonstrated that
�xed-parameter tractability is a ubiquitous phenomenon, naturally arising
in various contexts and applications. The parameterized view on algorithms
has led to a theory that is both mathematically beautiful and practically ap-
plicable. During the 30 years of its existence, the area has transformed into
a mainstream topic of theoretical computer science. A great number of new
results have been achieved, a wide array of techniques have been created,
and several open problems have been solved. At the time of writing, Google
Scholar gives more than 4000 papers containing the term ��xed-parameter
tractable�. While a full overview of the �eld in a single volume is no longer
possible, our goal is to present a selection of topics at the core of the �eld,
providing a key for understanding the developments in the area.

v



vi Preface

Why This Book?

The idea of writing this book arose after we decided to organize a summer
school on parameterized algorithms and complexity in B¦dlewo in August
2014. While planning the school, we realized that there is no textbook that
contains the material that we wanted to cover. The classical book of Downey
and Fellows [153] summarizes the state of the �eld as of 1999. This book
was the starting point of a new wave of research in the area, which is ob-
viously not covered by this classical text. The area has been developing at
such a fast rate that even the two books that appeared in 2006, by Flum and
Grohe [189] and Niedermeier [376], do not contain some of the new tools and
techniques that we feel need to be taught in a modern introductory course.
Examples include the lower bound techniques developed for kernelization in
2008, methods introduced for faster dynamic programming on tree decompo-
sitions (starting with Cut & Count in 2011), and the use of algebraic tools for
problems such as Longest Path. The book of Flum and Grohe [189] focuses
to a large extent on complexity aspects of parameterized algorithmics from
the viewpoint of logic, while the material we wanted to cover in the school is
primarily algorithmic, viewing complexity as a tool for proving that certain
kinds of algorithms do not exist. The book of Niedermeier [376] gives a gen-
tle introduction to the �eld and some of the basic algorithmic techniques. In
2013, Downey and Fellows [154] published the second edition of their clas-
sical text, capturing the development of the �eld from its nascent stages to
the most recent results. However, the book does not treat in detail many
of the algorithmic results we wanted to teach, such as how one can apply
important separators for Edge Multiway Cut and Directed Feedback
Vertex Set, linear programming for Almost 2-SAT, Cut & Count and
its deterministic counterparts to obtain faster algorithms on tree decompo-
sitions, algorithms based on representative families of matroids, kernels for
Feedback Vertex Set, and some of the reductions related to the use of
the Strong Exponential Time Hypothesis.

Our initial idea was to prepare a collection of lecture notes for the school,
but we realized soon that a coherent textbook covering all basic topics in
equal depth would better serve our purposes, as well as the purposes of those
colleagues who would teach a semester course in the future. We have or-
ganized the material into chapters according to techniques. Each chapter
discusses a certain algorithmic paradigm or lower bound methodology. This
means that the same algorithmic problem may be revisited in more than one
chapter, demonstrating how di�erent techniques can be applied to it. Thanks
to the rapid growth of the �eld, it is now nearly impossible to cover every
relevant result in a single textbook. Therefore, we had to carefully select what
to present at the school and include in the book. Our goal was to include a
self-contained and teachable exposition of what we believe are the basic tech-
niques of the �eld, at the expense of giving a complete survey of the area. A
consequence of this is that we do not always present the strongest result for



Preface vii

a particular problem. Nevertheless, we would like to point out that for many
problems the book actually contains the state of the art and brings the reader
to the frontiers of research. We made an e�ort to present full proofs for most
of the results, where this was feasible within the textbook format. We used
the opportunity of writing this textbook to revisit some of the results in the
literature and, using the bene�t of hindsight, to present them in a modern
and didactic way.

At the end of each chapter we provide sections with exercises, hints to
exercises and bibliographical notes. Many of the exercises complement the
main narrative and cover important results which have to be omitted due
to space constraints. We use (l) and (A) to identify easy and challenging
exercises. Following the common practice for textbooks, we try to minimize
the occurrence of bibliographical and historical references in the main text
by moving them to bibliographic notes. These notes can also guide the reader
on to further reading.

Organization of the Book

The book is organized into three parts. The �rst seven chapters give the
basic toolbox of parameterized algorithms, which, in our opinion, every course
on the subject should cover. The second part, consisting of Chapters 8-12,
covers more advanced algorithmic techniques that are featured prominently
in current research, such as important separators and algebraic methods.
The third part introduces the reader to the theory of lower bounds: the
intractability theory of parameterized complexity, lower bounds based on the
Exponential Time Hypothesis, and lower bounds on kernels. We adopt a
very pragmatic viewpoint in these chapters: our goal is to help the algorithm
designer by providing evidence that certain algorithms are unlikely to exist,
without entering into complexity theory in deeper detail. Every chapter is
accompanied by exercises, with hints for most of them. Bibliographic notes
point to the original publications, as well as to related work.

� Chapter 1 motivates parameterized algorithms and the notion of �xed-
parameter tractability with some simple examples. Formal de�nitions of
the main concepts are introduced.

� Kernelization is the �rst algorithmic paradigm for �xed-parameter tractabil-
ity that we discuss. Chapter 2 gives an introduction to this technique.

� Branching and bounded-depth search trees are the topic of Chapter 3.
We discuss both basic examples and more advanced applications based on
linear programming relaxations, showing the �xed-parameter tractability
of, e.g., Odd Cycle Transversal and Almost 2-SAT.

� Iterative compression is a very useful technique for deletion problems.
Chapter 4 introduces the technique through three examples, including
Feedback Vertex Set and Odd Cycle Transversal.
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� Chapter 5 discusses techniques for parameterized algorithms that use ran-
domization. The classic color coding technique for Longest Path will
serve as an illustrative example.

� Chapter 6 presents a collection of techniques that belong to the basic tool-
box of parameterized algorithms: dynamic programming over subsets, in-
teger linear programming (ILP), and the use of well-quasi-ordering results
from graph minors theory.

� Chapter 7 introduces treewidth, which is a graph measure that has impor-
tant applications for parameterized algorithms. We discuss how to use dy-
namic programming and Courcelle's theorem to solve problems on graphs
of bounded treewidth and how these algorithms are used more generally,
for example, in the context of bidimensionality for planar graphs.

� Chapter 8 presents results that are based on a combinatorial bound on the
number of so-called �important separators�. We use this bound to show the
�xed-parameter tractability of problems such as Edge Multicut and Di-
rected Feedback Vertex Set. We also discuss randomized sampling
of important cuts.

� The kernels presented in Chapter 9 form a representative sample of more
advanced kernelization techniques. They demonstrate how the use of min-
max results from graph theory, the probabilistic method, and the proper-
ties of planar graphs can be exploited in kernelization.

� Two di�erent types of algebraic techniques are discussed in Chapter 10:
algorithms based on the inclusion�exclusion principle and on polynomial
identity testing. We use these techniques to present the fastest known
parameterized algorithms for Steiner Tree and Longest Path.

� In Chapter 11, we return to dynamic programming algorithms on graphs
of bounded treewidth. This chapter presents three methods (subset convo-
lution, Cut & Count, and a rank-based approach) for speeding up dynamic
programming on tree decompositions.

� The notion of matroids is a fundamental concept in combinatorics and
optimization. Recently, matroids have also been used for kernelization and
parameterized algorithms. Chapter 12 gives a gentle introduction to some
of these developments.

� Chapter 13 presents tools that allow us to give evidence that certain prob-
lems are not �xed-parameter tractable. The chapter introduces parame-
terized reductions and the W-hierarchy, and gives a sample of hardness
results for various concrete problems.

� Chapter 14 uses the (Strong) Exponential Time Hypothesis to give running
time lower bounds that are more re�ned than the bounds in Chapter 13.
In many cases, these stronger complexity assumptions allow us to obtain
lower bounds essentially matching the best known algorithms.

� Chapter 15 gives the tools for showing lower bounds for kernelization algo-
rithms. We use methods of composition and polynomial-parameter trans-
formations to show that certain problem, such as Longest Path, do not
admit polynomial kernels.
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Fig. 0.1: Dependencies between the chapters

As in any textbook we will assume that the reader is familiar with the
content of one chapter before moving to the next. On the other hand, for
most chapters it is not necessary for the reader to have read all preceeding
chapters. Thus the book does not have to be read linearly from beginning to
end. Figure 0.1 depicts the dependencies between the di�erent chapters. For
example, the chapters on Iterative Compression and Bounded Search Trees
are considered necessary prerequisites to understand the chapter on �nding
cuts and separators.

Using the Book for Teaching

A course on parameterized algorithms should cover most of the material in
Part I, except perhaps the more advanced sections marked with an asterisk.
In Part II, the instructor may choose which chapters and which sections to
teach based on his or her preferences. Our suggestion for a coherent set of
topics from Part II is the following:
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� All of Chapter 8, as it is relatively easily teachable. The sections of this
chapter are based on each other and hence should be taught in this order,
except that perhaps Section 8.4 and Sections 8.5�8.6 are interchangeable.

� Chapter 9 contains four independent sections. One could select Section 9.1
(Feedback Vertex Set) and Section 9.3 (Connected Vertex Cover
on planar graphs) in a �rst course.

� From Chapter 10, we suggest presenting Section 10.1 (inclusion�exclusion
principle), and Section 10.4.1 (Longest Path in time 2k · nO(1)).

� From Chapter 11, we recommend teaching Sections 11.2.1 and *11.2.2, as
they are most illustrative for the recent developments on algorithms on
tree decompositions.

� From Chapter 12 we recommend teaching Section 12.3. If the students are
unfamiliar with matroids, Section 12.1 provides a brief introduction to the
topic.

Part III gives a self-contained exposition of the lower bound machinery. In
this part, the sections not marked with an asterisk give a set of topics that
can form the complexity part of a course on parameterized algorithms. In
some cases, we have presented multiple reductions showcasing the same kind
of lower bounds; the instructor can choose from these examples according to
the needs of the course. Section 14.4.1 contains some more involved proofs,
but one can give a coherent overview of this section even while omitting most
of the proofs.

Bergen, Budapest, Chennai, Warsaw
June 2015

Marek Cygan, Fedor V. Fomin, �ukasz Kowalik, Daniel Lokshtanov,
Dániel Marx, Marcin Pilipczuk, Michaª Pilipczuk and Saket Saurabh
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Part I

Basic toolbox





Chapter 1

Introduction

A squirrel, a platypus and a hamster walk into a bar...

Imagine that you are an exceptionally tech-savvy security guard of a bar
in an undisclosed small town on the west coast of Norway. Every Friday,
half of the inhabitants of the town go out, and the bar you work at is well
known for its nightly brawls. This of course results in an excessive amount
of work for you; having to throw out intoxicated guests is tedious and rather
unpleasant labor. Thus you decide to take preemptive measures. As the town
is small, you know everyone in it, and you also know who will be likely to
�ght with whom if they are admitted to the bar. So you wish to plan ahead,
and only admit people if they will not be �ghting with anyone else at the
bar. At the same time, the management wants to maximize pro�t and is not
too happy if you on any given night reject more than k people at the door.
Thus, you are left with the following optimization problem. You have a list
of all of the n people who will come to the bar, and for each pair of people
a prediction of whether or not they will �ght if they both are admitted. You
need to �gure out whether it is possible to admit everyone except for at most
k troublemakers, such that no �ght breaks out among the admitted guests.
Let us call this problem the Bar Fight Prevention problem. Figure 1.1
shows an instance of the problem and a solution for k = 3. One can easily
check that this instance has no solution with k = 2.

3
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Alice Christos Fedor

Bob Daniel Gerhard

Erik

Fig. 1.1: An instance of theBar Fight Prevention problem with a solution
for k = 3. An edge between two guests means that they will �ght if both are
admitted

E�cient algorithms for Bar Fight Prevention

Unfortunately, Bar Fight Prevention is a classic NP-complete problem
(the reader might have heard of it under the name Vertex Cover), and so
the best way to solve the problem is by trying all possibilities, right? If there
are n = 1000 people planning to come to the bar, then you can quickly code up
the brute-force solution that tries each of the 21000 ≈ 1.07 ·10301 possibilities.
Sadly, this program won't terminate before the guests arrive, probably not
even before the universe implodes on itself. Luckily, the number k of guests
that should be rejected is not that large, k ≤ 10. So now the program only
needs to try

(
1000
10

)
≈ 2.63 · 1023 possibilities. This is much better, but still

quite infeasible to do in one day, even with access to supercomputers.
So should you give up at this point, and resign yourself to throwing guests

out after the �ghts break out? Well, at least you can easily identify some
peaceful souls to accept, and some troublemakers you need to refuse at the
door for sure. Anyone who does not have a potential con�ict with anyone else
can be safely moved to the list of people to accept. On the other hand, if some
guy will �ght with at least k + 1 other guests you have to reject him � as
otherwise you will have to reject all of his k+ 1 opponents, thereby upsetting
the management. If you identify such a troublemaker (in the example of
Fig. 1.1, Daniel is such a troublemaker), you immediately strike him from
the guest list, and decrease the number k of people you can reject by one.1

If there is no one left to strike out in this manner, then we know that each
guest will �ght with at most k other guests. Thus, rejecting any single guest
will resolve at most k potential con�icts. And so, if there are more than k2

1 The astute reader may observe that in Fig. 1.1, after eliminating Daniel and setting k = 2,
Fedor still has three opponents, making it possible to eliminate him and set k = 1. Then
Bob, who is in con�ict with Alice and Christos, can be eliminated, resolving all con�icts.
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potential con�icts, you know that there is no way to ensure a peaceful night
at the bar by rejecting only k guests at the door. As each guest who has not
yet been moved to the accept or reject list participates in at least one and at
most k potential con�icts, and there are at most k2 potential con�icts, there
are at most 2k2 guests whose fate is yet undecided. Trying all possibilities

for these will need approximately
(
2k2

k

)
≤
(
200
10

)
≈ 2.24 · 1016 checks, which

is feasible to do in less than a day on a modern supercomputer, but quite
hopeless on a laptop.

If it is safe to admit anyone who does not participate in any potential
con�ict, what about those who participate in exactly one? If Alice has a
con�ict with Bob, but with no one else, then it is always a good idea to admit
Alice. Indeed, you cannot accept both Alice and Bob, and admitting Alice
cannot be any worse than admitting Bob: if Bob is in the bar, then Alice has
to be rejected for sure and potentially some other guests as well. Therefore,
it is safe to accept Alice, reject Bob, and decrease k by one in this case. This
way, you can always decide the fate of any guest with only one potential
con�ict. At this point, each guest you have not yet moved to the accept or
reject list participates in at least two and at most k potential con�icts. It is
easy to see that with this assumption, having at most k2 unresolved con�icts
implies that there are only at most k2 guests whose fate is yet undecided,
instead of the previous upper bound of 2k2. Trying all possibilities for which

of those to refuse at the door requires
(
k2

k

)
≤
(
100
10

)
≈ 1.73 · 1013 checks.

With a clever implementation, this takes less than half a day on a laptop,
so if you start the program in the morning you'll know who to refuse at the
door by the time the bar opens. Therefore, instead of using brute force to
go through an enormous search space, we used simple observations to reduce
the search space to a manageable size. This algorithmic technique, using
reduction rules to decrease the size of the instance, is called kernelization,
and will be the subject of Chapter 2 (with some more advanced examples
appearing in Chapter 9).

It turns out that a simple observation yields an even faster algorithm for
Bar Fight Prevention. The crucial point is that every con�ict has to
be resolved, and that the only way to resolve a con�ict is to refuse at least
one of the two participants. Thus, as long as there is at least one unresolved
con�ict, say between Alice and Bob, we proceed as follows. Try moving Alice
to the reject list and run the algorithm recursively to check whether the
remaining con�icts can be resolved by rejecting at most k − 1 guests. If this
succeeds you already have a solution. If it fails, then move Alice back onto the
undecided list, move Bob to the reject list and run the algorithm recursively
to check whether the remaining con�icts can be resolved by rejecting at most
k − 1 additional guests (see Fig. 1.2). If this recursive call also fails to �nd
a solution, then you can be sure that there is no way to avoid a �ght by
rejecting at most k guests.

What is the running time of this algorithm? All it does is to check whether
all con�icts have been resolved, and if not, it makes two recursive calls. In
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Christos vs. Daniel Bob vs. Daniel Daniel vs. Erik Christos vs. Fedor

Bob vs. Christos Christos vs. Daniel

Alice vs. Bob
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Fig. 1.2: The search tree for Bar Fight Prevention with k = 3. In the
leaves marked with �Fail�, the parameter k is decreased to zero, but there
are still unresolved con�icts. The rightmost branch of the search tree �nds a
solution: after rejecting Bob, Daniel, and Fedor, no more con�icts remain

both of the recursive calls the value of k decreases by 1, and when k reaches
0 all the algorithm has to do is to check whether there are any unresolved
con�icts left. Hence there is a total of 2k recursive calls, and it is easy to
implement each recursive call to run in linear time O(n + m), where m is
the total number of possible con�icts. Let us recall that we already achieved
the situation where every undecided guest has at most k con�icts with other
guests, so m ≤ nk/2. Hence the total number of operations is approximately
2k · n · k ≤ 210 · 10,000 = 10,240,000, which takes a fraction of a second
on today's laptops. Or cell phones, for that matter. You can now make the
Bar Fight Prevention app, and celebrate with a root beer. This simple
algorithm is an example of another algorithmic paradigm: the technique of
bounded search trees. In Chapter 3, we will see several applications of this
technique to various problems.

The algorithm above runs in time O(2k · k · n), while the naive algorithm
that tries every possible subset of k people to reject runs in time O(nk).
Observe that if k is considered to be a constant (say k = 10), then both
algorithms run in polynomial time. However, as we have seen, there is a quite
dramatic di�erence between the running times of the two algorithms. The
reason is that even though the naive algorithm is a polynomial-time algorithm
for every �xed value of k, the exponent of the polynomial depends on k.
On the other hand, the �nal algorithm we designed runs in linear time for
every �xed value of k! This di�erence is what parameterized algorithms and
complexity is all about. In the O(2k ·k ·n)-time algorithm, the combinatorial
explosion is restricted to the parameter k: the running time is exponential
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in k, but depends only polynomially (actually, linearly) on n. Our goal is to
�nd algorithms of this form.

Algorithms with running time f(k) ·nc, for a constant c independent of
both n and k, are called �xed-parameter algorithms, or FPT algorithms.
Typically the goal in parameterized algorithmics is to design FPT al-
gorithms, trying to make both the f(k) factor and the constant c in
the bound on the running time as small as possible. FPT algorithms
can be put in contrast with less e�cient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k) ·ng(k), for some
functions f, g. There is a tremendous di�erence in the running times
f(k) · ng(k) and f(k) · nc.
In parameterized algorithmics, k is simply a relevant secondary mea-
surement that encapsulates some aspect of the input instance, be it the
size of the solution sought after, or a number describing how �struc-
tured� the input instance is.

A negative example: vertex coloring

Not every choice for what k measures leads to FPT algorithms. Let us have
a look at an example where it does not. Suppose the management of the
hypothetical bar you work at doesn't want to refuse anyone at the door, but
still doesn't want any �ghts. To achieve this, they buy k−1 more bars across
the street, and come up with the following brilliant plan. Every night they
will compile a list of the guests coming, and a list of potential con�icts. Then
you are to split the guest list into k groups, such that no two guests with
a potential con�ict between them end up in the same group. Then each of
the groups can be sent to one bar, keeping everyone happy. For example,
in Fig. 1.1, we may put Alice and Christos in the �rst bar, Bob, Erik, and
Gerhard in the second bar, and Daniel and Fedor in the third bar.

We model this problem as a graph problem, representing each person as
a vertex, and each con�ict as an edge between two vertices. A partition of
the guest list into k groups can be represented by a function that assigns
to each vertex an integer between 1 and k. The objective is to �nd such a
function that, for every edge, assigns di�erent numbers to its two endpoints.
A function that satis�es these constraints is called a proper k-coloring of the
graph. Not every graph has a proper k-coloring. For example, if there are
k + 1 vertices with an edge between every pair of them, then each of these
vertices needs to be assigned a unique integer. Hence such a graph does not
have a proper k-coloring. This gives rise to a computational problem, called
Vertex Coloring. Here we are given as input a graph G and an integer k,
and we need to decide whether G has a proper k-coloring.
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It is well known that Vertex Coloring is NP-complete, so we do not
hope for a polynomial-time algorithm that works in all cases. However, it is
fair to assume that the management does not want to own more than k = 5
bars on the same street, so we will gladly settle for a O(2k ·nc)-time algorithm
for some constant c, mimicking the success we had with our �rst problem.
Unfortunately, deciding whether a graph G has a proper 5-coloring is NP-
complete, so any f(k) · nc-time algorithm for Vertex Coloring for any
function f and constant c would imply that P = NP ; indeed, suppose such
an algorithm existed. Then, given a graph G, we can decide whether G has a
proper 5-coloring in time f(5) · nc = O(nc). But then we have a polynomial-
time algorithm for an NP-hard problem, implying P = NP . Observe that
even an XP algorithm with running time f(k) ·ng(k) for any functions f and
g would imply that P = NP by an identical argument.

A hard parameterized problem: �nding cliques

The example ofVertex Coloring illustrates that parameterized algorithms
are not all-powerful: there are parameterized problems that do not seem to
admit FPT algorithms. But very importantly, in this speci�c example, we
could explain very precisely why we are not able to design e�cient algorithms,
even when the number of bars is small. From the perspective of an algorithm
designer such insight is very useful; she can now stop wasting time trying to
design e�cient algorithms based only on the fact that the number of bars is
small, and start searching for other ways to attack the problem instances. If
we are trying to make a polynomial-time algorithm for a problem and failing,
it is quite likely that this is because the problem is NP-hard. Is the theory
of NP-hardness the right tool also for giving negative evidence for �xed-
parameter tractability? In particular, if we are trying to make an f(k) · nc-
time algorithm and fail to do so, is it because the problem is NP-hard for
some �xed constant value of k, say k = 100? Let us look at another example
problem.

Now that you have a program that helps you decide who to refuse at the
door and who to admit, you are faced with a di�erent problem. The people in
the town you live in have friends who might get upset if their friend is refused
at the door. You are quite skilled at martial arts, and you can handle at most
k − 1 angry guys coming at you, but probably not k. What you are most
worried about are groups of at least k people where everyone in the group is
friends with everyone else. These groups tend to have an �all for one and one
for all� mentality � if one of them gets mad at you, they all do. Small as the
town is, you know exactly who is friends with whom, and you want to �gure
out whether there is a group of at least k people where everyone is friends
with everyone else. You model this as a graph problem where every person
is a vertex and two vertices are connected by an edge if the corresponding
persons are friends. What you are looking for is a clique on k vertices, that
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is, a set of k vertices with an edge between every pair of them. This problem
is known as the Clique problem. For example, if we interpret now the edges
of Fig. 1.1 as showing friendships between people, then Bob, Christos, and
Daniel form a clique of size 3.

There is a simple O(nk)-time algorithm to check whether a clique on at

least k vertices exists; for each of the
(
n
k

)
= O(n

k

k2 ) subsets of vertices of
size k, we check in time O(k2) whether every pair of vertices in the subset
is adjacent. Unfortunately, this XP algorithm is quite hopeless to run for
n = 1000 and k = 10. Can we design an FPT algorithm for this problem?
So far, no one has managed to �nd one. Could it be that this is because
�nding a k-clique is NP-hard for some �xed value of k? Suppose the problem
was NP-hard for k = 100. We just gave an algorithm for �nding a clique of
size 100 in time O(n100), which is polynomial time. We would then have a
polynomial-time algorithm for an NP-hard problem, implying that P = NP.
So we cannot expect to be able to use NP-hardness in this way in order to
rule out an FPT algorithm for Clique. More generally, it seems very di�cult
to use NP-hardness in order to explain why a problem that does have an XP
algorithm does not admit an FPT algorithm.

Since NP-hardness is insu�cient to di�erentiate between problems with
f(k) · ng(k)-time algorithms and problems with f(k) · nc-time algorithms, we
resort to stronger complexity theoretical assumptions. The theory of W[1]-
hardness (see Chapter 13) allows us to prove (under certain complexity as-
sumptions) that even though a problem is polynomial-time solvable for every
�xed k, the parameter k has to appear in the exponent of n in the running
time, that is, the problem is not FPT. This theory has been quite successful
for identifying which parameterized problems are FPT and which are unlikely
to be. Besides this qualitative classi�cation of FPT versus W[1]-hard, more
recent developments give us also (an often surprisingly tight) quantitative
understanding of the time needed to solve a parameterized problem. Under
reasonable assumptions about the hardness of CNF-SAT (see Chapter 14),
it is possible to show that there is no f(k) · nc, or even a f(k) · no(k)-time
algorithm for �nding a clique on k vertices. Thus, up to constant factors
in the exponent, the naive O(nk)-time algorithm is optimal! Over the past
few years, it has become a rule, rather than an exception, that whenever
we are unable to signi�cantly improve the running time of a parameterized
algorithm, we are able to show that the existing algorithms are asymptoti-
cally optimal, under reasonable assumptions. For example, under the same
assumptions that we used to rule out an f(k) · no(k)-time algorithm for solv-
ing Clique, we can also rule out a 2o(k) · nO(1)-time algorithm for the Bar
Fight Prevention problem from the beginning of this chapter.

Any algorithmic theory is incomplete without an accompanying com-
plexity theory that establishes intractability of certain problems. There
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Problem Good news Bad news

Bar Fight Prevention O(2k · k · n)-time algorithm NP-hard
(probably not in P)

Clique with ∆ O(2∆ ·∆2 · n)-time algorithm NP-hard
(probably not in P)

Clique with k nO(k)-time algorithm W[1]-hard
(probably not FPT)

Vertex Coloring NP-hard for k = 3
(probably not XP)

Fig. 1.3: Overview of the problems in this chapter

is such a complexity theory providing lower bounds on the running time
required to solve parameterized problems.

Finding cliques � with a di�erent parameter

OK, so there probably is no algorithm for solving Clique with running time
f(k) ·no(k). But what about those scary groups of people that might come for
you if you refuse the wrong person at the door? They do not care at all about
the computational hardness of Clique, and neither do their �sts. What can
you do? Well, in Norway most people do not have too many friends. In fact,
it is quite unheard of that someone has more than ∆ = 20 friends. That
means that we are trying to �nd a k-clique in a graph of maximum degree
∆. This can be done quite e�ciently: if we guess one vertex v in the clique,
then the remaining vertices in the clique must be among the ∆ neighbors of
v. Thus we can try all of the 2∆ subsets of the neighbors of v, and return
the largest clique that we found. The total running time of this algorithm
is O(2∆ ·∆2 · n), which is quite feasible for ∆ = 20. Again it is possible to
use complexity theoretic assumptions on the hardness of CNF-SAT to show
that this algorithm is asymptotically optimal, up to multiplicative constants
in the exponent.

What the algorithm above shows is that the Clique problem is FPT when
the parameter is the maximum degree ∆ of the input graph. At the same time
Clique is probably not FPT when the parameter is the solution size k. Thus,
the classi�cation of the problem into �tractable� or �intractable� crucially
depends on the choice of parameter. This makes a lot of sense; the more we
know about our input instances, the more we can exploit algorithmically!
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The art of parameterization

For typical optimization problems, one can immediately �nd a relevant pa-
rameter: the size of the solution we are looking for. In some cases, however,
it is not completely obvious what we mean by the size of the solution. For
example, consider the variant of Bar Fight Prevention where we want
to reject at most k guests such that the number of con�icts is reduced to at
most ` (as we believe that the bouncers at the bar can handle ` con�icts,
but not more). Then we can parameterize either by k or by `. We may even
parameterize by both: then the goal is to �nd an FPT algorithm with running
time f(k, `) · nc for some computable function f depending only on k and `.
Thus the theory of parameterization and FPT algorithms can be extended to
considering a set of parameters at the same time. Formally, however, one can
express parameterization by k and ` simply by de�ning the value k+ ` to be
the parameter: an f(k, `) · nc algorithm exists if and only if an f(k + `) · nc
algorithm exists.

The parameters k and ` in the extended Bar Fight Prevention exam-
ple of the previous paragraph are related to the objective of the problem: they
are parameters explicitly given in the input, de�ning the properties of the so-
lution we are looking for. We get more examples of this type of parameter if
we de�ne variants of Bar Fight Prevention where we need to reject at
most k guests such that, say, the number of con�icts decreases by p, or such
that each accepted guest has con�icts with at most d other accepted guests,
or such that the average number of con�icts per guest is at most a. Then
the parameters p, d, and a are again explicitly given in the input, telling us
what kind of solution we need to �nd. The parameter ∆ (maximum degree
of the graph) in the Clique example is a parameter of a very di�erent type:
it is not given explicitly in the input, but it is a measure of some property of
the input instance. We de�ned and explored this particular measure because
we believed that it is typically small in the input instances we care about:
this parameter expresses some structural property of typical instances. We
can identify and investigate any number of such parameters. For example,
in problems involving graphs, we may parameterize by any structural pa-
rameter of the graph at hand. Say, if we believe that the problem is easy on
planar graphs and the instances are �almost planar�, then we may explore the
parameterization by the genus of the graph (roughly speaking, a graph has
genus g if it can be drawn without edge crossings on a sphere with g holes in
it). A large part of Chapter 7 (and also Chapter 11) is devoted to parame-
terization by treewidth, which is a very important parameter measuring the
�tree-likeness� of the graph. For problems involving satis�ability of Boolean
formulas, we can have such parameters as the number of variables, or clauses,
or the number of clauses that need to be satis�ed, or that are allowed not
to be satis�ed. For problems involving a set of strings, one can parameter-
ize by the maximum length of the strings, by the size of the alphabet, by
the maximum number of distinct symbols appearing in each string, etc. In
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a problem involving a set of geometric objects (say, points in space, disks,
or polygons), one may parameterize by the maximum number of vertices of
each polygon or the dimension of the space where the problem is de�ned. For
each problem, with a bit of creativity, one can come up with a large number
of (combinations of) parameters worth studying.

For the same problem there can be multiple choices of parameters. Se-
lecting the right parameter(s) for a particular problem is an art.

Parameterized complexity allows us to study how di�erent parameters in-
�uence the complexity of the problem. A successful parameterization of a
problem needs to satisfy two properties. First, we should have some rea-
son to believe that the selected parameter (or combination of parameters)
is typically small on input instances in some application. Second, we need
e�cient algorithms where the combinatorial explosion is restricted to the
parameter(s), that is, we want the problem to be FPT with this parameter-
ization. Finding good parameterizations is an art on its own and one may
spend quite some time on analyzing di�erent parameterizations of the same
problem. However, in this book we focus more on explaining algorithmic tech-
niques via carefully chosen illustrative examples, rather than discussing every
possible aspect of a particular problem. Therefore, even though di�erent pa-
rameters and parameterizations will appear throughout the book, we will not
try to give a complete account of all known parameterizations and results for
any concrete problem.

1.1 Formal de�nitions

We �nish this chapter by leaving the realm of pub jokes and moving to more
serious matters. Before we start explaining the techniques for designing pa-
rameterized algorithms, we need to introduce formal foundations of param-
eterized complexity. That is, we need to have rigorous de�nitions of what a
parameterized problem is, and what it means that a parameterized problem
belongs to a speci�c complexity class.

De�nition 1.1. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a �xed, �nite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the
parameter.

For example, an instance of Clique parameterized by the solution size is
a pair (G, k), where we expect G to be an undirected graph encoded as a
string over Σ, and k is a positive integer. That is, a pair (G, k) belongs to the
Clique parameterized language if and only if the string G correctly encodes
an undirected graph, which we will also denote by G, and moreover the graph
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G contains a clique on k vertices. Similarly, an instance of the CNF-SAT
problem (satis�ability of propositional formulas in CNF), parameterized by
the number of variables, is a pair (ϕ, n), where we expect ϕ to be the input
formula encoded as a string over Σ and n to be the number of variables of
ϕ. That is, a pair (ϕ, n) belongs to the CNF-SAT parameterized language
if and only if the string ϕ correctly encodes a CNF formula with n variables,
and the formula is satis�able.

We de�ne the size of an instance (x, k) of a parameterized problem as
|x| + k. One interpretation of this convention is that, when given to the
algorithm on the input, the parameter k is encoded in unary.

De�nition 1.2. A parameterized problem L ⊆ Σ∗ × N is called �xed-
parameter tractable (FPT) if there exists an algorithm A (called a �xed-
parameter algorithm), a computable function f : N→ N, and a constant
c such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity
class containing all �xed-parameter tractable problems is called FPT.

Before we go further, let us make some remarks about the function f in
this de�nition. Observe that we assume f to be computable, as otherwise we
would quickly run into trouble when developing complexity theory for �xed-
parameter tractability. For technical reasons, it will be convenient to assume,
from now on, that f is also nondecreasing. Observe that this assumption
has no in�uence on the de�nition of �xed-parameter tractability as stated in
De�nition 1.2, since for every computable function f : N → N there exists a
computable nondecreasing function f̄ that is never smaller than f : we can
simply take f̄(k) = maxi=0,1,...,k f(i). Also, for standard algorithmic results
it is always the case that the bound on the running time is a nondecreasing
function of the complexity measure, so this assumption is indeed satis�ed in
practice. However, the assumption about f being nondecreasing is formally
needed in various situations, for example when performing reductions.

We now de�ne the complexity class XP.

De�nition 1.3. A parameterized problem L ⊆ Σ∗ × N is called slice-wise
polynomial (XP) if there exists an algorithm A and two computable functions
f, g : N→ N such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly de-
cides whether (x, k) ∈ L in time bounded by f(k)·|(x, k)|g(k). The complexity
class containing all slice-wise polynomial problems is called XP.

Again, we shall assume that the functions f, g in this de�nition are nonde-
creasing.

The de�nition of a parameterized problem, as well as the de�nitions of
the classes FPT and XP, can easily be generalized to encompass multiple
parameters. In this setting we simply allow k to be not just one nonnegative
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integer, but a vector of d nonnegative integers, for some �xed constant d.
Then the functions f and g in the de�nitions of the complexity classes FPT
and XP can depend on all these parameters.

Just as �polynomial time� and �polynomial-time algorithm� usually refer
to time polynomial in the input size, the terms �FPT time� and �FPT algo-
rithms� refer to time f(k) times a polynomial in the input size. Here f is a
computable function of k and the degree of the polynomial is independent of
both n and k. The same holds for �XP time� and �XP algorithms�, except
that here the degree of the polynomial is allowed to depend on the parameter
k, as long as it is upper bounded by g(k) for some computable function g.

Observe that, given some parameterized problem L, the algorithm de-
signer has essentially two di�erent optimization goals when designing FPT
algorithms for L. Since the running time has to be of the form f(k) · nc, one
can:

� optimize the parametric dependence of the running time, i.e., try to design
an algorithm where function f grows as slowly as possible; or

� optimize the polynomial factor in the running time, i.e., try to design an
algorithm where constant c is as small as possible.

Both these goals are equally important, from both a theoretical and a practi-
cal point of view. Unfortunately, keeping track of and optimizing both factors
of the running time can be a very di�cult task. For this reason, most research
on parameterized algorithms concentrates on optimizing one of the factors,
and putting more focus on each of them constitutes one of the two dominant
trends in parameterized complexity. Sometimes, when we are not interested in
the exact value of the polynomial factor, we use the O∗-notation, which sup-
presses factors polynomial in the input size. More precisely, a running time
O∗(f(k)) means that the running time is upper bounded by f(k) · nO(1),
where n is the input size.

The theory of parameterized complexity has been pioneered by Downey
and Fellows over the last two decades [148, 149, 150, 151, 153]. The main
achievement of their work is a comprehensive complexity theory for param-
eterized problems, with appropriate notions of reduction and completeness.
The primary goal is to understand the qualitative di�erence between �xed-
parameter tractable problems, and problems that do not admit such e�-
cient algorithms. The theory contains a rich �positive� toolkit of techniques
for developing e�cient parameterized algorithms, as well as a correspond-
ing �negative� toolkit that supports a theory of parameterized intractability.
This textbook is mostly devoted to a presentation of the positive toolkit: in
Chapters 2 through 12 we present various algorithmic techniques for design-
ing �xed-parameter tractable algorithms. As we have argued, the process of
algorithm design has to use both toolkits in order to be able to conclude that
certain research directions are pointless. Therefore, in Part III we give an
introduction to lower bounds for parameterized problems.
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Chapter 2

Kernelization

Kernelization is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sun�ower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for Vertex Cover, Feedback Arc Set
in Tournaments, Edge Clique Cover, Maximum
Satisfiability, and d-Hitting Set.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve e�ciently
the �easy parts� of a problem instance and reduce it (shrink it) to its com-
putationally di�cult �core� structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent �smaller sized� instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the e�ectiveness of such a preprocessing subrou-
tine? Suppose we de�ne a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal de�nition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a de�nition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

17
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do not have to be processed further. These ideas open up the �lost continent�
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion 2.1, provides formal de�nitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on Maximum Satisfiability. Section 2.5 studies tools based on linear
programming and gives a kernel for Vertex Cover. Finally, we study the
sun�ower lemma in Section 2.6 and use it to obtain a polynomial kernel for
d-Hitting Set.

2.1 Formal de�nitions

We now turn to the formal de�nition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem Q is a function φ : Σ∗ × N → Σ∗ × N that maps an instance (I, k)
of Q to an equivalent instance (I ′, k′) of Q such that φ is computable in
time polynomial in |I| and k. We say that two instances of Q are equivalent
if (I, k) ∈ Q if and only if (I ′, k′) ∈ Q; this property of the reduction rule φ,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I, k) ∈ Σ∗ × N of Q, works in polynomial time, and returns an
equivalent instance (I ′, k′) of Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the output size of a preprocessing algorithm A is a function
sizeA : N→ N ∪ {∞} de�ned as follows:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}.

In other words, we look at all possible instances of Q with a �xed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be in�nite; this happens when we do not have
any bound on the size of A(I, k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is �nite and bounded by a computable function of the parameter.

De�nition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem Q is an algorithm A that, given
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an instance (I, k) of Q, works in polynomial time and returns an equivalent
instance (I ′, k′) of Q. Moreover, we require that sizeA(k) ≤ g(k) for some
computable function g : N→ N.

The size requirement in this de�nition can be reformulated as follows:
There exists a computable function g(·) such that whenever (I ′, k′) is the
output for an instance (I, k), then it holds that |I ′|+ k′ ≤ g(k). If the upper
bound g(·) is a polynomial (linear) function of the parameter, then we say
that Q admits a polynomial (linear) kernel . We often abuse the notation and
call the output of a kernelization algorithm the �reduced� equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to �t into the introduced de�nition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
yes-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, k) of Q, the size of the kernel is de�ned
as the number of bits needed to encode the reduced equivalent instance I ′

plus the parameter value k′. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem Q, we could say that Q
admits a kernel with O(k3) vertices and O(k5) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem de�ned on formulas, we could say that the problem admits a
kernel with O(k) variables.

It is important to mention here that the early de�nitions of kernelization
required that k′ ≤ k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem � thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k′ ≤ k.

While usually in Computer Science we measure the e�ciency of an
algorithm by estimating its running time, the central measure of the
e�ciency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-
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ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance I is
simply a function of k (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem Q is FPT then it admits a kernel-
ization algorithm.

Proof. Since Q is FPT, there is an algorithm A deciding if (I, k) ∈ Q in time
f(k) · |I|c for some computable function f and a constant c. We obtain a ker-
nelization algorithm for Q as follows. Given an input (I, k), the kernelization
algorithm runs A on (I, k), for at most |I|c+1 steps. If it terminates with an
answer, use that answer to return either that (I, k) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|c+1 steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|c+1 steps, we have that f(k) · |I|c > |I|c+1, and
thus |I| < f(k). Consequently, we have |I| + k ≤ f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. ut

Lemma 2.2 implies that a decidable problem admits a kernel if and only
if it is �xed-parameter tractable. Thus, in a sense, kernelization can be
another way of de�ning �xed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-speci�c data reduction rules often
achieve quadratic (g(k) = O(k2)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = kO(1)). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter 9, we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for Vertex Cover and
Feedback Arc Set in Tournaments (FAST) based on a few natural
reduction rules.
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2.2.1 Vertex Cover

Let G be a graph and S ⊆ V (G). The set S is called a vertex cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G − S contains no edges and thus V (G) \ S is an independent set. In
the Vertex Cover problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The �rst reduction rule is based on the following simple observation. For
a given instance (G, k) of Vertex Cover, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G− v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k + 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least k+ 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G− v, k − 1).

Observe that exhaustive application of reductions VC.1 and VC.2 completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules VC.1,
VC.2 is applicable to G, then |V (G)| ≤ k2 + k and |E(G)| ≤ k2.

Proof. Because we cannot apply Reductions VC.1 anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of
G − S should be adjacent to some vertex from S. Since we cannot apply
Reductions VC.2, every vertex of G has degree at most k. It follows that
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|V (G − S)| ≤ k|S| and hence |V (G)| ≤ (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |V (G)| ≤ (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G has more than k2 edges, this is
again a no-instance. ut

Lemma 2.3 allows us to claim the �nal reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions VC.1
and VC.2 are not applicable to (G, k). If k < 0 and G has more than k2 + k
vertices, or more than k2 edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. Vertex Cover admits a kernel with O(k2) vertices and
O(k2) edges.

2.2.2 Feedback Arc Set in Tournaments

In this section we discuss a kernel for the Feedback Arc Set in Tourna-
ments problem. A tournament is a directed graph T such that for every pair
of vertices u, v ∈ V (T ), exactly one of (u, v) or (v, u) is a directed edge (also
often called an arc) of T . A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then E(G) is a
transitive relation). In the Feedback Arc Set in Tournaments problem
we are given a tournament T and a nonnegative integer k. The objective is
to decide whether T has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of �reversing edges�.
We start with the following well-known result about topological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u, v), we
have u < v.

We leave the proof of Lemma 2.5 as an exercise; see Exercise 2.1. Given
a directed graph G and a subset F ⊆ E(G) of edges, we de�ne G~ F to be
the directed graph obtained from G by reversing all the edges of F . That is,
if rev(F ) = {(u, v) : (v, u) ∈ F}, then for G ~ F the vertex set is V (G)
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and the edge set E(G ~ F ) = (E(G) ∪ rev(F )) \ F . Lemma 2.5 implies the
following.

Observation 2.6. Let G be a directed graph and let F be a subset of edges
of G. If G~ F is a directed acyclic graph then F is a feedback arc set of G.

The following lemma shows that, in some sense, the opposite direction
of the statement in Observation 2.6 is also true. However, the minimality
condition in Lemma 2.7 is essential, see Exercise 2.2.

Lemma 2.7. Let G be a directed graph and F be a subset of E(G). Then
F is an inclusion-wise minimal feedback arc set of G if and only if F is an
inclusion-wise minimal set of edges such that G ~ F is an acyclic directed
graph.

Proof. We �rst prove the forward direction of the lemma. Let F be an
inclusion-wise minimal feedback arc set of G. Assume to the contrary that
G~F has a directed cycle C. Then C cannot contain only edges of E(G)\F , as
that would contradict the fact that F is a feedback arc set. Let f1, f2, · · · , f`
be the edges of C ∩ rev(F ) in the order of their appearance on the cycle C,
and let ei ∈ F be the edge fi reversed. Since F is inclusion-wise minimal,
for every ei, there exists a directed cycle Ci in G such that F ∩ Ci = {ei}.
Now consider the following closed walk W in G: we follow the cycle C, but
whenever we are to traverse an edge fi ∈ rev(F ) (which is not present in
G), we instead traverse the path Ci − ei. By de�nition, W is a closed walk
in G and, furthermore, note that W does not contain any edge of F . This
contradicts the fact that F is a feedback arc set of G.

The minimality follows from Observation 2.6. That is, every set of edges
F such that G~F is acyclic is also a feedback arc set of G, and thus, if F is
not a minimal set such that G~ F is acyclic, then it will contradict the fact
that F is a minimal feedback arc set.

For the other direction, let F be an inclusion-wise minimal set of edges
such that G ~ F is an acyclic directed graph. By Observation 2.6, F is a
feedback arc set of G. Moreover, F is an inclusion-wise minimal feedback arc
set, because if a proper subset F ′ of F is an inclusion-wise minimal feedback
arc set of G, then by the already proved implication of the lemma, G~F ′ is
an acyclic directed graph, a contradiction with the minimality of F . ut
We are ready to give a kernel for Feedback Arc Set in Tournaments.

Theorem 2.8. Feedback Arc Set in Tournaments admits a kernel with
at most k2 + 2k vertices.

Proof. Lemma 2.7 implies that a tournament T has a feedback arc set of
size at most k if and only if it can be turned into an acyclic tournament by
reversing directions of at most k edges. We will use this characterization for
the kernel.

In what follows by a triangle we mean a directed cycle of length three. We
give two simple reduction rules.
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Reduction FAST.1. If an edge e is contained in at least k + 1 triangles,
then reverse e and reduce k by 1.

Reduction FAST.2. If a vertex v is not contained in any triangle, then
delete v from T .

The rules follow similar guidelines as in the case of Vertex Cover. In
Reduction FAST.1, we greedily take into a solution an edge that partic-
ipates in k+ 1 otherwise disjoint forbidden structures (here, triangles).
In Reduction FAST.2, we discard vertices that do not participate in any
forbidden structure, and should be irrelevant to the problem.

However, a formal proof of the safeness of Reduction FAST.2 is not
immediate: we need to verify that deleting v and its incident edges does
not make make a yes-instance out of a no-instance.

Note that after applying any of the two rules, the resulting graph is again
a tournament. The �rst rule is safe because if we do not reverse e, we have
to reverse at least one edge from each of k+ 1 triangles containing e. Thus e
belongs to every feedback arc set of size at most k.

Let us now prove the safeness of the second rule. Let X = N+(v) be the
set of heads of directed edges with tail v and let Y = N−(v) be the set of
tails of directed edges with head v. Because T is a tournament, X and Y is a
partition of V (T )\{v}. Since v is not a part of any triangle in T , we have that
there is no edge from X to Y (with head in Y and tail in X). Consequently,
for any feedback arc set A1 of tournament T [X] and any feedback arc set
A2 of tournament T [Y ], the set A1 ∪ A2 is a feedback arc set of T . As the
reverse implication is trivial (for any feedback arc set A in T , A∩E(T [X]) is
a feedback arc set of T [X], and A ∩ E(T [Y ]) is a feedback arc set of T [Y ]),
we have that (T, k) is a yes-instance if and only if (T − v, k) is.

Finally, we show that every reduced yes-instance T , an instance on which
none of the presented reduction rules are applicable, has at most k(k + 2)
vertices. Let A be a feedback arc set of a reduced instance T of size at most
k. For every edge e ∈ A, aside from the two endpoints of e, there are at most
k vertices that are in triangles containing e � otherwise we would be able
to apply Reduction FAST.1. Since every triangle in T contains an edge of A
and every vertex of T is in a triangle, we have that T has at most k(k + 2)
vertices.

Thus, given (T, k) we apply our reduction rules exhaustively and obtain
an equivalent instance (T ′, k′). If T ′ has more than k′2 +k′ vertices, then the
algorithm returns that (T, k) is a no-instance, otherwise we get the desired
kernel. This completes the proof of the theorem. ut
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2.2.3 Edge Clique Cover

Not all FPT problems admit polynomial kernels. In the Edge Clique
Cover problem, we are given a graph G and a nonnegative integer k, and
the goal is to decide whether the edges of G can be covered by at most
k cliques. In this section we give an exponential kernel for Edge Clique
Cover. In Theorem 14.20 of Section *14.3.3, we remark that this simple
kernel is essentially optimal.

Let us recall the reader that we use N(v) = {u : uv ∈ E(G)} to denote
the neighborhood of vertex v in G, and N [v] = N(v) ∪ {v} to denote the
closed neighborhood of v. We apply the following data reduction rules in the
given order (i.e., we always use the lowest-numbered rule that modi�es the
instance).

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an isolated edge uv (a connected component
that is just an edge), delete it and decrease k by 1. The new instance is
(G− {u, v}, k − 1).

Reduction ECC.3. If there is an edge uv whose endpoints have exactly the
same closed neighborhood, that is, N [u] = N [v], then delete v. The new
instance is (G− v, k).

The crux of the presented kernel for Edge Clique Cover is an obser-
vation that two true twins (vertices u and v with N [u] = N [v]) can be
treated in exactly the same way in some optimum solution, and hence
we can reduce them. Meanwhile, the vertices that are contained in ex-
actly the same set of cliques in a feasible solution have to be true twins.
This observation bounds the size of the kernel.

The safeness of the �rst two reductions is trivial, while the safeness of
Reduction ECC.3 follows from the observation that a solution in G − v can
be extended to a solution in G by adding v to all the cliques containing u
(see Exercise 2.3).

Theorem 2.9. Edge Clique Cover admits a kernel with at most 2k ver-
tices.

Proof. We start with the following claim.

Claim. If (G, k) is a reduced yes-instance, on which none of the presented
reduction rules can be applied, then |V (G)| ≤ 2k.

Proof. Let C1, . . . , Ck be an edge clique cover of G. We claim that G has at
most 2k vertices. Targeting a contradiction, let us assume that G has more
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than 2k vertices. We assign to each vertex v ∈ V (G) a binary vector bv of
length k, where bit i, 1 ≤ i ≤ k, is set to 1 if and only if v is contained in clique
Ci. Since there are only 2k possible vectors, there must be u 6= v ∈ V (G)
with bu = bv. If bu and bv are zero vectors, the �rst rule applies; otherwise,
u and v are contained in the same cliques. This means that u and v are
adjacent and have the same neighborhood; thus either Reduction ECC.2 or
Reduction ECC.3 applies. Hence, if G has more than 2k vertices, at least one
of the reduction rules can be applied to it, which is a contradiction to the
initial assumption that G is reduced. This completes the proof of the claim.

ut
The kernelization algorithm works as follows. Given an instance (G, k), it
applies Reductions ECC.1, ECC.2, and ECC.3 exhaustively. If the resulting
graph has more than 2k vertices the kernelization algorithm outputs that the
input instance is a no-instance, else it outputs the reduced instance. ut

2.3 Crown decomposition

Crown decomposition is a general kernelization technique that can be used
to obtain kernels for many problems. The technique is based on the classical
matching theorems of K®nig and Hall.

Recall that for disjoint vertex subsets U,W of a graph G, a matching M
is called a matching of U into W if every edge of M connects a vertex of U
and a vertex of W and, moreover, every vertex of U is an endpoint of some
edge of M . In this situation, we also say that M saturates U .

De�nition 2.10 (Crown decomposition). A crown decomposition of a
graph G is a partitioning of V (G) into three parts C, H and R, such that

1. C is nonempty.
2. C is an independent set.
3. There are no edges between vertices of C and R. That is, H separates C
and R.

4. Let E′ be the set of edges between vertices of C and H. Then E′ contains
a matching of size |H|. In other words, G contains a matching of H into
C.

The set C can be seen as a crown put on head H of the remaining part R, see
Fig. 2.1. Note that the fact that E′ contains a matching of size |H| implies
that there is a matching of H into C. This is a matching in the subgraph G′,
with the vertex set C ∪H and the edge set E′, saturating all the vertices of
H.

For �nding a crown decomposition in polynomial time, we use the following
well known structural and algorithmic results. The �rst is a mini-max theorem
due to K®nig.
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R

H

C

Fig. 2.1: Example of a crown decomposition. Set C is an independent set, H
separates C and R, and there is a matching of H into C

Theorem 2.11 (K®nig's theorem, [303]). In every undirected bipartite
graph the size of a maximum matching is equal to the size of a minimum
vertex cover.

Let us recall that a matching saturates a set of vertices S when every
vertex in S is incident to an edge in the matching. The second classic result
states that in bipartite graphs, a trivial necessary condition for the existence
of a matching is also su�cient.

Theorem 2.12 (Hall's theorem, [256]). Let G be an undirected bipartite
graph with bipartition (V1, V2). The graph G has a matching saturating V1 if
and only if for all X ⊆ V1, we have |N(X)| ≥ |X|.

The following theorem is due to Hopcroft and Karp [268]. The proof of
the (nonstandard) second claim of the theorem is deferred to Exercise 2.21.

Theorem 2.13 (Hopcroft-Karp algorithm, [268]). Let G be an undi-
rected bipartite graph with bipartition V1 and V2, on n vertices and m edges.
Then we can �nd a maximum matching as well as a minimum vertex cover
of G in time O(m

√
n). Furthermore, in time O(m

√
n) either we can �nd a

matching saturating V1 or an inclusion-wise minimal set X ⊆ V1 such that
|N(X)| < |X|.

The following lemma is the basis for kernelization algorithms using crown
decomposition.

Lemma 2.14 (Crown lemma). Let G be a graph without isolated vertices
and with at least 3k + 1 vertices. There is a polynomial-time algorithm that
either

� �nds a matching of size k + 1 in G; or
� �nds a crown decomposition of G.

Proof. We �rst �nd an inclusion-maximal matching M in G. This can be
done by a greedy algorithm. If the size of M is k + 1, then we are done.
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Hence, we assume that |M | ≤ k, and let VM be the endpoints of M . We have
|VM | ≤ 2k. Because M is a maximal matching, the remaining set of vertices
I = V (G) \ VM is an independent set.

Consider the bipartite graph GI,VM formed by edges of G between VM
and I. We compute a minimum-sized vertex cover X and a maximum sized
matching M ′ of the bipartite graph GI,VM in polynomial time using Theo-
rem 2.13. We can assume that |M ′| ≤ k, for otherwise we are done. Since
|X| = |M ′| by K®nig's theorem (Theorem 2.11), we infer that |X| ≤ k.

If no vertex of X is in VM , then X ⊆ I. We claim that X = I. For
a contradiction assume that there is a vertex w ∈ I \X. Because G has no
isolated vertices there is an edge, say wz, incident to w in GI,VM . Since GI,VM
is bipartite, we have that z ∈ VM . However, X is a vertex cover of GI,VM
such that X ∩ VM = ∅, which implies that w ∈ X. This is contrary to our
assumption that w /∈ X, thus proving that X = I. But then |I| ≤ |X| ≤ k,
and G has at most

|I|+ |VM | ≤ k + 2k = 3k

vertices, which is a contradiction.
Hence, X∩VM 6= ∅. We obtain a crown decomposition (C,H,R) as follows.

Since |X| = |M ′|, every edge of the matching M ′ has exactly one endpoint
in X. Let M∗ denote the subset of M ′ such that every edge from M∗ has
exactly one endpoint in X ∩ VM and let VM∗ denote the set of endpoints of
edges in M∗. We de�ne head H = X ∩ VM = X ∩ VM∗ , crown C = VM∗ ∩ I,
and the remaining part R = V (G) \ (C ∪H) = V (G) \ VM∗ . In other words,
H is the set of endpoints of edges of M∗ that are present in VM and C is
the set of endpoints of edges of M∗ that are present in I. Obviously, C is
an independent set and by construction, M∗ is a matching of H into C.
Furthermore, since X is a vertex cover of GI,VM , every vertex of C can be
adjacent only to vertices of H and thus H separates C and R. This completes
the proof. ut

The crown lemma gives a relatively strong structural property of graphs
with a small vertex cover (equivalently, a small maximum matching). If
in a studied problem the parameter upper bounds the size of a vertex
cover (maximum matching), then there is a big chance that the struc-
tural insight given by the crown lemma would help in developing a small
kernel � quite often with number of vertices bounded linearly in the
parameter.

We demonstrate the application of crown decompositions on kernelization
for Vertex Cover and Maximum Satisfiability.
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2.3.1 Vertex Cover

Consider a Vertex Cover instance (G, k). By an exhaustive application of
Reduction VC.1, we may assume that G has no isolated vertices. If |V (G)| >
3k, we may apply the crown lemma to the graph G and integer k, obtaining
either a matching of size k+ 1, or a crown decomposition V (G) = C ∪H ∪R.
In the �rst case, the algorithm concludes that (G, k) is a no-instance.

In the latter case, let M be a matching of H into C. Observe that the
matching M witnesses that, for every vertex cover X of the graph G, X
contains at least |M | = |H| vertices of H ∪ C to cover the edges of M . On
the other hand, the set H covers all edges of G that are incident to H ∪ C.
Consequently, there exists a minimum vertex cover of G that contains H, and
we may reduce (G, k) to (G−H, k−|H|). Note that in the instance (G−H, k−
|H|), the vertices of C are isolated and will be reduced by Reduction VC.1.

As the crown lemma promises us that H 6= ∅, we can always reduce the
graph as long as |V (G)| > 3k. Thus, we obtain the following.

Theorem 2.15. Vertex Cover admits a kernel with at most 3k vertices.

2.3.2 Maximum Satisfiability

For a second application of the crown decomposition, we look at the following
parameterized version of Maximum Satisfiability. Given a CNF formula
F , and a nonnegative integer k, decide whether F has a truth assignment
satisfying at least k clauses.

Theorem 2.16. Maximum Satisfiability admits a kernel with at most k
variables and 2k clauses.

Proof. Let ϕ be a CNF formula with n variables and m clauses. Let ψ be an
arbitrary assignment to the variables and let ¬ψ be the assignment obtained
by complementing the assignment of ψ. That is, if ψ assigns δ ∈ {>,⊥} to
some variable x then ¬ψ assigns ¬δ to x. Observe that either ψ or ¬ψ satis�es
at least m/2 clauses, since every clause is satis�ed by ψ or ¬ψ (or by both).
This means that, if m ≥ 2k, then (ϕ, k) is a yes-instance. In what follows we
give a kernel with n < k variables.

Let Gϕ be the variable-clause incidence graph of ϕ. That is, Gϕ is a bi-
partite graph with bipartition (X,Y ), where X is the set of the variables of
ϕ and Y is the set of clauses of ϕ. In Gϕ there is an edge between a variable
x ∈ X and a clause c ∈ Y if and only if either x, or its negation, is in c. If
there is a matching of X into Y in Gϕ, then there is a truth assignment sat-
isfying at least |X| clauses: we can set each variable in X in such a way that
the clause matched to it becomes satis�ed. Thus at least |X| clauses are sat-
is�ed. Hence, in this case, if k ≤ |X|, then (ϕ, k) is a yes-instance. Otherwise,
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k > |X| = n, and we get the desired kernel. We now show that, if ϕ has at
least n ≥ k variables, then we can, in polynomial time, either reduce ϕ to an
equivalent smaller instance, or �nd an assignment to the variables satisfying
at least k clauses (and conclude that we are dealing with a yes-instance).

Suppose ϕ has at least k variables. Using Hall's theorem and a polynomial-
time algorithm computing a maximum-size matching (Theorems 2.12 and 2.13),
we can in polynomial time �nd either a matching of X into Y or an inclusion-
wise minimal set C ⊆ X such that |N(C)| < |C|. As discussed in the previous
paragraph, if we found a matching, then the instance is a yes-instance and
we are done. So suppose we found a set C as described. Let H be N(C) and
R = V (Gϕ)\(C∪H). Clearly, N(C) ⊆ H, there are no edges between vertices
of C and R and G[C] is an independent set. Select an arbitrary x ∈ C. We
have that there is a matching of C \{x} into H since |N(C ′)| ≥ |C ′| for every
C ′ ⊆ C \ {x}. Since |C| > |H|, we have that the matching from C \ {x} to H
is in fact a matching of H into C. Hence (C,H,R) is a crown decomposition
of Gϕ.

We prove that all clauses in H are satis�ed in every assignment satisfying
the maximum number of clauses. Indeed, consider any assignment ψ that does
not satisfy all clauses in H. Fix any variable x ∈ C. For every variable y in
C \{x} set the value of y so that the clause in H matched to y is satis�ed. Let
ψ′ be the new assignment obtained from ψ in this manner. Since N(C) ⊆ H
and ψ′ satis�es all clauses in H, more clauses are satis�ed by ψ′ than by ψ.
Hence ψ cannot be an assignment satisfying the maximum number of clauses.

The argument above shows that (ϕ, k) is a yes-instance toMaximum Sat-
isfiability if and only if (ϕ \H, k − |H|) is. This gives rise to the following
simple reduction.

Reduction MSat.1. Let (ϕ, k) and H be as above. Then remove H from ϕ
and decrease k by |H|. That is, (ϕ \H, k − |H|) is the new instance.

Repeated applications of Reduction MSat.1 and the arguments described
above give the desired kernel. This completes the proof of the theorem. ut

2.4 Expansion lemma

In the previous subsection, we described crown decomposition techniques
based on the classical Hall's theorem. In this section, we introduce a powerful
variation of Hall's theorem, which is called the expansion lemma. This lemma
captures a certain property of neighborhood sets in graphs and can be used
to obtain polynomial kernels for many graph problems. We apply this result
to get an O(k2) kernel for Feedback Vertex Set in Chapter 9.

A q-star, q ≥ 1, is a graph with q+1 vertices, one vertex of degree q, called
the center, and all other vertices of degree 1 adjacent to the center. Let G be
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a bipartite graph with vertex bipartition (A,B). For a positive integer q, a
set of edges M ⊆ E(G) is called by a q-expansion of A into B if

� every vertex of A is incident to exactly q edges of M ;
� M saturates exactly q|A| vertices in B.
Let us emphasize that a q-expansion saturates all vertices of A. Also, for
every u, v ∈ A, u 6= v, the set of vertices Eu adjacent to u by edges ofM does
not intersect the set of vertices Ev adjacent to v via edges of M , see Fig. 2.2.
Thus every vertex v ∈ A could be thought of as the center of a star with
its q leaves in B, with all these |A| stars being vertex-disjoint. Furthermore,
a collection of these stars is also a family of q edge-disjoint matchings, each
saturating A.

A

B

Fig. 2.2: Set A has a 2-expansion into B

Let us recall that, by Hall's theorem (Theorem 2.12), a bipartite graph with
bipartition (A,B) has a matching of A into B if and only if |N(X)| ≥ |X|
for all X ⊆ A. The following lemma is an extension of this result.

Lemma 2.17. Let G be a bipartite graph with bipartition (A,B). Then there
is a q-expansion from A into B if and only if |N(X)| ≥ q|X| for every X ⊆ A.
Furthermore, if there is no q-expansion from A into B, then a set X ⊆ A
with |N(X)| < q|X| can be found in polynomial time.

Proof. If A has a q-expansion into B, then trivially |N(X)| ≥ q|X| for every
X ⊆ A.

For the opposite direction, we construct a new bipartite graph G′ with
bipartition (A′, B) from G by adding (q − 1) copies of all the vertices in A.
For every vertex v ∈ A all copies of v have the same neighborhood in B as v.
We would like to prove that there is a matchingM from A′ into B in G′. If we
prove this, then by identifying the endpoints ofM corresponding to the copies
of vertices from A, we obtain a q-expansion in G. It su�ces to check that
the assumptions of Hall's theorem are satis�ed in G′. Assume otherwise, that
there is a set X ⊆ A′ such that |NG′(X)| < |X|. Without loss of generality,
we can assume that if X contains some copy of a vertex v, then it contains
all the copies of v, since including all the remaining copies increases |X| but
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does not change |NG′(X)|. Hence, the set X in A′ naturally corresponds to
the set XA of size |X|/q in A, the set of vertices whose copies are in X. But
then |NG(XA)| = |NG′(X)| < |X| = q|XA|, which is a contradiction. Hence
A′ has a matching into B and thus A has a q-expansion into B.

For the algorithmic claim, note that, if there is no q-expansion from A
into B, then we can use Theorem 2.13 to �nd a set X ⊆ A′ such that
|NG′(X)| < |X|, and the corresponding set XA satis�es |NG(XA)| < q|XA|.

ut

Finally, we are ready to prove a lemma analogous to Lemma 2.14.

Lemma 2.18. (Expansion lemma) Let q ≥ 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A,B) such that

(i) |B| ≥ q|A|, and
(ii) there are no isolated vertices in B.

Then there exist nonempty vertex sets X ⊆ A and Y ⊆ B such that

� there is a q-expansion of X into Y , and
� no vertex in Y has a neighbor outside X, that is, N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size
of G.

Note that the sets X, Y and V (G) \ (X ∪ Y ) form a crown decomposition
of G with a stronger property � every vertex of X is not only matched into
Y , but there is a q-expansion of X into Y . We proceed with the proof of
expansion lemma.

Proof. We proceed recursively, at every step decreasing the cardinality of A.
When |A| = 1, the claim holds trivially by taking X = A and Y = B.

We apply Lemma 2.17 to G. If A has a q-expansion into B, then we
are done as we may again take X = A and Y = B. Otherwise, we can in
polynomial time �nd a (nonempty) set Z ⊆ A such that |N(Z)| < q|Z|. We
construct the graph G′ by removing Z and N(Z) from G. We claim that G′

satis�es the assumptions of the lemma. Indeed, because we removed less than
q times more vertices from B than from A, we have that (i) holds for G′.
Moreover, every vertex from B \ N(Z) has no neighbor in Z, and thus (ii)
also holds for G′. Note that Z 6= A, because otherwise N(A) = B (there are
no isolated vertices in B) and |B| ≥ q|A|. Hence, we recurse on the graph G′

with bipartition (A \ Z,B \N(Z)), obtaining nonempty sets X ⊆ A \ Z and
Y ⊆ B \ N(Z) such that there is a q-expansion of X into Y and such that
NG′(Y ) ⊆ X. Because Y ⊆ B \ N(Z), we have that no vertex in Y has a
neighbor in Z. Hence, NG′(Y ) = NG(Y ) ⊆ X and the pair (X,Y ) satis�es
all the required properties. ut
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The expansion lemma is useful when the matching saturating the head
partH in the crown lemma turns out to be not su�cient for a reduction,
and we would like to have a few vertices of the crown C matched to
a single vertex of the head H. For example, this is the case for the
Feedback Vertex Set kernel presented in Section 9.1, where we need
the case q = 2.

2.5 Kernels based on linear programming

In this section we design a 2k-vertex kernel for Vertex Cover exploiting
the solution to a linear programming formulation of Vertex Cover.

Many combinatorial problems can be expressed in the language of Inte-
ger Linear Programming (ILP). In an Integer Linear Programming
instance, we are given a set of integer-valued variables, a set of linear inequal-
ities (called constraints) and a linear cost function. The goal is to �nd an (in-
teger) evaluation of the variables that satis�es all constraints, and minimizes
or maximizes the value of the cost function.

Let us give an example on how to encode a Vertex Cover instance (G, k)
as an Integer Linear Programming instance. We introduce n = |V (G)|
variables, one variable xv for each vertex v ∈ V (G). Setting variable xv to 1
means that v is in the vertex cover, while setting xv to 0 means that v is not
in the vertex cover. To ensure that every edge is covered, we can introduce
constraints xu+xv ≥ 1 for every edge uv ∈ E(G). The size of the vertex cover
is given by

∑
v∈V (G) xv. In the end, we obtain the following ILP formulation:

minimize
∑
v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G),
0 ≤ xv ≤ 1 for every v ∈ V (G),
xv ∈ Z for every v ∈ V (G).

(2.1)

Clearly, the optimal value of (2.1) is at most k if and only if G has a vertex
cover of size at most k.

As we have just seen, Integer Linear Programming is at least as hard
as Vertex Cover, so we do not expect it to be polynomial-time solvable. In
fact, it is relatively easy to express many NP-hard problems in the language of
Integer Linear Programming. In Section 6.2 we discuss FPT algorithms
for Integer Linear Programming and their application in proving �xed-
parameter tractability of other problems.

Here, we proceed in a di�erent way: we relax the integrality requirement
of Integer Linear Programming, which is the main source of the hard-
ness of this problem, to obtain Linear Programming. That is, in Linear
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Programming the instance looks exactly the same as in Integer Linear
Programming, but the variables are allowed to take arbitrary real values,
instead of just integers.

In the case of Vertex Cover, we relax (2.1) by dropping the constraint
xv ∈ Z for every v ∈ V (G). In other words, we obtain the following Linear
Programming instance. For a graph G, we call this relaxation LPVC(G).

minimize
∑
v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G),
0 ≤ xv ≤ 1 for every v ∈ V (G).

(2.2)

Note that constraints xv ≤ 1 can be omitted because every optimal solu-
tion of LPVC(G) satis�es these constraints.

Observe that in LPVC(G), a variable xv can take fractional values in the
interval [0, 1], which corresponds to taking �part of the vertex v� into a vertex
cover. Consider an example of G being a triangle. A minimum vertex cover
of a triangle is of size 2, whereas in LPVC(G) we can take xv = 1

2 for every
v ∈ V (G), obtaining a feasible solution of cost 3

2 . Thus, LPVC(G) does not
express exactly the Vertex Cover problem on graph G, but its optimum
solution can still be useful to learn something about minimum vertex covers
in G.

The main source of utility of Linear Programming comes from the
fact that Linear Programming can be solved in polynomial time, even in
some general cases where there are exponentially many constraints, accessed
through an oracle. For this reason, Linear Programming has found abun-
dant applications in approximation algorithms (for more on this topic, we
refer to the book of Vazirani [427]). In this section, we use LP to design a
small kernel for Vertex Cover. In Section 3.4, we will use LPVC(G) to
obtain an FPT branching algorithm for Vertex Cover.

Let us now have a closer look at the relaxation LPVC(G). Fix an optimal
solution (xv)v∈V (G) of LPVC(G). In this solution the variables corresponding
to vertices of G take values in the interval [0, 1]. We partition V (G) according
to these values into three sets as follows.

� V0 = {v ∈ V (G) : xv <
1
2},

� V 1
2

= {v ∈ V (G) : xv = 1
2},

� V1 = {v ∈ V (G) : xv >
1
2}.

Theorem 2.19 (Nemhauser-Trotter theorem). There is a minimum
vertex cover S of G such that

V1 ⊆ S ⊆ V1 ∪ V 1
2
.

Proof. Let S∗ ⊆ V (G) be a minimum vertex cover of G. De�ne

S = (S∗ \ V0) ∪ V1.
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By the constraints of (2.2), every vertex of V0 can have a neighbor only in
V1 and thus S is also a vertex cover of G. Moreover, V1 ⊆ S ⊆ V1 ∪ V 1

2
. It

su�ces to show that S is a minimum vertex cover. Assume the contrary, i.e.,
|S| > |S∗|. Since |S| = |S∗| − |V0 ∩ S∗|+ |V1 \ S∗| we infer that

|V0 ∩ S∗| < |V1 \ S∗|. (2.3)

Let us de�ne
ε = min{|xv − 1

2 | : v ∈ V0 ∪ V1}.
We decrease the fractional values of vertices from V1 \ S∗ by ε and increase
the values of vertices from V0 ∩ S∗ by ε. In other words, we de�ne a vector
(yv)v∈V (G) as

yv =

xv − ε if v ∈ V1 \ S∗,
xv + ε if v ∈ V0 ∩ S∗,
xv otherwise.

Note that ε > 0, because otherwise V0 = V1 = ∅, a contradiction with (2.3).
This, together with (2.3), implies that∑

v∈V (G)

yv <
∑

v∈V (G)

xv. (2.4)

Now we show that (yv)v∈V (G) is a feasible solution, i.e., it satis�es the con-
straints of LPVC(G). Since (xv)v∈V (G) is a feasible solution, by the de�-
nition of ε we get 0 ≤ yv ≤ 1 for every v ∈ V (G). Consider an arbitrary
edge uv ∈ E(G). If none of the endpoints of uv belong to V1 \ S∗, then both
yu ≥ xu and yv ≥ xv, so yu + yv ≥ xu + xv ≥ 1. Otherwise, by symmetry we
can assume that u ∈ V1 \ S∗, and hence yu = xu − ε. Because S∗ is a vertex
cover, we have that v ∈ S∗. If v ∈ V0 ∩ S∗, then

yu + yv = xu − ε+ xv + ε = xu + xv ≥ 1.

Otherwise, v ∈ (V 1
2
∪ V1)∩ S∗. Then yv ≥ xv ≥ 1

2 . Note also that xu − ε ≥ 1
2

by the de�nition of ε. It follows that

yu + yv = xu − ε+ yv ≥
1

2
+

1

2
= 1.

Thus (yv)v∈V (G) is a feasible solution of LPVC(G) and hence (2.4) contra-
dicts the optimality of (xv)v∈V (G). ut

Theorem 2.19 allows us to use the following reduction rule.

Reduction VC.4. Let (xv)v∈V (G) be an optimum solution to LPVC(G) in
a Vertex Cover instance (G, k) and let V0, V1 and V 1

2
be de�ned as above.

If
∑
v∈V (G) xv > k, then conclude that we are dealing with a no-instance.

Otherwise, greedily take into the vertex cover the vertices of V1. That is,
delete all vertices of V0 ∪ V1, and decrease k by |V1|.
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Let us now formally verify the safeness of Reduction VC.4.

Lemma 2.20. Reduction VC.4 is safe.

Proof. Clearly, if (G, k) is a yes-instance, then an optimum solution to
LPVC(G) is of cost at most k. This proves the correctness of the step if
we conclude that (G, k) is a no-instance.

Let G′ = G−(V0∪V1) = G[V 1
2
] and k′ = k−|V1|. We claim that (G, k) is a

yes-instance of Vertex Cover if and only if (G′, k′) is. By Theorem 2.19, we
know thatG has a vertex cover S of size at most k such that V1 ⊆ S ⊆ V1∪V 1

2
.

Then S′ = S ∩ V 1
2
is a vertex cover in G′ and the size of S′ is at most

k − |V1| = k′.
For the opposite direction, let S′ be a vertex cover in G′. For every solution

of LPVC(G), every edge with an endpoint from V0 should have an endpoint
in V1. Hence, S = S′ ∪ V1 is a vertex cover in G and the size of this vertex
cover is at most k′ + |V1| = k. ut

Reduction VC.4 leads to the following kernel for Vertex Cover.

Theorem 2.21. Vertex Cover admits a kernel with at most 2k vertices.

Proof. Let (G, k) be an instance of Vertex Cover. We solve LPVC(G)
in polynomial time, and apply Reduction VC.4 to the obtained solution
(xv)v∈V (G), either concluding that we are dealing with a no-instance or ob-
taining an instance (G′, k′). Lemma 2.20 guarantees the safeness of the re-
duction. For the size bound, observe that

|V (G′)| = |V 1
2
| =

∑
v∈V 1

2

2xv ≤ 2
∑

v∈V (G)

xv ≤ 2k.

ut

While it is possible to solve linear programs in polynomial time, usually
such solutions are less e�cient than combinatorial algorithms. The speci�c
structure of the LP-relaxation of the vertex cover problem (2.2) allows us to
solve it by reducing to the problem of �nding a maximum-size matching in a
bipartite graph.

Lemma 2.22. For a graph G with n vertices and m edges, the optimal
(fractional) solution to the linear program LPVC(G) can be found in time
O(m

√
n).

Proof. We reduce the problem of solving LPVC(G) to a problem of �nding
a minimum-size vertex cover in the following bipartite graph H. Its vertex
set consists of two copies V1 and V2 of the vertex set of G. Thus, every
vertex v ∈ V (G) has two copies v1 ∈ V1 and v2 ∈ V2 in H. For every edge
uv ∈ E(H), we have edges u1v2 and v1u2 in H.
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Using the Hopcroft-Karp algorithm (Theorem 2.13), we can �nd a mini-
mum vertex cover S of H in time O(m

√
n). We de�ne a vector (xv)v∈V (G)

as follows: if both vertices v1 and v2 are in S, then xv = 1. If exactly one of
the vertices v1 and v2 is in S, we put xv = 1

2 . We put xv = 0 if none of the
vertices v1 and v2 are in S. Thus∑

v∈V (G)

xv =
|S|
2
.

Since S is a vertex cover in H, we have that for every edge uv ∈ E(G) at
least two vertices from {u1, u2, v1, v2} should be in S. Thus xu + xv ≥ 1 and
vector (xv)v∈V (G) satis�es the constraints of LPVC(G).

To show that (xv)v∈V (G) is an optimal solution of LPVC(G), we argue
as follows. Let (yv)v∈V (G) be an optimal solution of LPVC(G). For every
vertex vi, i ∈ {1, 2}, of H, we assign the weight w(vi) = yv. This weight
assignment is a fractional vertex cover of H, i.e., for every edge v1u2 ∈ E(H),
w(v1) + w(u2) ≥ 1. We have that∑

v∈V (G)

yv =
1

2

∑
v∈V (G)

(w(v1) + w(v2)).

On the other hand, the value
∑
v∈V (H) w(v) of any fractional solution of

LPVC(H) is at least the size of a maximum matching M in H. A reader
familiar with linear programming can see that this follows from weak duality;
we also ask you to verify this fact in Exercise 2.24.

By K®nig's theorem (Theorem 2.11), |M | = |S|. Hence∑
v∈V (G)

yv =
1

2

∑
v∈V (G)

(w(v1) + w(v2)) =
1

2

∑
v∈V (H)

w(v) ≥ |S|
2

=
∑

v∈V (G)

xv.

Thus (xv)v∈V (G) is an optimal solution of LPVC(G). ut

We immediately obtain the following.

Corollary 2.23. For a graph G with n vertices and m edges, the kernel of
Theorem 2.21 can be found in time O(m

√
n).

The following proposition is another interesting consequence of the proof
of Lemma 2.22.

Proposition 2.24. Let G be a graph on n vertices and m edges. Then
LPVC(G) has a half-integral optimal solution, i.e., all variables have values
in the set {0, 12 , 1}. Furthermore, we can �nd a half-integral optimal solution
in time O(m

√
n).
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In short, we have proved properties of LPVC(G). There exists a half-
integral optimal solution (xv)v∈V (G) to LPVC(G), and it can be found
e�ciently. We can look at this solution as a partition of V (G) into
parts V0, V 1

2
, and V1 with the following message: greedily take V1 into a

solution, do not take any vertex of V0 into a solution, and in V 1
2
, we do

not know what to do and that is the hard part of the problem. However,
as an optimum solution pays 1

2 for every vertex of V 1
2
, the hard part �

the kernel of the problem � cannot have more than 2k vertices.

2.6 Sun�ower lemma

In this section we introduce a classical result of Erd®s and Rado and show
some of its applications in kernelization. In the literature it is known as the
sun�ower lemma or as the Erd®s-Rado lemma. We �rst de�ne the terminology
used in the statement of the lemma. A sun�ower with k petals and a core Y
is a collection of sets S1, . . . , Sk such that Si ∩ Sj = Y for all i 6= j; the sets
Si \Y are petals and we require none of them to be empty. Note that a family
of pairwise disjoint sets is a sun�ower (with an empty core).

Theorem 2.25 (Sun�ower lemma). Let A be a family of sets (without
duplicates) over a universe U , such that each set in A has cardinality exactly
d. If |A| > d!(k − 1)d, then A contains a sun�ower with k petals and such a
sun�ower can be computed in time polynomial in |A|, |U |, and k.
Proof. We prove the theorem by induction on d. For d = 1, i.e., for a family
of singletons, the statement trivially holds. Let d ≥ 2 and let A be a family
of sets of cardinality at most d over a universe U such that |A| > d!(k − 1)d.

Let G = {S1, . . . , S`} ⊆ A be an inclusion-wise maximal family of pairwise
disjoint sets in A. If ` ≥ k then G is a sun�ower with at least k petals. Thus
we assume that ` < k. Let S =

⋃`
i=1 Si. Then |S| ≤ d(k − 1). Because G is

maximal, every set A ∈ A intersects at least one set from G, i.e., A ∩ S 6= ∅.
Therefore, there is an element u ∈ U contained in at least

|A|
|S| >

d!(k − 1)d

d(k − 1)
= (d− 1)!(k − 1)d−1

sets from A. We take all sets of A containing such an element u, and construct
a family A′ of sets of cardinality d−1 by removing from each set the element
u. Because |A′| > (d−1)!(k−1)d−1, by the induction hypothesis, A′ contains
a sun�ower {S′1, . . . , S′k} with k petals. Then {S′1 ∪ {u}, . . . , S′k ∪ {u}} is a
sun�ower in A with k petals.

The proof can be easily transformed into a polynomial-time algorithm, as
follows. Greedily select a maximal set of pairwise disjoint sets. If the size
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of this set is at least k, then return this set. Otherwise, �nd an element
u contained in the maximum number of sets in A, and call the algorithm
recursively on sets of cardinality d − 1, obtained from deleting u from the
sets containing u. ut

2.6.1 d-Hitting Set

As an application of the sun�ower lemma, we give a kernel for d-Hitting
Set. In this problem, we are given a family A of sets over a universe U , where
each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there is a subset H ⊆ U of size at most k such
that H contains at least one element from each set in A.
Theorem 2.26. d-Hitting Set admits a kernel with at most d!kd sets and
at most d!kd · d2 elements.

Proof. The crucial observation is that if A contains a sun�ower

S = {S1, . . . , Sk+1}

of cardinality k + 1, then every hitting set H of A of cardinality at most k
intersects the core Y of the sun�ower S. Indeed, if H does not intersect Y ,
it should intersect each of the k + 1 disjoint petals Si \ Y . This leads to the
following reduction rule.

Reduction HS.1. Let (U,A, k) be an instance of d-Hitting Set and as-
sume that A contains a sun�ower S = {S1, . . . , Sk+1} of cardinality k + 1
with core Y . Then return (U ′,A′, k), where A′ = (A \ S) ∪ {Y } is obtained
from A by deleting all sets {S1, . . . , Sk+1} and by adding a new set Y and
U ′ =

⋃
X∈A′ X.

Note that when deleting sets we do not delete the elements contained in
these sets but only those which do not belong to any set. Then the instances
(U,A, k) and (U ′,A′, k) are equivalent, i.e. (U,A) contains a hitting set of
size k if and only if (U,A′) does.

The kernelization algorithm is as follows. If for some d′ ∈ {1, . . . , d} the
number of sets in A of size exactly d′ is more than d′!kd

′
, then the kerneliza-

tion algorithm applies the sun�ower lemma to �nd a sun�ower of size k + 1,
and applies Reduction HS.1 on this sun�ower. It applies this procedure ex-
haustively, and obtains a new family of sets A′ of size at most d!kd · d. If
∅ ∈ A′ (that is, at some point a sun�ower with an empty core has been
discovered), then the algorithm concludes that there is no hitting set of size
at most k and returns that the given instance is a no-instance. Otherwise,
every set contains at most d elements, and thus the number of elements in
the kernel is at most d!kd · d2. ut
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Exercises

2.1 (l). Prove Lemma 2.5: A digraph is acyclic if and only if it is possible to order its
vertices in such a way such that for every arc (u, v), we have u < v.

2.2 (l). Give an example of a feedback arc set F in a tournament G, such that G~F is
not acyclic.

2.3 (l). Show that Reductions ECC.1, ECC.2, and ECC.3 are safe.

2.4 (l). In the Point Line Cover problem, we are given a set of n points in the plane
and an integer k, and the goal is to check if there exists a set of k lines on the plane that
contain all the input points. Show a kernel for this problem with O(k2) points.

2.5. A graph G is a cluster graph if every connected component of G is a clique. In the
Cluster Editing problem, we are given as input a graph G and an integer k, and the
objective is to check whether one can edit (add or delete) at most k edges in G to obtain a
cluster graph. That is, we look for a set F ⊆

(
V (G)

2

)
of size at most k, such that the graph

(V (G), (E(G) \ F ) ∪ (F \ E(G))) is a cluster graph.

1. Show that a graph G is a cluster graph if and only if it does not have an induced path
on three vertices (sequence of three vertices u, v, w such that uv and vw are edges and
uw /∈ E(G)).

2. Show a kernel for Cluster Editing with O(k2) vertices.

2.6. In the Set Splitting problem, we are given a family of sets F over a universe U and
a positive integer k, and the goal is to test whether there exists a coloring of U with two
colors such that at least k sets in F are nonmonochromatic (that is, they contain vertices
of both colors). Show that the problem admits a kernel with at most 2k sets and O(k2)

universe size.

2.7. In the Minimum Maximal Matching problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a maximal
matching in G on at most k edges. Obtain a polynomial kernel for the problem (parame-
terized by k).

2.8. In the Min-Ones-2-SAT problem, we are given a 2-CNF formula φ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for φ with at
most k variables set to true. Show that Min-Ones-2-SAT admits a polynomial kernel.

2.9. In the d-Bounded-Degree Deletion problem, we are given an undirected graph G
and a positive integer k, and the task is to �nd at most k vertices whose removal decreases
the maximum vertex degree of the graph to at most d. Obtain a kernel of size polynomial
in k and d for the problem. (Observe that Vertex Cover is the case of d = 0.)

2.10. Show a kernel with O(k2) vertices for the following problem: given a graph G and
an integer k, check if G contains a subgraph with exactly k edges, whose vertices are all
of odd degree in the subgraph.

2.11. A set of vertices D in an undirected graph G is called a dominating set if N [D] =
V (G). In the Dominating Set problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether there exists a dominating set of size at most
k. Show that Dominating Set admits a polynomial kernel on graphs where the length of
the shortest cycle is at least 5. (What would you do with vertices with degree more than
k? Note that unlike for the Vertex Cover problem, you cannot delete a vertex once you
pick it in the solution.)
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2.12. Show that Feedback Vertex Set admits a kernel with O(k) vertices on undirected
regular graphs.

2.13. We say that an n-vertex digraph is well-spread if every vertex has indegree at least√
n. Show that Directed Feedback Arc Set, restricted to well-spread digraphs, is FPT

by obtaining a polynomial kernel for this problem. Does the problem remain FPT if we
replace the lower bound on indegree by any monotonically increasing function of n (like
logn or log log logn)? Does the assertion hold if we replace indegree with outdegree? What
about Directed Feedback Vertex Set?

2.14. In the Connected Vertex Cover problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a vertex cover
C of G such that |C| ≤ k and G[C] is connected.

1. Explain where the kernelization procedure described in Theorem 2.4 for Vertex
Cover breaks down for the Connected Vertex Cover problem.

2. Show that the problem admits a kernel with at most 2k +O(k2) vertices.
3. Show that if the input graph G does not contain a cycle of length 4 as a subgraph,

then the problem admits a kernel with at most O(k2) vertices.

2.15 (A). Extend the argument of the previous exercise to show that, for every �xed
d ≥ 2, Connected Vertex Cover admits a kernel of size O(kd) if restricted to graphs
that do not contain the biclique Kd,d as a subgraph.

2.16 (A). A graph G is chordal if it contains no induced cycles of length more than 3, that
is, every cycle of length at least 4 has a chord. In the Chordal Completion problem, we
are given an undirected graph G and a positive integer k, and the objective is to decide
whether we can add at most k edges to G so that it becomes a chordal graph. Obtain a
polynomial kernel for Chordal Completion (parameterized by k).

2.17 (A). In the Edge Disjoint Cycle Packing problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether G has k pairwise
edge disjoint cycles. Obtain a polynomial kernel for Edge Disjoint Cycle Packing
(parameterized by k).

2.18 (A). A bisection of a graph G with an even number of vertices is a partition of V (G)

into V1 and V2 such that |V1| = |V2|. The size of (V1, V2) is the number of edges with one
endpoint in V1 and the other in V2. In the Maximum Bisection problem, we are given
an undirected graph G with an even number of vertices and a positive integer k, and the
objective is to test whether there exists a bisection of size at least k.

1. Show that every graph with m edges has a bisection of size at least dm
2
e. Use this to

show that Maximum Bisection admits a kernel with 2k edges.
2. Consider the following �above guarantee" variant of Maximum Bisection, where we

are given an undirected graph G and a positive integer k, but the objective is to test
whether there exists a bisection of size at least dm

2
e+k. Show that the problem admits

a kernel with O(k2) vertices and O(k3) edges.

2.19 (l). Byteland, a country of area exactly n square miles, has been divided by the
government into n regions, each of area exactly one square mile. Meanwhile, the army of
Byteland divided its area into n military zones, each of area again exactly one square mile.
Show that one can build n airports in Byteland, such that each region and each military
zone contains one airport.

2.20. A magician and his assistant are performing the following magic trick. A volunteer
from the audience picks �ve cards from a standard deck of 52 cards and then passes the
deck to the assistant. The assistant shows to the magician, one by one in some order, four
cards from the chosen set of �ve cards. Then, the magician guesses the remaining �fth
card. Show that this magic trick can be performed without any help of magic.
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2.21. Prove the second claim of Theorem 2.13.

2.22. In the Dual-Coloring problem, we are given an undirected graph G on n vertices
and a positive integer k, and the objective is to test whether there exists a proper coloring
of G with at most n− k colors. Obtain a kernel with O(k) vertices for this problem using
crown decomposition.

2.23 (A). In the Max-Internal Spanning Tree problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether there exists a spanning
tree with at least k internal vertices. Obtain a kernel with O(k) vertices forMax-Internal
Spanning Tree.

2.24 (l). Let G be an undirected graph, let (xv)v∈V (G) be any feasible solution to
LPVC(G), and let M be a matching in G. Prove that |M | ≤

∑
v∈V (G) xv .

2.25 (A). Let G be a graph and let (xv)v∈V (G) be an optimum solution to LPVC(G)
(not necessarily a half-integral one). De�ne a vector (yv)v∈V (G) as follows:

yv =





0 if xv <
1
2

1
2

if xv = 1
2

1 if xv >
1
2
.

Show that (yv)v∈V (G) is also an optimum solution to LPVC(G).

2.26 (A). In the Min-Ones-2-SAT, we are given a CNF formula, where every clause has
exactly two literals, and an integer k, and the goal is to check if there exists a satisfying
assignment of the input formula with at most k variables set to true. Show a kernel for
this problem with at most 2k variables.

2.27 (l). Consider a restriction of d-Hitting Set, called Ed-Hitting Set, where we
require every set in the input family A to be of size exactly d. Show that this problem
is not easier than the original d-Hitting Set problem, by showing how to transform a
d-Hitting Set instance into an equivalent Ed-Hitting Set instance without changing
the number of sets.

2.28. Show a kernel with at most f(d)kd sets (for some computable function f) for the
Ed-Hitting Set problem, de�ned in the previous exercise.

2.29. In the d-Set Packing problem, we are given a family A of sets over a universe
U , where each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there are sets S1, . . . , Sk ∈ A that are pairwise disjoint.
Use the sun�ower lemma to obtain a kernel for d-Set Packing with f(d)kd sets, for some
computable function d.

2.30. Consider a restriction of d-Set Packing, called Ed-Set Packing, where we require
every set in the input family A to be of size exactly d. Show that this problem is not easier
than the original d-Set Packing problem, by showing how to transform a d-Set Packing
instance into an equivalent Ed-Set Packing instance without changing the number of sets.

2.31. A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set. In the Vertex Disjoint Paths problem, we are given an undirected
graph G and k pairs of vertices (si, ti), i ∈ {1, . . . , k}, and the objective is to decide whether
there exists paths Pi joining si to ti such that these paths are pairwise vertex disjoint.
Show that Vertex Disjoint Paths admits a polynomial kernel on split graphs (when
parameterized by k).
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2.32. Consider now theVertex Disjoint Paths problem, de�ned in the previous exercise,
restricted, for a �xed integer d ≥ 3, to a class of graphs that does not contain a d-vertex
path as an induced subgraph. Show that in this class the Vertex Disjoint Paths problem
admits a kernel with O(kd−1) vertices and edges.

2.33. In the Cluster Vertex Deletion problem, we are given as input a graph G and
a positive integer k, and the objective is to check whether there exists a set S ⊆ V (G) of
size at most k such that G − S is a cluster graph. Show a kernel for Cluster Vertex
Deletion with O(k3) vertices.

2.34. An undirected graph G is called perfect if for every induced subgraph H of G, the
size of the largest clique in H is same as the chromatic number of H. In the Odd Cycle
Transversal problem, we are given an undirected graph G and a positive integer k,
and the objective is to �nd at most k vertices whose removal makes the resulting graph
bipartite. Obtain a kernel with O(k2) vertices for Odd Cycle Transversal on perfect
graphs.

2.35. In the Split Vertex Deletion problem, we are given an undirected graph G and
a positive integer k and the objective is to test whether there exists a set S ⊆ V (G) of size
at most k such that G− S is a split graph (see Exercise 2.31 for the de�nition).

1. Show that a graph is split if and only if it has no induced subgraph isomorphic to
one of the following three graphs: a cycle on four or �ve vertices, or a pair of disjoint
edges.

2. Give a kernel with O(k5) vertices for Split Vertex Deletion.

2.36 (A). In the Split Edge Deletion problem, we are given an undirected graph G
and a positive integer k, and the objective is to test whether G can be transformed into
a split graph by deleting at most k edges. Obtain a polynomial kernel for this problem
(parameterized by k).

2.37 (A). In the Ramsey problem, we are given as input a graph G and an integer k, and
the objective is to test whether there exists in G an independent set or a clique of size at
least k. Show that Ramsey is FPT.

2.38 (A). A directed graph D is called oriented if there is no directed cycle of length at
most 2. Show that the problem of testing whether an oriented digraph contains an induced
directed acyclic subgraph on at least k vertices is FPT.

Hints

2.4 Consider the following reduction rule: if there exists a line that contains more than k
input points, delete the points on this line and decrease k by 1.

2.5 Consider the following natural reduction rules:

1. delete a vertex that is not a part of any P3 (induced path on three vertices);
2. if an edge uv is contained in at least k + 1 di�erent P3s, then delete uv;
3. if a non-edge uv is contained in at least k + 1 di�erent P3s, then add uv.

Show that, after exhaustive application of these rules, a yes-instance has O(k2) vertices.

2.6 First, observe that one can discard any set in F that is of size at most 1. Second,
observe that if every set in F is of size at least 2, then a random coloring of U has at least
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|F|/2 nonmonochromatic sets on average, and an instance with |F| ≥ 2k is a yes-instance.
Moreover, observe that if we are dealing with a yes-instance and F ∈ F is of size at least
2k, then we can always tweak the solution coloring to color F nonmonochromatically: �x
two di�erently colored vertices for k− 1 nonmonochromatic sets in the solution, and color
some two uncolored vertices of F with di�erent colors. Use this observation to design a
reduction rule that handles large sets in F .

2.7 Observe that the endpoints of the matching in question form a vertex cover of the
input graph. In particular, every vertex of degree larger than 2k needs to be an endpoint
of a solution matching. Let X be the set of these large-degree vertices. Argue, similarly as
in the case of O(k2) kernel for Vertex Cover, that in a yes-instance, G \X has only few
edges. Design a reduction rule to reduce the number of isolated vertices of G \X.

2.8 Proceed similarly as in the O(k2) kernel for Vertex Cover.

2.9 Proceed similarly as in the case of Vertex Cover. Argue that the vertices of degree
larger than d + k need to be included in the solution. Moreover, observe that you may
delete isolated vertices, as well as edges connecting two vertices of degree at most d. Argue
that, if no rule is applicable, then a yes-instance is of size bounded polynomially in d+ k.

2.10 The important observation is that a matching of size k is a good subgraph. Hence,
we may restrict ourselves to the case where we are additionally given a vertex cover X of
the input graph of size at most 2k. Moreover, assume that X is inclusion-wise minimal. To
conclude, prove that, if a vertex v ∈ X has at least k neighbors in V (G) \X, then (G, k)

is a yes-instance.

2.11 The main observation is that, since there is no 3-cycle nor 4-cycle in the graph, if
x, y ∈ N(v), then only v can dominate both x and y at once. In particular, every vertex of
degree larger than k needs to be included in the solution.

However, you cannot easily delete such a vertex. Instead, mark it as �obligatory� and
mark its neighbors as �dominated�. Note now that you can delete a �dominated� vertex,
as long as it has no unmarked neighbor and its deletion does not drop the degree of an
�obligatory� vertex to k.

Prove that, in a yes-instance, if no rule is applicable, then the size is bounded polyno-
mially in k. To this end, show that

1. any vertex can dominate at most k unmarked vertices, and, consequently, there are
at most k2 unmarked vertices;

2. there are at most k �obligatory� vertices;
3. every remaining �dominated� vertex can be charged to one unmarked or obligatory

vertex in a manner that each unmarked or obligatory vertex is charged at most k+ 1

times.

2.12 Let (G, k) be a Feedback Vertex Set instance and assume G is d-regular. If d ≤ 2,
then solve (G, k) in polynomial time. Otherwise, observe that G has dn/2 edges and, if
(G, k) is a yes-instance and X is a feedback vertex set of G of size at most k, then at most
dk edges of G are incident to X and G − X contains less than n − k edges (since it is a
forest). Consequently, dn/2 ≤ dk + n− k, which gives n = O(k) for d ≥ 3.

2.13 Show, using greedy arguments, that if every vertex in a digraph G has indegree at
least d, then G contains d pairwise edge-disjoint cycles.

For the vertex-deletion variant, design a simple reduction that boosts up the indegree
of every vertex without actually changing anything in the solution space.

2.14 Let X be the set of vertices of G of degree larger than k. Clearly, any connected
vertex cover of G of size at most k needs to contain X. Moreover, as in the case of Vertex
Cover, in a yes-instance there are only O(k2) edges in G−X. However, we cannot easily
discard the isolated vertices of G−X, as they may be used to make the solution connected.
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To obtain an exponential kernel, note that in a yes-instance, |X| ≤ k, and if we have
two vertices u, v that are isolated in G −X, and NG(u) = NG(v) (note that NG(u) ⊆ X
for every u that is isolated in G − X), then we need only one of the vertices u, v in a
Connected Vertex Cover solution. Hence, in a kernel, we need to keep:

1. G[X], and all edges and non-isolated vertices of G−X;
2. for every x ∈ X, some k + 1 neighbors of x;
3. for every Y ⊆ X, one vertex u that is isolated in G − X and NG(u) = Y (if there

exists any such vertex).

For the last part of the exercise, note that in the presence of this assumption, no two
vertices of X share more than one neighbor and, consequently, there are only O(|X|2) sets
Y ⊆ X for which there exist u /∈ X with NG(u) = Y .

2.15 We repeat the argument of the previous exercise, and bound the number of sets
Y ⊆ X for which we need to keep a vertex u ∈ V (G) \ X with NG(u) = Y . First, there
are O(d|X|d−1) sets Y of size smaller than d. Second, charge every set Y of size at least d
to one of its subset of size d. Since G does not contain Kd,d as a subgraph, every subset X

of size d is charged less than d times. Consequently, there are at most (d− 1)
(|X|
d

)
vertices

u ∈ V (G) \X such that NG(u) ⊆ X and |NG(u)| ≥ d.

2.16 The main observation is as follows: an induced cycle of length ` needs exactly `− 3

edges to become chordal. In particular, if a graph contains an induced cycle of length
larger than k + 3, then the input instance is a no-instance, as we need more than k edges
to triangulate the cycle in question.

First, prove the safeness of the following two reduction rules:

1. Delete any vertex that is not contained in any induced cycle in G.
2. A vertex x is a friend of a non-edge uv, if u, x, v are three consecutive vertices of some

induced cycle in G. If uv /∈ E(G) has more than 2k friends, then add the edge uv and
decrease k by one.

Second, consider the following procedure. Initiate A to be the vertex set of any inclusion-
wise maximal family of pairwise vertex-disjoint induced cycles of length at most 4 in G.
Then, as long as there exists an induced cycle of length at most 4 in G that contains two
consecutive vertices in V (G) \ A, move these two vertices to A. Show, using a charging
argument, that, in a yes-instance, the size of A remains O(k). Conclude that the size of a
reduced yes-instance is bounded polynomially in k.

2.17 Design reduction rules that remove vertices of degree at most 2 (you may obtain a
multigraph in the process). Prove that every n-vertex multigraph of minimum degree at
least 3 has a cycle of length O(logn). Use this to show a greedy argument that an n-vertex
multigraph of minimum degree 3 has Ω(nε) pairwise edge-disjoint cycles for some ε > 0.

2.18 Consider the following argument. Let |V (G)| = 2n and pair the vertices of G arbi-
trarily: V (G) = {x1, y1, x2, y2, . . . , xn, yn}. Consider the bisection (V1, V2) where, in each
pair (xi, yi), one vertex goes to V1 and the other goes to V2, where the decision is made
uniformly at random and independently of other pairs. Prove that, in expectation, the ob-
tained bisection is of size at least (m+ `)/2, where ` is the number of pairs (xi, yi) where
xiyi ∈ E(G).

Use the arguments in the previous paragraph to show not only the �rst point of the
exercise, but also that the input instance is a yes-instance if it admits a matching of size
2k. If this is not the case, then let X be the set of endpoints of a maximal matching in G;
note that |X| ≤ 4k.

First, using a variation of the argument of the �rst paragraph, prove that, if there exists
x ∈ X that has at least 2k neighbors and at least 2k non-neighbors outside X, then the
input instance is a yes-instance. Second, show that in the absence of such a vertex, all but
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O(k2) vertices of V (G) \X have exactly the same neighborhood in X, and design a way
to reduce them.

2.19 Construct the following bipartite graph: on one side there are regions of Byteland, on
the second side there are military zones, and a region R is adjacent to a zone Z if R∩Z 6= ∅.
Show that this graph satis�es the condition of Hall's theorem and, consequently, contains
a perfect matching.

2.20 Consider the following bipartite graph: on one side there are all
(
52
5

)
sets of �ve cards

(possibly chosen by the volunteer), and on the other side there are all 52 · 51 · 50 · 49 tuples
of pairwise di�erent four cards (possibly shown by the assistant). A set S is adjacent to a
tuple T if all cards of T belong to S. Using Hall's theorem, show that this graph admits a
matching saturating the side with all sets of �ve cards. This matching induces a strategy
for the assistant and the magician.

We now show a relatively simple explicit strategy, so that you can impress your friends
and perform this trick at some party. In every set of �ve cards, there are two cards of the
same color, say a and b. Moreover, as there are 13 cards of the same color, the cards a and
b di�er by at most 6, that is, a+ i = b or b+ i = a for some 1 ≤ i ≤ 6, assuming some cyclic
order on the cards of the same color. Without loss of generality, assume a + i = b. The
assistant �rst shows the card a to the magician. Then, using the remaining three cards, and
some �xed total order on the whole deck of cards, the assistant shows the integer i (there
are 3! = 6 permutations of remaining three cards). Consequently, the magician knows the
card b by knowing its color (the same as the �rst card show by the assistant) and the value
of the card a and the number i.

2.21 Let M be a maximum matching, which you can �nd using the Hopcroft-Karp algo-
rithm (the �rst part of Theorem 2.13). If M saturates V1, then we are done. Otherwise,
pick any v ∈ V1 \V (M) (i.e., a vertex v ∈ V1 that is not an endpoint of an edge of M) and
consider all vertices of G that are reachable from v using alternating paths. (A path P is
alternating if every second edge of P belongs to M .) Show that all vertices from V1 that
are reachable from v using alternating paths form an inclusion-wise minimal set X with
|N(X)| < |X|.

2.22 Apply the crown lemma to Ḡ, the edge complement of G (Ḡ has vertex set V (G)

and uv ∈ E(Ḡ) if and only if uv /∈ E(G)) and the parameter k−1. If it returns a matching
M0 of size k, then note that one can color the endpoints of each edge of M0 with the same
color, obtaining a coloring of G with n−k colors. Otherwise, design a way to greedily color
the head and the crown of the obtained crown decomposition.

2.23 Your main tool is the following variation of the crown lemma: if V (G) is su�ciently
large, then you can �nd either a matching of size k+ 1, or a crown decomposition V (G) =

C ∪H ∪R, such that G[H ∪C] admits a spanning tree where all vertices of H and |H| − 1

vertices of C are of degree at least two. Prove it, and use it for the problem in question.

2.24 Observe that for every uv ∈ M we have xu + xv ≥ 1 and, moreover, all these
inequalities for all edges of M contain di�erent variables. In other words,

∑

v∈V (G)

w(xv) ≥
∑

v∈V (M)

w(xv) =
∑

vu∈M
(w(xv) + w(xu)) ≥

∑

vu∈M
1 = |M |.

2.25 Let Vδ = {v ∈ V (G) : 0 < xv <
1
2
} and V1−δ = {v ∈ V (G) : 1

2
< xv < 1}.

For su�ciently small ε > 0, consider two operations: �rst, an operation of adding ε to all
variables xv for v ∈ Vδ and subtracting ε from xv for v ∈ V1−δ, and second, an operation of
adding ε to all variables xv for v ∈ V1−δ and subtracting ε from xv for v ∈ Vδ . Show that
both these operations lead to feasible solutions to LPVC(G), as long as ε is small enough.
Conclude that |Vδ| = |V1−δ|, and that both operations lead to other optimal solutions
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to LPVC(G). Finally, observe that, by repeatedly applying the second operation, one can
empty sets Vδ and V1−δ , and reach the vector (yv)v∈V (G).

2.26 First, design natural reduction rules that enforce the following: for every variable x
in the input formula ϕ, there exists a truth assignment satisfying ϕ that sets x to false,
and a truth assignment satisfying ϕ that sets x to true. In other words, whenever a value
of some variable is �xed in any satisfying assignment, �x this value and propagate it in the
formula.

Then, consider the following closure of the formula ϕ: for every two-literal clause C that
is satis�ed in every truth assignment satisfying ϕ, add C to ϕ. Note that testing whether
C is such a clause can be done in polynomial time: force two literals in C to be false and
check if ϕ remains satis�able. Moreover, observe that the sets of satisfying assignments for
ϕ and ϕ′ are equal.

Let ϕ′ be the closure of ϕ. Consider the following auxiliary graph H: V (H) is the set of
variables of ϕ′, and xy ∈ E(H) i� the clause x∨y belongs to ϕ′. Clearly, if we take any truth
assignment ψ satisfying ϕ, then ψ−1(>) is a vertex cover of H. A somewhat surprising fact
is that a partial converse is true: for every inclusion-wise minimal vertex cover X of H,
the assignment ψ de�ned as ψ(x) = > if and only if x ∈ X satis�es ϕ′ (equivalently, ϕ).
Note that such a claim would solve the exercise: we can apply the LP-based kernelization
algorithm to Vertex Cover instance (H, k), and translate the reductions it makes back
to the formula ϕ.

Below we prove the aforementioned claim in full detail. We encourage you to try to
prove it on your own before reading.

Let X be a minimal vertex cover of H, and let ψ be de�ned as above. Take any clause
C in ϕ′ and consider three cases. If C = x ∨ y, then xy ∈ E(H), and, consequently, either
x or y belongs to X. It follows from the de�nition of ψ that ψ(x) = > or ψ(y) = >, and
ψ satis�es C.

In the second case, C = x ∨ ¬y. For a contradiction, assume that ψ does not satisfy
C and, consequently, x /∈ X and y ∈ X. Since X is a minimal vertex cover, there exists
z ∈ NH(y) such that z /∈ X and the clause C′ = y ∨ z belongs to ϕ′. If z = x, then any
satisfying assignment to ϕ′ sets y to true, a contradiction to our �rst preprocessing step.
Otherwise, the presence of C and C′ implies that in any assignment ψ′ satisfying ϕ′ we
have ψ′(x) = > or ψ′(z) = >. Thus, x ∨ z is a clause of ϕ′, and xz ∈ E(H). However,
neither x nor z belongs to X, a contradiction.

In the last case, C = ¬x∨¬y and, again, we assume that ψ does not satisfy C, that is,
x, y ∈ X. Since X is a minimal vertex cover, there exist s ∈ NH(x), t ∈ NH(y) such that
s, t /∈ X. It follows from the de�nition of H that the clauses Cx = x ∨ s and Cy = y ∨ t
are present in ϕ′. If s = t, then the clauses C, Cx and Cy imply that t is set to true in
any truth assignment satisfying ϕ′, a contradiction to our �rst preprocessing step. If s 6= t,
then observe that the clauses C, Cx and Cy imply that either s or t is set to true in any
truth assignment satisfying ϕ′ and, consequently, s ∨ t is a clause of ϕ′ and st ∈ E(H).
However, s, t /∈ X, a contradiction.

2.27 If ∅ ∈ A, then conclude that we are dealing with a no-instance. Otherwise, for every
set X ∈ A of size |X| < d, create d− |X| new elements and add them to X.

2.28 There are two ways di�erent ways to solve this exercise. First, you can treat the
input instance as a d-Hitting Set instance, proceed as in Section 2.6.1, and at the end
apply the solution of Exercise 2.27 to the obtained kernel, in order to get an Ed-Hitting
Set instance.

In a second approach, try to �nd a sun�ower with k + 2 sets, instead of k + 1 as in
Section 2.6.1. If a sun�ower is found, then discard one of the sets: the remaining k+ 1 sets
still ensure that the core needs to be hit in any solution of size at most k.
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2.29 Show that in a (dk + 2)-sun�ower, one set can be discarded without changing the
answer to the problem.

2.30 Proceed as in Exercise 2.27: pad every setX ∈ A with d−|X| newly created elements.

2.31 Show that, in a split graph, every path can be shortened to a path on at most
four vertices. Thus, for every 1 ≤ i ≤ k, we have a family Fi of vertex sets of possible
paths between si and ti, and this family is of size O(n4). Interpret the problem as a d-Set
Packing instance for some constant d and family F =

⋃k
i=1 Fi. Run the kernelization

algorithm from the previous exercise, and discard all vertices that are not contained in any
set in the obtained kernel.

2.32 Show that, in a graph excluding a d-vertex path as an induced subgraph, every
path in a solution can shortened to a path on at most d − 1 vertices. Proceed then as in
Exercise 2.31.

2.33 Let A be a family of all vertex sets of a P3 (induced path on three vertices) in G. In
this manner, Cluster Vertex Deletion becomes a 3-Hitting Set problem on family
A, as we need to hit all induced P3s in G. Reduce A, but not exactly as in the d-Hitting
Set case: repeatedly �nd a k + 2 sun�ower and delete one of its elements from A. Show
that this reduction is safe for Cluster Vertex Deletion. Moreover, show that, if A′
is the family after the reduction is exhaustively applied, then (G[

⋃
A′], k) is the desired

kernel.

2.34 Use the following observation: a perfect graph is bipartite if and only if it does not
contain a triangle. Thus, the problem reduces to hitting all triangles in the input graph,
which is a 3-Hitting Set instance.

2.35 Proceed as in the case of Cluster Vertex Deletion: interpret a Split Vertex
Deletion instance as a 5-Hitting Set instance.

2.36 Let {C4, C5, 2K2} be the set of forbidden induced subgraphs for split graphs. That
is, a graph is a split graph if it contains none of these three graphs as an induced subgraph.

You may need (some of) the following reduction rules. (Note that the safeness of some
of them is not so easy.)

1. The �standard� sun�ower-like: if more than k forbidden induced subgraphs share a
single edge (and otherwise are pairwise edge-disjoint), delete the edge in question.

2. The irrelevant vertex rule: if a vertex is not part of any forbidden induced subgraph,
then delete the vertex in question. (Safeness is not obvious here!)

3. If two adjacent edges uv and uw are contained in more than k induced C4s, then
delete uv and uw, and replace them with edges va and wb, where a and b are new
degree-1 vertices.

4. If two adjacent edges uv and uw are contained in more than k pairwise edge-disjoint
induced C5s, then delete uv and uw, and decrease k by 2.

5. If the edges v1v2, v2v3 and v3v4 are contained in more than k induced C5s, delete
v2v3 and decrease k by 1.

2.37 By induction, show that every graph on at least 4k vertices has either a clique or
an independent set on k vertices. Observe that this implies a kernel of exponential size for
the problem.

2.38 Show that every tournament on n vertices has a transitive subtournament onO(logn)
vertices. Then, use this fact to show that every oriented directed graph on n vertices has an
induced directed acyclic subgraph on logn vertices. Finally, obtain an exponential kernel
for the considered problem.
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Chapter 3

Bounded search trees

In this chapter we introduce a variant of exhaustive
search, namely the method of bounded search trees.
This is one of the most commonly used tools in the de-
sign of �xed-parameter algorithms. We illustrate this
technique with algorithms for two di�erent parameter-
izations of Vertex Cover, as well as for the prob-
lems (undirected) Feedback Vertex Set and Clos-
est String.

Bounded search trees, or simply branching, is one of the simplest and most
commonly used techniques in parameterized complexity that originates in the
general idea of backtracking. The algorithm tries to build a feasible solution to
the problem by making a sequence of decisions on its shape, such as whether
to include some vertex into the solution or not. Whenever considering one
such step, the algorithm investigates many possibilities for the decision, thus
e�ectively branching into a number of subproblems that are solved one by
one. In this manner the execution of a branching algorithm can be viewed
as a search tree, which is traversed by the algorithm up to the point when a
solution is discovered in one of the leaves. In order to justify the correctness of
a branching algorithm, one needs to argue that in case of a yes-instance some
sequence of decisions captured by the algorithm leads to a feasible solution.
If the total size of the search tree is bounded by a function of the parameter
alone, and every step takes polynomial time, then such a branching algorithm
runs in FPT time. This is indeed the case for many natural backtracking
algorithms.

More precisely, let I be an instance of a minimization problem (such as
Vertex Cover). We associate a measure µ(I) with the instance I, which, in
the case of FPT algorithms, is usually a function of k alone. In a branch step
we generate from I simpler instances I1, . . . , I` (` ≥ 2) of the same problem
such that the following hold.

51
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1. Every feasible solution S of Ii, i ∈ {1, . . . , `}, corresponds to a feasible
solution hi(S) of I. Moreover, the set{

hi(S) : 1 ≤ i ≤ ` and S is a feasible solution of Ii

}
contains at least one optimum solution for I. Informally speaking, a
branch step splits problem I into subproblems I1, . . . , I`, possibly tak-
ing some (formally justi�ed) greedy decisions.

2. The number ` is small, e.g., it is bounded by a function of µ(I) alone.
3. Furthermore, for every Ii, i ∈ {1, . . . , `}, we have that µ(Ii) ≤ µ(I) − c

for some constant c > 0. In other words, in every branch we substantially
simplify the instance at hand.

In a branching algorithm, we recursively apply branching steps to instances
I1, I2, . . . , I`, until they become simple or even trivial. Thus, we may see an
execution of the algorithm as a search tree, where each recursive call cor-
responds to a node: the calls on instances I1, I2, . . . , I` are children of the
call on instance I. The second and third conditions allow us to bound the
number of nodes in this search tree, assuming that the instances with non-
positive measure are simple. Indeed, the third condition allows us to bound
the depth of the search tree in terms of the measure of the original instance,
while the second condition controls the number of branches below every node.
Because of these properties, search trees of this kind are often called bounded
search trees. A branching algorithm with a cleverly chosen branching step
often o�ers a drastic improvement over a straightforward exhaustive search.

We now present a typical scheme of applying the idea of bounded search
trees in the design of parameterized algorithms. We �rst identify, in polyno-
mial time, a small (typically of size that is constant, or bounded by a function
of the parameter) subset S of elements of which at least one must be in some
or every feasible solution of the problem. Then we solve |S| subproblems:
for each element e of S, create one subproblem in which we include e in the
solution, and solve the remaining task with a reduced parameter value. We
also say that we branch on the element of S that belongs to the solution.
Such search trees are analyzed by measuring the drop of the parameter in
each branch. If we ensure that the parameter (or some measure bounded by
a function of the parameter) decreases in each branch by at least a constant
value, then we will be able to bound the depth of the search tree by a function
of the parameter, which results in an FPT algorithm.

It is often convenient to think of branching as of �guessing� the right
branch. That is, whenever performing a branching step, the algorithm guesses
the right part of an (unknown) solution in the graph, by trying all possibili-
ties. What we need to ensure is that there will be a sequence of guesses that
uncovers the whole solution, and that the total time spent on wrong guesses
is not too large.

We apply the idea of bounded search trees to Vertex Cover in Sec-
tion 3.1. Section 3.2 brie�y discusses methods of bounding the number of
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nodes of a search tree. In Section 3.3 we give a branching algorithm for
Feedback Vertex Set in undirected graphs. Section 3.4 presents an al-
gorithm for a di�erent parameterization of Vertex Cover and shows how
this algorithm implies algorithms for other parameterized problems such as
Odd Cycle Transversal and Almost 2-SAT. Finally, in Section 3.5 we
apply this technique to a non-graph problem, namely Closest String.

3.1 Vertex Cover

As the �rst example of branching, we use the strategy on Vertex Cover.
In Chapter 2 (Lemma 2.23), we gave a kernelization algorithm which in time
O(n
√
m) constructs a kernel on at most 2k vertices. Kernelization can be

easily combined with a brute-force algorithm to solve Vertex Cover in
time O(n

√
m+4kkO(1)). Indeed, there are at most 22k = 4k subsets of size at

most k in a 2k-vertex graph. Thus, by enumerating all vertex subsets of size at
most k in the kernel and checking whether any of these subsets forms a vertex
cover, we can solve the problem in time O(n

√
m + 4kkO(1)). We can easily

obtain a better algorithm by branching. Actually, this algorithm was already
presented in Chapter 1 under the cover of the Bar Fight Prevention
problem.

Let (G, k) be a Vertex Cover instance. Our algorithm is based on the
following two simple observations.

� For a vertex v, any vertex cover must contain either v or all of its
neighbors N(v).

� Vertex Cover becomes trivial (in particular, can be solved opti-
mally in polynomial time) when the maximum degree of a graph is
at most 1.

We now describe our recursive branching algorithm. Given an instance
(G, k), we �rst �nd a vertex v ∈ V (G) of maximum degree in G. If v is of
degree 1, then every connected component of G is an isolated vertex or an
edge, and the instance has a trivial solution. Otherwise, |N(v)| ≥ 2 and we
recursively branch on two cases by considering

either v, or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and reduce
the parameter by 1. In the second branch, we add N(v) to the vertex cover,
delete N [v] from the graph and decrease k by |N(v)| ≥ 2.

The running time of the algorithm is bounded by
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(the number of nodes in the search tree)× (time taken at each node).

Clearly, the time taken at each node is bounded by nO(1). Thus, if τ(k) is the
number of nodes in the search tree, then the total time used by the algorithm
is at most τ(k)nO(1).

In fact, in every search tree T that corresponds to a run of a branching
algorithm, every internal node of T has at least two children. Thus, if
T has ` leaves, then the number of nodes in the search tree is at most
2` − 1. Hence, to bound the running time of a branching algorithm, it
is su�cient to bound the number of leaves in the corresponding search
tree.

In our case, the tree T is the search tree of the algorithm when run with
parameter k. Below its root, it has two subtrees: one for the same algorithm
run with parameter k − 1, and one recursive call with parameter at most
k − 2. The same pattern occurs deeper in T . This means that if we de�ne a
function T (k) using the recursive formula

T (i) =

{
T (i− 1) + T (i− 2) if i ≥ 2,
1 otherwise,

then the number of leaves of T is bounded by T (k).
Using induction on k, we prove that T (k) is bounded by 1.6181k. Clearly,

this is true for k = 0 and k = 1, so let us proceed for k ≥ 2:

T (k) = T (k − 1) + T (k − 2) ≤ 1.6181k−1 + 1.6181k−2

≤ 1.6181k−2(1.6181 + 1) ≤ 1.6181k−2(1.6181)2 ≤ 1.6181k.

This proves that the number of leaves is bounded by 1.6181k. Combined with
kernelization, we arrive at an algorithm solving Vertex Cover in time
O(n
√
m+ 1.6181kkO(1)).

A natural question is how did we know that 1.6181k is a solution to the
above recurrence. Suppose that we are looking for an upper bound on function
T (k) of the form T (k) ≤ c·λk, where c > 0, λ > 1 are some constants. Clearly,
we can set constant c so that the initial conditions in the de�nition of T (k)
are satis�ed. Then, we are left with proving, using induction, that this bound
holds for every k. This boils down to proving that

c · λk ≥ c · λk−1 + c · λk−2, (3.1)

since then we will have

T (k) = T (k − 1) + T (k − 2) ≤ c · λk−1 + c · λk−2 ≤ c · λk.
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Observe that (3.1) is equivalent to λ2 ≥ λ + 1, so it makes sense to look
for the lowest possible value of λ for which this inequality is satis�ed; this is
actually the one for which equality holds. By solving equation λ2 = λ+ 1 for

λ > 1, we �nd that λ = 1+
√
5

2 < 1.6181, so for this value of λ the inductive
proof works.

The running time of the above algorithm can be easily improved using the
following argument, whose proof we leave as Exercise 3.1.

Proposition 3.1. Vertex Cover can be solved optimally in polynomial
time when the maximum degree of a graph is at most 2.

Thus, we branch only on the vertices of degree at least 3, which immediately
brings us to the following upper bound on the number of leaves in a search
tree:

T (k) =

{
T (k − 1) + T (k − 3) if k ≥ 3,
1 otherwise.

Again, an upper bound of the form c ·λk for the above recursive function can
be obtained by �nding the largest root of the polynomial equation λ3 = λ2+1.
Using standard mathematical techniques (and/or symbolic algebra packages)
the root is estimated to be at most 1.4656. Combined with kernelization, this
gives us the following theorem.

Theorem 3.2. Vertex Cover can be solved in time O(n
√
m+1.4656kkO(1)).

Can we apply a similar strategy for graphs of vertex degree at most 3?
Well, this becomes more complicated as Vertex Cover is NP-hard on this
class of graphs. But there are more involved branching strategies, and there
are faster branching algorithms than the one given in Theorem 3.2.

3.2 How to solve recursive relations

For algorithms based on the bounded search tree technique, we need to bound
the number of nodes in the search tree to obtain an upper bound on the
running time of the algorithm. For this, recurrence relations are used. The
most common case in parameterized branching algorithms is when we use
linear recurrences with constant coe�cients. There exists a standard tech-
nique to bound the number of nodes in the search tree for this case. If the
algorithm solves a problem of size n with parameter k and calls itself re-
cursively on problems with decreased parameters k − d1, k − d2, . . . , k − dp,
then (d1, d2, . . . , dp) is called the branching vector of this recursion. For ex-
ample, we used a branching vector (1, 2) to obtain the �rst algorithm for
Vertex Cover in the previous section, and a branching vector (1, 3) for the
second one. For a branching vector (d1, d2, . . . , dp), the upper bound T (k)
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on the number of leaves in the search tree is given by the following linear
recurrence:

T (k) = T (k − d1) + T (k − d2) + · · ·+ T (k − dp).

Again, for k < d, where d = maxi=1,2,...,p di, we put the initial condition
T (k) = 1. Assuming that new subproblems with smaller parameters can
be computed in time polynomial in n, the running time of such recursive
algorithm is T (k) · nO(1).

If we now look for an upper bound of the form T (k) ≤ c · λk, then the
inductive step boils down to proving the following inequality:

λk ≥ λk−d1 + λk−d2 + · · ·+ λk−dp . (3.2)

Inequality (3.2) can be rewritten as P (λ) ≥ 0, where

P (λ) = λd − λd−d1 − λd−d2 − · · · − λd−dp (3.3)

is the characteristic polynomial of the recurrence for T (k) (recall d =
maxi=1,2,...,p di). Using standard techniques of calculus it is not hard to show
that if a polynomial P has a form as in (3.3), then P has a unique positive
root λ0, and moreover P (λ) < 0 for 0 < λ < λ0 and P (λ) > 0 for λ > λ0.
This means that λ0 is the best possible value that can be used in an upper
bound for T (k). In the bibliographic notes we provide further references to
the relevant literature on solving recursive formulas.

The root λ0 is often called the branching number corresponding to the
branching vector (d1, d2, . . . , dp). Hence, the running time of the considered
branching algorithm is bounded by λk0n

O(1). In Table 3.1, we give branching
numbers corresponding to branching vectors (i, j) for i, j ∈ {1, . . . , 6}.

(i, j) 1 2 3 4 5 6
1 2.0000 1.6181 1.4656 1.3803 1.3248 1.2852
2 1.4143 1.3248 1.2721 1.2366 1.2107
3 1.2560 1.2208 1.1939 1.1740
4 1.1893 1.1674 1.1510
5 1.1487 1.1348
6 1.1225

Table 3.1: A table of branching numbers (rounded up)

Two natural questions arise:

� How good is the estimation of T (k) using the exponent of the correspond-
ing branching number?

� How well does T (k) estimate the actual size of the search tree?
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The answer to the �rst question is �it is good�: up to a polynomial factor,
the estimation is tight. The second question is much more di�cult, since the
actual way a branching procedure explores the search space may be more
complex than our estimation of its behavior using recursive formulas. If, say,
a branching algorithm uses several ways of branching into subproblems (so-
called branching rules) that correspond to di�erent branching vectors, and/or
is combined with local reduction rules, then so far we do not know how
to estimate the running time better than by using the branching number
corresponding to the worst branching vector. However, the delicate interplay
between di�erent branching rules and reduction rules may lead to a much
smaller tree than what follows from our imprecise estimations.

3.3 Feedback Vertex Set

For a given graph G and a set X ⊆ V (G), we say that X is a feedback vertex
set of G if G−X is an acyclic graph (i.e., a forest). In the Feedback Vertex
Set problem, we are given an undirected graph G and a nonnegative integer
k, and the objective is to determine whether there exists a feedback vertex
set of size at most k in G. In this section, we give a branching algorithm
solving Feedback Vertex Set in time kO(k) · nO(1).

It is more convenient for us to consider this problem in the more general
setting of multigraphs, where the input graph G may contain multiple edges
and loops. We note that both a double edge and a loop are cycles. We also
use the convention that a loop at a vertex v contributes 2 to the degree of v.

We start with some simple reduction rules that clean up the graph. At
any point, we use the lowest-numbered applicable rule. We �rst deal with
the multigraph parts of G. Observe that any vertex with a loop needs to be
contained in any solution set X.

Reduction FVS.1. If there is a loop at a vertex v, delete v from the graph
and decrease k by 1.

Moreover, notice that the multiplicity of a multiple edge does not in�uence
the set of feasible solutions to the instance (G, k).

Reduction FVS.2. If there is an edge of multiplicity larger than 2, reduce
its multiplicity to 2.

We now reduce vertices of low degree. Any vertex of degree at most 1 does
not participate in any cycle in G, so it can be deleted.

Reduction FVS.3. If there is a vertex v of degree at most 1, delete v.

Concerning vertices of degree 2, observe that, instead of including into the
solution any such vertex, we may as well include one of its neighbors. This
leads us to the following reduction.
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Reduction FVS.4. If there is a vertex v of degree 2, delete v and connect
its two neighbors by a new edge.

Two remarks are in place. First, a vertex v in Reduction FVS.4 cannot have
a loop, as otherwise Reduction FVS.1 should be triggered on v instead. This
ensures that the neighbors of v are distinct from v, hence the rule may be ap-
plied and the safeness argument works. Second, it is possible that v is incident
to a double edge: in this case, the reduction rule deletes v and adds a loop
to a sole �double� neighbor of v. Observe that in this case Reduction FVS.1
will trigger subsequently on this neighbor.

We remark that after exhaustively applying these four reduction rules, the
resulting graph G

(P1) contains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.

Moreover, all rules are trivially applicable in polynomial time. From now
on we assume that in the input instance (G, k), graph G satis�es properties
(P1)�(P3).

We remark that for the algorithm in this section, we do not need prop-
erties (P1) and (P2). However, we will need these properties later for the
kernelization algorithm in Section 9.1.

Finally, we need to add a rule that stops the algorithm if we already
exceeded our budget.

Reduction FVS.5. If k < 0, terminate the algorithm and conclude that
(G, k) is a no-instance.

The intuition behind the algorithm we are going to present is as follows.
Observe that if X is a feedback vertex set of G, then G−X is a forest.
However, G −X has at most |V (G)| − |X| − 1 edges and thus G −X
cannot have �many� vertices of high degree. Thus, if we pick some f(k)
vertices with the highest degrees in the graph, then every solution of
size at most k must contain one of these high-degree vertices. In what
follows we make this intuition work.

Let (v1, v2, . . . , vn) be a descending ordering of V (G) according to vertex
degrees, i.e., d(v1) ≥ d(v2) ≥ · · · ≥ d(vn). Let V3k = {v1, . . . , v3k}. Let us
recall that the minimum vertex degree of G is at least 3. Our algorithm for
Feedback Vertex Set is based on the following lemma.

Lemma 3.3. Every feedback vertex set in G of size at most k contains at
least one vertex of V3k.

Proof. To prove this lemma we need the following simple claim.
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Claim 3.4. For every feedback vertex set X of G,∑
v∈X

(d(v)− 1) ≥ |E(G)| − |V (G)|+ 1.

Proof. Graph F = G−X is a forest and thus the number of edges in F is at
most |V (G)| − |X| − 1. Every edge of E(G) \E(F ) is incident to a vertex of
X. Hence ∑

v∈X
d(v) + |V (G)| − |X| − 1 ≥ |E(G)|.

y

Targeting a contradiction, let us assume that there is a feedback vertex set
X of size at most k such that X ∩ V3k = ∅. By the choice of V3k, for every
v ∈ X, d(v) is at most the minimum of vertex degrees from V3k. Because
|X| ≤ k, by Claim 3.4 we have that

3k∑
i=1

(d(vi)− 1) ≥ 3 ·
(∑
v∈X

(d(v)− 1)
)
≥ 3 · (|E(G)| − |V (G)|+ 1).

In addition, we have that X ⊆ V (G) \ V3k, and hence∑
i>3k

(d(vi)− 1) ≥
∑
v∈X

(d(v)− 1) ≥ (|E(G)| − |V (G)|+ 1).

Therefore,
n∑
i=1

(d(vi)− 1) ≥ 4 · (|E(G)| − |V (G)|+ 1).

However, observe that
∑n
i=1 d(vi) = 2|E(G)|: every edge is counted twice,

once for each of its endpoints. Thus we obtain

4 · (|E(G)| − |V (G)|+ 1) ≤
n∑
i=1

(d(vi)− 1) = 2|E(G)| − |V (G)|,

which implies that 2|E(G)| < 3|V (G)|. However, this contradicts the fact
that every vertex of G is of degree at least 3. ut

We use Lemma 3.3 to obtain the following algorithm for Feedback Ver-
tex Set.

Theorem 3.5. There exists an algorithm for Feedback Vertex Set run-
ning in time (3k)k · nO(1).

Proof. Given an undirected graph G and an integer k ≥ 0, the algorithm
works as follows. It �rst applies Reductions FVS.1, FVS.2, FVS.3, FVS.4,
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and FVS.5 exhaustively. As the result, we either already conclude that we
are dealing with a no-instance, or obtain an equivalent instance (G′, k′) such
that G′ has minimum degree at least 3 and k′ ≤ k. If G′ is empty, then we
conclude that we are dealing with a yes-instance, as k′ ≥ 0 and an empty set
is a feasible solution. Otherwise, let V3k′ be the set of 3k′ vertices of G′ with
largest degrees. By Lemma 3.3, every solution X to the Feedback Vertex
Set instance (G′, k′) contains at least one vertex from V3k′ . Therefore, we
branch on the choice of one of these vertices, and for every vertex v ∈ V3k′ ,
we recursively apply the algorithm to solve the Feedback Vertex Set
instance (G′ − v, k′ − 1). If one of these branches returns a solution X ′, then
clearly X ′ ∪ {v} is a feedback vertex set of size at most k′ for G′. Else, we
return that the given instance is a no-instance.

At every recursive call we decrease the parameter by 1, and thus the height
of the search tree does not exceed k′. At every step we branch in at most 3k′

subproblems. Hence the number of nodes in the search tree does not exceed
(3k′)k

′ ≤ (3k)k. This concludes the proof. ut

3.4 Vertex Cover Above LP

Recall the integer linear programming formulation of Vertex Cover and
its relaxation LPVC(G):

min
∑
v∈V (G) xv

subject to xu + xv ≥ 1 for every uv ∈ E(G),
0 ≤ xv ≤ 1 for every v ∈ V (G).

These programs were discussed in Section 2.2.1. If the minimum value of
LPVC(G) is vc∗(G), then the size of a minimum vertex cover is at least
vc∗(G). This leads to the following parameterization of Vertex Cover,
which we call Vertex Cover Above LP: Given a graph G and an integer
k, we ask for a vertex cover of G of size at most k, but instead of seeking an
FPT algorithm parameterized by k as for Vertex Cover, the parameter
now is k − vc∗(G). In other words, the goal of this section is to design an
algorithm for Vertex Cover on an n-vertex graph G with running time
f(k − vc∗(G)) · nO(1) for some computable function f .

The parameterization by k − vc∗(G) falls into a more general theme of
above guarantee parameterization, where, instead of parameterizing purely
by the solution size k, we look for some (computable in polynomial time)
lower bound ` for the solution size, and use a more re�ned parameter k − `,
the excess above the lower bound. Such a parameterization makes perfect
sense in problems where the solution size is often quite large and, conse-
quently, FPT algorithms in parameterization by k may not be very e�cient.
In the Vertex Cover problem, the result of Section 2.5 � a kernel with at
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most 2k vertices � can be on one hand seen as a very good result, but on
the other hand can be an evidence that the solution size parameterization for
Vertex Cover may not be the most meaningful one, as the parameter can
be quite large. A more striking example is the Maximum Satisfiability
problem, studied in Section 2.3.2: here an instance with at least 2k clauses is
trivially a yes-instance. In Section *9.2 we study an above guarantee parame-
terization of a variant of Maximum Satisfiability, namely Max-Er-SAT.
In Exercise 9.3 we also ask for an FPT algorithm for Maximum Satisfia-
bility parameterized by k −m/2, where m is the number of clauses in the
input formula. The goal of this section is to study the above guarantee pa-
rameterization of Vertex Cover, where the lower bound is the cost of an
optimum solution to an LP relaxation.

Before we describe the algorithm, we �x some notation. By optimum
solution x = (xv)v∈V (G) to LPVC(G), we mean a feasible solution with

1 ≥ xv ≥ 0 for all v ∈ V (G) that minimizes the objective function (sometimes
called the cost) w(x) =

∑
v∈V (G) xv. By Proposition 2.24, for any graph G

there exists an optimum half-integral solution of LPVC(G), i.e., a solution
with xv ∈ {0, 12 , 1} for all v ∈ V (G), and such a solution can be found in
polynomial time.

Let vc(G) denote the size of a minimum vertex cover of G. Clearly, vc(G) ≥
vc∗(G). For a half-integral solution x = (xv)v∈V (G) and i ∈ {0, 12 , 1}, we de�ne
V x
i = {v ∈ V : xv = i}. We also say that x = {xv}v∈V (G) is all-

1
2 -solution if

xv = 1
2 for every v ∈ V (G). Because the all- 12 -solution is a feasible solution,

we have that vc∗(G) ≤ |V (G)|
2 . Furthermore, we de�ne the measure of an

instance (G, k) to be our parameter of interest µ(G, k) = k − vc∗(G).
Recall that in Section 2.5 we have developed Reduction VC.4 for Vertex

Cover. This reduction, if restricted to half-integral solutions, can be stated
as follows: for an optimum half-integral LPVC(G) solution x, we (a) conclude
that the input instance (G, k) is a no-instance if w(x) > k; and (b) delete
V x
0 ∪ V x

1 and decrease k by |V x
1 | otherwise. As we are now dealing with

measure µ(G, k) = k − vc∗(G), we need to understand how this parameter
changes under Reduction VC.4.

Lemma 3.6. Assume an instance (G′, k′) is created from an instance (G, k)
by applying Reduction VC.4 to a half-integral optimum solution x. Then
vc∗(G) − vc∗(G′) = vc(G) − vc(G′) = |V x

1 | = k − k′. In particular,
µ(G′, k′) = µ(G, k).

We remark that, using Exercise 2.25, the statement of Lemma 3.6 is true
for any optimum solution x, not only a half-integral one (see Exercise 3.19).
However, the proof for a half-integral solution is slightly simpler, and, thanks
to Proposition 2.24, we may work only with half-integral solutions.

Proof (of Lemma 3.6). Observe that every edge of G incident to V x
0 has its

second endpoint in V x
1 . Hence, we have the following:
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� For every vertex cover Y of G′, Y ∪ V x
1 is a vertex cover of G and, conse-

quently, vc(G) ≤ vc(G′) + |V x
1 |.

� For every feasible solution y′ to LPVC(G′), if we de�ne a vector y =
(yv)v∈V (G) as yv = y′v for every v ∈ V (G′) and yv = xv for every v ∈
V (G) \ V (G′), then we obtain a feasible solution to LPVC(G) of cost
w(y′) + |V x

1 |; consequently, vc∗(G) ≤ vc∗(G′) + |V x
1 |.

Now it su�ces to prove the reversed versions of the two inequalities obtained
above. Theorem 2.19 ensures that vc(G′) ≤ vc(G)− |V x

1 |. Moreover, since x
restricted to V (G′) is a feasible solution to LPVC(G′) of cost vc∗(G)− |V x

1 |,
we have vc∗(G′) ≤ vc∗(G)− |V x

1 |. ut
In Theorem 2.21 we simply solved LPVC(G), and applied Reduction VC.4

to obtain a kernel with at most 2k vertices. In this section we would like to do
something slightly stronger: to apply Reduction VC.4 as long as there exists
some half-integral optimum solution x that is not the all- 12 -solution. Luckily,
by a simple self-reduction trick, we can always detect such solutions.

Lemma 3.7. Given a graph G, one can in O(mn3/2) time �nd an optimum
solution to LPVC(G) which is not the all-12 -solution, or correctly conclude
that the all- 12 -solution is the unique optimum solution to LPVC(G). More-
over, the returned optimum solution is half-integral.

Proof. First, use Proposition 2.24 to solve LPVC(G), obtaining an optimum
half-integral solution x. If x is not the all- 12 -solution, then return x. Other-
wise, proceed as follows.

For every v ∈ V (G), use Proposition 2.24 again to solve LPVC(G − v),
obtaining an optimum half-integral solution xv. De�ne a vector xv,◦ as xv, ex-
tended with a value xv = 1. Note that xv,◦ is a feasible solution to LPVC(G)
of cost w(xv,◦) = w(xv) + 1 = vc∗(G − v) + 1. Thus, if for some v ∈ V (G)
we have w(xv) = vc∗(G − v) ≤ vc∗(G) − 1, then xv,◦ is an optimum solu-
tion for LPVC(G). Moreover, xv,◦ is half-integral, but is not equal to the
all- 12 -solution due to the value at vertex v. Hence, we may return xv,◦.

We are left with the case

vc∗(G− v) > vc∗(G)− 1 for every v ∈ V (G). (3.4)

We claim that in this case the all- 12 -solution is the unique solution to
LPVC(G); note that such a claim would conclude the proof of the lemma, as
the computation time used so far is bounded by O(mn3/2) (n+1 applications
of Proposition 2.24). Observe that, due to Proposition 2.24, both 2 vc∗(G−v)
and 2 vc∗(G) are integers and, consequently, we obtain the following strength-
ening of (3.4):

vc∗(G− v) ≥ vc∗(G)− 1

2
for every v ∈ V (G). (3.5)

By contradiction, let x be an optimum solution to LPVC(G) that is not
the all- 12 -solution. As the all-

1
2 -solution is an optimum solution to LPVC(G),
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for some v ∈ V (G) we have xv >
1
2 . However, then x, restricted to G−v, is a

feasible solution to LPVC(G−v) of costw(x)−xv = vc∗(G)−xv < vc∗(G)− 1
2 ,

a contradiction to (3.5). ut

Lemma 3.7 allows us to enhance Reduction VC.4 to the following form.

Reduction VC.5. Invoke the algorithm of Lemma 3.7 and, if an optimum
solution x is returned, then apply Reduction VC.4 to G and solution x.

If Reduction VC.5 is not applicable, then we know not only that the all- 12 -
solution is an optimum solution to LPVC(G), but also that this is the unique
optimum solution. This property is crucial for our branching algorithm, en-
capsulated in the next theorem.

Theorem 3.8. There exists an algorithm solving Vertex Cover Above
LP in time 4k−vc

∗(G) · nO(1).

Proof. Our algorithm for Vertex Cover Above LP is almost the same as
the branching algorithm described for Vertex Cover in Section 3.1. After
Reduction VC.5 is applied exhaustively, we pick an arbitrary vertex v in
the graph and branch on it. In other words, in one branch, we add v into
the vertex cover, decrease k by 1, and delete v from the graph, and in the
other branch, we add N(v) into the vertex cover, decrease k by |N(v)|, and
delete N [v] from the graph. The correctness of this algorithm follows from
the safeness of Reduction VC.5 and the fact that the branching is exhaustive.

Although the algorithm is very similar to the one of Section 3.1, we analyze
our algorithm in a completely di�erent way, using the measure µ(G, k) = k−
vc∗(G). In Lemma 3.6 we have proved that Reduction VC.4 does not change
the measure; as Reduction VC.5 is in fact an application of Reduction VC.4
to a speci�c half-integral solution x, the same holds for Reduction VC.5.
Hence, it remains to analyze how the measure changes in a branching step.

Consider �rst the case when we pick v to the vertex cover, obtaining an
instance (G′, k′) = (G−v, k−1). We claim that vc∗(G′) ≥ vc∗(G)− 1

2 . Suppose
that this is not the case. Let x′ be an optimum solution to LPVC(G′). We
have w(x′) ≤ vc∗(G) − 1 and we can obtain an optimum solution x′′ to
LPVC(G) by extending x′ with a new variable xv = 1 corresponding to v.
But this contradicts our assumption that the all- 12 -solution is the unique
optimum solution to LPVC(G). Hence, vc∗(G′) ≥ vc∗(G)− 1

2 , which implies
that µ(G′, k′) ≤ µ(G, k)− 1

2 .
In the second case, let p = |N(v)|. Recall that here the new instance is

(G′, k′) = (G−N [v], k − p). We claim that vc∗(G′) ≥ vc∗(G)− p+ 1
2 , which

would imply again µ(G′, k′) ≤ µ(G, k)− 1
2 . Assume the contrary: let x′ be an

optimum solution to LPVC(G′) and suppose that w(x′) ≤ vc∗(G)−p. De�ne
a feasible solution x′′ to LPVC(G) by extending x′ with xv = 0 and xu = 1
for every u ∈ N(v). Clearly, w(x′′) = w(x′) + p, thus x′′ is an optimum
solution to LPVC(G), contradicting the assumption that the all- 12 -solution is
the unique optimum solution.
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We have shown that the preprocessing rule does not increase the measure
µ(G, k), and that the branching step results in a ( 1

2 ,
1
2 ) decrease in µ(G, k).

As a result, we obtain recurrence T (µ) ≤ 2T (µ− 1
2 ) for the number of leaves

in the search tree. This recurrence solves to 4µ = 4k−vc
∗(G), and we obtain a

4(k−vc
∗(G)) · nO(1)-time algorithm for Vertex Cover Above LP. ut

Let us now consider a di�erent lower bound on the size of a minimum
vertex cover in a graph, namely the size of a maximum matching. Observe
that, if graph G contains a matching M , then for k < |M | the instance
(G, k) is a trivial no-instance of Vertex Cover. Thus, for a graph G with
a large maximum matching (e.g., when G has a perfect matching) the FPT
algorithm for Vertex Cover of Section 3.1 is not practical, as in this case
k has to be quite large.

This leads to a second above guarantee variant of the Vertex Cover
problem, namely theVertex Cover Above Matching problem. On input,
we are given an undirected graph G, a maximum matching M and a positive
integer k. As in Vertex Cover, the objective is to decide whether G has
a vertex cover of size at most k; however, now the parameter is k − |M |.
By the weak duality of linear programs, it follows that vc∗(G) ≥ |M | (see
Exercise 2.24 and the corresponding hint for a self-contained argument) and
thus we have that k − vc∗(G) ≤ k − |M |. Consequently, any parameterized
algorithm for Vertex Cover Above LP is also a parameterized algorithm
forVertex Cover Above Matching, and Theorem 3.8 yields the following
interesting observation.

Theorem 3.9. Vertex Cover Above Matching can be solved in time
4k−|M | · nO(1).

The Vertex Cover Above Matching problem has been at the center
of many developments in parameterized algorithms. The reason is that faster
algorithms for this problem also yield faster algorithms for a host of other
problems. Just to show its importance, we design algorithms for Odd Cy-
cle Transversal and Almost 2-SAT by making use of the algorithm for
Vertex Cover Above Matching.

A subset X ⊆ V (G) is called an odd cycle transversal of G if G −X is a
bipartite graph. In Odd Cycle Transversal, we are given an undirected
graph G with a positive integer k, and the goal is to determine whether G
has an odd cycle transversal of size at most k.

For a given graph G, we de�ne a new graph G̃ as follows. Let Vi = {ui :

u ∈ V (G)} for i ∈ {1, 2}. The vertex set V (G̃) consists of two copies of V (G),

i.e. V (G̃) = V1 ∪ V2, and

E(G̃) = {u1u2 : u ∈ V (G)} ∪ {uivi : uv ∈ E(G), i ∈ {1, 2}}.

In other words, G̃ is obtained by taking two disjoint copies of G and by adding
a perfect matching such that the endpoints of every matching edge are the
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copies of the same vertex. In particular,M = {u1u2 : u ∈ V (G)} is a perfect
matching in G̃ and |M | = n. The graph G̃ has some interesting properties
which are useful for designing an algorithm for Odd Cycle Transversal.

Lemma 3.10. Let G be a graph on n vertices. Then G has an odd cycle
transversal of size at most k if and only if G̃ has a vertex cover of size at
most n+ k.

Proof. LetX be an odd cycle transversal of size at most k in G, and let (A,B)
be a bipartition of G −X. For i ∈ {1, 2}, let Ai, Bi and Xi be the copies of
A,B and X in Vi, respectively. Observe that A1 ∪ B2 is an independent set
in G̃ and thus A2 ∪B1 ∪X1 ∪X2 is a vertex cover of G̃. However,

(|A2|+ |B1|) + |X1|+ |X2| ≤ (n− k) + k + k ≤ n+ k.

This completes the forward direction of the proof.
In the other direction, let Y be a vertex cover of G̃ of size at most n+ k.

Then I = V (G̃) \ Y is an independent set of G̃ of size at least n − k. Let
Ã = I ∩ V1 and B̃ = I ∩ V2. Let A and B denote the vertices corresponding
to Ã and B̃ in V (G), respectively. Since Ã ∪ B̃ is independent, we have that
A ∩B = ∅. Therefore, A ∪B is of size at least n− k. Moreover, G[A ∪B] is
bipartite, as G[A] and G[B] are independent sets. Thus, V (G)\ (A∪B) is an
odd cycle transversal of size at most k for G. This completes the proof. ut

Using Lemma 3.10 and Theorem 3.9 we get the following result for Odd
Cycle Transversal.

Theorem 3.11. Odd Cycle Transversal can be solved in time 4knO(1).

Proof. Given an input (G, k) to Odd Cycle Transversal, we �rst con-

struct the graph G̃. Let M = {u1u2 : u ∈ V (G)} be a perfect matching of

G̃. Now we apply Theorem 3.9 to the instance (G,M,n+ k) to check in time

4n+k−n ·nO(1) = 4k ·nO(1) whether G̃ has a vertex cover of size at most n+k,
where n = |V (G)|. If a vertex cover of size at most n+ k in G̃ is found, then
using Lemma 3.10 we obtain an odd cycle transversal of size at most k in G.
Otherwise, by Lemma 3.10, G has no odd cycle transversal of size at most
k. ut

In fact, the fastest currently known FPT algorithm for Odd Cycle
Transversal [328, 373] uses an improved version of the algorithm described
in Theorem 3.9 as a subroutine. We will give a 3knO(1)-time algorithm for
this problem in the next chapter using a di�erent technique, called iterative
compression.

Next, we give an algorithm for Almost 2-SAT using the 4knO(1)-time
algorithm for Vertex Cover Above Matching. In the Almost 2-SAT
problem, we are given a 2-CNF formula ϕ and an integer k, and the question
is whether one can delete at most k clauses from ϕ to make it satis�able.
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In a variable-deletion variant, called Variable Deletion Almost 2-SAT,
we instead allow deleting at most k variables; a variable is deleted together
with all clauses containing it. (One can think of deleting a variable as setting
it both to true and false at the same time, in this way satisfying all the
clauses containing it.) Exercises 3.21 and 3.22 ask you to prove that these
two variants are equivalent, and an f(k)nO(1)-time algorithm for one of them
implies an f(k)nO(1)-time algorithm for the other one (with the same function
f). Hence, it su�ces to focus only on the variable-deletion variant.

Theorem 3.12. Variable Deletion Almost 2-SAT can be solved in
4knO(1) time.

Proof. We proceed similarly as in the case of Odd Cycle Transversal: in
polynomial time, we construct aVertex Cover Above Matching instance
(G,M, |M |+k) that is equivalent to the input Variable Deletion Almost
2-SAT instance (ϕ, k). Then the theorem follows from an application of the
algorithm of Theorem 3.9 to the instance (G,M, |M |+ k).

We construct the graph G as follows. For every variable x, and for every
literal ` ∈ {x,¬x}, we construct a vertex v`, and connect the vertices vx and
v¬x by an edge. Let M be a set of edges de�ned in this step; note that M is
a matching in G. The intuitive meaning of vertices v` is that picking v` into
a vertex cover corresponds to valuating the variable of ` so that ` is true.
For every edge vxv¬x ∈ M , we expect to take one endpoint into a vertex
cover, which corresponds to setting the value of variable x. However, in k
edges vxv¬x ∈M we are allowed to take both endpoints into a vertex cover,
corresponding to deleting x or, equivalently, setting x both to true and false
at once.

To encode clauses, we proceed as follows. For every binary clause `1 ∨ `2,
we add an edge v`1v`2 , so that either v`1 or v`2 needs to be taken into a vertex
cover. For every unary clause with literal `, we add a new vertex of degree 1,
adjacent to v`.

This concludes the construction of the graphG and the instance (G,M, |M |
+k). We refer to Fig. 3.1 for an illustration of the construction. We claim that
(ϕ, k) is a yes-instance of Variable Deletion Almost 2-SAT if and only
if (G,M, |M |+ k) is a yes-instance of Vertex Cover Above Matching.

In one direction, let X be a set of at most k variables of ϕ such that ϕ−X,
the formula ϕ with all variables of X deleted, has a satisfying assignment
ψ. We de�ne a set Y ⊆ V (G) as follows. First, for every x ∈ X, we put
both vx and v¬x into Y . Second, for every variable x /∈ X, we put vx into
Y if ψ(x) = > and otherwise, if ψ(x) = ⊥, we put v¬x into Y . Clearly
|Y | = |M |+ |X| ≤ |M |+ k.

It remains to argue that Y is a vertex cover of G. By construction, Y
contains at least one endpoint of every edge in M . For the remaining edges,
consider a clause C. Since X is a feasible solution to (ϕ, k), there exists a
literal ` in C that is either evaluated to true by ψ, or its variable is deleted
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vx1

v¬x1

vx2

v¬x2

vx3

v¬x3

vx4

v¬x4

x
1 ∨ ¬x

2

x2 ∨ x3

¬x2 ∨ ¬x3

¬x
3
∨ x

4

¬x
4

Fig. 3.1: The graph G for the formula ϕ = (x1 ∨ ¬x2) ∧ (x2 ∨ x3) ∧ (¬x2 ∨
¬x3)∧ (¬x3 ∨ x4)∧ (¬x4). The thick edges are the edges of the matching M

(belongs to X). In both cases, v` ∈ Y and the edge corresponding to the
clause C is covered by Y .

In the other direction, let Y be a vertex cover of G, and assume |Y | ≤
|M | + k. Without loss of generality, we may assume that Y ⊆ V (M): if, for
some unary clause C = `, the corresponding degree 1 neighbor of v` belongs
to Y , we replace it with the vertex v`. Let X be the set of these variables x
for which both vx and v¬x belong to Y . Since Y needs to contain at least one
endpoint of every edge of M , we have |X| ≤ k. Let us de�ne an assignment
ψ on the variables outside X as follows: ψ(x) = > if vx ∈ Y , and ψ(x) = ⊥ if
v¬x ∈ Y . We claim that ψ is a satisfying assignment of ϕ−X; note that such
a statement implies that X is a feasible solution to the Variable Deletion
Almost 2-SAT instance (ϕ, k), concluding the proof of the theorem.

To this end, consider a clause C, and assume no variable of C belongs to
X. If C = `1 ∨ `2 is a binary clause, then the edge v`1v`2 ensures that either
v`1 or v`2 belongs to Y , and the corresponding literal is evaluated to true in
the assignment ψ. If C = ` is a unary clause, then the corresponding edge
incident to v`, together with the assumption that Y ⊆ V (M), implies that
v` ∈ Y and ` is evaluated to true by ψ.

Consequently, (ϕ, k) is a yes-instance to Variable Deletion Almost
2-SAT if and only if (G,M, |M | + k) is a yes-instance to Vertex Cover
Above Matching. This concludes the proof of the theorem. ut

3.5 Closest String

In the last part of this chapter we give yet another example of branching
algorithms, this time for a string problem called Closest String. Here,
we are given k strings x1, . . . , xk, each string over an alphabet Σ and of
length L, and an integer d. The question is whether there exists a string y of
length L over Σ such that dH(y, xi) ≤ d for all i ∈ {1, . . . , k}. Here, dH(x, y)
is the Hamming distance between strings x and y, that is, the number of
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positions where x and y di�er. We call any such string y a center string. In
this section we consider the parameterization by d, the maximum allowed
distance between the center string and the input strings.

Let x be a string over alphabet Σ. We denote the letter on the pth position
of x as x[p]. Thus x = x[1]x[2] · · ·x[L] for a string of length L. We say that
string x and y di�er on the p-th position if x[p] 6= y[p].

Given a set of k strings, each of length L, we can think of these strings
as a k × L character matrix. By columns of the set of strings, we mean the
columns of this matrix. That is, the j-th column is the sequence of letters
x1[j], x2[j], . . . , xk[j]. We call a column bad if it contains at least two di�erent
symbols from alphabet Σ, and good otherwise. Clearly, if the j-th column is
a good one, then we have an obvious greedy choice for the j-th letter of the
solution: y[j] = x1[j] = x2[j] = . . . = xk[j]. Thus, we obtain the following
reduction rule.

Reduction CS.1. Delete all good columns.

It is straightforward to implement Reduction CS.1 in linear time.
We now observe that we cannot have too many bad columns in a yes-

instance.

Lemma 3.13. For every yes-instance of Closest String, the correspond-
ing k × L matrix contains at most kd bad columns.

Proof. Fix a center string y. For every bad column j there exists a string xi(j)
such that xi(j)[j] 6= y[j]. Since every string xi di�ers from y on at most d
positions, for every i we have i(j) = i for at most d positions j. Consequently,
there are at most kd bad columns. ut

Reduction CS.2. If there are more than kd bad columns, then conclude
that we are dealing with a no-instance.

We now give an intuition behind the algorithm.

Fix a center string y. The idea of our algorithm is to start with one
of the given strings, say x1, as a �candidate string�, denoted by z. As
long as there is a string xi, i ∈ {1, . . . , k}, such that dH(xi, z) ≥ d+ 1,
then for at least one of the positions p where z and xi di�er, we have
that y[p] = xi[p]. Thus we can try recursively d + 1 ways to move
the candidate z string �closer� to y; moving closer here means that we
select a position p on which the candidate string z and xi di�er and set
z[p] := xi[p]. As at every step we move closer to y, and at the beginning
z = x1 and dH(x1, y) ≤ d, we obtain a bounded number of possibilities.

Let us move to formal details.

Theorem 3.14. Closest String can be solved in time O(kL+kd(d+1)d).
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Proof. First, we apply Reductions CS.1 and CS.2. Unless we have resolved
the instance already, we are left with k strings x1, x2, . . . , xk, each of length
L ≤ kd. The time spent so far is O(kL), that is, linear in the input size.

Recursively, we solve the following augmented problem: given a candidate
string z and an integer ` ≤ d, determine whether there exists a center string
y for the strings x1, x2, . . . , xk with the additional property dH(y, z) ≤ `.
Observe that, to solve Closest String on our instance, it su�ces to solve
our augmented problem for z = x1 and ` = d.

Given z and `, we �rst perform the following checks. If z is a center string
itself, then we return z. Otherwise, if ` = 0, then we return that there is no
such center string y. In the remaining case, ` > 0 and there exists a string xi
with dH(xi, z) > d. Let P be a set of arbitrary d+1 positions on which xi and
z di�er. Observe that for every center string y we have y[p] = xi[p] for at least
one position p ∈ P. Hence, we branch into |P| = d + 1 subcases: for every
p ∈ P, we de�ne zp to be equal z except for position p where zp[p] = xi[p],
and we recursively solve our augmented problem for the pair (zp, ` − 1). To
show correctness of this branching, observe that if there exists a center string
y with dH(z, y) ≤ `, then for a position p ∈ P satisfying xi[p] = y[p] we have
dH(zp, y) ≤ dH(z, y)− 1 ≤ `− 1.

Concerning the running time of the algorithm, note that we build a search
tree of depth at most d, and every node of the search tree has at most d+ 1
children. Thus, the size of the search tree does not exceed O((d+ 1)d). With
small technical work which we omit here, every step of the algorithm can be
implemented in linear time. This completes the proof. ut

Exercises

3.1 (l). Prove Proposition 3.1.

3.2 (l). Show that Clique and Independent Set, parameterized by the solution size
k, are FPT on r-regular graphs for every �xed integer r. Also show that these problems
are FPT with combined parameters k + r.

3.3. Show that any graph has at most 2k inclusion-wise minimal vertex covers of size
at most k. Furthermore, show that given G and k, we can enumerate all inclusion-wise
minimal vertex covers of G of size at most k in time 2knO(1).

3.4 (l). In the Cluster Vertex Deletion problem, we are given a graph G and
an integer k, and the task is to delete at most k vertices from G to obtain a cluster
graph (a disjoint union of cliques). Obtain a 3knO(1)-time algorithm for Cluster Vertex
Deletion.

3.5 (l). In the Cluster Editing problem, we are given a graph G and an integer k,
and the objective is to check whether we can turn G into a cluster graph (a disjoint union
of cliques) by making at most k edge editions, where each edition is adding or deleting one
edge. Obtain a 3knO(1)-time algorithm for Cluster Editing.
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3.6 (l). An undirected graph G is called perfect if for every induced subgraph H of G,
the size of the largest clique in H is the same as the chromatic number of H. In this exercise
we consider the Odd Cycle Transversal problem, restricted to perfect graphs.

Recall that Exercise 2.34 asked for a kernel with O(k) vertices for this problem. In this
exercise, we ask for a 3knO(1)-time branching algorithm.

3.7. Let F be a set of graphs. We say that a graph G is F-free if G does not contain
any induced subgraph isomorphic to a graph in F ; in this context the elements of F are
sometimes called forbidden induced subgraphs. For a �xed set F , consider a problem where,
given a graph G and an integer k, we ask to turn G into a F-free graph by:

(vertex deletion) deleting at most k vertices;
(edge deletion) deleting at most k edges;
(completion) adding at most k edges;
(edition) performing at most k editions, where every edition is adding or deleting one

edge.

Prove that, if F is �nite, then for each of the four aforementioned problems there exists
a 2O(k)nO(1)-time FPT algorithm. (Note that the constants hidden in the O()-notation
may depend on the set F .)

3.8. In theVertex Cover/OCT problem, we are given an undirected graph G, an integer
`, and an odd cycle transversal Z of size at most k, and the objective is to test whether G
has a vertex cover of size at most `. Show that Vertex Cover/OCT admits an algorithm
with running time 2knO(1).

3.9. In this exercise we consider FPT algorithms for Feedback Arc Set in Tourna-
ments and Feedback Vertex Set in Tournaments. Recall that a tournament is a
directed graph, where every pair of vertices is connected by exactly one directed edge (in
one of the directions).

1. Let G be a digraph that can be made into a tournament by adding at most k ≥ 2

directed edges. Show that if G has a cycle then it has a directed cycle of length at
most 3

√
k.

2. Show that Feedback Arc Set in Tournaments admits a branching algorithm with
running time (3

√
k)knO(1).

3. Show that Feedback Vertex Set in Tournaments admits a branching algorithm
with running time 3knO(1).

4. Observe that, in the Feedback Arc Set in Tournaments problem, we can equiv-
alently think of reversing an edge instead of deleting it. Use this observation to show
a branching algorithm for Feedback Arc Set in Tournaments with running time
3knO(1).

3.10 (l). A bipartite tournament is an orientation of a complete bipartite graph, meaning
its vertex set is a union of two disjoint sets V1 and V2 and there is exactly one arc between
every pair of vertices u and v such that u ∈ V1 and v ∈ V2.

1. Show that a bipartite tournament has a directed cycle if and only if it has a directed
cycle on four vertices.

2. Show that Directed Feedback Vertex Set and Directed Feedback Arc Set
admit algorithms with running time 4knO(1) on bipartite tournaments.

3.11 (A). A graph is chordal if it does not contain a cycle on at least four vertices as
an induced subgraph. A triangulation of a graph G is a set of edges whose addition turns
G into a chordal graph. In the Chordal Completion problem, given a graph G and an
integer k, we ask whether G admits a triangulation of size at most k.
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1. Show thatChordal Completion admits an algorithm with running time kO(k)nO(1).
2. Show that there is a one-to-one correspondence between inclusion-wise minimal tri-

angulations of a cycle with ` vertices and binary trees with ` − 2 internal nodes.
Using this correspondence show that a cycle on ` vertices has at most 4`−2 minimal
triangulations.

3. Use the previous point to obtain an algorithm with running time 2O(k)nO(1) for
Chordal Completion.

You may use the fact that, given a graph G, one can in polynomial time check if G is
a chordal graph and, if this is not the case, �nd in G an induced cycle on at least four
vertices.

3.12. In the Min-Ones-r-SAT problem, we are given an r-CNF formula φ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for φ with
at most k variables set to true. Show that Min-Ones-r-SAT admits an algorithm with
running time f(r, k)nO(1) for some computable function f .

3.13. In the Min-2-SAT problem, we are given a 2-CNF formula φ and an integer k, and
the objective is to decide whether there exists an assignment for φ that satis�es at most k
clauses. Show that Min-2-SAT can be solved in time 2knO(1).

3.14. In the Minimum Maximal Matching problem, we are given a graph G and an
integer k, and the task is to check if G admits an (inclusion-wise) maximal matching with
at most k edges.

1. Show that if G has a maximal matching of size at most k, then V (M) is a vertex cover
of size at most 2k.

2. Let M be a maximal matching in G and let X ⊆ V (M) be a minimal vertex cover
in G. Furthermore, let M1 be a maximum matching of G[X] and M2 be a maximum
matching of G[V (G) \ V (M1)]. Show that M1 ∪M2 is a maximal matching in G of
size at most |M |.

3. Obtain a 4knO(1)-time algorithm for Minimum Maximal Matching.

3.15 (A). In the Max Leaf Spanning Tree problem, we are given a connected graph
G and an integer k, and the objective is to test whether there exists a spanning tree of
G with at least k leaves. Obtain an algorithm with running time 4knO(1) for Max Leaf
Spanning Tree.

3.16 (A). An out-tree is an oriented tree with only one vertex of indegree zero called
the root. In the Directed Max Leaf problem, we are given an directed graph G and an
integer k, and the objective is to test whether there exists an out-tree in G with at least k
leaves (vertices of outdegree zero). Show that Directed Max Leaf admits an algorithm
with running time 4knO(1).

3.17. Describe an algorithm running in time O(1.381n) which �nds the number of inde-
pendent sets (or, equivalently, vertex covers) in a given n-vertex graph.

3.18. Show that if a graph on n vertices has minimum degree at least 3, then it contains a
cycle of length at most 2dlogne. Use this to design a (logn)O(k)nO(1)-time algorithm for
Feedback Vertex Set on undirected graphs. Is this an FPT algorithm for Feedback
Vertex Set?

3.19. Prove that the statement of Lemma 3.6 is true for any optimum solution x, not
necessarily a half-integral one. (For a not half-integral solution x, we de�ne V x

1 = {v ∈
V (G) : xv >

1
2
} and V x

0 = {v ∈ V (G) : xv <
1
2
}.)
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3.20. A graph G is a split graph if V (G) can be partitioned into sets C and I, such that
C is a clique and I is an independent set in G. In the Split Vertex Deletion problem,
given a graph G and an integer k, the task is to check if one can delete at most k vertices
from G to obtain a split graph.

Give a polynomial-time algorithm that, given a Split Vertex Deletion instance
(G, k), produces an equivalent Vertex Cover Above Matching instance (G′,M, |M |+
k). Use this to design a 4knO(1)-time algorithm for Split Vertex Deletion.

3.21. Show how to, given an Almost 2-SAT instance (ϕ, k), compute in polynomial time
an equivalent instance (ϕ′, k) of Variable Deletion Almost 2-SAT.

3.22. Show the reverse of the previous exercise. That is, show how to, given an instance
(ϕ, k) of Variable Deletion Almost 2-SAT, compute in polynomial time an equivalent
instance (ϕ′, k) of Almost 2-SAT.

3.23 (A). For an independent set I in a graph G, the surplus of I is de�ned as |N(I)|−|I|.

1. Show that a graph reduced with respect to Reduction VC.5 (i.e., this reduction cannot
be further applied) does not admit independent sets with nonpositive surplus.

2. Show how to detect independent sets of surplus 1 in such a graph using the LP
relaxation of Vertex Cover.

3. Design a reduction rule for Vertex Cover that handles a (given) independent set of
surplus 1. How does the measure µ(G, k) = k−vc∗(G) behave in your reduction rule?

4. Show that, if a graph does not admit an independent set of surplus at most 1, then
the branching of Theorem 3.8 has branching vector ( 1

2
, 1), and the algorithm runs in

time 2.6181k−vc∗(G)nO(1).

3.24 (l). Consider theClosest String problem, where in the input there are two strings
xi and xj with dH(xi, xj) = 2d. Show that in this case the Closest String problem can
be solved in time O(kL+ kd4d).

3.25 (A). Consider a generalization of Closest String where, apart from the strings
x1, x2, . . . , xk, each over alphabet Σ and of length L, we are given integers d1, d2, . . . , dk,
and we ask for a center string y of length L such that dH(y, xi) ≤ di for every 1 ≤ i ≤ k.
Consider the following recursive algorithm for this generalization.

1. First, try if x1 is a center string. If this is the case, then return x1 and �nish.
2. Otherwise, if d1 = 0, then return that there is no solution.
3. In the remaining case, take any j ≥ 2 such that d(x1, xj) > dj . Let P be the set of

positions on which x1 and xj di�er. If |P| > d1 + dj , return that there is no solution.
4. Guess the values y[p] for every p ∈ P, where y is the center string we are looking for,

in such a way that y di�ers from xi on at most di positions from P for every 1 ≤ i ≤ k.
5. For every guess (y[p])p∈P , de�ne d′i = di − |{p ∈ P : y[p] 6= xi[p]}| and let x′i be the

string xi with letters on positions of P deleted.
6. Observe that x′1 = x′j . Discard the string x′j , and set d′1 := min(d′1, d

′
j).

7. Recurse on the strings x′i and integers d′i, for every guess (y[p])p∈P .

Denote d = max1≤i≤k di.

1. Show that in every recursive step it holds that d′1 < d1/2.
2. Use this fact to show that this algorithms solves the generalization of Closest String

in time 2O(d)|Σ|d(kL)O(1).
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Hints

3.3 Consider the following branching algorithm: given an instance (G, k), pick an arbitrary
edge uv ∈ E(G) and branch on two instances (G− u, k− 1) and (G− v, k− 1). Stop when
G becomes edgeless or k < 0. Show that in this manner you generate at most 2k leaves
of the search tree, and every minimal vertex cover of G of size at most k appears in some
leaf.

3.4 Observe that a graph is a cluster graph if and only if it does not contain a path on
three vertices (P3) as an induced subgraph. As long as there exists a P3 as an induced
subgraph, branch by choosing one of its vertices to delete.

3.5 Proceed as in Exercise 3.4, and observe that you can break a P3 in three di�erent
ways.

3.6 Observe that the class of perfect graphs is closed under taking induced subgraphs,
and a perfect graph is bipartite if and only if it does not contain a triangle.

3.7 Observe that, if F is �nite and �xed, then

1. we can in polynomial time verify if a graph G is F-free and, if not, �nd an induced
subgraph of G that is isomorphic to a member of F ;

2. there are only O(1) ways to break such a forbidden induced subgraph in all four
considered problem variants.

3.8 For every v ∈ Z, branch on whether to include v or N(v) into the desired vertex cover.
Observe that the remaining graph is bipartite.

3.9 For the �rst point, observe that a shortest cycle in a directed graph cannot have any
chord. Moreover, if ` is the length of some chordless cycle in D, then there are at least
`(`− 3)/2 pairs of nonadjacent vertices in D. To solve the second point, show how to �nd
such a chordless cycle, and branch choosing which edge to delete from it.

For the third and fourth point, observe that a tournament is acyclic if and only if it
does not contain a directed triangle.

3.10 Use again the observation that in the Directed Feedback Arc Set problem you
can alternatively reverse edges instead of deleting them. Thus, the graph remains a bipartite
tournament in the course of the algorithm, and every directed cycle on four vertices can
be broken in exactly four ways in both considered problems.

3.11 First, design an algorithm that either veri�es that G is a chordal graph, or �nds an
induced cycle on at least four vertices in G. Second, observe that such a cycle on more
than k+ 3 vertices is a certi�cate that (G, k) is a no-instance. For the �rst point, it su�ces
to branch choosing one edge to add to the cycle found. For the last point, the branching
should consider all minimal triangulations of the cycle.

3.12 Start with an assignment that sets all variables to false. As long as there exists an
unsatis�ed clause C, branch on C, in each subcases choosing one positive literal of C to
be satis�ed. In this way, you obtain an rknO(1)-time algorithm.

3.13 First, observe that if some variable appears only positively (or negatively), then we
can assign its value in such a way that it does not satisfy any clause. Second, note that
if the aforementioned preprocessing rule is not applicable, then branching on any variable
makes at least one clause satis�ed, decreasing the budget k by at least 1.

3.14 The �rst point is straightforward. The fact that M1 ∪M2 is a maximal matching
follows directly from the fact that M2 is a maximum matching in G − V (M1). For the
cardinality bound, let MX ⊆ M be the set of edges of M that have both endpoints in
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X. Observe that |M | = |MX | + |M \MX | = |MX | + (|X| − 2|MX |) = |X| − |MX |, while
|M1| ≥ |MX | and |M2| ≤ |X|− |V (M1)| = |X|−2|M1|. For the last point, use Exercise 3.3
to enumerate all minimal vertex covers of G of size at most 2k.

3.15 Start with the following observation: if G is connected and has a subtree T , rooted
at some vertex r, with at least k leaves, then G has also a spanning tree with at least k
leaves. In our algorithm, we start by guessing a non-leaf vertex r of the tree in question,
and consider all further trees as rooted in r.

At every node of the search tree we have a subtree T of G rooted at node r. Let L(T )

denote the set of leaves of T . Our objective in this branch is to �nd a subtree with k leaves
(if it exists) that is a supergraph of T .

First, observe that if there exists a leaf v ∈ L(T ) with at least two neighbors in V (G) \
V (T ), then we can branch on v. In one subcase, we consider v being an internal vertex of
the tree in question, adding all edges vu for u ∈ N(v) \ V (T ) to the tree T . In the second
subcase, we consider v being a leaf vertex of the tree in question, deleting all edges vu for
u ∈ N(v) \ V (T ) from the graph G. Show that this branching is correct. Observe that in
every branching step we either �x one vertex to be a leaf, or increase the number of leaves
of T . Hence, this branching leads to at most 22k leaves of the search tree.

We are left with the case when all vertices v ∈ L(T ) have at most one neighbor outside
V (T ). Prove that in this case a similar branching is still valid: for a vertex v ∈ L(T ), either
proclaim v a leaf, or �x as internal vertices both v and all its descendants, up to the closest
vertex of degree at least three, inclusive.

In the leaves of the search tree we have trees T with |L(T )| ≥ k (where we report that
(G, k) is a yes-instance), or trees T where all the leaves have been �xed as leaves, but still
|L(T )| < k (where we report no solution in this branch).

3.16 Adapt the solution of Exercise 3.15 to the directed case.

3.17 Note that there is a bijection between vertex covers and maximal independent sets,
since the complement of a vertex cover is an independent set. Show a counting counterpart
of Proposition 3.1 and design a branching algorithm where the number of leaves in the
search tree is bounded by the solution of the recurrence T (n) = T (n− 1) +T (n− 4). Solve
the recurrence by applying the techniques described in Section 3.2 (use Table 3.1).

3.18 To prove the desired upper bound on the length of the shortest cycle, consider a
breadth-�rst search tree of the input graph.

To show that the obtained algorithm is an FPT one, consider two possibilities. If n ≤ kk,
then logn ≤ k log k and (logn)k ≤ 2O(k log k). Otherwise, k = O(logn/ log logn) and
(logn)k = 2O(logn) = nO(1). Alternatively, you may use the Cauchy-Schwarz inequality
to observe that

(logn)k = 2k log logn ≤ 2
k2+(log logn)2

2 = 2k
2/2 · 2(log logn)2/2 = 2k

2/2 · no(1).

3.19 Apply Exercise 2.25 to x, obtaining a half-integral solution y. Observe that Re-
duction VC.4 behaves the same way when fed with the solution x and with the solution
y.

3.20 In short, modify the reduction of Lemma 3.10.
For a given a graph G, we de�ne a new graph G̃ as follows. Let Vi = {ui : u ∈ V (G)},

i ∈ {1, 2}. The vertex set V (G̃) consists of two copies of V (G), i.e., V (G̃) = V1 ∪ V2 and

E(G̃) = {u1u2 : u ∈ V (G)} ∪ {u1v1 : uv ∈ E(G)} ∪ {u2v2 : uv /∈ E(G)}.

In other words, G̃ is obtained by taking a disjoint copy of G and a complement of G, and
adding a perfect matching such that the endpoints of every matching edge are copies of
the same vertex.
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3.21 The main idea is to make, for every variable x, a di�erent copy for every appearance
of x in the formula ϕ. To create the formula ϕ′, we �rst copy all the clauses of ϕ, replacing
every variable x with one of its copies so that no copy is used twice, and then we add
clauses enforcing equality between every pair of copies of the same variable. Show that a
deletion of a clause C in the original instance corresponds to the deletion of one of the
copies of a variable appearing in C in the new instance.

3.22 The main idea is to replace every variable x with its two copies, x> and x⊥: x> has
the meaning �Is x true?�, whereas x⊥ has the meaning �Is x false?�. We connect them by a
clause ¬x>∨¬x⊥ to enforce that only one value of x is chosen. Moreover, we replace every
literal x with x>, and every literal ¬x with x⊥. Argue that in the new instance (ϕ′, k)

of Almost 2-SAT there exists a minimum solution that deletes only clauses of the form
¬x> ∨¬x⊥. Observe that deleting such a clause corresponds to setting x to both true and
false at once in the input formula ϕ, satisfying all the clauses containing x.

3.23 Let I be an independent set in G of surplus a. De�ne the following vector x =
(xv)v∈V (G): xv = 0 for v ∈ I, xv = 1 for v ∈ N(I) and xv = 1

2
for v /∈ N [I]. Observe that

x is a feasible solution to LPVC(G) of cost |V (G)|
2

+ a
2
. This proves the �rst point.

Moreover, it also proves the following: if we pick any vertex v and solve LPVC(G) with
an additional constraint xv = 0 (in other words, solve LPVC(G−N [v]) and extend it with
xv = 0 and xu = 1 for every u ∈ N(v)), obtaining a half-integral solution x, then the set
V x
0 is an independent set of minimum surplus among all independent sets containing v. In

particular, this gives us a way to detect independent sets with surplus 1, as well as shows
that, if the minimum surplus of an independent set containing v is at least 2, then in a
branch where we exclude v from a vertex cover, the measure µ(G, k) drops by at least 1.

It remains to argue about the third point, tackling with a reduction rule. To this end,
prove the following: if Reduction VC.5 is not applicable, and I is of surplus 1, then there
exists a minimum vertex cover of G that contains the whole I or the whole N(I). Recall
|I| + 1 = |N(I)|. If G[N(I)] contains an edge, then we can greedily take N(I) into the
vertex cover. Otherwise, we can replace N [I] with a single vertex incident to N(N [I]) and
decrease k by |I|. A direct check shows that the measure µ(G, k) does not increase in these
steps.

3.24 Observe that, in this case, for every center string y, y[p] equals xi[p] whenever
xi[p] = xj [p], whereas for every position p with xi[p] 6= xj [p] we have y[p] = xi[p] or
y[p] = xj [p]. Thus, there are two options for each of 2d positions where xi and xj di�er.

3.25 For the �rst point, consider two cases depending on for how many positions p ∈ P
the character y[p] has been guessed so that y[p] = xj [p]. If there are more than d1/2 such
positions, then x1 di�ers on all of them from y, and we have d′1 < d1/2. Show that in the
second case, when there are at most d1/2 such positions, it holds that d′j < d1/2. Use here
the fact that |P| > dj .

For the second point, think of choosing (y[p])p∈P as a three stage process. First, we
choose an integer 0 ≤ ` ≤ d1: y will di�er from x1 on exactly ` positions of P. Second,
we choose the set Q of these ` positions; there are

(|P|
`

)
≤
(
d+d1
`

)
possibilities. Third, we

choose y[p] for every p ∈ Q; there are (|Σ| − 1)` possibilities.
Using d1 as a measure for the complexity of an instance, and using the �rst point, we

obtain the following recurrence for time complexity.

T (d1) ≤
d1∑

`=0

(d+ d1

`

)
(|Σ| − 1)` · T (min(d1 − `, d1/2))

=

bd1/2c∑

`=0

(d+ d1

`

)
(|Σ| − 1)` · T (d1/2) +

d1∑

`=bd1/2c+1

(d+ d1

`

)
(|Σ| − 1)` · T (d1 − `).
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It remains to use the aforementioned recurrence to prove by induction that

T (d1) ≤
(d+ d1

d1

)
26d1 (|Σ| − 1)d1 .

(Constant 6 in the exponent is not optimal; it has been chosen so that the proof goes
smoothly.)
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Chapter 4

Iterative compression

In this chapter we introduce iterative compression, a
simple yet very useful technique for designing �xed-
parameter tractable algorithms. Using this technique
we obtain FPT algorithms for Feedback Vertex
Set in Tournaments, Feedback Vertex Set and
Odd Cycle Transversal.

In 2004, Reed, Smith and Vetta [397] presented the �rst �xed-parameter
tractable algorithm forOdd Cycle Transversal, running in time 3knO(1).
This result is important not only because of the signi�cance of the prob-
lem, but also because the proposed approach turned out to be a novel and
generic technique, applicable in many other situations. Based on this new
technique, called nowadays iterative compression, a number of FPT algo-
rithms for several important problems have been obtained. Besides Odd Cy-
cle Transversal, examples include Directed Feedback Vertex Set
and Almost 2-SAT.

Typically, iterative compression algorithms are designed for parameterized
minimization problems, where the goal is to �nd a small set of vertices or
edges of the graph, whose removal makes the graph admit some global prop-
erty. The upper bound on the size of this set is the parameter k. The main
idea is to employ a so-called compression routine. A compression routine is
an algorithm that, given a problem instance and a corresponding solution,
either calculates a smaller solution or proves that the given solution is of the
minimum size. Using a compression routine, one �nds an optimal solution
to the problem by iteratively building up the structure of the instance and
compressing intermediate solutions.

The main point of the iterative compression technique is that if the com-
pression routine runs in FPT time, then so does the whole algorithm. The
strength of iterative compression is that it allows us to see the problem from
a di�erent viewpoint: The compression routine has not only the problem

77
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instance as input, but also a solution, which carries valuable structural in-
formation about the instance. Therefore, constructing a compression routine
may be simpler than designing a direct FPT algorithm for the original prob-
lem.

While embedding the compression routine into the iteration framework is
usually straightforward, �nding the compression routine itself is not. There-
fore, the art of iterative compression typically lies in the design of the com-
pression routine. In this chapter we design algorithms for Feedback Ver-
tex Set in Tournaments, Feedback Vertex Set and Odd Cycle
Transversal using the method of iterative compression. An important case
of Almost 2-SAT is covered in the exercises. This technique will be also ap-
plied in Chapter 7 to solve Planar Vertex Deletion, and in Chapter 8
for Directed Feedback Vertex Set.

4.1 Illustration of the basic technique

The technique described in this section is based on the following strategy.

Solution compression: First, apply some simple trick so that you can
assume that a slightly too large solution is available. Then exploit the
structure it imposes on the input graph to construct an optimal solution.

As a simple example of this approach, let us try to apply it to our favourite
example problem Vertex Cover. The algorithm we are going to obtain now
is much worse than the one obtained in the previous chapter, but it serves well
for the illustration. Assume we are given a Vertex Cover instance (G, k).
We use the well-known 2-approximation algorithm to obtain an approximate
vertex cover Z. If |Z| > 2k, then we can clearly conclude that (G, k) is a
no-instance, so assume otherwise. We are now going to exploit the structure
that Z imposes on the graph G: Z is small, so we can a�ord some branching
on Z, while at the same time G− Z is edgeless.

The branching step is as follows: we branch in all possible ways an optimal
solution X can intersect Z. Let XZ ⊆ Z be one such guess. We are searching
now for a vertex cover X of size at most k, such that X ∩ Z = XZ . Let
W = Z \ XZ . If there is an edge in G[W ], then we can clearly conclude
that our guess of XZ was wrong. Otherwise, note that any vertex cover X
satisfying X ∩ Z = XZ needs to include XZ ∪ NG(W ). Furthermore, since
G − Z is an independent set, XZ ∪ NG(W ) is actually a vertex cover of G.
Consequently, if for some choice of XZ ⊆ Z we have |XZ ∪ NG(W )| ≤ k,
then we return a solution X := XZ ∪ NG(W ), and otherwise we conclude
that (G, k) is a no-instance. Thus, we obtain an algorithm solving Vertex
Cover in time 2|Z|nO(1) ≤ 4knO(1).
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Let us go back to the point when we have guessed the set XZ and de�ned
W = Z \ XZ . In the previous paragraph we have in fact argued that the
following Disjoint Vertex Cover problem is polynomial-time solvable:
Does G−XZ contain a vertex cover of size at most k − |XZ | that is disjoint
from W? Note here that W is a vertex cover of G − XZ , giving us a lot of
insight into the structure of G−XZ .

In our example, the �nal dependency of the running time on k is much
worse than the one obtained by branching algorithms in the previous chapter.
One of the reasons is that we started with a large set Z, of size at most 2k.
Fortunately, there is an easy and very versatile way to obtain a set Z of size
k + 1. This is exactly the main trick of iterative compression.

As the name suggests, in iterative compression we apply the compression
step iteratively. To exemplify this idea on Vertex Cover, let us take an
arbitrary ordering (v1, v2, . . . , vn) of G. For i ∈ {1, . . . , k}, we denote by Gi
the subgraph of G induced by the �rst i vertices. For i = k, we can take the
vertex set of Gi as a vertex cover X in Gi of size k. We proceed iteratively.
Suppose that for some i > k, we have constructed a vertex cover Xi of Gi
of size at most k. Then in graph Gi+1, set Zi+1 := Xi ∪ {vi+1} is a vertex
cover of size at most k + 1. If actually |Zi+1| ≤ k then we are done: we can
simply putXi+1 = Zi+1 and proceed to the next iteration. Otherwise we have
|Zi+1| = k + 1, and we need to compress the too large solution. By applying
the branching algorithm described above, i.e., solving 2|Zi+1| = 2k+1 instances
of Disjoint Vertex Cover, in time 2k+1nO(1), we can either �nd a vertex
cover Xi+1 of Gi of size at most k, or conclude that no such cover exists. If
Gi does not admit a vertex of size at most k, then of course neither does G,
and we may terminate the whole iteration and provide a negative answer to
the problem. If Xi+1 has been found, however, then we may proceed further
to the graph Gi+2 and so on. To conclude, observe that Gn = G, so at the
last iteration we obtain a solution for the input Vertex Cover instance in
time 2knO(1).

Combined with other ideas, this simple strategy becomes a powerful tech-
nique which can be used to solve di�erent parameterized problems. Let us
sketch how this method can be applied to a graph problem. The central idea
here is to design an FPT algorithm which for a given (k + 1)-sized solution
for a problem either compresses it to a solution of size at most k or proves
that there is no solution of size at most k. This is known as the compression
step of the algorithm. The method adopted usually is to begin with a sub-
graph that trivially admits a k-sized solution and then expand it iteratively.
In any iteration, we try to �nd a compressed k-sized solution for the instance
corresponding to the current subgraph. If we �nd such a solution, then by
adding a vertex or an edge we obtain a solution to the next instance, but
this solution can be too large by 1. To this solution we apply the compres-
sion step. We stop when we either obtain a solution of size at most k for the
entire graph, or if some intermediate instance turns out to be incompressible.
In order to stop in the case when some intermediate instance turns out to
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be incompressible, the problem must have the property that the optimum
solution size in any intermediate instance is at most the optimum solution
size in the whole graph.

4.1.1 A few generic steps

We start with explaining the generic steps of iterative compression that are
common to most of the problems. We focus here on vertex subset problems;
the steps for an edge subset problem are analogous. Suppose that we want
to solve (∗)-Compression, where the wildcard (∗) can be replaced by the
name of the problem we are trying to solve. In (∗)-Compression, as input
we are given an instance of the problem (∗) with a solution of size k + 1
and a positive integer k. The objective is to either �nd a solution of size at
most k or conclude that no solution of size at most k exists. For example,
for (∗) =Feedback Vertex Set, we are given a graph G and a feedback
vertex set X of size k + 1. The task is to decide whether G has a feedback
vertex set of size at most k.

The �rst observation that holds for all the problems in this section is the
following:

If there exists an algorithm solving (∗)-Compression in time f(k) ·nc,
then there exists an algorithm solving problem (∗) in timeO(f(k)·nc+1).

We already explained how to prove such an observation for Vertex
Cover. We will repeat it once again for Feedback Vertex Set in Tour-
naments and skip the proofs of this observation for Feedback Vertex
Set and Odd Cycle Transversal.

Now we need to compress a solution Z of size k + 1. In all our examples
we follow the same strategy as we did for Vertex Cover. That is, for every
i ∈ {0, . . . , k} and every subset XZ of Z of size i, we solve the following
Disjoint-(∗) problem: Either �nd a solution X to (∗) in G−XZ such that
|X| ≤ k − i, where X and W := Z \XZ are disjoint, or conclude that this is
impossible. Note that in the disjoint variant we have that |W | = k− i+ 1, so
again the size of the solution W is one larger than the allowed budget; the
di�erence now is that taking vertices from W is explicitly forbidden. We use
the following observation, which follows from simple branching.

If there exists an algorithm solving Disjoint-(∗) in time g(k) · nO(1),
then there exists an algorithm solving (∗)-Compression in time
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k∑
i=0

(
k + 1

i

)
g(k − i)nO(1).

In particular, if g(k) = αk, then (∗)-Compression can be solved in
time (1 + α)knO(1).

Thus, the crucial part of the algorithms based on iterative compression lies
in solving the disjoint version of the corresponding problem. We will provide
the detailed proof of the above observation for Feedback Vertex Set in
Tournaments. We will not repeat these arguments for Feedback Vertex
Set and Odd Cycle Transversal, and explain only algorithms solving
Disjoint-(∗) for these problems.

Finally, let us point out that when designing algorithms for the compres-
sion and disjoint versions of a problem, one cannot focus only on the decision
version, where the task is just to determine whether a solution exists. This
is because constructing an actual solution is needed to perform the next step
of the iteration. This issue is almost never a real problem: either the algo-
rithm actually �nds the solution on the way, or one can use the standard
method of self-reducibility to query a decision algorithm multiple times in
order to reconstruct the solution. However, the reader should be aware of the
caveat, especially when trying to estimate the precise polynomial factor of
the running time of the algorithm.

4.2 Feedback Vertex Set in Tournaments

In this section we design an FPT algorithm for Feedback Vertex Set in
Tournaments (FVST) using the methodology of iterative compression. In
this problem, the input consists of a tournament T and a positive integer k,
and the objective is to decide whether there exists a vertex set X ⊆ V (T )
of size at most k such that T −X is a directed acyclic graph (equivalently,
a transitive tournament). We call the solution X a directed feedback vertex
set. Let us note that Feedback Vertex Set in Tournaments is a special
case of Directed Feedback Vertex Set, where the input directed graph
is restricted to being a tournament.

In what follows, using the example of Feedback Vertex Set in Tour-
naments we describe the steps that are common to most of the applications
of iterative compression.

We �rst de�ne the compression version of the problem, called Feedback
Vertex Set in Tournaments Compression. In this problem, the input
consists of a tournament T , a directed feedback vertex set Z of T of size
k + 1, and a positive integer k, and the objective is either to �nd a directed
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feedback vertex set of T of size at most k, or to conclude that no such set
exists.

Suppose we can solve Feedback Vertex Set in Tournaments Com-
pression in time f(k) · nO(1). Given this, we show how to solve the original
problem in f(k) ·nO(1) time. We take an arbitrary ordering (v1, v2, . . . , vn) of
V (T ) and for every i ∈ {1, . . . , n} we de�ne Vi = {v1, . . . , vi} and Ti = T [Vi].
Notice that

� Vk is a directed feedback vertex set of size k of Tk.
� If X is a directed feedback vertex set of Ti, then X ∪ {vi+1} is a directed

feedback vertex set of Ti+1.
� If Ti does not admit a directed feedback vertex set of size at most k, then

neither does T .

These three facts together with an f(k) · nc-time algorithm for Feedback
Vertex Set in Tournaments Compression imply an f(k) ·nc+1-time al-
gorithm for Feedback Vertex Set in Tournaments as follows. In tour-
nament Tk set Vk is a directed feedback vertex set of size k. Suppose that for
i ≥ k we have constructed a directed feedback vertex set Xi of Ti of size at
most k. Then in Ti+1, set Zi+1 := Xi ∪ {vi+1} is a directed feedback vertex
set of size at most k + 1. If actually |Zi+1| ≤ k, then we may proceed to the
next iteration with Xi+1 = Zi+1. Otherwise we have |Zi+1| = k+ 1. Then in
time f(k) · nc we can either construct a directed feedback vertex set Xi+1 in
Ti+1 of size k, or deduce that (T, k) is a no-instance of Feedback Vertex
Set in Tournaments. By iterating at most n times, we obtain the following
lemma.

Lemma 4.1. The existence of an algorithm solving Feedback Vertex Set
in Tournaments Compression in time f(k) · nc implies that Feedback
Vertex Set in Tournaments can be solved in time O(f(k) · nc+1).

In all applications of iterative compression one proves a lemma similar to
Lemma 4.1. Hence, the bulk of the work goes into solving the compression
version of the problem. We now discuss how to solve the compression problem
by reducing it to a bounded number of instances of the following disjoint ver-
sion of the problem: Disjoint Feedback Vertex Set in Tournaments.
In this problem, the input consists of a tournament T together with a di-
rected feedback vertex set W and the objective is either to �nd a directed
feedback vertex set X ⊆ V (T ) \W of size at most k, or to conclude that no
such set exists.

Let Z be a directed feedback vertex set of size k+1 in a tournament T . To
decide whether T contains a directed feedback vertex set X of size k (i.e., to
solve a Feedback Vertex Set in Tournaments Compression instance
(G,Z, k)), we do the following. We guess the intersection of X with Z, that
is, we guess the set XZ := X ∩ Z, delete XZ from T and reduce parameter
k by |XZ |. For each guess of XZ , we set W := Z \ XZ and solve Disjoint
Feedback Vertex Set in Tournaments on the instance (T −XZ ,W, k−
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|XZ |). If for some guessXZ we �nd a directed feedback vertex setX ′ of T−XZ

of size at most k−|XZ | that is disjoint fromW , then we outputX := X ′∪XZ .
Otherwise, we conclude that the given instance of the compression problem
is a no-instance. The number of all guesses is bounded by

∑k
i=0

(
k+1
i

)
. So to

obtain an FPT algorithm for Feedback Vertex Set in Tournaments
Compression, it is su�cient to solve Disjoint Feedback Vertex Set in
Tournaments in FPT time. This leads to the following lemma.

Lemma 4.2. If there exists an algorithm solving Disjoint Feedback Ver-
tex Set in Tournaments in time g(k)·nO(1), then there exists an algorithm
solving Feedback Vertex Set in Tournaments Compression in time∑k
i=0

(
k+1
i

)
g(k− i) ·nO(1). In particular, if g(k) = αk for some �xed constant

α, then the algorithm runs in time (α+ 1)k · nO(1).

By Lemmas 4.1 and 4.2, we have that

Solving Feedback Vertex Set in Tournaments boils down to solv-
ing the disjoint variant of the problem.

There is nothing very particular about Feedback Vertex Set in Tour-
naments in Lemma 4.2. In many graph modi�cation problems, for which the
corresponding disjoint version can be solved in time g(k) · nO(1), one can ob-
tain an algorithm for the original problem by proving a lemma analogous to
Lemma 4.2. We need only the following two properties: (i) a way to deduce
that if an intermediate instance is a no-instance, then the input instance is
a no-instance as well; and (ii) a way to enhance a computed solution Xi of
an intermediate instance Gi with a new vertex or edge to obtain a slightly
larger solution Zi+1 of the next intermediate instance Gi+1.

4.2.1 Solving Disjoint Feedback Vertex Set in

Tournaments in polynomial time

Our next step is to show that Disjoint Feedback Vertex Set in Tour-
naments can be solved in polynomial time. As we already discussed, to-
gether with Lemmas 4.1 and 4.2, this shows that Feedback Vertex Set
in Tournaments can be solved in time 2knO(1).

For our proof we need the following simple facts about tournaments, which
are left as an exercise.

Lemma 4.3. Let T be a tournament. Then

1. T has a directed cycle if and only if T has a directed triangle;
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2. If T is acyclic then it has unique topological ordering. That is, there exists
a unique ordering ≺ of the vertices of T such that for every directed edge
(u, v), we have u ≺ v (that is, u appears before v in the ordering ≺).
We now describe the algorithm for the disjoint version of the problem.
Let (T,W, k) be an instance of Disjoint Feedback Vertex Set in

Tournaments and let A = V (T ) \ W . Recall that we have that |W | =
k + 1. Clearly, we can assume that both T [W ] and T [A] induce transitive
tournaments, since otherwise (T,W, k) is a no-instance. By Lemma 4.3, in
order to solve Disjoint Feedback Vertex Set in Tournaments it is
su�cient to �nd a set of at most k vertices from A intersecting all the directed
triangles in T . This observation gives us the following simple reduction.

Reduction FVST.1. If T contains a directed triangle x, y, z with exactly
one vertex from A, say z, then delete z and reduce the parameter by 1. The
new instance is (T − {z},W, k − 1).

Reduction FVST.1 simply says that all directed triangles in T with exactly
one vertex in A can be eliminated by picking the corresponding vertex in A.
Safeness of Reduction FVST.1 follows from the fact that we are not allowed
to select any vertex from W .

Given an instance (T,W, k), we �rst apply Reduction FVST.1 exhaustively.
So from now onwards assume that Reduction FVST.1 is no longer applicable.
Since tournaments T [W ] and T [A] are acyclic, by Lemma 4.3 we know that
they both have unique topological orderings. Let the topological orderings of
T [W ] and T [A] be denoted by σ = (w1, . . . , wq) and ρ, respectively. Suppose
X is a desired solution; then T [W ∪ (A \X)] is a transitive tournament with
the unique ordering such that when we restrict this ordering toW , we obtain
σ, and when we restrict it to A \X, we get restriction of ρ to A \X. Since
the ordering of σ is preserved in the ordering of T [W ∪ (A\X)], our modi�ed
goal now is as follows.

Insert a maximum-sized subset of A into ordering σ = (w1, . . . , wq).

Every vertex v ∈ A has a �natural position� in σ, say p[v], de�ned as follows.
Since Reduction FVST.1 is no longer applicable, for all v ∈ A, we have that
T [W ∪ {v}] is acyclic and the position of v in σ is its position in the unique
topological ordering of T [W ∪ {v}]. Thus, there exists an integer p[v] such
that for i < p[v], there is an arc from wi to v and for all i ≥ p[v] there is an
arc from v to wi. Thus we get that

(v, wi) ∈ E(T ) ⇐⇒ i ≥ p[v] . (4.1)

Observe that p[v] is de�ned for all v ∈ A, it is unique, and p[v] ∈ {1, . . . , q+1}.
We now construct an ordering π of A as follows: u is before v in π if and

only if p[u] < p[v] or p[u] = p[v] and u is before v in the ordering ρ. That
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is, in the ordering π we take iteratively the sets {v ∈ A : p[v] = i} for
i = 1, 2, . . . , q + 1 and, within each set, we order the vertices according to ρ,
the topological order of T [A].

The main observation now is as follows:

1. In the transitive tournament T − X, the topological ordering of
T [A \ X] needs to be a restriction of π, because T [W ] remains in
T −X and σ is the topological ordering of T [W ].

2. On the other hand, the topological ordering of T [A \ X] needs to
be a restriction of ρ, the topological ordering of T [A].

Consequently, it su�ces to search for the longest common subsequence
of π and ρ.

We next prove a lemma which formalizes the intuition suggested above.

Lemma 4.4. Let B ⊆ A. Then T [W ∪B] is acyclic if and only if the vertices
of B form a common subsequence of ρ and π.

Proof. By ρ|B and π|B we denote restrictions of ρ and π to B, respectively.
For the forward direction, suppose that T [W ∪B] is acyclic. We show that

ρ|B = π|B and hence vertices of B form a common subsequence of ρ and
π. Targeting a contradiction, assume that there exist x, y ∈ B such that x
appears before y in ρ|B and y appears before x in π|B . Then (x, y) ∈ E(T ),
and p[y] ≤ p[x]. Moreover, if it was that p[x] = p[y], then the order of x
and y in π would be determined by ρ. Thus we conclude that p[y] < p[x].
By (4.1), we have that (y, wp[y]) ∈ E(T ) and (wp[y], x) ∈ E(T ). Because of
the directed edges (x, y), (y, wp[y]), and (wp[y], x), we have that {x, y, wp[y]}
induces a directed triangle in T [W ∪B], a contradiction.

Now we show the reverse direction of the proof. Assume that the vertices
of B form a common subsequence of ρ and π. In particular, this means that
ρ|B = π|B . To show that T [W ∪ B] is acyclic, by Lemma 4.3 it is su�cient
to show that T [W ∪B] contains no directed triangles. Since T [W ] and T [A]
are acyclic and there are no directed triangles with exactly two vertices in
W (Reduction FVST.1), it follows that there can only be directed triangles
with exactly two vertices in B. Since ρ|B = π|B , for all x, y ∈ B with (x, y) ∈
E(T ), we have that p[x] ≤ p[y]. Then by (4.1), there is no wi ∈ W with
(y, wi) ∈ E(T ) and (wi, x) ∈ E(T ). Hence there is no directed triangle in
T [W ∪B], and thus it is acyclic. This completes the proof of the lemma. ut

We need the following known fact about the longest common subsequence
problem, whose proof we leave as Exercise 4.2.

Lemma 4.5. A longest common subsequence of two sequences with p and q
elements can be found in time O(pq).
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We are ready to describe the algorithm now.

Lemma 4.6. Disjoint Feedback Vertex Set in Tournaments is solv-
able in polynomial time.

Proof. Let (T,W, k) be an instance of the problem. We use Reduction FVST.1
exhaustively. Let R be the set of vertices deleted by Reduction FVST.1, and
let (T ′,W, k′) be the reduced instance.

By Lemma 4.4, the optimal way to make T ′ acyclic by vertex deletions is
exactly the same as that to make sequences ρ and π equal by vertex deletions.
Thus, to �nd an optimal vertex deletion set, we can �nd a longest common
subsequence of ρ and π, which can be done in polynomial time by Lemma 4.5.
Let B be the vertices of a longest common subsequence of ρ and π and let
X := R∪ (V (T ′) \B). If |X| > k; then (T,W, k) is a no-instance. Otherwise,
X is the desired directed feedback vertex set of size at most k. ut

Lemmas 4.1 and 4.2 combined with Lemma 4.6 give the following result.

Theorem 4.7. Feedback Vertex Set in Tournaments can be solved in
time 2knO(1).

4.3 Feedback Vertex Set

In this section we give an algorithm for the Feedback Vertex Set problem
on undirected graphs using the method of iterative compression. Recall that
X is a feedback vertex set of an undirected graph G if G − X is a forest.
We give only the algorithms for the disjoint version of the problem. As was
discussed in Section 4.1.1, the existence of an algorithm with running time
αknO(1) for the disjoint variant problem would yield that Feedback Vertex
Set is solvable in time (1 + α)knO(1).

We start by de�ning Disjoint Feedback Vertex Set. In this problem,
as input we are given an undirected graph G, integer k and a feedback vertex
set W in G of size k + 1. The objective is to �nd a feedback vertex set
X ⊆ V (G)\W of size at most k, or correctly conclude that no such feedback
vertex set exists. We �rst give an algorithm forDisjoint Feedback Vertex
Set running in time 4knO(1), and then we provide a faster algorithm with

running time ϕ2knO(1), where ϕ = 1+
√
5

2 < 1.6181 denotes the golden ratio.
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4.3.1 First algorithm for Disjoint Feedback Vertex

Set

Let (G,W, k) be an instance of Disjoint Feedback Vertex Set and let
H = G − W . We �rst give a few reduction rules that simplify the input
instance.

Reduction FVS∗.1. Delete all the vertices of degree at most 1 in G.

Reduction FVS∗.2. If there exists a vertex v in H such that G[W ∪ {v}]
contains a cycle, then include v in the solution, delete v and decrease the
parameter by 1. That is, the new instance is (G− {v},W, k − 1).

Reduction FVS∗.3. If there is a vertex v ∈ V (H) of degree 2 in G such
that at least one neighbor of v in G is from V (H), then delete this vertex
and make its neighbors adjacent (even if they were adjacent before; the graph
could become a multigraph now).

It is easy to see that Reductions FVS∗.1, FVS∗.2 and FVS∗.3 are safe
and that they produce an equivalent instance. Furthermore, all of them can
be applied in polynomial time. Now we are ready to state the main lemma
of this section.

Lemma 4.8. Disjoint Feedback Vertex Set is solvable in time 4knO(1).

Proof. We give only an algorithm for the decision variant of the problem, i.e.,
we only verify whether a solution exists or not. It is straightforward to modify
the algorithm so that it actually �nds a solution, provided there exists one.

We will follow a branching strategy with a nontrivial measure function.
Let (G,W, k) be the input instance. If G[W ] is not a forest then return that
(G,W, k) is a no-instance. So from now onwards we assume that G[W ] is
indeed a forest. The algorithm �rst applies Reductions FVS∗.1, FVS∗.2 and
FVS∗.3 exhaustively. For clarity we denote the reduced instance (the one on
which Reductions FVS∗.1, FVS∗.2 and FVS∗.3 do not apply) by (G,W, k).
If k < 0, then return that (G,W, k) is a no-instance.

From now onwards we assume that k ≥ 0. Recall that H is a forest asW is
a feedback vertex set. ThusH has a vertex x of degree at most 1. Furthermore,
x has at least two neighbors in W , otherwise Reduction FVS∗.1 or FVS∗.3
would have been applied. Since Reduction FVS∗.2 cannot be applied, we have
that no two neighbors of x belong to the same connected component of G[W ].
Now branch by including x in the solution in one branch and excluding it in
the other branch. That is, we call the algorithm on instances (G−{x},W, k−1)
and (G,W ∪ {x}, k). If one of these branches returns a solution, then we
conclude that (G,W, k) is a yes-instance, otherwise (G,W, k) is a no-instance.
The correctness of this algorithm follows from the safeness of our reductions
and the fact that the branching is exhaustive.
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To estimate the running time of the algorithm, for instance I = (G,W, k),
we de�ne its measure

µ(I) = k + γ(I),

where γ(I) is the number of connected components of G[W ]. Observe that
Reductions FVS∗.1, FVS∗.2, and FVS∗.3 do not increase the measure. How
does µ(I) change when we branch? When we include x in the solution, k
decreases by 1 and γ(I) remains the same, and thus µ(I) decreases by 1. In
the other branch, k remains the same, while x has neighbors in at least two
connected components of W . Hence, when we include x in W , γ(I) drops
by at least 1. Thus, we have a branching vector (1, 1) and the running time
of our branching algorithm is 2µ(I)nO(1). Since at the beginning we have
µ(I) ≤ k + |W | ≤ 2k + 1, we obtain the desired running time. ut

Similarly to Lemmas 4.1 and 4.2 (see also the discussion in Section 4.1.1),
one can use iterative compression to show that the αknO(1)-time algorithm for
Disjoint Feedback Vertex Set can be used to solve Feedback Vertex
Set in time (1 +α)knO(1). Hence, Lemma 4.8 implies the following theorem.

Theorem 4.9. Feedback Vertex Set can be solved in time 5knO(1).

*4.3.2 Faster algorithm for Disjoint Feedback Vertex

Set

Now we show how to modify the algorithm of Theorem 4.9 to obtain �almost�
the fastest known deterministic algorithm for Feedback Vertex Set.

We start with a few de�nitions. Let (G,W, k) be an instance of Disjoint
Feedback Vertex Set and H = G−W . A vertex v ∈ V (H) is called a tent
if its degree in G is 3 and all its neighbors are in W . In other words, v has
degree 3 in G and it is an isolated vertex in H. We call a vertex v ∈ V (H)
nice if its degree in G is 2 and both its neighbors are in W . The following
lemma explains why we are interested in nice vertices and tents.

Lemma 4.10. Let (G,W, k) be an instance of Disjoint Feedback Vertex
Set such that every vertex from V (H) is either nice or a tent. Then Disjoint
Feedback Vertex Set on (G,W, k) can be solved in polynomial time.

The proof of Lemma 4.10 is based on a polynomial-time algorithm for the
�matroid parity� problem for graphic matroids. We defer the proof of this
Lemma to Section 12.2.2 and here we use it as a black box to obtain the
desired algorithm for Feedback Vertex Set.

For the new algorithm we also need one more reduction rule apart from
Reductions FVS∗.1, FVS∗.2 and FVS∗.3.

Reduction FVS∗.4. Let v ∈ V (H) be a vertex of degree 3 in G, with one
neighbor u in V (H) and two neighbors in W . In particular, v is a leaf in H.
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Fig. 4.1: Reduction FVS∗.4

Subdivide the edge vu and move the newly introduced vertex, say w, to W .
Let the new graph be named G′ and W ′ = W ∪ {w}. The new instance is
(G′,W ′, k). See Fig. 4.1.

The safeness of Reduction FVS∗.4 follows from the fact that introducing
an undeletable degree-2 vertex in the middle of an edge does not change the
set of feasible solutions to Disjoint Feedback Vertex Set. Let us also
observe that even though Reduction FVS∗.4 increases the number of vertices,
it also increases the number of tents. Furthermore, as we never add vertices
to H, this rule can be applied at most |V (H)| times.

Next we de�ne the new measure which is used to estimate the running
time of the new algorithm for Disjoint Feedback Vertex Set. With an
instance I = (G,W, k), we associate the measure

µ(I) = k + γ(I)− τ(I).

Here, γ(I) denotes the number of connected components of G[W ] and τ(I)
denotes the number of tents in G.

Next we show that our reduction rules do not increase the measure.

Lemma 4.11. An application of any of the Reductions FVS∗.1, FVS∗.2,
FVS∗.3 and FVS∗.4 does not increase µ(I).

Proof. The proofs for Reductions FVS∗.1, FVS∗.2 and FVS∗.3 are straight-
forward. As for Reduction FVS∗.4, let I = (G,W, k) be the considered in-
stance. We add vertex w toW thus creating a new connected component and
increasing γ by 1. We also create at least one tent at the vertex v (the vertex
u may also become a tent), see Fig. 4.1. Thus we increase τ by at least 1.
Thus, for the new instance I ′ we have that µ(I ′) ≤ µ(I). ut

The important thing we have to keep in mind is that:

For a branching algorithm it is necessary that in all instances whose
measure is nonpositive, it should be possible to solve the problem in
polynomial time.
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So let us now verify that this is the case for Disjoint Feedback Vertex
Set. The next lemma implies that if for an instance I we have τ(I) ≥ k+γ(I),
that is, if the measure of I is nonpositive, then I is a no-instance. In fact, we
prove a slightly stronger statement.

Lemma 4.12. Let I = (G,W, k) be an instance of Disjoint Feedback

Vertex Set. If τ(I) ≥ k + γ(I)
2 , then I is a no-instance.

Proof. Suppose, for contradiction, that I is a yes-instance of the problem
and let X be a feedback vertex set of size at most k disjoint from W . Thus
G′ = G − X is a forest. Let T ⊆ V (G) \W be the set of tents in G. Now
consider G′[W ∪ (T \X)]. Clearly, G′[W ∪ (T \X)] is also a forest. Now in
G′[W ∪ (T \X)] we contract each connected component of G[W ] into a single
vertex and obtain a forest, say F̂ . Then F̂ has at most γ(I)+ |T \X| vertices,
and hence has at most γ(I)+ |T \X|−1 edges. However, the vertices of T \X
form an independent set in F̂ (as they are tents), and each of them is of
degree exactly three in F̂ : the degree could not drop during the contraction
step, since we just contracted some subtrees of the forest G′[W ∪ (T \ X)].
Thus 3|T \X| < γ(I) + |T \X|, and hence 2|T \X| < γ(I). As |X| ≤ k, we

have that τ(I) = |T | < k + γ(I)
2 . This concludes the proof. ut

Now we are ready to state the main technical lemma of this section.

Lemma 4.13. Disjoint Feedback Vertex Set can be solved in time
ϕ2knO(1), where ϕ < 1.6181 is the golden ratio.

Proof. Again, we give an algorithm only for the decision version of the prob-
lem, and turning it into a constructive algorithm is straightforward.

We follow a similar branching strategy, but this time we shall use our
adjusted measure µ(I) that takes into account also tents. Let (G,W, k) be
the input instance. If G[W ] is not a forest, then return that (G,W, k) is a
no-instance. So from now onwards we assume that G[W ] is indeed a forest.
The algorithm �rst applies Reductions FVS∗.1, FVS∗.2, FVS∗.3 and FVS∗.4
exhaustively. For clarity we denote the reduced instance (the one on which
Reductions FVS∗.1, FVS∗.2, FVS∗.3 and FVS∗.4 do not apply) by (G,W, k).
If µ(I) ≤ 0 then return that (G,W, k) is a no-instance. The correctness of
this step follows from the fact that if µ(I) ≤ 0 then τ(I) ≥ k+γ(I), and thus
by Lemma 4.12, we have that the given instance is a no-instance.

From now onwards we assume that µ(I) > 0. We now check whether every
vertex in V (G) \ W is either nice or a tent. If this is the case, we apply
Lemma 4.10 and solve the problem in polynomial time. Otherwise, we move
to the branching step of the algorithm. The algorithm has only one branching
rule which is described below.

Pick a vertex x that is not a tent and has the maximum possible number
of neighbors in W .
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Now we branch by including x in the solution in one branch, and excluding
it in the other branch. That is we call the algorithm on instances (G −
{x},W, k− 1) and (G,W ∪{x}, k). If one of these branches is a yes-instance,
then (G,W, k) is a yes-instance. Otherwise (G,W, k) is a no-instance. The
correctness of this algorithm follows from the safeness of reductions and the
fact that the branching is exhaustive.

To compute the running time of the algorithm, let us see how measure
µ(I) = k+γ(I)−τ(I) changes. By Lemma 4.11, we know that applications of
Reductions FVS∗.1, FVS∗.2, FVS∗.3 and FVS∗.4 do not increase the measure.
Now we will see how µ(I) changes when we branch. In the branch where we
include x in the solution, we have that k decreases by 1, the number of tents
does not decrease, and the number of connected components of G[W ] remains
the same. Thus, µ(I) decreases by 1.

Now let us consider the other branch, where x is included into W . In this
branch, k remains the same and τ(I) does not decrease. Since Lemma 4.10
is not applicable, we know that there exists a connected component of H
that is not just a single tent, and there exists a vertex u in this component
whose degree in H is at most one (since H is a forest). Furthermore, since
Reductions FVS∗.1, FVS∗.2, FVS∗.3 and FVS∗.4 are not applicable, vertex
u has at least three neighbors in W . Since in the branching algorithm we
chose a vertex x that is not a tent and has the maximum possible number
of neighbors in W , we have that x also has at least three neighbors in W .
Since Reduction FVS∗.2 is not applicable, when we include x to W , graph
G[W ∪ {x}] remains a forest and its number of connected components γ(I)
drops by at least 2. Thus, µ(I) drops by at least 2.

The last two paragraphs show that the algorithm has a branching vector
of (1, 2). Hence, the algorithm solves Disjoint Feedback Vertex Set in
time ϕµ(I)nO(1). Since initially we have that µ(I) ≤ k + |W | ≤ 2k + 1, we
obtain the claimed running time. ut

Pipelined with the iterative compression framework (see the discussion in
Section 4.1.1), Lemma 4.13 implies the following theorem.

Theorem 4.14. Feedback Vertex Set can be solved in time

(1 + ϕ2)knO(1) = 3.6181knO(1).

4.4 Odd Cycle Transversal

In this section we give an algorithm for Odd Cycle Transversal using the
method of iterative compression. Recall that X is an odd cycle transversal
of G if graph G−X is bipartite. Again, we follow the same generic steps as
described in Section 4.1.1.
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We start by de�ning Disjoint Odd Cycle Transversal. In this prob-
lem, on the input we are given an undirected graphG, an odd cycle transversal
W of size k+ 1 and a positive integer k. The objective is to �nd an odd cycle
transversal X ⊆ V (G) \W of size at most k, or to conclude that no such
odd cycle transversal exists. We give an algorithm for Disjoint Odd Cycle
Transversal running in time 2knO(1).

Our algorithm for Disjoint Odd Cycle Transversal will use the fol-
lowing annotated problem as a subroutine. In the Annotated Bipartite
Coloring problem, we are given a bipartite graph G, two sets B1, B2 ⊆
V (G), and an integer k, and the goal is to �nd a set X consisting of at most
k vertices, such that G − X has a proper 2-coloring f : V (G) \ X → {1, 2}
(i.e., f(u) 6= f(v) for every edge uv) that agrees with the sets B1 and B2,
that is, f(v) = i whenever v ∈ Bi \X and i = 1, 2.

An algorithm for Annotated Bipartite Coloring. Let (G,B1, B2, k)
be an instance of Annotated Bipartite Coloring. We can view vertices
of B1 and B2 as precolored vertices. We do not assume that this precoloring
is proper, that is, a pair of adjacent vertices can be colored with the same
color. Moreover, we do not assume that B1 and B2 are disjoint, thus some
vertices can have both colors. We want to �nd a set X of size at most k
such that in graph G −X there is a proper 2-coloring extending precolored
vertices. To �nd such a coloring we proceed as follows. We �x an arbitrary
proper 2-coloring f∗ of G, f∗ : V (G)→ {1, 2}. Clearly, such a coloring exists
as G is a bipartite graph. Let B∗i = (f∗)−1(i) for i = 1, 2. The objective is
to �nd a set S of at most k vertices such that G− S has another 2-coloring
f such that Bi \ X is colored i for i = 1, 2. Observe that each vertex of
C := (B1 ∩B∗2)∪ (B2 ∩B∗1) should be either included in X, or have di�erent
colors with respect to f∗ and f . That is, for every v ∈ C \X, it holds that
f∗(v) 6= f(v), i.e., the vertices of C \X must change their colors. Similarly,
each vertex of R := (B1 ∩B∗1) ∪ (B2 ∩B∗2) that is not included in X should
keep its color. Thus, for every v ∈ R it holds that f∗(v) = f(v), unless
v ∈ X. See the diagram on Fig. 4.2. The following lemma helps us in solving
the annotated problem.

Lemma 4.15. Let G be a bipartite graph and f∗ be an arbitrary proper 2-
coloring of G. Then set X is a solution for Annotated Bipartite Col-
oring if and only if X separates C and R, i.e., no component of G − X
contains vertices from both C \X and R \X. Furthermore, such a set X of
size k (provided it exists) can be found in time O(k(n+m)).

Proof. We �rst prove the forward direction of the proof. In a proper 2-coloring
of G−X, say f , each vertex of V (G)\X either keeps the same color (f(v) =
f∗(v)) or changes its color (f(v) 6= f∗(v)). Moreover, two adjacent vertices
have to pick the same decision. Therefore, for every connected component
of G \ X, either all vertices v satisfy f(v) = f∗(v) or all vertices v satisfy
f(v) 6= f∗(v). Consequently, no connected component of G \X may contain
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Fig. 4.2: Sets C and R

a vertex of both R (which needs to keep its color) and C (which needs to
change its color).

For the backward direction, let X be a set separating R and C. De�ne the
coloring f : V (G) \X → {1, 2} as follows: �rst set f = f∗ and then �ip the
coloring of those components of G − X that contain at least one vertex of
C \X. No vertex of R is �ipped and thus this is the required 2-coloring.

To �nd a vertex set of size at most k separating C and R, one can use
the classic max-�ow min-cut techniques, e.g., by k iterations of the Ford-
Fulkerson algorithm (see Theorem 8.2). Thus we obtain the promised running
time bound. ut

Back to Odd Cycle Transversal. Now we are going to use our algorithm
for Annotated Bipartite Coloring to solve Odd Cycle Transversal
by applying the iterative compression framework. As usual, to this end we
�rst give an algorithm for the disjoint variant of the problem, Disjoint Odd
Cycle Transversal. Recall that here we are given a graph G, an integer
k, and a setW of k+1 vertices such that G−W is bipartite. The objective is
to �nd a set X ⊆ V (G)\W of at most k vertices such that G−X is bipartite,
that is, admits a proper 2-coloring f , or to conclude that no such set exists.
Towards this we do as follows. Every vertex v ∈ W remains in G − X and
hence G[W ] has to be bipartite, as otherwise we are clearly dealing with a
no-instance. The idea is to guess the bipartition of W in G−X.

That is, we iterate over all proper 2-colorings fW : W → {1, 2} of G[W ]
and we look for a set X ⊆ V (G) \ W such that G − X admits a proper
2-coloring that extends fW . Note that there are at most 2|W | = 2k+1 choices
for the coloring fW . Let BWi = f−1W (i) for i = 1, 2.

Observe that every vertex v in B2 := NG(BW1 ) ∩ (V (G) \W ) needs to be
either colored 2 by f , or deleted (included in X). Similarly, every vertex v in
B1 := NG(BW2 ) ∩ (V (G) \W ) needs to be either colored 1 by f , or deleted.
Consequently, the task of �nding the set X and the proper 2-coloring f
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that extends fW reduces to solving an Annotated Bipartite Coloring
instance (G−W,B1, B2, k).

By Lemma 4.15, this instance can be solved in O(k(n+m)) time and hence
the total running time for solving Disjoint Odd Cycle Transversal is
O(2k · k(n+m)). Thus we obtain the following lemma.

Lemma 4.16. Disjoint Odd Cycle Transversal can be solved in time
O(2k · k(n+m)).

Now Lemma 4.16, together with the iterative compression approach, yields
the following theorem.

Theorem 4.17. Odd Cycle Transversal is solvable in time O(3k ·kn(n+
m)).

Exercises

4.1 (l). Prove Lemma 4.3.

4.2. Prove Lemma 4.5.

4.3. Obtain an algorithm for 3-Hitting Set running in time 2.4656knO(1) using iterative
compression. Generalize this algorithm to obtain an algorithm for d-Hitting Set running
in time ((d− 1) + 0.4656)knO(1).

4.4. An undirected graph G is called perfect if for every induced subgraph H of G, the size
of the largest clique in H is the same as the chromatic number of H. We consider the Odd
Cycle Transversal problem, restricted to perfect graphs.

Recall that Exercise 2.34 asked for a kernel with O(k) vertices, whereas Exercise 3.6
asked for a 3knO(1)-time branching algorithm for this problem. Here we ask for a 2knO(1)-
time algorithm based on iterative compression.

4.5 (A). In the Cluster Vertex Deletion problem, we are given a graph G and an
integer k, and the task is to �nd a set X of at most k vertices of G such that G−X is a
cluster graph (a disjoint union of cliques). Using iterative compression, obtain an algorithm
for Cluster Vertex Deletion running in time 2knO(1).

4.6. A graph G is a split graph if V (G) can be partitioned into sets C and I, such that C
is a clique and I is an independent set. In the Split Vertex Deletion problem, given a
graph G and an integer k, the task is to check if one can delete at most k vertices from G

to obtain a split graph.
Recall that Exercise 3.20 asked for a 4knO(1)-time algorithm for this problem, via a

reduction to Vertex Cover Above Matching. Here we ask for a 2knO(1)-time algorithm
for this problem using iterative compression.

4.7 (A). A set X ⊆ V (G) of an undirected graph G is called an independent feedback
vertex set if G[X] is independent and G − X is acyclic. In the Independent Feedback
Vertex Set problem, we are given as input a graph G and a positive integer k, and the
objective is to test whether there exists in G an independent feedback vertex set of size
at most k. Show that Independent Feedback Vertex Set is in FPT by obtaining an
algorithm with running time 5knO(1).
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4.8. Obtain a polynomial kernel for Disjoint Feedback Vertex Set. Improve it to a
kernel with O(k) vertices.

4.9 (A). The Edge Bipartization problem is the edge-deletion variant of Odd Cycle
Transversal: one is given a graph G and an integer k, and the task is to remove at most
k edges from G in order to make G bipartite. Give a 2k · nO(1)-time algorithm for Edge
Bipartization using iterative compression.

In the next few exercises we study the Variable Deletion Almost 2-SAT problem:
given a Boolean formula ϕ in CNF, with every clause containing at most two literals, and
an integer k, the task is to delete at most k variables from ϕ to make it satis�able; a
variable is deleted together with all clauses containing it. It is sometimes useful to think
of deleting a variable as setting it to both true and false at once, so that it satis�es all the
clauses where it appears.

In Theorem 3.12 we have shown an FPT algorithm for this problem, by a reduction
to Vertex Cover Above Matching. Furthermore, Exercises 3.21 and 3.22 asked you
to prove that Variable Deletion Almost 2-SAT is equivalent to the (more standard)
clause-deletion variant called simply Almost 2-SAT, where we are allowed only to delete
k clauses. Here, we study relations between Odd Cycle Transversal and Variable
Deletion Almost 2-SAT, and develop a di�erent FPT algorithm for Variable Dele-
tion Almost 2-SAT, based on iterative compression.

4.10. Express a given Odd Cycle Transversal instance (G, k) as an instance (ϕ, k) of
Variable Deletion Almost 2-SAT.

4.11. Consider the following annotated variant of Variable Deletion Almost 2-SAT,
which we call Annotated Satisfiable Almost 2-SAT: Given a satis�able formula ϕ,
two sets of variables V > and V ⊥, and an integer k, the task is to check if there exists a set
X of at most k variables of ϕ and a satisfying assignment ψ of ϕ−X such that ψ(x) = >
for every x ∈ V > \ X and ψ(x) = ⊥ for every x ∈ V ⊥ \ X. Assuming that there exists
a cknO(1)-time FPT algorithm for Annotated Satisfiable Almost 2-SAT for some
constant c > 1, show that Variable Deletion Almost 2-SAT admits a (1 + 2c)knO(1)-
time algorithm.

4.12. Express a given Annotated Bipartite Coloring instance (G,B1, B2, k) as an
instance (ϕ, V >, V ⊥, k) of Annotated Satisfiable Almost 2-SAT.

4.13. Consider the following operation of �ipping a variable x in a Variable Deletion
Almost 2-SAT or an Annotated Satisfiable Almost 2-SAT instance: we replace
every literal x with ¬x and every literal ¬x with x. Furthermore, in the case of Annotated
Satisfiable Almost 2-SAT, if x ∈ V α for some α ∈ {>,⊥}, then we move x to V ¬α.

Using the �ipping operation, show that it su�ces to consider only Annotated Satis-
fiable Almost 2-SAT instances where an assignment that assigns false to every variable
satis�es the input formula ϕ. That is, there are no clauses of the form x ∨ y.
4.14 (A). Consider the following vertex-deletion variant of the Digraph Pair Cut prob-
lem with a sink: given a directed graph G, designated vertices s, t ∈ V (G), a family of pairs
of vertices F ⊆

(
V (G)

2

)
, and an integer k, check if there exists a set X ⊆ V (G)\{s, t} of size

at most k such that t is unreachable from s in G−X and every pair in F either contains
a vertex of X or contains a vertex that is unreachable from s in G−X. Exercise 8.19 asks
you to design a 2knO(1)-time algorithm for this problem.

1. Deduce from Exercise 4.13 that, when considering the Annotated Satisfiable Al-
most 2-SAT problem, one can consider only instances where all the clauses are of
the form x⇒ y or ¬x ∨ ¬y. (Remember unary clauses.)

2. Use this insight to design a 2knO(1)-time algorithm for Annotated Satisfiable
Almost 2-SAT, using the aforementioned algorithm of Exercise 8.19 as a subroutine.

3. Conclude that such a result, together with a solution to Exercise 4.11, gives a 5knO(1)-
time algorithm for Variable Deletion Almost 2-SAT.
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Hints

4.2 This problem is a standard example for dynamic programming. Let wp and wq be two
sequences, of length p and q, respectively. For every 0 ≤ i ≤ p and 0 ≤ j ≤ q, we de�ne
T [i, j] to be the length of the longest common subsequence of substrings wp[1, . . . , i] and
wq [1, . . . , j]. Then, T [i, j] equals the maximum of: T [i−1, j], T [i, j−1] and, if wp[i] = wq [j],
1 + T [i− 1, j − 1].

4.3 In the case of 3-Hitting Set, observe that the disjoint version of the problem is
essentially aVertex Cover instance, as every set of size 3 contains at least one undeletable
element. Then, use the algorithm of Theorem 3.2. In the general case, generalize this
observation: the disjoint version of the problem is also a d-Hitting Set instance, but
every set lost at least one element.

4.4 Reduce the disjoint version of the problem to a minimum vertex cover problem on an
auxiliary bipartite graph. Some insight from Exercise 4.3 may help you.

4.5 The exercise boils down to a task of showing that the disjoint version of the problem
is polynomial-time solvable.

First, observe that a graph is a cluster graph if and only if it does not have an induced
path on three vertices. In the disjoint version of the problem, given (G,S, k) such that
|S| = k + 1 and G − S is a cluster graph, we are looking for a solution of size at most k
such that it is disjoint from S.

� We can assume that the subgraph induced on S is a cluster graph. Why?
� What can you do if there is a vertex in V (G) \ S that is adjacent to two of the clusters

of G[S], the subgraph induced on S? Or a vertex in V (G) \ S that is adjacent to some,
but not all vertices of one of the clusters of G[S]?

� Now we can assume that every vertex in V (G)\S is either completely nonadjacent to S,
or completely adjacent to exactly one cluster of G[S]. Argue that the resulting problem
(of �nding a subset of vertices to be deleted from V (G) \S to make the resulting graph
a cluster graph) can be solved by using an algorithm for �nding a maximum matching
of minimum cost in a bipartite graph.

4.6 Again, the task reduces to showing that the disjoint version of the problem is
polynomial-time solvable.

The main observation is that a split graph on n vertices has at most n2 partitions of
the vertex set into the clique and independent set part: for a �xed one partition, at most
one vertex can be moved from the clique side to the independent one, and at most one
vertex can be moved in the opposite direction. (In fact one can show that it has at most
O(n) split partitions.) Hence, you can a�ord guessing the �correct� partition of both the
undeletable and the deletable part of the instance at hand.

4.7 In short, mimic the 3.619knO(1)-time algorithm for Feedback Vertex Set.
That is, design a 4knO(1)-time algorithm for the disjoint version of the problem in

the following manner. Assume we are given an instance (G,W, k) of the following disjoint
version of Independent Feedback Vertex Set: G−W is a forest, |W | = k+ 1, and we
seek an independent feedback vertex set X of G that is of size at most k and is disjoint
from W . Note that we do not insist that G[W ] be independent.

A tent is a vertex v /∈ W , of degree 2, with both neighbors in W . For an instance
I = (G,W, k), we let τ(I) be the number of tents, γ(I) be the number of connected
components of G[W ], and µ(I) = k + γ(I)− τ(I) be the potential of I. Proceed with the
following steps.

1. Adapt the reduction rules that deal with vertices of degree 1 and with vertices v /∈
W that have more than one incident edge connecting them to the same connected
component of G[W ].
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2. Design a reduction that deals with vertices v /∈ W of degree 2 that have exactly one
neighbor in W . Note that you cannot simply move them to W , due to the condition
of solutions being independent. Instead, proceed similarly as we did in the Feedback
Vertex Set algorithm for vertices of degree 3, with exactly two neighbors in W .

3. Finally, prove that the potential is positive on a yes-instance by adapting the proof of
Lemma 4.12.

4.9 To perform the iterative compression step, observe that picking one endpoint of every
edge of a solution to Edge Bipartization yields an odd cycle transversal of the graph. Use
this observation to reduce the problem to designing a compression routine for the following
task: you are given a graph G with an odd cycle transversal W of size k+ 1, and the task
is to �nd a solution to Edge Bipartization of size at most k, or to conclude that no such
solution exists. Branch into 2k+1 subproblems, guessing the right bipartition of W in the
bipartite graph after removing the edges of the solution. Then reduce verifying existence of
a solution in a branch to an auxiliary polynomial-time solvable cut problem, using similar
ideas as with sets C and R in the algorithm for Odd Cycle Transversal.

4.8 Apply the reduction rules given for the disjoint version of the problem. Argue that if
there are too many vertices (like kO(1) or O(k)) of degree at most 2 in the deletable part,
then the given instance is a no-instance. Else, use a standard tree-based argument to show
that the instance is small.

4.10 Treat every vertex as a variable. For every edge xy ∈ E(G), introduce clauses x∨y and
¬x ∨ ¬y. This concludes the construction of the formula ϕ. To show correctness, observe
that the clauses for an edge xy force x and y to attain di�erent values in a satisfying
assignment.

4.11 Using iterative compression, the task boils down to designing a (2c)knO(1)-time
algorithm for the disjoint version of Variable Deletion Almost 2-SAT. Thus, we have
an instance (ϕ,W, k), where W is a set of k + 1 variables from ϕ such that ϕ − W is
satis�able, and we seek a solution X to Variable Deletion Almost 2-SAT on (ϕ, k)

that is disjoint from W .
At the cost of 2k+1 subcases, we guess the values of variables of W in some satisfying

assignment of ϕ −X. Now, we can do the following cleaning: discard all clauses satis�ed
by the guessed assignment, and discard the current branch if there exists a clause with all
literals evaluated to false by the guessed assignment. Observe that every remaining clause
C = (`1∨`2) that contains a literal with a variable fromW (say, `1) satis�es the following:
`1 is evaluated to false by the guessed assignment, and the second literal `2 contains a
variable not in W . For every such clause C, we put the variable of `2 into V > if `2 is a
positive literal, and otherwise we put the variable of `2 into V ⊥. Argue that it remains to
solve an Annotated Satisfiable Almost 2-SAT instance (ϕ−W,V >, V ⊥, k).

4.12 Proceed as in Exercise 4.10.

4.14 The �rst and the last point are straightforward. Here we elaborate on the second
point.

We express the task of solving the input instance (ϕ, V >, V ⊥, k) of Annotated Sat-
isfiable Almost 2-SAT as a vertex-deletion Digraph Pair Cut with a sink instance
(G, s, t,F , k) as follows.

1. Start with vertices s and t.
2. For every variable x, introduce a single vertex x.
3. For every clause x⇒ y (i.e., ¬x ∨ y), introduce an edge (x, y).
4. For every clause ¬x ∨ ¬y, introduce a pair {x, y} to the family F .
5. For every vertex y ∈ V >, we introduce an edge (s, y).
6. For every vertex y ∈ V ⊥, we introduce an edge (y, t).
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Argue that solutions to the aforementioned node-deletion Digraph Pair Cut instance
(G, s,F , k) are in one-to-one correspondence with the solutions to the original instance of
Annotated Satisfiable Almost 2-SAT. The intuition is that the nodes x reachable
from s after the solution is removed correspond to the variables that are set to true in a
satisfying assignment.
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Chapter 5

Randomized methods in parameterized
algorithms

In this chapter, we study how the powerful paradigm
of randomization can help in designing FPT algo-
rithms. We introduce the general techniques of color
coding, divide and color, and chromatic coding, and
show the use of these techniques on the problems
Longest Path and d-Clustering. We discuss also
how these randomized algorithms can be derandomized
using standard techniques.

We give a few commonly used approaches to design randomized FPT al-
gorithms.

In Section 5.1, we start with a simple example of an algorithm for Feed-
back Vertex Set. Here, we essentially observe that, after applying a few
easy reduction rules, a large fraction of the edges of the graph needs to be
adjacent to the solution vertices � and, consequently, taking into the solu-
tion a randomly chosen endpoint of a randomly chosen edge leads to a good
success probability.

Then, in Section 5.2, we move to the very successful technique of color
coding, where one randomly colors a universe (e.g., the vertex set of the in-
put graph) with a carefully chosen number of colors and argue that, with
su�cient probability, a solution we are looking for is somehow �properly col-
ored�. The problem-dependant notion of �properly colored� helps us resolve
the problem if we only look for properly colored solutions. For resolving the
colored version of the problem, we use basic tools learned in the previous
chapters, such as bounded search trees. In this section we start with the clas-
sic example of a color coding algorithm for Longest Path. Then, we show
how a random partition (i.e., a random coloring with two colors) can be used
to highlight a solution, using an example of the Subgraph Isomorphism
problem in bounded degree graphs. Moreover, we present the so-called divide
and color technique for Longest Path, where a recursive random partition-
ing scheme allows us to obtain a better running time than the simple color
coding approach. We conclude this section with a more advanced example of
a chromatic coding approach for d-Clustering.

99
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Finally, in Section 5.6, we brie�y discuss the methods of derandomizing
algorithms based on color coding. We recall the necessary results on con-
structing pseudorandom objects such as splitters, perfect hash families, uni-
versal sets and small k-wise independent sample spaces, and show how to
replace the random coloring step of (variants of) the color coding approach
by iterating over a carefully chosen pseudorandom object.

Let us brie�y recall the principles of randomization in algorithms. We
assume that the algorithm is given access, apart from the input, to a stream
of random bits. If the algorithm reads at most r random bits on the given
input, then the probability space is the set of all 2r possible strings of random
bits read by the algorithm, with uniform probability distribution (i.e., each
bit is chosen independently and uniformly at random). Whenever we say
that �an algorithm does X with probability at least/at most p�, we mean the
probability measured in this probability space.

Consider an algorithm for a decision problem which given a no-instance
always returns �no,� and given a yes-instance returns �yes� with probability
p ∈ (0, 1). Such an algorithm is called a one-sided error Monte Carlo algorithm
with false negatives.

Sometimes we would like to improve the success probability p, especially
in our applications where we often have bounds like p = 1/2O(k), or, more
generally, p = 1/f(k) for some computable function f . It is not di�cult to
see that we can improve the success probability at the price of worse running
time. Namely, we get a new algorithm by repeating the original algorithm t
times and returning �no� only if the original algorithm returned �no� in each of
the t repetitions. Clearly, given a no-instance the new algorithm still returns
�no.� However, given a yes-instance, it returns �no� only if all t repetitions
returned an incorrect �no� answer, which has probability at most

(1− p)t ≤ (e−p)t = 1/ept,

where we used the well-known inequality 1 + x ≤ ex. It follows that the new
success probability is at least 1− 1/ept. Note that in particular it su�ces to
put t = d 1pe to get constant success probability.1

If a one-sided error Monte Carlo algorithm has success probability at
least p, then repeating it independently d 1pe times gives constant success

probability. In particular, if p = 1/f(k) for some computable function
f , then we get an FPT one-sided error Monte Carlo algorithm with
additional f(k) overhead in the running time bound.

1 In this chapter, by �constant success probability� or �constant error probability� we mean
that the success probability of an algorithm is lower bounded by a positive universal con-
stant (or, equivalently, the error probability is upper bounded by some universal constant
strictly smaller than 1).
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In the area of polynomial-time algorithms, quite often we develop an algo-
rithm that does something useful (e.g., solves the problem) with probability at
least p, where 1/p is bounded polynomially in the input size. If this is the case,
then we can repeat the algorithm a polynomial number of times, obtaining
a constant error probability. In the FPT world, the same principle applies;
however, now the threshold of �useful probability� becomes 1/(f(k)nO(1)).
That is, if we develop an algorithm that runs in FPT time and solves the
problem with probability at least 1/(f(k)nO(1)), then repeating the algorithm
f(k)nO(1) times gives us constant error probability, while still maintaining
an FPT running time bound. This is the goal of most of the algorithms in
this chapter.

5.1 A simple randomized algorithm for Feedback
Vertex Set

In this section, we design a simple randomized algorithm for Feedback Ver-
tex Set. As discussed in Section 3.3, when tackling with Feedback Ver-
tex Set, it is more convenient to work with multigraphs, not only simple
graphs. Recall that both a double edge and a loop are cycles, and we use the
convention that a loop at a vertex v contributes 2 to the degree of v.

The following crucial lemma observes that, once we apply to the input
instance basic reduction rules that deal with low-degree vertices, many edges
of the graph are incident to the solution vertices.

Lemma 5.1. Let G be a multigraph on n vertices, with minimum degree at
least 3. Then, for every feedback vertex set X of G, more than half of the
edges of G have at least one endpoint in X.

Proof. Let H = G − X. Since every edge in E(G) \ E(H) is incident to a
vertex in X, the claim of the lemma is equivalent to |E(G)\E(H)| > |E(H)|.
However, since H is a forest, |V (H)| > |E(H)| and it su�ces to show that
|E(G) \ E(H)| > |V (H)|.

Let J denote the set of edges with one endpoint in X and the other in
V (H). Let V≤1, V2 and V≥3 denote the set of vertices in V (H) such that they
have degree at most 1, exactly 2, and at least 3 in H, respectively. (Note that
we use here the degree of a vertex in the forest H, not in the input graph G.)
Since G has minimum degree at least 3, every vertex in V≤1 contributes at
least two distinct edges to J . Similarly, each vertex in V2 contributes at least
one edge to J . As H is a forest, we have also that |V≥3| < |V≤1|. Putting all
these bounds together, we obtain:
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|E(G) \ E(H)| ≥ |J |
≥ 2|V≤1|+ |V2| > |V≤1|+ |V2|+ |V≥3|
= |V (H)|.

This concludes the proof of the lemma. ut

Recall that in Section 3.3, we have developed the simple reduction rules
FVS.1�FVS.5 that reduce all vertices of degree at most 2 in the input graph.
Lemma 5.1 says that, once such a reduction has been performed, a majority
of the edges have at least one endpoint in a solution. Hence, if we pick an edge
uniformly at random, and then independently pick its random endpoint, with
probability at least 1/4 we would pick a vertex from the solution. By iterating
this process, we obtain an algorithm that solves the input Feedback Vertex
Set instance in polynomial time, with probability at least 4−k.

Theorem 5.2. There exists a polynomial-time randomized algorithm that,
given a Feedback Vertex Set instance (G, k), either reports a failure or
�nds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with probability at least 4−k.

Proof. We describe the algorithm as a recursive procedure that, given a graph
G and an integer k, aims at a feedback vertex set of G of size at most k.

We �rst apply exhaustively Reductions FVS.1�FVS.5 to the Feedback
Vertex Set instance (G, k). If the reductions conclude that we are dealing
with a no-instance, then we report a failure. Otherwise, let (G′, k′) be the
reduced instance. Note that 0 ≤ k′ ≤ k and G′ has minimum degree at least
3. Let X0 be the set of vertices deleted due to Reduction FVS.1. Note that
the vertices of X0 have been quali�ed as mandatory vertices for a feedback
vertex set in G, that is, there exists a feedback vertex set in G of minimum
possible size that contains X0, and for any feedback vertex set X ′ of G′,
X ′ ∪X0 is a feedback vertex set of G. Moreover, |X0| = k − k′.

If G′ is an empty graph, then we return X0; note that in this case |X0| ≤ k
as k′ ≥ 0, andX0 is a feedback vertex set ofG. Otherwise, we pick an edge e of
G′ uniformly at random (i.e., each edge is chosen with probability 1/|E(G′)|),
and choose one endpoint of e independently and uniformly at random. Let v
be the chosen endpoint. We recurse on (G′ − v, k′ − 1). If the recursive step
returns a failure, then we return a failure as well. If the recursive step returns
a feedback vertex set X ′, then we return X := X ′ ∪ {v} ∪X0.

Note that in the second case the set X ′ is a feedback vertex set of G′−v of
size at most k′− 1. First, observe that the size bound on X ′ implies |X| ≤ k.
Second, we infer thatX ′∪{v} is a feedback vertex set of G′ and, consequently,
X is a feedback vertex set of G. Hence, the algorithm always reports a failure
or returns a feedback vertex set of G of size at most k. It remains to argue
about the probability bound; we prove it by induction on k.

Assume that there exists a feedback vertex set X of G of size at most
k. By the analysis of the reduction rules of Section 3.3, Reduction FVS.5 is
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not triggered, the instance (G′, k′) is computed and there exists a feedback
vertex set X ′ of G′ of size at most k′. If G′ is empty, then the algorithm
returns X0 deterministically. Otherwise, since G′ has minimum degree at
least 3, Lemma 5.1 implies that, with probability larger than 1/2, the edge e
has at least one endpoint in X ′. Consequently, with probability larger than
1/4, the chosen vertex v belongs to X ′, and X ′ \ {v} is a feedback vertex
set of size at most k′ − 1 in the graph G′ − v. By the inductive hypothesis,
the recursive call �nds a feedback vertex set of G′ − v of size at most k′ − 1
(not necessarily the set X ′ \ {v}) with probability at least 4−(k

′−1). Hence, a
feedback vertex set of G of size at most k is found with probability at least
1
4 ·4−(k

′−1) = 4−k
′ ≥ 4−k. This concludes the inductive step, and �nishes the

proof of the theorem. ut

As discussed at the beginning of this section, we can repeat the algorithm
of Theorem 5.2 independently 4k times to obtain a constant error probability.

Corollary 5.3. There exists a randomized algorithm that, given a Feed-
back Vertex Set instance (G, k), in time 4knO(1) either reports a failure
or �nds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with a constant probability.

5.2 Color coding

The technique of color coding was introduced by Alon, Yuster and Zwick to
handle the problem of detecting a small subgraph in a large input graph. More
formally, given a k-vertex �pattern� graph H and an n-vertex input graph G,
the goal is to �nd a subgraph of G isomorphic to H. A brute-force approach
solves this problem in time roughly O(nk); the color coding technique ap-
proach allows us to obtain an FPT running time bound of 2O(k)nO(1) in the
case when H is a forest or, more generally, when H is of constant treewidth
(for more on treewidth, we refer you to Chapter 7). We remark here that, as
we discuss in Chapter 13, such an improvement is most likely not possible in
general, as the case of H being a k-vertex clique is conjectured to be hard.

The idea behind the color coding technique is to randomly color the entire
graph with a set of colors with the number of colors chosen in a way that,
if the smaller graph does exist in this graph as a subgraph, then with high
probability it will be colored in a way that we can �nd it e�ciently. In what
follows we mostly focus on a simplest, but very instructive case of H being a
k-vertex path.

We remark that most algorithms based on the color coding technique can
be derandomized using splitters and similar pseudorandom objects. We dis-
cuss these methods in Section 5.6.
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5.2.1 A color coding algorithm for Longest Path

In the Longest Path problem, we are given a graph G and a positive integer
k as input, and the objective is to test whether there exists a simple path on
k vertices in the graph G. Note that this corresponds to the aforementioned
�pattern� graph search problem withH being a path on k vertices (henceforth
called a k-path for brevity).

Observe that �nding a walk on k vertices in a directed graph is a simple
task; the hardness of the Longest Path problem lies in the requirement that
we look for a simple path. A direct approach involves keeping track of the
vertices already visited, requiring an

(
n
k

)
factor in the running time bound.

The color coding technique is exactly the trick to avoid such a dependency.

Color the vertices uniformly at random from {1, . . . , k}, and �nd a path
on k vertices, if it exists, whose all colors are pairwise distinct.

The essence of the color coding technique is the observation that, if we
color some universe with k colors uniformly at random, then a given k-element
subset is colored with distinct colors with su�cient probability.

Lemma 5.4. Let U be a set of size n, and let X ⊆ U be a subset of size
k. Let χ : U → [k] be a coloring of the elements of U , chosen uniformly at
random (i.e., each element of U is colored with one of k colors uniformly and
independently at random). Then the probability that the elements of X are
colored with pairwise distinct colors is at least e−k.

Proof. There are kn possible colorings χ, and k!kn−k of them are injective
on X. The lemma follows from the well-known inequality k! > (k/e)k. ut

Hence, the color coding step reduces the case of �nding a k-path in a graph
to �nding a colorful k-path in a vertex-colored graph. (In what follows, a path
is called colorful if all vertices of the path are colored with pairwise distinct
colors.) Observe that this step replaces the

(
n
k

)
factor, needed to keep track

of the used vertices in a brute-force approach, with a much better 2k factor,
needed to keep track of used colors. As the next lemma shows, in the case of
�nding a colorful path, the algorithm is relatively simple.

Lemma 5.5. Let G be a directed or an undirected graph, and let χ : V (G)→
[k] be a coloring of its vertices with k colors. There exists a deterministic
algorithm that checks in time 2knO(1) whether G contains a colorful path on
k vertices and, if this is the case, returns one such path.

Proof. Let V1, . . . , Vk be a partitioning of V (G) such that all vertices in Vi
are colored i. We apply dynamic programming: for a nonempty subset S of
{1, . . . , k} and a vertex u ∈ ⋃i∈S Vi, we de�ne the Boolean value PATH(S, u)
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to be equal to true if there is a colorful path with vertices colored with all
colors from S and with an endpoint in u. For |S| = 1, note that PATH(S, u)
is true for any u ∈ V (G) if and only if S = {χ(u)}. For |S| > 1, the following
recurrence holds:

PATH(S, u) =

{∨{PATH(S \ {χ(u)}, v) : uv ∈ E(G)} if χ(u) ∈ S
False otherwise.

Indeed, if there is a colorful path ending at u using all colors from S, then
there has to be colorful path ending at a neighbor v of u and using all colors
from S \ {χ(u)}.

Clearly, all values of PATH can be computed in time 2knO(1) by applying
the above recurrence, and, moreover, there exists a colorful k-path in G if
and only if PATH([k], v) is true for some vertex v ∈ V (G). Furthermore, a
colorful path can be retrieved using the standard technique of backlinks in
dynamic programming. ut

We now combine Lemmas 5.4 and 5.5 to obtain the main result of this
section.

Theorem 5.6. There exists a randomized algorithm that, given a Longest
Path instance (G, k), in time (2e)knO(1) either reports a failure or �nds a
path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

Proof. We show an algorithm that runs in time 2knO(1), and, given a yes-
instance, returns a solution with probability at least e−k. Clearly, by repeat-
ing the algorithm independently ek times, we obtain the running time bound
and success probability guarantee promised by the theorem statement.

Given an input instance (G, k), we uniformly at random color the vertices
of V (G) with colors [k]. That is, every vertex is colored independently with
one color from the set [k] with uniform probability. Denote the obtained
coloring by χ : V (G) → [k]. We run the algorithm of Lemma 5.5 on the
graph G with coloring χ. If it returns a colorful path, then we return this
path as a simple path in G. Otherwise, we report failure.

Clearly, any path returned by the algorithm is a k-path in G. It remains
to bound the probability of �nding a path in the case (G, k) is a yes-instance.

To this end, suppose G has a path P on k vertices. By Lemma 5.4, P
becomes a colorful path in the coloring χ with probability at least e−k. If this
is the case, the algorithm of Lemma 5.5 �nds a colorful path (not necessarily
P itself), and the algorithm returns a k-path in G. This concludes the proof
of the theorem. ut
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5.3 Random separation

In this section we give a variant of the color coding technique that is par-
ticularly useful in designing parameterized algorithms on graphs of bounded
degree. The technique, usually called random separation in the literature,
boils down to a simple but fruitful observation that in some cases if we ran-
domly partition the vertex or edge set of a graph into two sets, the solution
we are looking for gets highlighted with good probability.

We illustrate the method on the Subgraph Isomorphism problem, where
we are given an n-vertex graph G and a k-vertex graph H, and the objective
is to test whether there exists a subgraph Ĥ of G such that H is isomorphic
to Ĥ. Observe that Longest Path is a special case of Subgraph Isomor-
phism where H is a path on k vertices. Exercise 5.2 asks you to generalize
the color coding approach for Longest Path to Tree Subgraph Isomor-
phism, where H is restricted to being a tree, whereas Exercise 7.48 takes
this generalization further, and assumes H has bounded treewidth (the no-
tion of treewidth, which measures resemblance of a graph to a tree, is the
topic of Chapter 7). Also, observe that the Clique problem is a special case
of Subgraph Isomorphism, where H is a clique on k vertices. It is be-
lieved that Clique is not FPT (see Chapter 13), and, consequently, we do
not expect that the general Subgraph Isomorphism problem is FPT when
parameterized by k.

In this section we restrict ourselves to graphs of bounded degree, and show
that if the degree of G is bounded by d, then Subgraph Isomorphism can be
solved in time f(d, k)nO(1) for some computable function f . In other words,
Subgraph Isomorphism is FPT when parameterized by both k and d.

The idea of random separation is to color edges (vertices) randomly
such that the edges (vertices) of the solution are colored with one color
and the edges (vertices) that are adjacent to edges (vertices) of the
solution subgraph get colored with a di�erent color. That is, we separate
the solution subgraph from its neighboring edges and vertices using a
random coloring.

In Subgraph Isomorphism, if we perform a successful coloring step,
then every connected component of the pattern graph H corresponds
to one connected component of the subgraph induced by the �rst color
in the colored graph G.

Let us now focus on the Subgraph Isomorphism problem. We �rst do
a sanity test and check whether the maximum degree of H is at most d; if
this is not the case, then we immediately report that the given instance is a
no-instance. Let us color independently every edge of G in one of two colors,
say red and blue (denoted by R and B), with probability 1

2 each. Denote
the obtained random coloring by χ : E(G) → {R,B}. Suppose that (G,H)
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is a yes-instance. That is, there exists a subgraph Ĥ in G such that H is
isomorphic to Ĥ.

Let Γ denote the set of edges that are incident to some vertex of V (Ĥ),

but do not belong to E(Ĥ). We say that a coloring χ is successful if both the
following two conditions hold:

1. every edge of E(Ĥ) is colored red, that is, E(Ĥ) ⊆ χ−1(R); and
2. every edge of Γ is colored blue, that is, Γ ⊆ χ−1(B).

Observe that E(Ĥ) and Γ are disjoint. Thus, the two aforementioned condi-

tions are independent. Furthermore, since every edge of E(Ĥ)∪Γ is incident

to a vertex of V (Ĥ), |V (Ĥ)| = |V (H)| = k, and the maximum degree of G
is at most d, we obtain

|E(Ĥ)|+ |Γ | ≤ d|V (Ĥ)| ≤ dk.

Consequently, the probability that χ is successful is at least

1

2|E(Ĥ)|+|Γ |
≥ 1

2dk
.

Let GR be the subgraph of G containing only those edges that have been
colored red, that is, GR = (V (G), χ−1(R)). The core observation now is as

follows: if χ is successful, then Ĥ is a subgraph of GR as well and, moreover,
Ĥ consists of a number of connected components of GR.

For simplicity assume �rst that H is connected. Thus, if χ is successful,
then Ĥ is a connected component of GR. Consequently, we can go over all
connected components C of GR with exactly k vertices and test if C is iso-
morphic toH. Such a single test can be done by brute force in time k!kO(1), or
we can use a more involved algorithm for Graph Isomorphism on bounded
degree graphs that runs in time kO(d log d) on k-vertex graphs of maximum
degree d.

Let us now consider the general case when H is not necessarily connected.
Let H1, H2, . . . ,Hp be the connected components of H, and let C1, C2, . . . , Cr
be the connected components of GR. We construct an auxiliary bipartite
graph B(H,GR), where every vertex corresponds to a connected component
Hi or a connected component Cj , andHi is adjacent to Cj if they have at most
k vertices each and are isomorphic. Observe that the graph B(H,GR) can
be constructed in time k!nO(1) or in time kO(d log d)nO(1), depending on the
Graph Isomorphism algorithm we use, and the subgraph Ĥ isomorphic to
H corresponds to a matching in B(H,GR) that saturates {H1, H2, . . . ,Hp}.
(Note that every component of B(H,GR) is a complete bipartite graph, so
the matching can be found using a trivial algorithm.) Consequently, we can
check if there is a subgraph of GR isomorphic to H that consists of a number
of connected components of GR in time k!nO(1) or in time kO(d log d)nO(1).
This completes the description the algorithm.
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We have proved that the probability that χ is successful is at least 2−dk.
Hence, to obtain a Monte Carlo algorithm with false negatives we repeat the
above procedure 2dk times, and obtain the following result:

Theorem 5.7. There exist Monte Carlo algorithms with false negatives that
solve the input Subgraph Isomorphism instance (G,H) in time 2dkk!nO(1)

and in time 2dkkO(d log d)nO(1). Here, |V (G)| = n, |V (H)| = k, and the max-
imum degree of G is bounded by d.

*5.4 A divide and color algorithm for Longest Path

We now improve the running time bound of the algorithm for Longest
Path, by using a di�erent choice of coloring. The idea is inspired by the
�divide and conquer� approach: one of the basic algorithmic techniques to
design polynomial-time algorithms. In other words, we will see a technique
that is an amalgamation of divide and conquer and color coding. Recall that
for color coding we used k colors to make the subgraph we are seeking colorful.
A natural question is: Do we always need k colors, or in some cases can we
reduce the number of colors and hence the randomness used in the algorithm?
Some problems can naturally be decomposed into disjoint pieces and solutions
to individual pieces can be combined together to get the complete solution.
The idea of divide and color is to use randomization to separate the pieces.
For example, in the case of graph problems, we will randomly partition all
vertices (or edges) of a graph into the left and the right side, and show that
the structure we were looking for has been conveniently split between the
sides. We solve the problem recursively on a graph induced on left and right
sides separately and then combine them to get the structure we are searching
for.

Thus, the work�ow of the algorithm is a bit di�erent from the one in the
previous color coding example. We perform the partition step at every node
of the recursion tree, solving recursively the same problem in subinstances.
The leaves of the recursion tree correspond to trivial instances with k = O(1),
where no involved work is needed. On the other hand, the work needed to
glue the information obtained from subinstances to obtain a solution for the
current instance can be seen as a variant of dynamic programming.

The basic idea of the divide and color technique for the Longest Path
problem is to randomly assign each vertex of the graph G to either a set
L (left) or another set R (right) with equal probability and thus obtain
a partitioning of the vertices of the input graph. By doing this, we hope
that there is a k-path P such that the �rst dk2 e vertices of P are in L

and the last bk2 c vertices of P are in R. Observe that for a �xed k-path
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Simple-Randomized-Paths(X, `)
Input: A subset X ⊆ V (G) and an integer `, 1 ≤ ` ≤ k
Output: D̂X,`

1. If ` = 1, then return D̂X,`[v, v] = > for all v ∈ X, ⊥ otherwise.
2. Uniformly at random partition X into L and R.
3. D̂

L,d `
2
e:=Simple-Randomized-Paths(L, d

`
2
e)

4. D̂
R,b `

2
c:=Simple-Randomized-Paths(R, b

`
2
c)

5. Return D̂X,` := D̂
L,d `

2
e ./ D̂R,b `

2
c

Fig. 5.1: A simple algorithm to �nd a path on k vertices

this happens with probability exactly 2−k. After the partitioning we
recurse on the two induced graphs G[L] and G[R].

However, the naive implementation of this scheme gives a success proba-
bility worse than 2−O(k), and hence cannot be used to obtain an algorithm
with running time 2O(k)nO(1) and constant success probability. We need two
additional ideas to make this scheme work. First, we need to de�ne the recur-
sion step in a way that it considers all possible pairs of endpoints for the path.
We present �rst an algorithm implementing this idea. Then we improve the
algorithm further by observing that we can do better than selecting a single
random partition in each recursion step and then repeating the whole al-
gorithm several times to increase the probability of success. Instead, in each
recursive step, we create several random partitions and make several recursive
calls.

In order to combine the subpaths obtained from G[L] and G[R], we need
more information than just one k-vertex path from each side. For a given
subset X ⊆ V (G), a number ` ∈ {1, . . . , k} and a pair of vertices u and v
of X let DX,`[u, v] denote a Boolean value equal to true if and only if there
exists an `-vertex path from u to v in G[X]. Note that for a �xed subset X,
we can consider DX,` as an |X| × |X| matrix. In what follows, we describe a

procedure Simple-Randomized-Paths(X, `) that computes a matrix D̂X,`.

The relation between D̂X,` and DX,` is the following. If D̂X,`[u, v] is true
for some u, v ∈ X, then so is DX,`[u, v]. The crux of the method will be in

ensuring that if DX,`[u, v] is true for some �xed u and v, then D̂X,`[u, v] is
also true with su�ciently high probability. Thus, we will get a one-sided error
Monte Carlo algorithm.

Given a partition (L,R) of X, an |L| × |L| matrix A, and an |R| × |R|
matrix B, we de�ne A ./ B as an |X|× |X| Boolean matrix D. For every pair
of vertices u, v ∈ X we have D[u, v] equal to true if and only if u ∈ L, v ∈ R
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and there is an edge xy ∈ E(G[X]) such that x ∈ L, y ∈ R and both A[u, x]
and B[y, v] are set to true. Then, (DL,d `2 e ./ DR,b `2 c)[u, v] is true if and only if

there exists an `-path P in G[X] from u to v, whose �rst d `2e vertices belong
to L and the remaining b `2c vertices belong to R. In particular, (DL,d `2 e ./
DR,b `2 c)[u, v] implies DX,`[u, v]. The main observation is that if DX,`[u, v]

is true, then one can hope that the random choice of L and R partitions
the vertices of the path P correctly, i.e., so that (DL,d `2 e ./ DR,b `2 c)[u, v]

is also true with some su�ciently large probability. Thus, we compute the
matrices D̂L,d `2 e and D̂R,b `2 c recursively by invoking Simple-Randomized-

Paths(L, d `2e) and Simple-Randomized-Paths(R, b `2c), respectively, and
then return D̂X,` := D̂L,d `2 e ./ D̂R,b `2 c. For the base case in this recurrence,

we take ` = 1 and compute D̂X,1 = DX,1 directly from the de�nition.
Let us analyze the probability that, if DX,`[u, v] is true for some u, v ∈

V (G), then D̂X,`[u, v] is also true. For �xed `, by p` denote the in�nimum of
this probability for all graphs G, all sets X ⊆ V (G), and all vertices u, v ∈ X.

If ` = 1, then D̂X,` = DX,` and, consequently, p1 = 1. Otherwise, let P be
any `-path in G[X] with endpoints u and v; we now analyze how the path P
can be �detected� by the algorithm. Let x be the d `2e-th vertex on P (counting
from u), and let y be the successor of x on P . Moreover, let PL be the subpath
of P between u and x, inclusive, and let PR be the subpath of P between y
and v, inclusive. Note that, PL has d `2e vertices, PR has b `2c vertices and, as
` > 1, b `2c ≤ d `2e < `.

Observe that, with probability 2−`, all vertices of PL are assigned to L
and all vertices of PR are assigned to R. Moreover, if this is the case, then
both DL,d `2 e[u, x] and DR,b `2 e[y, v] are true, with the paths PL and PR being

the respective witnesses. Consequently, D̂L,d `2 e[u, x] and D̂R,b `2 e[y, v] are both

true with probability at least pd `2 epb `2 c. If this is the case, D̂X,`[u, v] is set

to true by the de�nition of the ./ product. Hence, we obtain the following
recursive bound:

p` ≥ 2−`pd `2 epb `2 c. (5.1)

By solving the recurrence (5.1), we obtain p` = 2−O(` log `). To see this,
observe that, in the search for the path P for the value DX,`[u, v], there
are ` − 1 partitions that the algorithm Simple-Randomized-Paths needs
to �nd correctly: one partition of all ` vertices, two partitions of roughly
`/2 vertices, four partitions of roughly `/4 vertices, etc. That is, for each
i = 0, 1, . . . , blog `c−1, the algorithm needs to make, roughly 2i times, a cor-
rect partition of roughly k/2i vertices. Consequently, the success probability
of the algorithm is given by

p` ∼
log `−1∏
i=0

(
1

2`/2i

)2i

= 2−O(` log `).
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Faster-Randomized-Paths(X, `)
Input: A subset X ⊆ V (G) and an integer `, 1 ≤ ` ≤ k
Output: DX,`

1. If ` = 1, then return DX,`[v, v] = > for all v ∈ X, ⊥ otherwise.

2. Set D̂X,`[u, v] to false for any u, v ∈ X.
3. Repeat the following 2` log(4k) times

(a)Uniformly at random partition X into L and R.
(b)D̂

L,d `
2
e:=Faster-Randomized-Paths(L, d

`
2
e)

(c) D̂
R,b `

2
c:=Faster-Randomized-Paths(R, b

`
2
c)

(d)Compute D̂′X,` := D̂
L,d `

2
e ./ D̂R,b `

2
c and update

D̂X,`[u, v] := D̂X,`[u, v] ∨ D̂′X,`[u, v] for every u, v ∈ V (G).

4. Return D̂X,`.

Fig. 5.2: A faster algorithm to �nd a path on k-vertices

Thus, to achieve a constant success probability, we need to run the algorithm
Simple-Randomized-Paths(V (G), k) 2O(k log k) number of times, obtaining
a signi�cantly worse running time bound than the one of Theorem 5.6.

Let us now try to improve the running time of our algorithm. The main
idea is that instead of repeating the entire process 2O(k log k) times, we split
the repetitions between the recursive calls. More precisely, we choose some
function f(`, k) and, in each recursive call, we try not only one random parti-
tion of V (G) into L and R, but f(`, k) partitions, each chosen independently
at random. Recall that ` denotes the argument of the recursive call (the
length of paths we are currently looking for), whereas k denotes the argu-
ment of the root call to Faster-Randomized-Paths (the length of a path
we are looking for in the entire algorithm). In this manner, we increase the
running time of the algorithm, but at the same time we increase the success
probability. Let us now analyze what function f(`, k) guarantees constant
success probability.

Recall that a �xed partition of the vertices into L and R suits our needs
for recursion (i.e., correctly partitions the vertex set of one �xed `-path) with
probability 2−`. Hence, if we try f(`, k) partitions chosen independently at
random, the probability that none of the f(`, k) partitions suits our needs is
at most (

1− 1

2`

)f(`,k)
. (5.2)

Fix a k-vertex path P witnessing that DV (G),k[u, v] is true for some �xed
u, v ∈ V (G). The main observation is that, although the entire recursion tree
is huge � as we shall later see, it will be of size roughly 4k � we do not need
to be successful in all nodes of the recursion tree. First, we need to guess
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correctly at least one partition in the root node of the recursion tree. Then,
we may limit ourselves to the two recursive calls made for that one particular
correct partition at the root node, and insist that in these two recursive calls
we guess at least one correct partition of the corresponding subpaths of length
dk/2e and bk/2c. If we proceed with such a reasoning up to the leaves of the
recursion, we infer that we need to guess correctly at least one partition at
exactly k − 1 nodes. Consequently, we obtain constant success probability if
the value of the expression (5.2) is at most 1

2(k−1) for every 1 ≤ ` ≤ k. To

achieve this bound, observe that we can choose f(`, k) = 2` log(4k). Indeed,
since 1 + x ≤ ex for every real x,(

1− 1

2`

)2` log(4k)

≤
(
e−

1

2`

)2` log(4k)
=

1

elog(4k)
≤ 1

2k
.

Since the probability space in the algorithm is quite complex, some readers
may �nd the argumentation in the previous paragraph too informal. For sake
of completeness, we provide a formal argumentation in the next lemma.

Lemma 5.8. If (G, k) is a yes-instance and f(`, k) = 2` log(4k) (i.e., the
value of the expression (5.2) is at most 1

2(k−1) for every 1 ≤ ` ≤ k), then

with probability at least 1
2 there exists a pair of vertices u, v ∈ V (G) with

D̂V (G),k[u, v] equal to true.

Proof. Consider a set X ⊆ V (G), vertices u, v ∈ V (G), an integer 1 ≤ ` ≤ k,
and an `-vertex path P in G[X] with endpoints u and v. Clearly, P witnesses
that DX,`[u, v] = 1. Let pk` denote the in�nimum, for �xed k and `, over
all choices of G, X, u, and v such that DX,`[u, v] = 1, of the probability
that a call to Faster-Randomized-Paths(X, `) on instance (G, k) returns

D̂X,`[u, v] = 1. Let s = 1
2(k−1) . We prove by induction on ` that for every

1 ≤ ` ≤ k we have pk` ≥ 1− (`− 1)s; note that the lemma follows from such

a claim for ` = k. In the base case, observe that pk1 = 1 as D̂X,1 = DX,1 for
every X ⊆ V (G).

For the induction step, consider a path P in G[X], with ` > 1 vertices
and endpoints u and v. Observe that at the call Faster-Randomized-
Paths(X, `) to set D̂X,`[u, v] = 1 it su�ces to (a) at least once guess a
correct partition for the path P ; and (b) for the �rst such correct partition

(L,R) compute D̂L,d`/2e[u, x] = 1 and D̂R,b`/2c[y, v] = 1, where x is the

d `2e-th vertex on P (counting from u), and y is the successor of x on P .
Consequently,

pk` ≥ (1− s)pkd`/2epkb`/2c
≥ (1− s) · (1− (d`/2e − 1)s) · (1− (b`/2c − 1)s)

≥ 1− s− (d`/2e − 1)s− (b`/2c − 1)s

= 1− (`− 1)s.
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Here, the second inequality follows from the inductive assumption, as ` > 1
implies b`/2c ≤ d`/2e < `. ut

For ease of presentation, the modi�ed algorithm with improved error prob-
ability is given on Fig. 5.2.

Let us now analyze the running time of the algorithm: due to the choice
of f(`, k) = 2` log(4k), it is no longer polynomial. We have the following
recursive formula:

T (n, `, k) ≤ 2`log(4k)

(
T

(
n,

⌈
`

2

⌉
, k

)
+ T

(
n,

⌊
`

2

⌋
, k

))
+ nO(1). (5.3)

This solves to T (n, `, k) = 4`+o(`+k)nO(1), and we obtain the following im-
provement upon Theorem 5.6.

Theorem 5.9. There exists a randomized algorithm that, given a Longest
Path instance (G, k), in time 4k+o(k)nO(1) either reports a failure or �nds a
path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

5.5 A chromatic coding algorithm for d-Clustering

We now move our attention to edge modi�cation problems, where we are to
modify the input graph G by adding or deleting a small number of edges to
obtain a desired property (i.e., make a graph belong to a prescribed graph
class). The idea of chromatic coding (or color and conquer, as it is sometimes
referred to in the literature) is to randomly color the vertices of the input
graph, with the hope that for every edge uv of the solution, i.e., the set of
edges that have to be added/deleted, the colors assigned to u and v will
di�er. Once this random coloring step is successfully completed, the problem
instance seems to have a nice structure which can be exploited for algorithmic
applications. In particular, after a successful coloring, we can observe the
following.

1. All the solution edges go across color classes.
2. Therefore, no modi�cation happens within a color class, hence the sub-

graph induced by each color class is already a member of the target graph
class.

While in some cases such properties signi�cantly help us in resolving
the problem at hand, the crux of the chromatic coding approach is that,
in a yes-instance where the number of modi�cations in the solution is
bounded by k, the number of colors that guarantee the desired property
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with good probability is sublinear in k. Consequently, the algorithms
obtained via chromatic coding are usually subexponential, i.e., they run
in 2o(k)nO(1) time.

As we discuss in Chapter 14, subexponential parameterized algorithms are
relatively rare.

Probability of a good coloring. Before we dive into a speci�c exemplary
problem for chromatic coding, let us formally analyze the random coloring
step � as it is generic for all algorithms using this approach. For a graph
G, we say that a coloring χ : V (G) → [q] properly colors E(G) if for every
uv ∈ E(G) we have χ(u) 6= χ(v).

Lemma 5.10. If the vertices of a simple graph G on k edges are colored in-
dependently and uniformly at random with d

√
8ke colors, then the probability

that E(G) is properly colored is at least 2−
√
k/2.

Proof. Let n = |V (G)|. Consider the sequence of vertices generated by the
following procedure.

1. Initialize G0 = G.
2. For every i = 1, 2, . . . , n, repeat the following procedure. Let vi be a

vertex of minimum possible degree in Gi−1. Remove vi from Gi−1 to
obtain the graph Gi (i.e., de�ne Gi := Gi−1 − vi).

Observe that Gn is empty.
Let di be the degree of vi in Gi−1. Since we are dealing with simple graphs,

for every i = 1, . . . , n we have

di ≤ |V (Gi−1)| − 1. (5.4)

Moreover, since vi is of minimum possible degree in Gi−1, we have

2k = 2|E(G)| ≥ 2|E(Gi−1)| ≥ di · |V (Gi−1)|. (5.5)

By merging (5.4) and (5.5) we obtain 2k ≥ d2i , that is, di ≤
√

2k.
Let us now consider the process of the random choice of the coloring χ

by iteratively coloring the vertices in the order vn, vn−1, . . . , v1; each vertex
is colored independently and uniformly at random with one of q := d

√
8ke

colors. Let Pi denote the event when the edge set E(Gi) is properly colored.
Clearly, Pr(Pn) = 1 and Pj ⊆ Pi for j ≤ i. Let us see what happens when we
color the vertex vi, 1 ≤ i ≤ n. There are di edges connecting vi with V (Gi),
thus at most di possible values of χ(vi) would cause some edge vivj , j > i,
to be incorrectly colored (i.e., χ(vi) = χ(vj)). Consequently, we obtain

Pr(Pi−1 | Pi) ≥
q − di
q

= 1− di
q
≥ 2−2di/q, (5.6)
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where the last inequality follows from the estimate 1−x ≥ 2−2x for 0 ≤ x ≤ 1
2

(recall that di ≤
√

2k, that is, diq ≤ 1
2 ).

Observe that P0 is the event when the edge set E(G0) = E(G) is properly
colored. Moreover,

∑n
i=1 di = k, as every edge is counted exactly once in the

sum
∑n
i=1 di. By applying Pi−1 ⊆ Pi and (5.6) for every 1 ≤ i ≤ n we obtain:

Pr(P0) = Pr(P0 | P1) Pr(P1)

= Pr(P0 | P1) Pr(P1 | P2) Pr(P2)

...

= Pr(Pn)

n∏
i=1

Pr(Pi−1 | Pi)

≥
n∏
i=1

2−2di/q = 2−2
∑n
i=1 di/q

= 2−2·k/d
√
8ke ≥ 2−

√
k/2.

ut

In chromatic coding,

� we use O(
√
k) colors, and

� the success probability is 2−O(
√
k) (Lemma 5.10).

Therefore, if the running time of the algorithm is single-exponential in
the number of colors, i.e., for c colors it runs in time 2O(c)nO(1), then

2O(
√
k) repetitions give a 2O(

√
k)nO(1)-time algorithm with constant er-

ror probability. Contrast this with color coding, where

� we use O(k) colors, and
� the success probability is 2−O(k).

Thus if the running time of the algorithm is single-exponential in the
number of colors, then 2O(k) repetitions give a 2O(k)nO(1)-time algo-
rithm with constant error probability.

The d-Clustering problem. Armed with Lemma 5.10, we exemplify the
chromatic coding approach on the d-Clustering problem.

A graph H is called an `-cluster graph if H has ` connected components,
and every connected component of H is a complete graph (clique). A graph
H is a cluster graph if it is an `-cluster graph for some `. For a graph G,
by adjacencies in G we mean pairs in

(
V (G)

2

)
. For a subset A ⊆

(
V (G)

2

)
,

by modifying the adjacencies A in G we mean an operation G ⊕ A that
creates a graph with vertex set V (G⊕A) = V (G) and edge set E(G⊕A) =
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(E(G) \A) ∪ (A \E(G)). In other words, for any uv ∈ A, if uv ∈ E(G) then
we delete uv from G, and otherwise we add uv to G. In the d-Clustering
problem, we are given an undirected graph G and a nonnegative integer k,
and we ask whether there exists a set A of at most k adjacencies in G such
that G⊕ A is a d-cluster graph. Such a set A is henceforth called a solution
to the instance (G, k). We remark here that the integer d is a part of the
problem de�nition, and is considered constant through the algorithm.

In the �rst step of our algorithm, given an instance (G, k) of d-Clustering,
we pick q := d

√
8ke and randomly color the vertices of G with q colors. Let

χ : V (G) → [q] be the obtained coloring. We say that a set of adjacencies

A ⊆
(
V (G)

2

)
is properly colored if χ properly colors the graph (V (G), A).

Lemma 5.10 ensures that, if (G, k) is a yes-instance and A is a solution to
(G, k), A is properly colored with su�ciently high probability. Our goal now
is to show an algorithm that e�ciently seeks for a properly colored solution.

Solving a colored instance. Assume we are given a d-Clustering in-
stance (G, k) and a coloring χ. We start with the following simple observa-
tion.

Lemma 5.11. Let G be a graph and χ : V (G) → [q] be a coloring function.
Furthermore, let Vi denote the vertices of G that are colored i. If there exists
a solution A in G that is properly colored by χ, then for every Vi, G[Vi] is an
`-cluster graph for some ` ≤ d .

Proof. Since every edge in A has endpoints of di�erent colors, each of the
subgraphs G[Vi] is an induced subgraph of G ⊕ A. But G ⊕ A is a d-cluster
graph, and every induced subgraph of a cluster graph is also a cluster graph.
Hence, G[Vi] is a cluster graph with at most d components. ut
We now proceed to the description of the algorithm. Suppose the given in-
stance has a properly colored solution A. Lemma 5.11 implies that G[Vi] is
an `-cluster graph for some ` ≤ d and it remains so in G ⊕ A. Therefore,
every component of G[Vi] is a clique and it lies in one of the d components of
the graph G⊕A; for each such component let us guess where it lies in G⊕A.
Since the total number of components of the subgraphs G[Vi] is bounded by

dq = dd
√

8ke, we have at most ddd
√
8ke = 2O(d log d

√
k) choices. Finally, it

simply remains to check if the number of edges to be added and deleted to
be consistent with the guess is at most k. All we need to do is to add to A
any pair of adjacent vertices that are guessed to be in di�erent components
of G⊕ A and any pair of nonadjacent vertices that are guessed to be in the
same component of G⊕A. Hence, we obtain the following.

Lemma 5.12. Given an instance (G, k) of d-Clustering with a coloring
χ : V (G) → [d

√
8ke], we can test if there is a properly colored solution in

time 2O(d log d
√
k)nO(1).

Using a simple dynamic-programming approach one can show the following
(see Exercise 5.7).
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Lemma 5.13. Given an instance (G, k) of d-Clustering with a coloring
χ : V (G) → [d

√
8ke], we can test if there is a properly colored solution in

time 2O(d
√
k)nO(1).

Combining Lemmas 5.10 and 5.13, we get that there is a randomized FPT

algorithm for d-Clustering running in time 2O(d
√
k)nO(1) with a success

probability of at least 2−O(
√
k). Thus, repeating the above algorithm inde-

pendently 2O(
√
k) times we obtain a constant success probability. This leads

to the following theorem.

Theorem 5.14. There exists a randomized algorithm that, given an instance

(G, k) of d-Clustering, in time 2O(d
√
k)nO(1) either reports a failure or

�nds a solution to (G, k). Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

5.6 Derandomization

It turns out that all presented algorithms based on some variant of the color
coding technique can be e�ciently derandomized. The goal of this section is
to show basic tools for such derandomization.

The basic idea of derandomization is as follows: instead of picking a
random coloring χ : [n] → [k], we deterministically construct a family
F of functions f : [n] → [k] such that it is guaranteed that one of the
functions from F has the property that we hope to attain by choosing
a random coloring χ.

Quite surprisingly, it turns out that such families F of small cardinal-
ity exist and can be constructed e�ciently. In particular, if we estimated
the probability that a random coloring χ satis�es the desired property by
1/f(k), the size of the corresponding family F is usually not much larger
than f(k) log n. Consequently, we are able to derandomize most of the algo-
rithms based on variants of the color coding technique with only small loss
of e�ciency.

We limit ourselves only to formulating the appropriate results on construc-
tions of pseudorandom objects we need, and showing how to derandomize the
algorithms presented earlier in this section. The actual methods behind the
constructions, although very interesting, are beyond the scope of this book.
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5.6.1 Basic pseudorandom objects

The basic pseudorandom object we need is called a splitter.

De�nition 5.15. An (n, k, `)-splitter F is a family of functions from [n] to
[`] such that for every set S ⊆ [n] of size k there exists a function f ∈ F that
splits S evenly. That is, for every 1 ≤ j, j′ ≤ `, |f−1(j)∩S| and |f−1(j′)∩S|
di�er by at most 1.

One can view a function f in a splitter F as a coloring of [n] into ` colors;
the set S is split evenly if f uses on S each color roughly the same number
of times. Note that for ` ≥ k, the notion of �splitting S evenly� reduces to f
being injective on S. Indeed, if |f−1(j) ∩ S| ≥ 2 for some j, then for every
j′ we have |f−1(j′) ∩ S| ≥ 1 and hence |S| ≥ |f−1([`]) ∩ S| ≥ ` + 1 > |S|, a
contradiction.

Our basic building block for derandomization is the following construction.

Theorem 5.16 ([15]). For any n, k ≥ 1 one can construct an (n, k, k2)-
splitter of size kO(1) log n in time kO(1)n log n.

We emphasize here that the size of the splitter provided by Theorem 5.16
is very small: it is polynomial in k, and depends only logarithmically on n
(Exercise 5.18 asks you to show that this dependence on n is optimal.) This
is achieved by allowing the members of a splitter to have a relatively large
codomain, namely of size k2.

However, observe that the case of a much smaller codomain, namely ` = k,
directly corresponds to the color coding algorithm for Longest Path: we
were coloring the vertex set of a graph G with k colors, hoping to be injective
on the vertex set of one �xed k-path in G. This special case of a splitter is
known as a perfect hash family.

De�nition 5.17. An (n, k, k)-splitter is called an (n, k)-perfect hash family.

To obtain a perfect hash family, we need to allow the splitter to be signif-
icantly larger than in Theorem 5.16.

Theorem 5.18 ([372]). For any n, k ≥ 1 one can construct an (n, k)-perfect
hash family of size ekkO(log k) log n in time ekkO(log k)n log n.

The proof of Theorem 5.18 is derived by a composition of an (n, k, k2)-splitter
F1 obtained from Theorem 5.16 with an explicit construction of a small
(k2, k, k)-splitter F2, i.e., the resulting (n, k)-perfect hash family is F = {f2 ◦
f1 : f1 ∈ F1, f2 ∈ F2}. (We denote by f2 ◦ f1 the composition of the two
functions obtained by performing f1 �rst and then f2, that is, (f2 ◦ f1)(x) =
f2(f1(x)).)

Observe that the actual size bound of Theorem 5.18 is very close to the
inverse of the probability that a random function [n] → [k] is injective on a



5.6 Derandomization 119

given set S ⊆ [n] of size k (Lemma 5.4). Hence, if we replace repeating a color
coding algorithm ek times with iterating over all elements of an (n, k)-perfect
hash family of Theorem 5.18, we obtain a deterministic algorithm with only
a very slight increase in the running time bound.

For the random separation and divide and color algorithms, recall that we
needed to capture a speci�c partition either of the set Γ ∪ E(Ĥ), or of the
vertex set of a path P in question. Hence, we need a notion that is able to
capture all partitions of a given small subset of the universe.

De�nition 5.19. An (n, k)-universal set is a family U of subsets of [n] such
that for any S ⊆ [n] of size k, the family {A ∩ S : A ∈ U} contains all 2k

subsets of S.

Similar to the case of perfect hash families, it is possible to obtain a uni-
versal set of size very close to the inverse of the probability that a random
subset of [n] has a desired intersection with a �xed set S ⊆ [n] of size k.

Theorem 5.20 ([372]). For any n, k ≥ 1 one can construct an (n, k)-
universal set of size 2kkO(log k) log n in time 2kkO(log k)n log n.

As in the case of Theorem 5.18, the proof of Theorem 5.20 boils down to
an explicit construction of a (k2, k)-universal set and composing it with a
splitter of Theorem 5.16.

Finally, for the chromatic coding approach, we need to revise the coloring
step and observe that in fact we do not need the colors of vertices to be
independent in general; limited independence is su�cient. This brings us to
the following de�nition.

De�nition 5.21 (k-wise independent). A family Hn,k,q of functions from
[n] to [q] is called a k-wise independent sample space if, for every k positions
1 ≤ i1 < i2 < · · · < ik ≤ n, and every tuple α ∈ [q]k, we have

Pr((f(i1), f(i2), . . . , f(ik)) = α) = q−k

where the function f ∈ Hn,k,q is chosen uniformly at random.

Fortunately, there are known constructions of k-wise independent sample
spaces of small size.

Theorem 5.22 ([10]). There exists a k-wise independent sample space Hn,k,q

of size O(nk) and it can be constructed e�ciently in time linear in the output
size.

In the next section we will see that to derandomize chromatic coding it
su�ces to modify the 2-independent sample space from Theorem 5.22.
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5.6.2 Derandomization of algorithms based on variants
of color coding

We now show how to derandomize the algorithms from Section 5.2 using the
pseudorandom objects of Section 5.6.1. For the sake of completeness, we �rst
repeat the more or less straightforward arguments for color coding and divide
and conquer. Then, we show a more involved argument for chromatic coding.

Color coding and Longest Path. Let (G, k) be the input instance for
Longest Path, where n = |V (G)|. Instead of taking a random coloring χ
of V (G), we use Theorem 5.18 to construct an (n, k)-perfect hash family F .
Then, for each f ∈ F , we proceed as before, that is, we invoke the dynamic-
programming algorithm of Lemma 5.5 for the coloring χ := f . The properties
of an (n, k)-perfect hash family F ensure that, if there exists a k-path P in
G, then there exists f ∈ F that is injective on V (P ) and, consequently, the
algorithm of Lemma 5.5 �nds a colorful path for the coloring χ := f . Hence,
we obtain the following deterministic algorithm.

Theorem 5.23. Longest Path can be solved in time (2e)kkO(log k)nO(1) by
a deterministic algorithm.

We emphasize here that the almost-optimal size bound of Theorem 5.18
makes the running time of the algorithm of Theorem 5.23 only slightly worse
than that of Theorem 5.6.

Divide and color and Longest Path. Let (G, k) again be the input in-
stance for Longest Path, where n = |V (G)|. We derandomize the proce-
dure Faster-Randomized-Paths(G, k) of Section *5.4 as follows: instead
of taking f(k) random partitions of V (G), we use Theorem 5.20 to compute
an (n, k)-universal set U and recurse on all partitions (L := A,R := V (G)\A)
for A ∈ U . By the properties of a universal set, for every u, v ∈ V (G) and
every k-path P from u to v in G, there exists A ∈ U where A∩V (P ) consists
of the �rst dk2 e vertices of P . Consequently, there always exists at least one
recursive step where the path P is properly partitioned, and the algorithm
actually computes D̂V (G),k = DV (G),k.

As for the running time bound, observe that the size bound of U promised
by Theorem 5.20 is very close to the choice f(k) = 2k log(4k) we made in
Section *5.4. Consequently, if we solve the appropriate variant of recursive
formula (5.3) we obtain an algorithm with almost no increase in the running
time (in fact, all increase is hidden in the big-O notation).

Theorem 5.24. Longest Path can be solved in time 4k+o(k)nO(1) by a
deterministic algorithm.

The derandomization of the random separation algorithm for Subgraph
Isomorphism in graphs of bounded degree, presented in Section 5.3, is
straightforward and postponed to Exercise 5.19.
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5.6.2.1 A derandomized chromatic coding algorithm for
d-Clustering

Let (G, k) be the input instance for d-Clustering, where n = |V (G)|. Fol-
lowing previous examples, we would like to replace the random choice of a
coloring of V (G) into q = O(

√
k) colors with an iteration over some pseu-

dorandom object. Recall that in Section 5.5, the essential property we were
hoping for was that the obtained coloring χ properly colors the solution A.
This leads to the following de�nition:

De�nition 5.25. A (n, k, q)-coloring family is a family F of functions from
[n] to [q] with the following property: for every graph G on the vertex set
[n] with at most k edges, there exists a function f ∈ F that properly colors
E(G).

Thus, to derandomize the algorithm of Theorem 5.14, we need to provide
an e�cient way of constructing a small (n, k, q)-coloring family for some q =
O(
√
k). The basic idea is that a 2-wise independent sample space Hn,k,q

should be close to our needs for q = c
√
k and su�ciently large constant c.

As in the case of construction of an (n, k)-perfect hash family or an (n, k)-
universal set, it su�ces to focus on the case n = k2; the general case can be
resolved by composing with an (n, k, k2)-splitter of Theorem 5.16. Hence, we
start with the following explicit construction.

Lemma 5.26. For any k ≥ 1, there exists a (k2, k, 2d
√
ke)-coloring family F

of size 2O(
√
k log k) that can be constructed in time linear in its size.

Proof. Denote q = d
√
ke. We use Theorem 5.22 to obtain a 2-wise indepen-

dent sample space G := Hk2,2,q. Note that the size of G is bounded by O(k4).
Recall that every element g ∈ G is a function g : [k2]→ [q].

We can now describe the required family F . For each g ∈ G and each
subset T ⊂ [k2] of size |T | = q, we de�ne a function fg,T ∈ F as follows.
Suppose T = {i1, i2, . . . , iq}, with i1 < i2 < . . . < iq. For 1 ≤ j ≤ q, we de�ne
f(ij) = q + j, and f(i) = g(i) if i /∈ T . Note that f(i) ∈ [2q] for any i ∈ [k2],
and the size of F is at most(

k2

q

)
|G| = 2O(

√
k log k).

To complete the proof we have to show that for every graph G on the set
of vertices [k2] with at most k edges, there is an f ∈ F that properly colors
E(G). Fix such a graph G.

We use the probabilistic method, i.e., we choose T and g in the de�nition
of the function fg,T in a random way, so that fg,T provides the required
coloring for G with positive probability, which implies the existence of the
desired function in F . The idea can be sketched as follows. The function g
is chosen at random in G, and is used to properly color all but at most q
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edges of E(G). The set T is chosen to contain at least one endpoint of each
of these edges, and the vertices in the set T will be re-colored by a unique
color that is used only once by fg,T . Then surely any edge incident to T will
have di�erent colors on its endpoints. Using the properties of G we now prove
that with positive probability the number of edges uv ∈ E(G) for which
g(u) = g(v) (henceforth called monochromatic edges) is bounded by

√
k.

Claim 5.27. If the vertices of G are colored by a function g chosen at random
from G, then the expected number of monochromatic edges is at most k/q ≤√
k.

Proof. Fix an edge e in the graph G and j ∈ [q]. As g maps the vertices in
a pairwise independent manner, the probability that both the endpoints of
e get mapped to j is precisely 1

q2 . There are q possibilities for j and hence

the probability that e is monochromatic is 1
q . Let X be the random variable

denoting the number of monochromatic edges. By linearity of expectation,
the expected value of X is at most k · 1q ≤

√
k. y

Returning to the proof of the lemma, observe that by the above claim, with
positive probability the number of monochromatic edges is upper bounded
by q = d

√
ke. Fix a g ∈ G for which this holds and let T be a set of q vertices

containing at least one endpoint of every monochromatic edge. Consider the
function fg,T . As mentioned above, fg,T colors each of the vertices in T by
a unique color, which is used only once by fg,T , and hence we only need to
consider the coloring fg,T restricted to G \ T . However all edges of G \ T are
properly colored by g and fg,T coincides with g on G\T . Hence fg,T properly
colors E(G), completing the proof of the lemma. ut

Now we are ready to state the main result of this section.

Theorem 5.28. For any n, k ≥ 1, there exists an (n, k, 2d
√
ke)-coloring fam-

ily F of size 2O(
√
k log k) log n that can be constructed in time 2O(

√
k log k)n log n.

Proof. First, use Theorem 5.16 to obtain an (n, k, k2)-splitter F1. Second,
use Lemma 5.26 to obtain a (k2, k, d

√
ke)-coloring family F2. Finally, de�ne

F := {f2 ◦ f1 : f1 ∈ F1, f2 ∈ F2}. A direct check shows that F satis�es all
the desired properties. ut

As announced at the beginning of this section, if we replace the random
choice of a coloring in Theorem 5.14 with an iteration over the coloring fam-
ily given by Theorem 5.28, we obtain a deterministic subexponential time
algorithm for d-Clustering.

Theorem 5.29. d-Clustering can be solved in time 2O(
√
k(d+log k))nO(1).

Note that for d = O(1), the derandomization step resulted in an additional
log k factor in the exponent, as compared to Theorem 5.14.
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Exercises

5.1. In theTriangle Packing problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether G has k-vertex disjoint triangles. Using color
coding show that the problem admits an algorithm with running time 2O(k)nO(1).

5.2. In the Tree Subgraph Isomorphism, we are given an undirected graph G and a
tree T on k vertices, and the objective is to decide whether there exists a subgraph in G
that is isomorphic to T . Obtain a 2O(k)nO(1)-time algorithm for the problem using color
coding.

5.3. Consider the following problem: given an undirected graph G and positive integers k
and q, �nd a set X of at most k vertices such that G \X has at least two components of
size at least q. Show that this problem can be solved in time 2O(q+k)nO(1).

5.4 (A). Assuming q > k, solve the problem from the previous problem in randomized
time qO(k)nO(1). Can you derandomize your algorithm without any signi�cant loss in the
running time?

5.5 (l). Show formally the bound p` = 2−O(` log `) in the analysis of the procedure
Simple-Randomized-Paths(X, `) in Section *5.4. That is, show that for su�ciently large
c, p` = 2−c` log ` satis�es (5.1).

5.6 (l). Solve formally the recurrence (5.3).

5.7. Prove Lemma 5.13.

5.8. Give a randomized FPT algorithm for the problem of deciding whether a given undi-
rected graph contains a cycle of length at least k. Your algorithm should have running
time cknO(1). Note that a graph may not have any cycle of length exactly k, but contain
a much longer cycle. Derandomize your algorithm using perfect hash families.

5.9 (A). Give a randomized FPT algorithm for the problem of deciding whether a given
directed graph contains a cycle of length at least k. Your algorithm should use color coding
with k2 colors, and have running time 2O(k2)nO(1). Then improve the running time to
kO(k)nO(1) by only using colors {1, . . . , k + 1}, and assigning color k + 1 with probability
1− 1

k2
. Finally, derandomize your algorithm using (n, k2, k4)-splitters.

5.10. In the Set Splitting problem, we are given a family of sets F over a universe U
and a positive integer k, and the goal is to test whether there exists a coloring of U with
two colors such that at least k sets in F are not monochromatic (that is, they contain
vertices of both colors).

1. Obtain a randomized FPT algorithm with running time 2k(|U |+ |F|)O(1).
2. Using universal sets derandomize your algorithm and obtain a running time bound

4k(|U |+ |F|)O(1).

5.11. In the Partial Vertex Cover problem, we are given an undirected graph G and
positive integers k and t, and the goal is to check whether there exists a set X ⊆ V (G)

of size at most k such that at least t edges of G are incident to vertices on X. Obtain an
algorithm with running time 2O(t)nO(1) for the problem. (We show in Chapter 13 that
this problem is W[1]-hard parameterized by the solution size k.)

5.12. In the Partial Dominating Set problem, we are given an undirected graph G and
positive integers k and t, and the goal is to check whether there exists a set X ⊆ V (G)
of size at most k such that |NG[X]| ≥ t (that is, X dominates at least t vertices). Obtain
an algorithm with running time 2O(t)nO(1) for the problem. (We show in Chapter 13 that
this problem is W[1]-hard parameterized by the solution size k.)
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5.13. A graph H is called r-colorable if there exists a function χ : V (H) → [r] such that
χ(u) 6= χ(v) for every uv ∈ E(H). Consider the following problem: given a perfect graph G
and integers k and r, check whether G admits an r-colorable induced subgraph on at least
k vertices. Show an algorithm for this problem with running time f(k, r)nO(1). You could
use the fact that we can �nd a maximum independent set in perfect graphs in polynomial
time.

5.14. In the Pseudo Achromatic Number problem, we are given an undirected graph G
and a positive integer k, and the goal is to check whether the vertices ofG can be partitioned
into k groups such that each pair of groups is connected by at least one edge. Obtain a ran-
domized algorithm for Pseudo Achromatic Number running in time 2O(k2 log k)nO(1).

5.15. Consider a slightly di�erent approach for Subgraph Isomorphism on graphs of
bounded degree, where we randomly color vertices (instead of edges) with two colors.

1. Show that this approach leads to a 2(d+1)kk!nO(1)-time Monte Carlo algorithm with
false negatives.

2. Improve the dependency on d in the running time of the algorithm to dO(k)k!nO(1).

5.16. In the Split Edge Deletion problem, we are given an undirected graph G and a
positive integer k, and the objective is to test whether there exists a set S ⊆ E(G) of size
at most k such that G \ S is a split graph. Using chromatic coding show that the problem

admits a 2O(
√
k log k)nO(1)-time algorithm.

5.17 (A). Show an algorithm for the Split Edge Deletion problem (de�ned in the

previous exercise) with running time 2O(
√
k)nO(1).

5.18 (l). Show that, for every n, ` ≥ 2, any (n, 2, `)-splitter needs to contain at least
log` n elements. In other words, show that the logn dependency in the size bound of
Theorem 5.16 is optimal.

5.19 (l). Give a deterministic version of Theorem 5.7 using (n, k)-universal sets.

5.20 (l). Give a deterministic version of the �rst algorithm developed in Exercise 5.15.
Your algorithm should run in time 2(d+1)k+o(dk)k!nO(1).

5.21 (A). Give a deterministic version of the second algorithm developed in Exercise 5.15.
Your algorithm should run in time 2O(d(log d+log k))nO(1).

5.22 (l). Show formally the running time bound of Theorem 5.24. That is, formulate
and solve the corresponding variant of recurrence (5.3).

5.23 (l). Complete the proof of Theorem 5.28: verify that the size of the obtained family
F satis�es the promised bound, and that F is in fact a (n, k, 2d

√
ke)-coloring family.

Hints

5.2 The coloring step is exactly the same as in the Longest Path example: color the
vertices of G with k colors, hoping to make the subgraph in question colorful; let Vi be
the set of vertices colored i. Then, design a dynamic-programming algorithm to �nd a
colorful subgraph isomorphic to T . To this end, root T at an arbitrary vertex and, for
every x ∈ V (T ), denote by Tx the subtree of T rooted at x. By the dynamic-programming
approach, for every x ∈ V (T ), for every v ∈ V (G), and for every set S of exactly |V (Tx)|−1
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colors, check whether there exists a colorful subgraph of G[
⋃
i∈S Vi ∪ {v}] isomorphic to

Tx, where the vertex v corresponds to the root x.

5.3 Randomly partition V (G) into two parts and hope that the vertices of the solution
X will be placed on the left, while a q-vertex connected subgraph of each of the two large
components of G \X is placed on the right.

5.4 Use the same approach as in the previous problem, but play with probabilities: assign
each vertex to the left with probability 1/q, and to the right with the remaining probability.
To derandomize the algorithm, use a (n, 2q + k, (2q + k)2)-splitter.

5.8 Prove the following observation: if a graph G contains a cycle of length at least 2k,
then, after contracting an arbitrary edge, it still contains a cycle of length at least k. Use
this, together with color coding, to get the algorithm.

5.9 Note that contracting a single edge may create a directed cycle even if there was none
before contraction. Prove that contracting all of the edges of a directed cycle C cannot
turn a no-instance into a yes-instance. Prove that if G has a cycle of length at least t before
contracting C, then G has a cycle of length at least t/|C| after contracting C. Use this,
together with color coding, to get the algorithm.

To improve the running time from 2O(k2) to kO(k) observe that if G contains a cycle
C such that the k �rst vertices of C are colored 1,2,. . .,k, and the remaining vertices are
colored k + 1, then we may �nd a cycle of length at least k in G in polynomial time.

5.10 Fix a solution f : U → {1, 2} and k sets F1, F2, . . . , Fk ∈ F that are not
monochromatic in the coloring f . For each set Fi, �x two elements ai,1, ai,2 ∈ Fi such

that f(ai,1) 6= f(ai,2). Denote A :=
⋃k
i=1{ai,1, ai,2}. Prove that Ω(2|A|−k) colorings

g : A→ {1, 2} satisfy g(ai,1) 6= g(ai,2) for every 1 ≤ i ≤ k.

5.11 Perform the color coding step with t colors on the set E(G). Then, a colorful solution
is a set of at most k vertices that is adjacent to at least one edge of every color.

5.12 Proceed in a way similar to the solution of the previous problem. Perform the color
coding step with t colors on the set V (G). Then, a colorful solution is a set X of at most
k vertices such that NG[X] contains at least one vertex of every color.

5.13 First, observe that, without loss of generality, we may look for an induced subgraph
with exactly k vertices. Second, show that a random coloring of G into r colors correctly
colors the subgraph in question with good probability. Finally, observe that, given a colored
instance, it su�ces to �nd a maximum size independent set in each color class indepen-
dently.

5.14 Prove that a random coloring of V (G) into k colors does the job with good probability.

5.15 Let Ĥ be a subgraph of G isomorphic to H. A coloring χ : V (G) → {R,B} is
successful if V (Ĥ) ⊆ χ−1(R) but NG(V (Ĥ)) ⊆ χ−1(B). Observe that |V (Ĥ)| = k and
|NG(V (Ĥ))| ≤ dk by the degree bound. The �rst point follows by using a brute-force
algorithm to check isomorphism in the construction of the graph B(H,GR) where GR =

G[χ−1(R)].
For the second point, the key idea is to bias the probability: since our bound for |V (Ĥ)|

is much better than the one for |NG(V (Ĥ))|, we may color independently every vertex red
with probability 1/d and blue with probability 1−1/d. In this manner, χ is successful with
probability:

(
1

d

)|V (Ĥ)|
·
(

1− 1

d

)|NG(V (Ĥ))|
≥ d−k ·

(
1− 1

d

)dk
= d−k · 2−O(k).
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5.16 Perform chromatic coding as in the case of d-Clustering. In the second phase, use
the fact that every n-vertex split graph has only O(n) possible partitions of the vertex set

into the clique and independent set parts. To obtain the 2O(
√
k log k)nO(1) running time

bound, you need to either obtain a polynomial kernel for the problem (which is done in
Exercise 2.36), or wrap the algorithm with iterative compression.

5.17 The crucial observation is the following: every n-vertex graph on at most k edges
has at most 2O(

√
k)n subgraphs being complete graphs. To see this claim, consider the

ordering v1, v2, . . . , vn of V (G) de�ned in the proof of Lemma 5.10. To identify a complete
subgraph H of G, it su�ces to give (a) a vertex vi ∈ V (H) of lowest possible index (n

choices), and (b) the set V (H) \ {vi} = NG(vi) ∩ V (Gi) (2di = 2O(
√
k) choices, as vi has

degree di in V (Gi−1) and di = O(
√
k)).

To utilize the aforementioned observation, proceed with iterative compression, adding
vertices one by one to the graph G. Assume we have a solution F to Split Edge Deletion
on (G − v, k) and we would like �nd a solution F ′ to Split Edge Deletion on (G, k).
Furthermore, let V (G) \ {v} = C ] I be (any) partition of the vertex set of the split graph
G − v − F into the clique and independent set parts. Observe that, if V (G) = C′ ] I′ is
(any) partition of the vertex set of the split graph G−F ′ into the clique and independent
set parts, then I \ I′ induces a clique in G. Moreover, E(G[I]) ⊆ F and, consequently,

G[I] has at most k edges. Thus, there are 2O(
√
k)n choices for I \ I′. Hence, we can guess

I \ I′, as well as whether the new vertex v belongs to C′ or I′. With this information, it
is straightforward to deduce the remaining parts of C′ and I′.

5.18 Observe that if n > `|F| in a (n, 2, `)-splitter F , then there are two elements a, b ∈ [n]

such that for every f ∈ F we have f(a) = f(b).

5.19 Observe that you need the correct partition of E(Ĥ) ∪ Γ , which is of size at most
dk. Thus, you need a (|E(G)|, p)-universal set for every k ≤ p ≤ dk.

5.20 Observe that you need the correct partition of NG[V (Ĥ)], which is of size at most
(d+ 1)k. Thus, you need a (|V (G)|, p)-universal set for every k ≤ p ≤ (d+ 1)k.

5.21 The biased separation, used in the solution for Exercise 5.15, can be usually e�ciently
derandomized using a splitter from Theorem 5.16.

Recall that we need to correctly separate NG[V (Ĥ)], which is of size at most (d+ 1)k.
We �rst guess p = |NG[V (Ĥ)]| ≤ (d + 1)k and we construct a (n, p, p2)-splitter F of
polynomial size. Then, we iterate through every function f ∈ F and every set X ⊆ [p2] of
size exactly k and consider a coloring χ : V (G)→ {R,B} de�ned as: χ(v) = R if and only
if f(v) ∈ X. By the de�nition of a splitter, there exists f ∈ F that is injective on NG[V (Ĥ)]
and we consider a set X = f(V (Ĥ)). For this choice of f and X, the coloring χ is successful.

Finally, note that the size of F is polynomial, whereas there are
(
p2

k

)
= 2O(k(log d+log k))

choices for the set X.
Intuitively, in this approach we use a generic splitter whose size is negligible in the

running time, and then we mimic the bias of the separation by guessing a small set in the
(largish) codomain of the splitter.

Bibliographic notes

The randomized 4knO(1) algorithm for Feedback Vertex Set is due to Becker, Bar-
Yehuda, and Geiger [29]. Longest Path was studied intensively within the parameter-
ized complexity paradigm. Monien [368] and Bodlaender [44] showed that the problem
is �xed-parameter tractable with running time 2O(k log k)nO(1). This led Papadimitriou



5.6 Derandomization 127

and Yannakakis [381] to conjecture that the problem is solvable in polynomial time for
k = logn. This conjecture was resolved in a seminal paper of Alon, Yuster and Zwick [15],
who introduced the method of color coding and obtained the �rst algorithm with running
time 2O(k)nO(1) for the problem. The divide and color algorithm decribed in this chapter
was obtained independently by Kneis, Mölle, Richter and Rossmanith [299] and Chen, Lu,
Sze and Zhang [86] (see also [83]). After that, there were several breakthrough ideas lead-
ing to faster and faster randomized algorithms based on algebraic tools, see Chapter 10.
Theorem 5.24, i.e., the derandomization of divide and color using universal sets in time
O(4k+o(k))nO(1) is due to Chen et al. [86] (see also [83]). The fastest deterministic algo-
rithm so far, based on fast computation of representative sets, runs in time 2.619knO(1)

and is presented in Chapter 12.
Longest Path is a special case of the Subgraph Isomorphism problem, where for

a given n-vertex graph G and k-vertex graph F , the question is whether G contains a
subgraph isomorphic to F . In addition to Longest Path, parameterized algorithms for
two other variants of Subgraph Isomorphism, when F is a tree, and, more generally,
when F is a graph of treewidth at most t, were studied in the literature. Alon, Yuster
and Zwick [15] showed that Subgraph Isomorphism, when the treewidth of the pattern
graph is bounded by t, is solvable in time 2O(k)nO(t). Cohen, Fomin, Gutin, Kim, Saurabh,
and Yeo [96] gave a randomized algorithm that for an input digraph D decides in time
5.704knO(1) if D contains a given out-tree with k vertices. They also showed how to
derandomize the algorithm in time 6.14knO(1). Amini, Fomin and Saurabh [16] introduced
an inclusion�exclusion based approach in the classic color-coding and gave a randomized
5.4knO(t)-time algorithm and a deterministic 5.4k+o(k)nO(t) time algorithm for the case
when F has treewidth at most t. Koutis and Williams [306] generalized their algebraic
approach for Longest Path toTree Subgraph Isomorphism and obtained a randomized
algorithm running in time 2knO(1) for Tree Subgraph Isomorphism. This result was
extended in [204] by a randomized algorithm for Subgraph Isomorphism running in time
2knO(t), when the treewidth of the pattern graph H is at most t. If we restrict ourselves
to deterministic algorithms, the fastest known algorithm runs in time 2.851knO(t) for
Subgraph Isomorphism if the treewidth of H is at most t [206].

The random separation technique was introduced by Cai, Chan and Chan [65]. The
nO(d log d)-time algorithm for Graph Isomorphism in n-vertex graphs of maximum degree
at most d is due to Luks [340].

Chromatic coding was introduced by Alon, Lokshtanov and Saurabh [14] for giving a
subexponential algorithm for Feedback Arc Set in Tournaments. For algorithms with
improved running time and related problems on tournaments see also [171, 209, 283, 186].
Recently, subexponential algorithms for several edge completion problems, like completing
to split [228], interval [42], proper interval [43], chordal [211] or trivially perfect graphs [158]
with at most k edges, were discovered. The fastest algorithm for d-Clustering runs in
time 2O(

√
dk) + nO(1) [199].

Most of the cited results for splitters, hash families and universal sets are due to Naor,
Schulman and Srinivasan [372], with parts already present in the work of Alon, Yuster
and Zwick [15]. In particular, the O(n logn) dependency on n in the running time bounds
follows from the combination of the (n, k, k2)-splitter construction of [15] and further con-
structions of [372]. A similar result with worse size bounds can be obtained using the results
of Fredman, Komlós and Szemerédi [216]. A generalization of the discussed derandomiza-
tion objects, useful for designing approximate counting algorithms, was developed by Alon
and Gutner [12, 13]. The construction of universal coloring families is taken from [14].





Chapter 6

Miscellaneous

In this chapter, we gather a few algorithmic tools
that we feel are important, but do not �t into any of
the previous chapters. First, we discuss exponential-
time dynamic-programming algorithms that consider
all subsets of a certain set when de�ning the subprob-
lems. Second, we introduce the Integer Linear Pro-
gramming Feasibility problem, formulate the clas-
sical results on how to solve it in the case of a bounded
number of variables, and show an example of its ap-
plication in �xed-parameter algorithms. Finally, we
discuss the algorithmic implications of the Robertson-
Seymour theorem on graph minors.

The chapter consists of three independent sections, each tackling a dif-
ferent tool in parameterized algorithms. Since a full exposition of, say, the
algorithmic applications of the graph minors project would constitute a large
volume in itself, we have decided to give only a glimpse of the topic in each
of the three sections.

In Section 6.1, we present a common theme in many exponential-time
algorithms: a dynamic-programming algorithm, where the subproblems are
de�ned by considering all subsets of a certain set of elements (and hence
the number of subproblems and the running time are exponential in the
number of elements). As a �rst example, we give a simple 2|U |(|U |+ |F|)O(1)-
time dynamic-programming algorithm for Set Cover with a family of sets
F over a universe U . Then, we obtain a 3|K|nO(1) algorithm for Steiner
Tree, where K is the set of terminal vertices. Using additional ideas, we will
improve the running time of this algorithm in Section 10.1.2.

Section 6.2 introduces yet another tool to design �xed-parameter algo-
rithms, namely integer linear programs. In turns out that many NP-hard
problems can be expressed in the language of Integer Linear Program-
ming. For example, in Section 2.5 we have seen how a Vertex Cover in-
stance can be encoded as an Integer Linear Programming instance.

129
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In 1983, Lenstra showed that Integer Linear Programming is �xed-
parameter tractable when parameterized by the dimension of the space, i.e.,
the number of variables. (Naturally, Lenstra did not use the terminology of
�xed-parameter tractability, as it was introduced much later.) Thus, Lenstra's
result gives us a very general tool for proving �xed-parameter tractability of
various problems. Note that a similar phenomenon happens in the world of
polynomial-time algorithms, where a large number of tractable problems, in-
cluding the problems of �nding a shortest path or a maximum �ow, can be
represented in the language of Linear Programming. In Section 6.2, we
state the fastest known algorithm for Integer Linear Programming, and
exemplify its usage on the Imbalance problem.

In Section 6.3, we move to the theory of graph minors. The Graph Minors
project of Robertson and Seymour, developed in the last three decades, re-
sulted not only in achieving its main goal � proving Wagner's conjecture,
asserting that the class of all graphs is well-quasi-ordered by the minor re-
lation � but also �ourished with other tools, techniques and insights that
turned out to have plenty of algorithmic implications. In this chapter, we re-
strict ourselves only to the implications of the Robertson-Seymour theorem
in parameterized complexity, and we show how theorems from Graph Minors
immediately imply �xed-parameter tractability of such problems as detecting
the Euler genus of a graph. Robertson-Seymour theory also gives us pretext
to discuss the notion of nonuniform �xed-parameter algorithms. We remark
here that the next chapter, Chapter 7, is entirely devoted to the algorithmic
usage of the notion of treewidth, a di�erent o�spring of the Graph Minors
project.

6.1 Dynamic programming over subsets

In this section, we give two examples of dynamic-programming algorithms
over families of sets. Our examples are Set Cover and Steiner Tree.

6.1.1 Set Cover

Let F be a family of sets over a universe U . For a subfamily F ′ ⊆ F and a
subset U ′ ⊆ U , we say that F ′ covers U ′ if every element of U ′ belongs to
some set of F ′, that is, U ′ ⊆ ⋃F ′. In the Set Cover problem, we are given
a family of sets F over a universe U and a positive integer k, and the task
is to check whether there exists a subfamily F ′ ⊆ F of size at most k such
that F ′ covers U . We give an algorithm for Set Cover that runs in time
2|U |(|U | + |F|)O(1). In fact, this algorithm does not use the value of k, and
�nds the minimum possible cardinality of a family F ′ ⊆ F that covers U .
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Theorem 6.1. Given a Set Cover instance (U,F , k), the minimum pos-
sible size of a subfamily F ′ ⊆ F that covers U can be found in time
2|U |(|U |+ |F|)O(1).

Proof. Let F = {F1, F2, . . . , F|F|}. We de�ne the dynamic-programming ta-
ble as follows: for every subset X ⊆ U and for every integer 0 ≤ j ≤ |F|, we
de�ne T [X, j] as the minimum possible size of a subset F ′ ⊆ {F1, F2, . . . , Fj}
that covers X. (Henceforth, we call such a family F ′ a valid candidate for

the entry T [X, j].) If no such subset F ′ exists (i.e., if X 6⊆ ⋃ji=1 Fi), then
T [X, j] = +∞.

In our dynamic-programming algorithm, we compute all 2|U |(|F|+ 1) val-
ues T [X, j]. To achieve this goal, we need to show (a) base cases, in our
case values T [X, j] for j = 0; (b) recursive computations, in our case how to
compute the value T [X, j] knowing values T [X ′, j′] for j′ < j.

For the base case, observe that T [∅, 0] = 0 while T [X, 0] = +∞ for X 6= ∅.
For the recursive computations, let X ⊆ U and 0 < j ≤ |F|; we show that

T [X, j] = min(T [X, j − 1], 1 + T [X \ Fj , j − 1]). (6.1)

We prove (6.1) by showing inequalities in both directions. In one direction,
let F ′ ⊆ {F1, F2, . . . , Fj} be a family of minimum size that covers X. We
distinguish two cases. If Fj /∈ F ′, then note that F ′ is also a valid candidate
for the entry T [X, j − 1] (i.e., F ′ ⊆ {F1, F2, . . . , Fj−1} and F ′ covers X). If
Fj ∈ F ′, then F ′\{Fj} is a valid candidate for the entry T [X\Fj , j−1]. In the
other direction, observe that any valid candidate F ′ for the entry T [X, j− 1]
is also a valid candidate for T [X, j] and, moreover, for every valid candidate
F ′ for T [X \ Fj , j − 1], the family F ′ ∪ {Fj} is a valid candidate for T [X, j].
This �nishes the proof of (6.1).

By using (6.1), we compute all values T [X, j] for X ⊆ U and 0 ≤ j ≤ |F|
within the promised time bound. Finally, observe that T [U, |F|] is the answer
we are looking for: the minimum size of a family F ′ ⊆ {F1, F2, . . . , F|F|} = F
that covers U . ut

We remark that, although the dynamic-programming algorithm of Theo-
rem 6.1 is very simple, we suspect that the exponential dependency on |U |,
that is, the term 2|U |, is optimal. However, there is no known reduction that
supports this claim with the Strong Exponential Time Hypothesis (discussed
in Chapter 14).

6.1.2 Steiner Tree

Let G be an undirected graph on n vertices and K ⊆ V (G) be a set of termi-
nals. A Steiner tree for K in G is a connected subgraph H of G containing
K, that is, K ⊆ V (H). As we will always look for a Steiner tree of minimum
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possible size or weight, without loss of generality, we may assume that we
focus only on subgraphs H of G that are trees. The vertices of V (H) \ K
are called Steiner vertices of H. In the (weighted) Steiner Tree problem,
we are given an undirected graph G, a weight function w : E(G)→ R>0 and
a subset of terminals K ⊆ V (G), and the goal is to �nd a Steiner tree H for
K in G whose weight w(H) =

∑
e∈E(H) w(e) is minimized. Observe that if

the graph G is unweighted (i.e., w(e) = 1 for every e ∈ E(G)), then we in
fact optimize the number of edges of H, and we may equivalently optimize
the number of Steiner vertices of H.

For a pair of vertices u, v ∈ V (G), by dist(u, v) we denote the cost of a
shortest path between u and v in G (i.e., a path of minimum total weight).
Let us remind the reader that, for any two vertices u, v, the value dist(u, v) is
computable in polynomial time, say by making use of Dijkstra's algorithm.

The goal of this section is to design a dynamic-programming algorithm for
Steiner Tree with running time 3|K|nO(1), where n = |V (G)|.

We �rst perform some preprocessing steps. First, assume |K| > 1, as oth-
erwise the input instance is trivial. Second, without loss of generality, we
may assume that G is connected: a Steiner tree for K exists in G only if all
terminals of K belong to the same connected component of G and, if this is
the case, then we may focus only on this particular connected component.
This assumption ensures that, whenever we talk about some minimum weight
Steiner tree or a shortest path, such a tree or path exists in G (i.e., we do
not minimize over an empty set). Third, we may assume that each terminal
in K is of degree exactly 1 in G and its sole neighbor is not a terminal. To
achieve this property, for every terminal t ∈ K, we attach a new neighbor t′

of degree 1, that is, we create a new vertex t′ and an edge tt′ of some �xed
weight, say 1. Observe that, if |K| > 1, then the Steiner trees in the original
graph are in one-to-one correspondence with the Steiner trees in the modi�ed
graphs.

We start with de�ning a table for dynamic programming. For every
nonempty subset D ⊆ K and every vertex v ∈ V (G) \ K, let T [D, v] be
the minimum possible weight of a Steiner tree for D ∪ {v} in G.

The intuitive idea is as follows: for every subset of terminals D, and
for every vertex v ∈ V (G) \K, we consider the possibility that in the
optimal Steiner tree H for K, there is a subtree of H that contains
D and is attached to the rest of the tree H through the vertex v. For
|D| > 1, such a subtree decomposes into two smaller subtrees rooted at
some vertex u (possibly u = v), and a shortest path between v and u.
We are able to build such subtrees for larger and larger sets D through
the dynamic-programming algorithm, �lling up the table T [D, v].

The base case for computing the values T [D, v] is where |D| = 1. Observe
that, if D = {t}, then a Steiner tree of minimum weight for D ∪ {v} = {v, t}
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is a shortest path between v and t in the graph G. Consequently, we can �ll
in T [{t}, v] = dist(t, v) for every t ∈ K and v ∈ V (G) \K.

In the next lemma, we show a recursive formula for computing the values
T [D, v] for larger sets D.

Lemma 6.2. For every D ⊆ K of size at least 2, and every v ∈ V (G) \K,
the following holds

T [D, v] = min
u∈V (G)\K
∅6=D′(D

{T [D′, u] + T [D \D′, u] + dist(v, u)} . (6.2)

Proof. We prove (6.2) by showing inequalities in both directions.
In one direction, �x u ∈ V (G) and ∅ 6= D′ ( D. Let H1 be the tree

witnessing the value T [D′, u], that is, H1 is a Steiner tree for D′ ∪ {u} in G
of minimum possible weight. Similarly, de�ne H2 for the value T [D \D′, u].
Moreover, let P be a shortest path between v and u in G. Observe that
H1 ∪H2 ∪ P is a connected subgraph of G that contains D ∪ {v} and is of
weight

w(H1∪H2∪P ) ≤ w(H1)+w(H2)+w(P ) = T [D′, u]+T [D\D′, u]+dist(v, u).

Thus

T [D, v] ≤ min
u∈V (G)\K
∅6=D′(D

{T [D′, u] + T [D \D′, u] + dist(v, u)} .

In the opposite direction, let H be a Steiner tree for D∪{v} in G of mini-
mum possible weight. Let us root the tree H in the vertex v, and let u0 be the
vertex of H that has at least two children and, among such vertices, is closest
to the root. An existence of such a vertex follows from the assumptions that
|D| ≥ 2 and that every terminal vertex is of degree 1. Moreover, since every
terminal of K is of degree 1 in G, we have u0 /∈ K. Let u1 be an arbitrarily
chosen child of u0 in the tree H. We decompose H into the following three
edge-disjoint subgraphs:

1. P is the path between u0 and v in H;
2. H1 is the subtree of H rooted at u1, together with the edge u0u1;
3. H2 consists of the remaining edges of H, that is, the entire subtree of H

rooted at u0, except for the descendants of u1 (that are contained in H1).
See Fig. 6.1.

Let D′ = V (H1)∩K be the terminals in the tree H1. Since every terminal
is of degree 1 in G, we have D \D′ = V (H2) ∩K. Observe that, as H is of
minimum possible weight, D′ 6= ∅, as otherwise H \H1 is a Steiner tree for
D ∪ {v} in G. Similarly, we have D′ ( D as otherwise H \ H2 is a Steiner
tree for D ∪ {v} in G. Furthermore, note that from the optimality of H it
follows that w(H1) = T [D′, u0], w(H2) = T [D \D′, u0] and, moreover, P is
a shortest path between u0 and v. Consequently,
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v
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u1

P
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Fig. 6.1: Decomposition of H

T [D, v] = w(H) = T [D′, u0] + T [D \D′, u0] + dist(v, u0)

≥ min
u∈V (G)\K
∅6=D′(D

{T [D′, u] + T [D \D′, u] + dist(v, u)} .

This �nishes the proof of the lemma. ut

With the insight of Lemma 6.2, we can now prove the main result of this
section.

Theorem 6.3. Steiner Tree can be solved in time 3|K|nO(1).

Proof. Let (G,w,K) be an instance of Steiner Tree after the preprocessing
steps have been performed. We compute all values of T [D, v] in the increasing
order of the cardinality of the set D. As discussed earlier, in the base case we
have T [{t}, v] = dist(t, v) for every t ∈ K and v ∈ V (G) \K. For larger sets
D, we compute T [D, v] using (6.2); note that in this formula we use values
of T [D′, u] and T [D \D′, u], and both D′ and D \D′ are proper subsets of
D. In this manner, a �xed value T [D, v] can be computed in time 2|D|nO(1).
Consequently, all values T [D, v] are computed in time

∑
v∈V (G)\K

∑
D⊆K

2|D|nO(1) ≤ n
|K|∑
j=2

(|K|
j

)
2jnO(1) = 3|K|nO(1).

Finally, observe that, if the preprocessing steps have been performed, then
any Steiner tree for K in V (G) needs to contain at least one Steiner point
and, consequently, the minimum possible weight of such a Steiner tree equals
minv∈V (G)\K T [K, v]. ut

We will see in Section 10.1.2 how the result of Theorem 6.3 can be improved.
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6.2 Integer Linear Programming

In this section, we take a closer look at parameterized complexity of Integer
Linear Programming.

We start with some de�nitions. In the Integer Linear Programming
Feasibility problem, the input consists of p variables x1, x2, . . . , xp, and a
set of m inequalities of the following form:

a1,1x1 + a1,2x2 + . . .+ a1,pxp ≤ b1
a2,1x1 + a2,2x2 + . . .+ a2,pxp ≤ b2

...
...

. . .
...

...

am,1x1 + am,2x2+ . . .+ am,pxp ≤ bm

where every coe�cient ai,j and bi is required to be an integer. The task is to
check whether one can choose integer values for every variable xi so that all
inequalities are satis�able.

Equivalently, one may look at an Integer Linear Programming Fea-
sibility instance as a matrix A ∈ Zm×p and a vector b ∈ Zm; the task is
to check whether there exists a vector x ∈ Zp such that Ax ≤ b. We assume
that an input of Integer Linear Programming Feasibility is given in
binary and thus the size of the input is the number of bits in its binary
representation.

In typical applications, when we want to solve a concrete algorithmic prob-
lem by formulating it as Integer Linear Programming Feasibility, we
may assume that the absolute values of the variables in the solution are poly-
nomially bounded by the size n of the instance we want to solve. Therefore, if
the Integer Linear Programming Feasibility instance has p variables,
then we may solve it in time nO(p) by brute force. The main technical tool
that we use in this section is the fact that Integer Linear Programming
Feasibility is �xed-parameter tractable parameterized by the number of
variables. This opens up the possibility of obtaining FPT results by trans-
lating the problem into an instance of Integer Linear Programming
Feasibility with bounded number of variables.

Theorem 6.4 ([280],[319],[215]). An Integer Linear Programming
Feasibility instance of size L with p variables can be solved using O(p2.5p+o(p)·
L) arithmetic operations and space polynomial in L.

In other words, Theorem 6.4 says that Integer Linear Programming
Feasibility is �xed-parameter tractable when parameterized by p, with a
relatively good (slightly super-exponential) dependence on the parameter and
linear dependence on the input size.

In some applications, it is more convenient to work with an optimiza-
tion version of the Integer Linear Programming Feasibility problem,
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namely Integer Linear Programming. Although this problem has been
already brie�y discussed in Section 2.5, let us now recall its de�nition. In the
Integer Linear Programming problem, apart from the standard input
for Integer Linear Programming Feasibility (i.e., a matrix A ∈ Zm×p
and a vector b ∈ Zm) we are given a vector c ∈ Zp, and our goal is to �nd
a vector x ∈ Zp satisfying all the aforementioned inequalities (i.e., Ax ≤ b)
that minimizes the objective function c · x (the scalar product of c and x).

Using binary search, it is easy to derive an algorithm for Integer Linear
Programming using Theorem 6.4.

Theorem 6.5. An Integer Linear Programming instance of size L with
p variables can be solved using

O(p2.5p+o(p) · (L+ logMx) log(MxMc))

arithmetic operations and space polynomial in L + logMx, where Mx is an
upper bound on the absolute value a variable can take in a solution, and Mc

is the largest absolute value of a coe�cient in the vector c.

Proof. Observe that the absolute value of the objective function is at most
pMxMc as long as the variables have absolute values at mostMx. We perform
a binary search to �nd the minimum value of the objective function. That is,
for a �xed integer threshold −pMxMc ≤ t ≤ pMxMc, we add an inequality
cx ≤ t to the system Ax ≤ b and apply the algorithm of Theorem 6.4 to
the obtained Integer Linear Programming Feasibility instance. The
instance has size O(L+ p log(pMxMc)) = O(p(L+ logMx)), and hence each
application of Theorem 6.4 runs in time O(p2.5p+o(p) · (L + logMx)). Con-
sequently, we are able to �nd an optimum value t0 of the objective function
within the promised bound on the running time. Moreover, any solution to
the Integer Linear Programming Feasibility instance consisting of the
system Ax ≤ b with an additional inequality cx ≤ t0 is an optimal solution
to the input Integer Linear Programming instance. ut

6.2.1 The example of Imbalance

Now we exemplify the usage of Theorem 6.5 on the Imbalance problem.
In order to de�ne the problem itself, we need to introduce some no-

tation. Let G be an n-vertex undirected graph. An ordering of V (G) is
any bijective function π : V (G) → {1, 2, . . . , n}. For v ∈ V (G), we de�ne
Lπ(v) = {u ∈ N(v) : π(u) < π(v)} and Rπ(v) = {u ∈ N(v) : π(u) >
π(v)} = N(v) \ Lπ(v). Thus Lπ(v) is the set of vertices preceding v, and
Rπ(v) is the set of vertices succeeding v in π. The imbalance at vertex v is
de�ned as ιπ(v) = ||Lπ(v)| − |Rπ(v)||, and the imbalance of the ordering π
equals ι(π) =

∑
v∈V (G) ιπ(v).
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In the Imbalance problem, parameterized by the vertex cover number
of a graph, we are given a graph G together with its vertex cover X of size
k, and the task is to �nd an ordering π of V (G) minimizing its imbalance.
The parameter is k, the size of the provided vertex cover, as opposed to �
maybe more natural after most of the previous examples in this book �
the parameterization by solution size (the value of the objective function,
the imbalance of the ordering in question). We remark that there is an FPT
algorithm for Imbalance parameterized by the imbalance of the ordering,
but such an algorithm is not the goal of this section.

The Imbalance problem, parameterized by the vertex cover number, falls
into the wide topic of so-called structural parameterizations. Here, instead of
taking the most natural �solution size� parameterization (as was the case, e.g.,
for Vertex Cover or Feedback Vertex Set in previous chapters), we
pick as a parameter some structural measure of the instance (most usually,
a graph) at hand. In parameterized complexity, the choice of the parame-
ter comes from the application: we would like to solve e�ciently instances
for which the parameter is small. Hence, studying a computational problem
both using the �solution size� parameterization and di�erent structural pa-
rameters, such as the vertex cover number, re�nes our understanding of the
matter by considering complementary angles: we design e�cient algorithms
for di�erent classes of input instances. Furthermore, from a theoretical point
of view, di�erent parameterizations often o�er di�erent interesting insights
into the studied problem. This is yet another example of �exibility provided
by parameterized complexity in choosing parameters.

We remark that this is not the only example of structural parameterization
in this book. The entire Chapter 7 is devoted to treewidth, an important graph
parameter that measures the resemblance of a graph to a tree. Moreover, in
Section 15.2.4 we show an example of kernelization lower bound for Clique,
parameterized by the vertex cover number.

We remark that in the case of parameterization by the vertex cover num-
ber, it is not necessary that we require that some vertex cover is provided
along with the input graph, but instead we can compute a 2-approximation
of a minimum vertex cover. In this manner, we obtain a parameter that is
at most twice as large. Another approach would be to use an FPT algorithm
to compute a vertex cover of size at most k. However, in the case of several
other structural parameters of the input graph (e.g., the size of a dominating
set) we do not have a good approximation or FPT algorithm to fall back on,
and hence, in this book, we de�ne all problems with structural parameters
by insisting on providing the promised structure in the input.

We now show how to apply Theorem 6.5 in order to give an FPT algorithm
for Imbalance parameterized by the size of the provided vertex cover of G.

We are looking for an ordering π for which ι(π) is minimized. In order to do
this, we loop over all possible orderings (bijections) πX : X → {1, 2, . . . , k} of
the vertex cover X and, for every such ordering πX , we �nd the best ordering
π of V (G) that agrees with πX : We say that π and πX agree if for all u, v ∈ X
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we have that πX(u) < πX(v) if and only of π(u) < π(v). In other words, the
relative ordering π imposes on X is precisely πX . Thus, at a cost of a factor of
k! in the running time, we can assume that there exists an optimal ordering π
such that X = {u1, u2, . . . , uk} and π(u1) < π(u2) < . . . < π(uk). For every
0 ≤ i ≤ k, we de�ne Xi = {u1, u2, . . . , ui}.

Because X is a vertex cover, the set I = V (G) \ X is independent. We
associate a type with each vertex in I as follows.

De�nition 6.6. The type of a vertex v ∈ I is the set N(v) ⊆ X. For a type
S ⊆ X, the set I(S) is the set of all vertices in I of type S.

Notice that the number of di�erent types does not exceed the number of
subsets of X, which is 2k.

Observe that every vertex of I is either mapped between two vertices of
X, to the left of u1, or to the right of uk by an optimal ordering π. We say
that a vertex v ∈ I is at location 0 if π(v) < π(u1) and at location i if i is
the largest integer such that π(ui) < π(v). The set of vertices that are at
location i is denoted by Li. We de�ne the inner order of π at location i to
be the restriction of π to Li.

The task of �nding an optimal permutation can be divided into two parts.
The �rst part is to partition the set I into L0, . . . , Lk, while the second part
consists of �nding an optimal inner order at all locations. One should notice
that partitioning I into L0, . . . , Lk amounts to deciding how many vertices of
each type are at location i for each i. Moreover, observe that the second part
of the task, namely permuting the inner order of π at location i, in fact does
not change the imbalance at any single vertex. This is due to the fact that
the vertices of I, and thus all vertices at location i, are pairwise nonadjacent.
Hence, the inner orders are in fact irrelevant and �nding the optimal ordering
of the vertices thus reduces to the �rst part of �nding the right partition of
I into L0, . . . , Lk. Our goal for the rest of this section is to phrase this task
as an Integer Linear Programming instance.

For a type S and location i, we let xiS be a variable that encodes the
number of vertices of type S that are at location i. Also, for every vertex
ui in X, we introduce a variable yi that represents the lower bound on the
imbalance of ui.

Let us now describe the inequalities. First, in order to represent a feasible
permutation, all the variables must be nonnegative. Second, the variables xiS
have to be consistent with the fact that we have |I(S)| vertices of type S,
that is,

∑k
i=0 x

i
S = |I(S)| for every type S.

For every vertex ui of the vertex cover X, we let ei = |N(ui) ∩ Xi−1| −
|N(ui) ∩ (X \Xi)|. For every ui ∈ X we have a constraint

yi ≥

∣∣∣∣∣∣∣∣ei +
∑
S⊆X
ui∈S

i−1∑
j=0

xjS −
k∑
j=i

xjS


∣∣∣∣∣∣∣∣ . (6.3)
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Finally, for every type S and location i, let the constant ziS be equal to the
imbalance at a vertex of type S if it is placed at location i. That is,

ziS = ||S ∩Xi| − |S ∩ (X \Xi)|| .

We are now ready to formulate our Integer Linear Programming in-
stance.

min

k∑
i=1

yi +

k∑
i=0

∑
S⊆X

ziSx
i
S

s.t.

k∑
i=0

xiS = |I(S)| ∀S ⊆ X

yi ≥ ei +
∑
S⊆X
ui∈S

i−1∑
j=0

xjS −
k∑
j=i

xjS

 ∀1 ≤ i ≤ k

yi ≥ −ei −
∑
S⊆X
ui∈S

i−1∑
j=0

xjS −
k∑
j=i

xjS

 ∀1 ≤ i ≤ k

xiS ≥ 0 ∀0 ≤ i ≤ k, S ⊆ X.

A few remarks are in place. First, since (6.3) is not a linear constraint, we have
represented it as two constraints in the Integer Linear Programming
instance.

Second, formally, in the integer linear program above, we do not require yi
to be exactly the imbalance at ui, but to be at least this imbalance. However,
the minimization criterion forces yi to be actually equal to the imbalance at
ui.

Finally, observe that the maximum possible value of a variable xiS is less
than n, the maximum possible value of a variable yi in an optimal solution
(where the inequality (6.3) is in fact an equality) is less than n, and the maxi-
mum absolute value of a coe�cient ziS is, again, less than n. Consequently, an
application of Theorem 6.5 on our Integer Linear Programming instance

runs in 22
O(k)

nO(1) time, and we obtain the following result.

Theorem 6.7. The Imbalance problem, parameterized by the size of a pro-
vided vertex cover of the input graph, is �xed-parameter tractable.
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6.3 Graph minors and the Robertson-Seymour theorem

In this section, we discuss the minor relation in graphs and the algorithmic
usage of the Robertson-Seymour theorem.

For a graph G and an edge uv ∈ G, we de�ne the operation of contracting
edge uv as follows: we delete vertices u and v from G, and add a new vertex
wuv adjacent to (NG(u) ∪ NG(v)) \ {u, v} (i.e., to all vertices that u or v
was adjacent to in G). Observe that contraction de�ned as above does not
introduce any multiple edges or loops (note that we used a di�erent de�nition
when treating Feedback Vertex Set in Section 3.3). Let G/uv be the
graph obtained by contracting edge uv in G.

We say that a graph H is a minor of G, denoted by H ≤m G, if H
can be obtained from some subgraph of G by a series of edge contractions.
Equivalently, we may say that H is a minor of G if H can be obtained from
G itself by a series of edge deletions, edge contractions and vertex deletions.

There is also a di�erent de�nition that in some cases is more convenient:
H is a minor of G if for every h ∈ V (H) we can assign a nonempty branch
set Vh ⊆ V (G), such that

(a) G[Vh] is connected;
(b) for di�erent g, h ∈ V (H), the branch sets Vg and Vh are disjoint; and
(c) for every gh ∈ E(H) there exists an edge vgvh ∈ E(G) such that vg ∈ Vg

and vh ∈ Vh.
Such a family (Vh)h∈V (H) of branch sets is called a minor model of H in G.
Exercise 6.12 asks the reader to check the equivalence of the aforementioned
de�nitions.

The minor relation in some sense preserves the topological properties of a
graph, for example, whether a graph is a planar graph.

Let us now clarify what we mean by a planar graph, or a graph embedded
into the plane. First, instead of embedding into the plane we will equivalently
embed our graphs into a sphere: in this manner, we do not distinguish unnec-
essarily the outer face of the embedding. Formally, an embedding of a graph
G into a sphere is a mapping that maps (a) injectively each vertex of G into a
point of the sphere, and (b) each edge uv of G into a Jordan curve connecting
the images of u and v, such that the curves are pairwise disjoint (except for
the endpoints) and do not pass through any other image of a vertex. A face
is a connected component of the complement of the image of G in the sphere;
if G is connected, each face is homeomorphic to an open disc. A planar graph
is a graph that admits an embedding into a sphere, and a plane graph is a
planar graph together with one �xed embedding.

It is easy to observe the following.

Proposition 6.8. A minor of a planar graph is also planar.
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1

Fig. 6.2: Torus

Indeed, removing edges and vertices surely cannot make a planar graph non-
planar and it is not di�cult to modify a planar embedding to express the
contraction of an edge.

A statement similar to Proposition 6.8 holds when we generalize planar
graphs to graphs drawn on some other, more complicated, but �xed surface.
In this chapter, we discuss graphs drawn on surfaces only very brie�y and
informally, as they only serve here as a demonstration of certain concepts in
the theory of graph minors. It is well known that a graph can be drawn on
the plane if and only if it can be drawn on the sphere. However, there are
graphs that can be drawn on the torus (the doughnut-shaped surfaced shown
on Fig. 6.2), but not on the sphere � the clique K5 is such a graph. One
way to construct surfaces is to add some number of �handles� to a sphere: for
example, we may consider the torus as a sphere with a handle attached to it.
There are other, more weird surfaces, such as the Klein bottle or the projective
plane, that cannot be obtained this way and where we need to introduce an
orientation-changing construction called a cross-cap, along with handles.
We do not go into the exact de�nitions and details of these constructions,
all we want to state here is that if a graph G is embeddable in a surface
Σ, and H is a minor of G, then H is embeddable on Σ as well. For readers
interested in Topological Graph Theory, we provide references to sources in
the bibliographic notes at the end of this chapter.

It will be very important for some of the applications that certain struc-
tural parameters are monotone with respect to taking minors: for example,
the minimum size of a vertex cover or feedback vertex set is not increased
when taking the minor of a graph. The proof of the following proposition is
left as an exercise (Exercise 6.13).

Proposition 6.9. Let G be a graph, let X ⊆ V (G) be a vertex cover (feedback
vertex set) of G, and let H be a minor of G. Then there exists a vertex cover
(feedback vertex set) of H of size at most |X|.
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Another example of a graph property that cannot increase if we go to a minor
of a graph is treewidth, discussed in Chapter 7.

Although the minor relation is already interesting in itself, the main thrust
to its usability is given by the following seminal result of Robertson and
Seymour.

Theorem 6.10 (Robertson and Seymour). The class of all graphs is
well-quasi-ordered by the minor relation. That is, in any in�nite family of
graphs, there are two graphs such that one is a minor of the other.

The statement of the Robertson-Seymour theorem above is sometimes re-
ferred to in the literature as the Wagner's conjecture or the graph minors
theorem. In what follows, we stick to the name Robertson-Seymour theorem.
As we shall see in the rest of this section, the Robertson-Seymour theorem is
a very powerful tool in parameterized complexity.

Consider a class of graphs G. We say that G is closed under taking minors
or minor-closed if for every G ∈ G and every minor H of G, the graph H
belongs to G as well. For example, by Proposition 6.8, the class of planar
graphs, or more generally, graphs embeddable on a surface of �xed genus g,
is minor-closed. Proposition 6.9 asserts that, for every �xed k, the class of
graphs admitting a vertex cover of size at most k or a feedback vertex set of
size k, is minor-closed.

We observe now the following crucial corollary of the Robertson-Seymour
theorem.

Corollary 6.11. For every minor-closed graph class G, there exists a �nite
set Forb(G) of graphs with the following property: for every graph G, graph G
belongs to G if and only if there does not exist a minor of G that is isomorphic
to a member of Forb(G).

Proof. De�ne Forb(G) to be the set of minor-minimal elements of the comple-
ment of G: a graph G is in Forb(G) if G is not in G, but every proper minor
of G is in G. We keep only one representative of every isomorphism class.
By de�nition, Forb(G) has the desired property; it remains to check only its
�niteness. However, if Forb(G) is in�nite, then the Robertson-Seymour the-
orem implies that there exists H,G ∈ Forb(G) such that H ≤m G. However,
then G is not minimal with respect to the minor relation, contradicting the
de�nition of Forb(G). ut

The family Forb(G) is often called the family of minimal forbidden minors
for G.

For example, by Wagner's theorem, a graph is planar if and only if it does
not contain K5 and K3,3 as a minor. Thus for planar graphs Corollary 6.11
is not so interesting. However, already for the class of graphs embeddable in
a torus (see Fig 6.2) the situation is not that clear. By Corollary 6.11, we
know that the family of forbidden minors for this class is �nite, but their
number can be enormous and it is not clear how we can �nd them e�ciently.
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Currently, more than 16,000 graphs are known from the family of forbidden
minors for the class of graphs embeddable in the torus. More generally, for
graphs embeddable on a surface of genus g, i.e., a sphere with g handles,
we only know that the number of forbidden minimal minors for this class of
graphs is bounded by some function of g. Similarly, by Corollary 6.11, for
every �xed k, the class of graphs admitting a vertex cover of size at most k
has a forbidden family of minimal minors of size f(k) for some function f .

It is important to note here that the proof of Corollary 6.11 is noncon-
structive, i.e., while we know that set Forb(G) is �nite, we do not know how
to construct it and we do not know how to estimate its size.

We need one more algorithmic result of the Graph Minors project.

Theorem 6.12 (Robertson and Seymour). There exists a computable
function f and an algorithm that, for given graphs H and G, checks in time
f(H)|V (G)|3 whether H ≤m G.

Corollary 6.11 with Theorem 6.12 implies that every minor-closed class
can be recognized in polynomial time.

Theorem 6.13. Let G be a minor-closed graph class. There is a constant cG
depending on the class G only, such that for any n-vertex graph G, deciding
whether G ∈ G can be done in time cG · n3.

Proof. By Corollary 6.11, there exists a family Forb(G) that characterizes G
and whose size and the sizes of its elements are at most some constant c′G
depending only on G. Consider the following algorithm: iterate through all
graphs H ∈ Forb(G) and use Theorem 6.12 to check if H ≤m G. If this is
the case for at least one graph H ∈ Forb(G), then G /∈ G and we answer that
G 6∈ G. Otherwise, by the properties of Forb(G), we have that G ∈ G.

Let us bound the running time of the algorithm. By Theorem 6.12, for
every H ∈ Forb(G), we check whether H is a minor of G in time f(H) ·
n3 ≤ f(c′G) · n3. The size of Forb(G) does not exceed c′G , and by putting
cG = c′G · f(c′G), we conclude the proof of the theorem. ut

Let us now apply Theorem 6.13 to Vertex Cover. Let (G, k) be a Ver-
tex Cover instance. By Proposition 6.9, the class Gk of graphs admitting
a vertex cover of size at most k is minor-closed. Thus by Theorem 6.13, for
every k ≥ 0, there is an algorithm deciding if a graph G is in Gk in time ck ·n3,
where constant ck depends only Gk, that is ck = f(k) for some function f .
Have we just shown another proof that Vertex Cover is �xed-parameter
tractable?

Well, not exactly. Given only the integer k, we do not know the family
Forb(Gk) � Corollary 6.11 only asserts its existence and �niteness � and
the knowledge of this family or at least its size is essential for further steps. In
general, it seems hard to get around the problem of obtaining the forbidden
minors: for example, it was shown by Fellows and Langston in [184] that,
given only oracle access to a membership test for a minor-closed class G,
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one cannot compute Forb(G). However, we have at least proved the following
statement, which is somewhat weaker than �xed-parameter tractability. It
should be noted that we obtained this result without any algorithmic insight
into the problem: we only used the general tool Theorem 6.13 and the fact
that the vertex cover number does not increase when taking minors.

Corollary 6.14. For every k, there is a constant ck and an algorithm that,
given an n-vertex graph G, checks in time ck · n3 if G admits a vertex cover
of size at most k.

Corollary 6.14 asserts the existence of a family of algorithms, one for every
k, and the forbidden minors Forb(Gk) are hard-coded into the algorithm for
the parameter k. Such a conclusion as in Corollary 6.14 is called nonuniform
�xed-parameter tractability. .

De�nition 6.15. We say that a parameterized problem Q is nonuniformly
�xed-parameter tractable if there exists a constant α, a function f : N → N,
and a collection of algorithms (Ak)k∈N such that the following holds. For
every k ∈ N and every input x, the algorithm Ak accepts input x if and only
if (x, k) is a yes-instance of Q, and the running time of Ak on x is at most
f(k)|x|α.

The above notion should be contrasted with our de�nition of �xed-parameter
tractability, where we require that there exists a single algorithm that takes
k on input and works for all values of k. To emphasize the di�erence, our
�standard� FPT algorithms are sometimes called (strongly) uniform.

Let us now generalize Corollary 6.14 to a wider set of problems. Let G
be a graph class. Many interesting problems can be de�ned as special cases
of the following generic G Vertex Deletion problem: for a given graph
G and integer k, does there exist a set X of at most k vertices of G such
that G−X ∈ G? For example, when G is the class of graphs without edges,
G Vertex Deletion is Vertex Cover. When G is the class of forests, G
Vertex Deletion is Feedback Vertex Set, and when G is planar, G
Vertex Deletion is Planar Vertex Deletion, that is, the problem of
whether a given graph G can be turned into a planar graph by deleting at
most k vertices (we study this problem in detail in Section *7.8).

From a graph-theoretical point of view, the following formulation seems
more natural. For a graph class G and an integer k, let G + kv be a class of
graphs de�ned as follows:

G ∈ G + kv if and only if ∃X ⊆ V (G) : (|X| ≤ k) ∧ (G−X ∈ G).

That is, G + kv are exactly these graphs G for which (G, k) is a yes-instance
to G Vertex Deletion. For this reason, the G Vertex Deletion problem
is sometimes called G + kv Recognition.

Proposition 6.9 generalizes to the following statement (see Exercise 6.14):
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Proposition 6.16. For every minor-closed graph class G and for every inte-
ger k, the class G + kv is also minor-closed.

Let us note that the only property of Vertex Cover we have used to
derive Corollary 6.14 is that the class of graphs with vertex cover at most k
is minor-closed. Thus we have the following theorem.

Theorem 6.17. For every minor-closed class G, the problem G Vertex
Deletion is nonuniformly �xed-parameter tractable, when parameterized by
k.

Although the notion of nonuniform �xed-parameter tractability evidently
captures more problems than the standard, uniform one,1 we believe that
there is no signi�cant di�erence among the �interesting� problems. In par-
ticular, it is very likely that the theory of �xed-parameter intractability and
W[1]-hardness described in Chapter 13 excludes also nonuniform FPT algo-
rithms. That is, our conjecture is that no W[1]-hard problem is nonuniformly
�xed-parameter tractable.

Thus while Theorem 6.13 does not bring us to an FPT algorithm, it is
very convenient to use it to make an �educated guess� that a problem
is FPT.

In many cases, after using Theorem 6.13 to establish that a problem is
nonuniformly FPT and hence very likely to be uniformly FPT as well, we
can use other, more concrete techniques to prove that the problem is indeed
uniformly FPT. For example, Vertex Cover and Feedback Vertex Set
are special cases of G Vertex Deletion and thus by Theorem 6.17 are
nonuniformly FPT. On the other hand, we already saw FPT algorithms for
these problems in Chapter 3. For Planar Vertex Deletion, we give an
FPT algorithm in Section *7.8. Another example is the Graph Genus prob-
lem: for a given graph G and integer k decide whether G can be embedded
in a surface of genus k, i.e. a surface with k handles. The class of graphs
of genus at most k is minor-closed and thus Graph Genus is nonuniformly
�xed-parameter tractable. An explicit FPT algorithm for Graph Genus has
been given by Mohar [365]. There are also some general techniques for mak-
ing the algorithms resulting from Theorem 6.13 uniform, but they work only
for a limited set of problems [183, 5].

In Exercises 6.16 and 6.17, we give two other examples of usages of
the Robertson-Seymour theorem: Planar Diameter Improvement (does
graph G have a planar supergraph with diameter at most k?) and Linkless
Embedding (does graph G have an embedding in three-dimensional space

1 The standard examples for P vs. P /poly apply here: any undecidable unary language,
parameterized by the length of the input, does not admit a (uniform) FPT algorithm (since
it is undecidable), but there is a trivial nonuniform one, as every algorithm Ak is supposed
to handle only one input.
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such that at most k cycles can link pairwise?). In both cases, the existence
of a uniform FPT algorithm remains open.

Exercises

6.1 (l). Using dynamic programming over the subsets, obtain an algorithm for Chro-
matic Number on n-vertex graphs running in time 3nnO(1).

6.2 (l). Using dynamic-programming over subsets, show that the Hamiltonian Cycle
problem on an n-vertex graph can be solved in time 2nnO(1).

6.3. For an n× n matrix A = (ai,j)1≤i,j≤n, the permanent of A is the value perm(A) =∑
σ

∏n
i=1 ai,σ(i), where the sum extends over all permutations σ of {1, 2, . . . , n}. (This is

very similar to the de�nition of the determinant, but we do not have here the 1 or −1 factor
depending on the number of inversions in the permutation.) Using dynamic programming
over subsets, show how to compute the permanent of a given n×n matrix in time 2nnO(1).

6.4. Using dynamic programming over subsets, show that Directed Feedback Arc Set
on n-vertex graphs can be solved in time 2nnO(1).

6.5 (A). Let G be an undirected bipartite graph on n vertices. Show that we can �nd a
minimum size dominating set in G in time 2n/2nO(1).

6.6 (A). Show that Connected Vertex Cover admits an algorithm with running time
6knO(1). You might need to use an algorithm for Steiner Tree of Theorem 6.3.

6.7. Given a directed graph G, a set of terminals K ⊆ V (G) and a root r ∈ V (G),
Directed Steiner Tree asks for a directed tree rooted at r such that every terminal
in K is reachable from r on the tree. Obtain a 3|K|nO(1)-time algorithm for Directed
Steiner Tree.

6.8 (A). Consider the following restricted variant of Steiner Tree: assume G is a plane
graph, and all terminals lie on the in�nite face of G. Show how to enhance the dynamic-
programming algorithm of Theorem 6.3 to run in polynomial time in this restricted case.

6.9 (A). Improve the algorithm of Theorem 6.3 so that the factor in the running time
bound that depends on the size of the input graph equals the running time of a single-
source shortest-path algorithm. That is, obtain a 3|K||K|O(1)(n + m)-time algorithm for
unweighted graphs and 3|K||K|O(1)(n logn+m)-time for the general, weighted case.

In the next two exercises we revisit the Closest String problem, which was already
considered in Chapter 3. Recall that in this problem we are given a set of k strings
x1, x2, . . . , xk over alphabet Σ, each of length L, and an integer d. The task is to �nd
a string y of length L such that the Hamming distance between y and xi is at most d, for
every 1 ≤ i ≤ k. In Section 3.5 we designed an FPT algorithm for this problem parameter-
ized by d, while in Exercise 3.25 you were asked to design an algorithm that is faster when
the alphabet size is small. This time, we consider the parameterization by k, the number
of strings.

6.10 (A). Prove that Closest String is �xed-parameter tractable when parameterized
by k and |Σ|.
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6.11 (A). Re�ne the solution of the previous exercise to show that Closest String is
�xed-parameter tractable when parameterized by k only.

6.12 (l). Prove that the two de�nitions of the minor relation, mentioned in Section 6.3,
are equivalent.

6.13 (l). Show that vertex cover and feedback vertex set are minor-closed parameters.
In other words, for any minor H of graph G, if G admits a vertex cover (feedback vertex
set) of size at most k, then H admits a vertex cover (feedback vertex set) of size at most
k as well.

6.14. Prove Proposition 6.16.

6.15 (l). In the Max Leaf Subtree problem, we are given a graph G together with an
integer k and the question is whether there is a subtree T of G with at least k leaves.

1. Show that (G, k) is a yes-instance if and only if K1,k (a graph with a center vertex
connected to k degree-one vertices) is a minor of G.

2. Deduce that Max Leaf Subtree is nonuniformly �xed-parameter tractable, when
parameterized by k.

6.16. In the Planar Diameter Improvement problem, the input consists of a planar
graph G and an integer k, and the task is to check if there exists a supergraph of G that
is still planar, and at the same time has diameter at most k.

1. Prove that this problem is nonuniformly �xed-parameter tractable, when parameter-
ized by k.

2. Show that it su�ces to consider supergraphs only G′ of G with V (G′) = V (G); that
is, it only makes sense to add edges to G, and adding new vertices does not help.

6.17. Let G be a graph embedded into R3 (that is, every vertex of G corresponds to some
point in R3, and every edge of G corresponds to some su�ciently regular curve connecting
its endpoints; the edges/vertices do not intersect unless it is imposed by the de�nition). Two
vertex-disjoint cycles C1 and C2 are said to be linked in this embedding if the corresponding
closed curves in R3 cannot be separated by a continuous deformation (i.e., they look like
two consecutive links of a chain). A family C of pairwise vertex-disjoint cycles is pairwise
linked if every two distinct cycles from the family are linked. In the Linkless Embedding
problem, given a graph G and an integer k, we ask whether there exists an embedding of
G into R3 such that any pairwise linked family of cycles in G has size at most k. Prove
that this problem is nonuniformly �xed-parameter tractable, when parameterized by k.

6.18. In the Face Cover problem, we are given a planar graph G and an integer k, and
the task is to check if there exists a planar embedding of G and a set of at most k faces
in this embedding, such that every vertex of G lies on one of the chosen faces. Prove that
this problem is nonuniformly �xed-parameter tractable, when parameterized by k.

6.19. In the Cycle Packing problem the input is a graph G with an integer k and the
task is to determine whether there exist k cycles in G that are pairwise vertex disjoint.
Prove that this problem is nonuniformly �xed-parameter tractable, when parameterized
by k.
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Hints

6.1 In the dynamic-programming table, for every X ⊆ V (G), de�ne T [X] to be the
minimum possible number of colors needed to color G[X]. For the base case, observe that
T [X] = 1 if and only if X is a nonempty independent set in G.

6.2 Fix a vertex s ∈ V (G). In the dynamic-programming table, for every set X ⊆ V (G)

that contains s, and every t ∈ V (G) \ X, de�ne T [X, t] to be a Boolean value indicating
whether there exists in G a simple path with endpoints s and t and vertex set X ∪ {t}.

6.3 In the dynamic-programming table, for every X ⊆ {1, 2, . . . , n}, de�ne T [X] to be the
permanent of the |X| × |X| matrix (ai,j)1≤i≤|X|,j∈X .

6.4 In the dynamic-programming table, for every X ⊆ V (G), de�ne T [X] to be the
minimum possible number of edges of G[X] whose deletion makes G[X] acyclic. For a
recursive formula, for �xed set X, consider all possible choices of a vertex v ∈ X that
is the last vertex in the topological ordering of G[X] after the solution edges have been
deleted.

6.5 Let A and B be the bipartition sides of the input bipartite graph G and without loss
of generality assume |A| ≤ |B|, in particular, |A| ≤ n/2. In general, perform a dynamic-
programming algorithm like that of Theorem 6.1 for Set Cover instance with universe
A and set family {NG(b) : b ∈ B}. However, to ensure that the side B is dominated,
and at the same time allow some vertices of A to be chosen into a dominating set, change
the base case as follows. Let D be a minimum size dominating set in G and observe that
B \ NG(D ∩ A) ⊆ D. For every possible guess of DA ⊆ A for the set D ∩ A, we would
like to allow in the dynamic-programming routine an option of taking DA ∪ (B \NG(DA))

into the solution; from the point of view of the Set Cover instance with universe A, this
translates to covering DA ∪ NG(B \ NG(DA)) at cost |DA| + |B \ NG(DA)|. To achieve
this goal, we compute the values T [X, 0] as follows.

1. First set T [X, 0] = +∞ for every X ⊆ A.
2. For every DA ⊆ A, de�ne X = DA ∪ NG(B \ NG(DA)) and set T [X, 0] :=

min(T [X, 0], |DA|+ |B \NG(DA)|).
3. For every X ⊆ A in the decreasing order of the size of X, and for every v ∈ A \ X,

set T [X, 0] := min(T [X, 0], T [X ∪ {v}, 0]).

In this manner, T [X, 0] equals a minimum possible size of a set DA ∪ (B \NG(DA)) that
dominates X, over all DA ⊆ A.

6.6 Observe that Connected Vertex Cover can be seen as a two-stage problem: �rst
choose some vertex cover K of the input graph G, of size at most k, and then connect
K using minimum size Steiner tree for K. Furthermore, note that the straightforward
branching algorithm for Vertex Cover runs in 2knO(1) time and in fact outputs all
inclusion-wise minimal vertex covers of G of size at most k.

6.8 The main observation is as follows: it su�ces to consider only sets D ⊆ K that consist
of a number of terminals that appear consecutively on the in�nite face of the input graph.
In this way, there are only O(|K|2) sets D to consider.

6.9 The main idea is to perform the computations in a di�erent order: for a �xed choice
of sets D′ and D, we would like to compute

T ′[D,D′, v] = min
w∈V (G)\K

T [D′, w] + T [D \D′, w] + distG(v, w).

for all vertices v ∈ V (G) \K using a single run of a single source shortest path algorithm.
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To this end, create an auxiliary graph G′ as follows: create a new vertex s and for every
w ∈ V (G) \K create an edge sw of weight T [D′, w] + T [D \D′, w]. Observe that for every
v ∈ V (G), we have distG′ (s, v) = T ′[D,D′, v]. Hence, to compute the values T ′[D,D′, v]

for all vertices v, it su�ces to run a single source shortest path algorithm from s in the
graph G′.

To obtain linear time in the unweighted case, observe that in this case all weights of
the edges sw are positive integers of order O(n), and still a single source shortest path
algorithm can be performed in linear time.

6.10 We shall use integer linear programming, so as to avoid confusion with variables we
use notation s1, s2, . . . , sk for the input strings.

For every position 1 ≤ j ≤ L, let si[j] be the j-th letter of the string si, and let
sj = (s1[j], s2[j], . . . , sk[j]) ∈ Σk be the tuple at position j. De�ne an Integer Linear
Programming instance using the following variables: for every s ∈ Σk and for every
σ ∈ Σ, the variable xs,σ counts the number of positions j such that sj = s and, in the
solution s, the letter at position j is exactly σ.

6.11 Improve the approach of the previous exercise in the following way: we say that two
tuples s, s′ ∈ Σk are equivalent if, for every 1 ≤ i, i′ ≤ k, we have s(i) = s(i′) if and only
if s′(i) = s′(i′). Show that the variables corresponding to equivalent tuples can be merged
(you need to be careful here with the index σ) and you can have only kO(k) variables in
your Integer Linear Programming instance.

6.14 Let G ∈ G + kv and let X ⊆ V (G) be such that |X| ≤ k and G−X ∈ G. Let H be
a minor of G, and let (Vh)h∈V (H) be a minor model of H in G. De�ne Y = {h ∈ V (H) :

X ∩ Vh 6= ∅}. Clearly, |Y | ≤ |X| ≤ k. Let Z =
⋃
h∈Y Vh ⊆ V (G). Observe that G− Z is a

subgraph of G−X. Moreover, (Vh)h∈V (H)\Y is a minor model of H − Y in G− Z. Since
G is minor-closed, we have H − Y ∈ G and, consequently, H ∈ G + kv.

6.16 The main observation is that edge contraction cannot increase a diameter. Deduce
from this fact that, for every �xed k, the class of graphs G for which (G, k) is a yes-instance
to Planar Diameter Improvement is minor-closed.

6.19 Again, show that for �xed k, the class of graphs G for which (G, k) is a yes-instance
is minor-closed.
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Chapter 7

Treewidth

The treewidth of a graph is one of the most frequently
used tools in parameterized algorithms. Intuitively,
treewidth measures how well the structure of a graph
can be captured by a tree-like structural decomposition.
When the treewidth of a graph is small, or equivalently
the graph admits a good tree decomposition, then many
problems intractable on general graphs become e�-
ciently solvable. In this chapter we introduce treewidth
and present its main applications in parameterized
complexity. We explain how good tree decompositions
can be exploited to design fast dynamic-programming
algorithms. We also show how treewidth can be used
as a tool in more advanced techniques, like shifting
strategies, bidimensionality, or the irrelevant vertex
approach.

In Section 6.3, we gave a brief overview on how the deep theory of Graph
Minors of Robertson and Seymour can be used to obtain nonconstructive
FPT algorithms. One of the tools de�ned by Robertson and Seymour in
their work was the treewidth of a graph. Very roughly, treewidth captures
how similar a graph is to a tree. There are many ways to de�ne �tree-likeness�
of a graph; for example, one could measure the number of cycles, or the
number of vertices needed to be removed in order to make the graph acyclic.
However, it appears that the approach most useful from algorithmic and
graph theoretical perspectives, is to view tree-likeness of a graph G as the
existence of a structural decomposition of G into pieces of bounded size that
are connected in a tree-like fashion. This intuitive concept is formalized via
the notions of a tree decomposition and the treewidth of a graph; the latter
is a quantitative measure of how good a tree decomposition we can possibly
obtain.

Treewidth is a fundamental tool used in various graph algorithms. In pa-
rameterized complexity, the following win/win approach is commonly ex-

151
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ploited. Given some computational problem, let us try to construct a good
tree decomposition of the input graph. If we succeed, then we can use dy-
namic programming to solve the problem e�ciently. On the other hand, if
we fail and the treewidth is large, then there is a reason for this outcome.
This reason has the form of a combinatorial obstacle embedded in the graph
that forbids us to decompose it expeditiously. However, the existence of such
an obstacle can also be used algorithmically. For example, for some problems
like Vertex Cover or Feedback Vertex Set, we can immediately con-
clude that we are dealing with a no-instance in case the treewidth is large.
For other problems, like Longest Path, large treewidth implies that we are
working with a yes-instance. In more complicated cases, one can examine the
structure of the obstacle in the hope of �nding a so-called irrelevant vertex
or edge, whose removal does not change the answer to the problem. Thus,
regardless of whether the initial construction of a good tree decomposition
succeeded or failed, we win: we solve the problem by dynamic programming,
or we are able to immediately provide the answer, or we can simplify the
problem and restart the algorithm.

We start the chapter by slowly introducing treewidth and tree decom-
positions, and simultaneously showing connections to the idea of dynamic
programming on the structure of a graph. In Section 7.1 we build the intu-
ition by explaining, on a working example ofWeighted Independent Set,
how dynamic-programming procedures can be designed on trees and on sub-
graphs of grids. These examples bring us naturally to the de�nitions of path
decompositions and pathwidth, and of tree decompositions and treewidth;
these topics are discussed in Section 7.2. In Section 7.3 we provide the full
framework of dynamic programming on tree decompositions. We consider
carefully three exemplary problems: Weighted Independent Set, Dom-
inating Set, and Steiner Tree; the examples of Dominating Set and
Steiner Tree will be developed further in Chapter 11.

Section 7.4 is devoted to connections between graphs of small treewidth
and monadic second-order logic on graphs. In particular, we discuss a power-
ful meta-theorem of Courcelle, which establishes the tractability of decision
problems de�nable in Monadic Second-Order logic on graphs of bounded
treewidth. Furthermore, we also give an extension of Courcelle's theorem to
optimization problems.

In Section 7.5 we present a more combinatorial point of view on pathwidth
and treewidth, by providing connections between these graph parameters,
various search games on graphs, and classes of interval and chordal graphs.
While these discussions are not directly relevant to the remaining part of this
chapter, we think that they give an insight into the nature of pathwidth and
treewidth that is invaluable when working with them.

In Section 7.6 we address the question of how to compute a reasonably good
tree decomposition of a graph. More precisely, we present an approximation
algorithm that, given an n-vertex graph G and a parameter k, works in time
O(8kk2 · n2) and either constructs a tree decomposition of G of width at
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most 4k + 4, or reports correctly that the treewidth of G is more than k.
Application of this algorithm is usually the �rst step of the classic win/win
framework described in the beginning of this section.

We then move to using treewidth and tree decompositions as tools in
more involved techniques. Section 7.7 is devoted to applications of treewidth
for designing FPT algorithms on planar graphs. Most of these applications
are based on deep structural results about obstacles to admitting good tree
decompositions. More precisely, in Section 7.7.1 we introduce the so-called
Excluded Grid Theorem and some of its variants, which states that a graph
of large treewidth contains a large grid as minor. In the case of planar graphs,
the theorem gives a very tight relation between the treewidth and the size
of the largest grid minor that can be found in a graph. This fact is then
exploited in Section 7.7.2, where we introduce the powerful framework of
bidimensionality, using which one can derive parameterized algorithms on
planar graphs with subexponential parametric dependence of the running
time. In Section 7.7.3 we discuss the parameterized variant of the shifting
technique; a reader familiar with basic results on approximation algorithms
may have seen this method from a di�erent angle. We apply the technique
to give �xed-parameter tractable algorithms on planar graphs for Subgraph
Isomorphism and Minimum Bisection.

In Section *7.8 we give an FPT algorithm for a problem where a more
advanced version of the treewidth win/win approach is implemented. More
precisely, we provide an FPT algorithm for Planar Vertex Deletion, the
problem of deleting at most k vertices to obtain a planar graph. The crux of
this algorithm is to design an irrelevant vertex rule: to prove that if a large
grid minor can be found in the graph, one can identify a vertex that can be
safely deleted without changing the answer to the problem. This technique is
very powerful, but also requires attention to many technical details. For this
reason, some technical steps of the correctness proof are omitted.

The last part of this chapter, Section 7.9, gives an overview of other graph
parameters related to treewidth, such as branchwidth and rankwidth.

7.1 Trees, narrow grids, and dynamic programming

Imagine that you want to have a party and invite some of your colleagues
from work to come to your place. When preparing the list of invitations, you
would like to maximize the total fun factor of the invited people. However,
from experience you know that there is not much fun when your direct boss
is also invited. As you want everybody at the party to have fun, you would
rather avoid such a situation for any of the invited colleagues.

We model this problem as follows. Assume that job relationships in your
company are represented by a rooted tree T . Vertices of the tree represent
your colleagues, and each v ∈ V (T ) is assigned a nonnegative weight w(v)
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that represents the amount of contributed fun for a particular person. The
task is to �nd the maximum weight of an independent set in T , that is, of a
set of pairwise nonadjacent vertices. We shall call this problem Weighted
Independent Set.

This problem can be easily solved on trees by making use of dynamic
programming. As usual, we solve a large number of subproblems that depend
on each other. The answer to the problem shall be the value of a single, top-
most subproblem. Assume that r is the root of the tree T (which corresponds
to the superior of all the employees, probably the CEO). For a vertex v of
T , let Tv be the subtree of T rooted at v. For the vertex v we de�ne the
following two values:

� Let A[v] be the maximum possible weight of an independent set in Tv.
� Let B[v] be the maximum possible weight of an independent set in Tv that

does not contain v.

Clearly, the answer to the whole problem is the value of A[r].
Values of A[v] and B[v] for leaves of T are equal tow(v) and 0, respectively.

For other vertices, the values are calculated in a bottom-up order. Assume
that v1, . . . , vq are the children of v. Then we can use the following recursive
formulas:

B[v] =

q∑
i=1

A[vi]

and

A[v] = max
{
B[v],w(v) +

q∑
i=1

B[vi]
}
.

Intuitively, the correctness of these formulas can be explained as follows. We
know that B[v] stores the maximum possible weight of an independent set
in Tv that does not contain v and, thus, the independent set we are seeking
is contained in Tv1 , . . . , Tvq . Furthermore, since Tv is a tree, there is no edge
between vertices of two distinct subtrees among Tv1 , . . . , Tvq . This in turn
implies that the maximum possible weight of an independent set of Tv that
does not contain v is the sum of maximum possible weights of an independent
set of Tvi , i ∈ {1, . . . , q}. The formula for A[v] is justi�ed by the fact that
an independent set in Tv of the maximum possible weight either contains v,
which is taken care of by the term w(v) +

∑q
i=1B[vi], or does not contain v,

which is taken care of by the term B[v]. Therefore, what remains to do is to
calculate the values of A[v] and B[v] in a bottom-up manner in the tree T , and
�nally read the answer from A[r]. This procedure can be clearly implemented
in linear time. Let us remark that with a slight modi�cation of the algorithm,
using a standard method of remembering the origin of computed values as
backlinks, within the same running time one can �nd not only the maximum
possible weight, but also the corresponding independent set.

Let us now try to solveWeighted Independent Set on a di�erent class
of graphs. The problem with trees is that they are inherently �thin�, so let us
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X4X3

Fig. 7.1: A subgraph of a 4 × 8 grid, with the third and the fourth columns
highlighted. When computing c[4, Y ] for the forbidden set Y = {(2, 4)}
(crossed out in the fourth column), one of the sets S we consider is S =
{(1, 4), (4, 4)}, depicted with blue circles. Then, when looking at the previous
column we need to forbid picking neighbors (1, 3) and (4, 3) (crossed out in
the third column), since this would violate the independence constraint

try to look at graphs that are �thicker� in nature, like grids. Since the class
of grids is not very broad, let us rather focus on subgraphs of grids. More
precisely, assume that we are given a graph G that is a subgraph of a k ×N
grid. The vertex set of a k ×N grid consists of all pairs of the form (i, j) for
1 ≤ i ≤ k and 1 ≤ j ≤ N , and two pairs (i1, j1) and (i2, j2) are adjacent
if and only if |i1 − i2| + |j1 − j2| = 1. Graph G is a subgraph of an k × N
grid, which means that some vertices and edges of the grid can be missing
in G. Figure 7.1 presents an example of a subgraph of a 4 × 8 grid. In our
considerations, we will think of the number of rows k as quite small (say,
k = 10), while N , the number of columns, can be very large (say, N = 106).
Of course, since we are trying to solve the Weighted Independent Set
problem, every vertex v ∈ V (G) is assigned its weight w(v).

Let Xj be the j-th column of G, that is, Xj = V (G)∩{(i, j) : 1 ≤ i ≤ k}.
Moreover, for 1 ≤ j ≤ N , let Gj = G[X1 ∪ X2 ∪ . . . ∪ Xj ] be the graph
induced by the �rst j columns. We would like to run a dynamic programming-
algorithm that sweeps the grid from left to right, column by column. In
the case of trees, we recognized two possible situations that were handled
di�erently in the two dynamic-programming tables: either the root of the
subtree was allowed to be picked into an independent set, or it was forbidden.
Mimicking this idea, let us de�ne the following function c[j, Y ] that we shall
compute in the algorithm. For Y ⊆ Xj , we take the following de�nition:

c[j, Y ] = maximum possible weight of an independent set in Gj − Y .

In other words, we are examining graph Gj , and we look for the best possible
independent set that avoids picking vertices from Y . We now move on to
explaining how the values of c[j, Y ] will be computed.
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For j = 1, the situation is very simple. For every Y ⊆ X1, we iterate
through all possible subsets S ⊆ X1 \ Y , and for each of them we check
whether it is an independent set. Then c[1, Y ] is the largest weight among
the candidates (independent sets) that passed this test. Since for each Y ⊆ X1

we iterate through all possible subsets of X1 \ Y , in total, for all the Y s, the
number of checks is bounded by

|X1|∑
`=0

(|X1|
`

)
2|X1|−` = 3|X1| ≤ 3k. (7.1)

Here, factor
(|X1|
`

)
comes from the choice of Y (the sum iterates over ` = |Y |),

while factor 2|X1|−` represents the number of choices for S ⊆ X1 \ Y . Since
every check can be implemented in kO(1) time (assuming that for every vertex
we store a list of its neighbors), the total time spent on computing values c[1, ·]
is 3k · kO(1).

We now show how to compute the values of c[j, ·] depending on the precom-
puted values of c[j − 1, ·], for j > 1. Let us look at one value c[j, Y ] for some
Y ⊆ Xj . Similarly, for j = 1, we should iterate through all the possible ways
a maximum weight independent set intersects column Xj . This intersection
should be independent, of course, and moreover if we pick some v ∈ Xj \ Y
to the independent set, then this choice forbids choosing its neighbor in the
previous column Xj−1 (providing this neighbor exists). But for column Xj−1
we have precomputed answers for all possible combinations of forbidden ver-
tices. Hence, we can easily read from the precomputed values what is the best
possible weight of an extension of the considered intersection with Xj to the
previous columns. All in all, we arrive at the following recursive formula:

c[j, Y ] = max
S⊆Xi\Y

S is independent

{
w(S) + c[j − 1, N(S) ∩Xj−1]

}
; (7.2)

here w(S) =
∑
v∈S w(v). Again, when applying (7.2) for every Y ⊆ Xi we

iterate through all the subsets of Xj \Y . Therefore, as in (7.1) we obtain that
the total number of sets S checked, for all the sets Y , is at most 3k. Each S
is processed in kO(1) time, so the total time spent on computing values c[j, ·]
is 3k · kO(1).

To wrap up, we �rst compute the values c[1, ·], then iteratively compute
values c[j, ·] for j ∈ {2, 3, . . . , N} using (7.2), and conclude by observing that
the answer to the problem is equal to c[N, ∅]. As argued, each iteration takes
time 3k · kO(1), so the whole algorithm runs in time 3k · kO(1) ·N .

Let us now step back and look at the second algorithm that we designed.
Basically, the only property of G that we really used is that V (G) can be
partitioned into a sequence of small subsets (columns, in our case), such that
edges of G can connect only two consecutive subsets. In other words, G has
a �linear structure of separators�, such that each separator separates the part
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lying on the left of it from the part on the right. In the algorithm we actually
used the fact that the columns are disjoint, but this was not that crucial. The
main point was that only two consecutive columns can interact.

Let us take a closer look at the choice of the de�nition of the table c[j, Y ].
Let I be an independent set in a graph G that is a subgraph of a k×N grid.
For �xed column number j, we can look at the index Y in the cell c[j, Y ]

as the succinct representation of the interaction between I ∩ ⋃ja=1Xa and

I ∩ ⋃Na=j+1Xa. More precisely, assume that Y = Xj ∩ N(I ∩ Xj+1) and,

consequently, the size of C = I ∩ ⋃ja=1Xa is one of the candidates for the
value c[j, Y ]. Furthermore, let C ′ be any other candidate for the value c[j, Y ],
that is, let C ′ be any independent set in Gj \Y . Observe that then (I \C)∪C ′
is also an independent set in G. In other words, when going from the column
j to the column j + 1, the only information we need to remember is the set
Y of vertices �reserved as potential neighbors�, and, besides the set Y , we do
not care how exactly the solution looked so far.

If we now try to lift these ideas to general graphs, then the obvious thing to
do is to try to merge the algorithms for trees and for subgraphs of grids into
one. As k×N grids are just �fat� paths, we should de�ne the notion of trees of
�fatness� k. This is exactly the idea behind the notion of treewidth. In the next
section we shall �rst de�ne parameter pathwidth, which encapsulates in a more
general manner the concepts that we used for the algorithm on subgraphs of
grids. From pathwidth there will be just one step to the de�nition of treewidth,
which also encompasses the case of trees, and which is the main parameter
we shall be working with in this chapter.

7.2 Path and tree decompositions

We have gathered already enough intuition so that we are ready to introduce
formally the main notions of this chapter, namely path and tree decomposi-
tions.

Path decompositions. A path decomposition of a graph G is a sequence
P = (X1, X2, . . . , Xr) of bags, where Xi ⊆ V (G) for each i ∈ {1, 2, . . . , r},
such that the following conditions hold:

(P1)
⋃r
i=1Xi = V (G). In other words, every vertex of G is in at least one

bag.
(P2) For every uv ∈ E(G), there exists ` ∈ {1, 2, . . . , r} such that the bag
X` contains both u and v.

(P3) For every u ∈ V (G), if u ∈ Xi ∩Xk for some i ≤ k, then u ∈ Xj also
for each j such that i ≤ j ≤ k. In other words, the indices of the bags
containing u form an interval in {1, 2, . . . , r}.
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Fig. 7.2: A graph, its path and nice path decompositions

See Fig. 7.2 for example of a path decomposition. The width of a path de-
composition (X1, X2, . . . , Xr) is max1≤i≤r |Xi|−1. The pathwidth of a graph
G, denoted by pw(G), is the minimum possible width of a path decomposi-
tion of G. The reason for subtracting 1 in the de�nition of the width of the
path decomposition is to ensure that the pathwidth of a path with at least
one edge is 1, not 2. Similarly, we subtract in the de�nition of treewidth to
ensure that the treewidth of a tree is 1.

We can also interpret the bags of a path decomposition as nodes of a path
and two consecutive bags correspond to two adjacent nodes of the path. This
interpretation will become handy when we introduce tree decomposition.

For us the most crucial property of path decompositions is that they de�ne
a sequence of separators in the graph. In the following, we will say that (A,B)
is a separation of a graph G if A ∪ B = V (G) and there is no edge between
A \ B and B \ A. Then A ∩ B is a separator of this separation, and |A ∩ B|
is the order of the separation. Note that any path in G that begins in A
and ends in B must contain at least one vertex of the separator A ∩ B.
Also, for a subset A ⊆ V (G) we de�ne the border of A, denoted by ∂(A), as
the set of those vertices of A that have a neighbor in V (G) \ A. Note that
(A, (V (G) \ A) ∪ ∂(A)) is a separation with separator ∂(A). Let us remark
that by Lemma 7.1, each of the bags Xi separates vertices in the bags before
i with the vertices of the bags following after i.

Lemma 7.1. Let (X1, X2, . . . , Xr) be a path decomposition of a graph G.

Then for every j ∈ {1, . . . , r − 1} it holds that ∂(
⋃j
i=1Xi) ⊆ Xj ∩ Xj+1.

In other words, (
⋃j
i=1Xi,

⋃r
i=j+1Xi) is a separation of G with separator

Xj ∩Xj+1.
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Proof. Let us �x j and let (A,B) = (
⋃j
i=1Xi,

⋃r
i=j+1Xi). We �rst show that

∂(
⋃j
i=1Xi) = ∂(A) ⊆ Xj ∩ Xj+1. Targeting a contradiction, let us assume

that there is a u ∈ ∂(A) such that u /∈ Xj∩Xj+1. This means that there is an
edge uv ∈ E(G) such that u ∈ A, v /∈ A but also u /∈ Xj ∩Xj+1. Let i be the
largest index such that u ∈ Xi and k be the smallest index such that v ∈ Xk.
Since u ∈ A and u /∈ Xj ∩ Xj+1, (P3) implies that i ≤ j. Since v /∈ A, we
have also k ≥ j+1. Therefore i < k. On the other hand, by (P2) there should
be a bag X` containing both u and v. We obtain that ` ≤ i < k ≤ `, which is
a contradiction. The fact that A ∩B = Xj ∩Xj+1 follows immediately from
(P3). ut

Note that we can always assume that no two consecutive bags of a
path decomposition are equal, since removing one of such bags does not
violate any property of a path decomposition. Thus, a path decomposi-
tion (X1, X2, . . . , Xr) of width p naturally de�nes a sequence of separations

(
⋃j
i=1Xi,

⋃r
i=j+1Xi). Each of these separations has order at most p, because

the intersection of two di�erent sets of size at most p+ 1 has size at most p.
We now introduce sort of a �canonical� form of a path decomposition,

which will be useful in the dynamic-programming algorithms presented in
later sections. A path decomposition P = (X1, X2, . . . , Xr) of a graph G is
nice if

� X1 = Xr = ∅, and
� for every i ∈ {1, 2, . . . , r − 1} there is either a vertex v /∈ Xi such that
Xi+1 = Xi ∪ {v}, or there is a vertex w ∈ Xi such that Xi+1 = Xi \ {w}.

See Fig. 7.2 for example.
Bags of the form Xi+1 = Xi ∪ {v} shall be called introduce bags (or in-

troduce nodes, if we view the path decomposition as a path rather than a
sequence). Similarly, bags of the form Xi+1 = Xi \ {w} shall be called forget
bags (forget nodes). We will also say that Xi+1 introduces v or forgets w. Let
us note that because of (P3), every vertex of G gets introduced and becomes
forgotten exactly once in a nice path decomposition, and hence we have that
r, the total number of bags, is exactly equal to 2|V (G)|+ 1. It turns out that
every path decomposition can be turned into a nice path decomposition of
at most the same width.

Lemma 7.2. If a graph G admits a path decomposition of width at most p,
then it also admits a nice path decomposition of width at most p. Moreover,
given a path decomposition P = (X1, X2, . . . , Xr) of G of width at most p,
one can in time O(p2 ·max(r, |V (G)|)) compute a nice path decomposition of
G of width at most p.

The reader is asked to prove Lemma 7.2 in Exercise 7.1.

Tree decompositions. A tree decomposition is a generalization of a path
decomposition. Formally, a tree decomposition of a graph G is a pair T =
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(T, {Xt}t∈V (T )), where T is a tree whose every node t is assigned a vertex
subset Xt ⊆ V (G), called a bag, such that the following three conditions
hold:

(T1)
⋃
t∈V (T )Xt = V (G). In other words, every vertex of G is in at least

one bag.
(T2) For every uv ∈ E(G), there exists a node t of T such that bag Xt

contains both u and v.
(T3) For every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt}, i.e., the set

of nodes whose corresponding bags contain u, induces a connected subtree
of T .

The width of tree decomposition T = (T, {Xt}t∈V (T )) equals maxt∈V (T ) |Xt|−
1, that is, the maximum size of its bag minus 1. The treewidth of a graph G,
denoted by tw(G), is the minimum possible width of a tree decomposition of
G.

To distinguish between the vertices of the decomposition tree T and the
vertices of the graph G, we will refer to the vertices of T as nodes. As we
mentioned before, path decompositions correspond exactly to tree decompo-
sitions with the additional requirement that T has to be a path.

Let us give several examples of how small or large can be the treewidth
of particular graph classes. Forests and trees are of treewidth at most 1 and
cycles have treewidth 2, see Exercise 7.8. The treewidth of an outerplanar
graph, which is a graph that can be drawn in the plane in such manner that
all its vertices are on one face, is at most 2, see Exercise 7.12. On the other
hand, the treewidth of planar graphs can be arbitrarily large. For example,
as we will see later, the treewidth of a t× t grid is t. Interestingly, for every
planar graph H, there is a constant cH , such that for every graph G excluding
H as a minor, the treewidth of G does not exceed cH , see Exercise 7.36.

While planar graphs can have arbitrarily large treewidths, as we will see
later, still the treewidth of an n-vertex planar graph is sublinear, more pre-
cisely O(

√
n). The treewidth of an n-vertex clique Kn is n − 1 and of a

complete bipartite graph Kn,m is min{m,n} − 1. Expander graphs serve as
an example of a sparse graph class with treewidth Ω(n), see Exercise 7.34.

In Lemma 7.1, we have proved that for every pair of adjacent nodes of a
path decomposition, the intersection of the corresponding bags is a separator
that separates the left part of the decomposition from the right part. The
following lemma establishes a similar separation property of bags of a tree
decomposition. Its proof is similar to the proof of Lemma 7.1 and is left to
the reader as Exercise 7.5.

Lemma 7.3. Let (T, {Xt}t∈V (T )) be a tree decomposition of a graph G and
let ab be an edge of T . The forest T − ab obtained from T by deleting edge ab
consists of two connected components Ta (containing a) and Tb (containing
b). Let A =

⋃
t∈V (Ta)

Xt and B =
⋃
t∈V (Tb)

Xt. Then ∂(A), ∂(B) ⊆ Xa ∩Xb.

Equivalently, (A,B) is a separation of G with separator Xa ∩Xb.
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Again, note that we can always assume that the bags corresponding to two
adjacent nodes in a tree decomposition are not the same, since in such sit-
uation we could contract the edge between them, keeping the same bag in
the node resulting from the contraction. Thus, if (T, {Xt}t∈V (T )) has width
t, then each of the separations given by Lemma 7.3 has order at most t.

Similarly to nice path decompositions, we can also de�ne nice tree decom-
positions of graphs. It will be convenient to think of nice tree decompositions
as rooted trees. That is, for a tree decomposition (T, {Xt}t∈V (T )) we distin-
guish one vertex r of T which will be the root of T . This introduces natural
parent-child and ancestor-descendant relations in the tree T . We will say
that such a rooted tree decomposition (T, {Xt}t∈V (T )) is nice if the following
conditions are satis�ed:

� Xr = ∅ and X` = ∅ for every leaf ` of T . In other words, all the leaves as
well as the root contain empty bags.

� Every non-leaf node of T is of one of the following three types:

� Introduce node: a node t with exactly one child t′ such that Xt =
Xt′ ∪ {v} for some vertex v /∈ Xt′ ; we say that v is introduced at t.

� Forget node: a node t with exactly one child t′ such thatXt = Xt′\{w}
for some vertex w ∈ Xt′ ; we say that w is forgotten at t.

� Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

At �rst glance the condition that the root and the leaves contain empty
bags might seem unnatural. As we will see later, this property helps to
streamline designing dynamic-programming algorithms on tree decomposi-
tions, which is the primary motivation for introducing nice tree decomposi-
tions. Note also that, by property (T3) of a tree decomposition, every vertex
of V (G) is forgotten only once, but may be introduced several times.

Also, note that we have assumed that the bags at a join node are equal
to the bags of the children, sacri�cing the previous observation that any
separation induced by an edge of the tree T is of order at most t. The increase
of the size of the separators from t to t + 1 has negligible e�ect on the
asymptotic running times of the algorithms, while nice tree decompositions
turn out to be very convenient for describing the details of the algorithms.

The following result is an analogue of Lemma 7.2 for nice tree decomposi-
tions. The reader is asked to prove it in Exercise 7.2.

Lemma 7.4. If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover,
given a tree decomposition T = (T, {Xt}t∈V (T )) of G of width at most k, one
can in time O(k2 · max(|V (T )|, |V (G)|)) compute a nice tree decomposition
of G of width at most k that has at most O(k|V (G)|) nodes.

Due to Lemma 7.4, we will assume that all the nice tree decompositions
used by our algorithms have O(k|V (G)|) nodes.
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Note that in a general setting a good path/tree decomposition of an in-
put graph is not known in advance. Hence, in the dynamic-programming
algorithms we will always assume that such a decomposition is provided on
the input together with the graph. For this reason, we will need to address
separately how to compute its path/tree decomposition of optimum or near-
optimum width, so that an e�cient dynamic-programming algorithm can be
employed on it. In this book we shall not answer this question for path de-
compositions and pathwidth. However, in Section 7.6 we present algorithms
for computing tree decompositions of (approximately) optimum width.

7.3 Dynamic programming on graphs of bounded
treewidth

In this section we give examples of dynamic-programming-based algorithms
on graphs of bounded treewidth.

7.3.1 Weighted Independent Set

In Section 7.1 we gave two dynamic-programming routines for theWeighted
Independent Set problem. The �rst of them worked on trees, and the
second of them worked on subgraphs of grids. Essentially, in both cases the
main idea was to de�ne subproblems for parts of graphs separated by small
separators. In the case of trees, every vertex of a tree separates the subtree
rooted at it from the rest of the graph. Thus, choices made by the solution
in the subtree are independent of what happens outside it. The algorithm
for subgraphs of grids exploited the same principle: every column of the grid
separates the part of the graph on the left of it from the part on the right.

It seems natural to combine these ideas for designing algorithms for graphs
of bounded treewidth. Let us focus on our running example of theWeighted
Independent Set problem, and let T = (T, {Xt}t∈V (T )) be a tree decom-
position of the input n-vertex graph G that has width at most k. By applying
Lemma 7.4 we can assume that T is a nice tree decomposition. Recall that
then T is rooted at some node r. For a node t of T , let Vt be the union of all
the bags present in the subtree of T rooted at t, including Xt. Provided that
t 6= r we can apply Lemma 7.3 to the edge of T between t and its parent,
and infer that ∂(Vt) ⊆ Xt. The same conclusion is trivial when t = r, since
then Vr = V (G) and ∂(Vr) = ∅. This exactly formalizes the intuition that
the subgraph induced by Vt can communicate with the rest of the graph only
via bag Xt, which is of small size.

Extending our intuition from the algorithms of Section 7.1, we would like
to de�ne subproblems depending on the interaction between the solution and
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bag Xt. Consider the following: Let I1, I2 be two independent sets of G such
that I1∩Xt = I2∩Xt. Let us add the weights of vertices of I1 and I2 that are
contained in Vt, and suppose that it turned out that w(I1∩Vt) > w(I2∩Vt).
Observe that then solution I2 is suboptimal for the following reason. We can
obtain a solution I ′2 from I2 by replacing I2 ∩ Vt with I1 ∩ Vt. The fact that
Xt separates Vt \Xt from the rest of the graph, and that I1 and I2 have the
same intersection with Xt, implies that I ′2 is still an independent set. On the
other hand, w(I1 ∩ Vt) > w(I2 ∩ Vt) implies that w(I ′2) > w(I2).

Therefore, among independent sets I satisfying I ∩Xt = S for some �xed
S, all the maximum-weight solutions have exactly the same weight of the part
contained in Vt. This weight corresponds to the maximum possible value for
the following subproblem: given S ⊆ Xt, we look for a maximum-weight ex-
tension Ŝ ⊇ S such that Ŝ ⊆ Vt, Ŝ ∩Xt = S, and Ŝ is independent. Indeed,
the argument from the previous paragraph shows that for any solution I with
I ∩ Xt = S, the part of the solution contained in Vt can be safely replaced
with the best possible partial solution Ŝ � this replacement preserves in-
dependence and can only increase the weight. Observe that the number of
subproblems is small: for every node t, we have only 2|Xt| subproblems. Also,
we do not need to remember Ŝ explicitly; remembering its weight will su�ce.

Hence, we now mimic the bottom-up dynamic programming that we per-
formed for trees. For every node t and every S ⊆ Xt, de�ne the following
value:

c[t, S] = maximum possible weight of a set Ŝ such that

S ⊆ Ŝ ⊆ Vt, Ŝ ∩Xt = S, and Ŝ is independent.

If no such set Ŝ exists, then we put c[t, S] = −∞; note that this happens if
and only if S is not independent itself. Also c[r, ∅] is exactly the maximum
weight of an independent set in G; this is due to the fact that Vr = V (G)
and Xr = ∅.

The reader can now observe that this de�nition of function c[·, ·] di�ers
from the one used in Section 7.1. While there we were just forbidding ver-
tices from some set Y from being used, now we �x exactly how a solution
is supposed to interact with a bag. Usually, �xing the exact interaction of
the solution with a bag is a more generic approach to designing dynamic-
programming algorithms on tree decompositions. However, it must be ad-
mitted that tweaking the de�nition slightly (e.g., by relaxing the exactness
condition to allow or forbid usage of a subset of vertices) often leads to a sim-
pler description. This is actually the case also in the example of Weighted
Independent Set. In Exercise 7.17 the reader is asked to work out the de-
tails of a dynamic program with the de�nition of a state mimicking the one
used in Section 7.1.

We now move on to presenting how the values of c[·, ·] are computed.
Thanks to the de�nition of a nice tree decomposition, there are only a few
simple ways in which a bag at some node can relate to the bags of the children
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of this node. Therefore, if we are fortunate we can compute the values at each
node t based on the values computed for the children of t. This will be done
by giving recursive formulas for c[t, S]. The case when t is a leaf corresponds
to the base case of the recurrence, whereas values for c[·, ·] for a non-leaf node
t depend on the values of c[·, ·] for the children of t. By applying the formulas
in a bottom-up manner on T we will �nally compute c[r, ∅], which is the value
we are looking for.

Leaf node. If t is a leaf node, then we have only one value c[t, ∅] = 0.

Introduce node. Suppose t is an introduce node with child t′ such thatXt =
Xt′∪{v} for some v /∈ Xt′ . Let S be any subset of Xt. If S is not independent,
then we can immediately put c[t, S] = −∞; hence assume otherwise. Then
we claim that the following formula holds:

c[t, S] =

{
c[t′, S] if v /∈ S;
c[t′, S \ {v}] + w(v) otherwise.

(7.3)

To prove formally that this formula holds, consider �rst the case when
v /∈ S. Then the families of sets Ŝ considered in the de�nitions of c[t, S] and
of c[t′, S] are equal, which immediately implies that c[t, S] = c[t′, S].

Consider the case when v ∈ S, and let Ŝ be a set for which the maximum
is attained in the de�nition of c[t, S]. Then it follows that Ŝ \ {v} is one
of the sets considered in the de�nition of c[t′, S \ {v}], which implies that

c[t′, S \ {v}] ≥ w(Ŝ \ {v}) = w(Ŝ)−w(v) = c[t, S]−w(v). Consequently,

c[t, S] ≤ c[t′, S \ {v}] + w(v). (7.4)

On the other hand, let Ŝ′ be a set for which the maximum is attained in
the de�nition of c[t′, S \ {v}]. Since we assumed that S is independent, we

have that v does not have any neighbor in S \ {v} = Ŝ′ ∩Xt′ . Moreover, by
Lemma 7.3, v does not have any neighbors in Vt′ \Xt′ , which is a superset of

Ŝ′ \Xt′ . We conclude that v does not have any neighbors in Ŝ′, which means

that Ŝ′ ∪ {v} is an independent set. Since this set intersects with Xt exactly
at S, it is considered in the de�nition of c[t, S] and we have that

c[t, S] ≥ w(Ŝ′ ∪ {v}) = w(Ŝ′) + w(v) = c[t′, S \ {v}] + w(v). (7.5)

Concluding, (7.4) and (7.5) together prove (7.3) for the case v ∈ S.
Forget node. Suppose t is a forget node with child t′ such thatXt = Xt′\{w}
for some w ∈ Xt′ . Let S be any subset of Xt; again we assume that S
is independent, since otherwise we put c[t, S] = −∞. We claim that the
following formula holds:

c[t, S] = max
{
c[t′, S], c[t′, S ∪ {w}]

}
. (7.6)
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We now give a formal proof of this formula. Let Ŝ be a set for which the
maximum is attained in the de�nition of c[t, S]. If w /∈ Ŝ, then Ŝ is one of the

sets considered in the de�nition of c[t′, S], and hence c[t′, S] ≥ w(Ŝ) = c[t, S].

However, if w ∈ Ŝ then Ŝ is one of the sets considered in the de�nition of
c[t′, S∪{w}], and then c[t′, S∪{w}] ≥ w(Ŝ) = c[t, S]. As exactly one of these
alternatives happens, we can infer that the following holds always:

c[t, S] ≤ max
{
c[t′, S], c[t′, S ∪ {w}]

}
. (7.7)

On the other hand, observe that each set that is considered in the de�nition
of c[t′, S] is also considered in the de�nition of c[t, S], and the same holds also
for c[t′, S ∪{w}]. This means that c[t, S] ≥ c[t′, S] and c[t, S] ≥ c[t′, S ∪{w}].
These two inequalities prove that

c[t, S] ≥ max
{
c[t′, S], c[t′, S ∪ {w}]

}
. (7.8)

The combination of (7.7) and (7.8) proves that formula (7.6) indeed holds.

Join node. Finally, suppose that t is a join node with children t1, t2 such
that Xt = Xt1 = Xt2 . Let S be any subset of Xt; as before, we can assume
that S is independent. The claimed recursive formula is as follows:

c[t, S] = c[t1, S] + c[t2, S]−w(S). (7.9)

We now prove formally that this formula holds. First take Ŝ to be a set for
which the maximum is attained in the de�nition of c[t, S]. Let Ŝ1 = Ŝ ∩ Vt1
and Ŝ2 = Ŝ ∩ Vt2 . Observe that Ŝ1 is independent and Ŝ1 ∩Xt1 = S, so this

set is considered in the de�nition of c[t1, S]. Consequently c[t1, S] ≥ w(Ŝ1),

and analogously c[t2, S] ≥ w(Ŝ2). Since Ŝ1∩ Ŝ2 = S, we obtain the following:

c[t, S] = w(Ŝ) = w(Ŝ1) + w(Ŝ2)−w(S) ≤ c[t1, S] + c[t2, S]−w(S). (7.10)

On the other hand, let Ŝ′1 be a set for which the maximum is attained in the

de�nition of c[t1, S], and similarly de�ne Ŝ′2 for c[t2, S]. By Lemma 7.3 we
have that there is no edge between vertices of Vt1 \ Xt and Vt2 \ Xt, which

implies that the set Ŝ′ := Ŝ′1 ∪ Ŝ′2 is independent. Moreover Ŝ′ ∩ Xt = S,

which implies that Ŝ′ is one of the sets considered in the de�nition of c[t, S].
Consequently,

c[t, S] ≥ w(Ŝ′) = w(Ŝ′1) +w(Ŝ′2)−w(S) = c[t1, S] + c[t2, S]−w(S). (7.11)

From (7.10) and (7.11) we infer that (7.9) indeed holds.

This concludes the description and the proof of correctness of the recursive
formulas for computing the values of c[·, ·]. Let us now wrap up the whole
algorithm and estimate the running time. Recall that we are working on a tree
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decomposition of width at most k, which means that |Xt| ≤ k + 1 for every
node t. Thus at node t we compute 2|Xt| ≤ 2k+1 values of c[t, S]. However,
we have to be careful when estimating the time needed for computing each
of these values.

Of course, we could just say that using the recursive formulas and any
graph representation we can compute each value c[t, S] in nO(1) time, but
then we would end up with an algorithm running in time 2k ·nO(1). It is easy
to see that all the operations needed to compute one value can be performed
in kO(1) time, apart from checking adjacency of a pair of vertices. We need it,
for example, to verify that a set S is independent. However, a straightforward
implementation of an adjacency check runs in O(n) time, which would add an
additional O(n) factor to the running time of the algorithm. Nonetheless, as
G is a graph of treewidth at most k, it is possible to construct a data structure
in time kO(1)n that allows performing adjacency queries in time O(k). The
reader is asked to construct such a data structure in Exercise 7.16.

Wrapping up, for every node t it takes time 2k · kO(1) to compute all the
values c[t, S]. Since we can assume that the number of nodes of the given
tree decompositions is O(kn) (see Lemma 7.4), the total running time of the
algorithm is 2k · kO(1) · n. Hence, we obtain the following theorem.

Theorem 7.5. Let G be an n-vertex graph with weights on vertices given
together with its tree decomposition of width at most k. Then the Weighted
Independent Set problem in G is solvable in time 2k · kO(1) · n.

Again, using the standard technique of backlinks, i.e., memorizing for every
cell of table c[·, ·] how its value was obtained, we can reconstruct the solution
(i.e., an independent set with the maximum possible weight) within the same
asymptotic running time. The same will hold also for all the other dynamic-
programming algorithms given in this section.

Since a graph has a vertex cover of size at most ` if and only if it has an
independent set of size at least n − `, we immediately obtain the following
corollary.

Corollary 7.6. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve the Vertex Cover
problem in G in time 2k · kO(1) · n.

The algorithm of Theorem 7.5 seems actually quite simple, so it is very
natural to ask if its running time could be improved. We will see in Chap-
ter 14, Theorem 14.38, that under some reasonable assumptions the upper
bound of Theorem 7.5 is tight.

The reader might wonder now why we gave all the formal details of this
dynamic-programming algorithm, even though most of them were straightfor-
ward. Our point is that despite the naturalness of many dynamic-programming
algorithms on tree decompositions, proving their correctness formally needs
a lot of attention and care with regard to the details. We tried to show which
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implications need to be given in order to obtain a complete and formal proof,
and what kind of arguments can be used along the way.

Most often, proving correctness boils down to showing two inequalities
for each type of node: one relating an optimum solution for the node
to some solutions for its children, and the second showing the reverse
correspondence. It is usual that a precise de�nition of a state of the
dynamic program together with function c denoting its value already
suggests natural recursive formulas for c. Proving correctness of these
formulas is usually a straightforward and tedious task, even though it
can be technically challenging.

For this reason, in the next dynamic-programming routines we usually only
give a precise de�nition of a state, function c, and the recursive formulas for
computing c. We resort to presenting a short rationale for why the formulas
are correct, leaving the full double-implication proof to the reader. We suggest
that the reader always performs such double-implication proofs for his or her
dynamic-programming routines, even though all the formal details might not
always appear in the �nal write-up of the algorithm. Performing such formal
proofs can highlight the key arguments needed in the correctness proof, and
is the best way of uncovering possible problems and mistakes.

Another issue that could be raised is why we should not go further and
also estimate the polynomial factor depending on k in the running time of
the algorithm, which is now stated just as kO(1). We refrain from this, since
the actual value of this factor depends on the following:

� How fast we can implement all the low-level details of computing formu-
las for c[t, S], e.g., iteration through subsets of vertices of a bag. This in
particular depends on how we organize the structure of G and T in the
memory.

� How fast we can access the exponential-size memory needed for storing
the dynamic-programming table c[·, ·].

Answers to these questions depend on low-level details of the implementation
and on the precise de�nition of the assumed model of RAM computations.
While optimization of the kO(1) factor is an important and a nontrivial prob-
lem in practice, this issue is beyond the theoretical scope of this book. For
this reason, we adopt a pragmatic policy of not stating such polynomial fac-
tors explicitly for dynamic-programming routines. In the bibliographic notes
we provide some further references to the literature that considers this issue.
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7.3.2 Dominating Set

Our next example is the Dominating Set problem. Recall that a set of
vertices D is a dominating set in graph G if V (G) = N [D]. The goal is
to provide a dynamic-programming algorithm on a tree decomposition that
determines the minimum possible size of a dominating set of the input graph
G. Again, n will denote the number of vertices of the input graph G, and k is
an upper bound on the width of the given tree decomposition (T, {Xt}t∈V (T ))
of G.

In this algorithm we will use a re�ned variant of nice tree decompositions.
In the algorithm of the previous section, for every node t we were essentially
interested in the best partial solutions in the graph G[Vt]. Thus, whenever a
vertex v was introduced in some node t, we simultaneously introduced also
all the edges connecting it to other vertices of Xt. We will now add a new
type of a node called an introduce edge node. This modi�cation enables us to
add edges one by one, which often helps in simplifying the description of the
algorithm.

Formally, in this extended version of a nice tree decomposition we have
both introduce vertex nodes and introduce edge nodes. Introduce vertex
nodes correspond to introduce nodes in the standard sense, while introduce
edge nodes are de�ned as follows.

� Introduce edge node: a node t, labeled with an edge uv ∈ E(G) such
that u, v ∈ Xt, and with exactly one child t′ such that Xt = Xt′ . We say
that edge uv is introduced at t.

We additionally require that every edge of E(G) is introduced exactly
once in the whole decomposition. Leaf nodes, forget nodes and join nodes are
de�ned just as previously. Given a standard nice tree decomposition, it can
be easily transformed to this variant as follows. Observe that condition (T3)
implies that, in a nice tree decomposition, for every vertex v ∈ V (G), there
exists a unique highest node t(v) such that v ∈ Xt(v); moreover, the parent
of Xt(v) is a forget node that forgets v. Consider an edge uv ∈ E(G), and
observe that (T2) implies that t(v) is an ancestor of t(u) or t(u) is an ancestor
of t(v). Without loss of generality assume the former, and observe that we
may insert the introduce edge bag that introduces uv between t(u) and its
parent (which forgets u). This transformation, for every edge uv ∈ E(G),
can be easily implemented in time kO(1)n by a single top-down transversal of
the tree decomposition. Moreover, the obtained tree decomposition still has
O(kn) nodes, since a graph of treewidth at most k has at most kn edges (see
Exercise 7.15).

With each node t of the tree decomposition we associate a subgraph Gt of
G de�ned as follows:

Gt =
(
Vt, Et = {e : e is introduced in the subtree rooted at t}

)
.
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While in the previous section the subproblems for t were de�ned on the graph
G[Vt], now we will de�ne subproblems for the graph Gt.

We are ready to de�ne the subproblems formally. For Weighted In-
dependent Set, we were computing partial solutions according to how a
maximum weight independent set intersects a bag of the tree decomposition.
For domination the situation is more complicated. Here we have to distin-
guish not only if a vertex is in the dominating set or not, but also if it is
dominated. A coloring of bag Xt is a mapping f : Xt → {0, 0̂, 1} assigning
three di�erent colors to vertices of the bag.

� Black, represented by 1. The meaning is that all black vertices have to be
contained in the partial solution in Gt.

� White, represented by 0. The meaning is that all white vertices are not
contained in the partial solution and must be dominated by it.

� Grey, represented by 0̂. The meaning is that all grey vertices are not
contained in the partial solution, but do not have to be dominated by it.

The reason why we need to distinguish between white and grey vertices is
that some vertices of a bag can be dominated by vertices or via edges which
are not introduced so far. Therefore, we also need to consider subproblems
where some vertices of the bag are not required to be dominated, since such
subproblems can be essential for constructing the optimum solution. Let us
stress the fact that we do not forbid grey vertices to be dominated � we just
do not care whether they are dominated or not.

For a node t, there are 3|Xt| colorings of Xt; these colorings form the space
of states at node t. For a coloring f of Xt, we denote by c[t, f ] the minimum
size of a set D ⊆ Vt such that

� D ∩Xt = f−1(1), which is the set of vertices of Xt colored black.
� Every vertex of Vt \ f−1(0̂) either is in D or is adjacent in Gt to a vertex

of D. That is, D dominates all vertices of Vt in graph Gt, except possibly
some grey vertices in Xt.

We call such a set D a minimum compatible set for t and f . If no minimum
compatible set for t and f exists, we put c[t, f ] = +∞. Note that the size of
a minimum dominating set in G is exactly the value of c[r, ∅] where r is the
root of the tree decomposition. This is because we have G = Gr and Xr = ∅,
which means that for Xr we have only one coloring: the empty function.

It will be convenient to use the following notation. For a subset X ⊆ V (G),
consider a coloring f : X → {0, 0̂, 1}. For a vertex v ∈ V (G) and a color
α ∈ {0, 0̂, 1} we de�ne a new coloring fv→α : X ∪ {v} → {0, 0̂, 1} as follows:

fv→α(x) =

{
f(x) when x 6= v,

α when x = v.

For a coloring f of X and Y ⊆ X, we use f |Y to denote the restriction of f
to Y .
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We now proceed to present the recursive formulas for the values of c. As
we mentioned in the previous section, we give only the formulas and short
arguments for their correctness, leaving the full proof to the reader.

Leaf node. For a leaf node t we have that Xt = ∅. Hence there is only one,
empty coloring, and we have c[t, ∅] = 0.

Introduce vertex node. Let t be an introduce node with a child t′ such
that Xt = Xt′ ∪ {v} for some v /∈ Xt′ . Since this node does not introduce
edges to Gt, the computation will be very simple � v is isolated in Gt. Hence,
we just need to be sure that we do not introduce an isolated white vertex,
since then we have c[t, f ] = +∞. That is, for every coloring f of Xt we can
put

c[t, f ] =


+∞ when f(v) = 0,

c[t′, f |Xt′ ] when f(v) = 0̂,

1 + c[t′, f |Xt′ ] when f(v) = 1.

Introduce edge node. Let t be an introduce edge node labeled with an
edge uv and let t′ be the child of t. Let f be a coloring of Xt. Then sets D
compatible for t and f should be almost exactly the sets that are compatible
for t′ and f , apart from the fact that the edge uv can additionally help in
domination. That is, if f colors u black and v white, then when taking the
precomputed solution for t′ we can relax the color of v from white to grey
� in the solution for t′ we do not need to require any domination constraint
on v, since v will get dominated by u anyways. The same conclusion can be
drawn when u is colored white and v is colored black. Therefore, we have the
following formulas:

c[t, f ] =


c[t′, fv→0̂] when (f(u), f(v)) = (1, 0),

c[t′, fu→0̂] when (f(u), f(v)) = (0, 1),

c[t′, f ] otherwise.

Forget node. Let t be a forget node with a child t′ such that Xt = Xt′ \{w}
for some w ∈ Xt′ . Note that the de�nition of compatible sets for t and f
requires that vertex w be dominated, so every set D compatible for t and f
is also compatible for t′ and fw→1 (if w ∈ D) or fw→0 (if w /∈ D). On the
other hand, every set compatible for t′ and any of these two colorings is also
compatible for t and f . This justi�es the following recursive formula:

c[t, f ] = min
{
c[t′, fw→1], c[t′, fw→0]

}
.

Join node. Let t be a join node with children t1 and t2. Recall that Xt =
Xt1 = Xt2 . We say that colorings f1 of Xt1 and f2 of Xt2 are consistent with
a coloring f of Xt if for every v ∈ Xt the following conditions hold
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(i) f(v) = 1 if and only if f1(v) = f2(v) = 1,
(ii) f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0̂, 0), (0, 0̂)},

(iii) f(v) = 0̂ if and only if f1(v) = f2(v) = 0̂.

On one hand, if D is a compatible set for f and t, then D1 := D ∩ Vt1 and
D2 := D ∩ Vt2 are compatible sets for t1 and f1, and t2 and f2, for some
colorings f1, f2 that are consistent with f . Namely, for every vertex v that is
white in f we make it white either in f1 or in f2, depending on whether it is
dominated by D1 in Gt1 or by D2 in Gt2 (if v is dominated by both D1 and
D2, then both options are correct). On the other hand, if D1 is compatible for
t1 and f1 and D2 is compatible for t2 and f2, for some colorings f1, f2 that are
consistent with f , then it is easy to see that D := D1∪D2 is compatible for t
and f . Since for such D1, D2 we have that D ∩Xt = D1 ∩Xt1 = D2 ∩Xt2 =
f−1(1), it follows that |D| = |D1| + |D2| − |f−1(1)|. Consequently, we can
infer the following recursive formula:

c[t, f ] = min
f1,f2

{
c[t1, f1] + c[t2, f2]− |f−1(1)|

}
, (7.12)

where the minimum is taken over all colorings f1, f2 consistent with f .

This �nishes the description of the recursive formulas for the values of c.
Let us analyze the running time of the algorithm. Clearly, the time needed
to process each leaf node, introduce vertex/edge node or forget node is 3k ·
kO(1), providing that we again use the data structure for adjacency queries
of Exercise 7.16. However, computing the values of c in a join node is more
time consuming. The computation can be implemented as follows. Note that
if a pair f1, f2 is consistent with f , then for every v ∈ Xt we have

(f(v), f1(v), f2(v)) ∈ {(1, 1, 1), (0, 0, 0̂), (0, 0̂, 0), (0̂, 0̂, 0̂)}.

It follows that there are exactly 4|Xt| triples of colorings (f, f1, f2) such that
f1 and f2 are consistent with f , since for every vertex v we have four possibil-
ities for (f(v), f1(v), f2(v)). We iterate through all these triples, and for each
triple (f, f1, f2) we include the contribution from f1, f2 to the value of c[t, f ]
according to (7.12). In other words, we �rst put c[t, f ] = +∞ for all colorings
f of Xt, and then for every considered triple (f, f1, f2) we replace the current
value of c[t, f ] with c[t1, f1] + c[t2, f2] − |f−1(1)| in case the latter value is
smaller. As |Xt| ≤ k + 1, it follows that the algorithm spends 4k · kO(1) time
for every join node. Since we assume that the number of nodes in a nice tree
decomposition is O(kn) (see Exercise 7.15), we derive the following theorem.

Theorem 7.7. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve the Dominating Set
problem in G in time 4k · kO(1) · n.

In Chapter 11, we show how one can use more clever techniques in the
computations for the join node in order to reduce the exponential dependence
on the treewidth from 4k to 3k.
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7.3.3 Steiner Tree

Our last example is the Steiner Tree problem. We are given an undi-
rected graph G and a set of vertices K ⊆ V (G), called terminals. The goal
is to �nd a subtree H of G of the minimum possible size (that is, with the
minimum possible number of edges) that connects all the terminals. Again,
assume that n = |V (G)| and that we are given a nice tree decomposition
T = (T, {Xt}t∈V (T )) of G of width at most k. We will use the same variant
of a nice tree decomposition as in Section 7.3.2, that is, with introduce edge
nodes.

While the exponential dependence on the treewidth in the algorithms we
discussed so far is single-exponential, for Steiner Tree the situation will be
di�erent. In what follows, we give an algorithm with running time kO(k) · n.
While a single-exponential algorithm for Steiner Tree actually exists, it
requires more advanced techniques that will be discussed in Chapter 11.

In order to make the description of the algorithm simpler, we will make
one small adjustment to the given decomposition. Let us pick an arbitrary
terminal u? ∈ K and let us add it to every bag of the decomposition T . Then
the width of T increases by at most 1, and bags at the root and at all the
leaves are equal to {u?}. The idea behind this simple tweak is to make sure
that every bag of T contains at least one terminal. This will be helpful in the
de�nition of the state of the dynamic program.

Let H be a Steiner tree connecting K and let t be a node of T . The part
of H contained in Gt is a forest F with several connected components, see
Fig. 7.3. Note that this part is never empty, because Xt contains at least one
terminal. Observe that, sinceH is connected andXt contains a terminal, each
connected component of F intersects Xt. Moreover, every terminal from K ∩
Vt should belong to some connected component of F . We try to encode all
this information by keeping, for each subset X ⊆ Xt and each partition P of
X, the minimum size of a forest F in Gt such that

(a) K ∩ Vt ⊆ V (F ), i.e., F spans all terminals from Vt,
(b) V (F ) ∩Xt = X, and
(c) the intersections of Xt with vertex sets of connected components of F

form exactly the partition P of X.

When we introduce a new vertex or join partial solution (at join nodes), the
connected components of partial solutions could merge and thus we need to
keep track of the updated partition into connected components.

More precisely, we introduce the following function. For a bag Xt, a set
X ⊆ Xt (a set of vertices touched by a Steiner tree), and a partition P =
{P1, P2, . . . , Pq} of X, the value c[t,X,P] is the minimum possible number
of edges of a forest F in Gt such that:

� F has exactly q connected components that can be ordered as C1, . . . , Cq
so that Ps = V (Cs) ∩ Xt for each s ∈ {1, . . . , q}. Thus the partition P
corresponds to connected components of F .
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Xt

Gt

H

Fig. 7.3: Steiner tree H intersecting bag Xt and graph Gt

� Xt ∩ V (F ) = X. That is, vertices of Xt \X are untouched by F .
� Every terminal vertex from K ∩ Vt is in V (F ).

A forest F conforming to this de�nition will be called compatible for (t,X,P).
If no compatible forest F exists, we put c[t,X,P] = +∞.

Note that the size of an optimum Steiner tree is exactly c[r, {u?}, {{u?}}],
where r is the root of the decomposition T . This is because we have that
Xr = {u?}. We now provide recursive formulas to compute the values of c.

Leaf node. If t is a leaf node, then Xt = {u?}. Since u? ∈ K, we have
c[t, ∅, ∅] = +∞ and c[t, {u?}, {{u?}}] = 0.

Introduce vertex node. Suppose that t is an introduce vertex node with
a child t′ such that Xt = Xt′ ∪ {v} for some v /∈ Xt′ . Recall that we have
not introduced any edges adjacent to v so far, so v is isolated in Gt. Hence,
for every set X ⊆ Xt and partition P = {P1, P2, . . . , Pq} of X we do the
following. If v is a terminal, then it has to be in X. Moreover, if v is in X,
then {v} should be a block of P, that is, v should be in its own connected
component. If any of these conditions is not satis�ed, we put c[t,X,P] = +∞.
Otherwise we have the following recursive formula:

c[t,X,P] =

{
c[t′, X \ {v},P \ {{v}}] if v ∈ X,
c[t′, X,P] otherwise.

Introduce edge node. Suppose that t is an introduce edge node that in-
troduces an edge uv, and let t′ be the child of t. For every set X ⊆ Xt and
partition P = {P1, P2, . . . , Pq} of X we consider three cases. If u /∈ X or
v /∈ X, then we cannot include uv into the tree under construction, as one
of its endpoints has been already determined not to be touched by the tree.
Hence in this case c[t,X,P] = c[t′, X,P]. The same happens if u and v are
both in X, but are not in the same block of P. Assume then that u and v are
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Xt

Gt2
Gt1

Fig. 7.4: Undesirable merge of partial solutions in a join node

both in X and they actually are in the same block of P. Then the edge uv
either has been picked to the solution, or has not been picked. If not, then
we should look at the same partition P at t′, and otherwise the block of u
and v in P should have been obtained from merging two smaller blocks, one
containing u and the second containing v. Hence

c[t,X,P] = min
{

min
P′

c[t′, X,P ′] + 1, c[t′, X,P]
}
,

where in the inner minimum we consider all partitions P ′ of X in which u
and v are in separate blocks (as otherwise adding uv would create a cycle)
such that after merging the blocks of u and v we obtain the partition P.
Forget node. Suppose that t is a forget node with a child t′ such that
Xt = Xt′ \ {w} for some w ∈ Xt′ . Consider any set X ⊆ Xt and partition
P = {P1, P2, . . . , Pq} of X. The solution for X and P might either use the
vertex w, in which case it should be added to one of existing blocks of P, or
not use it, in which case we should simply look on the same partition of the
same X. Hence

c[t,X,P] = min
{

min
P′

c[t′, X ∪ {w},P ′], c[t′, X,P]
}
,

where the inner minimum is taken over all partitions P ′ of X ∪ {w} that are
obtained from P by adding w to one of the existing blocks.

Join node. Suppose t is a join node with children t1 and t2. Recall that
then Xt = Xt1 = Xt2 . In essence, in the computation for t we need to
encode merging two partial solutions: one originating fromGt1 and the second
originating from Gt2 . When merging two partial solutions, however, we have
to be careful because such a merge can create cycles, see Fig. 7.4.
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To avoid cycles while merging, we introduce an auxiliary structure.1 For a
partition P of X let GP be a forest with a vertex set X, such that the set of
connected components in GP corresponds exactly to P. In other words, for
each block of P there is a tree in GP with the same vertex set. We say that a
partition P = {P1, P2, . . . , Pq} of X is an acyclic merge of partitions P1 and
P2 if the merge of two forests GP1

and GP2
(treated as a multigraph) is a

forest whose family of connected components is exactly P.
Thus we have the following formula:

c[t,X,P] = min
P1,P2

c[t1, X,P1] + c[t2, X,P2],

where in the minimum we consider all pairs of partitions P1,P2 such that P
is an acyclic merge of them.

This concludes the description of the recursive formulas for the values
of c. We proceed to estimate the running time. Recall that every bag of
the decomposition has size at most k + 2. Hence, the number of states per
node is at most 2k+2 · (k + 2)k+2 = kO(k), since for a node t there are 2|Xt|

subsets X ⊆ Xt and at most |X||X| partitions of X. The computation of a
value for every state requires considering at most all the pairs of states for
some other nodes, which means that each value can be computed in time
(kO(k))2 = kO(k). Thus, up to a factor polynomial in k, which is anyhow
dominated by the O-notation in the exponent, for every node the running
time of computing the values of c is kO(k). We conclude with the following
theorem.

Theorem 7.8. Let G be an n-vertex graph, let K ⊆ V (G) be a given set of
terminals, and assume that G is given together with its tree decomposition of
width at most k. Then one can �nd the minimum possible number of edges
of a Steiner tree connecting K in time kO(k) · n.

Algorithms similar to the dynamic programming of Theorem 7.8 can be
used to solve many problems in time kO(k) ·nO(1). Essentially, such a running
time appears for problems with connectivity requirements, since then it is
natural to keep in the dynamic programming state a partition of a subset
of the bag. Since the number of such partitions is at most kO(k), this factor
appears naturally in the running time.

For convenience, we now state formally the most prominent problems that
can be solved in single-exponential time when parameterized by treewidth
(i.e., in time 2O(k) · nO(1)), and those that can be solved in slightly super-
exponential time (i.e., kO(k) · nO(1)). We leave designing the remaining al-
gorithms from the following theorems as two exercises: Exercise 7.18 and
Exercise 7.19.

1 One could avoid the cycle detection by relaxing the de�nition of c[t,X,P] and dropping
the assumption that F is a forest. However, as in other problems, like Feedback Vertex
Set, cycle checking is essential, we show a common solution here.
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Let us recall that the MaxCut problem asks for a partition of V (G) into
sets A and B such that the number of edges between A and B is maximized.
The q-Coloring problem asks whether G can be properly colored using q
colors, while in Chromatic Number the question is to �nd the minimum
possible number of colors needed to properly color G. Longest Path and
Longest Cycle ask for the existence of a path/cycle on at least ` vertices
in G, for a given integer `. Similarly, in Cycle Packing the question is
whether one can �nd ` vertex-disjoint cycles in G. Problems Connected
Vertex Cover, Connected Dominating Set, Connected Feedback
Vertex Set di�er from their standard (non-connected) variants by addition-
ally requiring that the solution vertex cover/dominating set/feedback vertex
set induces a connected graph in G.

Theorem 7.9. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then in G one can solve

� Vertex Cover and Independent Set in time 2k · kO(1) · n,
� Dominating Set in time 4k · kO(1) · n,
� Odd Cycle Transversal in time 3k · kO(1) · n,
� MaxCut in time 2k · kO(1) · n,
� q-Coloring in time qk · kO(1) · n.

Theorem 7.10. Let G be an n-vertex graph given together with its tree de-
composition of width at most k. Then one can solve each of the following
problems in G in time kO(k) · n:
� Steiner Tree,
� Feedback Vertex Set,
� Hamiltonian Path and Longest Path,
� Hamiltonian Cycle and Longest Cycle,
� Chromatic Number,
� Cycle Packing,
� Connected Vertex Cover,
� Connected Dominating Set,
� Connected Feedback Vertex Set.

Let us also note that the dependence on k for many of the problems listed
in Theorem 7.10 will be improved to single-exponential in Chapter 11. Also,
the running time of the algorithm for Dominating Set will be improved
from 4k · kO(1) · n to 3k · kO(1) · n.

As the reader probably observed, dynamic-programming algorithms on
graphs of bounded treewidth are very similar to each other.
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The main challenge for most of the problems is to understand what
information to store at nodes of the tree decomposition. Obtaining for-
mulas for forget, introduce and join nodes can be a tedious task, but is
usually straightforward once a precise de�nition of a state is established.

It is also worth giving an example of a problem which cannot be solved
e�ciently on graphs of small treewidth. In the Steiner Forest problem we
are given a graph G and a set of pairs (s1, t1), . . . , (sp, tp). The task is to �nd
a minimum subgraph F of G such that each of the pairs is connected in F .
Steiner Tree is a special case of Steiner Forest with s1 = · · · = sp.
The intuition behind why a standard dynamic programming approach on
graphs of constant treewidth does not work for this problem is as follows.
Suppose that we have a set of vertices S = {si}1≤i≤p separated from vertices
T = {ti}1≤i≤p by a bag of tree decomposition of size 2. Since all paths from
S to T must pass through the bag of size 2, the �nal solution F contains
at most two connected components. Any partial solution divides the vertices
of S into two parts based on which vertex in the separating bag they are
connected to. Thus it seems that to keep track of all partial solutions for the
problem, we have to compute all possible ways the set S can be partitioned
into two subsets corresponding to connected components of F , which is 2p.
Since p does not depend on the treewidth of G, we are in trouble. In fact,
this intuition is supported by the fact that Steiner Forest is NP-hard on
graphs of treewidth at most 3, see [26]. In Section 13.6, we also give examples
of problems which are W[1]-hard parameterized by the treewidth of the input
graph.

Finding faster dynamic-programming strategies can be an interesting chal-
lenge and we will discuss several nontrivial examples of such algorithms in
Chapter 11. However, if one is not particularly interested in obtaining the
best possible running time, then there exist meta-techniques for designing
dynamic-programming algorithms on tree decompositions. These tools we
discuss in the next section.

7.4 Treewidth and monadic second-order logic

As we have seen in the previous sections, many optimization problems
are �xed-parameter tractable when parameterized by the treewidth. Algo-
rithms for this parameterization are in the vast majority derived using the
paradigm of dynamic programming. One needs to understand how to suc-
cinctly represent necessary information about a subtree of the decomposition
in a dynamic-programming table. If the size of this table turns out to be
bounded by a function of the treewidth only, possibly with some polynomial
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factors in the total graph size, then there is hope that a bottom-up dynamic-
programming procedure can compute the complete answer to the problem. In
other words, the �nal outcome can be obtained by consecutively assembling
information about the behavior of the problem in larger and larger subtrees
of the decomposition.

The standard approach to formalizing this concept is via tree automata.
This leads to a deep theory linking logic on graphs, tree automata, and
treewidth. In this section, we touch only the surface of this subject by high-
lighting the most important results, namely Courcelle's theorem and its op-
timization variant.

Intuitively, Courcelle's theorem provides a uni�ed description of properties
of a problem that make it amenable to dynamic programming over a tree de-
composition. This description comes via a form of a logical formalism called
Monadic Second-Order logic on graphs. Slightly more precisely, the theorem
and its variants state that problems expressible in this formalism are always
�xed-parameter tractable when parameterized by treewidth. Before we pro-
ceed to stating Courcelle's theorem formally, we need to understand �rst how
Monadic Second-Order logic on graphs works.

7.4.1 Monadic second-order logic on graphs

MSO2 for dummies. The logic we are about to introduce is called MSO2.
Instead of providing immediately the formal description of this logic, we �rst
give an example of anMSO2 formula in order to work out the main concepts.
Consider the following formula conn(X), which veri�es that a subset X of
vertices of a graph G = (V,E) induces a connected subgraph.

conn(X) = ∀Y⊆V [(∃u∈X u ∈ Y ∧ ∃v∈X v /∈ Y )

⇒(∃e∈E ∃u∈X ∃v∈X inc(u, e) ∧ inc(v, e) ∧ u ∈ Y ∧ v /∈ Y )].

Now, we rewrite this formula in English.

For every subset of vertices Y , if X contains both a vertex from Y and a
vertex outside of Y , then there exists an edge e whose endpoints u, v both
belong to X, but one of them is in Y and the other is outside of Y .

One can easily see that this condition is equivalent to the connectivity of
G[X]: the vertex set of G cannot be partitioned into Y and V (G) \Y in such
a manner that X is partitioned nontrivially and no edge of G[X] crosses the
partition.

As we see on this example, MSO2 is a formal language of expressing
properties of graphs and objects inside these graphs, such as vertices, edges,
or subsets of them. A formula ϕ of MSO2 is nothing else but a string over
some mysterious symbols, which we shall decode in the next few paragraphs.
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One may think that a formula de�nes a program that can be run on an input
graph, similarly as, say, a C++ program can be run on some text input.2 A
C++ program is just a sequence of instructions following some syntax, and an
MSO2 formula is just a sequence of symbols constructed using a speci�ed
set of rules. A C++ program can be run on multiple di�erent inputs, and may
provide di�erent results of the computation. Similarly, an MSO2 formula
may be evaluated in di�erent graphs, and it can give di�erent outcomes.
More precisely, an MSO2 formula can be true in a graph, or false. The result
of an application of a formula to a graph will be called the evaluation of the
formula in the graph.

Similarly to C++ programs,MSO2 formulas have variables which represent
di�erent objects in the graph. Generally, we shall have four types of variables:
variables for single vertices, for single edges, for subsets of vertices, and for
subsets of edges; the last type was not used in formula conn(X). At each
point of the process of evaluation of the formula, every variable is evaluated
to some object of appropriate type.

Note that a formula can have �parameters�: variables that are given from
�outside�, whose properties we verify in the graph. In the conn(X) example
such a parameter is X, the vertex subset whose connectivity is being tested.
Such variables will be called free variables of the formula. Note that in order to
properly evaluate the formula in a graph, we need to be given the evaluation of
these variables. Most often, we will assume that the input graph is equipped
with evaluation of all the free variables of the considered MSO2 formula,
which means that these evaluations are provided together with the graph.

If we already have some variables in the formula, we can test their mutual
interaction. As we have seen in the conn(X) example, we can for instance
check whether some vertex u belongs to some vertex subset Y (u ∈ Y ), or
whether an edge e is incident to a vertex u (inc(u, e)). These checks can
be combined using standard Boolean operators such as ¬ (negation, logical
NOT), ∧ (conjunction, logical AND), ∨ (disjunction, logical OR), ⇒ (impli-
cation).

The crucial concept that makes MSO2 useful for expressing graph prop-
erties are quanti�ers. They can be seen as counterparts of loops in standard
programming languages. We have two types of quanti�ers, ∀ and ∃. Each
quanti�er is applied to some subformula ψ, which in the programming lan-
guage analogy is just a block of code bound by the loop. Moreover, every
quanti�er introduces a new variable over which it iterates. This variable can
be then used in the subformula.

Quanti�er ∀ is called the universal quanti�er. Suppose we write a formula
∀v∈V ψ, where ψ is some subformula that uses variable v. This formula should
be then read as �For every vertex v in the graph, ψ holds.� In other words,
quanti�er ∀v∈V iterates through all possible evaluations of variable v to a
vertex of the graph, and for each of them it is checked whether ψ is indeed

2 For a reader familiar with the paradigm of functional programming (languages like Lisp
or Haskell), an analogy with any functional language would be more appropriate.
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true. If this is the case for every evaluation of v, then the whole formula
∀v∈V ψ is true; otherwise it is false.

Quanti�er ∃, called the existential quanti�er, works sort of similarly. For-
mula ∃v∈V ψ should be read as �There exists a vertex v in the graph, such
that ψ holds.� This means that ∃v∈V iterates through all possible evaluations
of variable v to a vertex of the graph, and veri�es whether there is at least
one for which ψ is true.

Of course, here we just showed examples of quanti�cation over variables
for single vertices, but we can also quantify over variables for single edges
(e.g., ∀e∈E/∃e∈E), vertex subsets (e.g., ∀X⊆V /∃X⊆V ), or edge subsets (e.g.,
∀C⊆E/∃C⊆E). Standard Boolean operators can be also used to combine larger
formulas; see for instance our use of the implication in formula conn(X).

We hope that the reader already understands the basic idea of MSO2 as a
(programming) language for expressing graph properties. We now proceed to
explaining formally the syntax of MSO2 (how formulas can be constructed),
and the semantics (how formulas are evaluated). Fortunately, they are much
simpler than for C++.

Syntax and semantics of MSO2. Formulas of MSO2 can use four types
of variables: for single vertices, single edges, subsets of vertices, and subsets
of edges. The subscript 2 in MSO2 exactly signi�es that quanti�cation over
edge subsets is also allowed. If we forbid this type of quanti�cation, we arrive
at a weaker logicMSO1. The vertex/edge subset variables are calledmonadic
variables.

Every formula ϕ ofMSO2 can have free variables, which often will be writ-
ten in parentheses besides the formula. More precisely, whenever we write a
formula of MSO2, we should always keep in mind what variables are as-
sumed to be existent in the context in which this formula will be used. The
sequence of these variables is called the signature over which the formula is
written;3 following our programming language analogy, this is the environ-
ment in which the formula is being de�ned. Then variables from the signature
can be used in ϕ as free variables. The signature will be denoted by Σ. Note
that for every variable in the signature we need to know what is its type.

In order to evaluate a formula ϕ over signature Σ in a graph G, we need
to know how the variables of Σ are evaluated in G. By ΣG we will denote the
sequence of evaluations of variables from Σ. Evaluation of a single variable x
will be denoted by xG. Graph G and ΣG together shall be called the structure
in which ϕ is being evaluated. If ϕ is true in structure 〈G,ΣG〉, then we shall
denote it by

〈G,ΣG〉 |= ϕ,

3 A reader familiar with the foundations of logic in computer science will certainly see
that we are slightly tweaking some de�nitions so that they �t to our small example. We
do it in order to simplify the description of MSO2 while maintaining basic compliance
with the general literature. In the bibliographic notes we provide pointers to more rigorous
introductions to logic in computer science, where the notions of signature and structure
are introduced properly.
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which should be read as �Structure 〈G,ΣG〉 is a model for ϕ.�
Formulas of MSO2 are constructed inductively from smaller subformulas.

We �rst describe the smallest building blocks, called atomic formulas.

� If u ∈ Σ is a vertex (edge) variable and X ∈ Σ is a vertex (edge) set
variable, then we can write formula u ∈ X. The semantics is standard: the
formula is true if and only if uG ∈ XG.

� If u ∈ Σ is a vertex variable and e ∈ Σ is an edge variable, then we can
write formula inc(u, e). The semantics is that the formula is true if and
only if uG is an endpoint of eG.

� For any two variables x, y ∈ Σ of the same type, we can write formula
x = y. This formula is true in the structure if and only if xG = yG.

Now that we know the basic building blocks, we can start to create larger
formulas. As described before, we can use standard Boolean operators ¬, ∧,
∨,⇒ working as follows. Suppose that ϕ1, ϕ2 are two formulas over the same
signature Σ. Then we can write the following formulas, also over Σ

� Formula ¬ϕ1, where 〈G,ΣG〉 |= ¬ϕ1 if and only if 〈G,ΣG〉 2 ϕ1.
� Formula ϕ1 ∧ ϕ2, where 〈G,ΣG〉 |= ϕ1 ∧ ϕ2 if and only if 〈G,ΣG〉 |= ϕ1

and 〈G,ΣG〉 |= ϕ2.
� Formula ϕ1 ∨ ϕ2, where 〈G,ΣG〉 |= ϕ1 ∨ ϕ2 if and only if 〈G,ΣG〉 |= ϕ1

or 〈G,ΣG〉 |= ϕ2.
� Formula ϕ1 ⇒ ϕ2, where 〈G,ΣG〉 |= ϕ1 ⇒ ϕ2 if and only if 〈G,ΣG〉 |= ϕ1

implies that 〈G,ΣG〉 |= ϕ2.

Finally, we can use quanti�ers. For concreteness, suppose we have a
formula ψ over signature Σ′ that contains some vertex variable v. Let
Σ = Σ′ \ {v}. Then we can write the following formulas over Σ:

� Formula ϕ∀ = ∀v∈V ψ. Then 〈G,ΣG〉 |= ϕ∀ if and only if for every vertex
vG ∈ V (G), it holds that 〈G,ΣG, vG〉 |= ψ.

� Formula ϕ∃ = ∃v∈V ψ. Then 〈G,ΣG〉 |= ϕ∃ if and only if there exists a
vertex vG ∈ V (G) such that 〈G,ΣG, vG〉 |= ψ.

Similarly, we can perform quanti�cation over variables for single edges
(∀e∈E/∃e∈E), vertex subsets (∀X⊆V /∃X⊆V ), and edge subsets (∀C⊆E/∃C⊆E).
The semantics is de�ned analogously.

Observe that in formula conn(X) we used a couple of notation �hacks�
that simpli�ed the formula, but were formally not compliant to the syntax de-
scribed above. We namely allow some shorthands to streamline writing formu-
las. Firstly, we allow simple shortcuts in the quanti�ers. For instance, ∃v∈X ψ
is equivalent to ∃v∈V (v ∈ X) ∧ ψ and ∀v∈X ψ is equivalent to ∀v∈V (v ∈
X) ⇒ ψ. We can also merge a number of similar quanti�ers into one, e.g.,
∃X1,X2⊆V is the same as ∃X1⊆V ∃X2⊆V . Another construct that we can use is
the subset relation X ⊆ Y : it can be expressed as ∀v∈V (v ∈ X) ⇒ (v ∈ Y ),
and similarly for edge subsets. We can also express the adjacency relation be-
tween two vertex variables: adj(u, v) = (u 6= v)∧ (∃e∈E inc(u, e)∧ inc(v, e)).



182 7 Treewidth

Finally, we use x 6= y for ¬(x = y) and x /∈ X for ¬(x ∈ X). The reader is
encouraged to use his or her own shorthands whenever it is bene�cial.

Examples. Let us now provide two more complicated examples of graph
properties expressible in MSO2. We have already seen how to express that a
subset of vertices induces a connected graph. Let us now look at 3-colorability.
To express this property, we need to quantify the existence of three vertex
subsets X1, X2, X3 which form a partition of V , and where each of them is
an independent set.

3colorability = ∃X1,X2,X3⊆V partition(X1, X2, X3)∧
indp(X1) ∧ indp(X2) ∧ indp(X3).

Here, partition and indp are two auxiliary subformulas. Formula partition
has three vertex subset variables X1, X2, X3 and veri�es that (X1, X2, X3) is
a partition of the vertex set V . Formula indp veri�es that a given subset of
vertices is independent.

partition(X1, X2, X3) = ∀v∈V [(v ∈ X1 ∧ v /∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v ∈ X2 ∧ v /∈ X3)

∨(v /∈ X1 ∧ v /∈ X2 ∧ v ∈ X3)];

indp(X) = ∀u,v∈X ¬adj(u, v).

Second, let us look at Hamiltonicity: we would like to write a formula that
is true in a graph G if and only if G admits a Hamiltonian cycle. For this,
let us quantify existentially a subset of edges C that is supposed to comprise
the edges of the Hamiltonian cycle we look for. Then we need to verify that
(a) C induces a connected graph, and (b) every vertex of V is adjacent to
exactly two di�erent edges of C.

hamiltonicity = ∃C⊆E connE(C) ∧ ∀v∈V deg2(v, C).

Here, connE(C) is an auxiliary formula that checks whether the graph (V,C)
is connected (using similar ideas as for conn(X)), and deg2(v, C) veri�es
that vertex v has exactly two adjacent edges belonging to C:

connE(C) = ∀Y⊆V [(∃u∈V u ∈ Y ∧ ∃v∈V v /∈ Y )

⇒ (∃e∈C ∃u∈Y ∃v/∈Y inc(u, e) ∧ inc(v, e))];

deg2(v, C) = ∃e1,e2∈C [(e1 6= e2) ∧ inc(v, e1) ∧ inc(v, e2)∧
(∀e3∈C inc(v, e3)⇒ (e1 = e3 ∨ e2 = e3))].
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7.4.2 Courcelle's theorem

In the following, for a formula ϕ by ||ϕ|| we denote the length of the encoding
of ϕ as a string.

Theorem 7.11 (Courcelle's theorem, [98]). Assume that ϕ is a formula
of MSO2 and G is an n-vertex graph equipped with evaluation of all the free
variables of ϕ. Suppose, moreover, that a tree decomposition of G of width t
is provided. Then there exists an algorithm that veri�es whether ϕ is satis�ed
in G in time f(||ϕ||, t) · n, for some computable function f .

The proof of Courcelle's theorem is beyond the scope of this book, and
we refer to other sources for a comprehensive presentation. As we will see
later, the requirement that G be given together with its tree decomposition
is not necessary, since an optimal tree decomposition of G can be computed
within the same complexity bounds. Algorithms computing treewidth will be
discussed in the next section and in the bibliographic notes.

Recall that in the previous section we constructed formulas 3colorability
and hamiltonicity that are satis�ed in G if and only if G is 3-colorable
or has a Hamiltonian cycle, respectively. If we now apply Courcelle's theo-
rem to these constant-size formulas, we immediately obtain as a corollary
that testing these two properties of graphs is �xed-parameter tractable when
parameterized by treewidth.

Let us now focus on the Vertex Cover problem: given a graph G and
integer k, we would like to verify whether G admits a vertex cover of size at
most k. The natural way of expressing this property in MSO2 is to quantify
existentially k vertex variables, representing vertices of the vertex cover, and
then verify that every edge of G has one of the quanti�ed vertices as an
endpoint. However, observe that the length of such a formula depends linearly
on k. This means that a direct application of Courcelle's theorem gives only
an f(k, t) · n algorithm, and not an f(t) · n algorithm as was the case for the
dynamic-programming routine of Corollary 7.6. Note that the existence of an
f(k, t) · n algorithm is only a very weak conclusion, because as we already
have seen in Section 3.1, even the simplest branching algorithm for Vertex
Cover runs in time O(2k · (n+m)).

Therefore, we would rather have the following optimization variant of
the theorem. Formula ϕ has some free monadic (vertex or edge) variables
X1, X2, . . . , Xp, which correspond to the sets we seek in the graph. In
the Vertex Cover example we would have one vertex subset variable
X that represents the vertex cover. Formula ϕ veri�es that the variables
X1, X2, . . . , Xp satisfy all the requested properties; for instance, that X in-
deed covers every edge of the graph. Then the problem is to �nd an evalua-
tion of variables X1, X2, . . . , Xp that minimizes/maximizes the value of some
arithmetic expression α(|X1|, |X2|, . . . , |Xp|) depending on the cardinalities
of these sets, subject to ϕ(X1, X2, . . . , Xp) being true. We will focus on α
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being an a�ne function, that is, α(x1, x2, . . . , xp) = a0 +
∑p
i=1 aixi for some

a0, a1, . . . , ap ∈ R.
The following theorem states that such an optimization version of Cour-

celle's theorem indeed holds.

Theorem 7.12 ([19]). Let ϕ be an MSO2 formula with p free monadic vari-
ables X1, X2, . . . , Xp, and let α(x1, x2, . . . , xp) be an a�ne function. Assume
that we are given an n-vertex graph G together with its tree decomposition
of width t, and suppose G is equipped with evaluation of all the free vari-
ables of ϕ apart from X1, X2, . . . , Xp. Then there exists an algorithm that in
f(||ϕ||, t)·n �nds the minimum and maximum value of α(|X1|, |X2|, . . . , |Xp|)
for sets X1, X2, . . . , Xp for which ϕ(X1, X2, . . . , Xp) is true, where f is some
computable function.

To conclude our Vertex Cover example, we can now write a simple
constant-length formula vcover(X) that veri�es that X is a vertex cover
of G: vcover(X) = ∀e∈E ∃x∈X inc(x, e). Then we can apply Theorem 7.12
to vcover and α(|X|) = |X|, and infer that �nding the minimum cardinality
of a vertex cover can be done in f(t) · n time, for some function f .

Note that both in Theorem 7.11 and in Theorem 7.12 we allow the formula
to have some additional free variables, whose evaluation is provided together
with the graph. This feature can be very useful whenever in the considered
problem the graph comes together with some prede�ned objects, e.g., ter-
minals in the Steiner Tree problem. Observe that we can easily write an
MSO2 formula Steiner(K,F ) for a vertex set variable K and edge set vari-
able F , which is true if and only if the edges from F form a Steiner tree
connecting K. Then we can apply Theorem 7.12 to minimize the cardinality
of F subject to Steiner(K,F ) being true, where the vertex subset K is given
together with the input graph. Thus we can basically re-prove Theorem 7.8,
however without any explicit bound on the running time.

To conclude, let us deliberate brie�y on the function f in the bound on
the running time of algorithms provided by Theorems 7.11 and 7.12. Un-
fortunately, it can be proved that this function has to be nonelementary; in
simple words, it cannot by bounded by a folded c times exponential func-
tion for any constant c. Generally, the main reason why the running time
must be so high is the possibility of having alternating sequences of quanti-
�ers in the formula ϕ. Slightly more precisely, we can de�ne the quanti�er
alternation of a formula ϕ to be the maximum length of an alternating se-
quence of nested quanti�ers in ϕ, i.e., ∀ ∃∀ ∃ . . . (we omit some technicalities
in this de�nition). Then it can be argued that formulas of quanti�er alter-
nation at most q give rise to algorithms with at most c-times exponential
function f , where c depends linearly on q. However, tracing the exact bound
on f even for simple formulas ϕ is generally very hard, and depends on the
actual proof of the theorem that is used. This exact bound is also likely to
be much higher than optimal. For this reason, Courcelle's theorem and its
variants should be regarded primarily as classi�cation tools, whereas design-
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ing e�cient dynamic-programming routines on tree decompositions requires
�getting your hands dirty� and constructing the algorithm explicitly.

7.5 Graph searching, interval and chordal graphs

In this section we discuss alternative interpretations of treewidth and path-
width, connected to the concept of graph searching, and to the classes of
interval and chordal graphs. We also provide some tools for certifying that
treewidth and pathwidth of a graph is at least/at most some value. While
these results are not directly related to the algorithmic topics discussed in
the book, they provide combinatorial intuition about the considered graph
parameters that can be helpful when working with them.

Alternative characterizations of pathwidth. We start with the concept
of graph searching. Suppose that G is a graph representing a network of tun-
nels where an agile and omniscient fugitive with unbounded speed is hiding.
The network is being searched by a team of searchers, whose goal is to �nd
the fugitive. A move of the search team can be one of the following:

� Placement: We can take a searcher from the pool of free searchers and
place her on some vertex v.

� Removal: We can remove a searcher from a vertex v and put her back to
the pool of free searchers.

Initially all the searchers are free. A search program is a sequence of moves
of searchers. While the searchers perform their program, the fugitive, who
is not visible to them, can move between the nodes of the network at un-
bounded speed. She cannot, however, pass through the vertices occupied by
the searchers, and is caught if a searcher is placed on a vertex she currently oc-
cupies. Searchers win if they launch a search program that guarantees catch-
ing the fugitive. The fugitive wins if she can escape the searchers inde�nitely.

Another interpretation of the same game is that searchers are cleaning a
network of tunnels contaminated with a poisonous gas. Initially all the edges
(tunnels) are contaminated, and an edge becomes clear if both its endpoints
are occupied by searchers. The gas, however, spreads immediately between
edges through vertices that are not occupied by any searcher. If a cleaned edge
becomes contaminated in this manner, we say that it is recontaminated. The
goal of the searchers is to clean the whole network using a search program.

These interpretations can be easily seen to be equivalent,4 and they lead
to the following de�nition of a graph parameter. The node search number of
a graph G is the minimum number of searchers required to clean G from gas

4 Strictly speaking, there is a boring corner case of nonempty edgeless graph, where no gas
is present but one needs a searcher to visit one by one all vertices to catch the fugitive.
In what follows we ignore this corner case, as all further results consider only a positive
number of searchers.
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or, equivalently, to catch an invisible fugitive in G. For concreteness, from
now on we will work with the gas cleaning interpretation.

An important question in graph searching is the following: if k searchers
can clean a graph, can they do it in a monotone way, i.e., in such a way that
no recontamination occurs? The answer is given by the following theorem of
LaPaugh; its proof lies beyond the scope of this book.

Theorem 7.13 ([315]). For any graph G, if k searchers can clear G, then
k searchers can clear G in such a manner that no edge gets recontaminated.

Let us now proceed to the class of interval graphs. A graph G is an interval
graph if and only if one can associate with each vertex v ∈ V (G) a closed
interval Iv = [lv, rv], lv ≤ rv, on the real line, such that for all u, v ∈ V (G),
u 6= v, we have that uv ∈ E(G) if and only if Iu ∩ Iv 6= ∅. The family
of intervals I = {Iv}v∈V is called an interval representation or an interval
model of G. By applying simple transformations to the interval representation
at hand, it is easy to see that every interval graph on n vertices has an interval
representation in which the left endpoints are distinct integers 1, 2, . . . , n. We
will call such a representation canonical.

Recall that a graph G′ is a supergraph of a graph G if V (G) ⊆ V (G′) and
E(G) ⊆ E(G′). We de�ne the interval width of a graph G as the minimum
over all interval supergraphs G′ of G of the maximum clique size in G′. That
is,

interval-width(G) = min {ω(G′) : G ⊆ G′ ∧G′ is an interval graph} .

Here, ω(G′) denotes the maximum size of a clique in G′. In other words, the
interval width of G is at most k if and only if there is an interval supergraph
of G with the maximum clique size at most k. Note that in this de�nition we
can assume that V (G′) = V (G), since the class of interval graphs is closed
under taking induced subgraphs.

We are ready to state equivalence of all the introduced interpretations of
pathwidth.

Theorem 7.14. For any graph G and any k ≥ 0, the following conditions
are equivalent:

(i) The node search number of G is at most k + 1.
(ii) The interval width of G is at most k + 1.
(iii) The pathwidth of G is at most k.

Proof. (i) ⇒ (ii). Without loss of generality, we can remove from G all iso-
lated vertices. Assume that there exists a search program that cleans G using
at most k+ 1 searchers. By Theorem 7.13, we can assume that this search is
monotone, i.e., no edge becomes recontaminated. Suppose the program uses
p moves; we will naturally index them with 1, 2, . . . , p. Let x1, x2, . . . , xp be
the sequence of vertices on which searchers are placed/from which searchers
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are removed in consecutive moves. Since G has no isolated vertices, each ver-
tex of G has to be occupied at some point (to clear the edges incident to
it) and hence it appears in the sequence x1, x2, . . . , xp. Also, without loss of
generality we assume that each placed searcher is eventually removed, since
at the end we can always remove all the searchers.

We now claim that we can assume that for every vertex v ∈ V (G), a
searcher is placed on v exactly once and removed from v exactly once. Let us
look at the �rst move j when an edge incident to v is cleaned. Note that it
does not necessarily hold that xj = v, but vertex v has to be occupied after
the j-th move is performed. Let j1 ≤ j be the latest move when a searcher is
placed at v before or at move j; in particular xj1 = v. Let j2 > j be the �rst
move when a searcher is removed from v after move j; in particular xj2 = v.
Since j is the �rst move when an edge incident to v is cleaned, we have
that before j1 all the edges incident to v are contaminated. Therefore, we
can remove from the search program any moves at vertex v that are before
j1, since they actually do not clean anything. On the other hand, observe
that at move j2 all the edges incident to v must be cleaned, since otherwise a
recontamination would occur. These edges stay clean to the end of the search,
by the monotonicity of our search program. Therefore, we can remove from
the search program all the moves at v that occur after j2, since they actually
do not clean anything.

For every vertex v, we de�ne `(v) as the �rst move when a searcher is
placed on v, and r(v) as the move when a searcher is removed from v. Now
with each vertex v we associate an interval Iv = [`(v), r(v) − 1]; note that
integers contained in Iv are exactly moves after which v is occupied. The
intersection graph GI of intervals I = {Iv}v∈V is, of course, an interval
graph. This graph is also a supergraph of G for the following reason. Since
every edge uv is cleared, there is always a move juv after which both u and
v are occupied by searchers. Then juv ∈ Iu ∩ Iv, which means that Iu and Iv
have nonempty intersection. Finally, the maximum size of a clique in GI is
the maximum number of intervals intersecting in one point, which is at most
the number of searchers used in the search.

(ii) ⇒ (iii). Let GI be an interval supergraph of G with the maximum
clique size at most k+1, and let I = {Iv}v∈V be the canonical representation
of GI . For i ∈ {1, . . . , n}, we de�ne Xi as the set of vertices v of G whose
corresponding intervals Iv contain i. All intervals associated with vertices of
Xi pairwise intersect at i, which means that Xi is a clique in G. Consequently
|Xi| ≤ k + 1. We claim that (X1, . . . , Xn) is a path decomposition of G.
Indeed, property (P1) holds trivially. For property (P2), because GI is a
supergraph of G, for every edge uv ∈ E(G) we have Iu ∩ Iv 6= ∅. Since
left endpoints of intervals of I are 1, 2, . . . , n, there exists also some i ∈
{1, 2, . . . , n} that belongs to Iu ∩ Iv. Consequently Xi contains both u and
v. For property (P3), from the de�nition of sets Xi it follows that, for every
vertex v, the sets containing v form an interval in {1, 2, . . . , n}.
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(iii) ⇒ (i). Let P = (X1, X2, . . . , Xr) be a path decomposition of G of
width at most k. We de�ne the following search program for k+ 1 searchers.
First, we place searchers on X1. Then, iteratively for i = 2, 3, . . . , r, we move
searchers from Xi−1 to Xi by �rst removing all the searchers from Xi−1 \
Xi, and then placing searchers on Xi \ Xi−1. Note that in this manner the
searchers are all the time placed on the vertices of Xi−1∩Xi. Moreover, since
the sizes of bags Xi are upper bounded by k+1, we use at most k+1 searchers
at a time. We now prove that this search program cleans the graph.

By property (P2), for every edge uv ∈ E(G) there exists a bag Xi such
that {u, v} ⊆ Xi. Hence, every edge gets cleaned at some point. It remains
to argue that no recontamination happens during implementation of this
search program. For the sake of contradiction, suppose that recontamination
happens for the �rst time when a searcher is removed from some vertex
u ∈ Xi−1 \Xi, for some i ≥ 2. This means that u has to be incident to some
edge uv that is contaminated at this point. Again by the property (P2),
there exists some bag Xj such that {u, v} ∈ Xj . However, since u ∈ Xi−1
and u /∈ Xi, then by property (P3) u can only appear in bags with indices
1, 2, . . . , i− 1. Hence j ≤ i− 1, which means that edge uv has been actually
already cleaned before, when searchers were placed on the whole bag Xj .
Since we assumed that we consider the �rst time when a recontamination
happens, we infer that edge uv must have remained clean up to this point, a
contradiction. ut

Alternative characterizations of treewidth. A similar set of equivalent
characterizations is known for the treewidth. The role of interval graphs is
now played by chordal graphs. Let us recall that a graph is chordal if it does
not contain an induced cycle of length more than 3, i.e., every cycle of length
more than 3 has a chord. Sometimes chordal graphs are called triangulated.
It is easy to prove that interval graphs are chordal, see Exercise 7.27.

We de�ne the chordal width of a graph G as the minimum over all chordal
supergraphs G′ of G of the maximum clique size in G′. That is,

chordal-width(G) = min {ω(G′) : G ⊆ G′ ∧G′ is a chordal graph} .

As we will see soon, the chordal width is equal to treewidth (up to a ±1 sum-
mand), but �rst we need to introduce the notion of graph searching related
to the treewidth.

The rules of the search game for treewidth are very similar to the node
searching game for pathwidth. Again, a team of searchers, called in this set-
ting cops, tries to capture in a graph an agile and omniscient fugitive, called
in this setting a robber . The main di�erence is that the cops actually know
where the robber is localized. At the beginning of the game cops place them-
selves at some vertices, and then the robber chooses a vertex to start her
escape. The game is played in rounds. Let us imagine that cops are equipped
with helicopters. At the beginning of each round, some subset of cops take o�
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in their helicopters, declaring where they will land at the end of the round.
While the cops are in the air, the robber may run freely in the graph; how-
ever, she cannot pass through vertices that are occupied by cops that are not
airborne. After the robber runs to her new location, being always a vertex,
the airborne cops land on pre-declared vertices. As before, the cops win if
they have a procedure to capture the robber by landing on her location, and
the robber wins if she can avoid cops inde�nitely.

Intuitively, the main di�erence is that if cops are placed at some set S ⊆
V (G), then they know in which connected component of G − S the robber
resides. Hence, they may concentrate the chase in this component. In the
node search game the searchers lack this knowledge, and hence the search
program must be oblivious to the location of the fugitive. It is easy to see
that when cops do not see the robber, then this reduces to an equivalent
variant of the node search game. However, if they see the robber, they can
gain a lot. For example, two cops can catch a visible robber on any tree, but
catching an invisible fugitive on an n-vertex tree can require log3 n searchers;
see Exercise 7.10.

Finally, let us introduce the third alternative characterization of treewidth,
which is useful in showing lower bounds on this graph parameter. We say that
two subsets A and B of V (G) touch if either they have a vertex in common,
or there is an edge with one endpoint in A and second in B. A bramble is the
family of pairwise touching connected vertex sets in G. A subset C ⊆ V (G)
covers a bramble B if it intersects every element of B. The least number of
vertices covering bramble B is the order of B.

It is not di�cult to see that if G has a bramble B of order k + 1, then k
cops cannot catch the robber. Indeed, during the chase the robber maintains
the invariant that there is always some X ∈ B that is free of cops, and in
which she resides. This can be clearly maintained at the beginning of the
chase, since for every set of initial position of cops there is an element X of
B that will not contain any cops, which the robber can choose for the start.
During every round, the robber examines the positions of all the cops after
landing. Again, there must be some Y ∈ B that will be disjoint from the set
of these positions. If X = Y then the robber does not need to move, and
otherwise she runs through X (which is connected and free from cops at this
point) to a vertex shared with Y or to an edge connecting X and Y . In this
manner the robber can get through to the set Y , which is free from the cops
both at this point and after landing.

This reasoning shows that the maximum order of a bramble in a graph G
provides a lower bound on the number of cops needed in the search game on
G, and thus on the treewidth of G. The following deep result of Seymour and
Thomas shows that this lower bound is in fact tight. We state this theorem
without a proof.

Theorem 7.15 ([414]). For every k ≥ 0 and graph G, the treewidth of G is
at least k if and only if G contains a bramble of order at least k + 1.
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Now we have gathered three alternative characterizations of treewidth,
and we can state the analogue of Theorem 7.14 for this graph parameter.
The result is given without a proof because of its technicality, but the main
steps are discussed in Exercise 7.28.

Theorem 7.16. For any graph G and any k ≥ 0, the following conditions
are equivalent:

(i) The treewidth of G is at most k.
(ii) The chordal width of G is at most k + 1.
(iii) k + 1 cops can catch a visible robber on G.
(iv) There is no bramble of order larger than k + 1 in G.

7.6 Computing treewidth

In all the applications of the treewidth we discussed in this chapter, we were
assuming that a tree decomposition of small width is given as part of the
input. A natural question is how fast we can �nd such a decomposition.
Unfortunately, it turns out that it is NP-hard to compute the treewidth of a
given graph, so we need to resort to FPT or approximation algorithms.

In order to make our considerations more precise, let us consider the
Treewidth problem de�ned as follows: we are given a graph G and an
integer k, and the task is to determine whether the treewidth of G is at
most k. There is a �simple� argument why Treewidth is �xed-parameter
tractable: It follows from the results of the Graph Minors theory of Robert-
son and Seymour, brie�y surveyed in Chapter 6. More precisely, it is easy
to see that treewidth is a minor-monotone parameter in the following sense:
for every graph G and its minor H, it holds that tw(H) ≤ tw(G) (see Ex-
ercise 7.7). Hence if we de�ne Gk to be the class of graphs of treewidth at
most k, then Gk is closed under taking minors. By Corollary 6.11, there ex-
ists a set of forbidden minors Forb(Gk), which depends on k only, such that
a graph has treewidth k if and only if it does not contain any graph from
Forb(Gk) as a minor. Hence, we can apply the algorithm of Theorem 6.12 to
each H ∈ Forb(Gk) separately, verifying in f(H) · |V (G)|3 time whether it is
contained in G as a minor. Since Forb(Gk) depends only on k, both in terms
of its cardinality and the maximum size of a member, this algorithm runs in
g(k) · |V (G)|3 for some function g. Similarly to the algorithms discussed in
Section 6.3, this gives only a nonuniform FPT algorithm � Corollary 6.11
does not provide us any means of constructing the family Gk, or even bound-
ing its size.

Alternatively, one could approach the Treewidth problem using the
graph searching game that we discussed in Section 7.5. This direction quite
easily leads to an algorithm with running time nO(k); the reader is asked to
construct it in Exercise 7.26.
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It is, nonetheless, possible to obtain a uniform, constructive algorithm for
the Treewidth problem. However, this requires much more involved tech-
niques and technical e�ort. In the following theorem we state the celebrated
algorithm of Bodlaender that shows that Treewidth is FPT.

Theorem 7.17 ([45]). There exists an algorithm that, given an n-vertex

graph G and integer k, runs in time kO(k3) · n and either constructs a tree
decomposition of G of width at most k, or concludes that tw(G) > k.

Generally, in the literature there is a variety of algorithms for comput-
ing good tree decompositions of graphs. The algorithm of Theorem 7.17 is
the fastest known exact parameterized algorithm, meaning that it computes
the exact value of the treewidth. Most other works follow the direction of
approximating treewidth. In other words, we relax the requirement that the
returned decomposition has width at most k by allowing the algorithm to
output a decomposition with a slightly larger width. In exchange we would
like to obtain better parameter dependence than kO(k3), which would be a
dominating factor in most applications.

In this section we shall present the classical approximation algorithm for
treewidth that originates in the work of Robertson and Seymour. More pre-
cisely, we prove the following result.

Theorem 7.18. There exists an algorithm that, given an n-vertex graph G
and integer k, runs in time O(8kk2 · n2) and either constructs a tree decom-
position of G of width at most 4k + 4, or concludes that tw(G) > k.

We remark that the running time of algorithm of Theorem 7.17 depends
linearly on the size of the graph, whereas in Theorem 7.18 the dependence is
quadratic. Although in this book we usually do not investigate precisely the
polynomial factors in the running time bounds, we would like to emphasize
that this particular di�erence is important in applications, as the running
time of most dynamic-programming algorithms on tree decompositions de-
pends linearly on the graph size, and, consequently, the n2 factor coming
from Theorem 7.18 is a bottleneck. To cope with this issue, very recently
a 5-approximation algorithm running in time 2O(k) · n has been developed
(see also the bibliographic notes at the end of the chapter); however, the
techniques needed to obtain such a result are beyond the scope of this book.

The algorithm of Theorem 7.18 is important not only because it provides
an e�cient way of �nding a reasonable tree decomposition of a graph, but
also because the general strategy employed in this algorithm has been reused
multiple times in approximation algorithms for other structural graph pa-
rameters. The crux of this approach can be summarized as follows.

� It is easy to see that every n-vertex tree T contains a vertex v such
that every connected component of T − v has at most n

2 vertices.
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A similar fact can be proved for graphs of bounded treewidth. More
precisely, graphs of treewidth at most k have balanced separators
of size at most k + 1: it is possible to remove k + 1 vertices from
the graph so that every connected component left is �signi�cantly�
smaller than the original graph.

� The algorithm decomposes the graph recursively. At each step we try
to decompose some part of a graph that has only ck vertices on its
boundary, for some constant c.

� The crucial step is to �nd a small separator of the currently processed
part H with the following property: the separator splits H into two
pieces H1, H2 so that the boundary of H gets partitioned evenly
between H1 and H2. If for some α > 1, each of H1 and H2 contains
only, say, ckα vertices of ∂(H), then we have |∂(H1)|, |∂(H2)| ≤ ck

α +

(k+1); the summand k+1 comes from the separator. If ckα +(k+1) ≤
ck, then we can recurse into pieces H1 and H2.

Before we proceed to the proof of Theorem 7.18, we need to introduce
some auxiliary results about balanced separators and separations in graphs
of small treewidth.

7.6.1 Balanced separators and separations

From now on we will work with the notions of separators and separations
in graphs; we have brie�y discussed these concepts in Section 7.2. Let us
recall the main points and develop further these de�nitions. A pair of vertex
subsets (A,B) is a separation in graph G if A ∪ B = V (G) and there is no
edge between A \ B and B \ A. The separator of this separation is A ∩ B,
and the order of separation (A,B) is equal to |A ∩B|.

We say that (A,B) separates two setsX,Y ifX ⊆ A and Y ⊆ B. Note that
then every X-Y path, i.e., a path between a vertex from X and a vertex from
Y , has to pass through at least one vertex of A ∩B. Given this observation,
we may say that a set C ⊆ V (G) separates two vertex sets X and Y if every
X-Y path contains a vertex of C. Note that in this de�nition we allow C to
contain vertices from X or Y . Given C that separates X and Y , it is easy
to construct a separation (A,B) that separates X and Y and has C as the
separator.

For two vertex sets X and Y , by µ(X,Y ) we denote the minimum size of
a separator separating X and Y , or, equivalently, the minimum order of a
separation separating X and Y . Whenever the graph we refer to is not clear
from the context, we put it as a subscript of the µ symbol. By the classic the-
orem of Menger, µ(X,Y ) is equal to the maximum number of vertex-disjoint
X-Y paths. The value of µ(X,Y ) can be computed in polynomial time by
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any algorithm for computing the maximum �ow in a graph. Moreover, within
the same running time we can obtain both a separation of order µ(X,Y ) sep-
arating X and Y , as well as a family of µ(X,Y ) vertex-disjoint X-Y paths
(see also Theorems 8.2, 8.4 and 8.5).

We now move to our �rst auxiliary result, which states that graphs of
treewidth at most k have balanced separators of size at most k+ 1. We prove
a slightly more general statement of this fact. Assume that w : V (G)→ R≥0
is a nonnegative weight function on the vertices of G. For a set X ⊆ V (G),
let us de�ne w(X) =

∑
u∈X w(u). Let α ∈ (0, 1) be any constant. We say

that a set X ⊆ V (G) is an α-balanced separator in G if for every connected
component D of G − X, it holds that w(D) ≤ α · w(V (G)). Informally
speaking, a balanced separator breaks the graph into pieces whose weights
constitute only a constant fraction of the original weight of the graph.

Like trees, graphs of �small� treewidth have �small� balanced separators.
This property is heavily exploited in numerous algorithmic applications
of treewidth.

If we put uniform weights on vertices, then balanced separators split the
graph more or less evenly with respect to the cardinalities of the obtained
pieces. Recall, however, that in the presented strategy for the algorithm of
Theorem 7.18 we would like to split evenly some smaller subset of vertices,
which is the boundary of the currently processed part of the graph. Therefore,
in our applications we will put weights 1 on some vertices of the graph, and
0 on the other. Then balanced separators split evenly the set of vertices that
are assigned weight 1. In other words, what we need is a weighted version of
balanced separators.

We now prove the fact that graphs of small treewidth admit small balanced
separators.

Lemma 7.19. Assume G is a graph of treewidth at most k, and consider a
nonnegative weight function w : V (G) → R≥0 on the vertices of G. Then in
G there exists a 1

2 -balanced separator X of size at most k + 1.

Proof. Let T = (T, {Xt}t∈V (T )) be a tree decomposition of G of width at

most k. We prove that one of the bags of T is a 1
2 -balanced separator we are

looking for. We start by rooting T at an arbitrarily chosen node r. For a node
t of T , let Vt be the set of vertices of G contained in the bags of the subtree
Tt of T rooted at node t (including t itself). Let us select a node t of T such
that:

� w(Vt) ≥ 1
2w(V (G)), and subject to

� t is at the maximum distance in T from r.

Observe that such a vertex t exists because root r satis�es the �rst condition.
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We claim that Xt is a 1
2 -balanced separator in G. Let t1, . . . , tp be the

children of t in T (possibly p = 0). Observe that every connected component
D of V (G)\Xt is entirely contained either in V (G)\Vt, or in Vti \Xt for some
i ∈ {1, 2, . . . , p}. Since w(Vt) ≥ 1

2w(V (G)), then w(V (G) \Vt) ≤ 1
2w(V (G)).

On the other hand, by the choice of t we have that w(Vti) <
1
2w(V (G))

for every i ∈ {1, . . . , p}. Consequently, in both cases D is entirely contained
in a set whose weight is at most 1

2w(V (G)), which means that w(D) ≤
1
2w(V (G)). ut

The proof of Lemma 7.19 shows that if a tree decomposition of G of width
at most k is given, one can �nd such a 1

2 -balanced separator in polynomial
time. Moreover, the found separator is one of the bags of the given decom-
position. However, in the remainder of this section we will only need the
existential statement.

Recall that in the sketched strategy we were interested in splitting the
currently processed subgraph into two even parts. However, after deleting
the vertices of the separator given by Lemma 7.19 the graph can have more
than two connected components. For this reason, we would like to group these
pieces (components) into two roughly equal halves. More formally, we say that
a separation (A,B) of G is an α-balanced separation ifw(A\B) ≤ α·w(V (G))
and w(B \ A) ≤ α ·w(V (G)). The next lemma shows that we can focus on
balanced separations instead of separators, at a cost of relaxing 1

2 to 2
3 .

Lemma 7.20. Assume G is a graph of treewidth at most k, and consider a
nonnegative weight function w : V (G) → R≥0 on the vertices of G. Then in
G there exists a 2

3 -balanced separation (A,B) of order at most k + 1.

Proof. Let X be a 1
2 -balanced separator in G of size at most k + 1, given by

Lemma 7.19. Let D1, D2, . . . , Dp be the vertex sets of connected components
of G − X. For i ∈ {1, 2, . . . , p}, let ai = w(Di); recall that we know that
ai ≤ 1

2w(V (G)). By reordering the components if necessary, assume that
a1 ≥ a2 ≥ . . . ≥ ap.

Let q be the smallest index such that
∑q
i=1 ai ≥ 1

3w(V (G)), or q = p if no
such index exists. We claim that

∑q
i=1 ai ≤ 2

3w(V (G)). This is clearly true
if
∑p
i=1 ai <

1
3w(V (G)). Also, if q = 1, then

∑q
i=1 ai = a1 ≤ 1

2w(V (G)) and
the claim holds in this situation as well. Therefore, assume that

∑q
i=1 ai ≥

1
3w(V (G)) and q > 1. By the minimality of q, we have that

∑q−1
i=1 ai <

1
3w(V (G)). Hence aq ≤ aq−1 ≤

∑q−1
i=1 ai <

1
3w(V (G)), so

∑q
i=1 ai = aq +∑q−1

i=1 ai <
1
3w(V (G)) + 1

3w(V (G)) = 2
3w(V (G)). This proves the claim.

We now de�ne A = X ∪⋃qi=1Di and B = X ∪⋃pi=q+1Di. Clearly (A,B)
is a separation of G with X being the separator, so it has order at most k+1.
By the claim from the last paragraph, we have that w(A \ B) =

∑q
i=1 ai ≤

2
3w(V (G)). Moreover, either we have that p = q and B \ A = ∅, or p < q
and then

∑q
i=1 ai ≥ 1

3w(V (G)). In the �rst case w(B \ A) = 0, and in the
latter case we have that w(B \ A) =

∑p
i=q+1 ai ≤ w(V (G)) − 1

3w(V (G)) =
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2
3w(V (G)). We conclude that (A,B) is a 2

3 -balanced separation in G of order
at most k + 1. ut

From Lemma 7.20 we can infer the following corollary, which will be our
main tool in the proof of Theorem 7.18.

Corollary 7.21. Let G be a graph of treewidth at most k and let S ⊆ V (G)
be a vertex subset with |S| = 3k + 4. Then there exists a partition (SA, SB)
of S such that k + 2 ≤ |SA|, |SB | ≤ 2k + 2 and µG(SA, SB) ≤ k + 1.

Proof. Let us de�ne the following weight function w: w(u) = 1 if u ∈ S, and
w(u) = 0 otherwise. Let (A,B) be a separation provided by Lemma 7.20. We
know that (A,B) has order at most k+1 and that |(A\B)∩S|, |(B\A)∩S| ≤
2
3 |S| = 2k + 8

3 . Since these cardinalities are integral, we in fact have that
|(A \B) ∩ S|, |(B \A) ∩ S| ≤ 2k + 2.

We now de�ne the partition (SA, SB). We �rst put (A \ B) ∩ S into SA
and (B \ A) ∩ S into SB ; in this manner we have at most 2k + 2 vertices in
SA and at most 2k + 2 vertices in SB . Then we iteratively examine vertices
of (A ∩B) ∩ S, and each vertex u ∈ (A ∩B) ∩ S is assigned to SA or to SB ,
depending on which of them is currently smaller (or arbitrarily, if they are
equal). Since |S| = 3k + 4 ≤ 2 · (2k + 2), in this manner none of the sets SA
or SB can get larger than 2k + 2.

Thus we obtain that |SA| ≤ 2k + 2, so also |SB | = |S| − |SA| ≥ k + 2.
Symmetrically |SA| ≥ k+2. Finally, observe that separation (A,B) separates
SA and SB , which proves that µG(SA, SB) ≤ |A ∩B| ≤ k + 1. ut

7.6.2 An FPT approximation algorithm for treewidth

Armed with our understanding of balanced separators in graphs of bounded
treewidth, we can proceed to the proof of Theorem 7.18.

Proof (of Theorem 7.18). We will assume that the input graph G is con-
nected, as otherwise we can apply the algorithm to each connected compo-
nent of G separately, and connect the obtained tree decompositions arbitrar-
ily. Furthermore, we assume that G has at most kn edges, since otherwise we
can immediately conclude that tw(G) > k; see Exercise 7.15. Letm = |E(G)|.

We present a recursive procedure decompose(W,S) for S ( W ⊆ V (G),
which tries to decompose the subgraph G[W ] in such a way that the set S is
contained in one bag of the decomposition. The procedure will work under
the assumption that the following invariants are satis�ed:

(i) |S| ≤ 3k + 4 and W \ S 6= ∅;
(ii) both G[W ] and G[W \ S] are connected;
(iii) S = NG(W \ S). In other words, every vertex of S is adjacent to some

vertex ofW \S, and the vertices ofW \S do not have neighbors outside
W .
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These invariants exactly express the properties that we want to maintain
during the algorithm: at each point we process some connected subgraph of
G, which communicates with the rest of G only via a small interface S. The
output of procedure decompose(W,S) is a rooted tree decomposition TW,S
of the graph G[W ], which has width at most 4k + 4 and satis�es S ⊆ Xr,
where r is the root of TW,S . The whole algorithm then boils down to calling
decompose(V (G), ∅); note that the invariants in this call are satis�ed since
we assumed G to be connected.

We now explain how procedure decompose(W,S) is implemented. The

�rst step is to construct a set Ŝ with the following properties:

(a) S ( Ŝ ⊆W , that is, Ŝ is a proper superset of S;

(b) |Ŝ| ≤ 4k + 5;

(c) every connected component of G[W \ Ŝ] is adjacent to at most 3k + 4

vertices of Ŝ.

Intuitively, the set Ŝ is going to form the root bag of the constructed de-
composition. Property (b) is needed to ensure small width, and property (c)
will be essential for maintaining invariant (i) when we recurse into connected

components of G[W \ Ŝ]. So far it is not clear why we require that Ŝ contains
at least one more vertex than S. This property will be very helpful when
estimating the running time of the algorithm. In particular, this will allow
us to show that the number of nodes in the constructed tree decomposition
is at most n.

Construction of Ŝ is very simple if |S| < 3k+ 4. We just pick an arbitrary

vertex u ∈ W \ S (which exists since W \ S 6= ∅), and we put Ŝ = S ∪ {u}.
Then |Ŝ| ≤ 3k+4. It is straightforward to verify that properties (a), (b), and
(c) are satis�ed in this case.

Assume then that |S| = 3k + 4. If tw(G) ≤ k, then also tw(G[W ]) ≤ k,
so by Lemma 7.21, there exists a partition (SA, SB) of S such that k + 2 ≤
|SA|, |SB | ≤ 2k + 2 and µG[W ](SA, SB), the minimum size of a separator
separating SA and SB in G[W ], is at most k + 1. The algorithm iterates
through all the 23k+4 partitions of S into two parts, and applies a max-�ow
algorithm to verify whether the minimum order of a separation of G[W ]
separating the sides does not exceed k + 1. If no partition satisfying the
properties expected from (SA, SB) has been found, then by Lemma 7.21 we
can safely conclude that tw(G[W ]) > k. Hence tw(G) > k, and the whole
algorithm can be terminated.

Assume then that a partition (SA, SB) satisfying the required properties
has been obtained. This means that there exists some separation (A,B) in
G[W ] that has order at most k + 1 and separates SA from SB ; see Fig. 7.5.
Moreover, this separation was computed during the application of a max-
�ow algorithm when partition (SA, SB) was considered. We now put Ŝ =

S∪ (A∩B). Clearly |Ŝ| ≤ |S|+ |A∩B| ≤ 3k+4+k+1 = 4k+5, so property
(b) is satis�ed. For property (c), let D be the vertex set of a connected
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Fig. 7.5: Situation in procedure decompose(W,S) when |S| = 3k + 4

component of G[W \ Ŝ]. Since D is connected in G[W ] and disjoint from
A∩B, it follows that D ⊆ A\B or D ⊆ B \A. Assume the former; the proof

for the second case is symmetric. Then the vertices of Ŝ that are adjacent to
D can be only contained in (A \B) ∩ S or in A ∩B. However, we have that

|(A \B) ∩ S|+ |A ∩B| ≤ |SA|+ |A ∩B| ≤ (2k + 2) + (k + 1) = 3k + 3,

so property (c) indeed holds.

For property (a), we just need to check that Ŝ contains at least one more
vertex than S. Since |SA|, |SB | ≥ k+ 2 and |A∩B| ≤ k+ 1, sets SA \ (A∩B)
and SB \ (A∩B) are nonempty. Let uA ∈ SA \ (A∩B) and uB ∈ SB \ (A∩B)
be arbitrarily chosen vertices. By invariants (ii) and (iii), there is a path P in
G[W ] that starts in uA, ends in uB , and whose internal vertices are contained
in W \ S. Indeed, uA has a neighbor u′A in W \ S, uB has a neighbor u′B in
W \ S, whereas u′A and u′B can be connected by a path inside G[W \ S] due
to the connectivity of this graph. As (A,B) separates SA from SB , path P
contains at least one vertex from A ∩ B. This vertex can be neither uA nor
uB , since these vertices do not belong to A∩B. Hence A∩B contains at least
one internal vertex of P , which belongs to W \ S; this proves property (a).

Once the set Ŝ is constructed, procedure decompose(W,S) can be com-
pleted easily. Let D1, D2, . . . , Dp be the vertex sets of connected components

of G[W \ Ŝ] (possibly p = 0). For each i = 1, 2, . . . , p, we call recursively
procedure decompose(NG[Di], NG(Di)). Satisfaction of invariants for these
calls follows directly from the de�nition of sets Di, invariant (iii) for the call

decompose(W,S), and properties (a) and (c) of Ŝ. Let Ti be the tree de-
composition obtained from the call decompose(NG[Di], NG(Di)), and let ri
be its root; recall that Xri contains N(Di). We now obtain a tree decom-

position TW,S of G[W ] as follows: create a root r with bag Xr = Ŝ, and for
every i = 1, 2, . . . , p attach Ti below r using edge rri. From the construction
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it easily follows that TW,S is a tree decomposition of G[W ]. Moreover, it has

width at most 4k + 4, since |Ŝ| ≤ 4k + 5 (property (b)) and every tree de-

composition Ti has width at most 4k+ 4. Finally, we have that Xr = Ŝ ⊇ S.
Hence TW,S has all the required properties and can be output as the result of
decompose(W,S). Note that p = 0 represents the base case; in this situation

the tree decomposition TW,S of G[W ] is a single node with the bag Xr = Ŝ.
This concludes the description of the algorithm, and we are left with

estimating its running time. For every call of decompose(W,S) when
|S| = 3k + 4, we iterate through 23k+4 partitions of S into two sides. For
each partition we apply, say, the Ford-Fulkerson algorithm in the graph
G[W ] to compute the maximum vertex �ow between the sides. This algo-
rithm runs a number of iterations; each iteration takes O(n + m) time and
either concludes that the currently found �ow is maximum, or augments it
by 1. Since we are interested only in situations when the maximum �ow is of
size at most k + 1, we may terminate the computation after k + 2 iterations
(see also Theorem 8.2). Hence, each application of the Ford-Fulkerson al-
gorithm takes time O(k(n + m)) = O(k2n), since m ≤ kn. In total, this

gives time O(23k+4k2 · n) for computing set Ŝ. All the other operations

performed in decompose(W,S), like partitioning G[W \ Ŝ] into connected
components or joining the decompositions obtained in the recursive calls,
can be easily implemented in O(n + m) = O(kn) time. In total, operations
performed in procedure decompose(W,S) (excluding subcalls) take time
O(23k+4k2 · n) = O(8kk2 · n).

Hence, it remains to prove an upper bound on how many times procedure
decompose(W,S) is called. Observe that each call of decompose(W,S)
creates exactly one new node of the output tree decomposition of G (the

root bag Xr = Ŝ), so equivalently we can bound the total number of nodes
constructed by the algorithm. This is precisely the point when we will use
property (a) of the set Ŝ computed in each call. Let T be the �nal tree decom-
position of G output by the algorithm. For each call decompose(W,S), we

have that set Ŝ, which is the bag at the root of the returned decomposition
TW,S , contains at least one vertex u that does not belong to S. Consequently,
the root of TW,S is the unique top-most node of T whose bag contains u.
Since for every call decompose(W,S) we can �nd such a vertex u, and these
vertices are pairwise di�erent, we infer that the total number of constructed
nodes does not exceed the total number of vertices in the graph, which is n.
Therefore, procedure decompose(W,S) is called at most n times, and the
whole algorithm runs in time O(8kk2 · n2). ut

The algorithm of Theorem 7.18 can give a negative answer only in two
cases: if it �nds out that m > kn, or when it identi�es a set S of size 3k + 4
which does not satisfy the statement of Lemma 7.21 in graph G[W ], and con-
sequently also in graph G. Distinguishing the case when m > kn was needed
only for the purpose of achieving better running time; if we drop this case,
then the algorithm is still correct, but works in O(8kk · nm) time. Hence, af-
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ter this small adjustment the algorithm of Theorem 7.18 provides an obstacle
in the graph whenever it is incapable of constructing a decomposition. This
obstacle is a set S with |S| = 3k + 4 that does not satisfy the statement of
Corollary 7.21 in G.

This property of a set S is a variant of the notion of well-linkedness. The
exact de�nition of a well-linked set is slightly di�erent, and the statement
of Corollary 7.21 is contrived to its algorithmic usage in the proof of Theo-
rem 7.18. While in this book we use a well-linked set only in the treewidth-
approximation algorithm as a certi�cate for large treewidth, this notion has
found a lot of other important algorithmic applications. In the bibliographic
notes we provide pointers to literature giving a broader presentation of this
subject.

7.7 Win/win approaches and planar problems

We start from formalizing the idea of a win/win approach, already sketched
in the introduction of this chapter. Let us focus on the Vertex Cover
problem; we would like to prove that this problem is FPT using treewidth,
ignoring for a moment the existence of a simple 2k ·nO(1) branching strategy.

Observe �rst that if a graph admits a vertex cover X of size k, then it
has treewidth at most k. Indeed, one can create a simple tree decomposition
(even a path decomposition) of width k, where every bag contains the whole
set X and one of the vertices outside X, and the bags are arranged into a
path arbitrarily. Given an instance (G, k) of Vertex Cover, let us apply the
algorithm of Theorem 7.18 to G and parameter k; this takes time O(8kk2 ·n2),
where n = |V (G)|. If the algorithm concludes that tw(G) > k, then we can
conclude that there is no vertex cover of G of size at most k. Otherwise, we
have a tree decomposition of G of width at most 4k + 4 at hand. Hence, we
can apply the dynamic-programming routine of Corollary 7.6 to solve the
problem in 24k+4kO(1) ·n time. Thus, the total running time of the algorithm
is O(8kk2 · n2 + 16kkO(1) · n).

This simple trick works well for Vertex Cover, Feedback Vertex
Set, or even the more general Treewidth-η Modulator problem, where
for a �xed constant η the task is to decide whether a given graph G can be
turned into a graph of treewidth at most η by deleting at most k vertices.
Essentially, we just need two properties: that a graph in a yes-instance al-
ways has treewidth bounded in terms of k, and that the problem admits an
FPT algorithm when parameterized by treewidth. While the second property
usually holds, the �rst one seems very restrictive. For example, consider the
Cycle Packing problem: given graph G and integer k, we need to deter-
mine whether G contains at least k vertex-disjoint cycles. This problem is in
some sense dual to Feedback Vertex Set. So far we do not see any link
between the treewidth of a graph and the maximum number of cycles that
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can be packed in it. The intuition, however, is that a graph of large treewidth
has a very complicated, entangled structure that should allow us to �nd as
many cycles as we like.

In order to follow this direction, we need to take a closer look at combi-
natorial structures that can be always found in graphs of large treewidth.
Equivalently, we can examine obstacles that prevent the existence of tree de-
compositions of small width. So far we know two types of such structures.
The �rst ones are brambles that we discussed in Section 7.5. However, these
objects are quite di�cult to grasp and understand, and moreover we do not
know e�cient procedures for constructing brambles of large order. The sec-
ond ones are well-linked sets, or in our notation, sets S that do not satisfy
the statement of Corollary 7.21. Their obvious advantage is that we get such
a set S directly from the approximation algorithm of Theorem 7.18 in case of
its failure. While it is still unclear why the existence of this obstacle implies
the possibility of packing many cycles in the graph, there is at least some
hope that from a well-linked set one could extract a more robust obstacle
that would be easier to use.

This intuition is indeed true, and leads to a powerful result called the
Excluded Grid Theorem: graphs of large treewidth contain large grids as
minors. While the proof of this result is beyond the scope this book, we
shall state it formally and derive some algorithmic consequences using a
win/win approach. Of particular interest for us are the corollaries for planar
graphs. For this class of graphs the relation between the treewidth and grid
minors is very tight, which enables us to design many e�cient approxima-
tion schemes, kernelization procedures, and, most importantly for us, �xed-
parameter tractable algorithms.

7.7.1 Grid theorems

As we have discussed in the beginning of Section 7.6, treewidth is a minor-
closed parameter and hence the class Gt comprising graphs of treewidth at
most t is closed under taking minors.5 From the Graph Minors theorem it
follows that the property of having treewidth at most t can be characterized
by a �nite set of forbidden minors Forb(Gt). That is, a graph G has treewidth
at most t if and only if it does not contain any graphH ∈ Forb(Gt) as a minor.
But what do graphs of Forb(Gt) look like? We apparently do not know the
answer to this question. However, we would like to get some �approximate
characterization� for graphs having treewidth at most t that is more tractable.

The obvious �rst attempt is to look at minors of complete graphs. It
is easy to see that if a graph G contains Kt as a minor, then tw(G) ≥
t − 1; see Exercise 7.8 . However, it is the converse implication that would

5 As in this section we work with parameterized problems with parameter denoted by k,
from now on we switch to a convention of denoting the width of a tree decomposition by t.
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be more valuable to us: it would be perfect if, for some function g, the fact
that tw(G) > g(t) would imply the existence of a Kt minor model in G.
This implication is unfortunately not true, as we will see in the next few
paragraphs.

Consider a large grid. More precisely, for a positive integer t, a t× t grid
�t is a graph with vertex set {(x, y) : x, y ∈ {1, . . . , t}}. Thus �t has exactly
t2 vertices. Two di�erent vertices (x, y) and (x′, y′) are adjacent if and only
if |x− x′|+ |y − y′| = 1. See the left graph in Fig. 7.6.

It is easy to show that the treewidth of �t is at most t. For example, t+ 1
cops can always catch the fugitive by sweeping the grid column by column.
It is harder to prove that the treewidth of �t is exactly t. Here Theorem 7.15
is very handy. The cross Cij of the grid is the union of the vertices of the
i-th column and the j-th row. The set of crosses of �t forms a bramble of
order t, hence the treewidth is at least t− 1. With a bit more work, one can
construct a bramble of order t+ 1 in �t, and thus prove that tw(�t) = t; see
Exercise 7.37. On the other hand, a grid is a planar graph, so by Kuratowski's
theorem, it does not admit a K5-minor. Therefore, K5-minor-free graphs can
be of arbitrarily large treewidth.

Our �rst attempt failed on the example of grids, so let us try to re�ne it by
taking grid minors as obstacles, instead of clique minors. Since tw(�t) = t,
a graph that contains a t × t grid as a minor must have treewidth at least
t. What is more surprising, is that now the converse implication is true:
there exists a function g such that every graph of treewidth larger than g(t)
contains a t× t grid as a minor.

This fundamental result was �rst proved by Robertson and Seymour. They
did not give any explicit bounds on function g, but a bound following from
their proof is astronomical. The �rst proof providing an explicit bound on
g was later given by Robertson, Seymour, and Thomas; they showed that
one can take g(t) = 2O(t5). There was a line of subsequent improvements
decreasing the polynomial function in the exponent. However, whether g can
be bounded by a polynomial function of t was open for many years. This open
problem was resolved in 2013 by Chekuri and Chuzhoy in the a�rmative.
More precisely, they proved the following result.

Fig. 7.6: Example of a 6× 6 grid �6 and a triangulated grid Γ4
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Theorem 7.22 (Excluded grid theorem, [73]). There exists a function
g(t) = O(t98+o(1)) such that every graph of treewidth larger than g(t) contains
�t as a minor.

Theorem 7.22 gives the tightest relationship known so far between the
treewidth and the size of a grid minor. It is worth remarking that its proof
is constructive: there exists a randomized polynomial-time algorithm that
either constructs a �t minor model, or �nds a tree decomposition of the
input graph of width at most g(t).

Note that Theorem 7.22 provides us the relationship between treewidth
and packing cycles in a graph, which we discussed in the introduction of this
section. Indeed, if a graph G contains a �t minor model for t = 2d

√
ke, then

in this model one can �nd (d
√
ke)2 ≥ k vertex-disjoint cycles: we just need

to partition �t into 2× 2 subgrids, and �nd a cycle in each of them. Hence,
whenever a graph G has treewidth larger than g(t) = O(k49+o(1)), then we
are certain that one can pack k vertex-disjoint cycles in G. As a result, also
for Cycle Packing we can apply the same win/win approach as described
before. Namely, we run the approximation algorithm for parameter g(t). If
tw(G) > g(t), then we conclude that (G, k) is a yes-instance. Otherwise, we
obtain a tree decomposition of G of width at most 4g(t) + 4, on which we
can employ dynamic programming (see Exercise 7.19). This shows that the
Cycle Packing problem is �xed-parameter tractable.

If we assume that graph G is planar, then it is possible to get a much
tighter relationship between the treewidth of G and the size of the largest
grid minor that G contains. The following theorem is due to Robertson,
Seymour and Thomas; we present here a version with re�ned constants due
to Gu and Tamaki.

Theorem 7.23 (Planar excluded grid theorem, [239, 403]). Let t be
a nonnegative integer. Then every planar graph G of treewidth at least 9t/2
contains �t as a minor. Furthermore, for every ε > 0 there exists an O(n2)
algorithm that, for a given n-vertex planar graph G and integer t, either
outputs a tree decomposition of G of width at most (9/2 + ε)t, or constructs
a minor model of �t in G.

In other words, for planar graphs the function g is linear. Since �t has
t2 vertices, every graph containing �t has at least t2 vertices. Therefore,
Theorem 7.23 immediately implies the following corollary.

Corollary 7.24. The treewidth of an n-vertex planar graph G is less than
9
2

⌈√
n+ 1

⌉
. Moreover, for any ε > 0, a tree decomposition of G of width at

most ( 9
2 + ε)

⌈√
n+ 1

⌉
can be constructed in O(n2) time.

For us it is more important that the planar excluded grid theorem allow us
to identify many parameterized problems on planar graphs with parameter
k, such that the treewidth of the graph in every yes-instance/no-instance
is O(

√
k). For example, a quick reader probably can already see that this
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will be the case for the Cycle Packing problem. This requires inspecting
the general win/win strategy for this problem that we explained before, and
replacing function g provided by Theorem 7.22 with the one provided by
Theorem 7.23. We shall delve deeper into this direction in Section 7.7.2, but
now we proceed to one more variant of the excluded grid theorem.

The variant we are about to introduce considers edge contractions instead
of minors. For this, we shall de�ne a new family of graphs which play the role
of grids. For an integer t > 0, the graph Γt is obtained from the grid �t by
adding, for all 1 ≤ x, y ≤ t−1, the edge (x+1, y), (x, y+1), and additionally
making vertex (t, t) adjacent to all the other vertices (x, y) with x ∈ {1, t} or
y ∈ {1, t}, i.e., to the whole border of �t. Graph Γ4 is the graph in the right
panel of Fig. 7.6.

Theorem 7.25 (Planar excluded grid theorem for edge contrac-
tions). For every connected planar graph G and integer t ≥ 0, if tw(G) ≥
9t+5 then G contains Γt as a contraction. Furthermore, for every ε > 0 there
exists an O(n2) algorithm that, given a connected planar n-vertex graph G
and integer t, either outputs a tree decomposition of G of width (9 + ε)t+ 5
or a set of edges whose contraction in G results in Γt.

Proof (sketch). By Theorem 7.23, if the treewidth of G is at least 9t + 5,
then G contains �2t+1 as a minor. This implies that, after a sequence of
vertex deletions, edge deletions and edge contractions, G can be transformed
to �2t+1. Let us examine this sequence, omit all edge deletions, and replace
every deletion of some vertex v with an edge contraction between v and one
of its neighbors (such a neighbor exists by the connectivity of G). It is easy to
see that this sequence of edge contractions transforms G into graph H which
is a partially triangulated (2t + 1) × (2t + 1) grid, that is, a planar graph
obtained from grid �2t+1 by adding some edges. We construct Γt from H
by contracting edges as shown in Fig. 7.7. More precisely, we �rst contract
the whole border of the grid so that it becomes one vertex adjacent to the
whole border of the inner (2t− 1)× (2t− 1) subgrid. Then we contract this
vertex onto the corner of the subgrid. At the end, we contract edges in the
subgrid using the zig-zag pattern depicted in Fig. 7.7 to obtain the same
diagonal in every cell. The �nal observation is that we must have obtained
exactly the graph Γt with no extra edges, since adding any edge to Γt spoils
its planarity�recall that we started from a planar graph G and applied only
edge contractions. ut

7.7.2 Bidimensionality

Introduction to bidimensionality. The planar excluded grid theorem
(Theorem 7.23) provides a powerful tool for designing algorithms on planar
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Figure 3: The steps of the proof of Lemma 5. The two first steps are the boundary contraction

of a partial triangulation of a (9 × 9)-grid. The third step is the contraction to Γ4.

The proof of the following lemma is based on Lemmata 4 and 5 and Proposition 5.

Lemma 6. Let G be a graph embedded in a surface of Euler genus γ and let k be a positive

integer. If the treewidth of G is more than 12 · (γ + 1)3/2 · (2k + 4), then G contains Γk as a

v-smooth contraction with v being one of the corners of Γk.

Proof. Applying Lemma 4 for r = (γ +1)1/2 · (2k +4), we deduce that G contains an (r × r)-

grid H as a surface minor. This implies that after a sequence of vertex/edge removals or

contractions G, can be transformed to H. If we apply only the contractions in this sequence,

we end up with some graph G′ in Σ which contains H as a subgraph. The embedding of G′ in

Σ induces an embedding of H in this surface. By Proposition 5, some ((2k + 3) × (2k + 3))-

subgrid H ′ of H is embedded in a close disk D of Σ in a way that the boundary cycle of

H ′ is the boundary of D. For each internal face F of H ′ in D we do the following: contract

each component of the graph induced by vertices of G laying inside F into a single vertex,

choose an edge which joins this vertex with a vertex of H and contract it. Let G′′ be the

obtained graph. Notice that G′ ∩ D is contracted to some partial triangulation H ′′ of the

grid H ′. Then we perform the boundary contraction of the graph G′′ to H ′′. Thus we have

contracted G′′ to a ((2k + 1) × (2k + 1))-grid Γ and the described contraction is a v-smooth

contraction, where v is a corner of Γ. It remains to apply Lemma 5 to conclude the proof of

the lemma.

Lemma 7. There is a constant c such that if G is a graph h-nearly embedded in a surface of

Euler genus γ without apices, where tw(G) ≥ c ·γ3/2 ·h3/2 ·k, then G contains as a v-smooth

contraction the graph Γk with the loaded corner v.

Proof. We choose c such that c·γ3/2 ·h3/2·k ≥ (12·(γ+1)3/2 ·(2·$h1/2%·(k+2)+4)+1)·(h+1)−1.

Let Σ be a surface of Euler genus γ with cycles C1, . . . , Ch, such that each cycle Ci is the

border of an open disc ∆i in Σ and such that G is h-nearly embedded in Σ. Let also

G = G0 ∪ G1 ∪ · · · ∪ Gh, where G0 is embedded in Σ and G1, . . . , Gh are vortices. We

10

Fig. 7.7: The steps of the proof of Theorem 7.25. The two �rst steps are the
boundary contraction of a partial triangulation of �9. The third step is the
contraction to Γ4

graphs. In all these algorithms we use again the win/win approach. We �rst
approximate the treewidth of a given planar graph. If the treewidth turns
out to be small, we use dynamic programing to �nd a solution. Otherwise,
we know that our graph contains a large grid as a minor, and using this we
should be able to conclude the right answer to the instance.

Let us �rst give a few examples of this strategy. In all these examples, by
making use of the planar excluded grid theorem we obtain algorithms with
running time subexponential in the parameter.

Let us �rst look at Planar Vertex Cover, i.e., for a given planar graph
G and parameter k, we need to determine whether there exists a vertex cover
of G of size at most k. We need to answer the following three simple questions.

(i) How small can be a vertex cover of �t? It is easy to check that �t
contains a matching of size bt2/2c, and hence every vertex cover of �t
is of cardinality at least bt2/2c.

(ii) Given a tree decomposition of width t of G, how fast can we solve
Vertex Cover? By Corollary 7.6, this can be done in time 2t ·tO(1) ·n.

(iii) Is Vertex Cover minor-closed? In other words, is it true that for
every minor H of graph G, the vertex cover of H does not exceed the
vertex cover of G?

As was observed in Chapter 6.3, if the class of graphs with vertex cover
at most k is minor-closed, i.e., a graph G has a vertex cover of size at most
k, then the same holds for every minor of G. Thus, if G contains �t as a
minor for some t ≥

√
2k + 2, then by (i) G has no vertex cover of size k. By

the planar excluded grid theorem, this means that the treewidth of a planar
graph admitting a vertex cover of size k is smaller than 9

2

√
2k + 2.

We summarize the above discussion with the following algorithm. For
t = d

√
2k + 2e and some ε > 0, by making use of the constructive part

of Theorem 7.23 we either compute in time O(n2) a tree decomposition of G
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of width at most ( 9
2 + ε)t, or we conclude that G has �t as a minor. In the

second case, we infer that G has no vertex cover of size at most k. However,
if a tree decomposition has been constructed, then by (ii) we can solve the

problem in time 2(
9
2+ε)d

√
2k+2e ·kO(1) ·n = 2O(

√
k) ·n. The total running time

of the algorithm is hence 2O(
√
k) · n+O(n2).

It is instructive to extract the properties of Planar Vertex Cover
which were essential for obtaining a subexponential parameterized algorithm.

(P1) The size of any solution in �t is of order Ω(t2).
(P2) Given a tree decomposition of width t, the problem can be solved

in time 2O(t) · nO(1).
(P3) The problem is minor-monotone, i.e., if G has a solution of size

at most k, then every minor of G also has a solution of size at most
k.

In this argument we have used the fact that in �t the size of a mini-
mum solution is lower-bounded by a quadratic function of t. We could apply
the same strategy for maximization problems where �t admits a solution
of quadratic size. For instance, consider the Planar Longest Path and
Planar Longest Cycle problems: given a planar graph G and integer k,
we are asked to determine whether G contains a path/cycle on at least k
vertices. It is easy to see that �t contains a path on t2 vertices and a cycle
on t2−1 vertices (or even t2, if t is even). Moreover, both these problems are
minor-monotone in the following sense: if a graph H contains a path/cycle
on at least k vertices, then so does every graph containing H as a minor.
Finally, both these problems can be solved in time tO(t) · nO(1) when a tree
decomposition of width t is available; see Exercise 7.19. Consequently, we

can apply the same win/win approach to obtain 2O(
√
k log k) · nO(1)-time al-

gorithms for Planar Longest Path and Planar Longest Cycle� the
only di�erence is that when a large grid minor is found, we give a positive
answer instead of negative.

This suggests that properties (P1), (P2), and (P3) may constitute a base
for a more general meta-result, which would apply to other problems as well.
But before we formalize this idea, let us consider a few more examples.

Our next problem is Planar Dominating Set. It is easy to check that
the problem satis�es (P1), and we also proved that it satis�es (P2) (see The-
orem 7.7). However, (P3) does not hold. For example, to dominate vertices
of a 3`-vertex cycle C we need ` vertices. But if we add to C a universal
vertex adjacent to all the vertices of C, then the new graph contains C as
a minor, but has a dominating set of size 1. Therefore, the approach that
worked for Planar Vertex Cover cannot be applied directly to Planar
Dominating Set.

However, while not being closed under taking of minors, domination is
closed under edge contractions. That is, if G can be dominated by k vertices,
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then any graph obtained from G by contracting some of the edges can be
also dominated by k vertices. What we need here is a structure similar to a
grid to which every planar graph of large treewidth can be contracted. But
this is exactly what Theorem 7.25 provides us!

We thus need to answer the following question: what is the minimum
possible size of a dominating set in Γt?We do not know the exact formula (and
this can be a di�cult question to answer), but obtaining an asymptotic lower
bound is easy. Every vertex except the lower-right corner (t, t) can dominate
at most nine vertices. The lower-right corner vertex dominates only 4t − 4

vertices. Thus, every dominating set of Γt is of size at least
t2−4t+4

9 = Ω(t2).
In this manner, using Theorem 7.25 we conclude that every connected

planar graph with dominating set of size at most k has treewidth O(
√
k).

We can now combine this observation with the dynamic programming of

Theorem 7.7. Using the same win/win approach, this gives us a 2O(
√
k) ·

nO(1)-time algorithm for Planar Dominating Set. And again, the essential
properties that we used are: (P1′) the size of a minimum solution in Γt is of
order Ω(t2); (P2′) the problem can be solved in single-exponential time when
parameterized by the treewidth of the input graph; and (P3′) the problem is
closed under edge contraction (that is, the solution does not increase when
edges are contracted).

Formalizing the framework. We have already gathered enough intuition
to be able to put the framework into more formal terms. In the following, we
restrict our attention to vertex-subset problems. Edge-subset problems can
be de�ned similarly and same arguments will work for them, hence we do not
discuss them here.

Let φ be a computable function which takes on input a graph G and a
set S ⊆ V (G), and outputs true or false. The interpretation of φ is that it
de�nes the space of feasible solutions S for a graph G, by returning a Boolean
value denoting whether S is feasible or not. For example, for theDominating
Set problem we would have that φ(G,S) = true if and only if N [S] = V (G).
Similarly, for Independent Set we would have that φ(G,S) = true if and
only if no two vertices of S are adjacent.

For a function φ, we de�ne two parameterized problems, called vertex-
subset problems: φ-Minimization and φ-Maximization. In both
problems the input consists of a graph G and a parameter k. φ-
Minimization asks whether there exists a set S ⊆ V (G) such that
|S| ≤ k and φ(G,S) = true. Similarly, φ-Maximization asks whether
there exists a set S ⊆ V (G) such that |S| ≥ k and φ(G,S) = true.

Obviously, problems like Dominating Set, Independent Set, or Ver-
tex Cover are vertex-subset problems for appropriate functions φ. We note,
however, that this notion captures also many other problems that, at �rst
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glance, have only little resemblance to the de�nition. A good example here is
the familiar Cycle Packing problem. To see how Cycle Packing can be
understood as a maximization vertex-subset problem, observe that a graph
G contains k vertex-disjoint cycles if and only if there exists a set S ⊆ V (G)
of size at least k with the following property: one can �nd in G a family
of vertex-disjoint cycles such that each vertex of S is contained in exactly
one of them. Hence, we can set φ(G,S) to be true if and only if exactly this
property is satis�ed for G and S. Contrary to the examples of Dominating
Set and Independent Set, in this case it is NP-hard to check whether
φ(G,S) is true for a given graph G and set S. But since we require φ only to
be computable, this de�nition shows that Cycle Packing is a vertex-subset
problem. Another examples are Longest Path and Longest Cycle; recall
that in these problems we ask for the existence of a path/cycle on at least k
vertices in a given graph. Here, we can take φ(G,S) to be true if and only if
G[S] contains a Hamiltonian path/cycle.

Let us consider some φ-Minimization problemQ. Observe that (G, k) ∈ Q
implies that (G, k′) ∈ Q for all k′ ≥ k. Similarly, if Q is a φ-Maximization
problem, then we have that (G, k) ∈ Q implies that (G, k′) ∈ Q for all k′ ≤ k.
Thus, the notion of optimality is well de�ned for vertex-subset problems.

De�nition 7.26. For a φ-Minimization problem Q, we de�ne

OPTQ(G) = min{k : (G, k) ∈ Q}.

If there is no k such that (G, k) ∈ Q, then we put OPTQ(G) = +∞.
For a φ-Maximization problem Q, we de�ne

OPTQ(G) = max{k : (G, k) ∈ Q}.

If there is no k such that (G, k) ∈ Q, then we put OPTQ(G) = −∞.

We say that a (minimization or maximization) vertex-subset problem Q
is contraction-closed if for every H that is a contraction of some graph G,
we have that OPTQ(H) ≤ OPTQ(G). Similarly, a vertex-subset problem Q
is minor-closed if the same inequality holds for all minors H of G. Observe
that the property of being contraction-closed or minor-closed can be checked
by examining single graph operations for these containment notions: a con-
traction of a single edge in the case of contractions, and vertex deletion, edge
deletion, and edge contraction in the case of minors.

We are now ready to de�ne bidimensional problems.

De�nition 7.27 (Bidimensional problem). A vertex-subset problem Q
is bidimensional if it is contraction-closed, and there exists a constant c > 0
such that OPTQ(Γt) ≥ ct2 for every t > 0.

As already pointed out in De�nition 7.27, for the sake of simplicity from
now on we will focus only on contraction bidimensionality. That is, we will
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work with contraction-closed problems and graphs Γt, rather than with
minor-closed problems and grids �t. Being contraction-closed is a strictly
weaker requirement than being minor-closed, whereas graphs Γt and �t do
not di�er that much when it comes to arguing about lower/upper bounds
on the optimum value for them. For this reason, on planar graphs working
with contraction bidimensionality is usually the preferable way. We remark
here that di�erences between contraction bidimensionality and minor bidi-
mensionality become more signi�cant when one generalizes the theory to
H-minor-free graphs. We brie�y discuss this topic at the end of this section.

It is usually straightforward to determine whether a given problem Q
is bidimensional according to De�nition 7.27. For example, let us take
Q =Vertex Cover. Contracting an edge does not increase the size of a
minimum vertex cover, so the problem is contraction-closed. And as we al-
ready observed, OPTQ(�t) ≥ bt2/2c. Thus also OPTQ(Γt) ≥ bt2/2c, so
Vertex Cover is bidimensional. Similarly, Feedback Vertex Set, In-
duced Matching, Cycle Packing, Scattered Set for a �xed value of
d, Longest Path, Dominating Set, and r-Center are bidimensional as
well; see Exercise 7.40.

The crucial property that we used in our examples was that whenever the
answer to the problem cannot be determined immediately, the input graph
has treewidth roughly

√
k. This is exactly what makes bidimensionality useful

for algorithmic applications.

Lemma 7.28 (Parameter-treewidth bound). Let Q be a bidimensional
problem. Then there exists a constant αQ such that for any connected planar

graph G it holds that tw(G) ≤ αQ ·
√
OPTQ(G). Furthermore, there exists a

polynomial-time algorithm that for a given G constructs a tree decomposition
of G of width at most αQ ·

√
OPTQ(G).

Proof. Consider a bidimensional problem Q and a connected planar graph
G. Let t be the maximum integer such that G contains Γt as a contraction.
Since Q is bidimensional, it is also contraction-closed, and hence OPTQ(G) ≥
OPTQ(Γt) ≥ ct2. By Theorem 7.25, the treewidth of G is at most 9t+5 ≤ 14t.

Thus OPTQ(G) ≥ c · tw(G)2

142 and the �rst statement of the lemma follows
for αQ = 14/

√
c. To obtain the second, constructive statement, one can

take αQ = 15/
√
c and apply the algorithm of Theorem 7.25 for ε = 1 and

increasing values of parameter t (starting from 1), up to the point when a
tree decomposition is returned. ut

The next theorem follows almost directly from Lemma 7.28.

Theorem 7.29. Let Q be a bidimensional problem such that Q can be solved
in time 2O(t) · nO(1) when a tree decomposition of the input graph G of width

t is provided. Then Q is solvable in time 2O(
√
k) · nO(1) on connected planar

graphs.
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Proof. The proof of the theorem is identical to the algorithms we described for
Vertex Cover and Dominating Set. Let (G, k) be an input instance of Q.
Using Lemma 7.28, we construct in polynomial time a tree decomposition G
of width t ≤ αQ ·

√
OPTQ(G). If t > αQ

√
k, then we infer that k < OPTQ(G).

In such a situation we can immediately conclude that (G, k) is a no-instance
of Q, provided Q is a minimization problem, or a yes-instance of Q, if Q is a
maximization problem. Otherwise, we have in hand a tree decomposition of G

of width at most αQ
√
k, and we can solve the problem in time 2O(

√
k) ·nO(1)

using the assumed treewidth-based algorithm. ut

Observe that if the assumed algorithm working on a tree decomposition
had a slightly di�erent running time, say tO(t) · nO(1), then we would need
to make a respective adjustment in the running time of the algorithm given
by Theorem 7.29. In the aforementioned case we would obtain an algorithm

with running time kO(
√
k) · nO(1).

Let us remark that the requirement of connectivity of G in Theorem 7.29
is necessary. In Exercise 7.42 we give an example of a bidimensional problem
Q such that Lemma 7.28 does not hold for Q and disconnected graphs. On
the other hand, for most natural problems, in particular problems listed in
Corollaries 7.30 and 7.31, we do not need the input graph G to be connected.
This is due to the fact that each of these problems is monotone under removal
of connected components. In other words, for every connected component C
of G we have that OPTQ(G − C) ≤ OPTQ(G). It is easy to see that if
problem Q has this property, then the requirement of connectivity can be
lifted in Lemma 7.28 and Theorem 7.29.

We can now combine the facts that many considered problems are both
bidimensional and solvable in single-exponential time when parameterized by
treewidth, see Theorem 7.9 and Exercises 7.40 and 7.23. Thus, we obtain the
following corollary of Theorem 7.29.

Corollary 7.30. The following parameterized problems can be solved in time

2O(
√
k)nO(1) on planar graphs:

� Vertex Cover,
� Independent Set,
� Dominating Set,
� Scattered Set for �xed d,
� Induced Matching, and
� r-Center for �xed r.

Similarly, by combining Lemma 7.28 with Theorem 7.10, we obtain the
following corollary.

Corollary 7.31. The following parameterized problems can be solved in time

kO(
√
k)nO(1) on planar graphs:

� Feedback Vertex Set,



210 7 Treewidth

� Longest Path and Longest Cycle,
� Cycle Packing,
� Connected Vertex Cover,
� Connected Dominating Set, and
� Connected Feedback Vertex Set.

In Chapter 11 we will see how to improve the running time of dynamic pro-
gramming on a tree decomposition to 2O(t) ·nO(1) for almost all the problems
listed in Corollary 7.31, except Cycle Packing. Hence, for these problems

the running time on planar graphs can be improved to 2O(
√
k)nO(1), as stated

in Corollary 11.14. Actually, this can be done also for Cycle Packing, even
though in Chapter 14 we will learn that the running time of tO(t) · nO(1) on
general graphs cannot be improved under reasonable complexity assumptions
(see Theorem 14.19). We can namely use the fact that the algorithm is run
on a planar graph of treewidth at most t, and this property can be exploited
algorithmically via the technique of Catalan structures. This improvement,
however, is beyond the scope of this book.

Beyond planarity. Let us brie�y mention possible extensions of bidimen-
sionality to more general classes of graphs. The planar excluded grid theorem
(Theorem 7.23) can be generalized to graphs excluding some �xed graph H as
a minor, i.e., H-minor-free graphs. More precisely, Demaine and Hajiaghayi
[134] proved that for every �xed graph H and integer t > 0, every H-minor-
free graph G of treewidth more than αHt contains �t as a minor, where αH
is a constant depending on H only.

Using this, it is possible to show that the treewidth-parameter bound
tw(G) ≤ αQ ·

√
OPTQ(G) holds for much more general classes of apex-minor-

free graphs. An apex graph is a graph obtained from a planar graph G by
adding one vertex and making it adjacent to an arbitrary subset of vertices
of G. Then a class of graphs is apex-minor-free if every graph in this class
does not contain some �xed apex graph as a minor. Thus for example, the
bidimensional arguments imply a subexponential parameterized algorithm
for Dominating Set on apex-minor-free graphs, but do not imply such
an algorithm for general H-minor-free graphs. While Dominating Set is
solvable in subexponential parameterized time on H-minor-free graphs, the
algorithm requires additional ideas.

If we relax the notion of (contraction) bidimensionality to minor bidimen-
sionality, i.e., we require that the problemQ is minor-closed and OPTQ(�t) =
Ω(t2), then for minor-bidimensional problems the treewidth-parameter bound
holds even for H-minor-free graphs. Therefore for example Vertex Cover
or Feedback Vertex Set admit subexponential parameterized algorithms
on graphs excluding a �xed minor because they are minor-bidimensional.



7.7 Win/win approaches and planar problems 211

7.7.3 Shifting technique

We now present another technique for obtaining �xed-parameter tractable al-
gorithms for problems on planar graphs using treewidth. The main idea of the
approach originates in the work on approximation schemes on planar graphs,
pioneered in the 1980s by Baker. The methodology is widely used in mod-
ern approximation algorithms, and is called the shifting technique, or simply
Baker's technique. In this section we present a parameterized counterpart of
this framework.

For a vertex v of a graph G and integer r ≥ 0, by Grv we denote the
subgraph of G induced by vertices within distance at most r from v in G. By
Theorem 7.25, we have the following corollary.

Corollary 7.32. Let G be a planar graph, v be an arbitrary vertex, and r be
a nonnegative integer. Then tw(Grv) ≤ 18r + 13.

Proof. For the sake of contradiction, suppose that tw(Grv) ≥ 18r + 14. Since
Grv is connected and planar, by Theorem 7.25 we infer that Grv can be con-
tracted to Γ2r+1. It is easy to see that for any vertex of Γ2r+1, in particular
for the vertex to which v was contracted, there is another vertex of Γ2r+1 at
distance at least r + 1 from this vertex. Since contraction of edges does not
increase the distances between vertices, this implies that there is a vertex of
Grv at distance at least r + 1 from v, which is a contradiction. ut

It is possible to prove a better bound on the dependence of treewidth on r
in planar graphs than the one stated in Corollary 7.32. The following result
is due to Robertson and Seymour.

Theorem 7.33 ([398]). Let G be a planar graph, v be an arbitrary vertex,
and r be a nonnegative integer. Then tw(Grv) ≤ 3r + 1. Moreover, a tree
decomposition of Grv of width at most 3r+1 can be constructed in polynomial
time.

By Theorem 7.33, we have the following corollary.

Corollary 7.34. Let v be a vertex of a planar graph G, and for i ≥ 0 let Li
be the set of vertices of G that are at distance exactly i from v. Then for any
i, j ≥ 1, the treewidth of the subgraph Gi,i+j−1 = G[Li ∪Li+1 ∪ · · · ∪Li+j−1]
does not exceed 3j + 1. Moreover, a tree decomposition of Gi,i+j−1 of width
at most 3j + 1 can be computed in polynomial time.

Proof. Consider the graph Gi+j−1v , and note that Gi−1v is its induced sub-
graph that is connected. Contract the whole subgraph Gi−1v to one vertex
v?, and observe that the obtained planar graph H is exactly Gi,i+j−1 with
additional vertex v?. However, in H all the vertices are at distance at most j
from v?, since in G every vertex from Li∪Li+1∪· · ·∪Li+j−1 is at distance at
most j from some vertex of Li−1. By Theorem 7.33, we can compute in poly-
nomial time a tree decomposition of H of width at most 3j + 1. As Gi,i+j−1
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is an induced subgraph of H, we can easily adjust it to a tree decomposition
of Gi,i+j−1 of width at most 3j + 1. ut

The basic idea behind the shifting technique is as follows.

� Pick a vertex v of the input planar graph G, and run a breadth-�rst
search (BFS) from v in G.

� By Corollary 7.34, for any choice of i, j ≥ 1, the treewidth of the
subgraph Gi,i+j−1 induced by vertices on levels i, i+ 1, . . . , i+ j − 1
of BFS does not exceed 3j + 1.

� Assume that in our problem we are looking for a set S of size k
that has some property. Suppose for a moment that such S exists.
If we take j = k + 1, then we are sure that there exists a number
q ∈ {0, 1, . . . , k} such that levels with indices of the form a(k+1)+ q
for a = 0, 1, 2, . . . do not contain any vertex of S. We can remove
these layers from G, thus obtaining a graph Gq that is a disjoint
union of graphs G(k+1)a+q+1,(k+1)(a+1)+q−1 for a = 0, 1, 2, . . ., plus
possibly Gq−1v if q > 0. Note that Gq still contains the whole set S.
However, using Theorem 7.33 and Corollary 7.34 we can construct a
tree decomposition of Gq of width at most 3k + 1.

� To �nd a solution S, we iterate through all possible q ∈ {0, 1, . . . , k},
and for each q we run a dynamic-programming algorithm on the
obtained tree decomposition of Gq. If a solution exists, it survives in
at least one graph Gq and can be uncovered by the algorithm.

We formalize the above idea in the following lemma.

Lemma 7.35. Let G be a planar graph and let k ≥ 0 be an integer. Then the
vertex set of G can be partitioned into k + 1 sets (possibly empty) in such a
manner that any k of these sets induce a graph of treewidth at most 3k + 1
in G. Moreover, such a partition, together with tree decompositions of width
at most 3k + 1 of respective graphs, can be found in polynomial time.

Proof. Let us give a proof �rst for the case of connected graphs. Assume then
that we are given a connected planar graph G and a nonnegative integer k.
We select an arbitrary vertex v ∈ V (G) and run a breadth-�rst search (BFS)
from v. For j ∈ {0, . . . , k}, we de�ne Sj to be the set of vertices contained
on levels a(k + 1) + j of the BFS, for a = 0, 1, 2, . . .. Observe that thus
(Sj)0≤j≤k is a partition of V (G). Moreover, the graph G − Sj is a disjoint
union of graphs G(k+1)a+j+1,(k+1)(a+1)+j−1 for a = 0, 1, 2, . . ., plus possibly
Gj−1v provided that j > 0. By Theorem 7.33 and Corollary 7.34, for each of
these graphs we can construct a tree decomposition of width at most 3k+ 1;
connecting these tree decompositions arbitrarily yields a tree decomposition
of G − Sj of width at most 3k + 1. Hence, partition (Sj)0≤j≤k satis�es the
required property and we have proved lemma for connected graphs.
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Let G be a (non-connected) graph and let G1, G2, . . . , Gc be its connected
components . Then we apply the statement to each connected component Gi
separately, thus obtaining a partition (Sij)0≤j≤k of V (Gi) that satis�es the

required property. Then for j ∈ {0, 1, . . . , k} take Sj =
⋃c
i=1 S

i
j . It is easy to

verify that partition (Sj)0≤j≤k of V (G) satis�es the required property. ut
Sometimes it is more convenient to use the following edge variant of

Lemma 7.35. The proof of the following statement can be proved in a similar
manner as Lemma 7.35, and we leave it as Exercise 7.47.

Lemma 7.36. Let G be a planar graph and k be a nonnegative integer. Then
the edge set of G can be partitioned into k+ 1 sets (possibly empty) such that
any k of these sets induce a graph of treewidth at most 3k+4 in G. Moreover,
such a partition, together with tree decompositions of width at most 3k+ 4 of
respective graphs, can be found in polynomial time.

We now give two examples of applications of the shifting technique. Our
�rst example is Subgraph Isomorphism. In this problem we are given two
graphs, host graph G and pattern graph H, and we ask whether H is iso-
morphic to a subgraph of G. Since Clique is a special case of Subgraph
Isomorphism, the problem is W[1]-hard on general graphs when parame-
terized by the size of the pattern graph. It is possible to show using color
coding that the problem can be solved in time f(|V (H)|)|V (G)|O(tw(H)) for
some function f , see Exercise 7.48. In other words, the problem is FPT if the
pattern graph has constant treewidth. However, we now prove that if both
the host and the pattern graph are planar, then the problem is FPT when
parameterized by |V (H)|, without any further requirements.

As a building block here we need the following result about solving Sub-
graph Isomorphism on graphs of bounded treewidth. The lemma can be
proved by either designing an explicit dynamic-programming algorithm, or
using Courcelle's theorem. We leave its proof as Exercise 7.49.

Lemma 7.37. There exists an algorithm that solves a given instance (G,H)
of Subgraph Isomorphism in time f(|V (H)|, t) · |V (G)|O(1), where f is
some function and t is the width of a given tree decomposition of G.

Let us remark that the running time of the algorithm has to depend on
|V (H)|; in other words, parameterization just by the treewidth will not work.
It is in fact known that Subgraph Isomorphism is NP-hard on forests, i.e.,
graphs of treewidth 1. In bibliographic notes we discuss further literature on
di�erent parameterizations of Subgraph Isomorphism.

Let us note that if we search for a connected subgraph H, then Lem-
mas 7.33 and 7.37 are su�cient to �nd a solution: for each vertex v of a pla-
nar graph, we try if a subgraph induced by the vertices of the ball of radius
|V (H)| centered in v contains H as a subgraph. Because each such subgraph
is of treewidth at most 3|V (H)|+1, this will give a time f(|V (H)|)·|V (G)|O(1)

algorithm solving Subgraph Isomorphism. However, if H is not connected,
we need to use shifting technique.
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Theorem 7.38. There exists an algorithm that, given an instance (G,H) of
Subgraph Isomorphism where G and H are planar, solves this instance in
time f(|V (H)|) · |V (G)|O(1), for some function f .

Proof. Let k = |V (H)|. Using Lemma 7.35, we construct in polynomial time a
partition S0∪· · ·∪Sk of V (G) such that for every i ∈ {0, . . . , k}, graph G−Si
has a tree decomposition of width at most 3k+ 1. These tree decompositions
are also provided by the algorithm of Lemma 7.35.

By Lemma 7.37, we can solve Subgraph Isomorphism in time f(k)·nO(1)

on each G− Sj . Because we partition the vertex set of G into k + 1 sets, for
every k-vertex subset X of G there exists j ∈ {0, . . . , k} such that X∩Sj = ∅.
Therefore, if G contains H as a subgraph, then for at least one value of j,
G−Sj also contains H as a subgraph. This means that by trying each of the
graphs G − Sj for j ∈ {0, . . . , k}, we will �nd a copy of H in G, provided
there exists one. ut

The running time of the algorithm of Theorem 7.38 depends on how fast
we can solve Subgraph Isomorphism on graphs of bounded treewidth. In
bibliographic notes we sketch the current state of the art on this issue.

Our second example concerns the Minimum Bisection problem. For a
given n-vertex graph G and integer k, the task is to decide whether there
exists a partition of V (G) into sets A and B, such that bn/2c ≤ |A|, |B| ≤
dn/2e and the number of edges with one endpoint in A and the second in B
is at most k. In other words, we are looking for a balanced partition (A,B)
with an (A,B)-cut of size at most k. Such a partition (A,B) will be called a
k-bisection of G.

It will be convenient to work with a slightly more general variant of the
problem. In the following, we will assume that G can be a multigraph, i.e., it
can have multiple edges between the same pair of vertices. Moreover, the
graph comes together with a weight function w : V (G) → Z≥0 on ver-
tices, and from a k-bisection (A,B) we will require that bw(V (G))/2c ≤
w(A),w(B) ≤ dw(V (G))/2e. Of course, by putting unit weights we arrive at
the original problem.

The goal is to prove that Minimum Bisection on planar graphs is FPT
when parameterized by k. This time we shall use yet another variant of
Lemma 7.35. The proof of the following result is slightly more di�cult than
that of Lemma 7.35 or Lemma 7.36. We leave it to the reader as Exercise 7.50.

Lemma 7.39. Let G be a planar graph and k be a nonnegative integer. Then
the edge set of G can be partitioned into k+1 sets such that after contracting
edges of any of these sets, the resulting graph admits a tree decomposition
of width at most ck, for some constant c > 0. Moreover, such a partition,
together with tree decompositions of width at most ck of respective graphs,
can be found in polynomial time.
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As a building block for FPT algorithm on planar graphs, we need the
following lemma about �xed parameterized tractability of Minimum Bisec-
tion on graphs of bounded treewidth. Its proof is again left to the reader as
Exercise 7.51.

Lemma 7.40. Minimum Bisection can be solved in time 2t ·W · nO(1) on
an n-vertex multigraph given together with its tree decomposition of width t.
Here, W is the maximum weight of a vertex.

Note that here we are referring to tree decompositions of multigraphs,
but the de�nitions of treewidth and tree decompositions can be naturally
extended to multigraphs as well. We now proceed to the main result; note
that again we state it for the generalized weighted problem.

Theorem 7.41. Minimum Bisection on planar graphs can be solved in
time 2O(k) ·W · nO(1), where W is the maximum weight of a vertex.

Proof. We use Lemma 7.39 to partition the set of edges of the input planar
graph G into sets S0∪· · ·∪Sk. Note here that Lemma 7.39 is formally stated
only for simple graphs, but we may extend it to multigraphs by putting copies
of the same edge always inside the same set Sj .

Suppose that there exists a k-bisection (A,B) of G, and let F be the set of
edges between A and B. Then at least one of the sets Sj is disjoint from F . Let
us contract all the edges of Sj , keeping multiple edges but removing created
loops. Moreover, whenever we contract some edge uv, we de�ne the weight of
the resulting vertex as w(u)+w(v). Let Gj be the obtained multigraph. Since
F is disjoint from Sj , during this contraction we could have just contracted
some parts of G[A] and some parts of G[B]. Therefore, the new multigraph Gj
also admits a k-bisection (A′, B′), where A′, B′ comprise vertices originating
in subsets of A and B, respectively.

On the other hand, if for any Gj we �nd some k-bisection (A′, B′), then
uncontracting the edges of Sj yields a k-bisection (A,B) of G. These two
observations show that G admits a k-bisection if and only if at least one of the
multigraphs Gj does. However, Lemma 7.39 provided us a tree decomposition
of each Gj of width O(k). Hence, we can apply the algorithm of Lemma 7.40
to each Gj , and thus solve the input instance (G, k) in time 2O(k) ·W ·nO(1).
Note here that the maximum weight of a vertex in each Gj is at most nW .

ut
Let us remark that the only properties of planar graphs that we used here

were Theorem 7.33 and the fact that planar graphs are closed under the
operation of taking minors. We say that a class of graphs G is of bounded
local treewidth if there exists function f such that for every graph G ∈ G and
every vertex v of G, it holds that tw(Grv) ≤ f(r). For example, Theorem 7.33
shows that planar graphs are of bounded local treewidth. Graphs of maximum
degree d for a constant d are also of bounded local treewidth for the following
reason: for every v and r, graph Grv contains at most dr + 1 vertices, so also
tw(Grv) ≤ dr. However, this class is not closed under taking minors.
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Our arguments used for planar graphs can be trivially extended to minor-
closed graph classes of bounded local treewidth. It was shown by Eppstein
[165] that a minor-closed class of graphs is of bounded local treewidth if and
only if all its members exclude some �xed apex graph as a minor. Recall
that an apex graph is a graph obtained from a planar graph G by adding one
vertex and making it adjacent to an arbitrary subset of vertices of G. Then a
class of graphs is apex-minor-free if every graph in this class does not contain
some �xed apex graph as a minor. Demaine and Hajiaghayi [134] re�ned
the result of Eppstein by showing that for every apex-minor-free graph class,
function f in the de�nition of bounded local treewidth is actually linear.

*7.8 Irrelevant vertex technique

In the Planar Vertex Deletion problem we are given a graph G and
an integer k. The question is whether there exists a vertex subset D of size
at most k such that G − D is planar. A set D with this property will be
henceforth called a planar deletion set.

The class of planar graph is minor-closed and due to that Planar Ver-
tex Deletion is a special case of G Vertex Deletion for G the class of
planar graphs. By Theorem 6.17, we have that Planar Vertex Deletion
is nonuniformly FPT. In this section we give a constructive FPT algorithm
for Planar Vertex Deletion. However, more interesting than the algo-
rithm itself is the method of obtaining it. The algorithm is namely based on
the irrelevant vertex technique.

This technique originates from the work of Robertson and Seymour on
their famous FPT algorithm for the Vertex Disjoint Paths problem. In
this problem, we are given a graph G and a set of k pairs of terminal vertices,
{(s1, t1), . . . , (sk, tk)}, and the task is to �nd k vertex-disjoint paths connect-
ing all pairs of terminals. The algorithm of Robertson and Seymour is very
complicated and uses deep structural theorems from the theory of Graph Mi-
nors. On a very general level, the algorithm can be roughly summarized as
follows.

As long as the treewidth of G is large in terms of k, it is possible to �nd a
vertex v that is solution-irrelevant: every collection of k paths of any solution
can be rerouted to an equivalent one that avoids v. Thus v can be safely
removed from the graph without changing the answer to the instance. By
repeating this argument exhaustively, we eventually reduce the treewidth of
the graph to some function of k. Then the problem can be solved in FPT
time using dynamic programming.

Since the work of Robertson and Seymour, the irrelevant vertex technique
has been used multiple times in various parameterized algorithms. While the
general win/win approach is natural, the devil lies in the detail. Most of
the algorithms based on irrelevant edge/vertex techniques are very nontrivial
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and involve a large number of technical details. The algorithm for Planar
Vertex Deletion is one of the simplest examples of applications of this
approach, as it is possible to give an almost complete proof in just a few
pages. Formally, we shall prove the following theorem.

Theorem 7.42. Planar Vertex Deletion can be solved in time
2O(k2 log k)nO(1).

The remaining part of this section is devoted to the proof of the theorem.
We shall implement the following plan.

� We use iterative compression (see Chapter 4) in a standard manner
and reduce the problem to Disjoint Planar Vertex Deletion:
For a given graph G and vertex set D of size k + 1 such that G−D
is planar, we ask if there is a set D′ of size k such that G − D′ is
planar and D ∩D′ = ∅.

� The only black box ingredient which we do not explain is the fact that
on graphs of treewidth t one can solve Disjoint Planar Vertex
Deletion in time 2O(t log t)n using dynamic programming.

� If the treewidth of G−D is smaller than some threshold depending on
k, then we solve Disjoint Planar Vertex Deletion by dynamic
programming. Otherwise, G−D contains a large grid as a minor.

� If the grid is su�ciently large, then it contains k + 2 �concentric�
cycles �centered� at some vertex v. Moreover, the outermost cycle
C separates all the other cycles from the rest of the graph, and the
connected component of G−C containing all these cycles is planar.
Then one can show that v is irrelevant and can be safely deleted from
the graph; this is the most di�cult part of the proof.

We start by introducing a criterion of planarity that will be used later. Let
C be a simple cycle in graph G. A C-bridge in G is a subgraph of G which
is either a single edge that is a chord of C (together with its endpoints), or
a connected component of G− V (C) together with all the edges connecting
it with C (and their endpoints). Observe that if G is not connected, then
by de�nition every connected component of G that does not contain C is
a C-bridge. If B is a C-bridge, then the vertices of V (C) ∩ V (B) are the
attachment points of B. Two C-bridges B1, B2 overlap if at least one of the
following conditions is satis�ed:

(a) B1 and B2 have at least three attachment points in common, or
(b) cycle C contains distinct vertices a, b, c, d (in this cyclic order) such that
a and c are attachment points of B1, while b and d are attachment points
of B2.

For a graph G with a cycle C, we de�ne an overlap graph O(G,C) that has
the C-bridges in G as vertices, and two C-bridges are connected by an edge
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if they overlap. If G has a plane embedding, then in this embedding cycle
C partitions the rest of the plane into two disjoint open sets, the faces of
C. Observe that if two C-bridges B1 and B2 overlap, then they cannot be
both drawn in the same face of C without intersection. This implies that if
G is indeed planar, then the overlap graph O(G,C) has to be bipartite: sides
of the bipartition of O(G,C) correspond to C-bridges that are placed inside
and outside the cycle C.

The following criterion of planarity states that the condition that O(G,C)
is bipartite is not only necessary for G to be planar, but also su�cient. We
leave its proof as Exercise 7.43.

Lemma 7.43. Let C be a simple cycle in G. Then G is planar if and only if
(i) for every C-bridge B, graph C ∪ B is planar, and (ii) the overlap graph
O(G,C) is bipartite.

We now introduce the notation for separators in planar graphs. Let G
be a connected graph, and let u, v be two distinct vertices. A set X is a
(u, v)-separator if u, v /∈ X, but every u-v path contains a vertex of X. Note
that in this de�nition we assume that the separator does not contain either
u or v, contrary to separators that we used in Section 7.6. The connected
component of G−X that contains v is called the v-component, and its vertex
set will be denoted by R(v,X). Equivalently, R(v,X) is the set of all the
vertices of G that are reachable from v via paths that avoid X. We say that
X is a connected separator if G[X] is connected, and is a cyclic separator if
G[X] contains a Hamiltonian cycle. Of course, every cyclic separator is also
connected.

The following lemma will be a technical tool needed in delicate reasonings
about �nding an irrelevant vertex.

Lemma 7.44. Let G be a connected graph, and suppose u, v ∈ V (G) are two
distinct vertices. Let X1 and X2 be two disjoint connected (u, v)-separators
and let Ri = R(v,Xi) for i = 1, 2. Then either R1∪X1 ⊆ R2 or R2∪X2 ⊆ R1.

Proof. Let P be any walk in G that starts at v and ends in u. Since X1 and
X2 separate u from v, P meets both a vertex of X1 and a vertex of X2. Let
h1(P ) be the �rst vertex on P that belongs to X1 ∪X2, and let h2(P ) be the
last such vertex; in this de�nition P is traversed from v to u.

We claim that if h1(P ) ∈ X1 then h2(P ) ∈ X2, and if h1(P ) ∈ X2 then
h2(P ) ∈ X1. These statements are symmetric, so let us prove only the �rst
implication. Assume, for the sake of contradiction, that h2(P ) ∈ X1 (recall
that X1 and X2 are disjoint). Then consider the following v-u walk in G: we
�rst traverse P from v to h1(P ), then by connectivity of X1 we can travel
through G[X1] to h2(P ), and �nally we traverse the end part of P from h2(P )
to u. Since X1 is disjoint from X2, by the de�nition of h1(P ) and h2(P ) we
infer that this walk avoids X2. This is a contradiction with X2 being a (u, v)-
separator.
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Let us �x any v-u walk P and suppose that h1(P ) ∈ X1 and h2(P ) ∈
X2. We will prove that in this case R1 ∪ X1 ⊆ R2; the second case when
h1(P ) ∈ X2 and h2(P ) ∈ X1 leads to the conclusion that R2 ∪X2 ⊆ R1 in
a symmetric manner. Take any other v-u walk P ′. We claim that for P ′ it
also holds that h1(P ′) ∈ X1 and h2(P ′) ∈ X2. For the sake of contradiction,
assume that h1(P ′) ∈ X2 and h2(P ′) ∈ X1. Consider the following v-u walk
P ′′: we �rst traverse P from v to h1(P ), then by connectivity of X1 we can
travel through G[X1] to h2(P ′), and �nally we traverse the end part of P ′

from h2(P ′) to u. Again, by the same arguments as before walk P ′′ avoids
X2, which is a contradiction to X2 being a (u, v)-separator.

We now know that for every v-u walk P it holds that h1(P ) ∈ X1 and
h2(P ) ∈ X2. We shall prove that R1 ⊆ R2. Observe that this will prove also
that X1 ⊆ R2, since X1 is connected, disjoint from X2, and adjacent to R1

via at least one edge due to the connectivity of G. Take any w ∈ R1; we
need to prove that w ∈ R2 as well. Let Pw be any v-w walk that is entirely
contained in G[R1]. Prolong Pw to a v-u walk P ′w by appending an arbitrarily
chosen w-u walk. Observe now that no vertex of Pw can belong to X2 � in
such a situation we would have that h1(P ′w) ∈ X2, since no vertex of Pw
belongs to X1. Hence path Pw omits X2, which proves that w ∈ R2. As w
was chosen arbitrarily, this concludes the proof. ut

We are now ready to state the irrelevant vertex rule.

De�nition 7.45 (Irrelevant vertex). LetG be a graph and k be an integer.
A vertex v of G is called an irrelevant vertex if for every vertex set D of size
at most k, G−D is planar if and only if G− (D ∪ {v}) is planar.

Thus if v is an irrelevant vertex, then (G, k) is a yes-instance if and only if
(G−v, k) is. The following lemma establishes a criterion of being an irrelevant
vertex, and is the crucial ingredient of the algorithm.

Lemma 7.46. Let (G, k) be an instance of Planar Vertex Deletion.
Suppose v is a vertex of G such that there exists a vertex u 6= v and a
sequence of pairwise disjoint cyclic (v, u)-separators X1, X2, . . . , Xk+2 with
the following properties:

(a) for every i ∈ {1, . . . , k + 1}, Xi is a subset of the R(v,Xi+1), and
(b) the graph G[R(v,Xk+2) ∪Xk+2] is planar.

Then v is an irrelevant vertex for the instance (G, k).

Proof. Let v be a vertex of G that satis�es the conditions of the lemma. We
show that for every set D of size at most k, G − D is planar if and only if
G− (D ∪ {v}) is planar.

If G − D is planar then clearly G − (D ∪ {v}) is planar. Suppose then
that G− (D ∪ {v}) is planar. By the conditions of the lemma, there exists a
vertex u, u 6= v, and vertex-disjoint cyclic (v, u)-separators X1, X2, . . . , Xk+2

satisfying properties (a) and (b). For i = 1, 2, . . . , k + 2, let Ri = R(v,Xi).
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v

Xi

Xj

Xk+2

Fig. 7.8: Situation in the proof of Lemma 7.46. Cycle C is depicted in blue.
C-bridges Bq in G− (D∪{v}) that are originate in Bv are depicted in yellow
and red. The yellow C-bridge is the one that containsXi; it may not exist, but
if it exists then it is unique. The other C-bridges (depicted red) are entirely
contained in Ri, and hence they do not have any attachment points on C

Since separators Xi are pairwise disjoint and connected, from Lemma 7.44
and property (a) we infer the following chain of inclusions:

{v} ⊆ R1 ⊆ R1 ∪X1 ⊆ R2 ⊆ R2 ∪X2 ⊆ . . . ⊆ Rk+2 ⊆ Rk+2 ∪Xk+2.

As |D| ≤ k, there are two separators Xi and Xj that contain no vertices
from D. Assume without loss of generality that i < j; then we have also
Ri ∪Xi ⊆ Rj .

Let C be a Hamiltonian cycle in G[Xj ]. In order to show that G − D
is planar, we want to apply the planarity criterion of Lemma 7.43 to cycle
C and graph G −D. First of all, every C-bridge B in G −D that does not
contain v is also a C-bridge in G−(D∪{v}), and hence B∪C is planar. Also,
if Bv is a C-bridge of G −D that contains v, then Bv ∪ C is a subgraph of
G[Rj ∪Xj ], which in turn is a subgraph of the planar graph G[Rk+2 ∪Xk+2]
(property (b)). Hence Bv ∪ C is also planar.

Now we focus on the overlap graph O(G−D,C). Let Bv be the C-bridge
of G − D that contains v. Then Bv = B1 ∪ · · · ∪ Bp ∪ {v}, where Bq for
q ∈ {1, 2, . . . , p} are some C-bridges in G− (D∪{v}). Consider one Bq. Since
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Ri∪Xi ⊆ Rj andRi is a connected component ofG−Xi, it follows thatBq can
have a neighbor in Xj only if Bq contains some vertex of Xi. Hence, every Bq
that has an attachment point on C must intersect Xi. However, separator Xi

is connected and disjoint fromD, so there is a unique C-bridge inG−(D∪{v})
that contains the whole Xi. Therefore, we infer that among B1, . . . , Bp there
can be at most one C-bridge that actually has some attachment points on C�
this is the C-bridge that contains Xi�and all the other Bqs are completely
contained in Ri. As these other C-bridges do not have attachment points,
they are isolated vertices in O(G− (D∪{v}), X). On the other hand, the C-
bridge Bq that contains Xi, provided that it exists, has the same attachment
points on C as C-bridge Bv in G−D.

Concluding, graph O(G− (D∪{v}), X) can di�er from O(G−D,X) only
by having some additional isolated vertices, which correspond to C-bridges
adjacent to v that are contained in Ri. Because O(G − (D ∪ {v}), X) is
bipartite, we have that O(G−D,X) is also bipartite. Thus all the conditions
required by Lemma 7.43 are satis�ed, and we can conclude that G − D is
planar. ut

Now that we are armed with the irrelevant vertex rule, we can proceed to
the algorithm itself. Essentially, the strategy is to try to �nd a situation where
Lemma 7.46 can be applied, provided that the treewidth of the graph is large.
Note that, due to property (b) from the statement of Lemma 7.46, we will
need to identify a reasonably large part of the graph that is planar. Therefore,
it would be perfect if we could work on a graph where a large planar part
has been already identi�ed. However, this is exactly the structure given to
us as an input in the problem Disjoint Planar Vertex Deletion. That
is, G−D is planar. Thus, to prove Theorem 7.42 it is su�cient to show the
following lemma.

Lemma 7.47. Disjoint Planar Vertex Deletion on an n-vertex graph
can be solved in time 2O(k2 log k)nO(1). Moreover, in the case of a positive
answer, the algorithm can also return a planar deletion set of size at most k.

Proof. The idea of the algorithm is as follows. Graph G − D is planar. Let
us apply the algorithm of Theorem 7.23 to graph G−D for ε = 1

2 and some
parameter f(k) to be de�ned later. If we �nd a tree decomposition of G−D
of width at most 5f(k), then we can create a tree decomposition of G of
width at most 5f(k) + |D| ≤ 5f(k) + k+ 1 by simply adding D to every bag.
In this situation we can use dynamic programming to solve the problem in
FPT time. Otherwise, if the algorithm of Theorem 7.23 fails to construct a
tree decomposition, then it returns an f(k)× f(k) grid minor in G−D. We
will then show that G contains an irrelevant vertex which can be identi�ed
in polynomial time. Hence, we can identify and delete irrelevant vertices up
to the point when the problem can be solved by dynamic programming on a
tree decomposition of bounded width.

It is not di�cult to show that Planar Vertex Deletion admits an
FPT dynamic-programming algorithm when parameterized by the width of
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a given tree decomposition of the input graph. For example, one can make
use of the optimization version of Courcelle's theorem (Theorem 7.12): we
write an MSO2 formula ϕ(D) for a free vertex set variable D, which ver-
i�es that G − D is planar by checking that it contains neither a K5-minor
nor a K3,3-minor. Then minimizing |D| corresponds to �nding the minimum
possible size of a planar deletion set in G. In this argument we can also eas-
ily handle annotations in Disjoint Planar Vertex Deletion, since we
may additionally require in the formula that D has to be disjoint from the
set of forbidden vertices. This gives some FPT algorithm for Disjoint Pla-
nar Vertex Deletion. However, obtaining explicit and e�cient bounds on
the running time requires additional ideas and more technical e�ort. In our
algorithm we shall use the following result, which we do not prove here.

Lemma 7.48 ([277]). Disjoint Planar Vertex Deletion can be solved
in time 2O(t log t)n on an n-vertex graph given together with its tree decom-
position of width at most t. Moreover, in the case of a positive answer, the
algorithm can also return a planar deletion set D that has size at most k and
is disjoint from the forbidden vertices.

We have already all the tools to deal with the bounded-treewidth case, so
now let us try to �nd a place to apply Lemma 7.46 if the treewidth is large.
Let us �x p = 2k+ 5 and f(k) = (p+ 4)(k+ 2), and let H be the f(k)× f(k)
grid. Recall that if the algorithm of Theorem 7.23 fails to construct a tree
decomposition of small width of G − D, it provides a minor model of H in
G−D. Let this minor model be (Iw)w∈V (H); recall that every branch set Iw
is connected and all the branch sets are pairwise disjoint. Moreover, let GH
be the connected component of G −D that contains H. From the graph G
we construct a new graph Gc by performing the following steps:

� First, delete all the vertices of G−D apart from the component GH .
� Then, for every w ∈ V (H) contract GH [Iw] into a single vertex, which will

be called η(w).
� Iteratively take a vertex u ∈ V (GH) that does not belong to any branch

set Iw, and contract u onto any of its neighbor (such a neighbor exists due
to connectivity of GH). Perform this operation up to the point when there
are no more original vertices of V (GH) left.

In this manner, V (Gc) consists of set D and set {η(w) : w ∈ V (H)} that
induces in Gc a graph Ĥ that is a supergraph of grid H. In other words, Gc
consists of a partially triangulated f(k)× f(k) grid Ĥ and a set of apices D

that can have quite arbitrary neighborhoods in Ĥ. For w ∈ V (H), let Jw be
the set of vertices of GH that got contracted onto w. Note that Iw ⊆ Jw,
G′[Jw] is connected, and (Jw)w∈V (H) forms a partition of V (GH).

After these operations we more-or-less see a large, �at area (planar) in the
graph, which could possibly serve as a place where Lemma 7.46 is applied.
However, we do not control the interaction between D and Ĥ. The goal now
is to show that this interaction cannot be too complicated, and in fact there
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Fig. 7.9: Choosing the family of subgrids P in a large grid H. The grids of
P are depicted in dark grey, and their 1-frames and 2-frames are depicted in
light grey

exists a large enough subgrid of Ĥ that is completely nonadjacent to D. From
now on, by somewhat abusing the notation we will identify grid H with its
subgraph in Ĥ via mapping η; note that thus V (H) = V (Ĥ), and Ĥ can only
have some additional edges.

Let us partition grid H into smaller grids. Since H is an f(k)× f(k) grid
for (p+4)(k+2), we can partition it into (k+2)2 grids of size (p+4)×(p+4).
Now for each of these subgrids perform twice the following operation: delete
the whole boundary of the grid, thus �peeling� twice a frame around the grid.
IfM is the obtained p×p subgrid, then by 2-frame and 1-frame ofM , denoted
by F2(M) and F1(M), we mean the boundaries removed in the �rst and in
the second step, respectively. Thus, the 2-frame of M induces in H a cycle of
length 4(p+ 3) around M , and the 1-frame induces a cycle of length 4(p+ 1)
around M . See Fig. 7.9 for a visualization of this operation. Let P be the set
of obtained p× p grids M (i.e., those after peeling the frames).

We now prove the following claim, which bounds the interaction between
a single vertex of D and the grids from P.

Claim 7.49. If (G, k,D) is a yes-instance of Disjoint Planar Vertex
Deletion, then in graph Gc no vertex of D can have neighbors in more than
k + 1 grids from P.
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Proof. For the sake of contradiction, assume that there is a set D′ ⊆ V (G)\D
such that |D′| ≤ k and G−D′ is planar, and suppose that there exists a vertex
x ∈ D that in Gc has neighbors in k+2 of p×p grids from P. We now examine
what happens with set D′ during the operations that transform G to Gc. Let
Dc be the set of those vertices of Gc onto which at least one vertex of D′

was contracted. In other words, whenever we contract an edge, we consider
the resulting vertex to be in D′ if and only if one of the original endpoints
was in D′, and we de�ne Dc to be the set of vertices of Gc that end up being
in D′ after all these contractions. It follows that |Dc| ≤ |D′| ≤ k, Dc is still
disjoint from D, and Gc −Dc is a planar graph.

Since Dc is of size at most k, there exist at least two p× p subgrids from
P, say Y and Z, which are adjacent to x in Gc and such that Dc does not
contain any vertex of Y , or of Z, or of 1- and 2-frames of Y and Z. Let y be
an arbitrary neighbor of x in Y , and similarly de�ne z ∈ Z.

It is easy to see that for any two distinct p × p grids of P, there are at
least p > k vertex-disjoint paths in H that connect these grids. One of these
paths does not contain any vertex from Dc. Thus, in H there exists a path P
from y to z that contains no vertex of Dc: we �rst travel inside Y from y to
the border of Y , then we use a Dc-free path connecting Y and Z, and �nally
we get to z by travelling inside Z.

Let us stop for a moment and examine the current situation (see also
Fig. 7.10). We have identi�ed two subgrids Y and Z that are completely free
from Dc together with their frames. Moreover, these two subgrids can be
connected inside H by a path that is also free from Dc. So far the picture is
planar, but recall that we have an additional vertex x that is adjacent both
to y ∈ Y and to z ∈ Z. This vertex thus creates a �handle� that connects
two completely di�erent regions of grid H. As we assumed that x ∈ D and
Dc is disjoint from D, we have that x /∈ Dc, and hence this additional handle
is also disjoint from Dc. Now the intuition is that the obtained structure
is inherently non-planar, and therefore it cannot be contained in the planar
graph Gc −Dc. To prove this formally, the easiest way is to exhibit a model
of a K5-minor in Gc that does not use any vertex of Dc. The construction is
depicted in Fig. 7.10.

We start with constructing a minor of K5 without one edge in Y ∪F1(Y )∪
F2(Y ). Recall that x is adjacent to y ∈ Y and z ∈ Z. De�ne the following
branch sets I1, I2, . . . , I5. First, take I1 = {y}. Then, it is easy to see that one
can partition (Y ∪ F1(Y )) \ {y} into three connected sets I2, I3, I4 such that
each of them is adjacent both to y and to F2(Y ). Finally, take I5 = F2(Y ).
Thus all the pairs of branch sets are adjacent, apart from I1 and I5. To
create this additional adjacency, we use vertex x. More precisely, we extend
the branch set I1 by including x, z, and all the vertices from the path P
traversed from z up to the point when it meets F2(Y ). In this manner, branch
set I1 is still connected, and it becomes adjacent to I5. In this construction we
used only vertices that do not belong to Dc, which means that I1, I2, . . . , I5
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Fig. 7.10: Construction of a K5-minor using x and adjacent subgrids Y and
Z. Path P connecting y and z is depicted in blue.

form a K5-minor model in Gc −Dc. This is a contradiction with Dc being a
planar deletion set for Gc. y

By Claim 7.49, in graph Gc every vertex ofD has neighbors in at most k+1
subgrids from P, or otherwise we may immediately terminate the subproblem
by providing a negative answer. Since |P| = (k + 2)2 and |D| ≤ k + 1, this
means that we can �nd at least one p × p subgrid M ∈ P that has no
neighbors in D. Let vc be the middle vertex of M , and let v be any vertex
of Jvc . We claim that v is irrelevant, and to prove this we will need to verify
the prerequisites of Lemma 7.46.

Since p = 2k + 5, we can �nd k + 2 vertex sets N1, N2, . . . , Nk+2 ⊆ V (M)
such that Ni induces the i-th cycle inM around vc, counting from vc. In other
words, sets Nk+2, Nk+1, . . . , N1 are obtained fromM by iteratively taking the
boundary of the grid as the next Ni, and removing it, up to the point when
only vc is left. If we now uncontract the vertices of Ni, then we obtain a
connected set Yi =

⋃
w∈V (Ni)

Jw. For each i ∈ {1, 2, . . . , k + 2}, let Ci be a

cycle inside G′[Yi] that visits consecutive branch sets Jw for w ∈ V (Ni) in
the same order as the cycle induced by Ni in M . Let Xi = V (Ci), and let us
�x any vertex u ∈ V (GH) \⋃w∈V (M) Jw; such a vertex exists since M is not
the only grid from P.
Claim 7.50. Vertices v and u and sets X1, X2, . . . , Xk+2 satisfy the prerequi-
sites of Lemma 7.46 for the instance (G, k) of Planar Vertex Deletion.
Consequently, vertex v is irrelevant for (G, k).
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Fig. 7.11: The crucial argument in the proof of Claim 7.50: paths PN , PE , PS ,
and PW certify that v and y have to be placed on di�erent faces of Ci in any
planar drawing of GH

Proof. The two prerequisites that are trivial are that each Xi induces a graph
with a Hamiltonian cycle, and thatXi ⊆ R(v,Xi+1). The �rst follows directly
from the de�nition, and the second follows from the existence of connections
between branch sets (Jw)w∈V (H) implied by M .

Therefore, we need to prove that (i) each Xi is indeed a (u, v)-separator,
and (ii) G′[Xk+2 ∪ R(v,Xk+2)] is planar. For i ∈ {0, 1, 2, . . . , k + 2}, let
N≤i = {v} ∪ N1 ∪ N2 ∪ . . . ∪ Ni and let Wi be the set of vertices of GH
contained in branch sets Jw for w ∈ N≤i. To prove (i) and (ii), we shall
show that for each i ≥ 1, it holds that R(v,Xi) ⊆ Wi. In other words, all
the vertices that can be connected to v via paths avoiding Xi are actually
contained in GH , and moreover get contracted onto vertices contained in the
union of the deepest i layers inM . Note that this statement implies (i), since
u /∈ Wk+2, and also it implies (ii), since then G[Xk+2 ∪ R(v,Xk+2)] is an
induced subgraph of the planar graph G−D.

Consider any y ∈ V (GH) \Wi; then in Gc vertex y gets contracted onto
some wy /∈ N≤i. Choose four vertices wN , wE , wS and wW , placed in the
interiors of the north, east, south, and west side of the cycle M [Ni], respec-
tively; see Fig. 7.11. Since M does not touch the boundary of H (it has at
least two frames peeled), it can be easily seen that in GH we can �nd four
paths PN , PE , PS and PW such that the following holds:
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� PW and PE connect y with the cycle Ci such that both PE and PW travel
only through branch sets Jw for w /∈ N≤i, apart from JwE in the case of
PE , and JwW in the case of PW . Then PE meets Ci inside JwE and PW
meets Ci inside JwW .

� PN and PS connect v with the cycle Ci such that both PN and PS travel
only through branch sets Jw for w ∈ N≤i−1, apart from JwN in the case
of PN , and JwS in the case of PS . Then PN meets Ci inside JwN and PS
meets Ci inside JwS .

Note that the family of branch sets visited by PW ∪ PE is disjoint from the
family of branch sets visited by PN ∪ PS . Hence, subgraphs PW ∪ PE and
PN ∪ PS are vertex-disjoint.

Consider now subgraph GP = PN ∪ PE ∪ PS ∪ PW ∪ Ci of GH . GP is
obviously planar as a subgraph of a planar graph, and it has two Ci-bridges:
the �rst PN∪PS contains v, and the second PE∪PW contains y. Each of these
Ci-bridges has two attachment points, and all these four attachment points
interleave. It follows that for every planar embedding of GP , vertices v and
y must be drawn on di�erent faces of the cycle Ci. Since GP is a subgraph
of GH , the same holds for GH as well.

We are now ready to prove that R(v,Xi) ⊆Wi. For the sake of contradic-
tion, suppose that some vertex y /∈ Wi can be reached from v via a path P
that avoids Xi. By taking the �rst vertex outside Wi on P , we may assume
without loss of generality that all the other vertices on P belong to Wi. Let
y′ be the predecessor of y on P ; then y′ ∈Wi. Now examine where y can be
localized in graph G. It cannot belong to D, since we know that in Gc all the
vertices of D are not adjacent to any vertex of M , and in particular not to
the vertex onto which y′ was contracted. Also, obviously it cannot belong to
a di�erent component of G−D than GH , since y

′ ∈Wi ⊆ V (GH). Therefore,
we are left with the case when y ∈ V (GH) \Wi. But then we know that v
and y must be drawn on di�erent faces of Ci, so every path contained in GH
that connects v and y has to intersect Xi. This should in particular hold for
P , a contradiction. y

By Claim 7.50 we conclude that vertex v is irrelevant, so we can safely
delete it and proceed. Note that by the de�nition of being irrelevant, removal
of v is also safe in the disjoint variant of the problem that we are currently
solving.

The reader may wonder now why we gave so elaborate a proof of Claim 7.50,
even though its correctness is �obvious from the picture�. Well, as the proof
shows, formal justi�cation of this fact is far from being trivial, and requires
a lot of attention to avoid hand-waving. This is a very common phenomenon
when working with planar graphs: facts that seem straightforward in a pic-
ture, turn out to be troublesome, or even incorrect, when a formal argument
needs to be given. A good approach here is to try to identify the key formal
argument that exploits planarity. In our case this argument was the observa-
tion that in GH , set Xi has to separate v from every vertex y ∈ V (GH) \Wi,
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because v and y have to lie on di�erent faces of Ci in every planar embedding
of GH . Once the key argument is identi�ed and understood, the rest of the
proof follows easily.

To summarize, we solve Disjoint Planar Vertex Deletion with the
following algorithm.

� In polynomial time we are able either to conclude that this is a no-instance,
or to identify an irrelevant vertex and delete it. We repeat this procedure
until the treewidth of G−D becomes at most 5f(k), and the corresponding
tree decomposition can be constructed.

� When we have at hand a tree decomposition of G − D of width at most
5f(k), we use Lemma 7.48 to solve the subproblem in time 2O(f(k) log f(k))n.

Since f(k) = O(k2), the total running time of our algorithm solvingDisjoint

Planar Vertex Deletion is 2O(f(k) log f(k)) ·nO(1) = 2O(k2 log k) ·nO(1). ut

As discussed before, Lemma 7.47 with a standard application of the iter-
ative compression technique (see Section 4.1.1) concludes the proof of Theo-
rem 7.42. We remark that with more ideas, the running time of the algorithm
can be improved; see the bibliographic notes.

7.9 Beyond treewidth

Given all the presented applications of treewidth, it is natural to ask if one
could design other measures of structural complexity of graphs that would be
equally useful from the algorithmic viewpoint. So far it seems that treewidth
and pathwidth are the most successful concepts, but several other approaches
also turned out to be fruitful in di�erent settings. In this section we review
brie�y two examples of other width measures: branchwidth and rankwidth.
While the �rst one is tightly related to treewidth, the second one goes beyond
it.

Branch decompositions and f-width. It will be convenient to introduce a
more generic approach to de�ning structural width measures of combinatorial
objects. Assume we are working with some �nite universe U , and suppose we
are given a function f de�ned on subsets of U that, for a subset X ⊆ U , is
supposed to measure the complexity of interaction between X and U \ X.
More precisely, f : 2U → R≥0 is a function that satis�es the following two
conditions:

� Symmetry: for each X ⊆ U , it holds that f(X) = f(U \X);
� Fairness: f(∅) = f(U) = 0.

Function f will be also called a cut function, or a connectivity function.
Given some cut function f on U , we may de�ne a class of structural de-

compositions of U . A branch decomposition of U is a pair (T, η), where T is a
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tree with |U | leaves whose all internal nodes have degree 3, and η is a bijec-
tion from U to the leaves of T . Consider any edge e ∈ E(T ). If we remove e
from T , then T gets split into two subtrees, and thus the set of leaves of T is
also partitioned into two sets. Leaves of T correspond one-to-one to elements
of U , so let (Xe, Ye) be the corresponding partition of U . We de�ne the width
of edge e in (T, η) as f(Xe) = f(Ye); this equality holds due to the symmetry
condition on f . The width of (T, η) is the maximum width among its edges.
The f -width of set U , denoted by wf (U), is equal to the minimum possible
width of its branch decomposition. If |U | = 1 then there is no decomposition,
so we put wf (U) = 0.

This de�nition is generic in the sense that we may consider di�erent com-
binatorial objects U and various cut functions f , thus obtaining a full vari-
ety of possible structural parameters. Both branchwidth and rankwidth are
de�ned as f -widths for appropriately chosen U and f . However, the de�-
nition of f -width can be used to de�ne structural width parameters of not
only graphs, but also hypergraphs and matroids. Also, one often assumes
that the cut function f is additionally submodular, i.e., it satis�es property
f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) for all X,Y ⊆ U . This property pro-
vides powerful tools for approximating the f -width of a given set. In the
bibliographic notes we give some pointers to literature on this subject.

Branchwidth. To de�ne branchwidth of a graph G, we put U = E(G), the
edge set of G. For every X ⊆ E(G), its border δ(X) is the set of those vertices
of G that are incident both to an edge of X and to an edge of E(G) \X. The
branchwidth of G, denoted by bw(G), is the f -width of U = E(G) with cut
function f(X) = |δ(X)|.

It turns out that branchwidth is in some sense an equivalent de�nition
of treewidth, expressed in the formalism of branch decompositions. More
precisely, for every graph G with bw(G) > 1 it holds that

bw(G) ≤ tw(G) + 1 ≤ 3

2
bw(G). (7.13)

In many situations branchwidth turns out to be more convenient to
work with than treewidth, for example when it comes to some dynamic-
programming algorithms. More importantly, branchwidth seems to behave
more robustly on planar graphs. In particular, branchwidth of a planar graph
can be computed in polynomial time, whereas the computational complexity
of treewidth on planar graphs remains a longstanding open question. Also,
in the proof of the Planar Excluded Grid Theorem (Theorem 7.23) it is more
convenient to relate the size of the largest grid minor in a graph to its branch-
width rather than to treewidth, for instance when one tries to re�ne/improve
constants. Actually, the version of Gu and Tamaki that we gave here was
originally stated for branchwidth, and then the bound was translated for
treewidth using (7.13).
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It is worth mentioning that branchwidth does not use the notion of vertices
and hence generalizes to matroids while treewidth is tied to vertices.

Rankwidth. The motivation of rankwidth comes from the observation that
many computational problems are tractable on classes of graphs that are
dense, but structured. An obvious example of such graphs are complete
graphs, but one can also allow a little bit more freedom in the structure.
For instance, take the class of cographs, that is, graphs that can be con-
structed from single vertices using two types of operations: (a) taking a dis-
joint union of two constructed cographs, and (b) taking a disjoint union of
two constructed cographs and adding a complete bipartite graph between
their vertex sets.

This recursive de�nition of cographs allows us to solve many computational
problems using, again, the principle of dynamic programming. Essentially,
we exploit the fact that the algebraic structure of cographs is simple � the
adjacency relation between pieces in their decomposition is trivial: full or
empty. However, cographs are dense in the sense that the number of edges
may be quadratic in the number of vertices. Hence, their treewidth can be
even linear, and all the tools that we developed in this chapter may not be
applicable at all. Therefore, it is natural to introduce a new type of structural
decomposition, where the main measure of width would not be the cardinality
of a separator, but rather the complexity of the adjacency relation between
a part of the decomposition and the rest of the graph.

Historically, the �rst width parameter whose goal was to capture this phe-
nomenon was cliquewidth. We do not give here its formal de�nition due to its
technicality. Intuitively, a graph is of cliquewidth at most k if it can be built
from single vertices by consecutively joining already constructed parts of the
graph, and in each constructed part the vertices can be partitioned into at
most k types such that vertices of the same type will be indistinguishable
in later steps of the construction. The combinatorics of cliquewidth, while
convenient for designing dynamic-programming algorithms, turned out to be
very di�cult to handle from the point of view of computing or approximat-
ing this graph parameter. For this reason, rankwidth has been introduced.
Rankwidth is equivalent to cliquewidth in the sense that its value is both
lower- and upper-bounded by some functions of cliquewidth. However, for
rankwidth it is much easier to design exact and approximation algorithms.

We now proceed to formal de�nitions. For a vertex set X ⊆ V (G), we
de�ne its cut-rank ρG(X) as follows. Consider an |X| × |V (G) \ X| ma-
trix BG(X) = (bx,y)x∈X, y∈V (G)\X with rows indexed by vertices of X and
columns indexed by vertices of V (G) \X. Entry bx,y is equal to 1 if x and y
are adjacent, and 0 otherwise. Thus, BG(X) is exactly the adjacency matrix
of the bipartite graph induced by G between X and V (G) \ X. We de�ne
ρG(X) to be the rank of BG(X), when treated as a matrix over the binary
�eld GF(2). Then the rankwidth of G, denoted by rw(G), is equal to the
ρG-width of V (G).
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It is easy to prove that for any graph G it holds that rw(G) ≤ tw(G), see
Exercise 7.53. However, as expected, treewidth cannot be bounded by any
function of rankwidth. To see this, observe that the rankwidth of a complete
graph on n vertices is at most 1, while its treewidth is n−1. Hence, classes of
graphs that have bounded treewidth have also bounded rankwidth, but not
vice versa.

Designing dynamic-programming routines for graphs of bounded rankwidth
are similar to those of treewidth. Instead of exploiting the property that the
already processed part of the graph communicates with the rest via a small
separator, we use the fact that the matrix encoding adjacency relation be-
tween the processed part and the rest has small rank. This enables us to
partition the processed vertices into a bounded number of classes that have
exactly the same neighborhood in the rest of the graph. For some problems,
vertices of the same type can be treated as indistinguishable, which leads to
reducing the number of states of the dynamic program to a function of k.

As in the case of treewidth, dynamic-programming algorithms on graphs
of bounded rankwidth can be explained by a meta-theorem similar to Cour-
celle's theorem. For this, we need to weaken the MSO2 logic that we de-
scribed in Section 7.4.1 to MSO1 logic, where we forbid quantifying over
subsets of edges of the graph. Then, analogues of Theorems 7.11 and 7.12
hold for MSO1 and graphs of bounded rankwidth. It should not be very sur-
prising that rankwidth, as a parameter upper-bounded by treewidth, supports
�xed-parameter tractability of a smaller class of problems than treewidth. In-
deed, some problems whose �xed-parameter tractability when parameterized
by treewidth follows from Theorem 7.12, turn out to be W[1]-hard when pa-
rameterized by rankwidth, and hence unlikely to be FPT. Examples include
Hamiltonian Cycle and Edge Dominating Set; again, it is not a coin-
cidence that these are problems where quanti�cation over a subset of edges
is essential.

When it comes to the complexity of computing rankwidth, the situation
is very similar to treewidth. Hlin¥ný and Oum [263] gave an f(k) · nO(1)-
time algorithm computing a branch decomposition of rankwidth at most k,
or correctly reporting that the rankwidth of a given graph is more than k.
An approximation algorithm with factor 3 for rankwidth, running in time
2O(k) · nO(1), was given by Oum [377].

Exercises

7.1. Prove Lemma 7.2.

7.2. Prove Lemma 7.4.

7.3 (A). Find an example showing that the bound O(k|V (G)|) on the number of nodes
of a nice tree decomposition cannot be strengthened to O(|V (G)|).
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7.4. Let T = (T, {Xt}t∈V (T )) be a tree decomposition of graph G, t be a node of T , and
Xt be the corresponding bag. Show that for every connected component C of G−Xt, the
vertices of C are contained in bags of exactly one of the connected components of T − t.

7.5. Prove Lemma 7.3.

7.6. Prove that every clique of a graph is contained in some bag of its tree decomposition.
Infer that tw(G) ≥ ω(G)− 1, where ω(G) denotes the maximum size of a clique in G.

7.7 (l). Show that treewidth is a minor-monotone parameter, i.e., for every minor H of
a graph G, tw(H) ≤ tw(G).

7.8 (l). What is the treewidth of (a) a complete graph; (b) a complete bipartite graph;
(c) a forest; (d) a cycle?

7.9 (l). Show that the treewidth of a graph G is equal to the maximum treewidth of its
biconnected components.

7.10 (A). Show that the pathwidth of an n-vertex tree is at most dlogne. Construct a
class of trees of pathwidth k and O(3k) vertices.

7.11 (A). Prove that a graph has treewidth at most 2 if and only if it does not contain
K4 as a minor.

7.12. A graph is outerplanar if it can be embedded in the plane in such manner that all
its vertices are on one face. What values can treewidth of an outerplanar graph have?

7.13 (l). Prove that the treewidth of a simple graph cannot increase after subdividing
any of its edges. Show that in the case of multigraphs the same holds, with the exception
that the treewidth can possibly increase from 1 to 2.

7.14. A graph G is called d-degenerate if every subgraph of G contains a vertex of degree
at most d. Prove that graphs of treewidth k are k-degenerate.

7.15. Let G be an n-vertex graph of treewidth at most k. Prove that the number of edges
in G is at most kn.

7.16 (A). For a graph G given together with its tree decomposition of width t, construct
in time tO(1)n a data structure such that for any two vertices x, y ∈ V (G), it is possible
to check in time O(t) if x and y are adjacent. You should not use any results on hashing,
hash tables, etc.

7.17 (l). Remodel the dynamic-programming algorithm of Section 7.3.1 so that it uses
the following de�nition of the value of a state: for Y ⊆ Xt, value c[t, Y ] is equal to the
maximum possible weight of an independent set in G[Vt \ Y ]. How complicated are the
recursive formulas, compared to the algorithm given in Section 7.3.1?

7.18. Construct the remaining algorithms listed in Theorem 7.9. That is, show algorithms
that, given an n-vertex graph together with its tree decomposition of width at most k,
solve:

� Odd Cycle Transversal in time 3k · kO(1) · n,
� MaxCut in time 2k · kO(1) · n,
� q-Coloring in time qk · kO(1) · n.

7.19. Construct the remaining algorithms listed in Theorem 7.10. That is, show that the
following problems can be solved in time kO(k) · n on an n-vertex graph given together
with its tree decomposition of width at most k:
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� Feedback Vertex Set,
� Hamiltonian Path and Longest Path,
� Hamiltonian Cycle and Longest Cycle,
� Chromatic Number,
� Cycle Packing,
� Connected Vertex Cover,
� Connected Dominating Set,
� Connected Feedback Vertex Set.

7.20. List Coloring is a generalization of Vertex Coloring: given a graph G, a set of
colors C, and a list function L : V (G)→ 2C (that is, a subset of colors L(v) for each vertex
v), the task is to assign a color c(v) ∈ L(v) to each vertex v ∈ V (G) such that adjacent
vertices receive di�erent colors. Show that on an n-vertex graph G, List Coloring can
be solved in time nO(tw(G)).

7.21 (A). Consider the following problem: given a graph G, �nd a minimum set of vertices
X ⊆ V (G) such that G−X does not contain a cycle on four vertices as a subgraph. Show

how to solve this problem in time 2O(k2)nO(1), where k is the treewidth of G.

7.22 (A). Consider the following problem: given a graph G, �nd an induced subgraph H
of G of maximum possible number of vertices, such that the size of the largest independent
set in H is strictly smaller than the size of the largest independent set in G. Show how to

solve this problem in time 22
O(k)

nO(1), where k is the treewidth of G.

7.23. In the following problems, assume that the input graph G is given together with its
tree decomposition of width at most k.

� In the Induced Matching problem, given a graph G and an integer `, we ask if there
is a subset of 2` vertices in G inducing a matching. Show that Induced Matching can
be solved in time 2O(k)nO(1).

� (A) For a �xed integer r ≥ 1, the r-Center problem, given a graph G and an integer
`, asks to �nd ` vertices such that every other vertex of G is at distance at most r from
some of these vertices. Show that r-Center can be solved in time (r + 1)O(k)nO(1).

� (A) Scattered Set, given a graph G and integers ` and d, asks for at least ` vertices
that are at pairwise distance at least d. Show that the problem can be solved in time
dO(k)nO(1).

7.24. Obtain an algorithm for Vertex Cover running in time 1.3803kkO(1) +O(m
√
n)

by combining branching on degree 4 vertices, the 2k vertex kernel of Theorem 2.21, and
the fact that a graph on n vertices of maximum degree 3 has pathwidth at most n

6
+ o(n),

and a path decomposition of such width can be constructed in polynomial time (see [195]).

7.25. Show that for a �xed graph H, the property �graph G does not contain H as a
minor� is expressible in MSO2.

7.26. Using the cops and robber game, give an algorithm deciding in time nO(k) if the
treewidth of a graph G is at most k.

7.27 (l). Show that every interval graph has no induced cycles of length more than 3.

7.28. This exercise consists of the crucial steps used to prove Theorem 7.16.

1. For a pair of vertices u, v from the same connected component of graph G, a vertex set
S is a (u, v)-separator if u, v /∈ S and u and v are in di�erent connected components of
G− S. A (u, v)-separator is minimal, if it does not contain any other (u, v)-separator
as a proper subset. Finally, a set S is a minimal separator if S is a minimal (u, v)-
separator for some u, v ∈ V (G). Let us remark that a minimal separator S can properly
contain another minimal separator S′; this can happen if S′ separates other pair of
vertices than S. A connected component C of G − S is full if S = N(C). Show that
every minimal separator S has at least two full components.
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2. Show that every minimal separator of a chordal graph is a clique.
3. (Dirac's Lemma) A vertex v is simplicial if its closed neighborhood N [v] is a clique.

Show that every chordal graph G on at least two vertices has at least two simplicial
vertices. Moreover, if G is not complete, then it has at least two nonadjacent simplicial
vertices.

4. Prove that every chordal graph G admits a tree decomposition such that every bag of
the decomposition is a maximal clique of G.

5. Prove Theorem 7.16.

7.29. We de�ne a k-tree inductively. A clique on k+ 1 vertices is a k-tree. A new k-tree G
can be obtained from a smaller k-tree G′ by adding a new vertex and making it adjacent
to k vertices of G′ that form a clique in G′. Show that every k-tree is a chordal graph of
treewidth k. Prove that for every graph G and integer k, G is a subgraph of a k-tree if and
only if tw(G) ≤ k.

7.30. Show that every maximal treewidth k-graph G, i.e., a graph such that adding any
missing edge to G increases its treewidth, is a k-tree.

7.31. We say that a graph G is an intersection graph of subtrees of a tree if there exists
a tree H and a collection (Hv)v∈V (G) of subtrees of H such that uv ∈ E(G) if and only if
V (Hu)∩V (Hv) 6= ∅. Show that a graph is chordal if and only if it is an intersection graph
of subtrees of a tree.

7.32. Let G be an n-vertex graph, and let σ = (v1, v2, . . . , vn) be an ordering of its vertices.
We de�ne the width of σ, denoted by tσ , as follows:

tσ = max
i=0,1,...,n

|∂({v1, v2, . . . , vi})|.

The vertex separation number of a graph G, denoted by vsn(G), is equal to the minimum
possible width of an ordering of V (G). Prove that for every graph G, its vertex separation
number is equal to its pathwidth.

7.33 (l). It seems that in the algorithm of Theorem 7.18 we could directly use 1
2
-balanced

separators given by Lemma 7.19 instead of 2
3
-balanced separations given by Lemma 7.20,

and in this manner we could reduce the approximation factor from 4 to 3. Explain what
is the problem with this approach.

7.34. An n-vertex graph G is called an α-edge-expander if for every set X ⊆ V (G) of size
at most n/2 there are at least α|X| edges of G that have exactly one endpoint in X. Show
that the treewidth of an n-vertex d-regular α-edge-expander is Ω(nα/d) (in particular,
linear in n if α and d are constants).

7.35. Show that the dependency on k in the Excluded Grid Theorem needs to be Ω(k2).
That is, show a graph of treewidth Ω(k2) that does not contain a k × k grid as a minor.

7.36 (A). Let H be a planar graph. Show that there is a constant cH such that the
treewidth of every H-minor-free graph is at most cH . Show that planarity requirement
in the statement of the exercise is crucial, i.e., that K5-minor-free graphs can be of any
treewidth.

7.37 (A). Prove that for every t > 1, �t contains a bramble of order t + 1 and thus
tw(�t) = t.

7.38. Prove the following version of the classic result of Lipton and Tarjan on separators
in planar graphs. For any planar n-vertex graph G andW ⊆ V (G), there is a set S ⊆ V (G)
of size at most 9

2

√
n+ 1 such that every connected component of G− S contains at most

|W |
2

vertices of W .
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7.39 (l). Using Corollary 7.24, prove that on an n-vertex planar graph G problems listed
in Theorem 7.9 can be solved in time 2O(

√
n), while problems listed in Theorem 7.10 can

be solved in time 2O(
√
n logn).

7.40. Show that the following problems are bidimensional: Feedback Vertex Set, In-
duced Matching, Cycle Packing, Scattered Set for a �xed value of d, Longest
Path, Dominating Set, and r-Center for a �xed r.

7.41. Show that Scattered Set is FPT on planar graphs, when parameterized by k+ d.
For a constant d, give an algorithm with running time 2O(

√
k)nO(1).

7.42. De�ne a vertex-subset maximization problem Q with the following property: for a
graph G with the maximum size of an independent set α(G) and the number of isolated ver-
tices ι(G), it holds that OPTQ(G) = max{0, α(G)−2ι(G)}. Prove that Q is bidimensional
and construct a family of planar graphs Gk such that for every k ≥ 1, OPTQ(Gk) = 0 and
tw(Gk) ≥ k. Infer that in Lemma 7.28 the connectivity requirement is necessary.

7.43. Prove Lemma 7.43.

7.44 (A). The input of the Partial Vertex Cover problem is a graph G with two
integers k and s, and the task is to check if G contains a set of at most k vertices that
cover at least s edges. Show that on planar graphs Partial Vertex Cover is FPT

when parameterized by k. Give a subexponential 2O(
√
k)nO(1)-time algorithm for Partial

Vertex Cover on planar graphs.

7.45 (A). In the Tree Spanner problem, given a connected graph G and an integer k,
the task is to decide if G contains a spanning tree H such that for every pair of vertices
u, v of G, the distance between u and v in H is at most k times the distance between u
and v in G. Show that on planar graphs Tree Spanner is FPT when parameterized by k.

7.46. Prove that the bounds of Corollary 7.32 and Theorem 7.33 cannot be strengthened
to hold for pathwidth instead of treewidth. In other words, �nd an example of a planar
graph of constant diameter that has unbounded pathwidth.

7.47. Prove Lemma 7.36.

7.48 (A). Show that Subgraph Isomorphism can be solved in time f(|V (H)|)|V (G)|O(tw(H))

for some function f .

7.49. Prove Lemma 7.37.

7.50 (A). Prove Lemma 7.39.

7.51. Prove Lemma 7.40.

7.52 (l). Prove that cographs have rankwidth at most 1.

7.53. Prove that for any graph G it holds that rw(G) ≤ tw(G) + 1.

7.54. A rooted forest is a union of pairwise disjoint rooted trees. A depth of a rooted forest
is the maximum number of vertices in any leaf-to-root path. An embedding of a graph G
into a rooted forest H is an injective function f : V (G)→ V (H) such that for every edge
uv ∈ E(G), f(u) is a descendant of f(v) or f(v) is a descendant of f(u). The treedepth of
a graph G is equal to the minimum integer d, for which there exists a rooted forest H of
depth d and an embedding of G into H.

Show that the pathwidth of a nonempty graph is always smaller than its treedepth.
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7.55 (A). Let G be a graph and consider the following cut function µG(X) de�ned for
X ⊆ V (G). We look at the bipartite graph GX = (V (G), E(X,V (G) \X)) induced in G
by the edges between X and V (G) \X. Then µG(X) is equal to the size of the maximum
matching in this graph. The MM-width (maximum-matching-width) of a graph G, denoted
by mmw(G), is equal to the µG-width of V (G).

Prove that there exist constants K1,K2 such that for every graph G it holds that
K1 · tw(G) ≤ mmw(G) ≤ K2 · tw(G).

Hints

7.1 Let P = (X1, X2, . . . , Xr) be a path decomposition. First, add bags X0 = Xr+1 = ∅
at the beginning and at the end of the sequence. Second, for every 0 ≤ i ≤ r, insert a few
bags between Xi and Xi+1: �rst forget, one by one, all elements of Xi \Xi+1, and then
introduce, one by one, all elements of Xi+1 \Xi. Finally, collapse neighboring equal bags.

7.2 Proceed in a way similar to Exercise 7.1. By introducing some intermediate introduce
and forget bags, ensure that every node of the tree with at least two children has its bag
equal to all bags of its children. Then, split such a node into a number of join nodes.

7.3 Fix some integers k and n, where n is much larger than k. Consider a graph G

consisting of:

1. a clique K on k vertices;
2. n vertices a1, a2, . . . , an, where each ai is adjacent to all the vertices of K;
3. n vertices b1, b2, . . . , bn, where each bi is adjacent only to vertex ai.

Argue that in any nice tree decomposition of G of width at most k, every vertex of K is
introduced roughly n times, once for every pair ai, bi.

7.4 Let v ∈ C and assume v belongs to some bag of a connected component Tv of T − t.
By (T3), and since v /∈ Xt, all bags that contain v are bags at some nodes of Tv . Together
with (T2), this implies that for every edge uv ∈ E(G−Xt), both u and v need to appear
in bags of only one connected component of T − t.

7.5 Let S = Xa ∩Xb. Pick any va ∈ Va \ S and vb ∈ Vb \ S. If va belong to some bag of
Tb, then, by (T3), va ∈ Xa and va ∈ Xb, hence va ∈ S, a contradiction. Thus, va appears
only in some bags of Ta; similarly we infer that vb appears only in some bags of Tb. Hence,
by (T2), vavb /∈ E(G).

7.6 Let C be the vertex set of a clique in G. Use Lemma 7.3: for every edge st ∈ E(T ) of
a tree decomposition (T, {Xt}t∈V (T )), C ⊆ Vs or C ⊆ Vt (where Vs and Vt are de�ned as
in Lemma 7.3 and Exercise 7.5). Orient the edge st towards an endpoint α ∈ {s, t} such
that C ⊆ Vα. Argue that, if all edges of E(T ) have been oriented in such a manner, then
C is contained in Xα for any α ∈ V (T ) with outdegree zero, and that at least one such α
exists.

7.7 Let H be a minor of G, let (Vh)h∈V (H) be a minor model of H in G, and let
(T, {Xt}t∈V (T )) be a tree decomposition of G. For every t ∈ V (T ), let X′t = {h ∈ V (H) :

Vh∩Xt 6= ∅}. Argue that (T, {X′t}t∈V (T )) is a tree decomposition of H of width not larger
than the width of (T, {Xt}t∈V (T )).

7.8 The treewidth of Kn is n − 1, the lower bound is provided by Exercise 7.6. The
treewidth ofKa,b is min(a, b), the lower bound is provided by Exercise 7.7 sinceKmin(a,b)+1

is a minor of Ka,b. The treewidth of a forest is 1 if it contains at least one edge.
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7.9 Observe that it is easy to combine tree decompositions of biconnected components of
a graph into one tree decomposition, since their bags can coincide only in single vertices.

7.10 For the upper bound, consider the following procedure. In an n-vertex tree G, �nd
a vertex v such that every connected components of G − v has at most n/2 vertices.
Recursively compute path decompositions of the components of G − v, each of width at
most dlogn/2e = dlogne − 1. Arrange them one after another, adding v to every bag in
the decomposition.

For the lower bound, using graph searching argue that if a tree G has a vertex v such
that at least three connected component of G − v have pathwidth at least k, then G has
pathwidth at least k + 1.

7.11 By Exercise 7.7, and since tw(K4) = 3, we have that every graph containing K4

as a minor has treewidth at least 3. The other direction is much more di�cult: you need
to argue, by some case analysis, that in a bramble of order 4 you can always �nd the
desired minor. Alternatively, you may use the decomposition of graphs into 3-connected
components of Tutte; see [110]. If you follow this direction, you will essentially need to
prove the following statement: every 3-connected graph that has more than three vertices
contains K4 as a minor.

7.12 An isolated vertex, a tree and a cycle are outerplanar graphs, so the treewidth of
an outerplanar graph may be equal to 0, 1, or 2. Argue that it is always at most 2, for
example in the following way.

1. Assume that all vertices of an outerplanar graph G lie on the in�nite face.
2. By Exercise 7.9, assume G is biconnected.
3. Triangulate G, that is, add some edges to G, drawn inside �nite faces of G, such that

every �nite face of G is a triangle.
4. Let G∗ be the dual of G, and let f∗ ∈ V (G∗) be the in�nite face. Observe that G∗−f∗

is a tree. Argue that, if you assign to every f ∈ V (G∗−f∗) a bag Xf consisting of the
three vertices of G that lie on the face f , then you obtain a valid tree decomposition
of G.

Alternatively, one may prove that outerplanar graphs are closed under taking minors, and
use Exercise 7.11 combined with an observation that K4 is not outerplanar.

7.14 Since graphs of treewidth at most k are closed under taking subgraphs, it su�ces
to show that every graph of treewidth at most k contains a vertex of degree at most k.
Consider a nice tree decomposition of a graph of treewidth at most k, and examine a vertex
whose forget node is furthest from the root.

7.15 Prove that a d-degenerate n-vertex graph has at most dn edges, and use Exercise 7.14.

7.16 Solution 1: Turn the given tree decomposition into a nice tree decomposition
(T, {Xt}t∈V (T )) of G of width t. For every v ∈ V (G), let t(v) be the uppermost bag
in T that contains v. Observe that, for every uv ∈ V (G), either u ∈ Xt(v) or v ∈ Xt(u).
Hence, it su�ces to remember Av := NG(v) ∩ Xt(v) for every v ∈ V (G), and, for every
query (u, v), check if u ∈ Av or v ∈ Au.

Solution 2: Prove that for every d-degenerate graph G one can in linear time compute an
orientation of edges of G such that every vertex has outdegree at most d (while the indegree
can be unbounded). Then for every vertex v ∈ V (G) we can remember its outneighbors in
this orientation. To check whether u and v are adjacent, it su�ces to verify whether u is
among the outneighbors of v (at most d checks) or v is among the outneighbors of u (again,
at most d checks). This approach works for d-degenerate graphs, and by Exercise 7.14 we
know that graphs of treewidth at most k are k-degenerate.

7.19 For Chromatic Number, argue that you need at most k + 1 colors. For other
problems, proceed similarly as in the dynamic-programming algorithm for Steiner Tree,
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given in Section 7.3.3. In the cases of Hamiltonian Path, Longest Path, Longest
Cycle, and Cycle Packing, you will need matchings between vertices of the bag instead
of general partitions of the bag.

7.21 In the state of the dynamic program, keep for every pair u, v of vertices in a bag,
whether there exists a common neighbor of u and v among the forgotten vertices that was
not hit by the solution. It is quite nontrivial that this information is su�cient for ensuring
that all C4s are hit, so be very careful when arguing that your algorithm is correct.

7.22 Consider a node t of a tree decomposition (T, {Xt}t∈V (T )) of the input graph G.
Let Vt be the union of all bags of descendants of t in T . In the dynamic-programming
algorithm, for every S ⊆ Xt and every family A of subsets of Xt \ S, we would like to
compute a minimum cardinality of a set Ŝ ⊆ Vt such that Ŝ ∩Xt = S and, moreover, the
following holds: for every independent set I in (G − Ŝ)[Vt] such that there does not exist
an independent set I′ in G[Vt] with Vt ∩ I = Vt ∩ I′ and |I| < |I′|, the set Vt ∩ I belongs
to A.

7.23 For Induced Matching, de�ne the state by partitioning the bag at t into three
sets: (a) vertices that have to be matched inside Gt; (b) vertices that will not be matched,
and play no role; (c) vertices that are �reserved� for matching edges that are yet to be
introduced, and hence we require them be nonadjacent to any vertex picked to be matched,
or reserved. For later points, think of the vertices of type (c) as sort of a �prediction�: the
state of the dynamic program encapsulates prediction of what will be the behavior in the
rest of the graph, and requires the partial solution to be prepared for this behavior.

For r-Center, use the prediction method: for every vertex of the bag, encapsulate
in the dynamic programming state (a) what the distance is to the nearest center from a
partial solution inside Gt (this part is called history), and (b) what the distance will be
to the nearest center in the whole graph, after the whole solution is uncovered (this part
is called prediction). Remember to check in forget nodes that the prediction is consistent
with the �nal history.

For Scattered Set, use the same prediction approach as for r-Center.

7.25 The idea is to encode the statement that G contains a minor model of H. We �rst
quantify the existence of vertex sets Vh for h ∈ V (H). Then, we need to check that (a)
every Vh is connected; (b) the sets Vh are pairwise disjoint; (c) if h1h2 ∈ E(H), then there
exists v1v2 ∈ E(G) with v1 ∈ Vh1

and v2 ∈ Vh2
. All three properties are easy to express

in MSO2.

7.26 Let us �rst introduce a classic approach to resolving problems about games on
graphs. The idea is to represent all con�gurations of the game and their dependencies
by an auxiliary game played on a directed graph called the arena. The node set V of
the arena is partitioned into two sets of nodes V1 and V2. It also has a speci�ed node
v ∈ V corresponding to the initial position of the game, and a subset of nodes F ⊆ V
corresponding to the �nal positions. In the auxiliary game there are two players, Player 1
and Player 2, who alternately move a token along arcs of the arena. The game starts by
placing the token on v, and then the game alternates in rounds. At each round, if the
token is on a vertex from Vi, i = 1, 2, then the i-th player slides the token from its current
position along an arc to a new position, where the choice of the arc depends on the player.
Player 1 wins if she manages to slide the token to a node belonging to F , and Player 2
wins if she can avoid this inde�nitely.

Prove that there exists an algorithm with running time depending polynomially on the
size of the arena, which determines which player wins the game. Then take the cops-and-
robber game on the input n-vertex graph G, and encode it as an instance of the auxiliary
game on an arena of size nO(k). Positions of the arena should re�ect possible con�gurations
in the cops-and-robber game, i.e., locations of the cops and of the robber, whereas arcs
should re�ect their possible actions.
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7.28

1. If S is a minimal (u, v)-separator, then the connected components of G−S that contain
u and v are full.

2. Use the fact that every minimal separator S has at least two full components.
3. Use induction on the number of vertices in G. If G has two nonadjacent vertices v1

and v2, then a minimal (v1, v2)-separator S is a clique. Use the induction assumption
to �nd a simplicial vertex in each of the full components.

4. Let v be a simplicial vertex of G. Use induction on the number of vertices n and
construct a tree decomposition of G from a tree decomposition of G− v.

5. (i) ⇒ (ii). Let T = (T, {Xt}t∈V (T )) be a tree decomposition of width k. Let H be
the supergraph of G obtained from G by transforming every bag of T into a clique.
Then T = (T, {Xt}t∈V (T )) is also a tree decomposition of H of width k, and thus the
maximum clique size of H does not exceed k+ 1. Show that H is chordal. (ii)⇒ (iii).
Here you need to construct a search strategy for the cops. This strategy imitates the
strategy of two cops on a tree. (iii) ⇒ (iv). We have discussed in the chapter that a
bramble of order more than k + 1 gives a strategy for the robber to avoid k + 1 cops.
(iv)⇒ (i). This is the (harder) half of Theorem 7.15.

7.29 Proceed by induction, using Theorem 7.16.

7.31 In one direction, argue that if G is an intersection graph of subtrees of a tree, then
every cycle in G of length at least 4 has a chord. In the other direction, use the fact that
every chordal graph G has a tree decomposition (T, {Xt}t∈V (T )) where every bag induces
a clique (Exercise 7.28). De�ne Hv = T [{t ∈ V (T ) : v ∈ Xt}] for every v ∈ V (G). Argue
that the tree T with subtrees (Hv)v∈V (G) witnesses that G is an intersection graph of
subtrees of a tree.

7.32 Prove two inequalities, that vsn(G) ≤ pw(G) and that pw(G) ≤ vsn(G). In both
cases, you can make a direct construction that takes an ordering/path decomposition of
optimum width, and builds the second object of the same width. However, it can also be
convenient to use other characterizations of pathwidth, given in Theorem 7.14. For instance,
you may give a strategy for searchers that exploits the existence of a path decomposition
of small width.

7.34 Let G be an n-vertex d-regular α-edge-expander and let X be a 1
2
-balanced separator

in G for a uniform weight function, given by Lemma 7.19. Let D1, . . . , Dr be the connected
components of G −X. Since |Di| ≤ n/2 for every 1 ≤ i ≤ r, we have that at least α|Di|
edges connect Di and X. However, since G is d-regular, at most d|X| edges leave X.
Consequently,

r∑

i=1

α|Di| ≤ d|X|,

α(n− |X|) ≤ d|X|,

n
α

d+ α
≤ |X|.

By Lemma 7.19, n α
d+α

− 1 is a lower bound for the treewidth of G.

7.35 Consider a clique on k2 − 1 vertices.

7.36 Show that planar graph H is a minor of a |V (H)|O(1) × |V (H)|O(1) grid and then
use the Excluded Grid Theorem.

7.37 In Section 7.7.1 we have already given a bramble of order t. Play with this example
to squeeze one more element of the bramble.
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7.38 Use Lemma 7.19 and Corollary 7.24.

7.41 For an FPT algorithm parameterized by k+ d, you may use either bidimensionality,
or a modi�cation of the shifting technique where you remove d consecutive layers. For a
subexponential algorithm for a constant d, use bidimensionality.

7.44 To obtain any �xed-parameter tractable algorithm for parameterization by k, you
can use the shifting technique. Getting a subexponential one is more tricky.

The problem is not bidimensional, however, it can be reduced to a bidimensional prob-
lem. We order the vertices V (G) = {v1, v2, . . . , vn} nonincreasingly according to their
degrees. Show that, if (G, k, s) is a yes-instance, then there is a solution X such that for
some r it holds that X ⊆ {v1, v2, . . . , vr}, and, moreover, X is a dominating set in the
graph G[{v1, v2, . . . , vr}]. After guessing the number r, we can use bidimensionality.

7.45 Prove that a su�ciently large grid (in terms of k) does not admit a k-spanner, and
hence, intuitively, every yes-instance of the problem should have bounded treewidth. Also
�nding a dynamic programming on a tree decomposition is nontrivial. Here, you may �nd
it useful to prove that it su�ces to prove the spanner property only on single edges. A
caveat: the problem is not contraction-closed; it is possible to contract edges and increase
the parameter. While grid arguments will work at the end, we have to be careful here.

7.46 Consider a tree obtained from Exercise 7.10, equipped with a universal vertex.

7.50 First prove (say, by making use of the Planar Excluded Grid Theorem) that for every
planar graph G of treewidth t, the treewidth of its dual graph G∗ does not exceed ct for
some constant c. In fact, it is possible to show that tw(G) ≤ tw(G∗) + 1 (see [361]) but
this is quite involved. Then deletion of edges in G corresponds to contraction of edges in
G∗, and we can use Lemma 7.36.

7.48 First, perform a color coding step: every vertex v ∈ V (G) is colored with a color
c(v) ∈ V (H), and we look for a subgraph isomorphic to H, whose vertices have appropriate
colors. Second, compute a tree decomposition (T, {Xt}t∈V (T )) of H of width tw(H). Third,
perform the following dynamic programming: for every t ∈ V (T ) and mapping φ : Xt →
V (G) such that c(φ(h)) = h for every h ∈ Xt, compute whether there exists a (color-
preserving) homomorphism φ̂ fromH[Vt] to G that extends φ. Here, color-preserving means
that c(φ̂(h)) = h for every h, and Vt denotes the union of all bags of descendants of t in
the tree T .

7.53 Take a nice tree decomposition (T, {Xt}t∈V (T )) of G of optimum width, and try to
turn it to a branch decomposition (T ′, η) of at most the same rankwidth. You will need to
get rid of leaf nodes and introduce nodes, so just collapse them. For forget nodes do the
following: whenever a vertex w is forgotten at node t, add a pendant leaf t′ to t and put
η(w) = t′. After further small adjustments, you will obtain a valid branch decomposition.
Prove that its rankwidth is at most the width of the original tree decomposition using the
following observation: removal of each e ∈ E(T ′) splits the vertices of V (G) into sets Xe
and Ye, such that Xe is the set of vertices forgotten in some subtree of the original tree
decomposition.

7.54 Intuitively, we sweep the forest H from left to right.
Let f be an embedding of G into a rooted forest H of depth d. Order the trees of H

arbitrarily, and order the leaves of every tree of H in a natural way, obtaining a total
order on all the leaves of H. For every leaf h of H, let Yh be the set of all vertices on the
path from h to the root of the tree containing h. Argue that sets f−1(Yh) form a path
decomposition of G of width at most d− 1.

7.55 For the left inequality K1 · tw(G) ≤ mmw(G), without loss of generality assume G
has no isolated vertices, and let (T, η) be a branch decomposition of V (G) that yields the
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optimum µG-width. We will construct a tree decomposition (T, {Xt}t∈V (T )) of G (i.e.,
using the same tree T ) of width similar to the µG-width of (T, η). Pick any edge e ∈ E(T ),
and let Ge be the bipartite graph GXe where (Xe, Ye) is the partition of V (G) obtained
by removing edge e from T . Let We ⊆ V (G) be de�ned as follows: v ∈ We if and only if
for every maximum matching M in Ge, v is an endpoint of some edge in M . Show that
We is a vertex cover of Ge, and moreover its cardinality is at most twice the cardinality of
the maximum matching in Ge. For every t ∈ V (T ), let Xt be the union of sets We, where
e iterates over edges e incident to t (there is always one or three such edges).

Now verify that (T, {Xt}t∈V (T )) is a tree decomposition of G. Property (T1) is obvious.
For property (T3), prove that the de�nition of the set We is monotone in the following
sense: if v is a vertex of We that belongs to, say, the left side of Ge, then v stays in We

even after moving any number of other vertices from the left side to the right side (this
corresponds to changing the graph Ge when moving between two adjacent edges of T ).
For property (T2), focus on one edge uv ∈ E(G) and look at the path in T between the
leaves corresponding to the vertices u and v. Let e1, e2, . . . , er be the edges of this path,
and assume they appear in this order. Argue, using (T3) and the fact that We is a vertex
cover of Ge for each e ∈ E(T ), that there exists an index 1 ≤ i0 < r such that u ∈ Wei

for every i ≤ i0 and v ∈ Wei for every i > i0. Then u, v are both contained in the bag at
the common endpoint of ei0 and ei0+1.

For the right inequality mmw(G) ≤ K2 · tw(G), use the same construction as in Exer-
cise 7.53.
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you to the work of Marx and Pilipczuk [356]. Eppstein [165] gave the �rst linear-time
algorithm for Subgraph Isomorphism on planar graphs, with running time kO(k)n, where
k is the size of the pattern graph. Dorn [143] improved this running time to 2O(k)n. To
the best of our knowledge, the existence of a polynomial-time algorithm for Minimum
Bisection on planar graphs remains open. For general graphs the problem is NP-hard,
but �xed-parameter tractable when parameterized by k [115].

The proof of the planarity criterion of Lemma 7.43 can be found in [421, Thm 3.8]. The
irrelevant vertex technique was �rst used in the work of Robertson and Seymour on the
Vertex Disjoint Paths problem [399, 402]. There are several constructive algorithms
for Planar Vertex Deletion, see e.g. [285, 358]. The fastest known so far runs in
time kO(k)n and is due to Jansen, Lokshtanov, and Saurabh [277]. Other examples of
applications of the irrelevant vertex technique can be found in [6, 116, 230, 238, 353].

Branchwidth of a graph was �rst introduced by Robertson and Seymour in [401]. This
work also contains the proof of the linear relation between treewidth and branchwidth, i.e.,
equation (7.13), and introduces the concept already in the wider setting of hypergraphs.
The polynomial-time algorithm for computing the branchwidth of a planar graph is due
to Seymour and Thomas [415].

Oum and Seymour [378] gave an FPT 3-approximation algorithm for computing the
f -width of any universe U , under the assumptions that f is submodular and provided to
the algorithm as an oracle. This work also discusses applications to matroid branchwidth.

Cliquewidth was �rst introduced by Courcelle and Olariu [102]. Connections between
MSO1 logic and graphs of bounded cliquewidth, resembling links between MSO2 and
treewidth, were discovered by Courcelle, Makowsky, and Rotics [101]. Rankwidth was in-
troduced by Oum and Seymour [378] as a tool to approximate cliquewidth. Since rankwidth
and cliquewidth are bounded by functions of each other, the same tractability results for
model checking MSO1 hold for rankwidth and for cliquewidth. From the general approx-
imation algorithm of Oum and Seymour [378] it follows that rankwidth admits an FPT
3-approximation algorithm. In the speci�c setting of rankwidth, the running time and the
approximation ratio were subsequently improved by Oum [377]. Hlin¥ný and Oum [263]
gave an exact FPT algorithm deciding if the rankwidth of a graph is at most k; this
algorithm can also be used for matroid branchwidth.

Exercise 7.55 originates in the PhD thesis of Vatshelle [426]. Lower bounds on dynamic-
programming algorithms for cliquewidth, and thus also for rankwidth, were investigated
by Fomin, Golovach, Lokshtanov, and Saurabh [192, 191].

Further reading. The book of Diestel [138] contains a nice overview of the role the treewidth
is playing in the Graph Minors project. We also recommend the following surveys of Reed
[396, 395]. The proof of Courcelle's theorem and its applications are discussed in the book of
Flum and Grohe [189]. The book of Courcelle and Engelfriet [100] is a thorough description
of monadic second-order logic on graphs. For a general introduction to mathematical logic,
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logic in computer science, and elements of model theory, we refer you to a wide range
of available textbooks, e.g., [30, 266]. An extensive overview of di�erent algorithmic and
combinatorial aspects of treewidth as well as its relation to other graph parameters is given
in the survey of Bodlaender [46] and in the book of Kloks [297]. An overview of di�erent
extensions of treewidth and rankwidth to directed graphs, matroids, hypergraphs, etc., is
provided in the survey of Hlin¥ný, Oum, Seese, and Gottlob [264].



Part II

Advanced algorithmic techniques





Chapter 8

Finding cuts and separators

The notion of important cuts and the related com-
binatorial bounds give a useful tool for showing the
�xed-parameter tractability of problems where a graph
has to be cut into certain parts. We discuss how this
technique can be used to show that Edge Multi-
way Cut and Directed Feedback Vertex Set are
FPT. Random sampling of important separators is a
recent extension of this method, making it applicable
to a wider range of problems. We illustrate how this
extension works on a clustering problem called (p, q)-
Partition.

Problems related to cutting a graph into parts satisfying certain properties
or related to separating di�erent parts of the graph from each other form a
classical area of graph theory and combinatorial optimization, with strong
motivation coming from applications. Many di�erent versions of these prob-
lems have been studied in the literature: one may remove sets of edges or
vertices in a directed or undirected graph; the goal can be separating two
or more terminals from each other, cutting the graph into a certain num-
ber of parts, perhaps with constraints on the sizes of the parts, etc. Despite
some notable exceptions (e.g., minimum s− t cut, minimum multiway cut in
planar graphs with �xed number of terminals), most of these problems are
NP-hard. In this chapter, we investigate the �xed-parameter tractability of
some of these problems parameterized by the size of the solution, that is, the
size of the cut that we remove from the graph (one could parameterize these
problems also by, for example, the number of terminals, while leaving the size
of the solution unbounded, but such parameterizations are not the focus of
this chapter). It turns out that small cuts have certain very interesting ex-
tremal combinatorial aspects that can be exploited in FPT algorithms. The
notion of important cuts formalizes this extremal property and gives a very
convenient tool for the treatment of these problems.

247
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There is another class of problems that are closely related to cut problems:
transversal problems, where we have to select edges/vertices to hit certain
objects in the graph. For example, the Odd Cycle Transversal problem
asks for a set of k vertices hitting every odd cycle in the graph. As we have
seen in Section 4.4, iterative compression can be used to transform Odd Cy-
cle Transversal into a series of minimum cut problems. The Directed
Feedback Vertex Set problem asks for a set of k vertices hitting ev-
ery directed cycle in a graph. The �xed-parameter tractability of Directed
Feedback Vertex Set was a longstanding open problem; its solution was
eventually reached by a combination of iterative compression and solving a
directed cut problem (essentially) using important cuts. There are other ex-
amples where the study of a transversal problem reveals that it can be turned
into an appropriate cut problem.

There is a particular di�culty that we face in the presentation of the basic
results for the cut problems. There are many variants: we can delete vertices
or edges, the graph can be directed or undirected, we may add weights (e.g.,
to forbid certain edges/vertices to be in the solution). While the basic theory
is very similar for these variants, they require di�erent notation and slightly
di�erent proofs. In this chapter, rather than presenting the most general form
of these results, we mostly focus on the undirected edge versions, as they are
the most intuitive and notationally cleanest. Then we go to the directed edge
versions to treat certain problems speci�c to directed graphs (e.g., Directed
Feedback Vertex Set) and �nish the chapter by brie�y commenting on
the vertex variants of these results.

We assume basic familiarity with the concepts of cuts, �ows, and algo-
rithms for �nding minimum cuts. Nevertheless, Section 8.1 reviews some of
the �ner points of minimum cuts in the form we need later. Section 8.2 intro-
duces the notion of important cuts and presents the bound on their number
and an algorithm to enumerate them. Then Section 8.3 uses important cuts
to solve problems such as Edge Multiway Cut.

Very recently, a new way of using important cuts was introduced in one of
the �rst FPT algorithms forMulticut. The �random sampling of important
separators� technique allows us to restrict our attention to solutions that have
a certain structural property, which can make the search for the solution much
easier or can reduce it to some other problem. After the initial application for
multicut problems, several other results used this technique as an ingredient
of the solution. Unfortunately, most of these results are either on directed
graphs (where the application of the technique is more delicate) or use several
other nontrivial steps, making their presentation beyond the scope of this
textbook. Section 8.4 presents the technique on a clustering problem where
the task is to partition the graphs into classes of size at most p such that there
are at most q edges leaving each class. This example is somewhat atypical
(as it is not directly a transversal problem), but we can use it to demonstrate
the random sampling technique in a self-contained way.
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Fig. 8.1: The set ∆({x1, x2, a, b, c, d, e, f}) = {ey1, fy2} is a minimum
(X,Y )-cut (and hence minimal); the set ∆({x1, x2, a, b}) = {ac, bc, bd} is
a minimal (X,Y )-cut, but not minimum. The set ∆({x1, x2, a, c, d}) =
{x2b, ab, bc, bd, ce, df} is an (X,Y )-cut, but not minimal

Section 8.5 generalizes the notion of important cuts to directed graphs
and states the corresponding results without proofs. We point out that there
are signi�cant di�erences in the directed setting: the way important cuts
were used to solve Edge Multiway Cut in undirected graphs does not
generalize to directed graphs. Nevertheless, we can solve a certain directed cut
problem called Skew Edge Multicut using important cuts. In Section 8.6,
a combination of the algorithm for Skew Edge Multicut and iterative
compression is used to show the �xed-parameter tractability of Directed
Feedback Vertex Set and Directed Feedback Arc Set.

Section 8.7 discusses the version of the results for vertex-deletion problems.
We de�ne the notions required for handling vertex-deletion problems and
state the most important results. We do not give any proofs in this section,
as they are mostly very similar to their edge-removal counterparts.

8.1 Minimum cuts

An (X,Y )-cut is a set S of edges that separates X and Y from each other,
that is, G\S has no X−Y path. We need to distinguish between two di�erent
notions of minimality. An (X,Y )-cut S is a minimum (X,Y )-cut if there is
no (X,Y )-cut S′ with |S′| < |S|. An (X,Y )-cut is (inclusion-wise) minimal
if there is no (X,Y )-cut S′ with S′ ⊂ S (see Fig. 8.1). Observe that every
minimum cut is minimal, but not necessarily the other way around. We allow
parallel edges in this section: this is essentially the same as having arbitrary
integer weights on the edges.

It will be convenient to look at minimal (X,Y )-cuts from a di�erent per-
spective, viewing them as edges on the boundary of a certain set of vertices.
If G is an undirected graph and R ⊆ V (G) is a set of vertices, then we denote
by ∆G(R) the set of edges with exactly one endpoint in R, and we denote
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dG(R) = |∆G(R)| (we omit the subscript G if it is clear from the context).
Let S be a minimal (X,Y )-cut in G and let R be the set of vertices reachable
from X in G \ S; clearly, we have X ⊆ R ⊆ V (G) \ Y . Then it is easy to see
that S is precisely ∆(R). Indeed, every such edge has to be in S (otherwise a
vertex of V (G) \ R would be reachable from X) and S cannot have an edge
with both endpoints in R or both endpoints in V (G)\R, as omitting any such
edge would not change the fact that the set is an (X,Y )-cut, contradicting
minimality.

Proposition 8.1. If S is a minimal (X,Y )-cut in G, then S = ∆G(R), where
R is the set of vertices reachable from X in G \ S.
Therefore, we may always characterize a minimal (X,Y )-cut S as ∆(R) for
some set X ⊆ R ⊆ V (G) \ Y . Let us also note that ∆(R) is an (X,Y )-cut
for every such set R with X ⊆ R ⊆ V (G) \ Y , but not necessarily a minimal
(X,Y )-cut (see Fig. 8.1).

The well-known maximum �ow and minimum cut duality implies that
the size of the minimum (X,Y )-cut is the same as the maximum number
of pairwise edge-disjoint X − Y paths. Classical maximum �ow algorithms
can be used to �nd a minimum cut and a corresponding collection of edge-
disjoint X − Y paths of the same size. We do not review the history of these
algorithms and their running times here, as in our setting we usually want
to �nd a cut of size at most k, where k is assumed to be a small constant.
Therefore, the following fact is su�cient for our purposes: each round of the
algorithm of Ford and Fulkerson takes linear time, and k rounds are su�cient
to decide if there is an (X,Y )-cut of size at most k. We state this fact in the
following form.

Theorem 8.2. Given a graph G with n vertices and m edges, disjoint sets
X,Y ⊆ V (G), and an integer k, there is an O(k(n+m))-time algorithm that
either

� correctly concludes that there is no (X,Y )-cut of size at most k, or
� returns a minimum (X,Y )-cut ∆(R) and a collection of |∆(R)| pairwise

edge-disjoint X − Y paths.

Submodular set functions play an essential role in many areas of combina-
torial optimization, and they are especially important for problems involving
cuts and connectivity. Let f : 2V (G) → R be a set function assigning a real
number to each subset of vertices of a graph G. We say that f is submodular
if it satis�es the following inequality for every A,B ⊆ V (G):

f(A) + f(B) ≥ f(A ∩B) + f(A ∪B). (8.1)

We will use the well-known fact that the function dG(X) = |∆G(X)| is sub-
modular.

Theorem 8.3. The function dG is submodular for every undirected graph G.
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Fig. 8.2: The di�erent types of edges in the proof of Theorem 8.3

Proof. Let us classify each edge e according to the location of its endpoints
(see Fig. 8.2) and calculate its contribution to the two sides of (8.1):

1. If both endpoints of e are in A∩B, in A\B, in B\A, or in V (G)\(A∪B),
then e contributes 0 to both sides.

2. If one endpoint of e is in A ∩ B, and the other is either in A \ B or in
B \A, then e contributes 1 to both sides.

3. If one endpoint of e is in V (G) \ (A∪B), and the other is either in A \B
or in B \A, then e contributes 1 to both sides.

4. If e is between A ∩ B and V (G) \ (A ∪ B), then e contributes 2 to both
sides.

5. If e is between A\B and B \A, then e contributes 2 to the left-hand side
and 0 to the right-hand side.

As the contribution of each edge e to the left-hand side is at least as much
as its contribution to the right-hand side, inequality (8.1) follows. ut

A reason why submodularity of dG is particularly relevant to cut problems
is that if ∆(A) and ∆(B) are both (X,Y )-cuts, then ∆(A∩B) and ∆(A∪B)
are both (X,Y )-cuts: indeed, A ∩ B and A ∪ B both contain X and are
disjoint from Y . Therefore, we can interpret Theorem 8.3 as saying that if we
have two (X,Y )-cuts ∆(A), ∆(B) of a certain size, then two new (X,Y )-cuts
∆(A∩B), ∆(A∪B) can be created and there is a bound on their total size.

The minimum (X,Y )-cut is not necessarily unique; in fact, a graph can
have a large number of minimum (X,Y )-cuts. Suppose, for example, thatX =
{x}, Y = {y}, and k paths connect x and y, each of length n. Then selecting
one edge from each path gives a minimum (X,Y )-cut, hence there are nk

di�erent minimum (X,Y )-cuts. However, as we show below, there is a unique
minimum (X,Y )-cut ∆(Rmin) that is closest to X and a unique minimum
(X,Y )-cut ∆(Rmax) closest to Y , in the sense that the sets Rmin and Rmax

are minimum and maximum possible, respectively (see Fig. 8.3(a)). The proof
of this statement follows from an easy application of the submodularity of
dG.
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Fig. 8.3: (a) A graph G with three edge-disjoint (X,Y )-paths and the (X,Y )-
cuts Rmin and Rmax of Theorem 8.4. (b) The corresponding residual directed
graph D de�ned in the proof of Theorem 8.5

Theorem 8.4. Let G be a graph and X,Y ⊆ V (G) two disjoint sets of ver-
tices. There are two minimum (X,Y )-cuts ∆(Rmin) and ∆(Rmax) such that
if ∆(R) is a minimum (X,Y )-cut, then Rmin ⊆ R ⊆ Rmax.

Proof. Consider the collection R of every set R ⊆ V (G) for which ∆(R) is a
minimum (X,Y )-cut. We show that there is a unique inclusion-wise minimal
set Rmin and a unique inclusion-wise maximal set Rmax in R. Suppose for
contradiction that∆(R1) and∆(R2) are minimum cuts for two inclusion-wise
minimal sets R1 6= R2 of R. By (8.1), we have

dG(R1) + dG(R2) ≥ dG(R1 ∩R2) + dG(R1 ∪R2).

If λ is the minimum (X,Y )-cut size, then the left-hand side is exactly 2λ,
hence the right-hand side is at most 2λ. Observe that ∆(R1∩R2) and ∆(R1∪
R2) are both (X,Y )-cuts. Taking into account that λ is the minimum (X,Y )-
cut size, the right-hand side is also exactly 2λ, with both terms being exactly
λ. That is, ∆(R1 ∩R2) is a minimum (X,Y )-cut. Now R1 6= R2 implies that
R1 ∩ R2 ⊂ R1, R2, contradicting the assumption that both R1 and R2 are
inclusion-wise minimal in R.
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The same argument gives a contradiction if R1 6= R2 are inclusion-wise
maximal sets of the collection: then we observe that ∆(R1 ∪ R2) is also a
minimum (X,Y )-cut. ut

While the proof of Theorem 8.4 is not algorithmic, one can �nd, for example,
Rmin by repeatedly adding vertices to Y as long as this does not increase
the minimum cut size (Exercise 8.5). However, there is also a linear-time
algorithm for �nding these sets.

Theorem 8.5. Let G be a graph with n vertices and m edges, and X,Y ⊆
V (G) be two disjoint sets of vertices. Let k be the size of the minimum (X,Y )-
cut. The sets Rmin and Rmax of Theorem 8.4 can be found in time O(k(n+
m)).

Proof. Let us invoke the algorithm of Theorem 8.2 and let P1, . . . , Pk be the
pairwise edge-disjoint X − Y paths returned by the algorithm. We build the
residual directed graph D as follows. If edge xy of G is not used by any of
the paths Pi, then we introduce both (x, y) and (y, x) into D. If edge xy of
G is used by some Pi in such a way that x is closer to X on path Pi, then we
introduce the directed edge1 (y, x) into D (see Fig. 8.3(b)).

We show that Rmin is the set of vertices reachable fromX in the residual
graph D and Rmax is the set of vertices from which Y is not reachable
in D.

Let ∆G(R) be a minimum (X,Y )-cut of G. As ∆G(R) is an (X,Y )-cut of
size k, each of the k paths P1, . . . , Pk uses exactly one edge of ∆G(R). This
means that after Pi leaves R, it never returns to R. Therefore, if Pi uses an
edge ab ∈ ∆G(R) with a ∈ R and b 6∈ R, then a is closer to X on Pi. This
implies that (a, b) is not an edge of D. As this is true for every edge of the
cut ∆G(R), we get that V (G)\R is not reachable from X in D; in particular,
Y is not reachable.

Let Rmin be the set of vertices reachable from X in D. We have shown
in the previous paragraph that Y is not reachable from X in D (that is,
X ⊆ Rmin ⊆ V (G) \ Y ), hence ∆G(Rmin) is an (X,Y )-cut of G. If we can
show that this cut is a minimum (X,Y )-cut, then we are done: we have shown
that if ∆G(R) is a minimum (X,Y )-cut, then V (G)\R is not reachable from
X in D, implying that V (G) \R ⊆ V (G) \Rmin and hence Rmin ⊆ R.

Every path Pi uses at least one edge of the (X,Y )-cut ∆G(Rmin). More-
over, Pi cannot use more than one edge of the cut: if Pi leaves Rmin and later
returns to Rmin on an edge ab with a 6∈ Rmin, b ∈ Rmin and a closer to X
on Pi, then (b, a) is an edge of D and it follows that a is also reachable from

1 The reader might �nd introducing the edge (x, y) instead of (y, x) more natural and
indeed the rest of the proof would work just as well after appropriate changes. However,
here we follow the standard de�nition of residual graphs used in network �ow algorithms.
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X in D, contradicting a 6∈ Rmin. Therefore, ∆G(Rmin) can have at most k
edges, implying that it is a minimum (X,Y )-cut. Therefore, Rmin satis�es
the requirements.

A symmetrical argument shows that the set Rmax containing all vertices
from which Y is not reachable in D satis�es the requirements. ut

8.2 Important cuts

Most of the results of this chapter are based on the following de�nition.

De�nition 8.6 (Important cut). Let G be an undirected graph and let
X,Y ⊆ V (G) be two disjoint sets of vertices. Let S ⊆ E(G) be an (X,Y )-cut
and let R be the set of vertices reachable from X in G \ S. We say that
S is an important (X,Y )-cut if it is inclusion-wise minimal and there is no
(X,Y )-cut S′ with |S′| ≤ |S| such that R ⊂ R′, where R′ is the set of vertices
reachable from X in G \ S′.

Note that the de�nition is not symmetrical: an important (X,Y )-cut is
not necessarily an important (Y,X)-cut.

An intuitive interpretation of De�nition 8.6 is that we want to minimize
the size of the (X,Y )-cut and at the same time we want to maximize
the set of vertices that remain reachable from X after removing the
cut. The important (X,Y )-cuts are the (X,Y )-cuts that are �Pareto
e�cient� with respect to these two objectives: increasing the set of ver-
tices reachable from X requires strictly increasing the size of the cut.

Let us point out that we do not want the number of vertices reachable
from X to be maximal, we just want that this set of vertices be inclusion-
wise maximal (i.e., we have R ⊂ R′ and not |R| < |R′| in the de�nition).

The following proposition formalizes an immediate consequence of the def-
inition. This is the property of important (X,Y )-cuts that we use in the
algorithms.

Proposition 8.7. Let G be an undirected graph and X,Y ⊆ V (G) two dis-
joint sets of vertices. Let S be an (X,Y )-cut and let R be the set of vertices
reachable from X in G\S. Then there is an important (X,Y )-cut S′ = ∆(R′)
(possibly, S′ = S) such that |S′| ≤ |S| and R ⊆ R′.

Proof. By de�nition, every (X,Y )-cut has a subset that is an inclusion-wise
minimal (X,Y )-cut. Let S∗ ⊆ S be a minimal (X,Y )-cut and let R∗ ⊇ R be
the set of vertices reachable from X in G \ S∗. If S∗ is an important (X,Y )-
cut, then we are done. Otherwise, there is an (X,Y )-cut S′ = ∆(R′) for some
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Fig. 8.4: A graph where every minimal (X,Y )-cut is an important (X,Y )-cut

R′ ⊃ R∗ ⊇ R and |S′| ≤ |S∗| ≤ |S|. If S′ is an important (X,Y )-cut, then
we are done. Otherwise, we can repeat the argument: each time we strictly
increase the set of vertices reachable from X and the size of the cut does
not increase. Eventually, the process has to stop and we obtain an important
(X,Y )-cut satisfying the required properties. ut

To check whether a given (X,Y )-cut ∆(R) is important, one needs to
check whether there is another (X,Y )-cut of the same size �after� R, that is,
whether there is an (R ∪ v, Y )-cut of size not larger for some v ∈ V (G) \ R.
This can be done e�ciently using Theorem 8.5.

Proposition 8.8. Given a graph G with n vertices and m edges, two disjoint
sets X,Y ⊆ V (G), and an (X,Y )-cut ∆(R) of size k, it can be tested in time
O(k(n+m)) whether ∆(R) is an important cut.

Proof. Observe that ∆(R) is an important X − Y cut if and only if it is the
unique minimum (R, Y ) cut. Therefore, if we compute the minimum (R, Y )-
cut ∆(Rmax) using the algorithm of Theorem 8.5, then ∆(R) is an important
(X,Y )-cut if and only if R = Rmax. ut

Theorem 8.4 shows that ∆(Rmax) is the unique minimum (X,Y )-cut that
is an important (X,Y )-cut: we have Rmax ⊃ R for every other minimum
(X,Y )-cut ∆(R). However, for sizes larger than the minimum cut size, there
can be a large number of incomparable (X,Y )-cuts of the same size. Consider
the example in Fig. 8.4. Any (X,Y )-cut ∆(R) is an important (X,Y )-cut:
the only way to extend the set R is to move some vertex vi ∈ V (G) \ (R∪Y )
into the set R, but then the cut size increases by 1. Therefore, the graph has
exactly

(
n
x

)
important (X,Y )-cuts of size n+ x.

The main result of the section is a bound on the number of important cuts
of size at most k that depends only on k and is independent of the size of the
graph. Moreover, we show that the important separators can be e�ciently
enumerated. We need �rst the following simple observations, whose proofs
are given as Exercise 8.7.

Proposition 8.9. Let G be a graph, X,Y ⊆ V (G) be two disjoint sets of
vertices, and S = ∆(R) be an important (X,Y )-cut.
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1. For every e ∈ S, the set S \ {e} is an important (X,Y )-cut in G \ e.
2. If S is an (X ′, Y )-cut for some X ′ ⊃ X, then S is an important (X ′, Y )-

cut.

The �rst key observation in bounding the number of important (X,Y )-
cuts is that every important (X,Y )-cut is after the set Rmax of Theorem 8.4.

Lemma 8.10. If ∆(R) is an important (X,Y )-cut, then Rmax ⊆ R.

Proof. Let us apply the submodular inequality (8.1) on Rmax and R:

dG(Rmax) + dG(R) ≥ dG(Rmax ∩R) + dG(Rmax ∪R).

Let λ be the minimum (X,Y )-cut size. The �rst term dG(Rmax) on the left-
hand side is exactly λ (as ∆G(Rmax) is a minimum (X,Y )-cut). Furthermore,
∆G(Rmax ∩ R) is an (X,Y )-cut, hence we have that the �rst term on the
right-hand side is at least λ. It follows then that the second term of the
left-hand side is at least the second term on the right-hand side, that is,
dG(R) ≥ dG(R ∪ Rmax). If Rmax 6⊆ R, then Rmax ∪ R is a proper superset
of R. However, then the (X,Y )-cut ∆G(Rmax ∪ R) of size at most dG(R)
contradicts the assumption that ∆G(R) is an important (X,Y )-cut. Thus we
have proved that Rmax ⊆ R. ut

We are now ready to present the bound on the number of important cuts.

Theorem 8.11. Let X,Y ⊆ V (G) be two disjoint sets of vertices in graph G
and let k ≥ 0 be an integer. There are at most 4k important (X,Y )-cuts of
size at most k.

Proof. We prove that there are at most 22k−λ important (X,Y )-cuts of size
at most k, where λ is the size of the smallest (X,Y )-cut. Clearly, this implies
the upper bound 4k claimed in the theorem. The statement is proved by
induction on 2k − λ. If λ > k, then there is no (X,Y )-cut of size k, and
therefore the statement holds if 2k − λ < 0. Also, if λ = 0 and k ≥ 0, then
there is a unique important (X,Y )-cut of size at most k: the empty set.

The proof is by branching on an edge xy leaving Rmax: an important
(X,Y )-cut either contains xy or not. In both cases, we can recurse on
an instance where the measure 2k − λ is strictly smaller.

Let ∆(R) be an important (X,Y )-cut and let ∆(Rmax) be the minimum
(X,Y )-cut de�ned by Theorem 8.4. By Lemma 8.10, we have Rmax ⊆ R. As
we have assumed λ > 0, there is at least one edge xy with x ∈ Rmax ⊆ R
and y 6∈ Rmax. Then vertex y is either in R or not. If y 6∈ R, then xy is
an edge of the cut ∆(R) and then S \ {xy} is an important (X,Y )-cut in
G′ = G \ xy of size at most k′ := k − 1 (Prop. 8.9(1)). Removing an edge
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can decrease the size of the minimum (X,Y )-cut size by at most 1, hence
the size λ′ of the minimum (X,Y )-cut in G′ is at least λ − 1. Therefore,
2k′−λ′ < 2k−λ and the induction hypothesis implies that there are at most
22k
′−λ′ ≤ 22k−λ−1 important (X,Y )-cuts of size k′ in G′, and hence at most

that many important (X,Y )-cuts of size k in G that contain the edge xy.
Let us count now the important (X,Y )-cuts not containing the edge xy. As

Rmax ⊆ R, the fact that xy is not in the cut implies that even Rmax∪{y} ⊆ R
is true. Let X ′ = Rmax ∪ {y}; it follows that ∆(R) is an (X ′, Y )-cut and in
fact an important (X ′, Y )-cut by Prop. 8.9(2). There is no (X ′, Y )-cut ∆(R′)
of size λ: such a cut would be an (X,Y )-cut with Rmax ⊂ Rmax ∪ {y} ⊆ R′,
contradicting the de�nition of Rmax. Thus the minimum size λ′ of an (X ′, Y )-
cut is greater than λ. It follows by the induction assumption that the number
of important (X ′, Y )-cuts of size at most k is at most 22k−λ

′ ≤ 22k−λ−1, which
is a bound on the number of important (X,Y )-cuts of size k in G that do
not contain xy.

Adding the bounds in the two cases, we get the required bound 22k−λ. ut

The main use of the bound in Theorem 8.11 is for algorithms based on
branching: as the number of important (X,Y )-cuts is bounded by a function
of k, we can a�ord to branch on selecting one of them (see for example
Theorem 8.19). The following re�ned bound is very helpful for a tighter bound
on the size of the search tree for such algorithms. Its proof is essentially the
same as the proof of Theorem 8.11 with an appropriate induction statement
(see Exercise 8.9).

Lemma 8.12. Let G be an undirected graph and let X,Y ⊆ V (G) be two
disjoint sets of vertices. If S is the set of all important (X,Y )-cuts, then∑
S∈S 4−|S| ≤ 1.

Observe that Lemma 8.12 implies Theorem 8.11: the contribution of each
important (X,Y )-cut to the sum is at least 4−k, hence the fact that the sum
is at most 1 implies that there can be at most 4k such cuts.

So far, Theorem 8.11 and Lemma 8.12 are purely combinatorial statements
bounding the number of important cuts. However, an algorithm for enumer-
ating all of the important cuts follows from the proof of Theorem 8.11. First,
we can compute Rmax using the algorithm of Theorem 8.5. Pick an arbitrary
edge xy ∈ ∆(Rmax). Then we branch on whether edge xy is in the important
cut or not, and recursively �nd all possible important cuts for both cases. The
search tree of the algorithm has size at most 4k and the work to be done in
each node is O(k(n+m)). Therefore, the total running time of the branching
algorithm is O(4k · k(n+m)) and it returns at most 4k cuts.

However, there is an unfortunate technical detail with the algorithm de-
scribed above. The algorithm enumerates a superset of all important cuts:
by our analysis, every important cut is found, but there is no guarantee that
all the constructed cuts are important (see Exercise 8.8). We present three
di�erent ways of handling this issue. The most obvious solution is to perform
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a �ltering phase where we use Proposition 8.8 to check for each returned cut
whether it is important. This �ltering phase takes time O(4k · k(n+m)).

Theorem 8.13. Let X,Y ⊆ V (G) be two disjoint sets of vertices in a graph
G with n vertices and m edges, and let k ≥ 0 be an integer. The set of all
important (X,Y )-cuts of size at most k can be enumerated in time O(4k · k ·
(n+m)).

When using the re�ned bound of Lemma 8.12 to bound the running time of a
branching algorithm, we need that the time spent in each node of the search
tree be proportional to the number of directions into which we branch. This is
unfortunately not true if we use Theorem 8.13 to enumerate all the important
cuts: the 4k factor appears in the time bound, even if the number of actual
important cuts returned is much less than 4k. To obtain an algorithm that
does not su�er from this problem, let S ′k be the set of all (X,Y )-cuts found
before the �ltering. Observe that if the algorithm considers only branches
where k ≥ λ (otherwise there is no (X,Y )-cut of size at most k), then every
leaf node has λ = 0 and hence produces a cut, which means that the recursion
tree has |S ′k| leaves. Furthermore, the height of the recursion tree is at most
k, thus the recursion tree has O(k|S ′k|) nodes. The work to be done in each
node is O(k(n+m)). Therefore, we obtain the following bound on the running
time.

Theorem 8.14. Let X,Y ⊆ V (G) be two disjoint sets of vertices in graph G
with n vertices and m edges, let k ≥ 0 be an integer. One can enumerate a
superset S ′k of every important (X,Y )-cut of size at most k in time O(|S ′k| ·
k2 · (n+m)). Moreover, the set S ′k satis�es

∑
S∈S′k 4−|S| ≤ 1.

Theorem 8.14 gives a more re�ned bound on the running time than Theo-
rem 8.13. It may appear somewhat confusing, however, that the algorithm
of Theorem 8.14 returns cuts that are not (X,Y )-cuts. What Theorem 8.14
really says is that we have good bounds both on the running time and on the
number of cuts returned even if we consider these cuts and do not restrict
the output to the important (X,Y )-cuts. One may prefer a cleaner statement
about the existence of an algorithm that returns only important (X,Y )-cuts
and the running time depends linearly on the size of the output. It is possi-
ble to obtain such an algorithm, but it requires an additional combinatorial
argument. We need to ensure that the size of the recursion tree is O(k|Sk|),
where Sk is the set of all important (X,Y )-cuts of size at most k. We achieve
this by checking before each recursion step whether at least one important
(X,Y )-cut of size at most k will be returned; if not, then there is no need
to perform the recursion. This way, we ensure that each leaf of the recursion
tree returns an important (X,Y )-cut, hence the size of the recursion tree can
be bounded by O(k|Sk|). The check before the recursion is made possible by
the following lemma.

Lemma 8.15. Let X,Y ⊆ V (G) be two disjoint sets of vertices in a graph
G with n vertices and m edges, let k ≥ 0 be an integer, and let Z ⊆ ∆(X)
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be a set of edges. It can be checked in time O(k(n+m)) whether there is an
important (X,Y )-cut S of size at most k with Z ⊆ S.

Proof. Let G′ = G\Z, let C = ∆G′(R
′
max) be the minimum (X,Y )-cut of G′

given by Theorem 8.4. We claim that G has an important (X,Y )-cut of size
at most k containing Z if and only Z ∪C is such a cut. Suppose that there is
a D ⊆ E(G′) such that Z ∪D is an important (X,Y )-cut of size at most k.
As Z ∪D is a minimal (X,Y )-cut, we can write it as ∆G(RD) for some set
RD ⊇ X. Each edge of Z ⊆ ∆G(X) has an endpoint not in X; let P contain
all these endpoints. Observe that Z ⊆ ∆G(RD) implies that RD is disjoint
from P .

Clearly, Z ∪ C is an (X,Y )-cut in G, thus if it is not important, then
Proposition 8.7 implies that there is an important (X,Y )-cut S = ∆(RS)
with |S| ≤ |Z ∪ C| and R′max ⊆ RS . If Z ⊆ S, then S \ Z = ∆G′(RS) is an
(X,Y )-cut in G′ with |S \ Z| ≤ |C|. By the de�nition of R′max, this is only
possible if |S \ Z| = |C| and RS = R′max, which would imply S = Z ∪ C.
Therefore, at least one edge of Z is not in S, which implies that RS contains
at least one vertex of P .

Consider now the submodular inequality on RS and RD.

dG(RS) + dG(RD) ≥ dG(RS ∩RD) + dG(RS ∪RD)

Observe that ∆G(RS∪RD) is an (X,Y )-cut and RS∪RD is a proper superset
of RD (as RD is disjoint from P and RS intersects P ). Thus the fact that Z∪D
is an important (X,Y )-cut implies dG(RS ∪ RD) > dG(RD). It follows that
dG(RS ∩RD) < dG(RS) ≤ |Z ∪C| has to hold. Note that Z ⊆ ∆G(RS ∩RD)
as X ⊆ RS ∩RD and RD (and hence RS ∩RD) is disjoint from P . Therefore,
∆G(RS∩RD) can be written as Z∪C∗ for some C∗ ⊆ E(G′) disjoint from Z.
Now |Z ∪C∗| = dG(RS ∩RD) < |Z ∪C| implies |C∗| < |C|. This contradicts
the assumption that C is a minimum (X,Y )-cut in G′. ut

Equipped with Lemma 8.15, one can modify the branching algorithm in a
way that it enumerates only important (X,Y )-cuts. (Exercise 8.10 asks for
working out the details of this algorithm.)

Theorem 8.16. Let X,Y ⊆ V (G) be two disjoint sets of vertices in a graph
G with n vertices and m edges, and let k ≥ 0 be an integer. The set Sk
of all important (X,Y )-cuts of size at most k can be enumerated in time
O(|Sk| · k2 · (n+m)).

The reader might wonder how tight the bound 4k in Theorem 8.11 is. The
example in Fig. 8.4 already showed that the number of important cuts of size
at most k can be exponential in k. We can show that the bound 4k is tight
up to polynomial factors; in particular, the base of the exponent has to be 4.
Consider a rooted complete binary tree T with n > k levels; let X contain
only the root and Y contain all the leaves (see Fig. 8.5). Then every rooted
full binary subtree T ′ with k leaves gives rise to an important (X,Y )-cut of
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Y

X

Fig. 8.5: A graph with Θ(4k/k3/2) important (X,Y )-cuts of size k: every full
binary subtree with k leaves gives rise to an important (X,Y )-cut of size k.
The �gure shows a subtree with six leaves and the corresponding (X,Y )-cut
of size 6 (red edges)

size k. Indeed, the cut ∆(R) obtained by removing the edges incident to the
leaves of T ′ is an important (X,Y )-cut, as moving more vertices to R would
clearly increase the cut size. It is well known that the number of full subtrees
with exactly k leaves of a rooted complete binary tree is precisely the Catalan
number Ck = (1/k)

(
2k−2
k−1

)
= Θ(4k/k3/2).

As an application of the bound on the number of important cuts, we
can prove the following surprisingly simple, but still nontrivial combinatorial
result: only a bounded number of edges incident to Y are relevant to (X,Y )-
cuts of size at most k.

Lemma 8.17. Let G be an undirected graph and let X,Y ⊆ V (G) be two
disjoint sets of vertices. The union of all minimal (X,Y )-cuts of size at most
k contains at most k · 4k edges incident to Y .

Proof. Let F contain an edge e if it is incident to a vertex of Y and it
appears in an (X,Y )-important cut of size at most k. By Theorem 8.11, we
have |F | ≤ 4k · k. To �nish the proof of the lemma, we show that if an edge
e incident to Y appears in some minimal (X,Y )-cut ∆(R) of size at most
k, then e ∈ F . Proposition 8.7 implies that there is an important (X,Y )-cut
∆(R′) of size at most k with R ⊆ R′. Edge e has an endpoint x ∈ R and an
endpoint y 6∈ R. As R ∩ Y = ∅, the endpoint y of e has to be in Y . Now we
have x ∈ R ⊆ R′ and y ∈ Y ⊆ V (G)\R′, hence e is an edge of ∆(R′) as well,
implying e ∈ F . ut
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8.3 Edge Multiway Cut

Let G be a graph and T ⊆ V (G) be a set of terminals. An edge multiway
cut is a set S of edges such that every component of G \ S contains at most
one vertex of T . Given a graph G, terminals T , and an integer k, the Edge
Multiway Cut problem asks if a multiway cut of size at most k exists. If
|T | = 2, that is, T = {t1, t2}, then Edge Multiway Cut is the problem of
�nding a (t1, t2)-cut of size at most k, hence it is polynomial-time solvable.
However, the problem becomes NP-hard already for |T | = 3 terminals [124].

In this section, we show that Edge Multiway Cut is FPT parameterized
by k. The following observation connects Edge Multiway Cut and the
concept of important cuts:

Lemma 8.18 (Pushing lemma for Edge Multiway Cut). Let t ∈ T be
an arbitrary terminal in an undirected graph G. If G has a multiway cut S,
then it also has a multiway cut S∗ with |S∗| ≤ |S| such that S∗ contains an
important (t, T \ t)-cut.

Proof. If t is separated from T \ t in G, then the statement trivially holds, as
the empty set is an important (t, T \t)-cut. Otherwise, let R be the component
of G \ S containing t. As S is a multiway cut, R is disjoint from T \ t and
hence SR = ∆(R) is a (t, T \ t)-cut contained in S. By Proposition 8.7, there
is an important (t, T \ t)-cut S′ = ∆(R′) with R ⊆ R′ and |S′| ≤ |SR| (see
Fig. 8.6). We claim that S∗ = (S \ SR) ∪ S′, which has size at most |S|, is
also a multiway cut, proving the statement of the lemma.

Replacing the (t, T \t)-cut SR in the solution with an important (t, T \t)-
cut S′ cannot break the solution: as it is closer to T \ t, it can be even
more helpful in separating the terminals in T \ t from each other.

Clearly, there is no path between t and any other terminal of T \ t in
G \ S∗, as S′ ⊆ S∗ is a (t, T \ t)-cut. Suppose therefore that there is a path
P between two distinct terminals t1, t2 ∈ T \ t in G \ S∗. If P goes through
a vertex of R ⊆ R′, then it goes through at least one edge of the (t, T \ t)
cut S′ = ∆(R′), which is a subset of S∗, a contradiction. Therefore, we may
assume that P is disjoint from R. Then P does not go through any edge of
SR = ∆(R) and therefore the fact that P is disjoint from S∗ implies that it
is disjoint from S as well, contradicting the assumption that S is a multiway
cut. ut

Using this observation, we can solve the problem by branching on the
choice of an important cut and including it into the solution:

Theorem 8.19. Edge Multiway Cut on a graph with n vertices and m
edges can be solved in time O(4k · k3 · (n+m)).
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t t2

t1

R

R′

Fig. 8.6: Replacing ∆(R) with ∆(R′) in the proof of Lemma 8.18 does not
break the solution: if a path connecting t1, t2 ∈ T \ t enters R, then it has to
use an edge of ∆(R′) as well

Proof. We solve the problem by a recursive branching algorithm. If all the
terminals are separated from each other, then we are done. Otherwise, let
t ∈ T be a terminal not separated from the rest of the terminals. Let us use
the algorithm of Theorem 8.16 to construct the set Sk consisting of every
important (t, T \ t)-cut of size at most k. By Lemma 8.18, there is a solution
that contains one of these cuts. Therefore, we branch on the choice of one of
these cuts: for every important cut S′ ∈ Sk, we recursively solve the Edge
Multiway Cut instance (G\S′, T, k−|S′|). If one of these branches returns
a solution S, then clearly S ∪ S′ is a multiway cut of size at most k in G.

The correctness of the algorithm is clear from Lemma 8.18. We claim that
the search tree explored by the algorithm has at most 4k leaves. We prove
this by induction on k, thus let us assume that the statement is true for
every value less than k. This means that we know that the recursive call
(G \ S′, T, k − |S′|) explores a search tree with at most 4k−|S

′| leaves. Note
that the value of k − |S′| is always nonnegative and the claim is trivial for
k = 0. Using Lemma 8.12, we can bound the number of leaves of the search
tree by ∑

S′∈Sk
4k−|S

′| ≤ 4k ·
∑
S′∈Sk

4−|S
′| ≤ 4k.

Therefore, the total time spent at the leaves can be bounded by O(4kk(n +
m)). As the height of the search tree is at most k, it has O(k4k) nodes. If
we use the algorithm of Theorem 8.16 to enumerate Sk, then the time spent
at an internal node with t children is O(tk2(n + m)). Summing the number
of children for every internal node is exactly the number of edges, and hence
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can be bounded by O(k4k). Therefore, the total work in the internal nodes
is O(4kk3(n+m)). ut

A slight generalization of Edge Multiway Cut is Edge Multiway Cut
for Sets, where the input is a graph G, pairwise disjoint sets T1, . . . , Tp,
and an integer k; the task is to �nd a set S of edges that pairwise separates
these sets from each other, that is, there is no Ti − Tj path in G \ S for any
i 6= j. Edge Multiway Cut for Sets can be reduced to Edge Multiway
Cut simply by consolidating each set into a single vertex.

Theorem 8.20. Edge Multiway Cut for Sets on a graph with n vertices
and m edges can be solved in time O(4k · k3 · (n+m)).

Proof. We construct a graph G′ as follows. The vertex set of G′ is (V (G) \⋃p
i=1 Ti) ∪ T , where T = {v1, . . . , vp}. For every edge xy ∈ E(G), there is a

corresponding edge in G′: if endpoint x or y is in Ti, then it is replaced by
vi. It is easy to see that there is a one-to-one correspondence between the
solutions of the Edge Multiway Cut for Sets instance (G, (T1, . . . , Tp), k)
and the Edge Multiway Cut instance (G′, T, k). ut

Another well-studied generalization of Edge Multiway Cut can be ob-
tained if, instead of requiring that all the terminals be separated from each
other, we require that a speci�ed set of pairs of terminals be separated from
each other. The input in the Edge Multicut problem is a graph G, pairs
(s1, t1), . . . , (s`, t`), and an integer k; the task is to �nd a set S of at most
k edges such that G \ S has no si − ti path for any 1 ≤ i ≤ `. If we have
a bounded number of pairs of terminals, Edge Multicut can be reduced
to Edge Multiway Cut for Sets: we can guess how the components of
G \ S for the solution S partition the 2` vertices si, ti (1 ≤ i ≤ `) and solve
the resulting Edge Multiway Cut for Sets instance. The 2` terminals
can be partitioned in at most (2`)2` di�erent ways, thus we can reduce Edge
Multicut into at most that many instances of Edge Multiway Cut for
Sets. This shows that Edge Multicut is FPT with combined parameters k
and `. We may also observe that the removal of at most k edges can partition
a component of G into at most (k+1) components, hence we need to consider
at most (k + 1)2` partitions.

Theorem 8.21. Edge Multicut on a graph with n vertices and m edges
can be solved in time O((2`)2` · 4k · k3(n + m)) or in time O((k + 1)2` · 4k ·
k3(n+m)).

It is a more challenging question whether the problem is FPT parameter-
ized by k (the size of the solution) only. The proof of this requires several non-
trivial technical steps and is beyond the scope of this chapter. We remark that
one of the papers proving the �xed-parameter tractability of Edge Multi-
cut was the paper introducing the random sampling of important separators
technique [357].

Theorem 8.22 ([59, 357]). Edge Multicut on an n-vertex graph can be

solved in time 2O(k3) · nO(1).
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8.4 (p, q)-clustering

The typical goal in clustering problems is to group a set of objects such
that, roughly speaking, similar objects appear together in the same group.
There are many di�erent ways of de�ning the input and the objective of
clustering problems: depending on how similarity of objects is interpreted,
what constraints we have on the number and size of the clusters, and how
the quality of the clustering is measured, we can de�ne very di�erent problems
of this form. Often a clustering problem is de�ned in terms of a (weighted)
graph: the objects are the vertices and the presence of a (weighted) edge
indicates similarity of the two objects and the absence of an edge indicates
that the two objects are not considered to be similar.

In this section, we present an algorithm for a particular clustering prob-
lem on graphs that is motivated by partitioning circuits into several �eld
programmable gate arrays (FPGAs). We say that a set C ⊆ V (G) is a (p, q)-
cluster if |C| ≤ p and d(C) ≤ q. A (p, q)-partition of G is a partition of
V (G) into (p, q)-clusters. Given a graph G and integers p and q, the (p, q)-
Partition problem asks if G has a (p, q)-partition. The main result of this
section is showing that (p, q)-Partition is FPT parameterized by q. The
proof is based on the technique of random sampling of important separators
and serves as a self-contained demonstration of this technique.

� An uncrossing argument shows that the trivial necessary condition
that every vertex is in a (p, q)-cluster is also a su�cient condition.

� Checking whether v is in a (p, q)-cluster is trivial in nO(q) time, but
an FPT algorithm parameterized by q is more challenging.

� The crucial observation is that a minimal (p, q)-cluster containing v
is surrounded by important cuts.

� A randomized reduction allows us to reduce �nding a (p, q)-cluster
containing v to a knapsack-like problem.

� The derandomization of the reduction uses splitters, introduced in
Section 5.6.

A necessary condition for the existence of (p, q)-partition is that for every
vertex v ∈ V (G) there exists a (p, q)-cluster that contains v. Very surprisingly,
it turns out that this trivial necessary condition is actually su�cient for the
existence of a (p, q)-partition. The proof (Lemma 8.24) needs a variant of
submodularity: we say that a set function f : 2V (G) → R is posimodular if it
satis�es the following inequality for every A,B ⊆ V (G):

f(A) + f(B) ≥ f(A \B) + f(B \A). (8.2)

This inequality is very similar to the submodular inequality (8.1) and the
proof that dG has this property is a case analysis similar to the proof of
Theorem 8.3. The only di�erence is that edges of type 4 contribute 2 to the
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left-hand side and 0 to the right-hand side, while edges of type 5 contribute
2 to both sides.

Theorem 8.23. The function dG is posimodular for every undirected graph
G.

More generally, it can be shown that every symmetric submodular function
(that is, when f(X) = f(V (G)\X) for every X ⊆ V (G)) is posimodular (see
Exercise 8.3).

We are now ready to prove that every vertex being in a (p, q)-cluster is a
su�cient condition for the existence of a (p, q)-partition.

Lemma 8.24. Let G be an undirected graph and let p, q ≥ 0 be two integers.
If every v ∈ V (G) is contained in some (p, q)-cluster, then G has a (p, q)-
partition. Furthermore, given a set of (p, q)-clusters C1, . . . , Cn whose union
is V (G), a (p, q)-partition can be found in polynomial time.

Proof. Let us consider a collection C1, . . . , Cn of (p, q)-clusters whose union is
V (G). If the sets are pairwise disjoint, then they form a partition of V (G) and
we are done. If Ci ⊆ Cj , then the union remains V (G) even after throwing
away Ci. Thus we can assume that no set is contained in another.

The posimodularity of the function dG allows us to uncross two clusters
Ci and Cj if they intersect.

Suppose that Ci and Cj intersect. Now either d(Ci) ≥ d(Ci\Cj) or d(Cj) ≥
d(Cj \ Ci) must be true: it is not possible that both d(Ci) < d(Ci \ Cj) and
d(Cj) < d(Cj\Ci) hold, as this would violate the posimodularity of d. Suppose
that d(Cj) ≥ d(Cj \ Ci). Now the set Cj \ Ci is also a (p, q)-cluster: we have
d(Cj \Ci) ≤ d(Cj) ≤ q by assumption and |Cj \Ci| < |Cj | ≤ p. Thus we can
replace Cj by Cj \ Ci in the collection: it will remain true that the union of
the clusters is V (G). Similarly, if d(Ci) ≥ d(Ci \Cj), then we can replace Ci
by Ci \ Cj .

Repeating these steps (throwing away subsets and resolving intersections),
we eventually arrive at a pairwise-disjoint collection of (p, q)-clusters. Each
step decreases the number of cluster pairs (Ci, Cj) that have nonempty in-
tersection. Therefore, this process terminates after a polynomial number of
steps. ut

The proof of Lemma 8.24 might suggest that we can obtain a partition
by simply taking, for every vertex v, a (p, q)-cluster Cv that is inclusion-wise
minimal with respect to containing v. However, such clusters can still cross.
For example, consider a graph on vertices a, b, c, d where every pair of vertices
except a and d are adjacent. Suppose that p = 3, q = 2. Then {a, b, c} is a
minimal cluster containing b (as more than two edges are going out of each
of {b}, {b, c}, and {a, b}) and {b, c, d} is a minimal cluster containing c. Thus
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unless we choose the minimal clusters more carefully in a coordinated way,
they are not guaranteed to form a partition. In other words, there are two
symmetric solutions ({a, b, c}, {d}) and ({a}, {b, c, d}) for the problem, and
the clustering algorithm has to break this symmetry somehow.

In light of Lemma 8.24, it is su�cient to �nd a (p, q)-cluster Cv for each
vertex v ∈ V (G). If there is a vertex v for which there is no such cluster
Cv, then obviously there is no (p, q)-partition; if we have such a Cv for every
vertex v, then Lemma 8.24 gives us a (p, q)-partition in polynomial time.
Therefore, in the rest of the section, we are studying the (p, q)-Cluster
problem, where, given a graph G, a vertex v ∈ V (G), and integers p and q,
it has to be decided if there is a (p, q)-cluster containing v.

For �xed q, the (p, q)-Cluster problem can be solved by brute force:
enumerate every set F of at most q edges and check if the component of
G \ F containing v is a (p, q)-cluster. If Cv is a (p, q)-cluster containing v,
then we �nd it when F = ∆(Cv) is considered by the enumeration procedure.

Theorem 8.25. (p, q)-Cluster can be solved in time nO(q) on an n-vertex
graph.

The main result of the section is showing that it is possible to solve (p, q)-
Cluster (and hence (p, q)-Partition) more e�ciently: in fact, it is �xed-
parameter tractable parameterized by q. By Lemma 8.24, all we need to show
is that (p, q)-Cluster is �xed-parameter tractable parameterized by q. We
introduce a somewhat technical variant of (p, q)-Cluster, the Satellite
Problem, which is polynomial-time solvable. Then we show how to solve
(p, q)-Cluster using an algorithm for the Satellite Problem.

The input of the Satellite Problem is a graph G, integers p, q, a vertex
v ∈ V (G), and a partition (V0, V1, . . . , Vr) of V (G) such that v ∈ V0 and there
is no edge between Vi and Vj for any 1 ≤ i < j ≤ r. The task is to �nd a (p, q)-
cluster C satisfying V0 ⊆ C such that for every 1 ≤ i ≤ r, either C ∩ Vi = ∅
or Vi ⊆ C (see Fig. 8.7).

Since the sets {Vi} form a partition of V (G), we have r ≤ n. For every
Vi (1 ≤ i ≤ r), we have to decide whether to include or exclude it from the
solution cluster C. If we exclude Vi from C, then d(C) increases by d(Vi),
the number of edges between V0 and Vi. If we include Vi into C, then |C|
increases by |C|.

To solve Satellite Problem, we need to solve the knapsack-like prob-
lem of including su�ciently many Vi's such that d(C) ≤ q, but not
including too many to ensure |C| ≤ p.

Lemma 8.26. The Satellite Problem can be solved in polynomial time.

Proof. For a subset S of {1, . . . , r}, we de�ne C(S) = V0 ∪
⋃
i∈S Vi. Notice

that d(C(S)) = d(V0)−∑i∈S d(Vi). Hence, we can reformulate the Satellite



8.4 (p, q)-clustering 267

v

C

V4V3V2V1

V0

Fig. 8.7: Instance of Satellite Problem with a solution C. Excluding V2
and V4 from C decreased the size of C by the grey area, but increased d(C)
by the red edges

Problem as �nding a subset S of {1, . . . , r} such that∑i∈S d(Vi) ≥ d(V0)−q
and

∑
i∈S |Vi| ≤ p − |V0|. Thus, we can associate with every i an item with

value d(Vi) and weight |Vi|. The objective is to �nd a set of items with total
value at least vtarget := d(V0)− q and total weight at most wmax := p− |V0|.
This problem is known asKnapsack and can be solved in polynomial time by
a classical dynamic-programming algorithm in time polynomial in the number
r of items and the maximum weight wmax (assuming that the weights are
positive integers). In our case, both r and wmax are polynomial in the size
of the input, hence a polynomial-time algorithm for Satellite Problem
follows.

For completeness, we brie�y sketch how the dynamic-programming algo-
rithm works. For 0 ≤ i ≤ r and 0 ≤ j ≤ wmax, we de�ne T [i, j] to be the
maximum value of a set S ⊆ {1, . . . , i} that has total weight at most j. By
de�nition, T [0, j] = 0 for every j. Assuming that we have computed T [i−1, j]
for every j, we can then compute T [i, j] for every j using the following re-
currence relation:

T [i, j] = max {T [i− 1, j], T [i− 1, j − |Vi|] + d(Vi)} .

That is, the optimal set S either does not include item i (in which case it is
also an optimal set for T [i−1, j]), or includes item i (in which case removing
item i decreases the value by d(Vi), decreases the weight bound by |Vi|, and
what remains should be optimal for T [i− 1, j− |Vi|]). After computing every
value T [i, j], we can check whether v is in a suitable cluster by checking
whether T [r,wmax] ≥ vtarget holds. ut

What remains to be shown is how to reduce (p, q)-Cluster to the Satel-
lite Problem. We �rst present a randomized version of this reduction as it
is cleaner and conceptually simpler. Then we discuss how splitters, introduced
in Section 5.6, can be used to derandomize the reduction.
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At this point it is highly unclear how to reduce (p, q)-Cluster to the
Satellite Problem. In the latter problem, the parts Vi that may or
may not be included into a cluster are very well behaved (disjoint and
nonadjacent), whereas in (p, q)-Cluster we do not have any insight
yet into the structure of connected components of G\C, where C is the
cluster we are looking for.

First, the crucial observation is that we may assume that each con-
nected component of G \C is surrounded by an important cut, leading
to only an FPT number of candidates for such components. Second, we
randomly �lter out a fraction of the candidates, so that we can obtain
a Satellite Problem instance from the remaining ones.

The following de�nition connects the notion of important cuts with our
problem.

De�nition 8.27 (Important set). We say that a set X ⊆ V (G), v 6∈ X is
important if

1. d(X) ≤ q,
2. G[X] is connected,
3. there is no Y ⊃ X, v 6∈ Y such that d(Y ) ≤ d(X) and G[Y ] is connected.

It is easy to see thatX is an important set if and only if∆(X) is an important
(u, v)-cut of size at most q for every u ∈ X. Thus we can use Theorem 8.11 to
enumerate every important set, and Lemma 8.12 to give an upper bound on
the number of important sets. The following lemma establishes the connection
between important sets and �nding (p, q)-clusters: we can assume that the
components of G \ C for the solution C are important sets.

Lemma 8.28. Let C be an inclusion-wise minimal (p, q)-cluster containing
v. Then every component of G \ C is an important set.

Proof. Let X be a component of G \ C. It is clear that X satis�es the �rst
two properties of De�nition 8.27 (note that ∆(X) ⊆ ∆(C) implies d(X) ≤
d(C) ≤ q). Thus let us suppose that there is a Y ⊃ X, v 6∈ Y such that
d(Y ) ≤ d(X) and G[Y ] is connected. Let C ′ := C \ Y . Note that C ′ is a
proper subset of C: every neighbor of X is in C, thus a connected superset
of X has to contain at least one vertex of C. It is easy to see that C ′ is a
(p, q)-cluster: we have ∆(C ′) ⊆ (∆(C)\∆(X))∪∆(Y ) and therefore d(C ′) ≤
d(C) − d(X) + d(Y ) ≤ d(C) ≤ q and |C ′| < |C| ≤ p. This contradicts the
minimality of C. ut

We are now ready to present the randomized version of the reduction.

Lemma 8.29. Given an n-vertex graph G, vertex v ∈ V (G), and integers p
and q, we can construct in time 2O(q) ·nO(1) an instance I of the Satellite
Problem such that
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� If some (p, q)-cluster contains v, then I is a yes-instance with probability
2−O(q),

� If there is no (p, q)-cluster containing v, then I is a no-instance.

Proof. We may assume that G is connected: if there is a (p, q)-cluster con-
taining v, then there is such cluster contained in the connected component
of v.

For every u ∈ V (G), u 6= v, let us use the algorithm of Theorem 8.11 to
enumerate every important (u, v)-cut of size at most q. For every such cut
S, let us put the component K of G \ S containing u into the collection X .
Note that the same component K can be obtained for more than one vertex
u, but we put only one copy into X .

Let X ′ be a subset of X , where each member K of X is chosen with
probability 4−d(K) independently at random. Let Z be the union of the sets in
X ′, let V1, . . . , Vr be the connected components of G[Z], and let V0 = V (G)\
Z. It is clear that V0, V1, . . . , Vr describe an instance I of the Satellite
Problem, and a solution for I gives a (p, q)-cluster containing v. Thus we
only need to show that if there is a (p, q)-cluster C containing v, then I is a
yes-instance with probability 2−O(q).

We show that the reduction works if the union Z of the selected im-
portant sets satis�es two constraints: it has to cover every component
of G \ C and it has to be disjoint from the vertices on the boundary
of C. The probability of the event that these constraints are satis�ed is
2−O(q).

Let C be an inclusion-wise minimal (p, q)-cluster containing v. We de�ne
∂(C) to be the border of C: the set of vertices in C with a neighbor in V (G)\C,
or in other words, the vertices of C incident to ∆(C). Let K1, . . . , Kt be the
components of G \ C. Note that every edge of ∆(C) enters some Ki, thus∑t
i=1 d(Ki) = d(C) ≤ q. By Lemma 8.28, every Ki is an important set, and

hence it is in X . Consider the following two events:

(E1) Every component Ki of G \ C is in X ′ (and hence Ki ⊆ Z).
(E2) Z ∩ ∂(C) = ∅.

The probability that (E1) holds is
∏t
i=1 4−d(Ki) = 4−

∑t
i=1 d(Ki) ≥ 4−q.

Event (E2) holds if for every w ∈ ∂(C), no set K ∈ X with w ∈ K is selected
into X ′. It follows directly from the de�nition of important cuts that for
every K ∈ X with w ∈ K, the set ∆(K) is an important (w, v)-cut. Thus
by Lemma 8.12,

∑
K∈X ,w∈K 4−|d(K)| ≤ 1. To bound the probability of the

event Z ∩ ∂(C) = ∅, we have to bound the probability that no important set
intersecting ∂(C) is selected:
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In the �rst inequality, we use the fact that every term is less than 1 and
every term on the right-hand side appears at least once on the left-hand side.
In the second inequality, we use the fact that 1+x ≥ exp(x/(1+x)) for every
x > −1. In the third inequality, we use the fact that d(K) ≥ 1 follows from
the assumption that the graph G is connected, hence 1−4−d(K) ≥ 3/4 holds.

Events (E1) and (E2) are independent: (E1) is a statement about the
selection of a speci�c subcollection A ⊆ X of at most q sets that are disjoint
from ∂(C), while (E2) is a statement about not selecting any member of a
speci�c subcollection B ⊆ X of at most |∂(C)| · 4q sets intersecting S. Thus,
with probability at least 2−O(q), both (E1) and (E2) hold.

Suppose that both (E1) and (E2) hold. We show that the corresponding
instance I of the Satellite Problem is a yes-instance. In this case, every
component Ki of G\C is a component Vj of G[Z]: Ki ⊆ Z by (E1) and every
neighbor of Ki is outside Z. Thus C is a solution of I, as it can be obtained
as the union of V0 and some components of G[Z]. ut

Lemma 8.29 gives a randomized reduction from (p, q)-Cluster to the
Satellite Problem, which is polynomial-time solvable (Lemma 8.26).
Therefore, there is a randomized algorithm for (p, q)-Cluster with running
time 2O(q) · nO(1) and success probability pcorrect = 2−O(q). By repeating
the algorithm d1/pcorrecte = 2O(q) times, the probability of a false answer
decreases to (1− pcorrect)d1/pcorrecte ≤ 1/e (using 1− x ≤ e−x).

Corollary 8.30. There is a 2O(q)·nO(1) time randomized algorithm for (p, q)-
Cluster with constant error probability.

To derandomize the proof of Lemma 8.29 and to obtain a deterministic ver-
sion of Corollary 8.30, we use splitters, which were introduced in Section 5.6.
We present here only a simpler version of the derandomization, where the
dependence on q in the running time is of the form 2O(q2). It is possible to
improve this dependence to 2O(q), matching the bound in Corollary 8.30.
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However, the details are somewhat technical and hence we omit here the
description of this improvement.

Recall that Theorem 5.16 provided us with an (n, k, k2)-splitter of size
O(k6 log k log n): a family F of functions from [n] to [k2] such that for any
subset X ⊆ [n] with |X| = k, one of the functions f in the family is injective
on X.

The main idea of the derandomization is to replace the random selection
of the subfamily X ′ by a deterministic selection based on the functions
in a splitter.

Theorem 8.31. (p, q)-Cluster can be solved in time 2O(q2) · nO(1).

Proof. In the algorithm of Lemma 8.29, a random subset of a universe X of
size s = |X | ≤ 4q ·n is selected. If the (p, q)-Cluster problem has a solution
C, then there is a collection A ⊆ X of at most a := q sets and a collection
B ⊆ X of at most b := q ·4q sets such that if every set in A is selected and no
set in B is selected, then (E1) and (E2) hold. Instead of selecting a random
subset, we try every function f in an (s, a+ b, (a+ b)2)-splitter F (obtained
through Theorem 5.16), and every subset F ⊆ [(a + b)2] of size a (there are(
(a+b)2

a

)
= 2O(q2)) such sets F ). For a particular choice of f and F , we select

those sets S ∈ X into X ′ for which f(S) ∈ F . The size of the splitter F
is 2O(q) · log n and the number of possibilities for F is 2O(q2). Therefore, we
construct 2O(q2) · log n instances of the Satellite Problem.

By the de�nition of the splitter, there will be a function f that is injective
on A∪B, and there is a subset F such that f(S) ∈ F for every set S in A and
f(S) 6∈ F for every set S in B. For such an f and F , the selection will ensure
that (E1) and (E2) hold. This means that the constructed instance of the
Satellite Problem corresponding to f and F has a solution as well. Thus
solving every constructed instance of the Satellite Problem in polynomial
time gives a 2O(q2) · nO(1) algorithm for (p, q)-Cluster. ut

One can obtain a more e�cient derandomization by a slight change of the
construction in the proof of Theorem 8.31 and a more careful analysis. This
gives a deterministic algorithm with 2O(q) dependence on q.

Theorem 8.32 ([324]). (p, q)-Cluster can be solved in time 2O(q) · nO(1).

Finally, we have shown in Lemma 8.24 that there is a reduction from (p, q)-
Partition to (p, q)-Cluster, hence �xed-parameter tractability follows for
(p, q)-Partition as well.

Theorem 8.33. (p, q)-Partition can be solved in time 2O(q) · nO(1).
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8.5 Directed graphs

Problems on directed graphs are notoriously more di�cult than problems
on undirected graphs. This phenomenon has been observed equally often in
the area of polynomial-time algorithms, approximability, and �xed-parameter
tractability. Let us see if the techniques based on important cuts survive the
generalization to directed graphs.

Given a directed graph G and two disjoint sets of vertices X,Y ⊆ V (G),
a directed (X,Y )-cut is a subset S of edges such that G \ S has no directed
path from X to Y (but it may have directed paths from Y to X). We denote
by ∆+

G(R) the set of edges starting in R and ending in V (G) \ R. As for
undirected graphs, every minimal (X,Y )-cut S can be expressed as ∆+

G(R)
for some X ⊆ R ⊆ V (G) \R. Important cuts can be de�ned analogously for
directed graphs.

De�nition 8.34 (Important cut in directed graphs). Let G be a di-
rected graph and let X,Y ⊆ V (G) be two disjoint sets of vertices. Let
S ⊆ E(G) be an (X,Y )-cut, and let R be the set of vertices reachable from
X in G \ S. We say that S is an important (X,Y )-cut if it is minimal and
there is no (X,Y )-cut S′ with |S′| ≤ |S| such that R ⊂ R′, where R′ is the
set of vertices reachable from X in G \ S′.
Proposition 8.7 generalizes to directed graphs in a straightforward way.

Proposition 8.35. Let G be a directed graph and X,Y ⊆ V (G) be two dis-
joint sets of vertices. Let S be an (X,Y )-cut and let R be the set of ver-
tices reachable from X in G \ S. Then there is an important (X,Y )-cut
S′ = ∆+(R′) (possibly, S′ = S) such that |S′| ≤ |S| and R ⊆ R′.

We state without proof that the bound of 4k of Theorem 8.11 holds also
for directed graphs.

Theorem 8.36. Let X,Y ⊆ V (G) be two sets of vertices in a directed graph
G with n vertices and m edges, let k ≥ 0 be an integer, and let Sk be the set
of all (X,Y )-important cuts of size at most k. Then |Sk| ≤ 4k and Sk can be
constructed in time O(|Sk| · k2(n+m)).

Also, an analogue of the bound of Lemma 8.12 holds for directed important
cuts.

Lemma 8.37. Let G be a directed graph and let X,Y ⊆ V (G) be two dis-
joint sets of vertices. If S is the set of all important (X,Y )-cuts, then∑
S∈S 4−|S| ≤ 1.

Given a directed graph G, a set T ⊆ V (G) of terminals, and an integer k,
the Directed Edge Multiway Cut problem asks for a set S of at most
k edges such that G \ S has no directed t1 → t2 path for any two distinct
t1, t2 ∈ T . Theorem 8.36 gives us some hope that we would be able to use
the techniques of Section 8.3 for undirected Edge Multiway Cut also for
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t1

a

b

t2

Fig. 8.8: The unique important (t1, t2)-cut is the edge (b, t2), the unique im-
portant (t2, t1)-cut is the edge (b, t1), but the unique minimum edge multiway
cut is the edge (a, b)

directed graphs. However, the pushing lemma (Lemma 8.18) is not true on
directed graphs, even for |T | = 2; see Fig. 8.8 for a simple counterexample
where the unique minimum multiway cut does not use any important cut be-
tween the two terminals. The particular point where the proof of Lemma 8.18
breaks down in the directed setting is where a T \ t → t path appears af-
ter replacing S with S∗. This means that a straightforward generalization of
Theorem 8.19 to directed graphs is not possible. Nevertheless, using di�erent
arguments (in particular, using the random sampling of important separators
technique), it is possible to show that Directed Edge Multiway Cut is
FPT parameterized by the size k of the solution.

Theorem 8.38 ([91, 89]). Directed Edge Multiway Cut on an n-

vertex graph can be solved in time 2O(k2) · nO(1).

The input of the Directed Edge Multicut problem is a directed graph
G, a set of pairs (s1, t1), . . . , (s`, t`), and an integer k, the task is to �nd a
set S of at most k edges such that G \S has no directed si → ti path for any
1 ≤ i ≤ k. This problem is more general than Directed Edge Multiway
Cut: the requirement that no terminal be reachable from any other terminal
in G \ S can be expressed by a set of |T |(|T | − 1) pairs (si, ti).

In contrast to the undirected version (Theorem 8.22), Directed Edge
Multicut is W[1]-hard parameterized by k, even on directed acyclic graphs.
But the problem is interesting even for small values of `. The argument of
Theorem 8.21 (essentially, guessing how the components of G \ S partition
the terminals) no longer works, as the relation of the terminals in G \ S can
be more complicated in a directed graph than just a simple partition into
connected components. The case ` = 2 can be reduced to Directed Edge
Multiway Cut in a simple way (see Exercise 8.14), thus Theorem 8.38
implies that Directed Edge Multicut for ` = 2 is FPT parameterized by
k. The case of a �xed ` ≥ 3 and the case of jointly parameterizing by ` and k
are open for general directed graphs. However, there is a positive answer for
directed acyclic graphs.

Theorem 8.39 ([309]). Directed Edge Multiway Cut on directed acyclic
graphs is FPT parameterized by ` and k.
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There is a variant of directed multicut where the pushing argument does
work. Skew Edge Multicut has the same input as Directed Edge Mul-
ticut, but now the task is to �nd a set S of at most k edges such that G \S
has no directed si → tj path for any i ≥ j. While this problem is somewhat
unnatural, it will be an important ingredient in the algorithm for Directed
Feedback Vertex Set in Section 8.6.

Lemma 8.40 (Pushing lemma for Skew Edge Multicut). Let
(G, ((s1, t1), . . . , (s`, t`)), k) be an instance of Skew Edge Multicut. If the
instance has a solution S, then it has a solution S∗ with |S∗| ≤ |S| that
contains an important (s`, {t1, . . . , t`})-cut.

Proof. Let T = {t1, . . . , t`} and let R be the set of vertices reachable from
s` in G \ S. As S is a solution, R is disjoint from T and hence ∆+(R) is an
(s`, T )-cut. If SR = ∆+(R) is an important (s`, T )-cut, then we are done: S
contains every edge of ∆+(R). Otherwise, Proposition 8.35 implies that there
is an important (X,Y )-cut S′ = ∆+(R′) such that R ⊆ R′ and |S′| ≤ |SR|.
We claim that S∗ = (S\SR)∪S′, which has size at most |S|, is also a solution,
proving the statement of the lemma.

The reason why replacing SR with the important (s`, T )-cut S′ does not
break the solution is because every path that we need to cut in Skew
Edge Multicut ends in T = {t1, . . . , t`}.

Clearly, there is no path between s` and any terminal in T in G \ S∗, as
S′ ⊆ S∗ is an (s`, T )-cut. Suppose therefore that there is an si → tj path P
for some i ≥ j in G \ S∗. If P goes through a vertex of R ⊆ R′, then it goes
through at least one edge of the (s`, T )-cut S′ = ∆+(R′), which is a subset
of S∗, a contradiction. Therefore, we may assume that P is disjoint from R.
Then P does not go through any edge of SR = ∆(R) and therefore the fact
that it is disjoint from S∗ implies that it is disjoint from S, contradicting the
assumption that S is a solution. ut

Equipped with Lemma 8.37 and Lemma 8.40, a branching algorithm very
similar to the proof of Theorem 8.19 shows the �xed-parameter tractability
of Skew Edge Multicut.

Theorem 8.41. Skew Edge Multicut on a graph with n vertices and m
edges can be solved in time O(4k · k3 · (n+m)).

8.6 Directed Feedback Vertex Set

For undirected graphs, the Feedback Vertex Set problem asks for a set
of at most k vertices whose deletion makes the graph acyclic, that is, a forest.
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We have already seen a branching algorithm for this problem in Section 3.3,
an algorithm based on iterative compression in Section 4.3, and a simple
randomized algorithm in Section 5.1. It is easy to see that the edge version
of Feedback Vertex Set is polynomial-time solvable.

For directed graphs, both the edge and the vertex versions are interesting.
A feedback vertex set of a directed graph G is set S ⊆ V (G) of vertices such
that G \ S has no directed cycle, while a feedback arc set2 is a set S ⊆ E(G)
of edges such that G \ S has no directed cycle. Given a graph G and an
integer k, Directed Feedback Vertex Set asks for a feedback vertex set
of size at most k. TheDirected Feedback Arc Set is de�ned analogously;
recall that in Section 2.2.2 we have designed a polynomial kernel for a special
case of Directed Feedback Arc Set, namely Feedback Arc Set in
Tournaments.

There is a simple reduction from the vertex version to the edge version
(Exercise 8.16 asks for a reduction in the reverse direction).

Proposition 8.42. Directed Feedback Vertex Set can be reduced to
Directed Feedback Arc Set in linear time without increasing the pa-
rameter.

Proof. Let (G, k) be an instance of Directed Feedback Vertex Set.
We construct a graph G′, where two vertices vin and vout correspond to
each vertex v ∈ V (G). For every edge (a, b) ∈ E(G), we introduce the edge
(aout, bin) into G′. Additionally, for every v ∈ V (G), we introduce the edge
(vin, vout) into G

′. Observe that there is a one-to-one correspondence between
the directed cycles of length exactly ` in G and the directed cycles of length
exactly 2` in G′.

We claim that G has a feedback vertex set S of size at most k if and only
if G′ has a feedback arc set S′ of size at most k. For the forward direction,
given a feedback vertex set S ⊆ V (G) of G, let S′ contain the corresponding
edges of G′, that is, S′ = {(vin, vout) : v ∈ S}. If there is a directed cycle
C ′ in G′ \ S′, then the corresponding cycle C in G contains at least one
vertex v ∈ S. But then the corresponding edge (vin, vout) of C ′ is in S′, a
contradiction.

For the reverse direction, let S′ ⊆ E(G) be a feedback arc set ofG′. We may
assume that every edge of S′ is of the form (vin, vout): if (aout, bin) ∈ S′, then
we may replace it with (bin, bout), as every directed cycle going through the
former edge goes through the latter edge as well. Let S = {v : (vin, vout) ∈
S′}. Now, if G \ S has a directed cycle C, then the corresponding directed
cycle C ′ of G goes through an edge (vin, vout) ∈ S′, implying that vertex v of
C is in S, a contradiction. ut

2 Some authors prefer to use the term �arc� for the edges of directed graphs. While we
are using the term �directed edge� in this book, the term �arc� is very commonly used in
the context of the Directed Feedback Arc Set problem, hence we also use it in this
section.
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In the rest of the section, we show the �xed-parameter tractability of
Directed Feedback Arc Set using the technique of iterative compression,
introduced in Chapter 4.

We apply a trick that is often useful when solving edge-deletion prob-
lems using iterative compression: the initial solution that we need to
compress is a vertex set, not an edge set.

That is, the input of the Directed Feedback Arc Set Compression
problem is a directed graph G, an integer k, and a feedback vertex set W of
G; the task is to �nd a feedback arc set S of size at most k. We show, by a re-
duction to Skew Edge Multicut, that this problem is FPT parameterized
by |W | and k.
Lemma 8.43. Directed Feedback Arc Set Compression can be solved
in time O(|W |! · 4k · k3(n+m)) on a graph with n vertices and m edges.

Proof. The task is to �nd a set S of edges whereG\S has no directed cycle, or,
equivalently, has a topological ordering. Every topological ordering induces
an ordering on the set W of vertices. Our algorithm starts by guessing an
ordering W = {w1, . . . , w|W |} and the rest of the algorithm works under the
assumption that there is a solution compatible with this ordering. There are
|W |! possibilities for the ordering of W , thus the running time of the rest of
the algorithm has to be multiplied by this factor.

Every directed cycle contains a wi → wj path for some i ≥ j: the cycle
contains at least one vertex of W and has to go �backwards� at some
point. Therefore, cutting all such paths (which is a problem similar to
Skew Edge Multicut) gives a feedback arc set.

We build a graphG′ the following way. We replace every vertex wi with two
vertices si, ti, and an edge (ti, si) between them. We de�ne EW = {(ti, si) :
1 ≤ i ≤ |W |}. Then we replace every edge (a,wi) with (a, ti), every edge
(wi, a) with (si, a), and every edge (wi, wj) with (si, tj) (see Fig. 8.9) Let us
de�ne the Skew Edge Multicut instance (G′, (s1, t1), . . . , (s|W |, t|W |), k).
The following two claims establish a connection between the solutions of this
instance and our problem.

Claim 8.44. If there is a set S ⊆ E(G) of size at most k such that G \ S
has a topological ordering inducing the order w1, . . . , w|W | on W , then the
Skew Edge Multicut instance has a solution.

Proof. For every edge e ∈ S, there is a corresponding edge e′ of G′; let S′

be the set corresponding to S. Suppose that G′ \ S has a directed si → tj
path P for some i ≥ j. Path P may go through several edges (tr, sr), but it
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t1 s1 t2 s2 t|W | s|W |

Fig. 8.9: Solving Directed Feedback Arc Set Compression in the proof
of Lemma 8.43. Every directed cycle in G′ has an si → tj subpath for some
i ≥ j

has an si′ → tj′ subpath P
′ such that i′ ≥ j′ and P ′ has no internal vertex

of the form tr, sr. If i
′ = j′, then the edges of G corresponding to P ′ give

directed cycle C in G disjoint from S, a contradiction. If i′ > j′, then there
is a directed wi′ → wj′ path P of G corresponding to P ′ that is disjoint from
S, contradicting the assumption that wi′ is later than wj′ in the topological
ordering of G \ S. y

Claim 8.45. Given a solution S′ of the Skew Edge Multicut instance,
one can �nd a feedback arc set S of size at most k for G.

Proof. Suppose that the Skew Edge Multicut instance has a solution S′

of size at most k. For every edge of E(G′) \ EW , there is a corresponding
edge of G; let S be the set of at most k edges corresponding to S′ \ EW .
Suppose that G \ S has a directed cycle C. This cycle C has to go through
at least one vertex of W . If C goes through exactly one vertex wi, then the
edges of G′ corresponding to C give a directed ti → si path disjoint from S′,
a contradiction (note that this path is certainly disjoint from EW ). If C goes
through more than one wi, then C has a directed wi → wj subpath for some
i > j such that the internal vertices of P are not in W . Then the edges of G′

corresponding to P give a directed si → tj path in G′ disjoint from S′ (and
from EW ), again a contradiction. y

Suppose that there is a feedback arc set S ⊆ E(G) of size at most k. A
topological ordering of G\S induces an ordering on W and, as the algorithm
tries every ordering of W , eventually this ordering is reached. At this point,
Claim 8.44 implies that the constructed Skew Edge Multicut instance
has a solution S′ and we can �nd such a solution using the algorithm of
Theorem 8.41. Then Claim 8.45 allows us to �nd a solution of Directed
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Feedback Arc Set Compression. The algorithm tries |W |! orderings of
W and uses the O(4k · k3 · (n + m))-time algorithm of Theorem 8.41, every
other step can be done in linear time. ut

Finally, let us see how iterative compression can be used to solveDirected
Feedback Arc Set using Directed Feedback Arc Set Compression.

Theorem 8.46. There is an O((k + 1)! · 4k · k3 · n(n + m))-time algorithm
for Directed Feedback Arc Set on graphs with n vertices and m edges.

Proof. Let v1, . . . , vn be an arbitrary ordering of the vertices of G and let
Gi = G[{v1, . . . , vi}]. For i = 1, 2, . . . , n, we compute a feedback arc set Si
of size at most k for Gi. For i = 1, Si = ∅ is a trivial solution. Suppose now
that we have already computed Si; then Si+1 can be computed as follows.
Let Wi ⊆ V (Gi) be the head of each edge in Si. Clearly, |Wi| ≤ k and G\Wi

is acyclic (since G \ Si is acyclic). Moreover, Wi ∪ {vi+1} has size at most
k+ 1 and Gi+1 \ (Wi ∪ {vi+1}) = Gi \Wi, hence it is also acyclic. Therefore,
we may invoke the algorithm of Lemma 8.43 to �nd a feedback arc set Si+1

of size at most k for Gi+1. If the algorithm answers that there is no feedback
arc set of size at most k for Gi+1, then there is no such feedback arc set
for the supergraph G of Gi+1 and hence we can return a negative answer
for Directed Feedback Arc Set on (G, k). Otherwise, if the algorithm
returns a feedback arc set Si+1 for Gi+1, then we can continue the iteration
with i+ 1.

As |Wi| ≤ k + 1 in each call of the Directed Feedback Arc Set
Compression algorithm of Lemma 8.43, its running time is O((k+ 1)! · 4k ·
k3 ·(n+m)). Taking into account that we call this algorithm at most n times,
the claimed running time follows. ut

Using the simple reduction from the vertex version to the edge version
(Proposition 8.42), we obtain the �xed-parameter tractability of Directed
Feedback Vertex Set.

Corollary 8.47. There is an O((k+1)! ·4k ·k3 ·n(n+m))-time algorithm for
Directed Feedback Vertex Set on graphs with n vertices and m edges.

8.7 Vertex-deletion problems

All the problems treated so far in the chapter were de�ned in terms of remov-
ing edges of a graph (with the exception of Directed Feedback Vertex
Set, which was quickly reduced to Directed Feedback Arc Set). In this
section, we introduce the de�nitions needed for vertex-removal problems and
state (without proofs) the analogues of the edge-results we have seen in the
previous sections.



8.7 Vertex-deletion problems 279

A technical issue speci�c to vertex-removal problems is that we have to
de�ne whether a vertex set separating X and Y is allowed to contain a vertex
of X∪Y . If so, then X and Y need not be disjoint (but then the separator has
to contain X ∩Y ). In a similar way, we have to de�ne whether, say, Vertex
Multiway Cut allows the deletion of the terminals. Note that in an edge-
deletion problem we can typically make an edge �undeletable� by replacing it
with k+1 parallel edges. Similarly, one may try to make a vertex undeletable
by replacing it with a clique of size k+ 1 (with the same neighborhood), but
this can be notationally inconvenient, especially when terminals are present
in the graph. Therefore, we state the de�nitions and the results in a way that
we assume that the (directed or undirected) graph G is equipped with a set
V∞(G) ⊆ V (G) of undeletable vertices. Given two (not necessarily disjoint)
sets X,Y ⊆ V (G) of vertices, an (X,Y )-separator is a set S ⊆ V (G)\V∞(G)
of vertices such that G \S has no (X \S)− (Y \S) path. We de�ne minimal
and minimum (X,Y )-separators the usual way. We can characterize minimal
(X,Y )-separators as the neighborhood of a set of vertices.

Proposition 8.48. If S is a minimal (X,Y )-separator in G, then S =
NG(R) (or S = N+

G (R) in directed graphs), where R is the set of vertices
reachable from X \ S in G \ S.
The results of Section 8.1 can be adapted to (X,Y )-separators; we omit the
details. Important (X,Y )-separators are de�ned analogously to important
(X,Y )-cuts.

De�nition 8.49 (Important separator). Let G be a directed or undi-
rected graph and let X,Y ⊆ V (G) be two sets of vertices. Let S ⊆
V (G) \V∞(G) be an (X,Y )-separator and let R be the set of vertices reach-
able fromX\S in G\S. We say that S is an important (X,Y )-separator if it is
inclusion-wise minimal and there is no (X,Y )-separator S′ ⊆ V (G) \V∞(G)
with |S′| ≤ |S| such that R ⊂ R′, where R′ is the set of vertices reachable
from X \ S′ in G \ S′.

The analogue of Proposition 8.7 holds for (X,Y )-separators.

Proposition 8.50. Let G be a directed or undirected graph and X,Y ⊆ V (G)
be two sets of vertices. Let S ⊆ V (G) \ V∞(G) be an (X,Y )-separator and
let R be the set of vertices reachable from X \ S in G \ S. Then there is an
important (X,Y )-separator S′ = NG(R′) (or S′ = N+

G (R′) if G is directed)
such that |S′| ≤ |S| and R ⊆ R′.
The algorithm for enumerating important (X,Y )-cuts and the combinatorial
bounds on their number can be adapted to important (X,Y )-separators.

Theorem 8.51. Let X,Y ⊆ V (G) be two sets of vertices in a (directed or
undirected) graph G with n vertices and m edges, let k ≥ 0 be an integer, and
let Sk be the set of all (X,Y )-important separators of size at most k. Then
|Sk| ≤ 4k and Sk can be constructed in time O(|Sk| · k2 · (n+m)).
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Lemma 8.52. Let G be a (directed or undirected) graph and let X,Y ⊆ V (G)
be two sets of vertices. If S is the set of all important (X,Y )-separators, then∑
S∈S 4−|S| ≤ 1.

Let G be a graph and T ⊆ V (G) be a set of terminals. A vertex multiway
cut is a set S ⊆ V (G) \ V∞(G) of vertices such that every component of
G \ S contains at most one vertex of T \ S. Given an undirected graph G,
an integer k, and a set T ⊆ V (G) of terminals, the Vertex Multiway Cut
problem asks for vertex multiway cut of size at most k. The analogue of the
pushing lemma for Edge Multiway Cut (Lemma 8.18) can be adapted to
the vertex-deletion case.

Lemma 8.53 (Pushing lemma for Vertex Multiway Cut). Let t ∈ T
be a terminal in an undirected graph G. If G has a vertex multiway cut S ⊆
V (G) \ V∞(G), then it also has a vertex multiway cut S∗ ⊆ V (G) \ V∞(G)
with |S∗| ≤ |S| such that S∗ contains an important (t, T \ t)-separator.
Theorem 8.51, Lemma 8.52, and Lemma 8.53 allow us to solve Vertex Mul-
tiway Cut using a branching strategy identical to the one used in Theo-
rem 8.19.

Theorem 8.54. Vertex Multiway Cut on a graph with n vertices and m
edges can be solved in time O(4k · k3 · (n+m)).

The result of Theorem 8.22 was actually proved in the literature for the (more
general) vertex version, hence Vertex Multicut is also �xed-parameter
tractable parameterized by k.

Theorem 8.55 ([59, 357]). Vertex Multicut on an n-vertex graph can

be solved in time 2O(k3) · nO(1).

Exercises

8.1. Given an undirected graph G and S ⊆ V (G), let iG(S) be number of edges induced
by S (that is, iG(S) = |E(G[S])|). Is iG submodular?

8.2. Prove that a set function f : 2|V (G)| → R is submodular if and only if

f(A ∪ {v})− f(A) ≥ f(B ∪ {v})− f(B) (8.3)

holds for every A ⊆ B ⊆ V (G) and v ∈ V (G). Informally, inequality (8.3) says that the
marginal value of v with respect to the superset B (that is, the increase of value if we
extend B with v) cannot be larger than with respect to a subset A.

8.3. Let f : 2|V (G)| → R be a submodular function that is symmetric: f(X) = f(V (G)\X)

for every X ⊆ V (G). Show that f is posimodular:

f(A) + f(B) ≥ f(A \B) + f(B \A) (8.4)

holds for every A,B ⊆ V (G).
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8.4. Give an example of a graph G and sets A,B ⊆ V (G) for which the submodularity
inequality is sharp.

8.5. Give a polynomial-time algorithm for �nding the sets Rmin and Rmax de�ned in
Theorem 8.4 using only the facts that such sets exists and that a minimum (X,Y )-cut can
be found in polynomial time.

8.6. Let G be an undirected graph and let A,B ⊆ V (G) be two disjoint sets of vertices.
Let ∆(RABmin) and ∆(RABmax) be the minimum (A,B)-cuts de�ned by Theorem 8.4, and let
∆(RBAmin) and ∆(RBAmax) be the minimum (B,A)-cuts de�ned by Theorem 8.4 (reversing
the role of A and B). Show that RABmin = V (G) \RBAmax and RABmax = V (G) \RBAmin.

8.7. Prove Proposition 8.9.

8.8. Give an example where the algorithm of Theorem 8.11 �nds an (X,Y )-cut that is not
an important (X,Y )-cut (and hence throws it away in the �ltering phase). Can such a cut
come from the �rst recursive branch of the algorithm? Can it come from the second?

8.9. Let G be an undirected graph, let X,Y ⊆ V (G) be two disjoint sets of vertices, and
let λ be the minimum (X,Y )-cut size. Let S be the set of all important (X,Y )-cuts. Prove
that

∑
S∈S 4−|S| ≤ 2−λ holds.

8.10. Prove Theorem 8.16.

8.11. Show that Edge Multiway Cut is polynomial-time solvable on trees.

8.12 (A). Show that Edge Multicut is NP-hard on trees.

8.13. Give a 2k · nO(1)-time algorithm for Edge Multicut on trees.

8.14. Reduce Directed Edge Multicut with ` = 2 to Directed Edge Multiway Cut
with |T | = 2.

8.15. Reduce Edge Multiway Cut with |T | = 3 to Directed Edge Multiway Cut
with |T | = 2.

8.16. Reduce Directed Feedback Arc Set to Directed Feedback Vertex Set in
polynomial time.

8.17. Show that Vertex Multicut is polynomial-time solvable on trees.

8.18 (A). In the Digraph Pair Cut, the input consists of a directed graph G, a desig-

nated vertex s ∈ V (G), a family of pairs of vertices F ⊆
(
V (G)

2

)
, and an integer k; the goal

is to �nd a set X of at most k edges of G, such that for each pair {u, v} ∈ F , either u or
v is not reachable from s in the graph G−X. Show an algorithm solving Digraph Pair
Cut in time 2knO(1) for an n-vertex graph G.

8.19. Consider the following vertex-deletion variant of Digraph Pair Cut with a sink:
given a directed graph G, designated vertices s, t ∈ V (G), a family of pairs of vertices
F ⊆

(
V (G)

2

)
, and an integer k, check if there exists an (s, t)-separator X ⊆ V (G) \ {s, t} of

size at most k such that every pair in F either contains a vertex of X or contains a vertex
that is unreachable from s in G−X.

Show how to solve this vertex-deletion variant in time 2knO(1) for an n-vertex graph
G, using the algorithm of the previous exercise.



282 8 Finding cuts and separators

Hints

8.1 The function iG is not submodular, but supermodular: the left-hand side of (8.1) is
always at most the right-hand side.

8.2 To see that (8.3) is a necessary condition for f being submodular, observe that it is the
rearrangement of (8.1) applied for A ∪ {v} and B. To see that it is a necessary condition,
let us build X ∪ Y from X ∩ Y by �rst adding the elements of X \ Y one by one and then
adding the elements of Y \ X one by one. Let us compare the total marginal increase of
adding these elements to the total marginal increase of building X from X ∩ Y , plus the
total marginal increase of building Y from X ∩Y . The submodularity follows by observing
that the marginal increase of adding elements of Y \X cannot be larger if X \Y is already
present in the set.

8.3 By submodularity and symmetry, we have

f(A) + f(B) = f(A) + f(V (G) \B)

≥ f(A ∩ (V (G) \B)) + f(A ∪ (V (G) \B))

= f(A \B) + f(V (G) \ (B \A))

= f(A \B) + f(B \A).

8.4 Analyze the proof of (8.1): which edges are counted di�erent number of times in the
sides of this inequality? Any example with an edge between A \ B and B \ A will do the
job.

8.6 If ∆(R) is a minimum (A,B)-cut, then ∆(R) = ∆(V (G)\R) and it is also a minimum
(B,A)-cut. The equalities then follow simply from the fact that minimizing R is the same
as maximizing V (G) \R.

8.8 It is possible that the �rst branch gives an important (X,Y )-cut S in G\xy such that
S ∪ {xy} is not an important (X,Y )-cut in G. For example, let X = {x}, Y = {y}, and
suppose that graph G has the edges xa, xb, ab, bc, ay, by, cy. Then Rmax = {x}. In graph
G\xb, the set∆G\xb({x, a}) = {ab, ay} is an important (X,Y )-cut. However,∆G({x, a}) =

{ay, ab, xb} is not an important (X,Y )-cut in G, as ∆G({x, a, b, c}) = {ay, by, cy} has the
same size.

One can show that every (X,Y )-cut returned by the second branch is an important
(X,Y )-cut in G.

8.9 We need to show that in each of the two branches of the algorithm in Theorem 8.11,
the total contributions of the enumerated separators to the sum is at most 2−λ/2. In the
�rst branch, this is true because we augment each cut with a new edge. In the second
branch, this is true because λ strictly increases.

8.10 The proof has the following main arguments:

1. The enumeration algorithm should be of the form Enumerate(G,X, Y, Z, k), which,
assuming Z ⊆ ∆G(X), returns every important (X,Y )-cut of size at most k containing
Z.

2. As in the proof of Theorem 8.11, we compute Rmax in G \ Z and branch on an edge
xy ∈ ∆G(X).

3. In the �rst branch, we include xy into Z. We recurse only if no edge of Z has both end-
points in Rmax and the algorithm of Lemma 8.15 predicts that Enumerate(G,Rmax, Y,

Z ∪ {xy}, k) returns at least one important (X,Y )-cut.
4. In the second branch, we check if no edge of Z has both endpoints in Rmax ∪ {y} and

recurse if Lemma 8.15 predicts that Enumerate(G,Rmax∪{y}, Y, Z, k) returns at least
one important (X,Y )-cut.
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5. Observe that now every recursive call returns at least one important (X,Y )-cut, hence
the number of leaves of the recursion tree can be bounded from above by the number
of important (X,Y )-cuts returned.

8.11 Solution 1: Dynamic programming. Assume that the tree is rooted and let Tv be
the subtree rooted at v. Let Av be the minimum cost of separating the terminals in Tv ,
and let Bv be the minimum cost with the additional constraint that v is separated from
every terminal in Tv . Give a recurrence relation for computing Av and Bv if these values
are known for every child of v.

Solution 2: We may assume that every leaf of the tree contains a terminal, otherwise the
leaf can be removed without changing the problem. Select any leaf and argue that there is
a solution containing the edge incident to this leaf.

8.12 Reduction from Vertex Cover: the graph is a star, edges play the role of vertices,
and the terminal pairs play the role of edges.

8.13 Assume that the tree is rooted and select a pair (si, ti) such that the topmost vertex
v of the unique si − ti path P has maximum distance from the root. Argue that there is
a solution containing an edge of P incident to v.

8.14 Introduce two terminals v1, v2, and add the edges (v1, s1), (t1, v2), (v2, s2), (t2, v1).

8.16 Subdivide each edge and replace each original vertex with an independent set of size
k + 1.

8.17 Assume that the tree is rooted and select a pair (si, ti) such that the topmost vertex
v of the unique si − ti path P has maximum distance from the root. Argue that there is
a solution containing vertex v.

8.18 The main observation is the following: if we choose a set of vertices F ⊆
⋃
F such

that no vertex of v is reachable from s in the graph G−X (for a solution X we are looking
for), then we may greedily choose an (s, F )-cut of minimum possible size that minimizes
the set of vertices reachable from s.

In other words, we consider the following algorithm. Start with F = ∅, and repeatedly
perform the following procedure. Compute a minimum (s, F )-cut X = ∆+(R) that min-
imizes the set R. If X is a solution, then report X. If |X| > k, then report that there is
no solution in this branch. Otherwise, pick a pair {u, v} ∈ F such that both u and v are
reachable from s in G −X, and branch: include either u or v into F . Prove that the size
of X strictly increases at each step, yielding the promised bound on the size of the search
tree.

8.19 Perform the standard reduction from directed edge-deletion problems to vertex-
deletion ones, by going to the (appropriately adjusted) line graph of the input graph. To
handle the sink t, replace t with its k + 2 copies t1, t2, . . . , tk+2, and add a pair {ti, tj} to
F for every 1 ≤ i < j ≤ k + 2.
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Chapter 9

Advanced kernelization algorithms

The systematic study of the kernelization framework,
whose foretaste we had in Chapter 2, revealed an in-
trinsic mathematical richness of this notion. In par-
ticular, many classic techniques turn out to be very
useful in this context; examples include tools of combi-
natorial optimization, linear algebra, probabilistic ar-
guments, or results of the graph minors theory. In this
chapter, we provide an overview of some of the most
interesting examples of more advanced kernelization
algorithms. In particular, we provide a quadratic ker-
nel for the Feedback Vertex Set problem. We also
discuss the topics of above guarantee parameteriza-
tions in the context of kernelization, of kernelization
on planar graphs, and of so-called Turing kerneliza-
tion.

Recall that a kernelization algorithm, given an instance (x, k) of some
parameterized problem, runs in polynomial time and outputs an equivalent
instance (x′, k′) of the same problem such that |x′|, k′ ≤ f(k), for some
function f . This function f is called the size of the kernel. The smaller the
kernel is, the better; that is, we would like to have f(k) as slowly-growing as
possible. Usually, the goal is to obtain f that is polynomial or even linear.

As discussed in Chapter 2, from the practical point of view, parameterized
complexity gives us a framework to rigorously analyze various preprocessing
algorithms, present in the literature for decades. From the theoretical point
of view, studying kernelization has two main objectives. First, the existence
of a kernel for a decidable parameterized problem is equivalent to its �xed-
parameter tractability, and kernelization can be seen as one of the ways to
prove that a studied problem is FPT. For instance, for the Edge Clique
Cover problem of Chapter 2 (Section 2.2) the simple kernelization algorithm
is in fact the only known approach from the parameterized perspective. Sec-
ond, the pursuit of as small a kernel size as possible � in particular, the

285
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study of which problems admit polynomial kernels, and which (most likely)
do not � leads to a better understanding and deeper insight into the class
of FPT problems. Whereas Chapter 2 and this chapter are devoted to prov-
ing positive results, we give the methodology for proving lower bounds for
kernelization in Chapter 15.

We start this chapter with a beautiful example of how classic tools of
advanced matching theory can be used to obtain a kernel for the Feedback
Vertex Set problem. We perform a deep analysis of the role of high-degree
vertices in a Feedback Vertex Set instance, obtaining a reduction that
bounds the maximum degree of the input graph linearly in the parameter.
This implies an O(k2) bound on the number of vertices and edges in a yes-
instance, yielding the kernel bound. As we will see in Chapter 15, under
plausible complexity assumptions, this kernel is essentially tight with respect
to the bitsize, i.e., the number of bits in the binary representation.

In Section *9.2, we discuss the topic of above guarantee parameteriza-
tions in the context of kernelization, on the example of Max-Er-SAT. In
Chapter 3, we have seen an example of above guarantee parameterizations of
Vertex Cover, namely Vertex Cover Above LP and Vertex Cover
Above Matching. In the Max-Er-SAT problem, we are given an r-CNF
formula ϕ, where every clause contains exactly r literals with pairwise dif-
ferent variables, together with an integer k, and we ask for an assignment
satisfying at least k clauses. It is easy to see that a random assignment sat-
is�es m(1 − 2−r) clauses on average, where m is the number of clauses in
ϕ. Hence, we expect k to be rather large in interesting instances, and pa-
rameterization by k does not make much sense. Instead, we study the above
guarantee parameterization of k −m(1− 2−r).

For the Max-Er-SAT problem, we show how a combination of an alge-
braic approach and probabilistic anti-concentration inequalities leads to a
polynomial kernel. The main idea can be summarized as follows: we express
the input formula as a multivariate polynomial, and argue that if the poly-
nomial has too many monomials, then some moment inequalities imply that
a random assignment satis�es the required number of clauses with positive
probability. Consequently, in this case we can infer that we are dealing with
a yes-instance. On the other hand, if the polynomial has a bounded number
of monomials, the polynomial itself is already a �concise� description of the
instance at hand.

In Section 9.3, we brie�y touch the tip of the iceberg: the �eld of kerneliza-
tion in sparse graph classes. In Section 7.7, we have seen that some topological
sparsity assumption on the input graph, such as planarity, greatly helps in
designing FPT algorithms: for example, Dominating Set, which is unlikely
to be FPT in general graphs (see Chapter 13), admits even a subexponential
algorithm on planar graphs. In this chapter, we show how planarity con-
straints can be exploited to give a linear kernel for the Connected Vertex
Cover problem in planar graphs. This should be contrasted with the fact
that the same problem most probably does not admit a polynomial kernel
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in general graphs, as we will learn in Chapter 15 (see Exercise 15.4, point
3). A similar behavior can be observed for many other problems. Note also
that in Section 7.7, we have shown a subexponential FPT algorithm for Con-
nected Vertex Cover in planar graphs, whereas for general graphs only
single-exponential algorithms are known (see Exercise 6.6).

Finally, in Section 9.4, we discuss a relaxed variant of kernelization, called
Turing kernelization. Recall that a preprocessing algorithm aims at reducing
the time-consuming computation to as small an instance as possible. In the
classic kernelization framework we produce a single small equivalent instance;
here, we relax the condition of having a single instance by allowing the al-
gorithm to solve for free (i.e., in an oracle fashion) instances of small size.
In particular, we can return a set of small instances together with a recipe
on how to obtain a solution for the original instance based on solutions for
the generated instances; note that such an algorithm allows us, for example,
to solve the output instances in parallel on multiple machines. However, in
principle we do not need to limit ourselves to such an approach: adaptive
algorithms, whose next steps depend on an oracle answer to some previous
query, are also allowed. The working example for this approach will be the
Max Leaf Subtree problem, where the task is to determine whether there
exists a subtree of a given graph that has at least k leaves. As we shall see,
this problem separates classic kernelization from Turing kernelization: while
it admits a polynomial Turing kernel, no classic polynomial kernel can be
expected under plausible complexity assumptions (see Exercise 15.4, point
2).

9.1 A quadratic kernel for Feedback Vertex Set

Recall that a feedback vertex set of a graph G is a set of vertices X ⊆ V (G)
that hits all the cycles of G; equivalently, G\X is a forest. In the Feedback
Vertex Set problem we look for a feedback vertex set of a given graph G
whose size does not exceed the given budget k, where k is the parameter.

As in Section 3.3, it is convenient to consider Feedback Vertex Set on
multigraphs, where the input graph G may contain multiple edges and loops.
We treat double edges and loops as cycles. We also use the convention that
a loop at a vertex v contributes 2 to the degree of v.

Let us remind the reader that in Section 3.3, we introduced �ve reduction
rules for Feedback Vertex Set (Reductions FVS.1�FVS.5) such that, after
exhaustively applying these rules, either we immediately conclude that we are
dealing with a no-instance, or the reduced graph G contains no loops, only
single and double edges, and has minimum degree at least 3. The behavior
of these rules was as follows:

� Reduction FVS.1: remove a vertex with a loop and decrease the budget;
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� Reduction FVS.2: reduce multiplicity of an edge with multiplicity more
than 2 to exactly 2;

� Reduction FVS.3: remove a vertex of degree 0 or 1;
� Reduction FVS.4: contract a vertex of degree 2 onto one of its neighbors;
� Reduction FVS.5: if k < 0, then conclude that we are dealing with a

no-instance.

All these rules are trivially applicable in polynomial time. Thus, in the rest of
this section we assume that the input graph G contains no loops, only single
and double edges, and has minimum degree at least 3. Our goal is to develop
further, more involved reduction rules than the one described above, aiming
at a polynomial kernel for Feedback Vertex Set.

We now focus on a vertex of large degree in G. It seems reasonable to
suspect that it should be possible to reduce such vertices: they tend to par-
ticipate in many cycles in G, and hence they are likely to be included in
a solution X. If this is not the case, then there is some hope that only a
small part of the neighborhood of such a vertex actually plays some �signif-
icant role� in the Feedback Vertex Set problem, and consequently this
neighborhood can be simpli�ed.

To strengthen the motivation for this approach, let us observe that an
upper bound on the maximum degree actually yields immediately the desired
kernel.

Lemma 9.1. If a graph G has minimum degree at least 3, maximum degree
at most d, and a feedback vertex set of size at most k, then it has less than
(d+ 1)k vertices and less than 2dk edges.

Proof. Let X be a feedback vertex set of G of size at most k, and let Y =
V (G)\X. Denote by F the set of edges of G with one endpoint in X and the
other in Y . We estimate the size of F from two perspectives � �rst using
the set X, and second using the set Y .

First, by the bound on the maximum degree we have that |F | ≤ d|X|.
Second, since G \X = G[Y ] is a forest, G[Y ] contains less than |Y | edges; in
other words, G[Y ] has average degree lower than 2. Therefore,∑

v∈Y
dG(v) =

∑
v∈Y
|N(v) ∩X|+

∑
v∈Y
|N(v) ∩ Y | < |F |+ 2|Y |.

On the other hand, the minimum degree of G is at least 3. Thus,∑
v∈Y

dG(v) ≥ 3|Y |.

Consequently, we obtain |Y | < |F | ≤ d|X| and hence

|V (G)| = |X|+ |Y | < (d+ 1)|X| ≤ (d+ 1)k.
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To estimate the number of edges of G, we again use the bound on the
maximum degree: there are at most d|X| edges incident to X, and all other
edges of G are contained in G[Y ]. As G[Y ] is a forest, it has less than |Y |
edges. Consequently,

|E(G)| < d|X|+ |Y | < 2d|X| ≤ 2dk.

ut
Formally, Lemma 9.1 supports the following reduction rule.

Reduction FVS.6. If |V (G)| ≥ (d + 1)k or |E(G)| ≥ 2dk, where d is the
maximum degree of G, then terminate the algorithm and return that (G, k)
is a no-instance.

In particular, if the maximum degree of G is less than 7k, then we have
|V (G)| < 7k2 and |E(G)| < 14k2, or Reduction FVS.6 triggers. Therefore, in
the rest of this section, we pick a vertex v ∈ V (G) of degree d ≥ 7k and we
aim either (a) to conclude that v needs to be included in any solution to the
instance (G, k), or (b) to simplify the neighborhood of v.

What structure in G will certify that v needs to be included in any solution
to (G, k)? If we think of Feedback Vertex Set as a hitting problem the
following answer is natural: a family of k+1 cycles C1, C2, . . . , Ck+1 in G, all
passing through v, such that no two cycles Ci share any vertex except for v.
We will call such a structure a �ower, with cycles Ci being petals and vertex
v being the core. (Observe that these terms are almost consistent with the
notion of sun�ower de�ned in Section 2.6: the sets V (C1), . . . , V (Ck+1) form
a sun�ower with k petals and core {v}.)

Clearly, a �ower with k + 1 petals implies that v is in every solution of
size at most k, as otherwise the solution would need to contain at least one
vertex of Ci \ {v} for every 1 ≤ i ≤ k + 1. Therefore, if there is such a
�ower, then we can simplify the instance by deleting vertex v. If there is no
such �ower, then we would like to use this fact to obtain some structural
information about the graph that allows further reduction. But how can we
�nd �owers with a certain number of petals and what can we deduce from the
nonexistence of �owers? It turns out that �nding �owers can be formulated
as a disjoint paths problem between neighbors of v, which can be reduced to
maximum matching (in a not necessarily bipartite graph). Then we can use
classic matching algorithms to �nd the maximum number of petals and, if we
do not �nd k+ 1 petals, we can use characterization theorems for maximum
matching to deduce structural information about the graph.

The following theorem of Gallai (see also Fig. 9.1 for an illustration) for-
mulates the tool that we need; the next section is devoted to its proof. For
brevity, given a set T ⊆ V (G), by a T -path we mean a path of positive length
with both endpoints in T .

Theorem 9.2 (Gallai). Given a simple graph G, a set T ⊆ V (G), and an
integer s, one can in polynomial time either
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T

G

B

Fig. 9.1: Two possible outcomes of Gallai's theorem: either a large family of
vertex-disjoint T -paths (on the left) or a small hitting set B for all T -paths
(on the right). Vertices of T are depicted as squares, whereas all other vertices
of G are circles

1. �nd a family of s+ 1 pairwise vertex-disjoint T -paths, or
2. conclude that no such family exists and, moreover, �nd a set B of at most

2s vertices, such that in G \ B no connected component contains more
than one vertex of T .

9.1.1 Proof of Gallai's theorem

The main step in the proof of Theorem 9.2 is to translate the question into
the language of matching theory. Consider a graph H constructed from G by
duplicating each vertex of V (G) \ T and connecting the copies by an edge
(see Fig. 9.2). Formally,

V (H) = T ∪ {x1, x2 : x ∈ V (G) \ T},
E(H) = E(G[T ]) ∪ {ux1, ux2 : u ∈ T, x ∈ V (G) \ T, ux ∈ E(G)}

∪ {x1y1, x1y2, x2y1, x2y2 : x, y ∈ V (G) \ T, xy ∈ E(G)}
∪ {x1x2 : x ∈ V (G) \ T}.

The crucial observation is the following.

Lemma 9.3. For any nonnegative integer s, there exist s pairwise vertex-
disjoint T -paths in G if and only if there exists a matching in H of size
s+ |V (G) \ T |.

Proof. Let P be a family of pairwise vertex-disjoint T -paths in G. With-
out loss of generality, we may assume that the internal vertices of the
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u1 u2 x1 x2 x3

G

u1 u2 x2
1

x1
1

x2
2

x1
2

x2
3

x1
3

H

Fig. 9.2: Construction of the graph H. The matching M0 is depicted with
dashed lines

paths in P are disjoint from T , as otherwise such a path may be short-
ened. For any P ∈ P, de�ne a path PH in H as follows: if the sequence
of consecutive vertices of P equals u, x1, x2, . . . , x|P |−1, w where u,w ∈ T ,
|P | denotes the number of edges of P , and xi /∈ T for 1 ≤ i < |P |,
then let PH = u, x11, x

2
1, x

1
2, x

2
2, . . . , x

1
|P |−1, x

2
|P |−1, w. Moreover, let M0 =

{x1x2 : x ∈ V (G) \ T} be a matching of size |V (G) \ T | in H. Observe
that every path PH has every second edge in the matching M0. Let us de-
note E0(PH) := E(PH) ∩ M0 to be the set of edges of M0 on PH , and
E1(PH) := E(PH) \M0 to be the set of remaining edges of PH . Note that
the path PH starts and ends with an edge of E1(PH) and, consequently,
|E0(PH)|+ 1 = |E1(PH)|. Construct a set of edges M as follows: start with
M := M0 and then, for every P ∈ P, replace E0(PH) ⊆ M0 with E1(PH).
(In other words, treat PH as an augmenting path for the matching M0.)
Since the paths of P are pairwise vertex-disjoint, the sets E0(PH) for P ∈ P
are pairwise disjoint and, moreover,M is a matching in H. Finally, note that
|M | = |M0|+ |P| = |V (G) \ T |+ |P|.

In the other direction, let M be a matching in H of size s+ |V (G) \ T | =
s + |M0|. Consider the symmetric di�erence M04M . Note that the graph
(V (G),M04M) has maximum degree 2, so it consists of paths and cycles
only, where edges ofM0 andM appear on these paths and cycles alternately.
Observe also that the only connected components of (V (G),M04M) that
contain more edges of M than of M0 are paths that begin and end with an
edge of M . Since |M |− |M0| = s, we have at least s such paths, and they are
pairwise vertex-disjoint. Consider one such path Q. By the de�nition of M0,
path Q starts and ends in a vertex of T and no internal vertex of Q lies in T .
Consider a path QG being a �collapsed� version of Q in the graph G, de�ned
as follows: the endpoints of QG are the same as those of Q, while whenever
the path Q traverses an edge x1x2 ∈M0, we add the vertex x ∈ V (G) \ T to
the path QG. It is easy to see that QG is a T -path in G and, furthermore,
if we proceed with this construction for at least s vertex-disjoint paths Q in
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Fig. 9.3: Equivalence of a T -path in G and an augmenting path to the match-
ing M0 in H

H, we obtain at least s vertex-disjoint T -paths in G. This �nishes the proof
of the lemma (see also Fig. 9.3). ut

Lemma 9.3 gives us the desired connection between T -paths and matching
theory. Observe that to compute the maximum number of vertex-disjoint T -
paths in G, we simply need to compute a maximum matching in H; in fact,
the proof of Lemma 9.3 gives us a way to e�ciently transform a maximum
matching in H into a family of vertex-disjoint T -paths in G of maximum
possible cardinality. Consequently, Lemma 9.3 allows us to check in Theo-
rem 9.2 whether the requested number of T -paths can be found. However, to
obtain the last conclusion of Theorem 9.2 � a hitting set B for all T -paths
� we need to study more deeply possible obstructions for the existence of
a large number of vertex-disjoint T -paths. By Lemma 9.3, such an obstruc-
tion should, at the same time, be an obstruction to the existence of a large
matching in H. Luckily, these obstructions are captured by the well-known
Tutte-Berge formula.

Theorem 9.4 (Tutte-Berge formula, see [338]). For any graph H, the
following holds:

|V (H)| − 2ν(H) = max
S⊆V (H)

odd(H − S)− |S|,

where ν(H) denotes the size of a maximum matching in H and odd(H − S)
denotes the number of connected components of H − S with an odd number
of vertices.

Furthermore, a set S for which the maximum on the right-hand side is
attained can be found in polynomial time.

We now use Theorem 9.4 to obtain the set B of Theorem 9.2, while the
algorithmic statement of Theorem 9.4 will ensure that the set B is e�ciently
computable.
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For a set X ⊆ V (G), by C(X) we denote the family of connected com-
ponents of G −X. In our proof we study the following quantity, de�ned for
every X ⊆ V (G):

ξ(X) := |X|+
∑

C∈C(X)

⌊ |C ∩ T |
2

⌋
.

Fix a set X ⊆ V (G) and observe that every T -path in G either contains
a vertex of X, or is completely contained in one connected component of
C(X). In a family of pairwise vertex-disjoint T -paths there can be at most
|X| paths of the �rst type, while a component C ∈ C(X) can accommodate
at most b|C ∩ T |/2c pairwise vertex-disjoint T -paths since every such path
has both endpoints in T . Consequently, G cannot accommodate more than
ξ(X) pairwise vertex-disjoint T -paths.

As an intermediate step to prove Theorem 9.2, we prove that in fact the
upper bound given by ξ(X) is tight:

Lemma 9.5. The maximum possible cardinality of a family of pairwise vertex-
disjoint T -paths in G equals minX⊆V (G) ξ(X). Moreover, one can in polyno-
mial time compute a set W ⊆ V (G) satisfying ξ(W ) = minX⊆V (G) ξ(X).

Proof. Recall that, by Lemma 9.3, the maximum possible number of pairwise
vertex-disjoint T -paths in G equals ν(H)− |V (G) \ T |, where we unravel the
quantity ν(H) with Theorem 9.4.

For brevity, for every S ⊆ V (H) we de�ne the de�ciency of S as
df(S) = odd(H − S) − |S|. We start with invoking the algorithmic state-
ment of Theorem 9.4 to compute the set S0 of maximum de�ciency in H,
that is, with df(S0) = |V (H)| − 2ν(H).

Assume that, for some x ∈ V (G)\T , the set S0 contains exactly one vertex
among the copies x1, x2 of x inH; w.l.o.g., let x1 ∈ S0 and x

2 /∈ S0. Consider a
set S′0 = S0\{x1}. The crucial observation is that, as x1 and x2 are true twins
inH (that is, they have exactly the same closed neighborhoods), all neighbors
of x1 in H are contained either in S0 or in the connected component of H−S0

that contains x2. Consequently, the sets of connected components of H − S0

and H−S′0 di�er only in one element: the connected component that contains
x2. We infer that odd(H−S′0) ≥ odd(H−S0)−1. As |S′0| = |S0|−1, we have
df(S′0) ≥ df(S0). By the maximality of S0, the set S

′
0 is of maximum de�ciency

as well. Consequently, we may consider S′0 instead of S0. By repeating this
process exhaustively, we may assume that for any x ∈ V (G) \ T , either both
x1 and x2 belong to S0 or neither of them does.

Let WT = {x ∈ V (G) \ T : x1, x2 ∈ S0} be the projection of S0 onto

V (G) \ T , let WT = S0 ∩ T , and let W = WT ∪WT . Note that it su�ces
to prove that there exists a family of ξ(W ) pairwise vertex-disjoint T -paths
in G; to show this claim we will strongly rely on the fact that W has been
constructed using a set S0 of maximum de�ciency in H.
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Recall that for any x ∈ V (G) \ T , either both x1 and x2 belong to S0

or neither of them does. Consequently, every component of H − S0 contains
either both x1 and x2 or neither of them, which implies that a component of
H −S0 has odd size if and only if it contains an odd number of vertices of T .
Since the connected components of H −S0 are in one-to-one correspondance
with the components of C(W ), we infer that∑

C∈C(W )

|C ∩ T |
2

−
⌊ |C ∩ T |

2

⌋
=

odd(H − S0)

2
.

Since
∑
C∈C(W ) |C ∩ T | = |T \W | and the Tutte-Berge formula implies that

df(S0) = |V (H)| − 2ν(H), we obtain the following:

ξ(W ) = |W |+
∑

C∈C(W )

⌊ |C ∩ T |
2

⌋
= |W |+ 1

2
(|T \W | − odd(H − S0))

= |W |+ 1

2

(
|T | − |WT | − (|S0|+ df(S0))

)
= |W |+ 1

2

(
|T | − |WT | − (|WT |+ 2|WT |)− (|V (H)| − 2ν(H))

)
= |W |+ 1

2
(|T | − 2|W | − |V (H)|+ 2ν(H))

= ν(H)− 1

2
|V (H) \ T | = ν(H)− |V (G) \ T |.

This �nishes the proof of the lemma. ut

Recall that our goal is to construct a small set B that intersects every
T -path in G. The set W of Lemma 9.5 almost meets our needs, but some
connected components of G−W may contain more than one vertex of T . We
�x it in the simplest possible way: we start with B := W computed using
Lemma 9.5 and then, for each connected component C of G−W that contains
at least one vertex of T , we insert into B all vertices of C ∩T except for one.
Clearly, by construction, each connected component of G − B contains at
most one vertex of T . It remains to show the required upper bound on the
size of B. Observe that:

|B| = |W |+
∑

C∈C(W )

max(0, |C∩T |−1) ≤ |W |+2
∑

C∈C(W )

⌊ |C ∩ T |
2

⌋
≤ 2ξ(W ).

Consequently, by Lemma 9.5 the cardinality of B is not larger than twice
the maximum cardinality of a family of pairwise vertex-disjoint T -paths in
G. This concludes the proof of Theorem 9.2.
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9.1.2 Detecting �owers with Gallai's theorem

We would like to apply Gallai's theorem to detect �owers with the core at
some v ∈ V (G), in order to e�ciently apply the following reduction rule:

Reduction FVS.7. If there exists a vertex v ∈ V (G) and a �ower with core
v and more than k petals, then delete v and decrease k by 1.

The safeness of Reduction FVS.7 is immediate. In what follows we argue
how to apply Reduction FVS.7 in polynomial time; a small di�culty is that
we need to be careful with multiple edges that may be present in G. Fix
one vertex v ∈ V (G). Observe that multiple edges not incident to v behave
as single edges from the point of view of �owers with core v: for any such
multiple edge xy, only one petal of the �ower may use one of the copies of
xy and it does not matter which copy is used. Moreover, any double edge
incident to v can be greedily taken as a petal to the constructed �ower: if
vx is a double edge in G, then in any �ower, at most one petal uses the
vertex x and it can be replaced with the cycle consisting of both copies of vx.
Consequently, de�ne D to be the set of vertices x such that vx is a double
edge in G, and let Ĝ be the graph G \D with all double edges replaced with
single ones. If |D| > k, then we can immediately trigger Reduction FVS.7 on
v. Otherwise, as we have argued, the existence of a �ower with s ≥ |D| petals
and core v in G is equivalent to the existence of a �ower with s− |D| petals
and core v in Ĝ.

Since the graph Ĝ is simple, we can apply Theorem 9.2 to the graph Ĝ\{v},
the set T = NĜ(v), and the threshold s = k−|D|. Clearly, T -paths in Ĝ\{v}
are in one-to-one correspondence with cycles in Ĝ passing through v. Hence,
by Theorem 9.2, we either obtain a �ower with at least (k − |D|+ 1) petals

and core v in Ĝ, or we learn that no such �ower exists and we get a set B
of size at most 2k− 2|D| that intersects all cycles in Ĝ passing through v. In
the �rst case, together with |D| double edges incident to v we obtain a �ower
with (k + 1) petals, and we may trigger Reduction FVS.7 on v.

Otherwise, we not only learn that there is no �ower with core v and more
than k petals, but we also obtain the set B that intersects all cycles through
v in Ĝ. De�ne Z = B ∪D. The following lemma summarizes the properties
of Z.

Lemma 9.6. If v ∈ V (G) and there does not exist a �ower in G with core
v and more than k petals, then we can in polynomial time compute a set
Z ⊆ V (G) \ {v} with the following properties: Z intersects every cycle that
passes through v in G, |Z| ≤ 2k and there are at most 2k edges incident to v
and with second endpoint in Z.

Proof. The bound on the number of edges between v and Z follows from the
bound |B| ≤ 2k − 2|D| and the fact that for every vertex u ∈ D there are
exactly two edges uv in G, whereas for every w ∈ B there is at most one edge
uw. The remaining claims are immediate. ut
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Z

v

D

Fig. 9.4: The structure of the graph G with the set Z

9.1.3 Exploiting the blocker

In the rest of this section, we are going to use the structure given by the set
Z to derive further reduction rules.

Let us �rst give some intuition. Assume that vertex v has degree at least
ck, for some large constant c (in the proof we use c = 7) and assume
further Reduction FVS.7 is not applicable. First, note that double edges
incident to v contribute at most 2k to its degree. Obtain a set Z from
Lemma 9.6 for v and look at the connected components of G\({v}∪Z);
each of them is connected with at most one edge to v, and hence there
are at least (c− 2)k of them. Moreover, if more than k of them are not
trees, then we obtain k + 1 pairwise vertex-disjoint cycles in G and we
can conclude that we are dealing with a no-instance. Hence, in the re-
maining case at most k of the components are not trees. Consequently,
we obtain at least (c − 3)k components that have a very simple struc-
ture: They are trees, they are connected to v by exactly one edge, and
they can have some neighborhood in the set Z. On the other hand, Z
is relatively small when compared to the total number of these com-
ponents. The intuition is that most of these components are actually
meaningless from the point of view of hitting cycles passing through v,
and hence can be reduced.

For the rest of this section, we assume that we work with a vertex v with
degree d ≥ 7k. Let C be the family of connected components of G \ ({v} ∪
Z). We �rst observe that most of the components of C have to be trees, as
otherwise we obtain more than k vertex-disjoint cycles in G; see also Fig. 9.4
for an illustration.
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Reduction FVS.8. If more than k components of C contain cycles (i.e., are
not trees), terminate the algorithm and return that (G, k) is a no-instance.

As Z intersects all cycles passing through v, for any C ∈ C at most one edge
connects v with C. The next important observation is that many components
of C are connected to v with exactly one edge.

Lemma 9.7. There are at least 4k components of C that are trees and are
connected to v with exactly one edge.

Proof. Recall that the degree of v equals d ≥ 7k and that, by Lemma 9.6,
there are at most 2k edges incident to z and a vertex of Z. Thus, there are
at least 5k components of C that are connected with v with exactly one edge.
If Reduction FVS.8 is inapplicable, at most k of them contain cycles. Hence,
at least 4k of them satisfy the desired properties. ut

Let D be the family of components of C that satisfy the requirements of
Lemma 9.7; that is, for each A ∈ D it holds that G[A] is a tree and there
exists exactly one edge incident to both v and a vertex of C.

We now construct an auxiliary bipartite graph Hv as follows: one biparti-
tion class is Z, the second one is D, and an edge connects z ∈ Z with A ∈ D
if and only if there exists an edge in G between z and some vertex in A.
Since Reduction FVS.3 is inapplicable, and G[A] is a tree connected to v
with only one edge, for any A ∈ D, some vertices of A need to be adjacent to
Z in G. Consequently, no vertex of Hv in the second bipartition class (i.e.,
D) is isolated. Moreover, |Z| ≤ 2k − |D| and |D| ≥ 4k. Hence, we may use
the q-expansion lemma for q = 2 (Lemma 2.18) to the graph Hv, obtaining
a 2-expansion in Hv. More precisely, in polynomial time we can compute a
nonempty set Ẑ ⊆ Z and a family D̂ ⊆ D such that:

1. NHv (D̂) = Ẑ, that is, NG(
⋃ D̂) = Ẑ ∪ {v};

2. each z ∈ Ẑ has two private components A1
z, A

2
z ∈ D̂ such that z ∈ NG(A1

z)
and z ∈ NG(A2

z). Here, by private we mean that components A1
z, A

2
z are

all di�erent for di�erent z ∈ Ẑ.
We claim the following.

Lemma 9.8. For any feedback vertex set X in G that does not contain v,
there exists a feedback vertex set X ′ in G such that |X ′| ≤ |X| and Ẑ ⊆ X ′.

Proof. Consider a feedback vertex set X in G with v /∈ X. De�ne

X ′ =
(
X \

⋃
D̂
)
∪ Ẑ.

First, we show that X ′ is a feedback vertex set of G. Let C be any cycle in G.
If C does not intersect any component of D̂, then the vertex of X that hits
C belongs also to X ′, by the de�nition of X ′. Suppose then that C intersects
some A ∈ D̂. Recall that G[A] is a tree, NG(A) ⊆ Ẑ∪{v} and there is exactly
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one edge connecting A and v in G. Hence, C has to pass through at least one
vertex of Ẑ, which is included in X ′. We conclude that in both cases C is hit
by X ′, and so X ′ is a feedback vertex set of G.

We now bound the size of X ′. For any z ∈ Ẑ, consider a cycle Cz that
starts from v, passes through A1

z to z and goes back to v through A2
z. The

family of cycles {Cz : z ∈ Ẑ} forms a �ower with core v and a petal for each

z ∈ Ẑ. Since v /∈ X, we infer that X needs to contain at least |Ẑ| vertices
from Ẑ ∪⋃ D̂. Consequently, we have |X ′| ≤ |X|, and the lemma is proved.

ut

Lemma 9.8 allows us to greedily choose either v or Ẑ into the solution
feedback vertex set. If we were to design an FPT algorithm we would simply
branch; however, in the case of kernelization � which is a polynomial-time
algorithm � we need to encode such a behavior using some sort of gadgets.
Note that we need to be careful: we cannot simply erase the components
of D̂ as, in the case of deletion of v, they may play an important role with
respect to cycles passing through some vertices of Ẑ (but not v), and we do
not properly understand this role. However, what we can do is simplify the
adjacency between v and

⋃ D̂ ∪ Ẑ. Recall that, due to Lemma 9.1, it su�ces
if our reduction decreases the degree of a high-degree vertex v.

Reduction FVS.9. Delete all edges between v and
⋃ D̂, and make v adja-

cent to each vertex of Ẑ with a double edge.

Let us now formally verify that Reduction FVS.9 is safe. Denote by G′ the
graph constructed from G by its application.

Lemma 9.9. The minimum possible sizes of a feedback vertex set in G and
in G′ are equal.

Proof. Let X be a feedback vertex set in G of minimum possible size. By
Lemma 9.8, we may assume that v ∈ X or Ẑ ⊆ X. However, we haveG\{v} =

G′ \ {v}, whereas G′ \ Ẑ is a subgraph of G \ Ẑ. Hence, in both cases, G′ \X
is a subgraph of G \X, and X is a feedback vertex set of G′ as well.

In the second direction, let X be a feedback vertex set in G′. As v is
connected with every vertex of Ẑ with double edge in G′, we have v ∈ X
or Ẑ ⊆ X. In the �rst case, as before, G \ {v} = G′ \ {v} and hence X is a

feedback vertex set in G as well. Suppose then that Ẑ ⊆ X. Then any cycle
in G \ X would need to pass through some edge of E(G) \ E(G′), that is,
through an edge connecting v with some A ∈ D̂. However, since G[A] is a tree
connected to v with only one edge, such a cycle would need to pass through
some vertex of Ẑ. This is a contradiction with Ẑ ⊆ X, and so the lemma is
proved. ut

Note that a priori it is not obvious that Reduction FVS.9 actually makes
some simpli�cation of the graph, since it substitutes some set of edges with
some other set of double edges. Therefore, we need to formally prove that
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the reduction rules cannot be applied in�nitely, or superpolynomially many
times. We shall do this using a potential method: we de�ne a measure of the
instance at hand, which (a) is never negative, (b) is initially polynomially
bounded by the size of the instance, and (c) strictly decreases whenever any
of the reductions is applied. For an instance (G, k), let E¬2(G) be the set of
all the loops and edges of G except for edges of multiplicity 2. We de�ne

φ(G) = 2|V (G)|+ |E¬2(G)|.

We now claim that potential φ strictly decreases whenever applying some
reduction rule (of course, providing that the rule did not terminate the algo-
rithm). This holds trivially for all the reductions except for Reduction FVS.9
and Reduction FVS.4. For Reduction FVS.9, we remove a nonempty set of
single edges from the graph, thus decreasing |E¬2(G)|, while the introduced
double edges are not counted in this summand. For Reduction FVS.4, the
nontrivial situation is when the reduction contracts one copy of an edge of
multiplicity 2, and thus we obtain a new loop that is counted in summand
|E¬2(G)|. However, the reduction also removes one vertex of the graph, and so
the summand 2|V (G)| decreases by 2. Hence the whole potential φ decreases
by at least 1 in this case.

As each reduction is applicable in polynomial time, the kernelization algo-
rithm in polynomial time either terminates and concludes that we are dealing
with a no-instance, or concludes that no rule is applicable. In this case the
graph G has maximum degree less than 7k, and by the inapplicability of
Reduction FVS.6, we have |V (G)| ≤ 7k2 and |E(G)| ≤ 14k2. This concludes
the description of the quadratic kernel for Feedback Vertex Set. We can
summarize the result obtained in this section with the following theorem.

Theorem 9.10. Feedback Vertex Set admits a kernel with at most 7k2

vertices and 14k2 edges.

*9.2 Moments and Max-Er-SAT

The solution size or the value of an objective function is often a natural
parameterization. However, some problems are trivially FPT with such a
measure, as in nontrivial instances the value we are looking for is proportional
to the input size.

This is exactly the case for theMaximum Satisfiability problem, where
given a CNF formula ϕ with n variables x1, . . . , xn andm clauses C1, . . . , Cm,
we are to �nd an assignment with the maximum number of satis�ed clauses.
Formally, in the decision version, the instance is additionally equipped with
an integer k, and we ask for an assignment ψ that satis�es at least k clauses.
Observe the following: if we take any assignment ψ and its negation ψ, then
any clause Ci is satis�ed by at least one of these assignments. Consequently,
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either ψ or ψ satis�es at least m/2 clauses of ϕ, and all Maximum Satisfi-
ability instances (ϕ, k) with k ≤ m/2 are yes-instances.

If you recall the main principle of parameterized complexity � do some-
thing smart when the parameter is small � then, clearly, parameterization
by k does not make much sense for Maximum Satisfiability: in all inter-
esting instances, the number of clauses is bounded by 2k. However, one can
consider also a more re�ned way to parameterizeMaximum Satisfiability,
namely the so-called above guarantee parameterization. De�ne k′ = k−m/2
in aMaximum Satisfiability instance (ϕ, k), and considerMaximum Sat-
isfiability parameterized by k′, that is, the excess above the �guaranteed�
solution value of at least m/2 satis�ed clauses. Recall that in Chapter 3
we have seen an example of above guarantee parameterizations of Vertex
Cover.

The study of the above guarantee parameterization of Maximum Satis-
fiability is deferred to Exercise 9.3, where you are asked to show its �xed-
parameter tractability. In this section, we consider, as an example, a more
speci�c variant of theMaximum Satisfiability problem, namelyMax-Er-
SAT. Here we assume that the input formula ϕ is an r-CNF formula for
some positive integer r, that is, each clause of ϕ consists of exactly r liter-
als. Moreover, we assume that literals in one clause pairwise involve di�erent
variables, i.e., there are no two identical literals and no literal is the negation
of another one. Therefore, requiring that each clause consists of exactly r
literals (as opposed to the more usual requirement of at most r literals) is a
nontrivial condition: for example, we cannot just repeat one of the literals of
a clause with less than r literals to increase its size to exactly r. The more
�standard� version, where every clause contains at most r literals, is called
Max-r-SAT.

For an r-CNF formula one can show a stronger lower bound on the maxi-
mum number of satis�ed clauses than for a general CNF formula.

Lemma 9.11. For an r-CNF formula ϕ with m clauses, there exists an as-
signment satisfying at least m(1− 2−r) clauses.

Proof. Consider a random assignment ψ, where each variable xi is indepen-
dently at random assigned true or false value with probability 1

2 each. A
clause Ci is falsi�ed by ψ if and only if all its literals evaluate to false with
respect to ψ, which happens with probability exactly 2−r. By the linearity of
expectation, the expected number of satis�ed clauses of ϕ is m(1− 2−r), as

E(number of satis�ed clauses) =
∑

1≤i≤m
Pr(Ci is satis�ed) = m(1− 2−r) .

Therefore, there exists an assignment satisfying at least m(1− 2−r) clauses.
ut

Because of the Lemma 9.11, we know that it is always possible to satisfy
at least fraction (1 − 2−r) of all the clauses. Following the reasoning for
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Maximum Satisfiability from the beginning of this section, we consider
the above guarantee parameterization of the Max-Er-SAT problem, where
k′ = k−m(1−2−r) is our new parameter. We shall show thatMax-Er-SAT
is FPT when parameterized by k′ using the following approach.

1. We change the setting and reduce the problem to checking whether
some low-degree polynomial X constructed from the input formula
ϕ can take value at least 2rk′ when each variable is assigned either
1 or −1.

2. When we choose the values of variables uniformly and independently
at random from {−1, 1}, then the mean value of X is 0. The crucial
step is to prove that if X contains many monomials (in terms of
k′), then the distribution of its values must be very �spread� around
the mean. More precisely, we prove an anti-concentration inequality
showing that X attains value larger or equal to 2rk′ with positive
probability, providing that it has su�ciently many monomials.

3. Hence, we can either conclude that we are de�nitely working with
a yes-instance, or the polynomial X has only few monomials (in
terms of k′). Thus, in polynomial time we have compressed the
given instance to size polynomial in k′, which leads to a polynomial
kernel and an FPT algorithm.

9.2.1 Algebraic representation

We are going to encode the formula ϕ with clauses Cls(ϕ) = {C1, C2, . . . , Cm}
and variables Vars(ϕ) = {x1, x2, . . . , xn} as a polynomial. For a clause Ci,
we denote by Vars(Ci) the set of variables appearing in literals of Ci. Let us
identify the Boolean value true with the real number 1 and the value false
with −1. Consequently, an assignment is a function ψ : {x1, x2, . . . , xn} →
{−1, 1}. The crucial algebraic object in our considerations will be the follow-
ing polynomial:

X(x1, x2, . . . , xn) =
∑

1≤i≤m

1−
∏

xj∈Vars(Ci)

(
1 + εxj ,Cixi

) , (9.1)

where εxj ,Ci = −1 if xj appears in Ci positively, while εxj ,Ci = 1 if xj
appears in Ci negatively. Observe that if an assignment satis�es the clause
Ci, then the corresponding product is 0. If we consider r to be a constant,
then polynomial X can be written explicitly as a sum of monomials in linear
time: expanding each of the inner products results in at most 2r monomials,
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and with the additional 1 in each summand we have at most (2r + 1) · m
monomials in total. As we shall later see, the input instance is trivially a
yes-instance, unless this number of monomials is much smaller (bounded in
terms of k′); that is, if most of the summands in the expansion of formula
(9.1) actually cancel out.

We now establish a relation between polynomial X and the maximum
number of clauses that may be satis�ed in formula ϕ. In what follows, for an
assignment ψ, we use a shorthand X(ψ) := X(ψ(x1), ψ(x2), . . . , ψ(xn)).

Lemma 9.12. For an assignment ψ : {x1, ..., xn} → {−1, 1}, we have

X(ψ) = 2r ·
(
sat (ϕ,ψ)−

(
1− 2−r

)
m
)
,

where sat (ϕ,ψ) denotes the number of clauses of ϕ that ψ satis�es.

Proof. Observe that
∏
xj∈Ci

(
1 + εxj ,Cixi

)
equals 2r if C is falsi�ed and 0

otherwise. Hence,

X(ψ) = m−
∑

Ci∈Cls(ϕ)
[Ci not satis�ed in ψ] · 2r

= m− (m− sat (ϕ,ψ)) · 2r

= 2r ·
(
sat (ϕ,ψ)−

(
1− 2−r

)
m
)
.

ut
Lemma 9.12 allows us to reformulate the problem using polynomial X:

The question whether there is an assignment satisfying at least k = m(1 −
2−r) + k′ clauses of ϕ is equivalent to asking whether there is an assignment
ψ : {x1, ..., xn} → {−1, 1} for which X(ψ) ≥ 2rk′.

Our strategy is to show that if X has su�ciently many monomials,
then for some ψ we always have X(ψ) ≥ 2rk′. To achieve this goal,
we consider ψ as a random vector that picks the value of each variable
independently and uniformly at random, and we study the �rst few
moments of the random variable X(ψ). The desired anti-concentration
property will follow from standard probabilistic inequalities relating the
distribution of a random variable with its moments.

9.2.2 Tools from probability theory

We are going to use the following well-known inequality.

Lemma 9.13 (Hölder's inequality, probabilistic version). For any re-
als p, q > 1 satisfying 1

p + 1
q = 1 and any real random variables Y and Z the
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following holds:

E(|Y Z|) ≤ (E(|Y |p)) 1
p · (E(|Z|q)) 1

q .

We remark that the special case p = q = 2 is often called the Cauchy-
Schwarz inequality.

Lemma 9.14 (Cauchy-Schwarz inequality, probabilistic version). For
any real random variables Y and Z the following holds:

E(|Y Z|) ≤
√

E(|Y |2) · E(|Z|2).

We use Hölder's inequality to relate the second and the fourth moment of
a random variable.

Lemma 9.15. Assume that X is a real random variable with �nite and pos-
itive fourth moment (i.e., 0 < E

(
X4
)
<∞). Then

E(|X|) ≥
(
E
(
X2
)) 3

2

(E(X4))
1
2

.

Proof. Take Y = |X| 23 , Z = |X| 43 , p = 3
2 , q = 3. Using Hölder's inequality

we obtain

E
(
X2
)
≤ (E(|X|)) 2

3 ·
(
E
(
X4
)) 1

3 .

The lemma follows by standard algebraic manipulations. ut
The following corollary shows that the only way a zero-mean random vari-

able X may achieve a high second moment in comparison to its fourth mo-
ment is to attain high values with positive probability.

Corollary 9.16. Let X be a random variable and suppose that E(X) = 0,
E
(
X2
)

= σ2, and 0 < E
(
X4
)
≤ b · σ4. Then

Pr

(
X ≥ σ

2
√
b

)
> 0.

Proof. By Lemma 9.15, we have E(|X|) ≥ σ√
b
. Since E(X) = 0, by the law

of total expectation, we have

Pr(X > 0) · E(X|X > 0) + Pr(X < 0) · E(X|X < 0) = 0 (9.2)

(note that we do not have to consider the contribution of the term Pr(X = 0)·
E(X|X = 0), as it is obviously zero). Since E

(
X4
)
> 0, at least one of

Pr(X > 0) and Pr(X < 0) has to be nonzero and if one of them is nonzero,
then E(X) = 0 implies that both of them are nonzero. By (9.2) we infer

Pr(X > 0) · E(X|X > 0) = Pr(X < 0) · E(−X|X < 0). (9.3)

On the other hand, from the law of total expectation applied to |X| we have
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E(|X|) = Pr(X > 0) · E(X|X > 0) + Pr(X < 0) · E(−X|X < 0). (9.4)

Combining (9.3) and (9.4) we obtain

Pr(X > 0) · E(X|X > 0) =
E(|X|)

2
≥ σ

2
√
b
.

Since E(X|X > 0) ≥ σ
2
√
b
, we infer that X takes value at least σ

2
√
b
with

positive probability. ut

9.2.3 Analyzing moments of X(ψ)

Let X = X(x1, .., xn) be the polynomial de�ned in (9.1). As already men-
tioned, we can represent X as a sum of monomials. More precisely, we apply
exhaustively the distributivity of addition and multiplication on reals to the
formula (9.1), and cancel out summands whenever possible. In this way, we
obtain a representation of X as a sum of monomials X =

∑
I∈SXI , where

S ⊆
(
[n]
≤r
)
and for each I ∈ S we have XI = cI ·

∏
i∈I xi for some cI 6= 0.

Observe that X(0, 0, . . . , 0) = 0, so there is no constant term in X; in other
words, ∅ /∈ S. Moreover, X is a multilinear polynomial, that is, it is linear
with respect to every variable (in the representation as a sum of monomials,
in every monomial each variable appears with exponent 0 or 1). We remark
here that, due to cancellation, |S| may be much smaller than the original
number of summands in the expanded form of (9.1).

Now we apply the derived inequalities to our polynomial, but in order to
treat the value of X as a random variable, we �rst need to formalize the
probability distribution we have discussed previously. Henceforth, we treat
X as a random variable de�ned on the domain {−1, 1}n, where every variable
xi takes value −1 or 1 uniformly at random (i.e., with probability 1

2 each),
and values of all the variables are independent. As all the monomials in X
have at least one variable, by the linearity of expectations and independence
of variables, we have E(X) = 0. Let σ2 = E

(
X2
)
be the second moment of

X. Now, we give a connection between σ2 and |S|, that is, the number of
monomials of X.

Lemma 9.17. σ2 ≥ |S|.

Proof. Observe that for any I, J ∈ S, I 6= J , we have that E(XIXJ) =

cIcJ ·E
(∏

i∈I4J xi
)

= 0, where I4J is the symmetric di�erence of I and J .

Using this, we obtain
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E
(
X2
)

= E

((∑
I∈S

XI

)(∑
I∈S

XI

))
=
∑
I∈S

E
(
X2
I

)
+

∑
I,J∈S,I 6=J

E(XIXJ)

=
∑
I∈S

E
(
X2
I

)
=
∑
I∈S

c2I ≥ |S|.

The last inequality holds because every cI is a nonzero integer. ut

The remaining prerequisite of Corollary 9.16 is an upper bound on the
fourth moment of X, which we prove by induction on n. For this reason, we
state the following lemma in a general way.

Lemma 9.18 (Hypercontractive inequality). Let X be a multilinear

polynomial of degree at most r. Then, E
(
X4
)
≤ 9r

(
E
(
X2
))2

.

Proof. We prove the lemma by induction on n, the number of variables. In
the base case assume n = 0, which means that X consists only of a constant

term c (potentially c = 0). Then E
(
X4
)

= c4 =
(
E
(
X2
))2

and the inequality
holds.

In the inductive step we assume that n ≥ 1, and let us express the poly-
nomial as X = P (x1, . . . , xn−1) · xn + Q(x1 . . . , xn−1). Observe that in this
expression the values of P and Q depend only on the �rst n−1 variables, and
are independent of the value of xn. Consequently, since E(Y Z) = E(Y ) E(Z)
for independent random variables Y and Z, we obtain the following:

E
(
X4
)

= E
(
(Pxn +Q)4

)
= E

(
P 4x4n + 4P 3x3nQ+ 6P 2x2nQ

2 + 4PxnQ
3 +Q4

)
= E

(
P 4
)

E
(
x4n
)︸ ︷︷ ︸

=1

+4 E
(
P 3Q

)
E
(
x3n
)︸ ︷︷ ︸

=0

+6 E
(
P 2Q2

)
E
(
x2n
)︸ ︷︷ ︸

=1

+ 4 E
(
PQ3

)
E(xn)︸ ︷︷ ︸

=0

+ E
(
Q4
)

≤ 9r−1
(
E
(
P 2
))2

+ 6 E
(
P 2Q2

)
+ 9r

(
E
(
Q2
))2

.

The last inequality comes from the induction hypothesis applied to P and
Q. Notice that P consists of monomials whose number of variables is at most
r − 1, while monomials in Q can still have exactly r variables. Using the
Cauchy-Schwarz inequality, we obtain

6 E
(
P 2Q2

)
≤ 6 ·

(
E
(
P 4
)) 1

2
(
E
(
Q4
)) 1

2 .

Then, by applying induction to P 4 and Q4 on the right-hand side we get:
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E
(
X4
)
≤ 9r−1

(
E
(
P 2
))2

+ 6 ·
(

9r−1
(
E
(
P 2
))2) 1

2
(

9r
(
E
(
Q2
))2) 1

2

+ 9r
(
E
(
Q2
))2

= 9r−1︸︷︷︸
≤9r

(
E
(
P 2
))2

+ 6 · 32r−1︸ ︷︷ ︸
=2·9r

E
(
P 2
)
· E
(
Q2
)

+ 9r
(
E
(
Q2
))2

≤ 9r
(
E
(
P 2
)

+ E
(
Q2
))2

.

To analyze the right-hand side of the desired inequality, we use again the fact
that P and Q are independent of xn.

9r
(
E
(
X2
))2

= 9r
(
E
(
(Pxn +Q)2

))2
= 9r

(
E
(
P 2x2n

)
+ 2 E(2PQxn) + E

(
Q2
))2

= 9r

E
(
P 2
)

E
(
x2n
)︸ ︷︷ ︸

=1

+2 E(PQ) E(xn)︸ ︷︷ ︸
=0

+ E
(
Q2
)

2

= 9r
(
E
(
P 2
)

+ E
(
Q2
))2

.

This concludes the proof of the lemma. ut

Having all the tools prepared, we are ready to show the main lemma of
this section.

Lemma 9.19. If |S| ≥ 4 · 9r · 4r · k′2, then there exists an assignment ψ :
{x1, . . . , xn} → {−1, 1} such that X(φ) ≥ 2rk′.

Proof. Since k′ > 0, we have S 6= ∅ and X is not a zero polynomial. It follows
that E

(
X4
)
> 0. Having Lemma 9.18, we can use Corollary 9.16 with b = 9r,

obtaining

Pr
(
X ≥ σ

2 · 3r
)

= Pr

(
X ≥ σ

2
√
b

)
> 0 .

However, Lemma 9.17 implies that σ2 ≥ |S|, whereas |S| ≥ 4 · 9r · 4r · k′2.
Therefore,

Pr

(
X ≥ 2 · 3r · 2r · k′

2 · 3r
)
> 0 .

We conclude that there always exists an assignment ψ such that X(ψ) ≥
2r · k′. ut

Theorem 9.20. The problem Max-Er-SAT is �xed parameter tractable
when parameterized by k′ = k − m(1 − 2−r), and can be solved in time

O(m+ 2O(k′2)).

Proof. Recall that we treat r as a constant. As mentioned before, in O(m)
time we compute the monomial representation of the polynomial X. If X



9.3 Connected Vertex Cover in planar graphs 307

has at least 4 · 9r · 4r · k′2 monomials, then, by Lemmas 9.19 and 9.12, we
are working with a yes-instance, and we may provide a positive answer. If,
however, X does not have that many monomials, then only O(k′2) variables
appear in the simpli�ed form of X and we can exhaustively check all the
2O(k′2) assignments. ut

Lemma 9.19 implies that either X has many monomials and we can safely
provide a positive answer to the problem (by Lemma 9.12), or the number
of monomials in X is bounded by O(k′2). Even though we have only used
polynomial time, we have not yet obtained a kernel for the following two
reasons.

First, we have to bound the total instance size, not only the number of
monomials. The encoding of the instance needs to include also the coe�-
cients standing in front of these monomials, and they can be a priori as large
as m, the number of clauses. However, it is easy to verify that they will
never be larger than m, which means that their binary representations are of
length O(logm). To compress the total size of the encoding of the instance to
polynomial in k′, we can apply the following standard trick. Providing that
logm ≤ k′2, our instance is already of total size O(k′4) and we are done.

However, if logm > k′2, then m > 2k
′2
and we can solve our instance in poly-

nomial time using Theorem 9.20. In this manner, we can always compress
the total bitsize, i.e., the number of bits in the binary representation, of the
instance to O(k′4).

Second, we have not obtained a kernel, because the polynomial X is not
an instance of the Max-Er-SAT problem we were working with initially.
Such a shrinking algorithm where the target problem may be di�erent from
the source problem is called a polynomial compression; this notion will be
formally stated in De�nition 15.8. Nevertheless, having a polynomial com-
pression algorithm to a language which belongs to NP, like our problem with
polynomial X, we can obtain also a standard polynomial kernel for the source
problem: the only thing we need to do is apply an NP-hardness reduction that
transforms the output of the compression back to an instance of Max-Er-
SAT.

Theorem 9.21. The problem Max-Er-SAT admits a polynomial kernel
when parameterized by k′ = k −m(1− 2−r).

9.3 Connected Vertex Cover in planar graphs

In Section 7.7 we have seen a simple example of how the technique of bidimen-
sionality leads to subexponential parameterized algorithms in planar graphs.
This powerful framework gives not only subexponential algorithms, but also
e�cient kernelization procedures and approximation schemes for many prob-
lems. Moreover, the approach applies not only to planar graphs, but also to
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more general graph classes, such as graphs with a �xed excluded minor. In this
section, we present only the tip of the iceberg in the context of kernelization:
We show a kernel with very few (at most 4k) vertices for the Connected
Vertex Cover problem on planar graphs.

Recall that a vertex cover of a graph G is a set of vertices X that hits all
edges of G, that is, such that G\X is an edgeless graph. A vertex cover X is a
connected vertex cover if additionally G[X] is connected. In the Connected
Vertex Cover problem, we look for a connected vertex cover of a given
graph G whose size does not exceed the given budget k. We consider the
parameterization by k.

9.3.1 Plane graphs and Euler's formula

Recall that a planar graph is a graph that can be embedded into the plane
or, equivalently, into the sphere, whereas a plane graph is a planar graph
together with its one �xed embedding into the plane (or sphere). We refer
the reader to Section 6.3 and to the appendix for precise de�nitions.

Our starting point is Euler's well-known formula.

Theorem 9.22 (Euler's formula). In any connected nonempty plane graph
G, the number of faces is exactly

|E(G)| − |V (G)|+ 2.

We remark here that Euler's formula remains true if we allow G to be a
multigraph.

A simple well-known corollary of Euler's formula is the following lemma.

Lemma 9.23. If G is a nonempty simple planar bipartite graph whose every
connected component contains at least three vertices, then |E(G)| ≤ 2|V (G)|−
4.

Proof. First, observe that we may consider each connected component of G
separately. Hence, for the rest of the proof we additionally assume that G is
connected and, by the assumptions of the lemma, |V (G)| ≥ 3.

Second, �x a planar embedding of G, and let f be the number of faces
in this embedding. Since G is connected, every face in this embedding is
homeomorphic to an open disc. For a face F , by the length of F we mean the
length of the closed walk encircling F ; note that this walk is not necessarily
a simple cycle, as some cutvertices of G or bridges in G may be traversed
more than once.

Since |V (G)| ≥ 3 and G is simple, each face of G is of length at least 3.
On the other hand, since G is bipartite, each face is of even length. Hence,
each face is of length at least 4. Observe that if we sum up the lengths of all
faces we obtain twice the number of edges of the graph G. We infer
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4f ≤ 2|E(G)|. (9.5)

By plugging (9.5) into Euler's formula we obtain

|E(G)| − |V (G)|+ 2 ≤ |E(G)|/2 ,
which is equivalent to the claim of the lemma. ut

9.3.2 A lemma on planar bipartite graphs

Our main tool in this section is the following simple lemma.

Lemma 9.24 (Planar neighborhood lemma). Let G be a simple planar
bipartite graph with bipartition classes A and B. Moreover, assume that each
vertex in B is of degree at least 3. Then |B| ≤ 2|A|.

Proof. First, observe that we can assume G does not contain isolated vertices:
due to the degree assumption on the side B, such vertices may appear only
on the side A and only contribute to the right-hand side of the inequality in
question. Second, note that the lemma is trivial if G is empty.

If G is nonempty and does not contain isolated vertices, then the degree
assumption implies that every connected component of G has at least four
vertices. Hence, the graph G satis�es the assumptions of Lemma 9.23, and
we obtain that |E(G)| ≤ 2|V (G)| − 4. On the other hand, note that, due to
the degree bound, it holds that |E(G)| ≥ 3|B|. Hence, 3|B| ≤ 2|V (G)| − 4 =
2|A|+ 2|B| − 4, and the lemma follows. ut

Lemma 9.24, although a simple corollary of Euler's formula, turns out to
be extremely useful in the context of kernelization in planar graphs, through
the following application.

Corollary 9.25. Let G be a planar graph and A ⊆ V (G) be an arbitrary set
of vertices. Then there are at most 2|A| connected components of G \A that
are adjacent to more than two vertices of A.

Proof. De�ne B to be the family of connected components of G \ A, and
create an auxiliary bipartite graph H with bipartite classes A and B where
a vertex a ∈ A is adjacent to a component C ∈ B if and only if there exists
an edge between a and some vertex of C in G. In other words, to obtain H,
we start with the graph G, contract all connected components of G \ A into
single vertices, suppressing multiple edges, and delete all edges of G[A]. In
particular, H is a planar simple bipartite graph. Lemma 9.24 implies that
at most 2|A| elements of B are adjacent to more than two vertices of A. In
the language of the graph G, this is exactly the desired conclusion of the
lemma. ut
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A typical usage of Corollary 9.25 in the context of kernelization is as
follows: In the studied graph G, we have recognized some set A of
small size (for example, the hypothetical solution or its approxima-
tion). Corollary 9.25 immediately provides a bound on the number of
connected components of G \ A that have more than two neighbors in
A; think of such components as the ones with a complicated neighbor-
hood in A. All the other components have at most two neighbors in A;
such components have simple neighborhood in A. There is hope that
some problem-speci�c reduction rules may be able to exploit the sim-
plicity of this structure, and reduce the (a priori unbounded) number
of components of the latter type.

9.3.3 The case of Connected Vertex Cover

We shall now see how Corollary 9.25 works in the simple example of Con-
nected Vertex Cover. Let (G, k) be an input and assume for a moment
that (G, k) is a yes-instance. Let X be a solution: a vertex cover of G such
that G[X] is connected and |X| ≤ k.

Apply Corollary 9.25 to the set X in the graph G. The assumption that
X is a vertex cover greatly simpli�es the picture: each connected component
of G\X is actually a single vertex. Thus, by Corollary 9.25 there are at most
2|X| ≤ 2k vertices of G \ X of degree at least 3. In other words, we have
obtained, almost for free, a bound on the number of vertices of degree at
least 3 in the graph: at most k of them reside in X, and at most 2k outside
X. The vertices of smaller degree will turn out to be simple enough to allow
us to reduce them.

We �rst deal with isolated vertices. Clearly, they are irrelevant to the
problem.

Reduction CVC.1. Delete all isolated vertices.

Moreover, note that the requirement that the solution needs to be connected
gives us the following rule.

Reduction CVC.2. If G is not connected, then conclude that we are dealing
with a no-instance.

For the sake of formal correctness, we will need also the following trivial re-
duction rule; it will allow us to avoid some border cases in the argumentation.

Reduction CVC.3. If k ≤ 0 or |V (G)| ≤ 3, then terminate the algorithm
and output an answer.
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We now focus on vertices of degree 1. Let v be a vertex of degree 1 inG, and
let u be its sole neighbor. As |V (G)| > 3 and G is connected, any connected
vertex cover of G needs to include u: it needs to include u or v to hit the
edge uv, but the only way to include v and remain connected is to include u
as well. It is now useful to think of the vertex v as an �annotation�: the only
role of v in the instance is to force the solution to take vertex u. From this
perspective, it clearly does not make sense to have multiple annotations at
one vertex, i.e., multiple degree-one vertices attached to the same neighbor,
since they play exactly the same role in the instance. This intuitively justi�es
the safeness of the following reduction; the formal proof is left to the reader
as Exercise 9.4.

Reduction CVC.4. If a vertex u has multiple neighbors of degree 1, then
delete all but one of them.

We now move to vertices of degree 2. Let v be such a vertex, and let u1 and
u2 be its neighbors. There are two cases to consider, depending on whether
v is a cutvertex in G or not.

Let us �rst focus on the case when v is a cutvertex. We claim that any
connected vertex cover in G needs to contain v. Indeed, if a vertex cover X
of G does not contain v, it needs to contain both u1 and u2. However, as v
is a cutvertex, the only way to make G[X] connected is to include v into X
as well.

Consider now a graph G′, where a vertex v with its incident edges is
replaced with an edge u1u2; in other words, G′ is constructed from G by
contracting the edge vu1 and keeping the new vertex under the name u1.

Take any connected vertex cover X of G. By the previous argumentation,
we have that v ∈ X. Moreover, since |V (G)| > 3 and G is connected, X
cannot consist of only v and hence either u1 or u2 belongs to G. It now
follows that X \ {v} is a connected vertex cover of G′ of size |X| − 1.

Let now X ′ be any connected vertex cover of G′. Then clearly X ′ ∪ {v}
is a vertex cover of G of size |X ′| + 1. Moreover, as u1u2 ∈ E(G′), we have
u1 ∈ X ′ or u2 ∈ X ′, and hence G[X] is connected.

Concluding, we have proved that connected vertex covers of G and of G′

are in one-to-one correspondence relying on exclusion/inclusion of vertex v.
This claim allows us to formulate the following reduction rule.

Reduction CVC.5. If there exists a cutvertex v of degree 2 in G, then
contract one of its incident edges and decrease k by 1.

We are left with vertices of degree 2 that are not cutvertices. The following
observation is now crucial.

Lemma 9.26. Let v be a vertex of degree 2 in G that is not a cutvertex. Then
there exists a connected vertex cover of G of minimum possible size that does
not contain v, but contains both neighbors of v.



312 9 Advanced kernelization algorithms

Proof. Let X be a connected vertex cover of G of minimum possible size. If
v /∈ X, we have NG(v) ⊆ X and we are done, so assume otherwise. Let u1
and u2 be the two neighbors of v in G. As v is not a cutvertex, there exists a
cycle C in G that passes through u1, v and u2. In particular, u1 and u2 are
of degree at least 2.

As C contains at least three vertices, |X| ≥ 2 and, by the connectivity of
X, one of the neighbors of v needs to be contained in X. Without loss of
generality assume that u1 ∈ X.

If u2 /∈ X, then consider X ′ = (X \ {v}) ∪ {u2}. Clearly, X ′ is a vertex
cover of G as well. Moreover, as u2 /∈ X, X needs to contain both neighbors
of u2 on the cycle C, and, consequently, G[X ′] is connected.

Assume then that u2 ∈ X. Clearly, X \{v} is a vertex cover of G, but may
not be connected: G[X \ {v}] may consist of two connected components, X1

and X2, where u1 ∈ X1 and u2 ∈ X2. We now focus on the cycle C. As X is
a vertex cover of G, there exist three consecutive vertices x1, y, x2 on C such
that x1 ∈ X1, x2 ∈ X2 and y /∈ X. However, in this case (X \ {v})∪ {y} is a
connected vertex cover of G of size |X|, and we are done.

Lemma 9.26 allows us again to treat a vertex of degree 2 that is not a cutver-
tex as an �annotation� to its neighbors: the only role it plays is to annotate
that these two neighbors can be safely included into the solution. Recall that
vertices of degree 1 annotate their neighbors in a similar manner, so we should
be able to replace the type of annotation (see also Fig. 9.5).

Reduction CVC.6. If there exists a vertex v of degree 2 that is not a cutver-
tex, then delete v and add a neighbor of degree 1 to each former neighbor of
v.

Again, the formal veri�cation of safeness of Reduction CVC.6 is left to the
reader as Exercise 9.5.

We emphasize that Lemma 9.26 proves safeness of Reduction CVC.6 only
in the case when it is applied to only one vertex at a time. That is, it is
possible that there does not exist a single connected vertex cover of minimum
possible size in G that contains at once neighbors of all vertices of degree 2.
In particular, consider a case when one of the neighbors of v, say u1, is of
degree 2 as well. Then an application of Reduction CVC.6 to v turns u1 into
a cutvertex (separating the newly created neighbor of degree 1 from the rest
of G) and Reduction CVC.5 triggers on u1.

Observe that an exhaustive application of Reductions CVC.1, CVC.5
and CVC.6 completely removes vertices of degree 0 and 2, while Reduc-
tion CVC.4 limits the number of vertices of degree 1. We may now conclude
with the following.

Lemma 9.27. If (G, k) is a yes-instance and no reduction rule is applicable
to G, then |V (G)| ≤ 4k.

Proof. Let X be a connected vertex cover of G of size at most k. Consider
the vertices of Y = V (G) \X and recall that Y is an independent set in G.
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Fig. 9.5: A situation where Reduction CVC.6 is applicable and the outcome
of its application

As discussed before, Corollary 9.25 implies that at most 2|X| vertices of Y
have degree greater than 2 in G. Moreover, no vertex of G may have degree 0
or 2, while each vertex in X may have at most one neighbor in Y of degree 1.
Consequently, |Y | ≤ 2|X|+ |X| ≤ 3k and |V (G)| ≤ 4k. ut

Lemma 9.27 allows us to claim the �nal reduction rule that explicitly bounds
the size of the kernel. We remark that it always triggers when k becomes
negative in the process of reducing the graph.

Reduction CVC.7. If G has more than 4k vertices, then conclude that we
are dealing with a no-instance.

Finally, we should also remark that all reduction rules are trivially appli-
cable in polynomial time and all somehow simplify the graph: each reduction
rule either terminates the algorithm, or decreases the number of edges of the
graph, or maintains the number of edges of the graph while decreasing the
number of vertices of degree di�erent than 1.

9.4 Turing kernelization

As we will see in Chapter 15, for some problems it is impossible to construct
polynomial kernels (under widely believed complexity assumptions). How-
ever, imagine a setting where instead of creating a single small instance, our
algorithm would be allowed to create a set of small instances together with
a recipe on how to compute the answer for the original instance, given the
answers for all the generated small instances. One can go even further, and
de�ne an adaptive version of such a routine, called Turing kernelization.
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De�nition 9.28 (Turing kernelization). Let Q be a parameterized prob-
lem and let f : N→ N be a computable function. A Turing kernelization forQ
of size f is an algorithm that decides whether a given instance (x, k) ∈ Σ∗×N
is contained in Q in time polynomial in |x|+k, when given access to an oracle
that decides membership in Q for any instance (x′, k′) with |x′|, k′ ≤ f(k) in
a single step.

As for the classic de�nition of a kernel, a Turing kernel is polynomial if
f is a polynomial function. Obviously, regular kernels are Turing kernels as
well, as it is enough to preprocess an instance in polynomial time and then
use a single oracle call. Note, however, that Turing kernelization is much less
restrictive than regular kernelization, as the total size of instances passed to
the oracle may be even signi�cantly larger than the input size. Furthermore,
a Turing kernel can be adaptive, that is, its next steps and further queries
can depend on the answer obtained from the oracle in the past.

The motivation of Turing kernelization stems from the practical viewpoint
on the concept of data preprocessing. From a practitioner's viewpoint, the
notion of kernelization is supposed to provide a formal framework for design-
ing preprocessing procedures that lead to instances that are �crackable� by a
brute-force algorithm. At the end of the day, the practitioner's goal is usually
to solve the problem, and it is not that important whether the brute-force
procedure will be run on a single instance obtained at the end of the prepro-
cessing phase, or rather that the whole process of solving the task will require
tackling several small instances along the way, re�ecting di�erent subcases.
Thus, Turing kernelization expresses the practical concept of preprocessing in
a better way than the classic de�nition of kernelization, introduced in Chap-
ter 2. Unfortunately, this comes at a cost of having much weaker theoretical
tools for analyzing this relaxed notion of a kernel.

In this section, we present an example of a problem that separates the
classes of parameterized problems admitting polynomial kernels and admit-
ting polynomial Turing kernels. In theMax Leaf Subtree problem, we are
given a graph G together with an integer k and the question is whether there
is a subtree T of G with at least k leaves. Recall that Exercise 6.15 asked you
to show that Max Leaf Subtree admits a nonuniform FPT algorithm.

Observe that if G has several connected components, then T has to reside
in a single connected component of G, as it is connected. The Max Leaf
Subtree problem does not admit a polynomial kernel under widely believed
complexity assumptions (see Exercise 15.4, point 2). However, intuitively, its
kernelization hardness is caused by the fact that given a graph with several
connected components, it is hard to identify those components which are
unlikely to contain a solution. As a matter of fact, the situation changes
drastically if we assume the given graph is connected.
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9.4.1 A polynomial Turing kernel for Max Leaf
Subtree

Our �rst step is to show that, with an additional assumption that the given
graph is connected, Max Leaf Subtree admits a polynomial kernel in the
classic sense. Observe that if a solution T for an instance (G, k) exists in a
connected graph G, then there also exists a solution which is a spanning tree
of G. This is because extending a subtree of G to a spanning tree cannot
reduce the number of its leaves.

One can show that subdividing an edge of a graph that connects two
vertices of degree 2 does not change the maximum number of leaves over all
spanning trees of a graph. The following reduction rule is the reversal of such
an operation, and the proof of its safeness is left to the reader as Exercise 9.8.

Reduction MLS.1. If there is a vertex v of degree 2 where the neighbors
u1, u2 of v are nonadjacent and also have degrees equal to 2, then delete v
and add an edge u1u2.

In the main lemma of this section, we want to show that if G does not con-
tain long paths with all inner vertices of degree 2 in G (i.e., when Rule MLS.1
is not applicable) and G has appropriately many vertices, then (G, k) is def-
initely a yes-instance.

Lemma 9.29. If Reduction MLS.1 is inapplicable and |V (G)| ≥ 6k2, then
(G, k) is a yes-instance.

Proof. For the sake of contradiction, assume that |V (G)| ≥ 6k2 and (G, k)
is a no-instance. Let us �rst select greedily a set S of vertices at distance
at least 3 from each other (i.e., have disjoint closed neighborhoods), in the
following way. Recall that for a positive integer d and vertex set S ⊆ V (G),
we denote by Nd[S] the set of vertices of G within distance at most d from
S. Consider the following procedure. Initially, set S = ∅ and, as long as
V (G) \N2[S] contains a vertex of degree at least 3 (in G), add to S a vertex
of V (G)\N2[S] that has the largest degree (in G). Let r = |S| and v1, . . . , vr
be the sequence of vertices added to S in this order. Denote di = degG(vi).

Claim 9.30. If
∑

1≤i≤r(di − 2) ≥ k, then (G, k) is a yes-instance.

Proof. Note that, by construction, the vertices in the set S have pairwise
disjoint neighborhoods. Consequently, we can construct a forest F consisting
of r stars centered at vertices of S having exactly

∑
1≤i≤r di leaves. As G

is connected, we can transform F into a tree in a step-by-step manner, each
time adding to F a path between two of its connected components, losing at
most two leaves at a time. We need to add at most r−1 paths to connect the
r stars, hence we lose at most 2(r−1) < 2r leaves. Therefore,

∑
1≤i≤r(di−2)

is a lower bound on the number of leaves of the resulting tree. y
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In particular, if r ≥ k then we are done, because all the vertices in S are of
degree at least 3 and by Claim 9.30 (G, k) is a yes-instance. In the following,
by distG(u, v) we denote the distance between u and v in G.

Claim 9.31. If, for some v ∈ V (G) and d ≥ 1, we have |{u ∈ V (G) :
distG(u, v) = d}| ≥ k, then (G, k) is a yes-instance.

Proof. It is enough to construct any tree spanning all the vertices at distance
at most d− 1 from v and attach vertices at distance d as leaves. y

Since G is connected, we can conclude that each connected component
of G \ N2[S] contains at least one vertex at distance exactly 3 from some
vertex of S. In the next claim, we give an upper bound on the number of
such vertices.

Claim 9.32. For any positive integer d, if there are more than r(k− 1) ver-
tices u ∈ V (G) that are at distance exactly d from S (i.e., distG(u, S) = d),
then (G, k) is a yes-instance.

Proof. As |S| = r, by the pigeonhole principle there exists v ∈ S such that at
least k vertices of G are at distance d from v. By Claim 9.31 for this particular
vertex v, (G, k) is a yes-instance.

By Claim 9.32 for d = 3, there are at most r(k − 1) < k2 connected compo-
nents of G \N2[S]. Hence, to bound the number of vertices of V (G) \N2[S],
it is enough to bound the number of vertices of a single connected component
of G \N2[S].

Claim 9.33. Each connected component of G\N2[S] consists of at most four
vertices.

Proof. Denote H = G \N2[S]. As all the vertices of H are of degree at most
2, the graph H consists of paths and cycles only. If H contained a connected
component of size at least 5, then there would be a vertex v of degree 2 in
H, such that both its neighbors would be of degree 2 in H as well. However,
no vertex of V (H) = V (G) \ N2[S] is of degree more than 2 in G, hence
Rule MLS.1 would be applicable, a contradiction. y

Consequently, V (G) \N2[S] contains at most 4k2 vertices. By Claim 9.32
for d = 1 and d = 2, there are at most 2r(k− 1) vertices that are at distance
1 or at distance 2 from S. This implies |N2[S]| ≤ r+r(k−1)+r(k−1) < 2k2.
Therefore, G contains less than 6k2 vertices in total, a contradiction. This
�nishes the proof of Lemma 9.29. ut

By Lemma 9.29 we infer the following reduction rule.

Reduction MLS.2. If |V (G)| ≥ 6k2, then conclude that (G, k) is a yes-
instance.



9.4 Turing kernelization 317

Consequently we have the following theorem and a Turing kernelization
as a corollary.

Theorem 9.34. The Max Leaf Subtree problem in connected graphs ad-
mits a kernel with less than 6k2 vertices.

Corollary 9.35. The Max Leaf Subtree problem admits a polynomial
Turing kernelization.

Proof. Consider an instance (G, k) ofMax Leaf Subtree and let C1, . . . , Cr
be the connected components of G. We invoke the kernelization algorithm
from Theorem 9.34 on r instances (Ci, k), where the graph is obviously con-
nected, producing an equivalent instance (C ′i, k

′), where both V (C ′i) and k′

are bounded by O(k2). Finally the Turing kernelization routine calls an oracle
that determines the answer for each instance (C ′i, k

′). If any of these answers
is positive, then we can return yes, and otherwise it is safe to return no. ut

Let us repeat that Corollary 9.35 stands in a counterposition to Exer-
cise 15.4.2: While Max Leaf Subtree admits a polynomial Turing kernel,
the existence of a classic polynomial kernel can be refuted under standard
complexity assumptions.

Exercises

9.1 (l). Consider the following weighted version of the task of �nding the maximum
number of vertex-disjoint T -paths in a graph G: each edge of G is additionally equipped
with a nonnegative weight, and we look for a family of pairwise vertex-disjoint T -paths
that has the maximum possible cardinality and, among those of the maximum possible
cardinality, has the minimum possible total weight. Prove that this problem is polynomial-
time solvable.

9.2 (A). Consider the following weighted variant of Feedback Vertex Set: each vertex
of the graph is additionally equipped with a nonnegative weight, and we look for a feedback
vertex set that has at the same time at most k vertices and total weight at most W , where
both k and W are given as an input. Adjust the argumentation of Section 9.1 to give a
kernel for this variant with the number of vertices bounded polynomially in k.

9.3. In the Maximum Satisfiability problem, we are given a formula ϕ with n variables
and m clauses, together with an integer k, and we are to decide whether there exists an
assignment satisfying at least k clauses. Show that this problem is FPT when parameterized
by k′ = k −m/2.

9.4 (l). Prove formally that Reduction CVC.4 is safe. In particular, show that the min-
imum possible size of a connected vertex cover before and after its application are equal.

9.5 (l). Using Lemma 9.26, prove formally that Reduction CVC.4 is safe.

9.6 (A). In the Edge Dominating Set problem, we look for a set of at most k edges in
the given graph G whose endpoints form a vertex cover of G. Show that Edge Dominating
Set in planar graphs admits a kernel with O(k) vertices.
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9.7 (A). Consider the following problem: given a planar graph G and integers k and d,
decide if there exists a set X of at most k vertices of G such that each connected component
of G\X has at most d vertices. Prove that this problem admits a kernel with O(kd) vertices.

9.8. Prove that Reduction MLS.1 is safe. In particular, show that there is a subtree with
at least k leaves in the graph before the reduction if and only if there is a subtree with at
least k leaves in the graph after the reduction.

9.9. Prove that one can strengthen Claim 9.33 and show that each connected component
of G \ N2[S] consists of at most three vertices, leading to a slightly improved 5k2 upper
bound on the number of vertices in the kernel.

9.10 (A). Improve the reasoning of Lemma 9.29 to obtain an O(k) bound on the number
of vertices of G.

Hints

9.1 Recall that �nding a matching that has minimum possible weight among matchings
of maximum possible cardinality is polynomial-time solvable.

9.2 First, observe that the argumentation of Section 9.1 breaks in the weighted setting at
Lemma 9.8, as the vertices of

⋃
D̂ may have much smaller weights than those of Ẑ. You

need to strengthen this lemma to force any feedback vertex set of size at most k to contain
either v or Ẑ. The main trick to obtain it is to replace the use of q-expansion lemma for
q = 2 with a use for q = k + 2. The cost of this change is a cubic instead of quadratic
bound on the number of vertices of the �nal graph.

9.3 Show that there exists a constant c > 1/2, such for that each CNF formula ϕ which
does not contain at the same time a single literal clause x and its negation ¬x, there exists
an assignment satisfying at least cm clauses.

9.6 Proceed as with Connected Vertex Cover in Section 9.3. Use Corollary 9.25
with the set A being the endpoints of the hypothetical solution to bound the number of
vertices of degree more than 2. Vertices of degree 0 and 1 can be treated very similarly to
the approach in Section 9.3. A bit more work is required with vertices of degree 2. First,
show how to reduce many such vertices with common neighborhoods. Second, show that
planarity implies that there are only O(k) possible pairs of vertices of a solution that share
a common neighbor of degree 2.

9.7 Again, proceed as in Section 9.3 and apply Corollary 9.25 to the hypothetical solution
X. Although the connected components of G \X are not isolated vertices, they have size
bounded by d and you need to care only about the components that neighbor one or two
vertices in X.

9.9 Note that a connected component of H which is a path of four vertices needs to have
at least one of its endpoints of degree two in G.

9.10 Improve Claim 9.32 to get an O(r) bound on the number of vertices at distance d
from G. To achieve this, combine the reasonings of Claims 9.30 and 9.31.
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Chapter 10

Algebraic techniques: sieves,
convolutions, and polynomials

In this chapter we discuss selected techniques that have
some �algebraic �avor,� i.e., they use manipulation of
algebraic expression, rather than analyzing the combi-
natorial properties of objects. Another common theme
in these techniques is �sieving�: we sieve out some un-
wanted objects by means of algebraic cancellation.

Essentially all the techniques we cover in this chapter are older than param-
eterized complexity and have been developed in di�erent contexts. We begin
in Section 10.1 with the classical inclusion�exclusion principle and present
its simple (but non-obvious!) applications to problems like Hamiltonian
Cycle or Chromatic Number, where the only parameter involved is the
number of vertices, and a slightly more technical application to Steiner
Tree parameterized by the number of terminals.

Next, in Section 10.2 we show that the algorithms based on the inclusion�
exclusion principle can be reinterpreted using two transforms of functions on
the subset lattice, i.e., functions of the form f : 2V → Z. These transforms,
called the zeta transform and the Möbius transform, play also a similar role
as the Fourier transform and the inverse Fourier transform in the harmonic
analysis of functions, e.g., they can be used for fast computation of convolu-
tions of functions on the subset lattice. This is shown in Section 10.3, with
an application to Chromatic Number. In Chapter 11 we will see more ap-
plications of this technique in accelerating dynamic-programming algorithms
for bounded treewidth graphs.

Finally, in Section 10.4 we present algorithms based on evaluating multi-
variate polynomials. To use this approach for a parameterized problem, one
designs a polynomial p that

� can be evaluated in FPT time, and

321
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� encodes all the solutions, in particular p is nonzero if and only if there is
at least one solution.

Then it turns out that there is a simple randomized algorithm for testing
whether p is nonzero based on the Schwartz-Zippel lemma. We illustrate this
scheme by algorithms for Longest Path. In the resulting algorithms, one
can observe an algebraic reformulation of the color-coding approach from
Section 5.2.

Throughout this chapter, unless otherwise speci�ed, n and m denote the
number of vertices and edges of the input graph. We will often use two di�er-
ent bracket notations in this chapter. The �rst is the Iverson bracket notation,
which is 1 if the condition in square brackets is satis�ed, and 0 otherwise. For
example, for integers a, b, c, d, the value of the expression [a < b, c < d] is 1 if
a < b and c < d both hold, and 0 otherwise. The second usage of brackets is
to denote for an integer k the set [k] = {1, . . . , k}.

We will often use the binomial theorem, which states that
∑n
i=0

(
n
i

)
aibn−i =

(a + b)n. Note that if a = −b, then this expression is 0 for every n > 0, but
it is 1 for n = 0.

10.1 Inclusion�exclusion principle

In this section, we present applications of the inclusion�exclusion principle, a
well-known tool in combinatorics. Usually, the inclusion�exclusion principle
is described as a formula for computing |⋃ni=1Ai| for a collection of sets
A1, . . . , An. For two sets A1 and A2, the size |A1 ∪ A2| of the union can be
less than the sum |A1| + |A2| of the sizes: the expression |A1| + |A2| counts
the size of the intersection A1 ∩ A2 twice, hence we have to subtract it to
avoid double counting:

|A1 ∪A2| = |A1|+ |A2| − |A1 ∩A2|.

For three sets A1, A2, A3, we have the formula

|A1∪A2∪A3| = |A1|+|A2|+|A3|−|A1∩A2|−|A1∩A3|−|A2∩A3|+|A1∩A2∩A3|.

That is, after subtracting the size of the pairwise intersections, the common
intersection A1∩A2∩A3 was considered three times positively and three times
negatively, thus we have to add it once more. Below we state the formula for
the general case.

Theorem 10.1 (Inclusion�exclusion principle, union version). Let
A1, . . . , An be �nite sets. Then∣∣ ⋃

i∈[n]
Ai
∣∣ =

∑
∅6=X⊆[n]

(−1)|X|+1 ·
∣∣ ⋂
i∈X

Ai
∣∣. (10.1)
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Proof. Consider any element e ∈ ⋃i∈[n]Ai. Let k ≥ 1 be the number of

sets Ai containing e and let Ai1 , . . . , Aik be these sets. Note that for X 6= ∅
we have e ∈ ⋂i∈X Ai if and only if X ⊆ {i1, . . . , ik}. Hence the amount e
contributes to the right-hand side of (10.1) equals

∑
∅6=X⊆{i1,...,ik}

(−1)|X|+1 = (−1)

k∑
j=1

(
k

j

)
(−1)j = (−1)((1− 1)k − 1) = 1,

as required. ut

Intuitively, Theorem 10.1 allows us to compute the size of the union if for
some reason the sizes of all the intersections are easy to compute. However,
for our applications, we need the dual form of this statement that allows an
easy computation of the size of the intersection if the sizes of all the unions are
easy to compute. We state the dual form below. It can be easily derived from
Theorem 10.1 using De Morgan's laws so we skip the proof here; however, in
Section 10.4 we prove a generalized, weighted inclusion�exclusion principle.

Theorem 10.2 (Inclusion�exclusion principle, intersection version).
Let A1, . . . , An ⊆ U , where U is a �nite set. Denote

⋂
i∈∅(U \Ai) = U . Then∣∣ ⋂

i∈[n]
Ai
∣∣ =

∑
X⊆[n]

(−1)|X|
∣∣ ⋂
i∈X

(U \Ai)
∣∣.

In a typical algorithmic application of the inclusion�exclusion formula
we need to count some objects that belong to a universe U , and it is in
some sense hard. More precisely, we are interested in objects that satisfy
n requirements A1, . . . , An and each requirement is de�ned as the set of
objects that satisfy it. Thus, the inclusion�exclusion formula translates
the problem of computing |⋂i∈[n]Ai| into computing 2n terms of the

form |⋂i∈X(U \Ai)|. In our applications, computing these terms is in
some sense easy. If, for example, each of them is computable in poly-
nomial time, then the inclusion�exclusion formula gives an algorithm
which performs 2nnO(1) arithmetic operations.

10.1.1 Hamiltonian Cycle

The idea above applies smoothly to the well-known Hamiltonian Cycle
problem: given a directed graph G, we want to decide whether G contains
a cycle which contains all the vertices of G, called the Hamiltonian cycle.
In fact, we will solve a more general problem � we will count the number
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of Hamiltonian cycles. Recall that Exercise 6.2 asked you for a 2nnO(1)-time
algorithm using dynamic programming. In this section we show that using
the inclusion�exclusion formula we can get an algorithm running in roughly
the same time, but using only polynomial space.

A walk v0, . . . , vk is called closed when v0 = vk. We also say that the length
of this walk is k, i.e., the number of its edges.

Let v0 be an arbitrary vertex from V (G) and let the universe U be the
set of all closed walks of length n of the form v0, v1, . . . , vn = v0. For every
vertex v ∈ V (G), de�ne a requirement Av ⊆ U as the set of all closed walks
of length n that start at v0 and visit v at least once. Clearly, our goal is
to compute |⋂v∈V (G)Av|: a closed walk of length n can visit all vertices at
least once only if it is a cycle of length exactly n. By the inclusion�exclusion
principle (Theorem 10.2) this reduces to computing, for every X ⊆ V (G), the
value of |⋂v∈X(U \Av)|, i.e., the number of closed walks of length n from v0
in graph G′ := G−X. This is easily computable in polynomial time: if M is
the adjacency matrix of G′, then we compute the n-th power Mn and return
the entry from the diagonal ofMn that corresponds to v0 (see Exercise 10.2).
Therefore, we can compute in polynomial time each of the 2n terms of the
inclusion�exclusion formula and hence we can compute |⋂v∈V (G)Av|.

There is one more thing to check. So far we just showed that the number
of Hamiltonian cycles can be found using 2nnO(1) arithmetic operations. The
question is how costly is an arithmetic operation? Every number that appears
in the algorithm is bounded by the number of walks of length at most n from
some vertex, which is O(nn). This means it takes O(n log n) bits and each
arithmetic operation takes polynomial time. An important property of the
algorithm sketched above is that it takes only O(n2), i.e., polynomial, space.

Theorem 10.3. The number of Hamiltonian cycles in a directed n-vertex
graph can be computed in time 2nnO(1) and polynomial space.

10.1.2 Steiner Tree

In the unweighted Steiner Tree problem, we are given an undirected graph
G, a set of verticesK ⊆ V (G), called terminals, and a number ` ∈ N. The goal
is to determine whether there is a tree H ⊆ G (called the Steiner tree) with
at most ` edges that connects all the terminals. Recall that in Section 6.1.2
we presented a 3|K|nO(1)-time algorithm for Steiner Tree using dynamic
programming (in fact, that algorithm works also for the weighted version,
where we have arbitrary weights on the edges). Here we show a 2|K|nO(1)-
time algorithm for (the unweighted version of) this problem parameterized
by |K|. Without loss of generality, we assume |K| ≥ 2.

The idea is to apply the inclusion�exclusion-based algorithm similar to
the one we use for Hamiltonian Cycle. There, we observed that although
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Fig. 10.1: An ordered rooted tree H and a branching walk (H,h) in a graph

counting paths or cycles is hard, counting walks is easy. Here, instead of count-
ing trees, we will count branching walks. Recall that in an ordered rooted tree
the children of every node have a �xed order. This assumption is important
because the algorithm we present here counts certain branching walks and
their number depends on whether the corresponding tree is ordered or not.

A branching walk is a relaxed notion of a tree, or more precisely a ho-
momorphic image of a tree. Formally, a branching walk in graph G is a pair
B = (H,h) where H is an ordered rooted tree and h : V (H) → V (G) is
a homomorphism, i.e., if xy ∈ E(H) then h(x)h(y) ∈ E(G). We say that
branching walk B is from s when h(r) = s, where r is the root of H. We de-
note by V (B) = h(V (H)) the set of vertices in G where h maps the vertices of
H. Observe that h(V (H)) induces a connected graph in G. The length of the
branching walk B is de�ned as |E(H)|. Of course, every walk is a branching
walk (with tree H being a path). Also, every tree H in G corresponds to a
branching walk (H,h) with h being the identity function. One can see that
the image h(H) = {h(u)h(v) : uv ∈ E(H)} is a tree if and only if h is injec-
tive. Figure 10.1 shows an example of a branching walk with non-injective h.
The following observation provides a connection between the Steiner Tree
problem and branching walks (the easy proof is left for the reader).

Observation 10.4. Let s ∈ K be any terminal. Graph G contains a tree H
such that K ⊆ V (H) and |E(H)| ≤ ` if and only if G contains a branching
walk B = (HB , h) from s in G such that K ⊆ V (B) and |E(HB)| = `.

Following Observation 10.4, we will count branching walks of length `
from s that visit all the terminals and return true if and only if the resulting
number is nonzero. Our universe U is now the set of all branching walks of
length ` from s. For every v ∈ K, we have the requirement Av = {B ∈ U :
v ∈ V (B)}. Hence, our goal is to compute |⋂v∈K Av|. By the inclusion�
exclusion principle, this reduces to computing, for every X ⊆ K, the value
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of |⋂v∈X(U \Av)|. Note here that
⋂
v∈X(U \Av) is the set of exactly those

branching walks from U that avoid the vertices of X.

Lemma 10.5. For every X ⊆ K, the value of |⋂v∈X(U \ Av)| can be com-
puted using O(m`2) arithmetic operations.

Proof. Let G′ = G − X. For a ∈ V (G′) and j ∈ {0, . . . , `}, let bj(a) be the
number of length j branching walks from a in G′. Notice that if s 6∈ V (G′)
we should return 0, and otherwise our goal is to compute b`(s). We compute
bj(a) for all a ∈ V (G′) and j ∈ {0, . . . , `} using dynamic programming with
the following recursive formula:

bj(a) =


1 if j = 0,∑
t∈NG′ (a)

∑
j1+j2=j−1

bj1(a)bj2(t) otherwise.

In the formula above, for every neighbor t of a, we count the number of
branching walks where t is the �rst child of a; for a �xed t we consider all
possibilities for the size j2 of the subtree rooted at t (and j1 is the number of
remaining edges of the tree excluding the edge at as well). Note that this is the
point where considering branching walks instead of trees pays o�: multiplying
bj1(a) and bj2(t) is justi�ed, as we do not require the branching walks starting
at a and t to be vertex disjoint; hence we may combine any two of them. We
leave the formal proof of the correctness of the formula to the reader. The
time bound follows, since for every j ∈ {0, . . . , `} and every edge of G′, the
inner sum is computed twice. ut

Since the numbers in our computations haveO(` log n) bits (Exercise 10.4),
arithmetic operations take polynomial time. We have just proved the follow-
ing theorem.

Theorem 10.6. The unweighted Steiner Tree problem can be solved in
time 2|K| · nO(1) and polynomial space.

In the previous section we showed an algorithm for counting Hamiltonian
cycles, which obviously also solves the corresponding decision problem. Here
we solved unweighted Steiner Tree by counting branching walks. It is
natural to ask whether one can count Steiner trees within similar running
time. The answer is no, unless FPT = W[1] (see Exercise 10.5).

10.1.3 Chromatic Number

A k-coloring of a graph G is a function c : V (G)→ [k], such that c(u) 6= c(v)
whenever u and v are adjacent. In the Chromatic Number problem we are
given a graph G with an integer k and we want to know whether G has a
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k-coloring. Recall that Exercise 6.1 asked you for a 3nnO(1)-time algorithm,
using dynamic programming. In this section we provide a faster algorithm
based on the inclusion�exclusion principle. Clearly, each color class in k-
coloring is an independent set and every subset of an independent set is also
an independent set. This leads us to the following easy observation.

Observation 10.7. G has a k-coloring if and only if there is a cover of V (G)
by k independent sets, i.e., there are k independent sets I1, . . . , Ik such that⋃k
j=1 Ij = V (G).

By Observation 10.7 it su�ces to compute the number of covers of V (G)
by independent sets. Our universe U is now the set of tuples (I1, . . . , Ik),
where Ij are independent sets (not necessarily disjoint nor even di�erent!).
Clearly, we need to cover every vertex, i.e., for every v ∈ V (G) we have the
requirement

Av =

{
(I1, . . . , Ik) ∈ U : v ∈

k⋃
j=1

Ij

}
.

Then |⋂v∈V (G)Av| is the required number of covers of V (G) by independent

sets. For Y ⊆ V (G), let s(Y ) be the number of independent sets in G[Y ], the
subgraph of G induced by Y . By the inclusion�exclusion principle, �nding
|⋂v∈V (G)Av| reduces to computing, for every X ⊆ V (G), the value of∣∣∣{(I1, . . . , Ik) ∈ U : I1, . . . , Ik ⊆ V (G) \X

}∣∣∣ = s(V (G) \X)k.

Although we do not know how to compute s(V (G)\X)k in polynomial time,
s(Y ) can be computed at the beginning simultaneously for all subsets Y ⊆
V (G) using a simple dynamic programming routine that employs the formula

s(Y ) = s(Y \ {y}) + s(Y \N [y]), (10.2)

where y is an arbitrary vertex in Y . This requires O(2n) arithmetical oper-
ations on O(n)-bit numbers, and takes space 2nnO(1). Once we have s(Y )
computed for every Y ⊆ V (G), the value of s(V (G) \ X)k can be found in
polynomial time by O(log k) multiplications of O(nk)-bit numbers. We have
just proved the following theorem.

Theorem 10.8. The Chromatic Number problem can be solved in time
and space 2nnO(1).

It is natural here to ask for a polynomial space algorithm. A 2nnO(1) time
polynomial-space algorithm is currently not known. Let us modify the algo-
rithm from Theorem 10.8 at the cost of worse running time. When we aim
at polynomial space we cannot a�ord to tabulate the number of independent
sets s(Y ) for every Y ⊆ V (G). If we just use the formula 10.2 in a recur-
sive procedure, without storing the computed values, computing s(Y ) takes
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2|Y |nO(1) time for each subset Y ⊆ V (G) separately. By the binomial theorem
the total time needed to compute |⋂v∈V (G)Av| using the inclusion�exclusion
principle is then ∑

X⊆V (G)

2|V (G)\X|

nO(1) =

(
n∑
k=0

(
n

k

)
1k2n−k

)
nO(1) = 3nnO(1).

However, there are better branching algorithms for �nding the number of
independent sets in a given n-vertex graph. In Exercise 3.17 the reader is
asked to show such an algorithm running in time 1.381nnO(1). The currently
best known polynomial-space algorithm is due to Wahlström [429] and runs
in 1.238nnO(1) time. By a similar application of the binomial theorem as
above we get the following result.

Theorem 10.9. The Chromatic Number problem can be solved in time
2.238nnO(1) and polynomial space.

Finally, let us note that there is a 2nnO(1)-time algorithm for counting
k-colorings and we present one in Section 10.3.1.

10.2 Fast zeta and Möbius transforms

In this section, we consider functions on the subset lattice, i.e., functions
of the form f : 2V → Z, where V is some n-element set (in fact, Z can be
replaced by any ring). It turns out that the inclusion�exclusion algorithms
from Section 10.1 can be phrased in terms of transforms between functions on
the subset lattice, i.e., functions that take as an argument a function f : 2V →
Z and return another function g : 2V → Z. We use simpli�ed notation, i.e.,
for a transform α and function f the function α(f) is denoted as αf . The
�rst is the zeta transform, de�ned as

(ζf)(X) =
∑
Y⊆X

f(Y ).

Let us also de�ne the Möbius transform,

(µf)(X) =
∑
Y⊆X

(−1)|X\Y |f(Y ).

It will be convenient to have the following odd-negation transform,

(σf)(X) = (−1)|X|f(X).

We will frequently use compositions of transforms. The composition α ◦ β
of two transforms α and β is denoted shortly by αβ. Recall that in the
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composition notation α is applied after β, i.e., for every function f : 2V → Z
we have αβf = α(β(f)). Clearly, σσ is the identity transform id. It is also
easy to see (Exercise 10.10) that the three transforms above are related as
follows.

Proposition 10.10. ζ = σµσ and µ = σζσ.

As we will see, the following formula is a counterpart of the inclusion�
exclusion principle.

Theorem 10.11 (Inversion formula). We have µζ = ζµ = id, that is,

f(X) = (µζf)(X) = (ζµf)(X)

for every X ⊆ V .

Proof. We observe that:

(µζf)(X) = (σζσζf)(X) (Proposition 10.10)

= (−1)|X|
∑
Y⊆X

(σζf)(Y ) (expanding σ and ζ)

= (−1)|X|
∑
Y⊆X

(−1)|Y |
∑
Z⊆Y

f(Z) (expanding σ and ζ)

= (−1)|X|
∑
Z⊆X

f(Z) ·
∑

Z⊆Y⊆X
(−1)|Y | (reordering terms)

= f(X) + (−1)|X|
∑
Z X

f(Z) ·
∑

Z⊆Y⊆X
(−1)|Y |︸ ︷︷ ︸

sums to 0

(separating Z = X)

= f(X).

The inner sum in the penultimate line is equal to 0 because every nonempty
�nite set A has the same number of subsets of odd and even cardinality (here
we consider A = X \Z). To see this, pick any a ∈ A. We partition all subsets
of A into pairs: every subset S ⊆ A\{a} can be paired up with the set S∪{a}.
Each such pair has one set of even size and one set of odd size, which proves
the claim.

The second part of the theorem follows by ζµ = ζσζσ = σµσσζσ =
σµζσ = σσ = id. ut

Let us revisit the Chromatic Number problem, now using the trans-
forms. For X ⊆ V (G), let f(X) be the number of tuples (I1, . . . , Ik), where

Ij are independent sets inG and
⋃k
j=1 Ij = X. Then, for everyX ⊆ V (G), the

value f(X) is the number of covers of X by k independent sets. Observe that
(ζf)(X) =

∑
Y⊆X f(Y ) is the number of tuples (I1, . . . , Ik), where Ij are in-

dependent sets inG and
⋃k
j=1 Ij ⊆ X. Using the notation from Section 10.1.3,
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we have (ζf)(X) = s(X)k, and hence the values of ζf can be computed in
polynomial time after a 2nnO(1)-time preprocessing, as in Section 10.1.3. By
the inversion formula (Theorem 10.11), we have f(V (G)) = (µζf)(V (G)) and
hence we can compute the values of f from ζf directly using the de�nition
of µ in time 2nnO(1). By Observation 10.7, graph G is k-colorable if and only
if f(V (G)) 6= 0. This re-proves Theorem 10.8.

As we will see, sometimes it is useful to compute the zeta or Möbius
transform for all subsets X of V . The algorithm that computes these val-
ues separately for each subset using the de�nition takes O(

∑
X⊆V 2|X|) =

O(
∑|X|
i=0

(|X|
i

)
2i) = O((2 + 1)n) = O(3n) arithmetic operations and evalua-

tions of the transformed function f . It turns out that this can be done in
time roughly the same as the size of the output 2n.

Theorem 10.12 (Fast zeta/Möbius transform). Given all the 2n values
of f in the input, all the 2n values of ζf and µf can be computed using
O(2n · n) arithmetic operations.

Proof. Consider the zeta transform. Let V = {1, . . . , n}. Instead of consider-
ing f to be a function on subsets of V , it will be convenient to interpret f as
an n-variable function on {0, 1}. We let f(x1, . . . , xn) be f(X), where X ⊆ V
is the set with characteristic vector (x1, . . . , xn), that is, i ∈ X if and only if
xi = 1. With this interpretation, the zeta transform is de�ned as

(ζf)(x1, . . . , xn) =
∑

y1,...,yn∈{0,1}
[y1 ≤ x1, . . . , yn ≤ xn] · f(y1, . . . , yn)

(recall that the value of the bracket is 1 if the expression in the bracket is
true and 0 otherwise).

Consider �xing the last n− j bits, that is, we de�ne

ζj(x1, . . . , xn) :=
∑

y1,...,yj∈{0,1}
[y1 ≤ x1, . . . , yj ≤ xj ]·f(y1, . . . , yj , xj+1, . . . , xn︸ ︷︷ ︸

�xed

).

Consistently, denote ζ0(x1, . . . , xn) := f(x1, . . . , xn). Observe that ζn(X) =
(ζf)(X). The values of ζj(x1, . . . , xn) for all j ∈ {1, . . . , n} and x1, . . . , xn ∈
{0, 1} can be found by dynamic programming using the following formula.

ζj(x1, . . . , xn) =


ζj−1(x1, . . . , xn) when xj = 0,

ζj−1(x1, . . . , xj−1, 1, xj+1, . . . , xn)+

ζj−1(x1, . . . , xj−1, 0, xj+1, . . . , xn) when xj = 1.

Indeed, if xj = 0, then every nonzero term has yj = 0 (and hence yj = xj),
thus we may consider xj �xed as well. On the other hand, if xj = 1, then
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we need to consider two types of terms: those with yj = 1 and those with
yj = 0. Therefore, by �xing the value of the j-th coordinate to 1 and 0,
respectively, we get the contribution of the two types of terms. We see that
the computation takes O(2n · n) arithmetic operations. The claim for the
Möbius transform follows now by Proposition 10.10. ut

In Theorem 10.12, we state the time bound only by means of the number
of arithmetic operations. The precise asymptotic bound for the time depends
on the model of computations used, e.g., answers to questions like �how long
does it take to address an n-dimensional array?� or �what is the cost of an
arithmetic operation?� (note that the algorithm computes sums of Ω(2n)
input numbers). However, if an arithmetic operation on two input numbers
(values of function f) can be carried out in time polynomial in n, then we
can safely claim a 2nnO(1) upper bound on the running time.

Using the fast Möbius transform, in the last step of the coloring algo-
rithm described in this section, instead of computing just (µζf)(V (G)) we
can compute f(X) = (µζf)(X) for all X ⊆ V (G). By Observation 10.7, for
every X ⊆ V (G) the graph G[X] is k-colorable if and only if f(X) 6= 0. It
follows that in time 2nnO(1) we have found all k-colorable induced subgraphs
of G.

10.3 Fast subset convolution and cover product

In this section, we consider binary operations on functions on the subset
lattice. The subset convolution of two functions f, g : 2V → Z is a function
(f ∗ g) : 2V → Z such that for every Y ⊆ V ,

(f ∗ g)(Y ) =
∑
X⊆Y

f(X)g(Y \X).

Note that equivalently,

(f ∗ g)(Y ) =
∑

A∪B=Y
A∩B=∅

f(A)g(B).

The cover product of two functions f, g : 2V → Z is a function (f ∗c
g) : 2V → Z such that for every Y ⊆ V ,

(f ∗c g)(Y ) =
∑

A∪B=Y

f(A)g(B).

Subset convolution and cover product are computed in many algorithms.
Perhaps the most natural application in parameterized complexity is accel-
erating the dynamic programming over tree decompositions, and we will see
such examples in Chapter 11. At the end of this section, we motivate subset
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convolution by presenting an algorithm that counts proper colorings for all
induced subgraphs of a graph.

Now let us focus on algorithms for computing (all the 2|V | values of) the
subset convolution and the cover product. The naive algorithms following
from the de�nition require O(3n) and O(4n) arithmetic operations, respec-
tively. Indeed, for the subset convolution the number of additions and multi-
plications is proportional to the total number of pairs of sets X and Y such
that Y ⊆ X ⊆ V , which equals

∑n
k=0

(
n
k

)
2k = 3n by the binomial theo-

rem. For the cover product, we consider all the triples (A,B, Y ) such that
A,B ⊆ Y ⊆ V . There are 2n · 2n = 4n such triples, since every choice of
subsets A,B ⊆ V determines the triple.

In what follows, we show that the subset convolution and cover product
can be computed much faster, i.e., in time 2nnO(1). (Note that this is the size
of the input, up to a polynomial factor.)

The pointwise product of two functions f, g : 2V → Z is a function (f ·
g) : 2V → Z such that for every Y ⊆ V ,

(f · g)(Y ) = f(Y ) · g(Y ).

Clearly, the pointwise product can be computed in O(2n) arithmetic opera-
tions. This motivates the following lemma.

Lemma 10.13. The zeta transform of the cover product is the pointwise
product of the zeta-transformed arguments, i.e., ζ(f ∗c g) = (ζf) · (ζg).

Proof. For every Y ⊆ V we have,

ζ(f ∗c g)(Y ) =
∑
X⊆Y

∑
A∪B=X

f(A)g(B) =
∑

A∪B⊆Y
f(A)g(B)

=

∑
A⊆Y

f(A)

∑
B⊆Y

g(B)

 = (ζf(Y ))(ζg(Y )).

ut

A reader familiar with the classic Fourier transform considered in cal-
culus will certainly recognize in Lemma 10.13 an analogue of one of the
most fundamental properties of the Fourier transform: the zeta trans-
form translates convolution into point-wise multiplication. By the in-
version formula we get a backward translation by means of the Möbius
transform. Formally, we have

f ∗c g = µ((ζf) · (ζg)).
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Using Lemma 10.13, we now give an algorithm for computing the cover
product.

Theorem 10.14. For two functions f, g : 2V → Z, given all the 2n values
of f and g in the input, all the 2n values of the cover product f ∗c g can be
computed in O(2n · n) arithmetic operations.

Proof. Similarly as in the example with coloring using ζ and µ-transforms,
by Lemma 10.13, the ζ-transform of the desired result is easy to compute.
More precisely, all the 2n values of ζ(f ∗c g) can be found by computing all
the 2n values of ζf and all the 2n values of ζg, and �nally multiplying the
results for every Y ⊆ V . By Theorem 10.12, this takes O(2n · n) arithmetic
operations. By the Inversion Formula (Theorem 10.11), we can compute f ∗cg
by applying the Möbius transform to ζ(f ∗c g). This is done again in time
O(2n · n) using Theorem 10.12. ut
We now show how to use the algorithm for computing the cover product to
compute the convolution. The key idea is to consider separately, for every
0 ≤ i ≤ |X|, the contribution of those terms of f ∗ g where |A| = i and
|B| = |X| − i.
Theorem 10.15 (Fast subset convolution). For two functions f, g : 2V →
Z, given all the 2n values of f and g in the input, all the 2n values of the
subset convolution f ∗ g can be computed in O(2n ·n3) arithmetic operations.

Proof. Let us introduce the following notation which truncates a function to
sets of a �xed cardinality:

fk(S) = f(S) · [|S| = k].

The key to the fast subset convolution computation is the observation that
disjointness can be controlled using cardinalities, as follows.

(f ∗ g)(X) =
∑

A∪B=X
A∩B=∅

f(A)g(B)

=

|X|∑
i=0

∑
A∪B=X

|A|=i,|B|=|X|−i

f(A)g(B)

=

|X|∑
i=0

∑
A∪B=X

fi(A)g|X|−i(B)

=

|X|∑
i=0

(fi ∗c g|X|−i)(X).

(10.3)

Note that the second equality holds, since if A and B form a partition of X,
then clearly |A| = i and |B| = |X| − i for some 0 ≤ i ≤ |X|. Our algorithm is
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as follows. First, for all i, j ∈ {0, . . . , n} and X ⊆ 2V we compute and store
(fi ∗c gj)(X). By Theorem 10.14, it takes O(2n ·n3) operations. Then we can
compute (f ∗ g)(X) for all X ⊆ 2V using the identity (10.3) in O(2n · n)
operations. ut

10.3.1 Counting colorings via fast subset convolution

In this section, we motivate the notion of subset convolution by an algorithm
that counts the number of k-colorings in every induced subgraph of the input
graph G. Note that we interpret a k-coloring as a function 2V (G) → [k] and we
count the number of distinct functions that are valid k-colorings. This means
that we consider two colorings to be distinct (and count both of them) if they
partition the vertices into color classes the same way, but the colors of the
classes are di�erent.

De�ne a function s : 2V (G) → {0, 1} such that for every X ⊆ V (G) we
have s(X) = 1 if and only if X is an independent set. Then

(s ∗ s ∗ · · · ∗ s︸ ︷︷ ︸
k times

)(X)

is the number of k-colorings of G[X] (note that a k-coloring needs not use all
the k colors). It can be found in time and space 2nnO(1) by applying the fast
subset convolution algorithm (Theorem 10.15) k − 1 times (or even O(log k)
times, if we apply a fast exponentiation algorithm, that is, we iteratively
compute the 22i-th power by multiplying the 2i-th power with itself). We
have proved the following theorem.

Theorem 10.16. The number of k-colorings in every induced subgraph of
the input graph G can be computed in time and space 2nnO(1).

10.3.2 Convolutions and cover products in min-sum
semirings

Recall that a semiring is an algebraic structure similar to a ring, but with-
out the requirement that each element must have an additive inverse. More
precisely, a semiring is a triple (R,+, ·), where R is a set and + and · are
binary operations called addition and multiplication. Both operations are as-
sociative, addition is commutative, multiplication distributes over addition,
i.e., a · (b+ c) = (a · b) + (a · c) and (b+ c)va = (b · a) + (c · a). Finally, there
are two elements 0, 1 ∈ R such that 0 is the additive identity and annihilates
R, i.e., a · 0 = 0, while 1 is the multiplicative identity. In a ring, additionally,
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for every element a there is an element b (called an inverse of a) such that
a+ b = 0.

In applications we frequently need to compute convolution-like expressions
of the form

(f ∗ g)(Y ) = min
A∪B=Y
A∩B=∅

(f(A) + g(B)),

or

(f ∗c g)(Y ) = min
A∪B=Y

(f(A) + g(B)).

At �rst glance reusing the subset convolution and cover product notation
here seems confusing. However, one can notice that in fact these are the
subset convolution and the cover product for functions f and g with values
in the integer min-sum semiring, i.e., the semiring (Z∪{+∞},min,+). (Note
that +∞ is the additive identity in this semiring.) Similar expressions with
max replacing min might also be of interest and then they correspond to the
subset convolution and the cover product in integer max-sum semiring, i.e.,
the semiring (Z ∪ {−∞},max,+).

Note that in the previous sections we were working in the (Z,+, ·) ring,1
and in fact the fast cover product algorithm from Theorem 10.14 and the
fast subset convolution algorithm from Theorem 10.15 are correct for any
ring. These algorithms rely on the fast zeta and Möbius transforms from
Theorem 10.12. We encourage the reader to verify that the fast zeta transform
algorithm works perfectly �ne in a semiring; however in the de�nition of the
Möbius transform the additive inverse is used, hence the Möbius transform
cannot even be de�ned in a semiring. Hence we cannot apply the fast cover
product and the fast subset convolution algorithms in the (Z∪{+∞},min,+)
semiring, since integers do not have inverses under the min operation. It is
unclear whether we can extend these algorithms to semirings. However, if f
and g have small integer values we can use a simple embedding trick to get
the following result.

Theorem 10.17. For two functions f, g : 2V → {−M, . . . ,M}, given all the
2n values of f and g in the input, all the 2n values of the subset convolution of
f and g over the integer min-sum (or max-sum) semiring can be computed in
time 2nnO(1) · O(M logM log logM). The same holds for the cover product.

Proof. Let β = 2n + 1. We de�ne two functions f ′, g′ : 2V → {0, . . . , β2M} by
putting f ′(X) = βM+f(X) and g′(X) = βM+g(X). Then,

1 We would like to emphasize that in this section the role of the + operation changes: in
the min-sum semiring, + plays the role of the multiplicative operation.
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(f ′ ∗ g′)(Y ) =
∑
X⊆Y

f ′(X)g′(Y \X)

=
∑
X⊆Y

β2M+f(X)+g(Y \X) =

2M∑
i=−2M

αiβ
2M+i,

where αi is the number of sets X such that f(X) + g(Y \X) = i. Note that
αi ∈ {0, . . . , 2|Y |} and 2|Y | ≤ 2n < β, hence the values of αi can be extracted
from the value of (f ′ ∗ g′)(Y ), as we can interpret the αi's as digits in base-β
notation. Then, (f ∗ g)(Y ) = min{i : αi > 0}.

It follows that f ∗g over the min-sum semiring can be obtained from f ′ ∗g′
computed over the standard integer ring. By Theorem 10.15 this takes O(2n ·
n2) arithmetic operations on O(Mn)-bit integers, and each of them takes
time O(Mn log(Mn) log log(Mn)) if the Schönhage-Strassen multiplication
algorithm [410] is used. The proof for the cover product is analogous, and it
is left as Exercise 10.12. ut

Let us conclude this section with a simple application (see Section 11.1.2
for another one). Consider a variant of the Chromatic Number problem,
where we are given an undirected graph G, an integer k and a cost function
c : V (G) × [k] → {−M, . . . ,M}. The cost of a coloring χ : V (G) → [k] is
de�ned as

∑
v∈V (G) c(v, χ(v)). In other words, coloring a vertex v ∈ V (G)

with a color i ∈ [k] has cost c(v, i). We want to determine the minimum
cost of a k-coloring of G (provided that such colorings exist). Similarly as in
Section 10.3.1, for every color i ∈ [k] let us de�ne a function si : 2V (G) →
Z ∪ {+∞} such that for every X ⊆ V (G) we have

si(X) =

{∑
x∈X c(x, i) when X is an independent set,

+∞ otherwise.

Then,
(s1 ∗ s2 ∗ · · · ∗ sk)(X)

evaluated in the min-sum semiring is the minimum cost of a k-coloring
of G[X]. All these costs for all subsets X ⊆ V (G) can be found in time
2nnO(1)M logM log logM by applying Theorem 10.17 k − 1 times (or even
O(log k) times, as noted in Section 10.3.1). We have proved the following
theorem.

Theorem 10.18. Given a graph G, an integer k and a cost function c : V (G)×
[k]→ {−M, . . . ,M} one can compute in time 2nnO(1)M logM log logM the
minimum cost of a k-coloring of every induced subgraph of G.
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10.4 Multivariate polynomials

In this section, we are going to revisit the Longest Path problem introduced
in Section 5.2. Using randomization in a di�erent way and with the help of
algebra we will get a signi�cantly faster FPT algorithm. It is convenient
here to abuse the standard notation and by k-path we mean a path on k
vertices, while k-walk is a sequence of vertices v1, . . . , vk such that neighboring
vertices in the sequence are adjacent. Let us recall that in the Longest Path
problem, given a graphG and an integer k, we ask whether there is a k-path in
G. We begin with recalling two tools that play a crucial role in this approach.

Our �rst tool is the use of �nite �elds. Let us recall that a �eld is a triple
(F,+, ·), where F is a set and + and · are binary operations called addition
and multiplication. Both operations are associative and commutative and
multiplication distributes over addition. There are two elements 0, 1 ∈ F
such that 0 is the additive identity and 1 is the multiplicative identity. Finally,
every element of F has an additive inverse, i.e., for every a ∈ F there is an
element b ∈ F such that a + b = 0; and every element of F \ {0} has a
multiplicative inverse, i.e., for every a ∈ F \ {0} there is an element b ∈ F
such that a ·b = 1. The most common examples are the �elds of rational, real
and complex numbers. However, here we focus on �nite �elds, in particular,
�nite �elds of size 2s for some integer s.

It is known that for every prime p and integer s ≥ 1, there is a unique
�nite �eld (up to isomorphism) of size ps. Finite �elds of size p for a prime
p are easy to construct: we can simply take the set {0, 1, . . . , p − 1}, with
addition and multiplication modulo p. Constructing �elds of size ps for s ≥ 2
is more involved and describing these �elds in detail is beyond the scope of
this book. However, here we need to know just two basic facts about �elds of
size 2s:

� We can represent elements of a �eld of size 2s as bit vectors of length
s and perform �eld operations (addition, subtraction, multiplication,
division) on these bit vectors fast, i.e., in time O(s log s log log s).

� These �elds are of characteristic 2, i.e., 1 + 1 = 0. In particular, for
any element a, we have a+ a = a · (1 + 1) = a · 0 = 0.

The simplest �eld of characteristic 2 is the familiar GF(2), which corre-
sponds to the set {0, 1} with addition and multiplication modulo 2. In general,
if there is a �eld of size q ∈ N, then there is exactly one such �eld (up to
isomorphism) and it is denoted by GF(q).

We will be working with multivariate polynomials such as

c1x
2
1x3 + c2x

8
2x

3
3x4x5 + c3,
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interpreted over a �nite �eld F ; here c1, c2, c3 are constants from the �eld F .
Formally, recall that a (multivariate) monomial is an expression of the form
m = axc11 x

c2
2 · · ·xcnn , where a is an element of a ring F (in our case it will be a

�nite �eld), x1, . . . , xn are variables and c1, . . . , cn are nonnegative integers.
Note that the monomial m is a formal object represented by the sequence
(a, c1, . . . , cn). The degree of m is de�ned as

∑n
i=1 cn. Monomials with the

same power sequences (c1, . . . , cn) can be added using the distributive law,
i.e., axc11 x

c2
2 · · ·xcnn + bxc11 x

c2
2 · · ·xcnn = (a+ b)xc11 x

c2
2 · · ·xcnn .

A polynomial is a �nite sum of monomials, i.e., an expression of the form

p =
∑

(c1,...,cn)∈(N∪{0})n
ac1,...,cnx

c1
1 x

c2
2 · · ·xcnn , (10.4)

where the coe�cients ac1,...,cn are nonzero only for a �nite number of tu-
ples (c1, . . . , cn). We can then de�ne addition and multiplication on these
formal objects in the usual way. In such a way we get a ring, denoted by
F [x1, . . . , xn]. This ring has the (additive) zero element, namely the element
where all the coe�cients ac1,...,cn are equal to 0. The corresponding polyno-
mial is called the zero polynomial, or the identically zero polynomial. The
degree of the polynomial p is de�ned as the maximum degree of its mono-
mials in the expansion (10.4), i.e., max{∑n

i=1 ci : ac1,...,cn 6= 0}; the zero
polynomial has no degree.

As described above, a polynomial, which is a formal object, can be repre-
sented as a set of tuples of the form (a, c1, . . . , cn). We can also represent a
polynomial as an arithmetic circuit, with addition and multiplication gates,
where the input gates correspond to variables and coe�cients. The circuit
corresponds to an expression which, by applying the associativity of addition
and distributivity of multiplication over addition, can be reduced to an equiv-
alent expanded expression which is a sum of monomials, like (10.4). However,
note that the size of the expansion can be exponential in the size of the origi-
nal expression/circuit, e.g., the expansion of the expression

∏n
i=1(xi + 1) has

2n monomials. This is one of the crucial properties we exploit here: in the
polynomials we are going to use, the set of monomials corresponds to a huge
search space (e.g., the set of all k-vertex paths), but the whole polynomial
can be represented by a much smaller circuit.

A polynomial p on variables x1, . . . , xn can be evaluated in a given tuple
(x̃1, . . . , x̃n) of elements from the �eld F . By p(x̃1, . . . , x̃n) we denote the
value of an expression representing p where for every i ∈ {1, . . . , n} the
value x̃i substitutes the variable xi. Note that the arithmetic circuit that
represents the polynomial corresponds to an algorithm that computes the
evaluation (and the running time of the algorithm is linear in the number
of gates of the circuit). A polynomial p de�nes a function fp : Fn → F in
a natural way, i.e., fp(x̃1, . . . , x̃n) = p(x̃1, . . . , x̃n). It is however important
to note that if a function f corresponding to a polynomial in F [x1, . . . , xn]
evaluates to 0 for every argument (i.e., is the zero function), it does not imply
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that the polynomial is the identically zero polynomial (while the converse
obviously holds). Indeed, consider for example F = GF(2) (with addition and
multiplication modulo 2) and the polynomial x+x2 (see also Exercise 10.14).
Nevertheless, we note that for every function f : Fn → F there is at most
one polynomial p of degree smaller than the size of the �eld F such that for
every argument (x̃1, . . . , x̃n) ∈ Fn we have f(x̃1, . . . , x̃n) = p(x̃1, . . . , x̃n) (we
ask the reader to prove a slightly more general version of this statement in
Exercise 10.14).

Our second tool is the following claim, called the Schwartz-Zippel lemma.
It is well known that a nonzero univariate polynomial of degree d over the reals
has at most d roots, thus the roots are indeed very sparse. For multivariate
polynomials, we may have arbitrarily many roots; consider, for example, the
polynomial x1x2. The following lemma shows (in a discrete setting) that roots
of multivariate polynomials are sparse: when we randomly sample the values
of the variables from a �nite subset of the �eld, the probability of �nding a
root is small.

Lemma 10.19. Let p(x1, x2, . . . , xn) ∈ F [x1, . . . , xn] be a polynomial of de-
gree at most d over a �eld F , and assume p is not identically zero. Let S be a
�nite subset of F . Sample values a1, a2, . . . , an from S uniformly at random.
Then,

Pr(p(a1, a2, . . . , an) = 0) ≤ d/|S|.
Proof. We use induction on n. For n = 1, the claim follows from the well-
known fact that a nonzero univariate polynomial of degree at most d over a
�eld F has at most d roots. This can be proved by the polynomial remainder
theorem, which states that a polynomial p in a single variable x has a root r
if and only if polynomial x − r divides p in the ring F [x]. This implies that
a polynomial of degree at most d can have at most d di�erent roots.

Now consider n > 1. Let us rewrite the polynomial p as

p(x1, . . . , xn) =

d∑
i=0

xi1 · pi(x2, . . . , xn).

Let k be the largest index i such that the polynomial pi is not identically
zero; such a value k exists, since p is not identically zero. Note that pk is of
degree at most d − k. For sampled values of a2, . . . , an, de�ne a univariate
polynomial in x1:

q(x1) =

k∑
i=0

xi1 · pi(a2, . . . , an).

Let E1 be the event �q(a1) = 0� and let E2 be the event �pk(a2, . . . , an) = 0�.
By E2 we denote the complement of E2. Then,

Pr(p(a1, a2, . . . , an) = 0) = Pr(E1)

= Pr(E1 ∩ E2) + Pr
(
E1 ∩ E2

)
.
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By the induction hypothesis, Pr(E1 ∩ E2) ≤ Pr(E2) ≤ d−k
|S| . Hence it su�ces

to show that Pr
(
E1 ∩ E2

)
≤ k
|S| . When Pr

(
E2
)

= 0 the claim clearly holds.

Otherwise, Pr
(
E1 ∩ E2

)
= Pr

(
E1 | E2

)
Pr
(
E2
)
. Hence it su�ces to show that

Pr
(
E1 | E2

)
≤ k
|S| . Indeed, the event E2 depends only on the values of a2, . . . ,

an and for any �xed a2, . . . , an such that E2 is not true, q(x1) is a univariate
polynomial that is not identically zero (as xk1 has a nonzero coe�cient). This
means that q(x1) is of degree exactly k. Therefore, �xing a2, . . . , an such
that E2 is not true, there are at most k values of a1 for which q(a1) = 0,
hence we can bound the conditional probability Pr

(
E1 | E2

)
by k
|S| . ut

A typical algorithmic application of Lemma 10.19 has the following
scheme. We can e�ciently evaluate a polynomial p of degree d, and we
want to test whether p is a nonzero polynomial. Then, we pick S so
that |S| ≥ 2d and we evaluate p on a random vector s ∈ Sn. We answer
YES if we got p(s) 6= 0, and otherwise we answer NO. If p is the zero
polynomial, then we always answer NO, and otherwise we answer YES
with probability at least 1

2 . Hence we get a Monte Carlo algorithm with
one-sided error.

For example, assume we are given two functions f, g : F → F , for a �eld
F . The functions are given as (arbitrarily complicated) arithmetic circuits
with only addition, subtraction and multiplication gates, and we want to
test e�ciently whether f and g are equal. Note that f and g correspond to
polynomials represented by the circuits. Hence, the function f−g corresponds
to a polynomial p. We can easily bound the degree of p by a maximum number
d of multiplication gates on a leaf-to-root path in the circuits representing
f and g. We evaluate f − g in a random element of a �nite subset of the
�eld F larger than 2d, and we report that f = g if and only if we get 0. If
f = g, then we always get 0 and the answer is correct. Otherwise, p is not
the identically zero polynomial, so we answer NO with probability at least
1
2 . Note also that by repeating the algorithm, say log n times, we can lower
the error probability to O( 1

n ); see Chapter 5.
The problem described above is usually called Polynomial Identity

Testing, and the Schwartz-Zippel lemma provides an e�cient randomized
algorithm solving it. Actually, no deterministic analogue of this algorithm is
known, and providing such is considered a major open problem.

10.4.1 Longest Path in time 2knO(1)

We proceed to show the following theorem.
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Theorem 10.20. There is a one-sided error Monte Carlo algorithm with
false negatives that solves the Longest Path problem for directed graphs
in time 2knO(1) and polynomial space.

The general idea is clear: we want to �nd a polynomial P such that P
is nonzero if and only if the input graph G contains a k-path. What should
P look like? Assume that for every edge e of graph G we have a variable
xe, for every vertex v of G we have a variable yv, and P is a function of
all variables in {xe : e ∈ E(G)} ∪ {yv : v ∈ V (G)}. The �rst idea
could be to have a monomial for every k-path in the graph. However, since
counting k-paths is known to beW [1]-hard, at the �rst glance evaluating such
a polynomial fast seems infeasible: we could evaluate this polynomial over a
large �eld, say, the �eld of rationals, substituting 1 for every variable. As we
will see, it is possible to de�ne such polynomial, so that we can evaluate it
fast over �nite �eld of characteristic 2. However, to get to this point, let us try
something di�erent. Counting walks is easy, so assume that for every k-walk
v1, e1, v2 . . . , ek−1, vk in the graph we have the monomial

∏k−1
i=1 xei

∏k
i=1 yvi .

Then we can expect e�cient evaluation; however, instead of just paths, our
polynomial will also contain monomials for many unwanted walks. In other
words, instead of checking whether the polynomial is nonzero, we need to
verify whether it contains a multilinear monomial (i.e., a monomial where
every variable has degree at most 1) � such monomials are exactly the ones
that correspond to simple paths.

To overcome this di�culty, we extend our polynomial by considering
labelled walks, i.e., we introduce a monomial for every pair (W, `), where
W = v1, . . . , vk is a k-walk and ` : [k]→ [k] is a bijection. Thus, every vertex
vi gets a unique label (more precisely, if W visits a vertex v several times,
then every visit of v gets a unique label). It turns out that the monomials
corresponding to the non-path walks cancel out over �elds of characteristic
2. We now proceed to formal argumentation.

Our �nal polynomial P has variables of two kinds. For every edge (u, v) ∈
E(G) there is a variable xu,v and for every vertex v ∈ V (G) and a number
` ∈ [k] there is a variable yv,`. The vectors of all x- and y- variables are
denoted by x and y, respectively. We de�ne

P (x,y) =
∑

walk W = v1, . . . , vk

∑
` : [k]→[k]
` is bijective

k−1∏
i=1

xvi,vi+1

k∏
i=1

yvi,`(i). (10.5)

We treat the polynomial P as a multivariate polynomial over the �eld
GF(2dlog(4k)e). For labelled walk (W, `), we de�ne the monomial

monW,`(x,y) =

k−1∏
i=1

xvi,vi+1

k∏
i=1

yvi,`(i).
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Let us show the cancelling property of P .

Lemma 10.21.

P (x,y) =
∑

path W = v1, . . . , vk

∑
` : [k]→[k]
` is bijective

monW,`(x,y)

Proof. Let W = v1, . . . , vk be a walk, and let ` : [k] → [k] be a bijection.
Assume va = vb for some a < b, and if there are many such pairs, then take
the lexicographically �rst one. We de�ne `′ : [k]→ [k] as follows:

`′(x) =


`(b) if x = a,

`(a) if x = b,

`(x) otherwise.

By the de�nition of `′, we have that `(a) = `′(b) and `(b) = `′(a). Since
va = vb, this means that yva,`(a) = yvb,`′(b) and yvb,`(b) = yva,`′(a). Note that
(W, `) 6= (W, `′) since ` is injective. However, the monomials corresponding
to (W, `) and (W, `′) are the same:

monW,` =

k−1∏
i=1

xvi,vi+1

k∏
i=1

yvi,`(i)

=

k−1∏
i=1

xvi,vi+1

∏
i∈[k]\{a,b}

yvi,`(i) · yva,`(a)yvb,`(b)

=

k−1∏
i=1

xvi,vi+1

∏
i∈[k]\{a,b}

yvi,`′(i) · yvb,`′(b)yva`′(a) = monW,`′ .

By de�ning `′, we have de�ned a mapping that maps a pair (W, `) to a pair
(W, `′) such that the monomials monW,` and monW,`′ are identical. Applying
this mapping to (W, `′), we get (W, `) back: we again swap the values of `′(a)
and `′(b). This means that we have paired up all the labelled non-path walks
and for every such pair the two corresponding monomials are identical, so
they cancel out because the �eld is of characteristic 2. ut

Now, let W be a path and let ` : [k] → [k] be a bijection. Consider the

monomial monW,` =
∏k−1
i=1 xvi,vi+1

∏k
i=1 yvi,`(i). We see that since W is a

path, from monW,` we can uniquely recover (W, `) and hence there are no more
labelled walks that correspond to monW,`. Hence the monomial corresponding
to (W, `) does not cancel out, implying that P is a polynomial that is not
identically zero. Together with Lemma 10.21, this observation implies the
following.

Corollary 10.22. P is not the identically zero polynomial if and only if the
input graph G contains a k-path.
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The only missing element now is how to evaluate P at given vector (x,y)
e�ciently. At this point we need a generalized, weighted version of the
inclusion�exclusion principle. We state it below with a proof, which is al-
most the same as in the unweighted version (Theorem 10.1). If R is a ring
and w : U → R is a weight function then the weight of a set X ⊆ U is de�ned
as w(X) =

∑
x∈X w(x).

Theorem 10.23 (Weighted inclusion�exclusion principle). Let A1, . . . ,
An be a family of sets of a �nite set U . Denote

⋂
i∈∅(U \Ai) = U . Then

w

 ⋂
i∈[n]

Ai

 =
∑
X⊆[n]

(−1)|X| ·w
(⋂
i∈X

(U \Ai)
)
. (10.6)

Proof. Consider any element e ∈ U . Let k be the number of sets Ai that
contain e and let Ai1 , . . . , Aik be these sets. Note that e ∈ ⋂i∈X(U \ Ai) if
and only if X ∩ {i1, . . . , ik} = ∅. Hence w(e) appears in the right-hand side
of (10.6) multiplied by

∑
X⊆[n]\{i1,...,ik}

(−1)|X| =

n−k∑
j=0

(
n− k
j

)
(−1)j = (1− 1)n−k = [k = n].

This coincides with the contribution of w(e) to the left-hand side of (10.6).
ut

Let us �x a walk W . De�ne the universe U as the set of all functions
` : [k] → [k] and for every ` ∈ U de�ne the weight w(`) = monW,`(x,y).
Finally, for i ∈ {1, . . . , k} let Ai = {` ∈ U : `−1(i) 6= ∅}, that is, the set of
those mappings that contain i in their images. Then

⋂
i∈[k]Ai is the set of

all surjective mappings. A mapping ` : [k]→ [k] is surjective if and only if it
is bijective. Therefore, we have

∑
` : [k]→[k]
` is bijective

monW,`(x,y) =
∑

` : [k]→[k]
` is surjective

monW,`(x,y) = w

(
k⋂
i=1

Ai

)
. (10.7)

Furthermore, by (10.6),
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w

(
k⋂
i=1

Ai

)
=
∑
X⊆[k]

(−1)|X| ·w
(⋂
i∈X

(U \Ai)
)

(by (10.6))

=
∑
X⊆[k]

w

(⋂
i∈X

(U \Ai)
)

(characteristic 2)

=
∑
X⊆[k]

∑
` : [k]→[k]\X

monW,`(x,y)

=
∑
X⊆[k]

∑
` : [k]→X

monW,`(x,y). (reordering terms)

(10.8)

In the second equality, the (−1)|X| term disappears because −1 = 1 if we
use a �eld of characteristic 2 (this is not crucial; it just simpli�es the formulas
a bit). In the third equality, we observe that

⋂
i∈X(U \ Ai) contains those

labellings ` whose images are disjoint from X. Combining Lemma 10.21 with
(10.7) and (10.8), we get

P (x,y) =
∑

path W

∑
` : [k]→[k]
` is bijective

monW,`(x,y) (Lemma 10.21)

=
∑

walk W

∑
X⊆[k]

∑
` : [k]→X

monW,`(x,y) (by (10.7) and (10.8))

=
∑
X⊆[k]

∑
walk W

∑
` : [k]→X

monW,`(x,y). (reordering terms)

(10.9)
For a �xedX ⊆ [k], let us denote PX(x,y) =

∑
walk W

∑
` : [k]→X monW,`(x,y).

From (10.9), it now follows that evaluating P boils down to 2k evaluations of
polynomials PX . As the following lemma shows, this is a standard dynamic-
programming exercise. Note that the dynamic programming works in polyno-
mial time unlike many other dynamic-programming algorithms in this chap-
ter.

Lemma 10.24. Let X ⊆ [k]. The polynomial PX can be evaluated using
O(km) �eld operations.

Proof. Using dynamic programming, we �ll a two-dimensional table T , de-
�ned as follows

T [v, d] =
∑

walk W = v1, . . . , vd
v1 = v

∑
` : [d]→X

d−1∏
i=1

xvi,vi+1

d∏
i=1

yvi,`(i).

Then,
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T [v, d] =


∑
`∈X

yv,` when d = 1,∑
`∈X

yv,`
∑

(v,w)∈E(G)

xv,w · T [w, d− 1] otherwise.

In the above recurrence we check all the possibilities for the label of v and

for the second vertex w on the walk. Hence, PX(x,y) =
∑

s∈V (G)

T [s, k] can be

evaluated using O(km) �eld operations. ut

It follows that the value of P for a given assignment of its variables can
be evaluated using O(2kkm) �eld operations. The algorithm now proceeds
as follows. We evaluate P over a vector of random elements from the �eld
of size 2dlog(4k)e ≥ 4k, and we return NO if we get 0; otherwise we return
YES. Since P is of degree at most 2k−1, the Schwartz-Zippel lemma tells us
that if there is a k-path, i.e., P is nonzero, then the evaluation returns zero
(and we report a wrong answer) with probability at most 1/2. This proves
Theorem 10.20.

Let us stop for a while and think about the connections between the
2knO(1) algorithm above and the (2e)knO(1) color coding-based algorithm
from Section 5.2. In both approaches, we are �ghting against collisions: we
want to consider only those walks where every vertex appears at most once.
In the color coding approach, we guess a coloring of vertices in k colors, hop-
ing that vertices of a k-path get k di�erent colors. Testing whether such a
colorful path exists was done using dynamic programming over all subsets
of the set of colors. However, it can be also done in polynomial space using
the inclusion�exclusion principle � this is the topic of Exercise 10.17. If the
reader solves this exercise, then it will turn out that for every set of colors
X, it requires counting the k-walks that have vertices colored with colors
of [k] \ X only. This in turn can be done by dynamic programming very
similar to the one that was used to evaluate polynomial PX , where labels
correspond to colors. It seems that, thanks to the algebraic tools, we were
able to get rid of the need for sampling the required coloring (or, in a way,
we iterated over the whole probabilistic space almost for free). Indeed, there
are more examples of problems that were �rst solved by color coding, and
then faster algorithms with the techniques from this chapter were developed
(see Exercises 10.19 and 10.20).

Finally, we remark that the use of the inclusion�exclusion formula for
getting rid of the bijectivity requirement is not the only way to obtain the
running time of 2knO(1). Perhaps a simpler solution is to use dynamic pro-
gramming, and compute the entries of the following table, for every subset
X ⊆ [k] and vertex v ∈ V (G).
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T [X, v] =
∑

walk W = v1, . . . , v|X|
v1 = v

∑
` : [|X|]→[k]
`([k])=X

|X|−1∏
i=1

xvi,vi+1

|X|∏
i=1

yvi,`(i).

(The reader can notice yet another connection with color coding here; in-
deed, this dynamic programming resembles determining the existence of
a colorful path in Lemma 5.5.) Notice that after computing table T the
evaluation of polynomial P is obtained easily using the formula P (x,y) =∑
v∈V (G) T [[k], v]. However, such an algorithm uses exponential space.

10.4.2 Longest Path in time 2k/2nO(1) for undirected
bipartite graphs

In this section we deal with an undirected bipartite graph G with bipartition
V (G) = V1 ∪ V2. Our goal is to accelerate the algorithm from the previous
section to time 2k/2nO(1) = 1.42knO(1). For simplicity, assume that k is even.
Recall that the exponential factor in the running time of that algorithm
depends on the number of labels used only. Can we use just k/2 labels? An
obvious attempt in this direction is to label only those vertices of the walks
that are in V1. This simple idea almost works. Our new polynomial would be
the following:

Q0(x,y) =
∑

walk W = v1, . . . , vk
v1∈V1

∑
` : [k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi,vi+1

k/2∏
i=1

yv2i−1,`(i). (10.10)

Again, let us denote monW,` =
∏k−1
i=1 xvi,vi+1

∏k/2
i=1 yv2i−1,`(i).

There are three di�erences between the above polynomial and the polyno-
mial of (10.5). First, a minor one, is that we sum over walks that begin in V1.
Since G is bipartite and k is even, every path on k vertices has one endpoint
in V1 and the other in V2, so we do not lose any path. Second, the labelling
bijection has domain/co-domain of size k/2. The meaning of this is that for
a pair (W, `), for every i ∈ {1, . . . , k/2}, the vertex v2i−1 gets label `(i). Note
that all these vertices lie in V1, while the other vertices of the walk are in V2.
Third, since now we are working with undirected graphs, the edge variables
are indexed with unordered pairs of vertices (so xuv = xvu).

Observe that, as before, for a path W and bijection ` : [k/2] → [k/2], we
can uniquely recover (W, `) from monW,`, hence the monomial corresponding
to (W, `) does not cancel out. It remains to show that non-path walks do
cancel out. Consider a non-path labelled walk (W, `), W = v1, . . . , vk. Since
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W
vi = vj

W ′
vi = vj

Fig. 10.2: The problematic case. The white vertex belongs to V1 and the grey
vertex belongs to V2

W is not a path, there exist some pairs (i, j) such that i < j and vi = vj . Let
us call such pairs bad. There are two cases to verify.

Case 1. There exists a bad pair (i, j) such that vi = vj ∈ V1. If there are
several such bad pairs (i, j), we pick the lexicographically �rst one. Note that
both vi and vj have labels, so we can get a di�erent labelling `′ by swapping
their labels, i.e., swapping the values of `( i+1

2 ) and `( j+1
2 ). The monomials

mon(W, `) and mon(W, `′) are exactly in the same so we can proceed as in
Lemma 10.21.

Case 2. For all the bad pairs (i, j), we have vi = vj ∈ V2. Again we pick
the lexicographically �rst bad pair (i, j). Now vertices vi and vj do not have
labels, so we cannot use the swapping trick. The new idea is to use the fact
thatG is undirected and reverse the closed walk vi, vi+1, . . . , vj . LetW

′ be the
new k-walk. We also reverse the order of labels on the closed walk, i.e., in the
new labelling `′, for every t ∈ {1, . . . , j−i2 }, we put `′( i2 + t) = `( j2 + 1− t) (so
that every vertex receives the same label as before), and otherwise `′ is equal
to `. It is easy to see that mon(W, `) = mon(W ′, `′) as desired. Moreover,
if we start from (W ′, `′) and follow the same way of assignment, then we
get (W, `) again. The last thing to check is whether we really create pairs in
this way, i.e., whether (W ′, `′) 6= (W, `). This is true when the closed walk
vi, vi+1, . . . , vj is of length greater than 2, because then it visits V1 at least
twice and `′ 6= ` (because ` is injective). However, in the only remaining case,
when the closed walk is of length 2, ` = `′. Moreover, if we reverse a closed
walk of length 2 we get exactly the same walk, so W = W ′ (see Fig. 10.2).
So the case with a closed walk of length 2 is problematic.

We see that the polynomial Q0 de�ned in 10.10 does not work, but it
is quite close to what we need. Can we �x it? The most naive thing to do
is to modify the polynomial to exclude the problematic case. Surprisingly,
this works. We say that a walk v1, . . . , vk is admissible2 when for every i ∈
{1, . . . , k − 2}, if vi ∈ V2 and vi+1 ∈ V1 then vi+2 6= vi. De�ne

2 The condition vi+1 ∈ V1 seems redundant here, but we will use the same de�nition for
general graphs in Section *10.4.3.
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Q(x,y) =
∑

walk W = v1, . . . , vk
v1∈V1

W is admissible

∑
` : [k/2]→[k/2]
` is bijective

k−1∏
i=1

xvi,vi+1

k/2∏
i=1

yv2i−1,`(i)︸ ︷︷ ︸
mon(W,`)

. (10.11)

Note that for a path W and bijection ` : [k/2] → [k/2], the monomial
mon(W, `) does not cancel out as before. Also, the proof for Case 1 is valid
again (we do not change the walk so it stays admissible). In Case 2, we
also get mon(W, `) = mon(W ′, `′) and now, since W is admissible, we avoid
the problematic case and (W ′, `′) 6= (W, `). However, we need also to verify
whether W ′ is admissible. Let (i, j) be de�ned as in Case 2. Assume W ′ =
w1, . . . , wk is not admissible, i.e., for some t ∈ {2, . . . , k− 1} we have wt−1 ∈
V2, wt ∈ V1 and wt+1 = wt−1. If t ≤ i − 1 or t ≥ j + 1 then the same
sequence appears in W , so W is not admissible, a contradiction. Similarly, if
t ∈ {i+1, . . . , j−1}, then the same sequence appears inW in reversed order,
contradiction again. Hence t ∈ {i, j}. However, since vt ∈ V1 then Case 1
would apply, a �nal contradiction.

Corollary 10.25. Q is not the identically zero polynomial if and only if the
input graph G contains a k-path.

Now it remains to show that Q can be evaluated in time 2k/2nO(1). Exactly
in the same way as in Section 10.4.1, from the inclusion�exclusion principle
we derive the following

Q(x,y) =
∑

X⊆[k/2]

∑
admissible walk W

∑
` : [k/2]→X

monW,`(x,y).

For a �xed X ⊆ [k/2], we de�ne polynomial

QX(x,y) =
∑

admissible walk W

∑
` : [k/2]→X

monW,`(x,y).

For every X ⊆ [k/2], the polynomial QX can be evaluated in polynomial
time, by a standard extension of the dynamic programming described in the
proof of Lemma 10.24. We leave the details for the reader as Exercise 10.21
(the crux is to keep track of not only the �rst vertex of the walk, but also of
the second one). This �nishes the proof of the following theorem.

Theorem 10.26. There is a one-sided error Monte Carlo algorithm with
false negatives which solves the Longest Path problem for undirected bi-
partite graphs in time 2k/2nO(1) = 1.42knO(1) and polynomial space.
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f(1) f(2)

f(3)

f(5) f(4)

f(6)

Fig. 10.3: Enumerating labelled objects in a walk by function f . The white
vertices belong to V1 and the grey vertices belong to V2

*10.4.3 Longest Path in time 23k/4nO(1) for undirected
graphs

In this section, we extend the algorithm for bipartite graphs to arbitrary (but
still undirected) graphs, at the cost of worse running time of 23k/4nO(1) =
1.69knO(1). Recall that to improve over the 2knO(1)-time algorithm it su�ces
to reduce the number of labels. We will mimic the bipartite case. We begin
with choosing a random bipartition V = V1∪V2, i.e., every vertex is assigned
to V1 or V2 with equal probability 1/2. We use labelled walks again, but this
time we label not only vertices from V1 but also V2V2-edges, i.e., every edge
that has both endpoints in V2. How many labels should we use? To label a
walk v1, . . . , vk we need:

� a di�erent label for each i ∈ {1, . . . , k} s.t. vi ∈ V1, and
� a di�erent label for each i ∈ {1, . . . , k} s.t. vi, vi+1 ∈ V2.

For every i ∈ {1, . . . , k/2}, either one of {v2i−1, v2i} is in V1 or both of
them are in V2, so we need at least k/2 labels. However, if the walk W lies
entirely in V1 or V2, then we need k or k − 1 labels, and then our approach
will bring us only to 2knO(1) running time. In order to use less labels, we
will not consider all the walks. For an integer K, a walk W = v1, . . . , vk is
L-admissible when it is admissible (in the same sense as in Section 10.4.2)
and |{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}| = L. Note that in an L-admissible
walk, we can label all its visits of V1-vertices and V2V2-edges using L di�erent
labels.

The polynomial we are about to de�ne contains standard variables xv,w
and ye,` that we used in the previous sections, however now in the variables
ye,` the index e can be either a vertex or a V2V2-edge. There are also new
variables zu for each u ∈ V (G). Likewise, the vector of variables zu shall be
denoted by z. The reason we add these variables shall be explained later.
Now, for every L, let us de�ne a polynomial

RL(x,y, z) =
∑

walk W = v1, . . . , vk
W is L-admissible

∑
` : [L]→[L]
` is bijective

zv1

k−1∏
i=1

xvivi+1

L∏
i=1

yfW (i),`(i),
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where fW (i) is the i-th labelled object (V1-vertex or V2V2-edge) in walk W ,
in the order of visiting vertices/edges by the walk (see Fig. 10.3). Again, the

term zv1
∏k−1
i=1 xvivi+1

∏L
i=1 yfW (i),`(i) corresponding to one labelled walk will

be denoted by mon(W, `).
The �nal polynomial for the non-bipartite case is de�ned as follows:

R =

d 34ke∑
L=k/2

RL.

Note that we use d 34ke labels only. However, can we really ignore all the walks
that are not (≤ d 34ke)-admissible? Note that if there is a k-path in G, but all
the k-paths are not (≤ d 34ke)-admissible, the polynomial R can be the zero
polynomial, so the analogue of Corollary 10.22 does not hold! Nevertheless,
recall that whether a path is L-admissible or not depends on the chosen
random bipartition of V (G), and if there is a k-path we are allowed to make
a mistake with a small probability. Fix a k-path P = v1, . . . , vk. For the
random choice of bipartition (V1, V2), consider a random variable

L(P ) = |{i : vi ∈ V1}|+ |{i : vivi+1 ∈ V2}|.

By the linearity of expectation we infer

E(L(P )) =
k

2
+
k − 1

4
=

3k − 1

4
.

It follows that sometimes P should be (≤ d 34ke)-admissible. We can bound
it more precisely using Markov's inequality, which states that Pr(X ≥ a) ≤
E(X)/a holds for every nonnegative random variable X and positive a.

Pr
(
P is not L-admissible for all L ≤ d 34ke

)
≤ (3k − 1)/4

d 34ke+ 1
= 1−Ω(k−1).

Moreover, it is easy to check that for any bijection ` : [L(P )]→ [L(P )], from
mon(P, `) we can uniquely recover P and `. Note that here we need the
new zv1 factor, because without it the monomial mon(P, `) corresponds to
two labelled walks: one which traverses P from v1 to vk and another which
goes in the other direction. Hence the analogue of the `⇐' implication of
Corollary 10.22 is as follows.

Corollary 10.27. If the input graph G contains a k-path, then the polynomial
R is not identically zero with probability Ω(k−1).

Although the success probability may seem to be small, observe that, as
our algorithm has one-sided error, it is enough to repeat it k log n times
and the failure probability drops to (1− Ω(k−1))k logn = (e−Ω(k−1))k logn =
e−Ω(logn) = 1/nΩ(1).
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Now we proceed to show that if the polynomial R is nonzero, then G
contains a k-path. In other words, we show that non-path walks cancel out.
Consider a non-path labelled L-admissible walk (W, `), whereW = v1, . . . , vk
and L ≤

⌈
3
4k
⌉
. The analysis of Case 1 from the bipartite case is still valid.

In Case 2 (i.e., whenever vi = vj then i = j or vi ∈ V2), we choose the
lexicographically �rst pair (i, j) such that vi = vj (hence vi ∈ V2). We pair
up the labeled walk (W, `) with a new labelled walk (W ′, `′), which is obtained
from (W, `) by reversing the closed walk vi, vi+1, . . . , vj , and also reversing
the order of labels on this closed walk. The same argumentation as in the
bipartite case shows that W ′ is L-admissible, and that (W ′, `′) is assigned
back to (W, `).

By the de�nition of (W ′, `′), we have that {(fW (i), `(i)) : i = 1, . . . , L} =
{(fW ′(i), `′(i)) : i = 1, . . . , L}. It follows that mon(W, `) = mon(W ′, `′).
Let us show that (W ′, `′) 6= (W, `). Assume W = W ′. This means that
vi, vi+1, . . . , vj = vi, vj−1, . . . , vi. In other words, if we put t = (i+ j)/2, then
our closed walk follows a walk from vi to vt and back:

vi, vi+1, . . . , vj = vi, vi+1, . . . , vt−1, vt, vt−1, . . . , vi+1, vi.

Note that vi+1, . . . , vt−1 ∈ V2 for otherwise Case 1 applies. Moreover, vt ∈ V2,
for otherwise the closed walk vt−1vtvt+1 makesW not admissible, a contradic-
tion. Hence, the closed walk being reversed contains at least two V2V2-edges.
We reverse the order of labels assigned to these edges, so `′ 6= `. Thus we
have shown that (W ′, `′) 6= (W, `). Moreover, if we follow the same way of
assignment we get (W, `) again, so just as in the previous sections we parti-
tioned all the non-path labelled walks into pairs with the same monomials.
This means that the monomials cancel out as required.

Now it remains to show that for every i = k/2, . . . , d3k/4e, the polynomial
Ri can be evaluated in time 2inO(1). As in the bipartite case, using inclusion�
exclusion this reduces to a standard exercise in dynamic programming. To
enumerate the walks W with L(W ) = i we additionally keep track of the
number of V1-vertices and V2V2 edges. The details of this simple adjustment
are left to the reader. This proves the following.

Theorem 10.28. There is a one-sided error Monte Carlo algorithm with
false negatives which solves the Longest Path problem for undirected graphs
in time 23k/4nO(1) = 1.69knO(1) and polynomial space.

Let us �nally make a note on the derandomization of the algorithms for
Longest Path discussed in this chapter. In Section 5.6, we explain how ran-
domized algorithms based on color coding can be derandomized by a small
additive cost O(log2 k) in the exponent. It is not clear at all if a similar result
can be claimed for algorithms from this chapter based on monomial testing.
We will explain in Chapter 12 (Theorem 12.37) how techniques based on rep-
resentative sets of matroids can be used to obtain a deterministic 2.619knO(1)-
time algorithm for Longest Path.
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Exercises

10.1 (l). Derive Theorem 10.2 from Theorem 10.1 using De Morgan's laws.

10.2 (l). Let A be an adjacency matrix of a directed graph G over the vertex set [n],
i.e., aij = [(i, j) ∈ E(G)] for i, j = 1, . . . , n. For a positive integer k, let M = Ak. Show
that for every i, j = 1, . . . , n, the number of length k walks from i to j is equal to mij .

10.3 (l). Prove Observation 10.4.

10.4 (l). Show that the number of length ` branching walks in an n-vertex graph can
be represented using O(` logn) bits.

10.5. Knowing that counting k-vertex paths in FPT time implies that FPT = W[1] by
a result of Flum and Grohe [188], show that it is impossible to count solutions for the
Steiner Tree problem, unless FPT = W[1].

10.6. The algorithms for Hamiltonian Cycle and Steiner Tree tree presented in this
chapter su�er a multiplicative O(n logO(1) n) overhead in the running time because of
performing arithmetic operations on O(n logn)-bit numbers. Show that one can shave this
overhead down to O(logn) at the cost of getting a one-sided error Monte Carlo algorithm
with false negatives occurring with probability O(n−1).

10.7. In the TSP problem, we are given a complete graph with a weight function w :
V 2 → {0, . . . ,W} and the goal is to �nd a Hamiltonian cycle H of the smallest weight
(i.e.,

∑
uv∈E(H) w(u, v)). Describe a 2nnO(1) ·W -time, WnO(1)-space algorithm for the

TSP problem.

10.8 (l). In the List Coloring problem, we are given a graph G and for each vertex
v ∈ V (G) there is a set (also called a list) of admissible colors L(v) ⊆ N. The goal is to
verify whether it is possible to �nd a proper vertex coloring c : V (G)→ N of G such that
for every vertex v we have c(v) ∈ L(v). In other words, L(v) is the set of colors allowed for
v.

Show a 2nnO(1)-time algorithm for List Coloring.

10.9. Show an algorithm which computes the number of perfect matchings in a given n-
vertex bipartite graph in 2n/2nO(1) time and polynomial space. (The solution is called
Ryser's Formula.)

10.10 (l). Prove Proposition 10.10.

10.11 (l). Show that (Z ∪ {+∞},min,+) is a semiring.

10.12 (l). Modify the proof of Theorem 10.17 to get an algorithm for cover product in
min-sum semirings.

10.13. The packing product of two functions f, g : 2V → Z is a function (f ∗p g) : 2V → Z
such that for every Y ⊆ V ,

(f ∗p g)(Y ) =
∑

A,B⊆Y
A∩B=∅

f(A)g(B).

Show that all the 2|V | values of f ∗p g can be computed in 2nnO(1) time, where n = |V |.
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10.14. Let p be a polynomial in n variables over the �nite �eld GF(q), such that the degree
of p in each variable (i.e., the maximum exponent of a variable) is strictly less than q. Show
that if p evaluates to zero for every argument (i.e., p corresponds to the zero function),
then all the coe�cients of p are zero (p is the identically zero polynomial).

10.15. Let f be a function f : GF(q)n → GF(q) that corresponds to a polynomial (possibly
of large degree). Show that there is exactly one polynomial p that evaluates to f(x1, . . . , xn)

for every tuple (x1, . . . , xn) ∈ GF(q)n such that the degree of p in each variable (i.e., the
maximum exponent of a variable) is strictly less than q.

10.16. In the 2knO(1)-time algorithm for Longest Path, we introduced labels so that
the non-path walks pair up and hence cancel out. This resulted in O(2k) overhead in the
running time. In the 2k/2nO(1)-time algorithm for bipartite graphs we used a di�erent
argument for pairing-up non-path walks, by reversing closed subwalks. Does it mean that
we can skip the labels then? It seems we cannot, because then we solve Longest Path in
polynomial time! Explain what goes wrong.

10.17. Given a graph G and a coloring c : V (G)→ [k], verify in O(2k poly(|V |)) time and
polynomial space whether G contains a k-path with vertices colored with all k colors.

10.18. In theWeighted Longest Path problem, we are given a directed graph G with a
weight function w : E(G)→ {0, . . . ,W} and the goal is to �nd a k-path P of the smallest
weight (i.e.,

∑
uv∈E(P ) w(u, v)). Describe a 2k ·W · nO(1)-time polynomial space Monte

Carlo algorithm for this problem.

10.19. Describe a Monte Carlo 23knO(1)-time polynomial-space algorithm for the Trian-
gle Packing problem: given a graph G and a number k ∈ N, decide whether G contains
k disjoint triangles (subgraphs isomorphic to K3).

10.20. In the Colorful Graph Motif problem we are given a graph G, a coloring
c : V (G) → N, and a �nite set of colors M ⊆ N. Denote k = |M |. The goal is to decide
whether there is a subset S ⊆ V (G) of size k such that G[S] is connected, and c(S) = M .

(a) Describe a cknO(1)-time polynomial-space algorithm for a constant c, ideally a 2knO(1)-
time Monte Carlo algorithm.

(b) The same, but in the case whenM is a multiset (this version is called Graph Motif)?
(A)

10.21. Modify the dynamic programming from Lemma 10.24 to make it evaluate the
polynomials QX from Section 10.4.2.

Hints

10.5 Show that by counting appropriate Steiner trees one can compute the number of
k-vertex paths connecting a �xed pair of vertices.

10.8 Modify slightly the 2nnO(1)-time algorithm for the regular vertex coloring.

10.9 Inclusion�exclusion.

10.14 Use induction on the number of variables n, as in the proof of the Schwartz-Zippel
lemma.

10.15 To show that there is at least one such polynomial, consider any polynomial p cor-
responding to f and note that if p has a monomial that contains xri for some indeterminate
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xi, then by replacing xri by xr−qi we get another polynomial corresponding to f . To show
that there is at most one such polynomial, assume the contrary and use Exercise 10.14.

10.17 Modify the 2knO(1)-time algorithm for Longest Path.

10.18 There are at least two approaches. Perhaps the simplest approach is to consider
every possible weight i = 0, . . . , kW and check if there is a k-path of weight i by focusing
on walks of weight i only. Another approach could be to introduce a new variable z which
will not be evaluated and the degree of z in a monomial corresponds to the weight of the
relevant walk.

10.19 Use a similar approach as in the 2knO(1)-time algorithm for k-path from this
chapter.

10.20 Point (a) can be done using two approaches: reduce to Steiner Tree or proceed
as in Exercise 10.17 using branching walks. To get 2knO(1) running time in the latter
approach observe that one can use M as the set of labels. The extension to the multiset
variant is just a matter of technical details in the latter approach.

10.21 Keep track not only of the �rst vertex of the walk, but also of the second one.

Bibliographic notes

The principle of inclusion�exclusion is one of the most basic tools in combinatorics. The
books of Aigner [7], Ryser [408], and Stanley [418] contain detailed discussions of the
method. The application of the inclusion�exclusion principle for Hamiltonicity was redis-
covered several times. The algorithm running in time 2nnO(1) and using polynomial space
for the problem was given by Kohn, Gottlieb, and Kohn in 1969 [302]. It was rediscovered
in 1982 by Karp [282], and in 1993 by Bax [27, 28]. For an overview of the area of exact
exponential algorithms we refer the reader to surveys of Woeginger [436, 437] and the book
of Fomin and Kratsch [197].

The notion on branching walk and the poly-space O(2|K|nO(1))-time algorithm for
the unweighted Steiner Tree problem is due to Nederlof [374]. This algorithm can be
extended to the weighted case; as in Exercise 10.7 for integer edge weights bounded by C,
this comes at the cost of an O(C) factor in the time and space complexity. Nederlof and
Lokshtanov [329] show that the space can be improved to nO(1) logC, hence polynomial in
the input size, as opposed to nO(1)C, called pseudo-polynomial (the paper contains similar
consequences for other problems, like Subset Sum or Knapsack). However the running
times of polynomial-space algorithms in [329] is O(2|K|nO(1)C), which is not FPT. The
�rst algorithms for graph coloring with running time 2nnO(1) were given independently
by Björklund and Husfeldt and Koivisto (see the joint journal article [40]). The Möbius
inversion formula presented in this chapter can be seen as a generalization of the well-known
Möbius inversion formula from number theory. The version for the subset lattice is usually
attributed to Weisner [433] and Hall [255]. The fast zeta transform algorithm dates back to
Yates [441] but it was �rst used in the context of FPT algorithms by Björklund, Husfeldt,
Kaski and Koivisto [37], who presented also the algorithms for subset convolution and
cover product included in this chapter and also for packing product (Exercise 10.13). The
odd-negation transform is from lecture notes of Kaski [284]. The fast subset convolution
algorithm from [37] is faster by a factor of O(n) than the one presented in this chapter.
The Ryser formula (Exercise 10.9) is due to Ryser [408].

Koutis [305] was the �rst to observe that using algebraic methods one can enumerate all
k-walks and get the non-path walks cancelled. His approach was to directly check whether
a polynomial contains a multilinear monomial using group algebras. Koutis obtained a
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23k/2nO(1)-time algorithm which was next improved to 2knO(1) by Williams [435] with
similar methods. The idea of using bijective labellings to get the non-path walks can-
celled was discovered by Björklund [36] as a tool for his 1.66nnO(1)-time algorithm for
the Hamiltonian cycle problem in undirected graphs. It was next extended by Björklund,
Husfeldt, Kaski and Koivisto [39] to a 1.66knO(1)-time algorithm for k-path in undirected
graphs and the algorithms from Section 10.4 are based on this work. The slight speed-up
from 23k/4nO(1) = 1.682knO(1) to 1.66knO(1) is obtained by using

⌈
( 3
4
− ε)k

⌉
labels for

some ε > 0. This comes at the price of getting extremely low probability that the solu-
tion k-path is not �ltered out, so the whole algorithm needs to be repeated α(ε)n number
of times, for some function α. For the optimal choice of ε the overall time complexity is
1.66knO(1). Björklund [36] attributes this speed-up to Williams. Koutis' paper [305] con-
tains also the �rst 23knO(1)-time algorithm for triangle packing (Exercise 10.19) and the
currently best result is the 1.4933knO(1)-time algorithm of Björklund, Husfeldt, Kaski and
Koivisto [39]. The 2knO(1)-time algorithm for the multiset version of the Graph Motif
problem (Exercise 10.20) is due to Björklund, Kaski and Kowalik [41]. They also show that
the existence of a (2 − ε)knO(1)-time algorithm for the Graph Motif problem implies a
(2− ε′)knO(1)-time algorithm for Set Cover.

For the construction and properties of �nite �elds, see the textbook of Lidl and Nieder-
reiter [321]. For a �xed prime p, multiplication in a �nite �eld GF(pn) can be performed
in time O(n logn log logn) by applying the Schönhage-Strassen algorithm [410] for integer
multiplication (see [226]).

The Schwartz-Zippel lemma was found independently by DeMillo and Lipton [136],
Zippel [443] and Schwartz [413] (their formulations were not completely equivalent but
each of them would su�ce for our needs in this chapter). We use the name Schwartz-
Zippel lemma because it is well established in the literature.

Kabanets and Impagliazzo [279] show that the existence of a polynomial-time algo-
rithm for Polynomial Identity Testing would imply arithmetic circuit lower bounds
for NEXP, which would be a major breakthrough in computational complexity.

In all algorithms from Section 10.4 we could have used the isolation lemma (see Chap-
ter 11) instead of the Schwartz-Zippel lemma, at a price of signi�cantly higher polynomial
factors in the running time. The essence of the algorithms (cancelling of objects corre-
sponding to non-simple walks) stays the same. However, it is very enlightening to see the
other approach and be able to translate the algorithms from one approach to another. We
refer the reader to the paper of Fomin and Kaski [196] with an accessible exposition of a
2knO(1)-time k-path algorithm described in the framework of the isolation lemma.





Chapter 11

Improving dynamic programming on
tree decompositions

In this chapter we consider more sophisticated
dynamic-programming routines for graphs of bounded
treewidth, compared with the classic ones described in
Chapter 7. We give examples of algorithms based on
subset convolution, Cut & Count and rank-based ap-
proaches.

In Chapter 7 we have seen a few examples of straightforward dynamic
programming for graphs of bounded treewidth. The idea behind the design
of those algorithms was to use small vertex separators, namely the bags of the
tree decomposition, to extract succinct information about partial solutions
that is enough to carry on the construction of a �nal solution. In the case
of Dominating Set (see Section 7.3.2) for each vertex it was enough to
store one of its three possible states, which led to O(3k) states per node of
the tree decomposition. However the running time needed to perform the
computation in a straightforward manner in the join nodes was O(4k). In
Section 11.1 we consider the #Perfect Matchings problem and again the
Dominating Set problem, where the standard approach gives respectively
O(3k) and O(2k) states per node of the tree decomposition of width k, but
it is not clear how to obtain such a running time in join nodes. We show how
to obtain such running times by invoking the fast subset convolution from
Chapter 10.

Next, in Section 11.2 we deal with a class of problems with some kind of
global requirement in the problem de�nition, informally called connectivity
problems. For all of those problems the standard dynamic-programming ap-
proach gives kO(k) states per node, whereas we would like to have only single
exponential dependence on treewidth.

357
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First, we show a randomized approach called Cut & Count, which by
reduction to counting modulo 2, together with cut-based cancellation argu-
ments, gives us Monte Carlo algorithms with 2O(k) dependence on treewidth
(for the de�nition of Monte Carlo algorithms see Chapter 5).

In Section *11.2.2 we show how, by using tools from linear algebra, one
can obtain deterministic algorithms with similar running times (though with
a worse base of the exponential function). The main idea is to treat states
in the dynamic programming computation as vectors in a suitably de�ned
linear space. Even though seemingly this translation makes things more com-
plicated, it shows that linear dependence of vectors enables us to discard some
states and bound the number of considered states by 2O(k).

11.1 Applying fast subset convolution

In this section we apply fast algorithms for subset convolution developed
in Chapter 10 to obtain faster dynamic programs on graphs of bounded
treewidth.

11.1.1 Counting perfect matchings

Let us recall that a matching M of a graph G is perfect if all vertices of G
are matched by M , i.e., every vertex of G is an endpoint of some edge from
M . Consider the following #Perfect Matchings problem: given a graph
G, the task is to �nd the number of perfect matchings in G. This problem
is #P -complete and thus it is unlikely to be solvable in polynomial time.
We will show an e�cient FPT algorithm (parameterized by treewidth) which
applies the fast subset convolution described in Section 10.3.

We assume that we are given a nice tree decomposition T = (T, {Xt}t∈V (T ))
of graph G of width k. For each node t ∈ V (T ) and set S ⊆ Xt, we com-
pute c[t, S], which is the number of matchings in the graph G[Vt], the graph
induced by the vertices contained in Xt and the bags below Xt, such that:

� all vertices in Vt \Xt are matched,
� all vertices in S are matched to vertices in Vt \Xt, and
� all vertices in Xt \ S are unmatched.

Note that if r is a root of T then c[r, ∅] is the number of perfect matchings
in G. Let us describe how the nodes of the tree are processed.

Leaf node. Since in a nice tree decomposition each leaf corresponds to an
empty bag, the number of matchings that use no vertex equals 1, i.e., it is
the empty matching. Therefore we set c[t, ∅] = 1 for every leaf t.
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Introduce node. Let t′ be the child of an introduce node t andXt = Xt′∪{v}
for some v 6∈ Xt′ . Observe that the vertex v cannot be matched yet, as it
is not adjacent to vertices of Vt \ Xt. Hence, for every S ⊆ Xt, we have
c[t, S] = c[t′, S] if v /∈ S and c[t, S] = 0 if v ∈ S.
Forget node. Let t′ be the child of a forget node t, that is, for some w ∈ Xt′

we have Xt = Xt′ \ {w}. Then,

c[t, S] = c[t′, S ∪ {w}] +
∑

v∈S∩NG(w)

c[t′, S \ {v}],

where the �rst summand corresponds to the choice of matching w to a vertex
of Vt′ \ Xt′ , while the second summand (i.e., the sum over v ∈ S ∩ NG(w))
corresponds to matching w to a vertex of S.

Note that processing the leaf nodes, introduce nodes and forget nodes takes
2k · kO(1) time only. The join nodes are slightly more involved.

Join node. Let t1 and t2 be the children of a join node t. Thus Xt = Xt1 =
Xt2 . Note that if a vertex of Xt is matched to Vt\Xt then it is matched either
to Vt1 \Xt1 , or to Vt2 \Xt2 , but not to both since these sets are disjoint. Thus,

c[t, S] =
∑
A⊆S

c[t1, A] · c[t2, S \A].

The naive computation of the values of c[t, S] for all S ⊆ Xt using the above
formula takes time proportional to

∑
S⊆Xt 2|S| = 3|Xt| ≤ 3k+1. However, we

can treat the entries c[t, S] for a �xed node t as a function f : 2Xt → N such
that for every S ⊆ Xt we have f(S) = c[t, S]. Similarly, de�ne g, h : 2Xt → N
such that for every S ⊆ Xt we have g(S) = c[t1, S] and h(S) = c[t2, S]. Then,

c[t, S] = f(S) =
∑
A⊆S

g(A) · h(S \A).

In other words, computing c[t, S] for all subsets S is just computing the subset
convolution of g and h, which can be done in time 2|Xt| · |Xt|O(1) = 2k · kO(1)

by Theorem 10.15. Let us conclude with the following theorem.

Theorem 11.1. Let G be an n-vertex graph given together with its tree de-
composition of width k. Then one can �nd the number of perfect matchings
in G in time 2k · kO(1) · n.

11.1.2 Dominating Set

Recall the 4k · kO(1) · n-time algorithm for the Dominating Set problem
parameterized by treewidth k from Section 7.3.2. It turns out that it can
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be accelerated to time 3k · kO(1) · n using the fast subset convolution from
Section 10.3. Note that processing introduce nodes and forget nodes is already
fast enough. We will show here that for a join node t the values of c[t, f ] for
all the 3k functions f : Xt → {0, 0̂, 1} can be computed in time 3kkO(1).
Recall that

c[t, f ] = min
f1,f2
{c[t1, f1] + c[t2, f2]− |f−1(1)|},

where t1 and t2 are the children of t (recall that Xt1 = Xt2 = Xt in the
nice tree decomposition) and the minimum is taken over all colorings f1, f2 :
Xt → {0, 0̂, 1} consistent with f , that is,
� f(v) = 1 if and only if f1(v) = f2(v) = 1,
� f(v) = 0 if and only if (f1(v), f2(v)) ∈ {(0̂, 0), (0, 0̂)},
� f(v) = 0̂ if and only if f1(v) = f2(v) = 0̂.

Note that the above three conditions are equivalent to

� f−1(1) = f−11 (1) = f−12 (1),
� f−1(0) = f−11 (0) ∪ f−12 (0),
� f−11 (0) ∩ f−12 (0) = ∅.

One could think that the condition f−1(0̂) = f−11 (0̂) ∩ f−12 (0̂) is missing
here; however, note that it is implied by the �rst two.

The above considerations suggest that if we �x f−1(1), then what we want
to compute resembles the subset convolution. Let us follow this idea. Fix a
set R ⊆ Xt. Let FR denote the set of all functions f : Xt → {0, 0̂, 1} such
that f−1(1) = R. We want to compute the values of c[t, f ] for all f ∈ FR.

Note that every function f ∈ FR can be represented by a set S ⊆ Xt \R,
namely the preimage of 0. Hence we can de�ne the coloring represented by
S as

gS(x) =


1 if x ∈ R,
0 if x ∈ S,
0̂ if x ∈ Xt \ (R ∪ S).

Then for every f ∈ FR we have

c[t, f ] = min
A∪B=f−1(0)
A∩B=∅

(c[t1, gA] + c[t2, gB ])− |f−1(1)|.

For v ∈ {t1, t2}, we de�ne functions cv : 2Xti\R → N such that for every
S ⊆ Xt \R we have cv(S) = c[v, gS ]. We see that for every S ⊆ Xt \R,

c[t, gS ] = (ct1 ∗ ct2)(S)− |R|,

where the subset convolution is over the min-sum semiring (see Section 10.3.2).
Note that the table c stores integers bounded by the number of vertices in
the graph. Hence, by Theorem 10.17, we can compute c[t, f ] for every f ∈ FR
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in 2|Xt\R| · nO(1) time. Since
∑
R⊆Xt 2|Xt\R| = 3|Xt| ≤ 3k+1, the total time

spent for all subsets R ⊆ Xt is 3k · nO(1).

Theorem 11.2. Let G be an n-vertex graph given together with its tree de-
composition of width k. Then Dominating Set is solvable in time 3k ·nO(1).

In Exercise 11.3 we ask the reader to improve the dependence on n in
Theorem 11.2 from polynomial to linear.

11.2 Connectivity problems

In Section 7.3.3, we gave a standard dynamic-programming algorithm solving
Steiner Tree in time kO(k)n on graphs of treewidth k. The main reason this
approach su�ers from the kO(k) dependence on treewidth is that we have to
keep track of partitions into connected components. In this section we show
two methods that allow us to bypass the need to store all the possible parti-
tions. In Section 11.2.1 we describe a randomized approach which reduces the
decision variant of the problem to counting modulo 2, which as in Chapter 10
appears to be a fruitful approach. Next, in Section *11.2.2, we show a greedy
method based on tools from linear algebra that allow us to store only a single
exponential number of partitions.

11.2.1 Cut & Count

Assume that we are given a graph G, together with a set of terminals K ⊆
V (G), a tree decomposition T ofG, and an integer `. We are to decide whether
there exists a Steiner tree of size at most `. In other words we are to check
whether there is a connected subgraph ofG with at most ` edges containing all
the terminals K. Our strategy is �rst to solve the counting modulo 2 variant
of the problem, i.e., �nd the parity of the number of connected subgraphs of
G with at most ` edges spanning all the vertices of K. A priori this does not
seem to be easier than solving the decision variant, but as we are about to
see working modulo 2 allows cancellation tricks as in the case of �nite �elds
of characteristic 2 in Section 10.4.

Let R be the set of all subgraphs of G with at most ` edges containing
K, and let S be the set all solutions, i.e., all subgraphs from R which are
connected. A formal de�nition follows.

R = {H ⊆ G : |E(H)| ≤ `,K ⊆ V (H)} (11.1)

S = {H ∈ R : H is connected} (11.2)
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By straightforward methods we can not only �nd the parity of |R| but also
the value of |R| itself in time 2knO(1) (see Exercise 11.4). However this is not
exactly what we are after. We would like to use some kind of overcounting
argument, so that each element of R \ S would be counted an even number
of times, while each element of S would be counted an odd number of times.
For this reason we de�ne a family of cuts, which are just partitions of the set
of vertices V (H) into two sets V 1, V 2. We say that a subgraph H of G and
a cut (V 1, V 2) are consistent if no edge of H has its two endpoints on two

di�erent sides of the cut, i.e., when E(H) ⊆
(
V 1

2

)
∪
(
V 2

2

)
, where

(
X
2

)
denotes

all size 2 subsets of X (edges with both endpoints in X).
For a subgraph H of G let us ask ourselves a question, how many cuts

is the graph H consistent with? Since no edge of H can go across the cut,
each of its connected components has to be either entirely in V 1, or entirely
in V 2. Other than that we are free to choose the side of the cut for every
connected component of H independently. This means that a subgraph H
with c connected components is consistent with 2c cuts. This is almost perfect,
as all subgraphs with more than one connected component are consistent
with an even number of cuts, but unfortunately a connected subgraph H is
consistent with two subgraphs, instead of one subgraph as we would like it
to be. For this reason we select some arbitrary terminal vertex v1 ∈ K, and
�x it permanently into the V 1 side of the cut. For a subset W ⊆ V (G) and
v1 ∈ K de�ne

cuts(W, v1) := {(V 1, V 2) : V 1 ∪ V 2 = W ∧ V 1 ∩ V 2 = ∅ ∧ v1 ∈ V 1}.

Now we show that with the updated de�nition of cuts instead of calculating
the parity of |S| directly, we can count pairs consisting of a subgraph from
R and a cut consistent with it.

C = {(H, (V 1, V 2)) ∈ R× cuts(V (H), v1) : H is consistent with (V 1, V 2)} .
(11.3)

Lemma 11.3. The parity of |C| is the same as the parity of |S|.

Proof. Consider a graph H from R with c connected components. Each con-
nected component has to be contained either in V 1 or in V 2, as otherwise
there would be an edge crossing the cut. However, the connected component
of H containing v1 has to be contained in the V 1-side of the cut. Conse-
quently H is consistent with 2c−1 cuts, which is an odd number for H ∈ S
and an even number for H ∈ R \ S. ut

Therefore it remains to show how to compute the parity of |C| by standard
methods with only 2O(k) dependence on treewidth. The key observation is
that we can do that by storing local information only, that is, unlike in
Section 7.3.3, we do not need partitions in our dynamic programming state
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anymore. For each node t ∈ V (T ), an integer i ≤ `, and a function f : Xt →
{0, 1, 2} we compute c[t, f, i], which is the number of pairs (H, (V 1, V 2)), such
that:

� H is a subgraph of (Vt, Et) with exactly i edges, and H contains all the
vertices of K ∩ Vt,

� (V 1, V 2) is a cut consistent with H, i.e., V 1 ∪ V 2 = V (H), V 1 ∩ V 2 = ∅,
v1 6∈ V 2,

� the set of vertices of H intersecting the bag is exactly f−1(1) ∪ f−1(2),
i.e., V (H) ∩Xt = f−1(1) ∪ f−1(2),

� the function f describes how vertices of Xt \ f−1(0) are assigned to V 1

and V 2, that is, V j ∩ V (H) ∩Xt = f−1(j) for j ∈ {1, 2}.
We stop the description of the dynamic-programming routine here and

leave the details to the reader (see Exercise 11.5), as no new ideas are needed
from this point. The number of states we have de�ned is 3knO(1), and this is
also the running time of our algorithm computing |C|, which by Lemma 11.3 is
su�cient to �nd the parity of |S|. Consequently we established an algorithm
for the counting modulo 2 variant of Steiner Tree with 2O(k) dependence
on treewidth, which was our �rst goal.

It remains to show why solving the parity version of the problem is help-
ful when facing the decision version. In Chapter 10 we have already seen an
example of this, when we were working with polynomials in �elds of charac-
teristic 2. Here, we use an alternative to polynomial identity testing, which
is called the isolation lemma.

Consider the following experiment: we choose a large integer N and as-
sign to every edge e ∈ E(G) a weight w(e) ∈ {1, 2, . . . , N} uniformly and
independently at random. For a subgraph H ∈ R, we de�ne its weight as
w(H) =

∑
e∈E(H) w(e). For an integer w, let Rw = {H ∈ R : w(H) = w}

and similarly de�ne Sw and Cw. It is a standard task to adjust the aforemen-
tioned dynamic-programming algorithm to compute |Cw| for all reasonable
weights w, at the cost of an additional polynomial factor in n and N in the
running time bound. Intuitively, large N should ensure that in a yes-instance
the random choice of weights su�ciently shu�es the solutions among the
sets Sw such that for at least one weight w the set Sw is of odd size, and
we can detect it by computing |Cw|. The isolation lemma is an even stronger
statement: it asserts that it su�ces to take N = Ω(|E(G)|) to obtain, with
constant probability, at least one set Sw of size exactly 1.

Let us now proceed with a formal statement and proof of the isolation
lemma.

De�nition 11.4. A function w : U → Z isolates a set family F ⊆ 2U if there
is a unique S′ ∈ F with w(S′) = minS∈F w(S).

In the above de�nition w(X) denotes
∑
u∈X w(u).

Lemma 11.5 (Isolation lemma). Let F ⊆ 2U be a set family over a uni-
verse U with |F| > 0. For each u ∈ U , choose a weight w(u) ∈ {1, 2, . . . , N}
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uniformly and independently at random. Then

Pr(w isolates F) ≥ 1− |U |
N

.

Proof. Let u ∈ U be an arbitrary element of the universe U , which appears
in at least one set of F and does not appear in at least one set of F (note
that such an element does not need to exist). For such u we de�ne

α(u) = min
S∈F,u6∈S

w(S)− min
S∈F,u∈S

w(S \ {u}) . (11.4)

Note that α(u) is independent of the weight of w(u), as w(u) it not used at
all at the right-hand side of (11.4). Consequently

Pr(α(u) = w(u)) ≤ 1/N, (11.5)

since we can imagine that the weight w(u) is sampled in the end, when all
the other weights, and α(u) in particular, are already known.

Assume that there are two sets A,B ∈ F of minimum weight with respect
to w and let x be an arbitrary element of A \ B (note that A \ B 6= ∅ as all
the weights are positive). We have

α(x) = min
S∈F,x 6∈S

w(S)− min
S∈F,x∈S

w(S \ {x})

= w(B)− (w(A)−w(x))

= w(x) .

Hence if w does not isolate F then there is an element x and sets A,B ∈ F
such that x ∈ A \ B and α(x) = w(x). However, by (11.5) and the union
bound, this happens with probability at most |U |/N . ut

The reason Lemma 11.5 is useful for us is that it gives a reduction from the
decision version of the problem to the parity version as follows. Our universe is
U = E(G), and we put F = {E(H) : H ∈ S}. We sample an integral weight
w(e) from {1, . . . , 2|U |} for each element of the universe e ∈ U , i.e., for each
edge. For each w between 1 and 2|E|` we compute the parity of the number
of pairs in C, where the subgraph H is of weight exactly w with respect to w,
which can be easily handled by the dynamic-programming routine by adding
a polynomial overhead in the running time. If for some w the parity is odd,
we answer YES, otherwise we answer NO.

Even though there might be exponentially many solutions, that is elements
of S, with probability at least 1/2 for some weight w between 1 and 2|E|`
there is exactly one solution from S of weight w with respect to w. As a
corollary we obtain a Monte Carlo algorithm where the probability of error
is at most 1/2.
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Theorem 11.6. There is a one-sided error Monte Carlo algorithm with false
negatives which solves the Steiner Tree problem in time 3knO(1) given a
tree decomposition of width k.

The described technique may be applied to several problems, with a global
connectivity constraint, which we call connectivity problems. A list of such
problems will be given in Theorem 11.13. The general scheme of the approach
is as follows.

The Cut & Count technique may be applied to problems involving a
connectivity requirement. Let S ⊆ 2U be a set of solutions (usually
the universe U is the set of vertices or edges/arcs of the input graph);
we aim to decide whether it is empty. Conceptually, Cut & Count can
naturally be split into two parts:

� The Cut part: Relax the connectivity requirement by considering
the set R ⊇ S of possibly disconnected candidate solutions. Further-
more, consider the set C of pairs (X,C) where X ∈ R and C is a
consistent cut of X.

� The Count part: Isolate a single solution by sampling weights of
all elements in U . Compute |C| mod 2 using a sub-procedure. Non-
connected candidate solutions X ∈ R \ S cancel since they are con-
sistent with an even number of cuts. The only connected candidate
x ∈ S remains (if it exists).

Finally we note that not only is the general scheme of the presented tech-
nique rather simple, but it also gives small constants in the base of the ex-
ponent (e.g., see Exercises 11.6 and 11.7). As a matter of fact, often the con-
stants in the base of the exponent given by the Cut & Count approach are
optimal under the Strong Exponential Time Hypothesis (see Theorem 14.41).

*11.2.2 Deterministic algorithms by Gaussian
elimination

Even though the Cut & Count technique allowed us to break the kO(k) barrier,
it is natural to ask whether one can achieve single exponential dependence on
treewidth by a deterministic algorithm. Additionally the approach presented
in this section allows for smaller polynomial factors in the running time, and
at the same time is able to handle arbitrary real weights in optimization prob-
lems, which the Cut & Count technique inherently cannot capture. However,
the drawback of the new approach is a worse base of the exponential function
in the dependence on treewidth.
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Recall the standard dynamic-programming approach for the Steiner
Tree problem from Section 7.3.3. In this section we slightly change the
de�nition of a state as follows. For a bag Xt, a set X ⊆ Xt (a set of vertices
touched by a Steiner tree), and an integer i, we de�ne c[t,X, i] as the family
of all partitions P = {P1, P2, . . . , Pq} of X for which there exists a forest F
in (Vt, Et) such that

� |E(F )| = i, i.e., F has exactly i edges,
� F has exactly q connected components C1, . . . , Cq and for each s ∈
{1, . . . , q}, Ps ⊆ V (Cs). Thus the partition P corresponds to connected
components of F ;

� Xt ∩ V (F ) = X, i.e., vertices in Xt \X are untouched by F ;
� every terminal vertex from K ∩ Vt is in V (F ).

Note that there are two signi�cant di�erences between the dynamic pro-
gramming of this section and the one from Section 7.3.3. First, the size of
the Steiner tree under construction is explicitly stored in the state under the
variable i; earlier we just stored the minimum size as a table entry. Second,
instead of storing a partition as a part of the state description, we store it
in c[t,X, i], as c[t,X, i] is now a set family, not a number. It should be clear
that the dynamic-programming routine from Section 7.3.3 can be adjusted
to handle the new de�nition of a state in our table.1

The total space used in this algorithm is kO(k)nO(1), and the reason for
this is the number of possible partitions of the set X, i.e., the set of vertices
of the current bag touched by the Steiner tree under construction. Note that
the number of subsets X ⊆ Xt is at most 2k+1, which is single exponential,
hence it is enough if we could somehow consider not all the partitions but
only 2O(k) of them.

Fix a subset X ⊆ Xt and de�ne U = X. Let Π(U) be the set of all
partitions of U . A single set within a partition is called a block. For two
partitions P,Q ∈ Π(U) denote by P t Q the most re�ned partition R of
U , such that every block of both P and Q is contained in a single block of
R (in the partition lattice language P t Q is the join of P and Q). Less
formally, if we imagine two arbitrary graphs GP , GQ on the same vertex set
U , where the family of connected components of GP is P and the family
of connected components of GQ is Q, then P t Q corresponds to the set
of connected components in the union of GP and GQ (in particular if the
union of GP and GQ is connected, then P t Q = {U}). For example in a
universe of four elements {a, b, c, d}, and partitions P = {{a}, {b}, {c, d}} and
Q = {{a, b}, {c}, {d}}, we have P t Q = {{a, b}, {c, d}}.

Consider a very large matrixM. Each row and column ofM corresponds
to a partition of U . An entry in row P and column Q is equal to 1 if P t Q
is the single block partition {U}, and zero otherwise (see Fig. 11.1).

1 An observant reader probably noticed that with this new de�nition the total number of
states is quadratic in n. We ignore this loss at the moment as we will oust this additional
O(n) factor later.
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Intuitively each row of the matrix M is a partition corresponding to
some partial solution in the graph (Vt, Et), that is, the part of the graph
which we have seen so far in the decomposition. At the same time each
column ofM corresponds to a potential partition of X into connected
components by the part of the solution contained in E(G)\Et. A single
value in the matrix tells us whether two such parts of a solution, the one
which we have already constructed and the one we are still to construct,
are compatible, i.e., if when joined they give a connected subgraph.

De�nition 11.7. De�ne matrixM∈ {0, 1}Π(U)×Π(U) as

M[P,Q] =

{
1 if P t Q = {U},
0 otherwise.

It seems that the information encoded byM is excessive for keeping con-
nected sets in dynamic programming. For example, consider rows 2, 3, and
4 of the matrix M in Fig. 11.1 and let P , Q, and R be the partitions of U
corresponding to these rows. Observe that in each column of M the total
number of 1s in rows {P,Q,R}, is either zero, or at least two. Consequently,
for every partition X ∈ Π(U), if there is a partition S ∈ {P,Q,R}, such
that X t S = {U} (i.e., M[X,S] = 1), then there is also S′ ∈ {P,Q,R},
such that S′ 6= S, and X t S′ = {U}. This means that in our example, if
we have all three partitions P,Q,R in some family c[t,X, i] in the dynamic-
programming routine, then we can discard one of them! Unfortunately, we
do not know how to e�ciently check whether some partition is irrelevant
with respect to the mentioned criterion, as the number of columns of M is
|U |O(|U |) and we cannot a�ord iterating over all of them.

For this reason we pick a di�erent route. Now consider the �rst four rows of
the matrix and observe that their sum is a zero vector when we work in GF(2)
(see Section 10.4 for properties of �nite �elds). But when a sum of vectors is
a zero vector in GF(2), then for any column there is an even number of 1s,
and in particular there is no column with a single 1. Our strategy is to use
computation in GF(2) to show an upper bound on the rank ofM, as when we
have a subset of rows ofM of carnality greater than rank(M), there always
exists a subset summing to zero.

In order to prove a c|U | upper bound on the rank ofM we again consider
a class of simple partitions, namely cuts into two sets, just as we did in
Section 11.2.1. The following lemma shows that when operating in GF(2), the
matrix M can be decomposed into a product of two cutmatrices C, de�ned
as follows.

In De�nition 11.8, we use relation v on partitions, where P v Q when P
is coarser than Q, meaning that each block of Q is contained in a single block
of P , or in other words that Q is a re�nement of P .
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Fig. 11.1: Each row and column corresponds to a partition of a 4-element
universe, where the topmost vertex of a vertical graph corresponds to the
leftmost vertex of a horizontal graph. Each entry of this matrix is equal to
1 i� the union of the two graphs is connected, i.e., when the join of the two
partitions is the partition with a single block

De�nition 11.8. De�ne

cuts(U) := {(V 1, V 2) : V 1 ∪ V 2 = U ∧ V 1 ∩ V 2 = ∅ ∧ v1 ∈ V 1},

where v1 stands for an arbitrary but �xed element of U . De�ne a matrix
C ∈ {0, 1}Π(U)×cuts(U) by C[Q, (V 1, V 2)] = [(V 1, V 2) v Q]. In other words,
element (Q, (V 1, V 2)) of C is 1 if (V 1, V 2) v Q and 0 otherwise.

Matrix C represents which pairs of partitions and cuts are consistent, i.e.,
the partition needs to be a re�nement of the cut. It is crucial that one side of
the cut is �xed to contain a particular vertex since that allows the following
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argument via counting modulo 1: For each pair of partitions, the product CCT
can be seen to count the number of partitions that are consistent with both P
and Q. If P t Q = {U} then there is only one such partition, namely (U, ∅).
Otherwise, if P t Q is a partition with at least two sets, then there is an
even number of cuts that are consistent, as for each block of P t Q which
does not contain v1 ∈ V 1, we are free to put the block either entirely to V 1

or into V 2, independently of other blocks.

Lemma 11.9. It holds thatM≡2 CCT , where ≡2 denotes equality in GF(2).

Proof. For every P,Q ∈ Π(U) we have that

(CCT )[P,Q] =
∑

(V 1,V 2)∈cuts(U)

[(V 1, V 2) v P ] · [(V 1, V 2) v Q]

=
∑

(V 1,V 2)∈cuts(U)

[(V 1, V 2) v P ∧ (V 1, V 2) v Q]

=
∑

(V 1,V 2)∈cuts(U)

[(V 1, V 2) v P t Q]

= 2#blocks(P t Q)−1

≡2 [P t Q = {U}].

The crux here is that we count the number of cuts which are coarser than
both P and Q, i.e., cuts (V 1, V 2) ∈ cuts(U) such that each set of P or Q is
completely contained in V 1 or V 2. This is equivalent to a situation where each
block of P t Q is contained in V 1 or V 2. Considering the blocks of P t Q
it is clear that the block containing v1 must be in V 1, by the de�nition
of cuts(U). Any further block can be either in V 1 or V 2, which gives a total
of 2#blocks(P t Q)−1 coarser cuts. Clearly, that number is odd if and only if
there is a single block in P t Q (the one containing 1), i.e., if P t Q = {U}.

ut

Based on Lemma 11.9 we prove that instead of looking for linear depen-
dence between rows in M we can in fact look for linear dependence in C,
which is much more convenient as C has a single exponential (with respect
to |U |) number of columns, while M does not. The following lemma proves
that given a set of partitions linearly dependent in C we can discard any one
of them. (Here, C[Q, ·] denotes the row of C corresponding to the partition
Q.)

Lemma 11.10. Let X ⊆ Π(U) and P,R ∈ Π(U) such that C[P, ·] ≡2∑
Q∈X C[Q, ·] and P t R = {U}. Then, there exists Q ∈ X such that

Q t R = {U}.

Proof. We know that by Lemma 11.9
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M[P, ·] ≡2 C[P, ·]CT
{by assumption}
≡2 (

∑
Q∈X

C[Q, ·])CT

{by linearity of matrix multiplication}
≡2

∑
Q∈X

M[Q, ·].

In particular, M[P,R] ≡2

∑
Q∈XM[Q,R]. Thus, if M[P,R] = 1 then

M[Q,R] = 1 for some Q ∈ X and the lemma follows. ut

Lemma 11.10 implies that �nding a basis of the row space of the matrix
C by standard Gaussian elimination gives the following theorem.

Theorem 11.11. There is an algorithm that given a set of partitions A ⊆
Π(U) in time |A|O(1)2O(|U |) �nds a set A′ ⊆ A of size at most 2|U |−1, such
that for any P ∈ A and R ∈ Π(U) with P t R = {U}, there exists a partition
Q ∈ A′, such that Q t R = {U}.

Proof. Let A′ be a basis of the row space of the matrix C[A, ·] (in particular
A′ is a subset of rows of C[A, ·] of maximum rank, which is why the approach
is called rank-based). We can �nd A′ by standard Gaussian elimination in
time |A|O(1)2O(|U |). As the matrix C has 2|U |−1 columns, the rank of C[A, ·],
and hence the size of A′, is upper bounded by 2|U |−1.

Consider any P ∈ A and R ∈ Π(U) with P t R = {U}. If P ∈ A′ then
it is enough to take Q = P . Otherwise P was not taken to the basis of
the row space of C, which means that there is a subset X ⊆ A′ such that
C[P, ·] ≡2

∑
Q∈X C[Q, ·]. Then, by Lemma 11.10 there is Q ∈ A′ such that

Q t R = {U} and the lemma follows. ut

Let us take a step back and recall what was our goal for this section. In
our dynamic-programming approach for the Steiner Tree problem, for a
�xed node Xt of the given tree decomposition, a �xed subset X ⊆ Xt, and a
�xed integer i we wanted to limit the number of considered partitions of X
in c[t,X, i]. In order to do that for every triple (t,X, i), instead of computing
the entire family c[t,X, i] we only compute a subset c′[t,X, i] ⊆ c[t,X, i] as
follows.

Fix a triple (t,X, i). We want to compute a subset c′[t,X, i] ⊆ c[t,X, i],
given the values c′[t′, ·, ·] where t′ iterates over the children of t. In the
straightforward dynamic-programming algorithm, similar to the one of Sec-
tion 7.3.3, the recursive formula for c[t,X, i] depends on the values c[t′, ·, ·] for
the children of t. In our algorithm, we �rst apply the aforementioned recur-
sive formula for c[t,X, i], but taking instead the values c′[t′, ·, ·] as an input.
Second, we apply Theorem 11.11 to the obtained set to shrink its size to at
most 2|X|−1, obtaining the �nal value c′[t,X, i]. In particular we are keeping
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only a single exponential number of partitions, deciding which to keep in a
greedy manner based on the Gaussian elimination.

Note that in order to prove the correctness of the approach, one needs the
following lemma, which can be proved by inspecting the dynamic program-
ming recursive formulas in each node of the tree decomposition. On a high
level the proof of the following lemma is not complicated, however formaliz-
ing all the details is a nontrivial and rather tedious task, hence we omit the
proof.

Lemma 11.12. For any t,X, i, partition P ∈ c[t,X, i], and partition R of X
such that P t R = {U}, there exists Q ∈ c′[t,X, i] such that Q t R = {U}.

In particular, Lemma 11.12 implies that if c[t,X, i] is nonempty then
c′[t,X, i] is also nonempty, which guarantees that when deciding what the
�nal answer is (after the dynamic programming computation is done), c′ and
c lead to the same result.

It is not hard to extend Theorem 11.11 to a weighted setting (see Ex-
ercise 11.12) which allows us to solve the weighted variant of the Steiner
Tree problem with single exponential dependence on treewidth. By con-
sidering weighted partitions we can omit the accumulator i from our state
de�nition, and retrieve the linear dependence on n (see Exercise 11.13).

The rank-based approach presented above also works for other connectivity
problems.

Theorem 11.13. Let G be an n-vertex graph given together with its tree
decomposition of width k. Then

� Steiner Tree,
� Feedback Vertex Set,
� Connected Dominating Set,
� Hamiltonian Path and Longest Path,
� Connected Vertex Cover, and
� Connected Feedback Vertex Set.

are solvable in time 2O(k) · n.

As in Section 7.7.2 by combining Lemma 7.28 with Theorem 11.13, we
obtain the following corollary, which improves the exponent of the running
time from Corollary 7.31 by a log k factor.

Corollary 11.14. On planar graphs

� Steiner Tree parameterized by the size of the tree,
� Feedback Vertex Set,
� Connected Dominating Set,
� Longest Path,
� Connected Vertex Cover, and
� Connected Feedback Vertex Set.
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are solvable in time 2O(
√
k)nO(1).

We would like to note that the Cycle Packing problem was listed in The-
orem 7.10 but does not appear in Theorem 11.13. The intuitive reason for
this is that in the Cycle Packing problem we want to maximize the number
of connected components (i.e., cycles) in the solution while the approaches
given in this section work only for problems where we are to minimize the
number of connected components. In fact one can show that under the Expo-
nential Time Hypothesis (see Chapter 14) it is impossible to break the kO(k)

dependence for Cycle Packing, but this is beyond the scope of this book.

Exercises

Unless otherwise noted, in the exercises assume a tree decomposition of width k is given.

11.1. Recall that in the Induced Matching problem we are asked if there is a subset of
2` vertices in G inducing a matching on ` edges. Show that Induced Matching is solvable
in time 3knO(1).

11.2. In the Total Dominating Set problem we want to decide whether there is a set
X ⊆ V (G) of size at most ` such that each vertex in G (in particular each vertex in X)
has a neighbor in X. Show that Total Dominating Set is solvable in time 4knO(1).

11.3. Show how to obtain 3kkO(1)n running time for the Dominating Set problem (note
the linear dependency on n).

11.4 (l). Give a 2knO(1)-time algorithm computing the cardinality of the set R de�ned
by (11.1).

11.5. Give a 3knO(1)-time algorithm computing the cardinality of the set C de�ned
by (11.3).

11.6. Show a one-sided error Monte Carlo 3knO(1)-time algorithm with false negatives
solving the Connected Vertex Cover problem.

11.7. Show a one-sided error Monte Carlo 4knO(1)-time algorithm with false negatives
solving the Connected Dominating Set problem.

11.8 (A). Show a one-sided error Monte Carlo 3knO(1)-time algorithm with false negatives
solving the Feedback Vertex Set problem.

11.9 (A). Show a one-sided error Monte Carlo 3knO(1)-time algorithm with false negatives
solving the Feedback Vertex Set problem parameterized by the solution size (i.e., when
k is the number of vertices we are allowed to remove).

11.10 (A). Give a 3knO(1) time Monte Carlo algorithm for Steiner Tree that applies
the Schwartz-Zippel lemma instead of the isolation lemma.

11.11 (A). Give a 2knO(1)-time algorithm for the Longest Path problem parameterized
by the length of the path (i.e., here k denotes the length of the path, and no tree decom-
position is given) that uses the isolation lemma instead of the Schwartz-Zippel lemma.
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11.12. Show that there is an algorithm that given a set of partitions A ⊆ Π(U) and
a weight function w : A → N in time |A|O(1)2O(|U|) �nds a set A′ ⊆ A of size at most
2|U|−1, such that for any P ∈ A and R ∈ Π(U) with P t R = {U}, there exists a partition
Q ∈ A′, such that Q t R = {U} and w(Q) ≤ w(P ).

11.13. In the weighted variant of the Steiner Tree problem each instance is additionally
equipped with a weight function w : E(G)→ N and we are to �nd a minimum cost Steiner
tree.

Show an algorithm solving this problem in time 2O(k)n (note linear dependence on n).

Hints

11.1 Each vertex can be in one of three possible states:

� already matched,
� decided to be matched, but not yet matched,
� decided not to be matched.

11.2 Each vertex can be in one of four possible states, depending on whether it is chosen
to a solution or not, and whether it already has a neighbor in a solution or not.

Consider a join node t with children t1 and t2. For a �xed state at t, the interesting pairs
of states at t1 and t2 keep the same choice whether a vertex in a bag is in the solution
or not, whereas the sets of already dominated vertices need to satisfy a certain subset
convolution formula.

11.3 Show a way to narrow the maximum possible di�erence between values c[t, f ] for
a node t over all functions f to O(k). Then argue that we can use the min-sum semiring
with values bounded by O(k).

11.4 In a state of dynamic programming keep the subset of vertices selected to H as well
as the number of edges added so far to H.

11.8 Let X be a feedback vertex set we are looking for, and assume |X| = `. The �rst
step is to guess c, the number of connected components of G−X. Then, G−X has n− `
vertices and n−`−c edges. Our goal is to use Cut & Count and cuts of the graph G−X to
ensure that G −X has at most c connected components, while, in separate accumulators
of the dynamic programming, keeping track of the number of vertices and edges of G−X.

However, there is a signi�cant challenge to generalize the approach from the Steiner
Tree example, where we want the solution graph to have one connected component, to
our case of at most c connected components. To cope with this issue, we introduce a set
M of c markers, which will serve the role of the vertex v1 in the Steiner Tree example.
More precisely, we de�ne C to be a family of triples (X,M,C), where:

1. |X| = `;
2. G−X has exactly n− `− c edges;
3. M ⊆ V (G) \X and |M | = c;
4. C = (V 1, V 2) is a cut of G−X, consistent with G−X, such that M ⊆ V 1.

It is a relatively standard task to design a dynamic-programming algorithm counting |C|
in time 3knO(1), if a decomposition of width k is provided. An argument similar to the
one for Steiner Tree shows that, for every sets M,X ⊆ V (G) there exists exactly one
cut C such that (X,M,C) ∈ C if and only if:

1. |X| = `;
2. G−X is a forest with exactly c connected components; and
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3. |M | = c and every connected component of G−X contains exactly one vertex of M .

Moreover, for other pairs M,X ⊆ V (G), there is an even number of cuts C such that
(X,M,C) ∈ C.

To conclude, we apply the isolation lemma to the universe containing two copies of
every vertex of V (G); one copy of a vertex v corresponds to taking v into X, and the
second copy corresponds to taking v into M .

11.9 Use iterative compression together with the solution to Exercise 11.8.

11.10 For every edge e ∈ E(G) create a variable xe and for every vertex v ∈ V (G) create
a variable yv . With every subgraph H ∈ R associate a monomial p(H) =

∏
e∈E(H) xe ·∏

v∈V (H) yv . Design a dynamic-programming algorithm to compute, within the promised

time bound, the value of the polynomial
∑

(H,C)∈C p(H), given �xed values of the input
variables. Argue, as in the case for Steiner Tree, that in a �eld of characteristic 2 the
aforementioned polynomial is nonzero if and only if the input instance is a yes-instance.
Finally, use the Schwartz-Zippel lemma to get a Monte Carlo algorithm.

11.11 Proceed as in Section 10.4.1. Without loss of generality, assume the input graph is
directed. Count pairs (W, `), where W is a walk with k vertices and ` : [k]→ [k] is a bijec-
tion. Randomly choose weights w(e) for every edge e ∈ E(G) and w(v, i) for every vertex
v ∈ V (G) and i ∈ [k]. To a pair (W, `) assign a weight

∑
e∈W w(e) +

∑k
i=1 w(vi, `(i)),

where vi is the i-th vertex on the walk W , and count the parity of the number of pairs
(W, `) of every �xed weight.

11.12 Instead of �nding an arbitrary basis of C it is enough to �nd a minimum weight
basis.

11.13 Use the modi�ed Theorem 11.11 from Exercise 11.12, remove the weight accumu-
lator i from the de�nition of a state of the dynamic programming and consider a family of
weighted partitions for a �xed pair (t,X).
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Chapter 12

Matroids

Tools and techniques from matroid theory have proven
very useful in the design of parameterized algorithms
and kernels. In this chapter, we showcase how a
polynomial-time algorithm for Matroid Parity can
be used as a subroutine in an FPT algorithm for
Feedback Vertex Set. We then de�ne the notion of
representative sets, and use it to give polynomial ker-
nels for d-Hitting Set and d-Set Packing, and fast
(deterministic) FPT algorithms for Longest Path
and Long Directed Cycle.

Matroid theory uni�es and generalizes common phenomena in two seem-
ingly unrelated areas: graph theory and linear algebra. For example, in a
certain technical sense, the notion of linear independence in a vector space
and acyclicity in graphs behave very similarly. As we shall see, the connec-
tion between the two areas can be exploited algorithmically by translating
graph-theoretic problems into the language of linear algebra and then we can
use e�cient algebraic methods to solve them.

Many of the problems considered in this book are problems on graphs, or
on set systems, where input is a �nite universe U and a family F of sets over
U . A family F of sets over a �nite universe U is a matroid if it satis�es the
following three matroid axioms:

� ∅ ∈ F ,
� if A ∈ F and B ⊆ A then B ∈ F ,
� if A ∈ F and B ∈ F and |A| < |B| then there is an element b ∈ B \A

such that (A ∪ {b}) ∈ F .

The second property is called the hereditary property of matroids, while
the third is called the exchange property.

377
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Just like graphs, matroids have been studied extensively, and there are
many connections between matroid theory and graph theory. A thorough
introduction to matroid theory is beyond the scope of this book, the aim
of this chapter is to showcase how some tools and techniques from matroid
theory can be used to design parameterized algorithms.

The �rst example is about the Feedback Vertex Set problem. Here,
we are given a graph G and integer k, and asked whether there exists a set S
on at most k vertices such that G−S is acyclic. The problem is NP-complete.
However, quite surprisingly, it turns out to be polynomial-time solvable on
graphs of maximum degree 3 by a reduction to the so-called Matroid Par-
ity problem. This claim, proved in Section 12.2.2, is the missing piece of
the 3.619knO(1)-time algorithm for Feedback Vertex Set described in
Section *4.3.2.

Perhaps the most dramatic examples of the use of matroid theory in pa-
rameterized algorithms are the randomized polynomial kernels for Odd Cy-
cle Transversal and Almost 2-SAT by Kratsch and Wahlström [312,
310]. The main ingredient from matroid theory in the kernelization algorithm
for Almost 2-SAT is the concept of representative sets. Unfortunately the
kernelization algorithms forOdd Cycle Transversal andAlmost 2-SAT
are quite complex, so we do not cover them in this book. Instead, we show
how representative sets can be used to give polynomial kernels for d-Hitting
Set and d-Set Packing.

It turns out that representative sets are useful not only for designing ker-
nelization algorithms, but also for designing fast FPT algorithms. We give
two examples of fast parameterized algorithms that use representative sets;
the �rst is a 6.75k+o(k)nO(1)-time algorithm for the Long Directed Cy-
cle, the second a 2.619knO(1)-time algorithm for Longest Path in directed
graphs.

This chapter assumes that the reader has some basic knowledge of linear
algebra. We will freely make use of such concepts as linear independence, the
span of a set of vectors, basis vectors, dimension of a space and determinants.
We will also use �nite �elds, but will restrict ourselves to the �nite �elds
of prime size, that is the integers modulo a prime p. We refer you to the
textbook [316] for an introduction to linear algebra.

Before we start, we de�ne some of the basic notions from matroid theory.
Note that, as matroid theory generalizes concepts from both graph theory
and linear algebra, it borrows terms from both of these areas. If (U,F) is
a matroid, then the elements of U are called the edges of the matroid, the
sets S ∈ F are called independent sets.1 An inclusion-maximal independent
set S is a basis of the matroid, while the inclusion-minimal non-independent
sets are called circuits. From the exchange property of matroids, it follows

1 It should be emphasized that the term �independent� here alludes to linear independence
of vectors and has nothing to do with independent sets in graphs. In particular, the family
of independent sets of a graph is not necessarily a matroid (Exercise 12.1).



12.1 Classes of matroids 379

directly that all the bases of a matroid (U,F) have the same size; this size is
referred to as the rank of the matroid.

12.1 Classes of matroids

Often the matroids that show up in applications have a particular structure.
We will now look at some of the most common ones. The most basic class of
matroids are the uniform matroids. A uniform matroid is completely de�ned
by the universe U and its rank r, as every subset S of the universe of size
at most r is independent. It is easy to verify that uniform matroids indeed
satisfy the matroid axioms.

12.1.1 Linear matroids and matroid representation

One of the main purposes of matroids is to serve as a �combinatorial� gen-
eralization of the notion of linear independence of vectors. Linear matroids
are the matroids that can be de�ned using linear independence. Let U be a
set, and assign to every e ∈ U a vector ve over some �eld. The vectors for
the di�erent elements of the universe should all be over the same �eld F and
have the same dimension. We now de�ne a family F of independent sets as
follows. A set S ⊆ U is in F if and only if the set {ve : e ∈ S} forms a
linearly independent set of vectors.

Lemma 12.1. (U,F) is a matroid.

Proof. We need to verify that (U,F) satis�es the matroid axioms. Clearly,
∅ ∈ F . Furthermore, a subset of linearly independent vectors is also linearly
independent, therefore (U,F) satis�es the hereditary property. It remains to
prove that (U,F) satis�es the exchange property.

Let A and B be sets in F such that |A| < |B|. Then the set {ve : e ∈ A}
spans a space of dimension |A| while {ve : e ∈ B} spans a space of dimension
|B|. It follows that there is an element b ∈ B such that vb is not in the span
of {ve : e ∈ A}, and so (A ∪ {b}) ∈ F . ut

We de�ne a matrix M with one column for each edge e ∈ U such that
the column vector of e is ve. The matrix M is said to represent the matroid
(U,F) over F . A matroidM = (U,F) is called representable over F if there
is a matrix over F that representsM. A matroid that is representable over
the �eld GF(2), that is, the integers modulo 2, is called a binary matroid. A
matroid is called representable or linear if it is representable over some �eld.
Even though not all matroids are representable, all the matroids that we will
be working with in this book are.
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Row operations, i.e., multiplying a row by a nonzero scalar, or adding one
row to another do not a�ect the linear independence of columns. Therefore,
we can perform row operations on a matrix M representing a matroid M,
and the resulting matrix will still represent the same matroid. Thus, if the
rank of M is r, we can, by means of row operations, modify M such that
the top r rows are linearly independent and all the remaining rows have
zeroes everywhere. We can then simply delete the rows that are all 0, since
they do not a�ect the linear independence of columns anyway. Hence, for a
representable matroid of rank r, we can always ensure that the representation
matrix has exactly r rows. If for some reason we are given a representation
matrix with more rows, we can �nd a representation matrix with r rows in
polynomial time by means of Gaussian elimination.

In most situations we may assume without loss of generality that the
representation matrix of a matroid of rank r has exactly r rows.

12.1.2 Representation of uniform matroids

We will now show that a uniform matroid with a universe U of size n and
rank k can be represented over any �eld GF(p) for p > n. Let the elements
of the universe be numbered as U = e1, e2, . . . , en. Assign to each element ei
a unique nonzero �eld element αi. We set the vector vi of the element ei to
be the k-dimensional vector (1, α1

i , α
2
i , . . . , α

k−1
e ).

Since the vectors are k-dimensional, it follows that for any set A ⊆ U of
size more than k, the set {vi : ei ∈ A} is not linearly independent. We now
show that for any set A ⊆ U of size k, the set {vi : ei ∈ A} is linearly
independent. It su�ces to show that the matrix MA with column vectors
{vi : ei ∈ A} has a nonzero determinant. The matrix MA is a Vandermonde
matrix [270], and hence the determinant of MA is equal to∏

0≤i<j≤n
ei∈A,ej∈A

αj − αi.

Since this is a product of nonzero �eld elements, it follows that the deter-
minant of MA is nonzero, and hence {vi : ei ∈ A} is a set of linearly
independent vectors.
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12.1.3 Graphic matroids

The graphic matroids are matroids that arise from graphs in the following
way. The graphic matroidMG of an undirected graph G has universe E(G)
and a set S ⊆ E(G) is independent if the subgraph (V (G), S) is acyclic.
Many of the terms used with general matroids have been coined with graphic
matroids in mind. For example, the edges of MG are just the edges of G.
The circuits ofMG are exactly the cycles of G.

It is not immediately obvious that for every graph G, MG is actually
a matroid. It is easy to see that the empty set is independent and that
the hereditary property always holds, but the exchange property is a little
trickier. If A ⊆ E(G) is independent and B ⊆ E(G) is independent, and
|A| < |B|, which element b ∈ B can we pick so that A ∪ {b} is independent?
Consider a connected component C of (V (G), A). As (V (G), A) is acyclic, if B
has more edges inside V (C) than A, then there is a cycle in B, contradicting
that B is independent. Therefore, in each component of (V (G), A), the graph
(V (G), B) contains at most as many edges as A does. Since |A| < |B| it
follows that there is an edge b ∈ B whose endpoints are in di�erent connected
components of (V (G), A). But then A ∪ {b} is independent, and henceMG

is a matroid.

To represent the graphic matroid of a graph G make a matrix with a
column for each edge and a row for each vertex. The entry corresponding
to a vertex v and an edge e is 0 if v is not incident to e, and either 1 or
−1 if it is incident. Each column should contain exactly one 1 and one
−1.

Theorem 12.2. Graphic matroids are representable over any �eld.

Proof. We give a constructive proof, i.e., an algorithm that given an undi-
rected graph G computes a representation of the graphic matroid MG. We
start by turning G into a directed graph D by arbitrarily orienting each edge.
The representation ofMG is a matrix M with one column ve for each edge
e ∈ E(G) and a row for each vertex. We set all the entries of ve to 0 except
in the two entries that are in the rows corresponding to the endpoints u and
v of e. If the edge e is oriented from u to v in D, we set the entry of ve
corresponding to u to −1 and the entry corresponding to v to 1. If the edge
is oriented from v to u, we set the entry of ve corresponding to u to 1 and
the entry corresponding to v to −1.

It remains to show that a set A ⊆ E(G) is acyclic if and only if the
set of vectors {ve : e ∈ A} is linearly independent. We �rst show the
forward direction. Suppose for contradiction that A ⊆ E(G) is acyclic but
{ve : e ∈ A} is not linearly independent. Then there exists a set of values
{αe : e ∈ A} such that at least one of the values αe is nonzero, and
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e∈A αeve = 0. Let A′ ⊆ A be the set of edges e in A such that αe is nonzero.

Since A is acyclic, A′ is acyclic as well, and hence there exists a vertex u that
is incident to exactly one edge ê in A′. But then the entry of

∑
e∈A αeve

corresponding to u must be nonzero, as the only nonzero contribution to the
sum comes from αê · vê. This contradicts

∑
e∈A αeve = 0.

For the reverse direction, suppose that A ⊆ E(G) contains a cycle C. We
will construct a set of values {αe : e ∈ A} such that at least one of the values
αe is nonzero, and

∑
e∈A αeve = 0. This shows that the set {ve : e ∈ A} is

linearly dependent. Let A′ be the set of edges of the cycle C. We set αe = 0
for every edge e /∈ C. Consider a walk around the cycle C. For each edge
e ∈ A′ we set the variable αe to 1 if the arc in D corresponding to e is
oriented in the direction of the walk, and to −1 otherwise. Consider now the
sum

∑
e∈A αeve. Any entry corresponding to a vertex not on the cycle C is 0.

For the entry corresponding to a vertex u on the cycle C, the sum
∑
e∈A αeve

has two nonzero terms, one for each edge incident to u on C. Let e1 be the
edge by which the walk enters u, and e2 be the edge by which the walk leaves
u. It is easily veri�ed that the term in the sum corresponding to e1 is 1 and
the term corresponding to e2 is −1. Thus

∑
e∈A αeve = 0, completing the

proof. ut

In particular, Theorem 12.2 implies that graphic matroids are binary ma-
troids. Observe that if we are working with GF(2) then −1 = 1. Thus the
representation matrix for the graphic matroid of G in GF(2) is just a matrix
with a row for each vertex, a column for each edge, and the entry correspond-
ing to a vertex u and edge e is 1 if the edge e is incident to v. This matrix is
called the vertex-edge incidence matrix.

12.1.4 Transversal matroids

Transversal matroids are another class of matroids that arise from graphs.
For a bipartite graph G = (U∪B,E) with all edges between U and B, we can
de�ne a matroid M with universe U , and a set S ⊆ U is independent if there
exists a matching inG such that every vertex in S is an endpoint of a matching
edge. It is easy to see that M satis�es ∅ ∈ F and the hereditary property;
however it is not at all obvious thatM satis�es the exchange property.

In Exercises 12.2�12.3, we will consider two di�erent approaches for prov-
ing that M is a matroid. One approach is to show that M satis�es the
exchange property using a �ow argument. Another approach is to give a
representation forM.

Theorem 12.3. There is a polynomial-time randomized algorithm that, given
as input a bipartite graph G = (U ∪B,E) and a positive integer x, outputs a
matrix A of integers between 0 and x ·n · 2n. With success probability at least
1 − 1/x, the matrix A is a representation of the transversal matroid M of
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G over the rationals. If the algorithm fails, then A represents a matroid M′
with universe U such that every independent set ofM′ is independent inM.

Theorem 12.3 proves that transversal matroids are in fact matroids: given
any bipartite graph G = (U∪B,E) the algorithm will output a representation
ofM with positive probability. Note that the integers in the representation
matrix A can be exponential in n; however they still only require O(n) bits
to be stored. Since the basic operations on integers, such as addition and
multiplication, can be done in time polynomial in the size of the bit repre-
sentation, the overhead caused from working with the integers in A is only
polynomial in n. Even though the proof of Theorem 12.3 is quite easy (see
Exercise 12.3), it remains a challenging open problem to design a determinis-
tic polynomial-time algorithm that, given as input G = (U ∪B,E), outputs
a representation of the corresponding transversal matroidM.

12.1.5 Direct sum and partition matroids

The direct sum of two matroids is an operation that takes two matroidsM1

andM2 over disjoint universes U1 and U2 respectively, and produces a new
matroidM over U1∪U2. A subset S of U1∪U2 is independent inM if S∩U1

is independent inM1 and S ∩ U2 is independent inM2. It is easy to verify
thatM satis�es the matroid axioms.

If M1 and M2 can be represented over the same �eld GF(p), then their
direct sumM can also be represented over GF(p). In particular if the matrix
A1 representsM1 and A2 representsM2 then the matrix[

A1 0
0 A2

]
representsM.

Partition matroids are the matroids that can be written as disjoint sums
of uniform matroids. That is, in the universe U is partitioned into classes
U1, . . . , Uk with an integer ai associated to each class Ui, and a set S ⊆ U is
independent in the partition matroid if |S ∩ Ui| ≤ ai for every i ∈ [k]. The
representation of uniform matroids described in Section 12.1.2, together with
the above paragraph, gives a way to represent any partition matroid with
edge set U over any �eld of size at least maxi≤k(|Ui|+ 1).

12.2 Algorithms for matroid problems

What are the most common computational problems about matroids and how
e�ciently can we solve these problems? One kind of question we have already
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seen a few examples of is, given as input a graph or a di�erent structure that
implicitly de�nes a matroidM, compute a representation ofM. Sometimes
we need to compute the representation of M in a particular �eld GF(p) or
determine that such a representation does not exist. We will not be dwelling
on these kinds of questions beyond what has already been discussed in the
previous sections.

Another type of problem is when a matroid M is given as input and
we have to answer some question about it. When discussing computational
problems on matroids, we have to de�ne �rst how the matroid is described in
the input. For example, we may assume that the matroid is given by listing all
independent sets/bases, given implicitly (e.g., as the transversal matroid of a
bipartite graph), or we can consider a setting where the matroid is given by
an oracle capable of answering whether a set is independent. In this chapter,
we consider computational problems exclusively on linear matroids and we
assume that the representation matrix A of the matroidM is given as input.

Possibly the most fundamental question is where we are given a set S and
asked whether the set is independent in the matroid M. This can easily be
done in polynomial time using Gaussian elimination. Using Gaussian elimi-
nation we can also �nd in polynomial time a column basis for the matrix A.
This corresponds to a maximum size independent set (or basis) in the matroid
M and therefore we can determine the rank of M. Sometimes we want to
�nd a largest possible, or a smallest possible circuit. Sometimes we are given
a weight function w : U → Z on the universe, and the task is to �nd the
basis (or circuit) S that maximizes (or minimizes) the total weight of S. We
will denote the weight of an element u ∈ U by w(u) and the weight of a set
S ⊆ U by w(S) =

∑
u∈S w(u). The easiest of these optimization problems is

to �nd a basis of minimum weight. Here, a simple greedy algorithm does the
trick.

To �nd a basis of minimum weight, start with S = ∅ and repeatedly
extend S by the smallest weight element whose addition to S keeps S
independent.

Formally, we start with S0 = ∅. Then, for each i ≥ 1, let Si = Si−1 ∪
{u} where u /∈ S is the minimum weight element such that Si−1 ∪ {u} is
independent. Let r be the rank ofM. Since all maximal independent sets of
M have size r, it follows that the algorithm will be able to �nd an independent
set Sr, but unable to �nd any u such that Sr ∪ {u} is independent. The
algorithm outputs the set Sr. We claim that this set is actually the basis of
minimum weight.

Theorem 12.4. The greedy algorithm computes a basis Sr of minimum
weight.
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Proof. Let X be a basis of M of minimum weight. Order the elements of
X into x1, x2, . . . , xr by nondecreasing weight. For each i ≤ r, de�ne Xi =
{x1, . . . , xi}. We prove by induction that the weight of Si is at most the
weight of Xi. For the base case, the weight of both S0 and X0 is 0. For the
inductive step, we prove that the weight of Si is at most that of Xi, assuming
that the statement holds for all j < i.

Let u be the element the algorithm added to Si−1 to obtain Si. By the
exchange property, there is an element v ∈ Xi such that Si−1 ∪ {v} is inde-
pendent. Since the algorithm picked u over v, it follows that the weight of u
is at most the weight of v. Furthermore, since the elements xi are ordered by
nondecreasing weight and v ∈ Xi, we have w(v) ≤ w(xi). Thus

w(Si) = w(Si−1) + w(u) ≤ w(Si−1) + w(v) ≤ w(Xi−1) + w(xi) ≤ w(Xi)

(in the second inequality, we used the induction hypothesis). This concludes
the proof. ut

We leave it as an exercise (see Exercise 12.4) to prove that an analogous
greedy algorithm can be used to �nd a basis of maximum weight. While the
optimization questions about bases are computationally tractable, the ones
about circuits are not. For example, circuits in the graphic matroid MG of
a graph G are exactly the cycles of G. Thus, determining whether MG has
a circuit of length at least n is equivalent to the NP-complete Hamiltonian
Cycle problem [224]. Since graphic matroids are binary matroids, it follows
that �nding the largest circuit is NP-complete for binary matroids. In graphic
matroids �nding the smallest circuit corresponds to �nding the shortest cycle
in a graph G. This can easily be done in polynomial time. On the other
hand, �nding the smallest circuit of a binary matroid can easily be seen to
be equivalent to the following NP-complete problem, called Even Set. Here,
input is a family F of sets over a universe U and an integer k. The task
is to �nd a nonempty subset S of U of size at most k such that for every
set X ∈ F , |X ∩ S| is even. To see that Even Set is equivalent to �nding
the smallest circuit of a binary matroid, consider the set-element incidence
matrix A of U and F . Here, every column corresponds to an element u ∈ U ,
every row to a set X ∈ F and the entry in the column of u and row of X is
1 if u ∈ X. The matrix A represents a matroid where the circuits are exactly
the minimal subsets S of U such that for every set X ∈ F , |X ∩ S| is even.

Since the smallest/largest circuit problems are NP-hard, it is interesting
to investigate their parameterized complexity. Determining whether a given
transversal matroid has a circuit of size at most k is equivalent to asking
whether a given bipartite graph G with bipartitions U and B contains a
set S ⊆ U of size at most k such that |N(S)| < |S|. In Exercise 13.28 the
reader is asked to show that this problem is in fact W[1]-hard, and therefore
unlikely to admit an FPT algorithm. For binary matroids �nding a circuit
of size at most k is equivalent to the Even Set problem, and determining
whether Even Set admits an FPT algorithm remains a challenging open
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problem. For the parameterized complexity of problems related to Even Set,
see Chapter 13. On the other hand, one may use matroid minor theory to
show that the problem of �nding a circuit of size at least k is �xed parameter
tractable for all matroids representable over a �xed �nite �eld [227, 262]. The
parameterized complexity of this problem on matroids representable over the
integers remains open.

12.2.1 Matroid intersection and matroid parity

Since it is easy to �nd the minimum or maximum weight independent set in
a matroid in polynomial time, it is natural to ask whether polynomial-time
algorithms could be achieved for generalizations of this problem. A possible
generalization is to have multiple matroids over the same universe, and look
for a minimum (or maximum) weight set which is simultaneously independent
in all of the matroids.

For a �xed integer `, we de�ne the `-Matroid Intersection problem as
follows. Input consists of a universe U and ` matrices representing matroids
M1,M2, . . .M` over U , and an integer k. The task is to determine whether
there exists a set S ⊆ U of size at least k that is independent in all of the
matroidsMi, i ≤ `.

For two set systems S1 = (U,F1) and S2 = (U,F2), we de�ne their inter-
section as

S1 ∩ S2 = (U,F1 ∩ F2).

Consider now the intersectionM1 ∩M2 of two matroidsM1 = (U,F1) and
M2 = (U,F2). We have that ∅ ∈ F1 ∩ F2 and that S ∈ F1 ∩ F2 implies
that all subsets of S also are in F1 ∩ F2. Thus, if M1 ∩ M2 would also
satisfy the exchange axiom, thenM1∩M2 would be a matroid and we could
�nd a maximum weight set which is simultaneously independent in both by
using the greedy algorithm of Theorem 12.4. In fact, then we could use the
greedy algorithm to solve `-Matroid Intersection for any `. However the
intersection of two matroids is not necessarily a matroid, as the reader is
asked to prove in Exercise 12.6. On the other hand, the intersection of a
matroid with a uniform matroid is always a matroid; this operation is called
the truncation of the matroid. In particular, in Exercise 12.7, the reader is
asked to prove the following lemma.

Lemma 12.5. If M = (U,F) is a matroid of rank at least r and Ur is the
uniform matroid with edge set U and rank r, then M∩ Ur is a matroid of
rank r. Furthermore there is a polynomial-time randomized algorithm that,
given integers x ≥ 2 and r, and a representation of M over GF(p) with
p > x · r · |U |r, outputs an r× |U | matrix A. With probability at least 1− 1/x
the matrix A is a representation ofM∩U over GF(p). Otherwise A represents
a matroidM′ such that all independent sets inM′ are independent inM∩U .
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Thus we are still left with the question of the computational complexity
of `-Matroid Intersection. The answer turns out to be rather surprising;
the problem is polynomial time solvable for ` = 2, but NP-complete for larger
values of `. We start with showing the hardness proof.

Theorem 12.6. 3-Matroid Intersection is NP-complete.

Proof. Membership in NP is trivial, and so we prove hardness. We show
hardness by reduction from the Hamiltonian Path problem in bipartite
graphs. Here, input is a bipartite graph G with bipartitions VL and VR. The
task is to determine whether there exists a path that visits every vertex of G
exactly once. It is well known thatHamiltonian Path remains NP-complete
even when the input graph is required to be bipartite [224].

We make three matroids,ML,MR andMG, all with the edge set E(G) as
universe.ML is a partition matroid where a subset A ⊆ E(G) is independent
if every vertex in VL is incident to at most two edges in A. Similarly,MR is a
partition matroid where a subset A ⊆ E(G) is independent if every vertex in
VR is incident to at most two edges in A. FinallyMG is the graphic matroid
of G.

We claim that an edge set A ⊆ E(G) of size at least n− 1 is independent
in ML, MR and MG if and only if A is the edge set of a path in G that
visits every vertex exactly once. Indeed, since A is independent inMG, the
set A is acyclic. Since A has size at least n− 1 it follows that (V (G), A) is a
spanning tree T of G. Since A is independent in bothML,MR it follows that
the maximum degree of T is 2. However a spanning tree of maximum degree
2 is a path visiting each vertex exactly once. This concludes the proof. ut

A polynomial-time algorithm for the 2-Matroid Intersection problem
follows from an algorithm for a slightly more general problem calledMatroid
Parity. Here, we are given as input a matrix A representing a matroid
M = (U,F), a collection P ⊆

(
U
2

)
of pairs of elements of U , and an integer

k. The objective is to �nd a subset S ⊆ P of size exactly k such that the set⋃
X∈S X has size 2k and is independent inM. Note that the size constraint

is equivalent to demanding that all pairs in S be pairwise disjoint. Thus it is
su�cient to �nd a subset S ⊆ P of size at least k such that all pairs in S are
pairwise disjoint and the set

⋃
X∈S X is independent in M. A polynomial-

time algorithm for Matroid Parity is out of scope of this book; we will
simply use the existence of such an algorithm as a black box.

Theorem 12.7. Matroid Parity admits a polynomial-time algorithm.

In Exercise 12.7, the reader is asked to show how Theorem 12.7 implies a
polynomial-time algorithm for 2-Matroid Intersection.

It is worth noting that Matroid Parity is a more complex problem
than 2-Matroid Intersection. While a polynomial time deterministic al-
gorithm for 2-Matroid Intersection can be found in textbooks [412] and
is often covered in courses on combinatorial optimization, the determinis-
tic algorithms for Matroid Parity are quite complex. A possible reason



388 12 Matroids

is that 2-Matroid Intersection generalizes Bipartite Matching, while
Matroid Parity can be seen as a generalization of Maximum Matching.

In theMaximum Matching problem we are given as input a graph G and
asked to �nd a largest possible matching in G, i.e. a set S ⊆ E(G) such that
no two edges in S share a common endpoint. In the Bipartite Matching
problem the input graph G is required to be bipartite. Bipartite Matching
can easily be solved in polynomial time by a reduction to Maximum Flow
(if you have not yet seen this reduction, try making one yourself).Maximum
Matching is also known to be solvable in polynomial time [412], but the
algorithms for this problem are more advanced.
Bipartite Matching reduces to 2-Matroid Intersection in the fol-

lowing way. Let G be the input bipartite graph with bipartitions A and B.
We make two matroids, MA and MB , both with edge set E(G). An edge
subset S of E(G) is independent inMA if no vertex of A is incident to more
than one edge of S. Similarly, an edge subset S of E(G) is independent in
MB if no vertex of B is incident to more than one edge of S. Note that both
MA and MB are, by construction, partition matroids. Further, a set S of
edges is simultaneously independent inMA and inMB if and only if S is a
matching in G.

We now reduce Maximum Matching to Matroid Parity. Given a
graph G we make a matroid M whose universe is V (G), and every vertex
subset is independent. From the edge set E(G) we make the collection P of
pairs in the Matroid Parity instance in the most natural way; each edge
uv corresponds to the pair {u, v} ∈ P. Now, a subset S of edges is a matching
if and only if the corresponding subset S ⊆ P satis�es that all pairs in S are
pairwise disjoint, and that

⋃
X∈S X is independent in M. Here, the second

part of the condition on S always holds.

2-Matroid Intersection generalizes Bipartite Matching, while
Matroid Parity generalizes Maximum Matching and 2-Matroid
Intersection. Matroid Parity is solvable in polynomial time, and
hence the other three problems are as well.

Another important di�erence between 2-Matroid Intersection and
Matroid Parity is that the two problems behave very di�erently in the
oracle model. In the oracle model the input matroids are not required to be
linear, and the algorithm is not given any representation of the matroids as
input. The only way an algorithm may receive information about the input
matroids is by making queries on the form �is the edge set A independent?�.
2-Matroid Intersection remains polynomial time solvable in the oracle
model [109, 161], while Matroid Parity requires an exponential number of
oracle calls [278, 332].



12.2 Algorithms for matroid problems 389

12.2.2 Feedback Vertex Set in subcubic graphs

Recall the Feedback Vertex Set problem, where we are given as input a
graph G and an integer k, and the task is to �nd a subset S of V (G) such
that G−S is acyclic. In Chapter 4, we gave a 3.619knO(1)-time algorithm for
Feedback Vertex Set, under the assumption that a variant of this problem
is solvable in polynomial time. Speci�cally, in the Special Disjoint FVS
problem, we are given as input a graph G and a vertex set W ⊆ V (G) such
that G −W is independent and every vertex not in W has degree at most
3. The objective is to �nd a smallest possible set S ⊆ V (G) \W such that
G − S is a forest. In Chapter 4, we stated without proof a lemma claiming
that Special Disjoint FVS can be solved in polynomial time. We now
substantiate this claim.

Lemma 4.10 (rephrased). Special Disjoint FVS has a polynomial-time
algorithm.

We prove the lemma here under the assumption that the input graph G is
simple. Observe that when performing the reductions in Chapter 4, one may
create double edges, making the considered graph a multigraph. However,
when Lemma 4.10 is invoked, any double edge of G would have one endpoint
in W and one outside. Then the endpoint outside of W would have been
deleted by Reduction Rule FVS∗.2. Thus it is su�cient to prove the lemma
for simple graphs.

We start by applying some (but not all) of the reduction rules described
in Section 3.3, in order to get a slightly more structured instance. We will
use the following reduction rules from Section 3.3.

� Reduction FVS∗.1: Delete all the vertices of degree at most 1 of G.
� Reduction FVS∗.2: If there exists a vertex v in V (G)\W such that G[W ∪
{v}] contains a cycle, then include v in the solution and solve the problem
on G− v.

We introduce a few more reduction rules.

Reduction FVS∗.5. If G[W ] contains a cycle, then return no.

Reduction FVS∗.6. Suppose there is an edge uv with both endpoints in
W . Obtain G′ from G by contracting the edge uv. In graph G′, we put the
vertex resulting from the contraction into the set W . Solve the problem on
G′.

Safeness of Rule FVS∗.5 is trivial, so we only discuss Rule FVS∗.6. We only
apply Rule FVS∗.6 if Rules FVS∗.2 and FVS∗.5 cannot be applied. Thus the
contraction of uv does not create any self-loops or double edges, keeping the
graph simple. Next we prove that Rule FVS∗.6 is safe.

Lemma 12.8. Rule FVS∗.6 is safe.
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Proof. We claim that for any set S ⊆ V (G) \W , graph G − S is acyclic if
and only if G′−S is. If G−S is acyclic, then observe that G′−S is a minor
of G− S. Since a minor of a forest is a forest, G′ − S is acyclic as well. Now
assume that G− S contains a cycle C; pick a shortest such cycle. If C does
not contain both u and v, then C is a cycle in G′ − S as well. If C contains
both u and v, then u and v appear consecutively on C, since C is a shortest
cycle. In this case, contracting the edge uv changes C into a new cycle C ′ of
length 1 less than C. Since the contraction of uv does not make any double
edges it follows that the length of C is at least 4, and hence C ′ is a simple
cycle in G′ − S. ut

If we start with an instance of Special Disjoint FVS and exhaustively
apply the reduction rules above, we arrive at an instance of (G,W ) of the
problem where G[W ] and G −W are both independent sets, no vertex has
degree less than 2, and all vertices of V (G)\W have degree at most 3. Next we
get rid of the vertices in V (G)\W of degree 2. Note that the simple argument
of Reduction FVS∗.3 in Section 4.3 no longer works. We cannot just remove
the vertex and make its two neighbors adjacent: as the two neighbors are in
W and hence undeletable, this transformation could turn a yes-instance into
a no-instance.

Reduction FVS∗.7. If G has a degree 2 vertex v /∈W , then add v to W .

Lemma 12.9. Rule FVS∗.7 is safe.

Proof. It is su�cient to prove that there exists an optimal solution S disjoint
from the degree 2 vertex v. Let x and y be the neighbors of v. Consider a
minimum size feedback vertex set S ⊆ V (G) \W . If v /∈ S, then we are done.
Suppose now v ∈ S. Since S \ {v} is not a feedback vertex set of G, there is
a path between x and y in G−S. Since G−S is acyclic, this path is unique,
and since W is independent, the path contains a vertex v′ /∈ W . We claim
that S′ = (S ∪ {v′}) \ {v} is also a feedback vertex set. Indeed, any cycle in
G− S′ must contain v and a path between x and y disjoint from v. But the
path between x and y in G− S is unique and contains v′, contradicting that
the cycle was disjoint from S′. ut

Let us note that we only apply Rule FVS∗.7 when all the preceding
rules may not be applied. Furthermore, note that after an application of
Rule FVS∗.7, G[W ] is no longer independent and thus some of the other
rules will apply. It is important that we apply Rule FVS∗.7 one vertex at a
time, rather than inserting all degree 2 vertices into W simultaneously. In-
deed, if G was a cycle on four vertices and W contained the �rst and third
vertex on the cycle, simultaneously inserting the remaining two vertices into
W would make a no-instance, even though the original instance has a solution
of size 1. We are now ready to prove Lemma 4.10.

Proof (of Lemma 4.10). After an exhaustive application of Reductions FVS∗.1,
FVS∗.2, FVS∗.5, FVS∗.6, and FVS∗.7, we arrive at an instance of Special
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Disjoint FVS where W is an independent set and every vertex not in W
has degree exactly 3. We show how to solve such instances in polynomial time
by giving a reduction to the Matroid Parity problem. Let H be a clique
with vertex set W andMH be the graphic matroid of H. Let A be a matrix
representingMH ; such a matrix can easily be computed in polynomial time;
see the proof of Theorem 12.2.

We will make an instance ofMatroid Parity where the matroid isMH .
We now make a collection P ⊆

(
W
2

)
of pairs of elements of W as follows. For

each vertex u ∈ V (G) \W , let x, y and z be the neighbors of u. We add the
pair Pu = {xy, yz} to P. Note that, for two vertices u and v, the pairs Pu
and Pv could be identical; we still add both pairs to P. Thus P could be a
multiset (but of course adding more copies of the same pair to P does not
change the solvability of the Matroid Parity instance). If we are looking
for a solution S of size t to Special Disjoint FVS we set k = n−|W |−t and
use this value in the instance of Matroid Parity. To conclude the proof,
we need to show that G has a feedback vertex set S ⊆ V (G) \W of size at
most t if and only if there exists a subset Z ⊆ P of size at least k such that
all pairs in Z are disjoint and the set

⋃
X∈Z X is independent inMH .

There is a natural bijection between subsets of V (G)\W and subsets of P.
For a set X ⊆ V (G)\W we de�ne ZX = {Pu : u ∈ X}. Clearly, the function
that takes X to ZX is a bijection. We claim that for any X ⊆ V (G) \W , the
graph G[W ∪ X] is acyclic if and only if

⋃
Pu∈ZX Pu is independent in the

matroidMH and all pairs in ZX are disjoint.
Suppose �rst the pairs in ZX are not pairwise disjoint. Then there are two

pairs Pu and Pv in ZX that both contain the edge xy of H. In this case,
u, x, v, y forms a cycle on four vertices in G[W ∪X]. Suppose now that the
pairs in ZX are pairwise disjoint, but that

⋃
Pu∈ZX Pu is not independent

in MH . Then this set contains a circuit C = c1c2 . . . c`. Here, the ci's are
vertices in W . For each 0 ≤ i < `, let ui be the vertex in X such that the
pair corresponding to ui contains the edge cici+1. Since the pairs are disjoint,
ui is uniquely de�ned, and adjacent to both ci and to ci+1. Similarly, let u`
be the vertex in X whose pair contains c`c1. The vertices u1, . . . , u` are not
necessarily distinct. On the other hand they cannot all be equal, since C is
a simple cycle on at least three edges, while each vertex ui corresponds to a
pair that contains at most two edges of C. Therefore there exists an i such
that ui 6= ui+1. But then uici+1ui+1 is a simple path on three vertices, and

ui+1ci+2ui+2ci+3ui+3 . . . c`u`c1u1c2u2 . . . ciui

is a walk from ui+1 to ui in G[W ∪X] avoiding ci. Consequently, G[W ∪X]
contains the walk uici+1ui+1 and a walk back to ui avoiding ci, so it contains
a cycle.

For the reverse direction, suppose now that G[W ∪X] contains a cycle C.
Since G[W∪X] is bipartite, we have that C = c1u1c2u2 . . . c`u`, where each ci
is in W while each ui is in X. Let ZC ⊆ ZX be the set of pairs corresponding
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to {u1, u2, . . . , u`}, and de�ne EC =
⋃
Pu∈ZC Pu. The set EC is a set of edges

in H. If two of the pairs in ZC have nonempty intersections, then we are
done, so assume that all the pairs in ZC are disjoint. Then |EC | = 2`. We
now count the vertices inW that are incident to at least one edge in EC . This
is all of the vertices c1, c2, . . . , c`, plus at most one more vertex for each ui,
since the pair corresponding to ui is incident to ci, ci+1 and one more vertex.
Hence there are at most 2` vertices incident to edges in EC . Any graph on 2`
edges and at most 2` vertices must contain a cycle, and so we conclude that
the set EC is not independent inMG.

Finally, observe that if G has a feedback vertex set S ⊆ V (G) \W of size
at most t, then X = V (G) \ (W ∪ S) is a set of size at least n− |W | − t = k
such that G[W ∪X] is acyclic. Similarly, if X ⊆ V (G) \ S is a set of size at
least k such that G[W ∪X] is acyclic, then S = V (G)\ (W ∪X) is a feedback
vertex set of size at most t. This concludes the proof. ut

A nice consequence of Lemma 4.10 is that Feedback Vertex Set is
polynomial time solvable on graphs of maximum degree 3.

Theorem 12.10. Feedback Vertex Set admits a polynomial-time algo-
rithm on graphs of maximum degree 3.

Proof. Given as input a graph G of maximum degree 3, we make a new graph
G′ from G by replacing every edge by a degree 2 vertex whose neighbors
are the endpoints of the edge. We set W to be the set of newly introduced
vertices. A subset S of V (G) is a feedback vertex set of G if and only if it is
a feedback vertex set of G′. Thus we can run the polynomial-time algorithm
of Lemma 4.10 on the Special Disjoint FVS instance (G′,W ). ut

12.3 Representative sets

Consider the following game, played by two players, Alice and Bob. Alice has
a family A of sets; all of Alice's sets have the same size p. Bob, on the other
hand, has only one set B of size q. Alice does not know Bob's set B, but she
does know q. The game is very simple; they sit around for a while in silence,
and then Bob reveals B to Alice. At this point Alice wins if she has a set
A ∈ A such that A is disjoint from B. If Alice does not have such a set, then
Bob wins.

Of course this is not much of a game; the outcome is predetermined by
the family dealt to Alice and the set dealt to Bob. However, there is a catch.
Alice is blessed with poor memory, so she really does not want to remember
all of A. In particular she will choose a subset A′ of A to remember and
forget the rest. When Bob's set B is revealed she can only look in A′ for a set
that is disjoint from B. Even though Alice has poor memory she really hates
losing to Bob, and so she does not want to forget a set A ∈ A if that could
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make the di�erence between winning and losing the game. Thus she wants
to remember a subset A′ ⊆ A such that for any set B of size q, if there is an
A ∈ A that is disjoint from B, then there is an A′ in A′ that also is disjoint
from B. The family A′ �represents� A in the sense that A and A′ win against
exactly the same sets B. This brings us to the de�nition of representative
sets.

De�nition 12.11. Let A be a family of sets of size p. A subfamily A′ ⊆ A is
said to q-represent A if for every set B of size q such that there is an A ∈ A
that is disjoint from B, there is an A′ ∈ A′ that also is disjoint from B. If A′
q-represents A, we write A′ ⊆qrep A.

Is there a nontrivial upper bound on the number of sets that Alice has to
remember? And if so, does there exist an e�cient algorithm that given the
family A and q decides which sets to remember and which to forget? The
answer to both questions turns out to be yes, as we soon shall see.

Let's ask a di�erent question. Suppose A = {A1, A2, . . . Am}. Is there a
necessary condition for Alice not to be able to forget A1? Well, forgetting
A1 should make the di�erence between winning and losing for at least one
possible set B1. In particular there has to exist a set B1 of size q such that A1

is disjoint from B1, and B1 has nonempty intersection with every other set
Ai ∈ A, i 6= 1. Suppose now that Alice cannot forget any set Ai ∈ A. By the
reasoning above, for each i ≤ m there exists a set Bi such that Bi ∩ Ai = ∅
and Bj∩Ai 6= ∅ for all j 6= i. Observe that if i 6= j the sets Bi and Bj must be
distinct, since Bi∩Ai = ∅, while Bj ∩Ai 6= ∅. The next lemma from extremal
combinatorics, called Bollobás' lemma, upper bounds m in terms of p and q,
thus giving an upper bound on the number of sets Alice has to remember.

Lemma 12.12. Let A = {A1, A2 . . . Am} be a family of sets of size p, and
B = {B1, B2 . . . Bm} be a family of sets of size q, such that for every i,
Ai ∩Bi = ∅, and for every i,j such that i 6= j, Ai ∩Bj 6= ∅. Then m ≤

(
p+q
p

)
.

Before we give a proof of Lemma 12.12 let us note the consequences it
has for representative sets. By the reasoning above, if Alice has the family
A = {A1, A2, . . . Am} and cannot forget any single set Ai, then there exists
a family B = {B1, B2 . . . Bm} of sets of size q that satis�es the conditions of
Lemma 12.12. But then, the lemma implies that |A| ≤

(
p+q
p

)
. If Alice has

more than
(
p+q
p

)
sets then there exists one set that she may safely forget.

Formally, for every family A of sets of size p there is a subfamily A′ ⊆qrep A
of size at most

(
p+q
p

)
. We are now ready to give the proof of Lemma 12.12.

This proof is a surprising application of the probabilistic method.

Lemma 12.12 implies that Alice never needs to remember more than(
p+q
p

)
sets.
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Proof (of Lemma 12.12). Consider a random permutation σ of the universe.
For each i ≤ m, let �event i� be the event that all of Ai appears before all of
Bi according to σ. The probability that event i occurs is exactly

1(
p+q
p

) .
Suppose now that all of Ai appears before all of Bi. Then all of Aj may not
appear before all of Bj for j 6= i. This is because Bj∩Ai 6= ∅ and Aj∩Bi 6= ∅,
and hence the elements in Bj ∩ Ai appear before the elements in Aj ∩ Bi.
Thus, for i 6= j, event i and event j are disjoint. In a probability distribution,
the sum of the probabilities of all the di�erent outcomes is 1. Thus the sum
of the probabilities of disjoint events is at most 1, and hence

m · 1(
p+q
p

) ≤ 1.

Multiplying both sides by
(
p+q
p

)
proves the lemma. ut

At this point we arrive at an intriguing computational problem. We are
given as input a family A of sets of size p, and an integer q. We know from
Lemma 12.12 that there exists a family A′ ⊆ A of size at most

(
p+q
p

)
such

that A′ q-represents A, but how do we �nd such an A′? The derivation of
A′ from A seems �nonconstructive� in nature because the family B is not
given to us as input. It is in fact possible to compute for each Ai whether
there exists a set Bi of size q disjoint from Ai, but intersecting all other
sets in A. This amounts to solving a d-Hitting Set instance with d = p.
This gives an algorithm for computing A′ from A. This algorithm is explored
in Exercise 12.9. However, we will soon give a faster algorithm for a more
general variant of the problem using completely di�erent techniques.

12.3.1 Playing on a matroid

We now slightly change the game played by Alice and Bob. The board is now
a matroidM with universe U and a family F of independent sets. Alice has
a family A of subsets of U ; all of her sets have the same size p. Bob has a set
B ⊆ U . In the previous game, all Alice had to do was to come up with a set
which was disjoint from B. We make Alice's task a bit harder.

De�nition 12.13. We will say that A �ts with B if A is disjoint from B and
A ∪B is independent.

When Bob reveals his set B, Alice wins if she has a set A which �ts B.
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Just as before, Alice is to remember a subfamily A′ ⊆ A, and when B is
revealed she is only allowed to look for A in A′. Just as before, she does not
want to forget any sets in A if that could make the di�erence between winning
and losing the game. This brings us to a generalized notion of representative
sets, tuned to this new setting.

De�nition 12.14. Let M be a matroid and A be a family of sets of size p
inM. A subfamily A′ ⊆ A is said to q-represent A if for every set B of size
q such that there is an A ∈ A that �ts B, there is an A′ ∈ A′ that also �ts
B. If A′ q-represents A, we write A′ ⊆qrep A.

First, observe that because of the hereditary property of matroids, Alice
never needs to remember any sets in A that are not independent in the
matroid. Similarly she may assume that Bob's set B is independent, since
otherwise surely no set in A �ts B.

Compare De�nition 12.14 with De�nition 12.11. De�nition 12.14 makes
Alice's job harder, because Alice now has to remember sets that not only
are disjoint from B, but �t B as well. At the same time De�nition 12.14
makes Alice's job easier, because she only needs to consider those sets B
that �t some set in A, instead of all the sets that are disjoint from some set
in A. Observe also that if the matroidM is the uniform matroid of rank at
least p+ q then the two de�nitions coincide. Thus De�nition 12.14 is truly a
generalization of De�nition 12.11.

If we use representative sets without de�ning which matroid we are
working with, then the matroid in question is the uniform matroid of
rank p+ q, and De�nition 12.14 and De�nition 12.11 coincide.

For the �rst game we showed that Alice only needs to remember
(
p+q
p

)
sets.

What about this new game? Next we will prove that even in this new setting,
remembering

(
p+q
p

)
sets is su�cient, and that we can e�ciently compute

which sets to remember and which to forget.
In the following we will refer to a family of sets of size p by a p-family. The

constant ω is the matrix multiplication constant, that is, the in�nimum of the
set of reals c such that multiplication of two n × n matrices can be done in
O(nc) time. It was shown by Vassilevska Williams [425] that ω < 2.373.

Theorem 12.15. There is an algorithm that, given a matrix M over a �eld
GF(s), representing a matroid M = (U,F) of rank k, a p-family A of in-
dependent sets in M, and an integer q such that p + q = k, computes
a q-representative family A′ ⊆qrep A of size at most

(
p+q
p

)
using at most

O(|A|(
(
p+q
p

)
pω +

(
p+q
p

)ω−1
)) operations over GF(s).
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Theorem 12.15 implies that Alice never needs to remember more than(
p+q
p

)
sets, and that she can compute which sets to remember and which

to forget in time polynomial in |A|.

In the proof of Theorem 12.15, we assume that the matrix M has full row
rank, i.e., that M has exactly k rows. This assumption is justi�ed by the
discussion at the end of Section 12.1.1. Before commencing with the proof of
Theorem 12.15, we review a useful formula for the determinant of a matrix.

For a matrixM with k rows and a subset I of {1, . . . , k}, we de�neM [I] to
be the submatrix of M containing all the rows indexed by I. We will denote
{1, . . . , k} \ I by Ī, and use a shorthand

∑
I for

∑
i∈I i.

Proposition 12.16 (Generalized Laplace expansion). Let MA be a (p+
q)× p matrix, and MB be a (p+ q)× q matrix. Then,

det([MA|MB ]) = (−1)dp/2e
∑

I⊆[p+q],|I|=p
(−1)

∑
I det(MA[I]) det(MB [Ī]).

By [MA|MB ] we mean the matrix obtained from MA and MB by appending
for each i ≤ p+ q the i-th row of MB to the i-th row of MA.

The proof of the Generalized Laplace expansion can be found in most text-
books on linear algebra (see, for example, [371]) and we omit it here.

How does the Generalized Laplace expansion of determinants relate to
representative sets? In fact, the relationship is quite direct. For an edge set
A, de�ne the matrixMA to be the submatrix of the representation matrixM
containing the columns of M corresponding to elements of A. We have the
following observation.

Observation 12.17. An edge set A of size p �ts an edge set B of size q if
and only if the determinant of [MA|MB ] is nonzero.

Proof. Suppose A �ts B. Then the p + q columns of M corresponding to
A ∪ B are linearly independent, and hence det[MA|MB ] 6= 0. If A ∩ B 6= ∅
then there is a column that appears both in MA and in MB . Hence the
columns of [MA|MB ] are not linearly independent and so det[MA|MB ] = 0.
Furthermore, by the de�nition of representation matrices, if A and B are
disjoint but A ∪ B is not independent, then the columns of [MA|MB ] are
linearly dependent and det[MA|MB ] = 0. ut

Suppose we have in our possession an edge set A of size p, and know that in
the future an edge set B of size q will arrive. When B arrives, we are going to
check whether A �ts B by making use of Observation 12.17. In particular we
will compute det([MA|MB ]) using the Generalized Laplace Expansion. Even
though we do not know B yet, we can perform quite a lot of this computation
just with the knowledge of the matrix M , the set A, p and q.



12.3 Representative sets 397

Order the
(
p+q
p

)
subsets I of {1, . . . , k} of size exactly p into I1, I2, . . . I`,

where ` =
(
p+q
p

)
. For an edge set A of size p, de�ne a

(
p+q
p

)
dimensional

vector vA, where the i-th entry of vA is

vAi = det(MA[Ii]).

For each i ≤ `, we have that Īi = {1, . . . , k} \ Ii is a set of size q. For each
edge set B of size q, we de�ne a

(
p+q
q

)
=
(
p+q
p

)
dimensional vector v̄B , where

the i-th entry of v̄B is
v̄Bi = det(MB [Īi]).

Finally, for ease of notation, we de�ne

σi = (−1)
∑
Ii .

The following observation follows directly from Observation 12.17 and the
Generalized Laplace expansion of det([MA|MB ]).

Observation 12.18. An edge set A of size p �ts an edge set B of size q if
and only if

∑`
i=1 σiv

A
i v̄

B
i 6= 0.

Knowing A, we may precompute vA. When B is revealed we compute
v̄B from B, and then test whether

∑`
i=1 σiv

A
i v̄

B
i is nonzero. If it is

nonzero then A �ts B, otherwise A does not �t B.

We are now ready to prove Theorem 12.15.

Proof (of Theorem 12.15). Given M , A, p, and q, the algorithm computes
for each A ∈ A the vector vA. This takes time O(|A|

(
p+q
p

)
pω), since we

need to compute |A|
(
p+q
p

)
determinants of p×p matrices, and computing the

determinant of an n× n matrix can be done in O(nω) time.
The algorithm arranges the vectors {vA : A ∈ A} in a

(
p+q
p

)
×|A| matrix

X, and �nds a column basis Z of X. Since X has
(
p+q
p

)
rows, it follows that

the size of the column basis Z is at most
(
p+q
p

)
. Finding a column basis of

an n × m matrix can be done in time O(mnω−1) (see [48]), thus it takes

|A|
(
p+q
p

)ω−1
time to �nd the basis Z. The algorithm outputs the set

A′ = {A : vA ∈ Z}.

We remark that the given time bounds are in terms of the number of
�eld operations (additions and multiplications) that we need to perform.
When working with integers modulo a prime s, this incurs an overhead of
O(log s log log s) in the running time.

Since |Z| ≤
(
p+q
p

)
, it follows that |A′| ≤

(
p+q
p

)
. It remains to show that

A′ actually q-represents A. Consider any set B of size q that �ts some set
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A ∈ A. We need to show that there is a set A′ ∈ A′ that also �ts B. By
Observation 12.18, we have that

∑`
i=1 σiv

A
i v̄

B
i 6= 0.

Since Z is a column basis for the matrix X, and vA is a column of X, it
follows that we can assign a �eld element λA′ for each A

′ ∈ A′ such that

vA =
∑
C∈A′

λA′v
A′ .

We then have that

0 6=
∑̀
i=1

σiv
A
i v̄

B
i =

∑̀
i=1

∑
A′∈A′

σiλA′v
A′

i v̄Bi =
∑
A′∈A′

λA′
∑̀
i=1

σiv
A′

i v̄Bi .

This means that there has to be at least oneA′ ∈ A′ such that∑`
i=1 σiv

A′

i v̄Bi 6=
0. But then Observation 12.18 implies that A′ �ts B, completing the proof.

ut
Note that Theorem 12.15 requires the matroid M to have rank exactly

p+ q. IfM has larger rank, one can �rst truncate it to rank p+ q by taking
the intersection of M with a uniform matroid of rank p + q, and compute
representative sets in this new matroid, which has rank p+ q. To compute a
representation matrix of the intersection ofM and the uniform matroid, we
may use Lemma 12.5. Using Lemma 12.5 has the consequence that the algo-
rithm for computing representative sets becomes randomized. Furthermore,
Lemma 12.5 only works if M has a representation over a su�ciently large
�eld. These issues will not show up when dealing with the problems consid-
ered in this chapter, but they do show up in more complex applications [310]
of representative sets.

12.3.2 Kernel for d-Hitting Set

In Chapter 2, we gave a kernel for the d-Hitting Set problem of size O(kd ·
d! · d) based on the sun�ower lemma. We now show how representative sets
can be used to get a kernel of size O(

(
k+d
d

)
· d). This is upper bounded

by O(kd · 2ddd! ) = O(kd). Hence the size bound of this kernel has the same
exponent as the sun�ower lemma-based kernel, but with a better dependence
on d in the constant factor.

In the d-Hitting Set problem we are given as input a family A over a
universe U , together with an integer k, and all the sets in A have size at
most d. Using Exercise 2.27, we may alternatively focus on the Ed-Hitting
Set problem, where every set in A is of size exactly d. The objective is to
determine whether there is a set B ⊆ U of size at most k such that B has
nonempty intersection with all sets in A.
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We model the Ed-Hitting Set problem as a game between Alice and
Bob, just as described in the beginning of Section 12.3. The board is the
uniform matroid with edge set U and rank k+ d. Hence a set A of size d �ts
a set B of size k if and only if they are disjoint.

Alice is trying to prove that the Ed-Hitting Set instance does not have
a solution, while Bob is trying to demonstrate a solution to Alice. In the
beginning, Alice gets the family A, while Bob secretly thinks of a tentative
solution set B ⊆ U of size k. Then Bob reveals B to Alice, and Alice either
�nds a set A ∈ A that �ts B, proving that B is not a hitting set, or if no such
A exists, concedes that B is indeed a solution. Just as in Section 12.3, Alice
does not have to remember all of A; a k-representative subfamily A′ ⊆krep A
su�ces.

Theorem 12.19. Both Ed-Hitting Set and d-Hitting Set admit kernels
with at most

(
k+d
d

)
sets and at most

(
k+d
d

)
· d elements.

Proof. We �rst focus on Ed-Hitting Set. Given the instance (A, U, k), we
compute a k-representative subfamily A′ of A of size at most

(
k+d
d

)
using

Theorem 12.15. To invoke Theorem 12.15, we need a representation matrix
of the uniform matroid with edge set U and rank k+d; such a representation
matrix may be computed in polynomial time (see Section 12.1.2). Finally we
remove from U all the elements that do not appear in any set of A′. Let U ′
be the resulting universe; clearly |U ′| ≤

(
k+d
d

)
·d. The kernelization algorithm

outputs the instance (A′, U ′, k). It remains to prove that A has a hitting set
of size at most k if and only if A′ does.

First, any set of size at most k that has nonempty intersection with all
sets in A also has nonempty intersection with all sets in A′. For the reverse
direction, suppose that there is a hitting set B of size k for A′, but that B
is not a hitting set of A. If B is not a hitting set of A, then there is a set
A ∈ A that �ts B. But A′ k-represents A and hence there is an A′ ∈ A′ that
�ts B. This contradicts that B is a hitting set of A′.

For d-Hitting Set, observe that the reduction of Exercise 2.27 does not
change the number of sets in an instance. ut

12.3.3 Kernel for d-Set Packing

In the d-Set Packing problem we are given as input a family A over a
universe U , together with an integer k. All the sets in A have size at most d.
The objective is to determine whether there is a subfamily S ⊆ A of size k
such that the sets in S are pairwise disjoint. In Ed-Set Packing, every set
of A is required to have size exactly d.

In Chapter 2 (Exercise 2.29) you are asked to make a kernel for d-Set
Packing using the sun�ower lemma. This kernel has size O(d!ddkd). Using
representative sets, we give a kernel for Ed-Set Packing with

(
kd
d

)
≤ edkd
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sets and at most
(
kd
d

)
· d ≤ eddkd elements; by using Exercise 2.30, the same

kernel bounds hold for the d-Set Packing problem. Thus the kernel given
here has the same exponent as the kernel from Chapter 2, but the kernel
given here has better dependence on d in the constant.

In the kernel for Ed-Hitting Set in Section 12.3.2, the input family
A was a family of constraints, and we were trying to �nd irrelevant
constraints that could be dropped without turning a no-instance into a
yes-instance. For Ed-Set Packing the family A represents possibilities,
since A contains the sets we can select into the solution. We are now
interested in forgetting some of these possibilities while making sure we
do not turn a yes-instance into a no-instance.

Theorem 12.20. Both Ed-Set Packing and d-Set Packing admit kernels
with at most

(
kd
d

)
sets and at most

(
kd
d

)
· d elements.

Proof. As discussed earlier, it su�ces to focus on Ed-Set Packing. Given
the instance (A, U, k), we compute a (k − 1)d-representative subfamily A′ of
A of size at most

(
kd
d

)
using Theorem 12.15. When invoking Theorem 12.15,

the matroid is the uniform matroid with edge set U and rank kd. Then we
remove from U all elements that do not appear in any set of A′. Let U ′ be the
resulting universe; clearly |U ′| ≤

(
kd
d

)
·d. The kernelization algorithm outputs

the instance (A′, U ′, k).
Clearly, any subfamily S ⊆ A′ of size k such that the sets in S are pairwise

disjoint is also such a subfamily of A. It remains to prove that if there is a
subfamily S ⊆ A of size k such that the sets in S are pairwise disjoint, then
there is such a subfamily S ′ ⊆ A′. Suppose there is a subfamily S ⊆ A of
size k such that the sets in S are pairwise disjoint. Of all such families, pick
the one with most sets in A′. Suppose for contradiction that S contains a set
A ∈ A \ A′. De�ne

B =
⋃

S∈S\{A}
S.

Since all sets in S are pairwise disjoint, it follows that A �ts B. But then
there exists a set A′ ∈ A′ that also �ts B. Then A′ is disjoint from all sets
in S \ {A}. Consequently, S ′ = (S ∪ {A′}) \ {A} is a subfamily of A of size
k such that the sets in S ′ are pairwise disjoint. Furthermore, S ′ has more
sets from A′ than S does, contradicting the choice of S. We conclude that
S ⊆ A′, completing the proof. ut
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12.3.4 `-Matroid Intersection

In Section 12.2.1 we showed that `-Matroid Intersection is NP-complete
for ` = 3. We now give a randomized FPT algorithm for `-Matroid Inter-
section, parameterized by ` and the size k of the independent set searched
for. We �rst give an algorithm for an intermediate problem, Matroid Ed-
Set Packing. Here, we are given integers d and k, a matrix M over GF(s)
representing a matroid M of rank kd with universe U , and a family A of
subsets of U , where all sets in A have the same size d. The objective is to
determine whether there is a subfamily S ⊆ A of size k such that the sets
in S are pairwise disjoint, and such that

⋃
S∈S S is independent in the ma-

troidM. Note that the only di�erence between Matroid Ed-Set Packing
and Ed-Set Packing is the last matroid independence constraint. It should
therefore come as no surprise that the same techniques that work for Ed-Set
Packing also work for Matroid Ed-Set Packing.

Theorem 12.21. There is an algorithm for Matroid Ed-Set Packing
that uses |A|O(1) + kO(dk) operations over GF(s) and at most O((|A|O(1) +
kO(dk)) log s log log s) time.

Proof. Using Theorem 12.15 we compute a d(k−1)-representative subfamily
A′ ⊆ A of size at most

(
dk
d

)
≤ (ek)d. This requires at most |A|O(1) operations

over GF(s). We claim that if there is a solution S ⊆ A of size k such that all
sets in S are pairwise disjoint and

⋃
S∈S S is independent M, then there is

such a family S ′ ⊆ A′ as well. The proof of this claim is almost identical to
the proof of Theorem 12.20 and therefore omitted.

Now we can by brute force iterate over all subfamilies S ′ ⊆ A′ of size
k, and check whether all the sets in S ′ are pairwise disjoint and

⋃
S∈S S

is independent in M. There are at most
(
(ek)d

d

)
≤ kO(dk) possible choices

for S ′. For each choice of S ′ we can verify whether S ′ is a solution using
(k + d)O(1) operations over GF(s). Thus the second part of the algorithm
uses kO(dk) operations over GF(s). The operations over GF(s) dominate the
running time. Each such operation is implemented in O(log s log log s) time,
yielding the claimed running time bound. ut

Even though the proof of Theorem 12.21 is basically identical to the proof
of Theorem 12.20, we give a kernel for Ed-Set Packing in Theorem 12.20
while Theorem 12.21 only gives an FPT algorithm for Matroid Ed-Set
Packing. The reason for the di�erence is that, in the proof of Theorem 12.21,
even after we have reduced the family A to size (ek)d, we still need to keep
a representation of the matroidM. Of course it is su�cient to only keep the
part of the representation of M which corresponds to elements appearing
in some set in A. However it is possible that s is so much bigger than k
and d, that storing a single �eld element requires a number of bits which is
superpolynomial in kd. This is not a problem for the FPT algorithm, but
prevents us from stating the result as a polynomial kernel.
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We are now ready to give an FPT algorithm for `-Matroid Intersec-
tion. Here, we are given ` representation matrices M1, . . .M` (over GF(s))
of matroids M1, . . .M` over the same universe U , and an integer k. The
objective is to determine whether there exists a set S ⊆ U of size k which
is simultaneously independent in all the matroids M1, . . .M`. We give an al-
gorithm for this problem in the case that all the input matrices M1, . . .M`

have rank exactly k.

Lemma 12.22. There is an algorithm for `-Matroid Intersection in the
case that all input matrices M1, . . .M` have the same rank k. The algorithm
uses at most |U |O(1)+kO(`k) operations over GF(s) and at most O((|U |O(1)+
kO(`k)) log s log log s) time.

Proof. Given as input an instance of `-Matroid Intersection we construct
an instance of Matroid Ed-Set Packing with d = `. First we make `
disjoint copies of the universe U , call these copies U1, . . . U`. Then, for each
i, let M?

i be a copy of the matroid Mi, but over the universe Ui rather
than U . We may of course use the matrix Mi as a representation matrix
of M?

i . Let M? be the direct sum of M?
1,M?

2, . . . ,M?
` . Using the method

described in Section 12.1.5, we can obtain a representation matrixM? ofM?

in polynomial time.M? has rank k`, and will be the matroid in the instance
of Matroid Ed-Set Packing.

We now describe the family A. For each element u ∈ U , let Su =
{u1, u2, . . . , u`} where ui is the copy of u in Ui. We set A = {Su : u ∈ U}.
Clearly all sets in A are pairwise disjoint. Furthermore, a subset S ⊆ U is
simultaneously independent in M1,M2, . . . ,M` if and only if

⋃
u∈S Su is

independent inM?. Therefore the input instance to `-Matroid Intersec-
tion is a �yes� instance if and only if there is a subfamily S ⊆ A of size k so
that all sets in S are pairwise disjoint and

⋃
Su∈S Su is independent inM?.

Thus we can run the algorithm of Theorem 12.21 on the produced Matroid
Ed-Set Packing instance and return the same answer as this algorithm.
Theorem 12.21 yields the claimed running time bound. ut

At this point we would like to get rid of the assumption of Lemma 12.22
that the matrices M1, . . .M` have the same rank k. One can use Lemma 12.5
to turn all the matrices into matrices of rank at most k, at the cost of mak-
ing the algorithm randomized. Unfortunately Lemma 12.5 requires the �eld
GF(s) to be big enough in order to work. If s is too small, it is possible to
transform the representation matricesM1 . . .M` into representation matrices
over a larger �eld GF(s′), where s′ is su�ciently large to apply Lemma 12.5
and guarantee small constant error probability. However, this step requires
using �elds that are not just integers modulo a prime. We omit the details.

Theorem 12.23. There is a randomized algorithm for `-Matroid Inter-
section. The algorithm uses at most O((|U |O(1) + kO(`k))(log s)O(1)) time,
and produces the correct answer with probability at least 9

10 .
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12.3.5 Long Directed Cycle

We now give an example of how representative sets can be a useful tool in
the design of graph algorithms. In particular, we will consider the Long Di-
rected Cycle problem. Here, the input is an n-vertex and m-edge directed
graph G and a positive integer k. The question is whether G contains a di-
rected cycle of length at least k. In this section, we will give an algorithm for
Long Directed Cycle with running time 26.9knO(1).

The closely related problem where we are interested in �nding a cycle
of length exactly k can be solved in 2O(k)nO(1) time by color coding.
However, color coding does not seem to be able to handle the Long
Directed Cycle problem, because here the shortest cycle out of the
ones of length at least k could have length much bigger than k. With
a cute trick, it is possible to solve Long Directed Cycle in time
2O(k log k)nO(1) (see Exercise 5.9), but getting the running time down to
2O(k)nO(1) is more challenging.

The starting observation is that G has a cycle C of length at least k if and
only if G contains a simple path P on k vertices such that one can get back
from the endpoint of P to the starting point without having to intersect with
P on the way back.

Lemma 12.24. G has a cycle C on at least k vertices if and only if there
exist vertices u, v, a simple path P1 from u to v on exactly k vertices, and a
simple path P2 from v to u such that V (P1) ∩ V (P2) = {u, v}.
Proof. Given C, let P1 be the �rst k vertices of C and let u and v be the
�rst and last vertices of P1, respectively. Let P2 be the path back from v to
u along the cycle C. For the reverse direction, P1 ∪ P2 forms a cycle on at
least k vertices. ut

We can use Lemma 12.24 to make an nk+O(1)-time algorithm for Long
Directed Cycle. For every choice of u and v and every path P1 from u to
v on exactly k vertices we check in polynomial time whether there is a path
P2 from v to u in G− (V (P1) \ {u, v}). The algorithm runs in time nk+O(1)

since there are at most nk choices for P1.
Is it really necessary to try all possible choices for P1? As we now shall

prove, it is in fact su�cient to restrict the choice of P1 to a relatively small
representative family. To that end, we need to de�ne some notation. For every
pair of distinct vertices u, v and integer p, we de�ne

Ppuv =
{
X : X ⊆ V (G), |X| = p, and there is a directed uv-path in G[X]

visiting all vertices of X
}
.
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For each distinct pair u, v of vertices, each integer p ≤ k, and integer
q ≤ 2k − p, we will compute a q-representative family

P̂p,quv ⊆qrep Ppuv.

The matroid with respect to which we de�ne the q-representative family P̂p,quv
is the uniform matroid with edge set V (G) and rank p + q. Observe that
Theorem 12.15 implies that, for each choice of u, v, p, and q, there exists a
q-representative subfamily P̂p,quv of Ppuv of size at most

(
p+q
p

)
≤ 4k. However,

directly computing P̂p,quv from Ppuv by using Theorem 12.15 would take time
nO(k), since it would take this much time just to list the families Ppuv. For
now, let us not worry about how exactly the representative families P̂p,quv will
be computed, and instead focus on how we can use them once we have them.

Lemma 12.25. If there exists a cycle C of length at least k, then there exist
vertices u, v, and a path P1 such that V (P1) ∈ P̂k,quv , q ≤ k, and there exists
a path P2 from v to u with V (P1) ∩ V (P2) = {u, v}.

Proof. Let C = v1, v2, v3, . . . , vr be a shortest cycle out of all cycles in G of
length at least k. Let P ′1 be the path v1, v2, v3, . . . , vk and P2 be the path
vk, vk+1, . . . , vr, v1 (see Fig. 12.1). We now de�ne a vertex set B as follows.

B =

{
{vk+1, vk+2, . . . , v2k} if r ≥ 2k,
{vk+1, vk+2, . . . , vr} otherwise.

We set u = v1, v = vk and q = |B| ≤ k, and observe that V (P ′1) ∈ Pkuv and

that V (P ′1) �ts B, as they are disjoint. Since P̂k,quv q-represents Pkuv, it follows
that there exists a path P1 such that V (P1) ∈ P̂k,quv and V (P1) �ts B.

We claim that V (P1) ∩ V (P2) = {u, v}. If r < 2k, then this follows im-
mediately, since V (P1) is disjoint from B and B contains all internal vertices
of P2. Thus, suppose for contradiction that r ≥ 2k, but that V (P1) ∩ V (P2)
contains a vertex di�erent from u and v.

Let vi be the �rst vertex on P2 such that vi ∈ V (P1)∩V (P2) \ {u, v}, and
let P ?2 be the subpath of P2 from v to vi. Since V (P1) �ts B, it follows that
i > 2k and hence P ?2 is a path on at least k, but strictly less than |V (P2)|,
vertices. Furthermore, the choice of vi implies that V (P1)∩ V (P ?2 ) = {v, vi}.
Let P ?1 be the subpath of P1 from vi to v. Appending P

?
1 to P ?2 yields a

simple cycle C? on at least k vertices. However, the number of vertices on
C? is

|V (P ?1 )|+ |V (P ?2 )| − 2 < |V (P1)|+ |V (P2)| − 2 = |V (C)|.

This contradicts the choice of C. ut

Our algorithm for Long Directed Cycle will compute representative
families P̂p,quv for each choice of u, v, p ≤ k, and q ≤ 2k − p, and then use
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P �
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vk vk

vr vr

v1 v1

Fig. 12.1: Illustration for the proof of Lemma 12.25.

Lemma 12.25 together with Lemma 12.24 to check whether there is a cycle
of length at least k in G. All that remains is to �nd an e�cient algorithm to
compute the representative families P̂p,quv .

In order to compute the representative families P̂p,quv we will exploit the
fact that a simple recurrence holds for the sets of paths Ppuv. This recurrence
uses the subset convolution operation on set families; we now introduce this
operation. Given two families A and C the convolution of A and C is a new
family A ∗ C de�ned as follows.

A ∗ C = {A ∪ C : A ∈ A, C ∈ C, and A ∩ C = ∅}.
In Section 10.3, we de�ned the subset convolution operation for functions

that take as input a subset of a universe and output an integer. The rela-
tionship between subset convolution for set families de�ned here and subset
convolution of functions is very close, and explored in Exercise 12.12.

The crux of the algorithm for computing the representative families P̂p,quv
is that the following recurrence holds for the set (of vertex sets) of paths of
length exactly p. In particular, for all u, v and p ≥ 3 it holds that

Ppuv =
⋃

wv∈E(G)

Pp−1uw ∗ {{v}}. (12.1)

To see that the equation holds, observe that a path from u to w of length
p− 1 can be extended into a path of length p from u to v if and only if wv is
an edge and the path from u to w does not already visit v. We now describe
how (12.1) can be used to compute the representative families P̂p,quv .
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12.3.5.1 Combining representative families

An important feature of (12.1) is that it only uses ∪ and ∗ operators. In this
section we will show that whenever a family A can be built up from simpler
families by only using these operations, a representative family for A can be
e�ciently computed by repeatedly combining simpler representative families
by the same operations.

It is a quite common setting that there is a large family for which we know
a small representative family exists, but are unable to compute it directly
because the original family is just too big. In such a setting the tools we
develop here often come in handy. We �rst turn to the union operation.

Lemma 12.26. If A1 and A2 are both p-families, A′1 q-represents A1 and
A′2 q-represents A2, then A′1 ∪ A′2 q-represents A1 ∪ A2.

Proof. Consider a set B of size q such that there is a set A ∈ A1 ∪ A2 that
�ts B. If A ∈ A1, then there is an A′ ∈ A′1 that �ts B. If A ∈ A2, then there
is an A′ ∈ A′2 that �ts B. ut

Thus, if we want to compute a q-representative family of A1 ∪ A2, it is
su�cient to �rst compute a q-representative family A′1 of A1, then another
q-representative family A′2 of A2, and return A′1∪A′2. At this point there is a
snag, Theorem 12.15 tells us that there is a q-representative family of A1∪A2

of size
(
p+q
p

)
. If A′1 and A′2 were the result of applying Theorem 12.15 to A1

and A2 respectively, their size could also be as much as
(
p+q
p

)
. But then A′1∪

A′2 would have size as much as 2
(
p+q
p

)
. How can we get rid of this annoying

factor 2? Well, we could just compute a q-representative family of A? of
A′1∪A′2 by invoking Theorem 12.15 again. Note that invoking Theorem 12.15
on A′1 ∪ A′2 is much less costly than invoking it on A1 ∪ A2, since A′1 ∪ A′2
is already a pretty small family of size just a little bit more than

(
p+q
p

)
. All

that remains is a sanity check that A? actually q-represents A1 ∪ A2.

Lemma 12.27. If A? q-represents A′ and A′ q-represents A, then A? q-
represents A.

Proof. Consider a set B of size q such that some A ∈ A �ts B. Since A′
q-represents A, there is an A′ ∈ A′ that �ts B. Now, since A? q-represents
A′, there is an A? ∈ A? that �ts B. ut

We now give an analogue of Lemma 12.26 for subset convolution. Subset
convolution has a slightly more complicated behavior with respect to repre-
sentative sets than union, because the sets in the family A1 ∗ A2 are bigger
than the sets in A1 and A2.

Lemma 12.28. Let A1 be a p1-family and A2 be a p2-family. Suppose A′1
(k − p1)-represents A1 and A′2 (k − p2)-represents A2. Then A′1 ∗ A′2 (k −
p1 − p2)-represents A1 ∗ A2.



12.3 Representative sets 407

Proof. Suppose there is a set B of size (k−p1−p2) that �ts a set (A1∪A2) ∈
A1 ∗A2, where A1 ∈ A1, A2 ∈ A2, and A1 ∩A2 = ∅. Then |B ∪A2| = k− p1
and so there is a set A′1 ∈ A′1 that �ts B ∪A2, that is, |A′1 ∪A2 ∪B| = k and
A′1∪A2∪B is independent. This means that A2 ∈ A2 �ts with A

′
1∪B. Now,

there is a set A′2 ∈ A′2 that �ts A′1 ∪B as well, and so |A′1 ∪A′2 ∪B| = k and
A′1∪A′2∪B is independent. But then A′1∪A′2 �ts B, and (A′1∪A′2) ∈ A′1∗A′2.

ut

Consider a p1-family A1 and a p2-family A2 with p = p1 + p2. In order to
compute a q-representative family of A1 ∗A2, we can �rst compute a (q+p2)-
representative family A′1 of A, then a (q + p1)-representative family A′2 of
A2, and output A′1 ∗ A′2. However A′1 ∗ A′2 could be quite large compared
to
(
p+q
p

)
, and so we might want to run Theorem 12.15 on A′1 ∗ A′2 to get a

representative family A? of size
(
p+q
p

)
. Note that computing A′1 ∗A′2 from A′1

and A′2 takes roughly |A′1| · |A′2| time. On the other hand, computing A? from
A′1 ∗A′2 takes around |A′1| · |A′2| ·

(
p+q
p

)ω−1
time, so this step is the more costly

one. Nevertheless, if A′1 and A′2 both have size 2O(p+q), then A′1 ∗ A′2 can be
computed from A′1 and A′2 in time 2O(p+q) times a polynomial overhead.

12.3.5.2 Long directed cycle, wrapping up

We are now ready to return to the Long Directed Cycle problem. All that
was left was to compute, for every u, v, p ≤ k, and q ≤ k, a q-representative
family P̂p,quv of Ppuv. The size of P̂p,quv will be upper bounded by

(
p+q
p

)
. For

reasons that will become apparent soon, we compute a few extra represen-
tative families, in particular, we will compute representative families for all
q ≤ 2k − p rather than only for q ≤ k. To that end we will combine (12.1)
with the tricks we developed in Section 12.3.5.1.

Lemma 12.29. There is an algorithm that, given G and k, computes, for
every pair u, v of vertices and every integers 2 ≤ p ≤ k and q ≤ 2k − p,
a family P̂p,quv that q-represents Ppuv. The algorithm takes time 4ωknO(1) ≤
26.9knO(1).

Proof. For p = 2, it is very easy to compute representative families of P2
uv,

because the families P2
uv themselves are so simple. Speci�cally, we have that

P2
uv = {{u, v}} if uv ∈ E(G) and P2

uv = ∅ otherwise. So we just set

P̂2,q
uv = P2

uv

for every u, v and q ≤ 2k−2. Clearly, P̂2,q
uv q-represents P2

uv and |P̂2,q
uv | ≤ 1 ≤(

2+q
2

)
. Computing these families takes polynomial time.

At this point the algorithm enters a loop in which p iterates over the set
{3, 4, . . . k} in increasing order. The loop invariant is that at the start of each
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iteration, for every u, v, 1 ≤ p′ < p and q ≤ 2k − p′, a family P̂p′,quv of size at

most
(
p′+q
p′

)
that represents Pp′uv has already been computed.

In each iteration the algorithm �rst computes a new family P̃p,quv for each
u, v and q ≤ 2k − p as follows

P̃p,quv =
⋃

wv∈E(G)

P̂p−1,q+1
uw ∗ {{v}}. (12.2)

Lemmas 12.26 and 12.28 immediately imply that P̃p,quv q-represents Ppuv. Fur-
thermore,

|P̃p,quv | ≤ |P̂p−1,q+1
uv | · n, (12.3)

and therefore

|P̃p,quv | ≤
(
p+ q

p

)
n.

Furthermore, computing P̃p,quv using Equation 12.2 takes time O(
(
p+q
p

)
nO(1)).

Now, the algorithm computes a q-representative family

P̂p,quv ⊆qrep P̃p,quv

by applying Theorem 12.15 on P̃p,quv . This takes time

|P̃p,quv |
(
p+ q

p

)ω−1
nO(1) ≤

(
p+ q

p

)ω
nO(1).

Since q-representation is transitive (Lemma 12.27), we have that P̂p,quv also
q-represents Ppuv. Furthermore

|P̂p,quv | ≤
(
p+ q

p

)
and so we have managed to compute the families P̂p,quv as desired. Thus,
assuming that the loop invariant holds at the beginning of the iteration, it
holds at the beginning of the next iteration as well. Hence, by the end of the
last iteration, the algorithm has computed the families P̂p,quv with the desired
properties for every pair u, v of vertices and all integers 2 ≤ p ≤ k and
q ≤ 2k − p. This concludes the proof. ut

With Lemma 12.29 at hand, it is easy to get an algorithm for Long Di-
rected Cycle.

Theorem 12.30. There is a 26.9knO(1)-time algorithm for Long Directed
Cycle

Proof. The algorithm starts by applying Lemma 12.29 and computing, for
every pair u, v of vertices and integers 2 ≤ p ≤ k, q ≤ 2k − p, a family
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P̂p,quv ⊆qrep Ppuv

of size at most
(
p+q
p

)
. This takes 4ωknO(1) ≤ 26.9knO(1) time. Then the

algorithm checks, for each u, v, q ≤ k, and set A ∈ P̂k,quv , whether there exists
a path P2 from v to u with A ∩ V (P2) = {u, v}. This takes time∑

u,v,q≤k

(
k + q

k

)
nO(1) ≤ 4knO(1).

By Lemmas 12.24 and 12.25, such a set A and path P2 exists if and only if
G has a cycle of length at least k. ut

12.4 Representative families for uniform matroids

A common theme for the problems considered so far is that whenever we
applied Theorem 12.15 in order to compute a representative family, we used
a uniform matroid as the underlying matroid. Is it possible to get an improved
variant of Theorem 12.15 that only works for uniform matroids? There are
two kinds of improvement possible: on the size of the output representative
family and on the time it takes to compute it. It is possible to show that the
size bound of Theorem 12.15 cannot be improved, even for uniform matroids
(see Exercise 12.11). However it is possible to improve the running time.

Theorem 12.31. LetM be a uniform matroid and A be a p-family of inde-
pendent sets of M. There is an algorithm that, given A, a rational number
0 < x < 1, and an integer q, computes a q-representative family A′ ⊆qrep A
of size at most x−p(1− x)−q2o(p+q) in time |A|(1− x)−q2o(p+q).

The proof of Theorem 12.31 is out of the scope of the book; however
we will see a proof of a weaker variant of Theorem 12.31 in Exercise 12.13.
To get a feel of Theorem 12.15, it is useful to consider what happens when
x = 1

2 . In this case the size of the representative family is upper bounded

by 2p+q+o(p+q), and the running time is upper bounded by |A|2q+o(p+q). For
p = q the size of the output family is essentially the same as the

(
p+q
p

)
bound

of Theorem 12.15, while the running time is much better. However, if p
p+q

is su�ciently far from 1/2, then setting x = 1/2 will make Theorem 12.15
output a representative family which is signi�cantly larger than the optimal(
p+q
p

)
bound.

In order to compare Theorems 12.15 and 12.31 it is useful to set x = p
p+q .

Since (
p+ q

p

)
≤
(

p

p+ q

)−p(
q

p+ q

)−q
≤
(
p+ q

p

)
(p+ q)
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we obtain the following corollary by setting x = p
p+q and applying Theo-

rem 12.31.

Corollary 12.32. Let M be a uniform matroid and A be a p-family of in-
dependent sets of M. There is an algorithm that given A and an integer q
computes a q-representative family A′ ⊆qrep A of size at most

(
p+q
p

)
2o(p+q) in

time |A|( q
p+q )−q2o(p+q).

For uniform matroids, Corollary 12.32 will compute representative families
much faster than Theorem 12.15, at the cost that the computed representative
family is a factor 2o(p+q) larger than

(
p+q
p

)
. When p and q are of the same order

of magnitude, the 2o(p+q) factor becomes negligible, but when p or q is very
small, such as in the kernelization applications of Sections 12.3.2 and 12.3.3,
one may not use Corollary 12.32 in place of Theorem 12.15, because the
subexponential factor in the size bound of Corollary 12.32 would make the
upper bound on the kernel size super-polynomial.

The value x = p
p+q is the choice for x that minimizes the size of the

representative family A′ computed by Theorem 12.31. The reason one might
sometimes want to invoke Theorem 12.31 with a di�erent value of x is that
di�erent values of x yield a faster running time for the computation of the
representative family A′, at the cost of making A′ bigger.

12.5 Faster Long Directed Cycle

We now have at our disposal a new hammer, Theorem 12.31. The purpose
of Theorem 12.31 is that when we want to compute q-representative sets
for uniform matroids, Theorem 12.31 does it faster than Theorem 12.15. In
Section 12.3.5.2, the application of Theorem 12.15 was the main bottleneck
for the algorithm for Long Directed Cycle. What happens if we just
replace all the applications of Theorem 12.15 by calls to Theorem 12.31?
More precisely, we will prove a more e�cient version of Lemma 12.29.

Lemma 12.33. There is an algorithm that, given G and k, computes for
every pair u, v of vertices and integers 2 ≤ p ≤ k and q ≤ 2k − p, a family
P̂p,quv that q-represents Ppuv. The size of P̂p,quv is at most(

p+ 2q

p

)p(
p+ 2q

2q

)q
· 2o(p+q),

and the algorithm takes time 6.75k+o(k)nO(1).

Proof. Consider the algorithm in the proof of Lemma 12.29. For p = 2 com-
puting the families P̂p,quv is trivial. For each choice of u, v, 3 ≤ p ≤ k, and q,
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the algorithm of Lemma 12.29 �rst computes a family P̃p,quv and then applies

Theorem 12.15 to compute a q-representative family P̂p,quv of P̃p,quv .
The only property from Theorem 12.15 for which we needed to argue

correctness is that P̂p,quv in fact q-represents P̃p,quv . Thus, if we replace the call
to Theorem 12.15 by a call to Theorem 12.31, we still get a correct algorithm.
All that we need to do is to select the value for x that we will use for each
of the calls to Theorem 12.31, and analyze the running time and the size of
the output families. The running time of the algorithm is dominated by a
polynomial number of calls to Theorem 12.31. Hence, to bound the running
time of the algorithm it is su�cient to bound the running time of the call to
Theorem 12.31 that takes the longest time.

When invoking Theorem 12.31 in order to compute the q-representative
family P̂p,quv of P̃p,quv , we will use the value xp,q for x, where

xp,q =
p

p+ 2q
.

This choice of xp,q is not taken out of thin air, it is in fact the choice that
ends up minimizing the running time of the algorithm. The choice of xp,q is
discussed in Exercise 12.14.

When we apply Theorem 12.31 with x = xp,q in order to obtain P̂p,quv ⊆qrep
P̃p,quv , the size of P̂p,quv is bounded as follows.

|P̂p,quv | ≤ sp,q · 2o(p+q).

Here, sp,q is de�ned as

sp,q = (xp,q)
−p · (1− xp,q)−q.

This proves the claimed size bound on P̂p,quv .
From (12.3), we have that |P̃p,quv | ≤ sp−1,q+1 · n. Thus, when we apply

Theorem 12.31 to compute P̂p,quv from P̃p,quv , this takes time

sp−1,q+1 · (1− xp,q)−q · 2o(p+q) · nO(1). (12.4)

To analyze the running time further we need the following claim.

Claim 12.34. For any p ≥ 3 and q ≥ 1, sp−1,q+1 ≤ e2 · p · sp,q.

Proof. Inserting the de�nition of xp,q into the de�nition of sp,q yields

sp,q = p−p(2q)−q(p+ 2q)p+q.

This yields the following inequality
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sp−1,q+1

sp,q
=

(p− 1)−p+1(2q + 2)−q−1(p+ 2q + 1)p+q

p−p(2q)−q(p+ 2q)p+q

=
pp

(p− 1)p−1
· (2q)q

(2q + 2)q+1
· (p+ 2q + 1)p+q

(p+ 2q)p+q

≤ p ·
(

1 +
1

p− 1

)p−1
· 1 ·

(
1 +

1

p+ 2q

)p+q
≤ p · e · e = e2 · p.

In the last inequality, we used that (1 + 1/x)x < e for every x ≥ 0. y

From (12.4) and Claim 12.34, we have that the running time for computing

P̂p,quv from P̃p,quv is bounded by

sp,q · (1− xp,q)−q · 2o(p+q) · nO(1) ≤
(
p+ 2q

p

)p(
p+ 2q

2q

)2q

· 2o(p+q) · nO(1).

The total running time of the algorithm is bounded by the maximum of
the function

f(p, q) =

(
p+ 2q

p

)p(
p+ 2q

2q

)2q

times a polynomial in n and a subexponential 2o(p+q) factor. We are interested
in the maximum of f on the domain 3 ≤ p ≤ k and 1 ≤ q ≤ 2k − p. Simple
calculus shows that the maximum is attained for p = q = k. Hence the
maximum of f on the domain 3 ≤ p ≤ k and 1 ≤ q ≤ 2k − p is

(
3k

k

)k
·
(

3k

2k

)2k

=

(
3 ·
(

3

2

)2
)k

= 6.75k.

Then the running time of the algorithm is upper bounded by 6.75k+o(k)nO(1),
completing the proof. ut

We now have a faster algorithm to compute the representative fami-
lies P̂p,quv . This yields an improved bound for the running time of our algorithm
for Long Directed Cycle.

We recall the 26.9knO(1)-time algorithm for Long Directed Cycle given
in Theorem 12.30. First it computed, for every pair of vertices u,v and integers
2 ≤ p ≤ k and 1 ≤ q ≤ 2k − p, a q-representative family P̂ p,quv of P̂ puv.
These families were computed using Lemma 12.29, and therefore have size
at most 4k. Computing these families took 26.9knO(1) time. After this, the
algorithm loops over every set in these families and runs a polynomial-time
check (namely a breadth �rst search) for each set. This takes 4knO(1) time.

The bottleneck in the algorithm of Theorem 12.30 is the call to Lemma
12.29. If, instead of using Lemma 12.29, we use Lemma 12.33, then computing
the representative families only takes 6.75k+o(k)nO(1) time. However, the fam-
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ilies may now be bigger, but their total size is not more than 6.75k+o(k)nO(1),
since it took that much time to compute them. Thus, if we now loop over
every set in the representative families and run a breadth �rst search, just as
in the proof of Theorem 12.30, this will take at most 6.75k+o(k)nO(1) time.
Hence we arrive at the following theorem.

Theorem 12.35. There is a 6.75k+o(k)nO(1)-time algorithm for Long Di-
rected Cycle.

12.6 Longest Path

We can use the insights of the algorithms for Long Directed Cycle to
make a fast deterministic algorithm for Longest Path. Here, we are given
a directed graph G and an integer k, and the task is to determine whether G
contains a simple path on at least k vertices.

In Section 12.3.5, we de�ned for every pair of vertices u and v and integer
p ≥ 1 the family

Ppuv =
{
X : X ⊆ V (G), |X| = p, and there is a directed uv-path in G[X]

visiting all vertices of X
}
.

The Longest Path problem can be reformulated to asking whether there
exists a u and a v such that Pkuv is nonempty. Our algorithm will check
whether Pkuv is nonempty by computing, for every u, v, 2 ≤ p ≤ k, and
0 ≤ q ≤ k − p, a q-representative family

P̂p,quv ⊆qrep Ppuv.

Here, just as for Long Directed Cycle, the underlying matroid is the
uniform matroid of rank p+ q.

The crucial observation is that P̂k,0uv 0-represents Ppuv. Thus, if Ppuv is
nonempty, then Pkuv contains some set A that �ts with the empty set ∅. But
then P̂k,0uv must also contain a set which �ts with ∅, and hence P̂k,0uv must be

nonempty as well. Thus, having computed the representative families P̂p,quv ,
all we need to do is to check whether there is a pair u, v of vertices such
that P̂k,0uv is nonempty. All that remains is an algorithm that computes the

representative families P̂p,quv .
Lemma 12.36. There is an algorithm that given G and k computes for every
pair u, v of vertices and integers 2 ≤ p ≤ k and q ≤ k− p, a family P̂p,quv that

q-represents Ppuv. The size of P̂p,quv is at most(
p+ 2q

p

)p(
p+ 2q

2q

)q
· 2o(p+q),
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and the algorithm takes time φ2k+o(k)nO(1) = 2.619knO(1). Here, φ is the

golden ratio 1+
√
5

2 .

Proof. The proof of Lemma 12.36 is identical to the proof of Lemma 12.33,
with the only exception being that the q-representative family P̂p,quv of Ppuv is
computed for all q ≤ k − p, rather than for all q ≤ 2k − p. In the running
time analysis, this has the e�ect that the running time of the algorithm is
equal to the maximum of the function

f(p, q) =

(
p+ 2q

p

)p(
p+ 2q

2q

)2q

times a polynomial in n and a subexponential 2o(p+q) factor. Here, the domain
of f is 2 ≤ p ≤ k and 0 ≤ q ≤ k−p (as opposed to 0 ≤ q ≤ 2k−p, in the proof
of Lemma 12.33). Simple calculus shows that this function is maximized for
p = (1− 1√

5
)k and q = k−p. For these values of p and q, f(p, q) = φ2k where

φ is the golden ratio 1+
√
5

2 . Thus the running time of the algorithm is upper

bounded by φ2k+o(k)nO(1) = 2.619knO(1). ut

Armed with Lemma 12.36, all we need to do in order to solve the Longest
Path problem is to invoke Lemma 12.36 and then check whether any of the
families P̂k,0uv is nonempty. This yields the following theorem.

Theorem 12.37. There is a φ2k+o(k)nO(1) = 2.619knO(1)-time algorithm for

Longest Path. Here, φ is the golden ratio 1+
√
5

2 .

This algorithm is faster than the 4k+o(k)nO(1)-time algorithm of Sec-
tion *5.4, which is based on divide and color. It is not quite as fast as the
algorithms presented in Chapter 10, but these algorithms are randomized,
whereas the algorithm presented here is deterministic.

Exercises

12.1 (l). Let G be a graph and let family F contain those subsets of V (G) that are
independent in G. Show that F is not necessarily a matroid.

12.2. Let G be a bipartite graph with bipartition U and B. De�ne a family F of subsets
of U , where S ⊆ U is in F if and only if there is a matching in G such that every vertex in
S is an endpoint of a matching edge. Prove thatM = (U,F) is a matroid. In other words,
prove that transversal matroids are matroids.

12.3. Prove Theorem 12.3.

12.4 (l). Give a greedy algorithm that, given a matroid M = (U,F) and a weight
functionw : U → Z, computes a basis of maximum weight. How can we �nd an independent
set of maximum weight? (Note that the weights can be negative.)
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12.5 (l). Let G be a bipartite graph. Find two matroidsM1 andM2 such that an edge
set S ⊆ E(G) is a matching in G if and only if it is independent both inM1 andM2.

12.6 (l). Prove that the intersection of two matroids is not necessarily a matroid.

12.7. Prove Lemma 12.5.

12.8 (l). Give a polynomial time reduction from the 2-Matroid Intersection problem
to Matroid Parity.

12.9. Give an algorithm that, given a family A of sets of size p and integer q, computes a
subfamily A′ ⊆qrep A in time O(|A|2 ·pq+O(1)). Here the underlying matroid is the uniform
matroid of rank p+q. Use an algorithm for d-Hitting Set to determine for a given Ai ∈ A
whether there is some set Bi of size q, disjoint from Ai, but intersecting all other sets in
A.

12.10 (l). Use Theorem 12.15 to prove the following generalization of Bollobás' lemma.
LetM be a matroid and A = {A1, A2, . . . , Am} and B = {B1, B2, . . . , Bm} be families of
independent sets inM such that (a) all sets in A have size p, (b) all sets in B have size q,
(c) Ai �ts Bj if and only if i = j. Then m ≤

(
p+q
p

)
.

12.11 (l). Construct for each p and q a p-family A of size exactly
(
p+q
p

)
such that no

proper subfamily A′ of A q-represents A.

12.12 (l). Let A and B be two families of subsets of the same universe U . Prove that
(1A ∗ 1B)(S) 6= 0 if and only if S ∈ A ∗ B. Here 1A is the characteristic function of the
family A. More precisely 1A is a function that takes as input a subset S of U and returns
1 if S ∈ A and 0 otherwise. Recall that the convolution of two functions is de�ned in
Section 10.3.

12.13. Give an algorithm that, given as input a family A of sets of size p over a universe
of size n, computes a q-representative family A′ of A when the underlying matroid is
the uniform matroid of rank p + q. The algorithm should have running time at most
|A| · 2p+q+o(p+q)nO(1) and the size of A′ should be at most 2p+q+o(p+q). Your algorithm
should use the construction of universal sets given in Chapter 5.

12.14. The running time of the Long Directed Cycle algorithm of Section 12.5 is dom-
inated by the maximum of Equation 12.4, when maximized over p and q. It is reasonable to
assume that the choice of xp,q is continuous, i.e., that xp−1,q+1 ≈ xp,q , and that therefore
sp−1,q+1 ≈ sp,q . Then Equation 12.4 reduces to

sp,q · (1− xp,q)−q · 2o(p+q) · nO(1).

For a �xed value of p and q, �nd the value of 0 < xp,q < 1 that minimizes the expression
above.

12.15. Improve Lemma 12.22 so that the algorithm for `-Matroid Intersection only
uses |U |O(1) + 2O(`k) operations over GF(s).

12.16 (A). Consider the graphic matroidM of a clique on n vertices. Show that if p+q =

n− 1, A is an edge set of size p and B is an edge set of size q, then A �ts B if and only if
A∪B is a spanning tree of the clique. Use this fact, together with Theorem 12.15, to give a
2O(k)nO(1) time deterministic algorithm for Hamiltonian Cycle on graphs of treewidth
at most k. You may assume that a tree-decomposition of G of width at most k is given as
input.
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Hints

12.1 The problem is with the exchange property. Consider, for example, a path on an
odd number of vertices, and two independent sets: one consisting of every odd vertex on
the path, and one consisting of every even one.

12.2 Let S1 and S2 be two independent sets inM with |S1| < |S2|. LetMi be a matching
that witnesses that Si ∈ F for i = 1, 2. Since |M2| > |M1|, the symmetric di�erence
M14M2 contains a path P in G of odd length whose every odd edge belongs to M2 and
every even edge belongs to M1 (i.e., an augmenting path for the matching M1). Observe
that P contains exactly one vertex, say v, of S2 \ S1 and no other vertex of U \ S1.
Consequently, M14E(P ) is a matching in G witnessing that S1 ∪ {v} ∈ F .

12.3 For every e ∈ E(G), create a variable xe. Consider a |B| × |U | matrix A where the
entry at position (b, u), u ∈ U , b ∈ B, equals 0 if ub /∈ E(G), and xub if ub ∈ E(G). For a
set S ⊆ U , let AS be the submatrix of A consisting of the columns corresponding to the
vertices of S. The crucial observation is that S is independent in M if and only if there
exists a set T ⊆ B of size |S| such that the determinant of submatrix AS,T (consisting
of rows and columns corresponding to vertices of T and S), treated as a multivariate
polynomial, is nonzero. This follows from the permutation de�nition of the determinant: a
nonzero monomial in detAS,T corresponds to a perfect matching in G[S ∪ T ].

To �nish the proof, it su�ces to apply the Schwartz-Zippel lemma (Lemma 10.19) to
observe that evaluating every variable xe to a random integer between 1 and x ·n · 2n with
good probability does not turn any crucial nonzero polynomial into a zero.

12.5 Let A1 and A2 be the bipartition classes of G. For i = 1, 2, de�ne Mi as a direct
sum of matroids Mv for v ∈ Ai, where Mv is the uniform matroid of rank 1 over the
universe consisting of the edges incident to v.

12.7 Let p ≥ r be the rank ofM and, by applying Gaussian elimination, assume that the
matrix M representing M has p rows. Construct an r × p matrix B where at every cell
(i, j) a new variable xi,j is created. Consider the r × |U | matrix BM . Argue that a set S
of columns is independent in BM (over the ring of multivariate polynomials) if and only if
the corresponding set of elements of U is independent inM∩Ur. Use the Schwartz-Zippel
lemma (Lemma 10.19) together with determinants to show that, if you randomly pick for
every xi,j a value in GF(p), then such an evaluated matrix BM represents M∩ Ur with
good probability.

12.8 Let M1 and M2 be the two input matroids over the same universe U . Make two
copies of U , U1 and U2, and modify each Mi to operate over the universe Ui. Consider
the Matroid Parity instance consisting of the direct sum of M1 and M2, and a set of
pairs {{u1, u2} : u ∈ U}, where ui is the copy of element u ∈ U in the universe Ui.

12.9 The mentioned algorithm for d-Hitting Set is the standard branching one: as long
as there exists a set A′ ∈ A \ {Ai} that is disjoint with the currently constructed set Bi,
consider every possibility of adding an element of A′ \Ai into Bi.

12.11 The family of all subsets of [p+ q] of size exactly p does the job.

12.13 Consider a construction U of (n, p+ q)-universal sets. Observe that a set A of size
p and a set B of size q are disjoint if and only if there is some S ∈ U such that A ⊆ S and
B ∩ S = ∅. What happens if we keep one set A ∈ A, A ⊆ S, for every set S ∈ U?

To get rid of the logn factor, coming from the construction of the (n, p + q)-universal
set, repeat the above procedure as long as it decreases the size of A by a constant factor.



12.6 Longest Path 417

12.15 Consider the direct sum of the matroids M1, . . .M`. Each subset of U of size k nat-
urally corresponds to an independent set of size k` in this new matroid. Use Theorem 12.15
on this matroid to get the algorithm.

12.16 The straightforward dynamic-programming algorithm for Hamiltonian Cycle
may work as follows. For a bag Xt, for every partition of Xt into A0 ∪A1 ∪A2 and every
perfect matching M in a clique on the vertex set A1, we would like to know if there exists
a subset F ⊆ Et such that

1. every connected component of (Vt, F ) is a path with both endpoints in A1, and V (F ) =
Vt \A0;

2. two vertices u, v ∈ A1 are the endpoints of the same path in (Vt, F ) if and only if
uv ∈M .

The 2O(k log k)nO(1) time complexity comes purely from the number of choices of the
matching M .

Using representative sets, argue that it su�ces, at every moment, for �xed bag Xt and
sets A0, A1, and A2, to keep only a representative family of matchings M of size 2O(k)

for which the corresponding set F exists. To this end, observe that, if M represents part
of the solution Hamiltonian cycle present in Gt, and M ′ represents the part of the cycle
in G−Et, then we care only about whether M ∪M ′ is a Hamiltonian cycle in a clique on
vertex set A1.

Bibliographic notes

Matroid theory is a deep and well-studied �eld with a wealth of results. We refer to the
textbook of Welsh [434] or the book of Oxley [379] for an introduction to the �eld. The
randomized representation of transversal matroids of Theorem 12.3 can be found in the
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The �rst polynomial-time algorithm for Matroid Parity is due to Lovász [334] with
running time O(n17). The fastest known deterministic algorithm for Matroid Parity is
by Gabow and Stallmann [221], running in O(nrω) time where r is the rank of the input
matroid and ω < 2.37 is the matrix multiplication exponent (see [425]). The fastest ran-
domized algorithm, building on work by Lovász [333], is due to Cheung, Lau, and Leung [87]
and has running time O(nrω−1). Even though the algorithm we give in this book for 2-
Matroid Intersection is by reduction to Matroid Parity, 2-Matroid Intersection
is considered an easier problem. A polynomial-time algorithm for 2-Matroid Intersec-
tion can be found in the textbook by Schrijver [412]. The FPT algorithm for `-Matroid
Intersection of Exercise 12.15 is due to Marx [351], but using a slower algorithm for the
computation of representative sets than the one presented in Theorem 12.15, resulting in
a somewhat slower algorithm than what is stated in Exercise 12.15.

The �rst use of matroids for the Feedback Vertex Set was by Ueno, Kajitani, and
Gotoh [423], who gave a polynomial-time algorithm for Feedback Vertex Set on cubic
graphs. Ideas from this algorithm were later used by Cao, Chen, and Liu [70], who gave a
3.83knO(1)-time algorithm for Feedback Vertex Set. The 3.619knO(1)-time algorithm
for Feedback Vertex Set presented in this book is by Kociumaka and Pilipczuk [301].
Kociumaka and Pilipczuk [301] also give the currently fastest known deterministic parame-
terized algorithm for Feedback Vertex Set, with running time 3.592knO(1). The fastest
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known randomized algorithm for Feedback Vertex Set is by Cygan, Nederlof, Pilipczuk,
Pilipczuk, van Rooij, and Wojtaszczyk [118], runs in 3knO(1) time, and uses Cut & Count
(see Section 11.2.1) together with iterative compression.

The notion of representative sets can be thought of as an algorithmic variant of the
classical Bollobás' lemma [57] and its generalization to linear matroids by Lovász [331]
(see Exercise 12.10). The notion of representative sets was de�ned by Monien [368], where
he gave an algorithm for Longest Path running in kO(k)nO(1) time. Monien [368] gave
an algorithm computing a q-representative family for uniform matroids with running time
O(|A|qpq+1), where A is the input p-family. The algorithm outputs a q-representative
family of size O(pq). Marx [346] gave an algorithm computing representative families for
uniform matroids with O(|A|2pq) running time, outputting a q-representative family of size(
p+q
p

)
. Subsequently Marx [351] gave an algorithm computing representative families for

linear matroids. The algorithm outputs a q-representative family of size at most
(
p+q
p

)
in

time
(
p+q
p

)
(p+ q)O(q)|A|2. Fomin, Lokshtanov, and Saurabh [206] proved Theorem 12.15;

this is the fastest currently known algorithm for computing representative sets of linear
matroids. In the same paper Fomin, Lokshtanov and Saurabh [206] gave a faster algorithm
for computing representative sets for uniform matroids, in particular they proved Corol-
lary 12.32. Subsequently, Theorem 12.31 was independently proved by Fomin, Lokshtanov,
Panolan, and Saurabh [201] and Shachnai and Zehavi [416]. This is the currently fastest
known algorithm for computing representative sets of uniform matroids.

Monien [368] was the �rst to use representative sets to design parameterized algo-
rithms. Monien [368] used representative sets to give a kO(k)nO(1)-time algorithm for
Longest Path. Plehn and Voigt [386] used representative sets and gave a kO(k)nO(t)-
time algorithm for Subgraph Isomorphism where the pattern graph H has k vertices
and treewidth t. Some more algorithms using representative sets, in particular an algo-
rithm for `-Matroid Intersection, were given by Marx [351]. With respect to kerneliza-
tion, Kratsch and Wahlström [312] gave a randomized polynomial kernel for Odd Cycle
Transversal by encoding the problem as a problem on a certain kind of linear matroid,
called gammoids. Kratsch and Wahlström [310] used representative sets of linear matroids
to also give a randomized polynomial kernel for Almost 2-SAT, as well as for several
other interesting problems. The kernel for d-Hitting Set presented in Section 12.3.2 is
due to Kratsch and Wahlström [311]. The kernel for d-Set Packing in Section 12.3.3 is
due to Zehavi [442].

The Long Directed Cycle problem was shown �xed-parameter tractable by Gabow
and Nie [220], who gave a kO(k)nO(1)-time algorithm for the problem. Fomin, Lokshtanov,
and Saurabh [206] gave the �rst cknO(1) algorithm for Long Directed Cycle by using
representative sets. The algorithm of Fomin, Lokshtanov, and Saurabh [206] is slightly
slower than the one stated in Theorem 12.35, because they use Corollary 12.32 to compute
representative sets, rather than Theorem 12.31. Theorem 12.35, i.e., a 6.75knO(1)-time
algorithm for Long Directed Cycle, was proved independently by Fomin, Lokshtanov,
Panolan, and Saurabh [201] and Shachnai and Zehavi [416].
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Chapter 13

Fixed-parameter intractability

In this chapter, we use parameterized reductions and
W[1]-hardness to provide evidence that certain param-
eterized problems are unlikely to be �xed-parameter
tractable.

The goal of the previous chapters was to present the most fundamental
algorithmic techniques for showing the �xed-parameter tractability of param-
eterized problems. In this chapter, we study the complementary questions on
lower bounds: how it is possible to show (provide evidence) that a parame-
terized problem is not �xed-parameter tractable.

In the earliest days of computer science, when the �rst algorithms were
developed to solve combinatorial problems of practical interest such as the
Traveling Salesperson Problem, it was observed with frustration that ev-
ery proposed algorithm had an inconveniently large worst-case upper bound
on the running time, typically exponential in the size of the input. Several
decades of research have not been able to explain and prove why exponen-
tial time is needed for these problems. The theory of NP-completeness at
least showed that there is one common underlying reason for the lack of
polynomial-time algorithms, and therefore conditional lower bounds based
on NP-completeness are the best we can have at this point of time. The fact
that computation cannot be cheap seems to be a fundamental principle and
understanding the exact reason for this apparent hardness is a deep question
that is well beyond our current knowledge.

Our goal in this chapter is to develop a lower bound theory for parame-
terized problems, similar to the NP-completeness theory of polynomial-time
computation. Instead of taking this as an opportunity to delve deeper into the
mysteries of e�cient computation, we adopt the pragmatic viewpoint of the
algorithm designer: our focus is on presenting evidence for as many problems

421
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as possible that algorithms with certain speci�cations do not exist. Being
aware of and being able to produce such negative results is essential for the
algorithm designer: without them, countless hours can be wasted on trying
to prove results that contradict commonly accepted assumptions. Knowing
that certain problems are (probably) not �xed-parameter tractable prevents
us from attacking the same problem over and over again with little hope of
progress. Furthermore, the lower-bound theory helps the algorithm designer
in a more subtle way as well. In many cases, it is very helpful to look at
a problem from both the algorithmic and the complexity viewpoints at the
same time. A failed attempt at �nding an algorithm can highlight certain
di�cult situations, giving insight into the structure of hard instances, which
can be the starting point of a hardness proof. Conversely, if one can pinpoint
a speci�c reason why a proposed hardness proof cannot be made to work,
then it may suggest an algorithmic idea that can renew the attack on the
algorithmic side of the question. The authors of this textbook have experi-
enced many times that an answer was found only after repeatedly jumping
back and forth between attacks from the algorithmic side and the complexity
side of the problem. Moreover, the hardness proofs might tell us what special
cases or problem variants merit further exploration. Hence the lower bound
theory helps not only in �nding the answers, but can even steer the algorithm
designer towards the right formulation of the questions.

As we have no proof of P 6= NP, we cannot rule out the possibility that
problems such as Clique and Dominating Set are polynomial-time solv-
able and hence FPT. Therefore, our lower bound theory has to be conditional:
we are proving statements of the form �if problem A has a certain type of
algorithm, then problem B has a certain type of algorithm as well.� If we
have accepted as a working hypothesis that B has no such algorithms (or
we have already proved that such an algorithm for B would contradict our
working hypothesis), then this provides evidence that problem A does not
have this kind of algorithm either. To prove such statements in the context
of �xed-parameter tractability, we need a notion of reduction that trans-
fers (negative evidence for) �xed-parameter tractability from one problem
to the other. As we shall see, the standard notion of polynomial-time re-
duction used in NP-completeness theory is not su�cient for our purposes.
Section 13.1 introduces the notion of parameterized reductions, which have
a slightly di�erent �avor than NP-hardness proofs and therefore require a
di�erent toolbox of techniques. Then Section 13.2 presents a selection of ba-
sic reductions from Clique to various problems. If we accept as a working
hypothesis that Clique is not �xed-parameter tractable, then these reduc-
tions from Clique are practical evidence that certain other problems are not
�xed-parameter tractable either. The assumption that Clique is not �xed-
parameter tractable is a stronger assumption than P 6= NP, but it seems that
we need such a strong assumption, as we currently do not know how to base
�xed-parameter intractability results on assuming P 6= NP only.
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A remarkable aspect of NP-completeness is that there are literally thou-
sands of natural hard problems that are equally hard in the sense that they are
reducible to each other. The situation is di�erent in the case of parameterized
problems: there seem to be di�erent levels of hardness and even basic prob-
lems such as Clique and Dominating Set seem to occupy di�erent levels.
Downey and Fellows introduced the W-hierarchy in an attempt to classify pa-
rameterized problems according to their hardness. We give a brief overview of
this hierarchy in Section 13.3. The Clique problem is W[1]-complete, that
is, complete for the �rst level of the W-hierarchy. Therefore, Clique not
being �xed-parameter tractable is equivalent to FPT 6= W[1]. This is the ba-
sic assumption of parameterized complexity; we interpret W[1]-hardness as
evidence that a problem is not �xed-parameter tractable. In Section *13.4,
we connect the class W[1] to a fundamental computational problem about
Turing machines. This connection provides further evidence supporting the
assumption FPT 6= W[1]. Moreover, it allows a very convenient way of prov-
ing membership in W[1]. In Section *13.5, we use this and other arguments
to conclude that all the problems studied in Section 13.2 are actually com-
plete either for W[1] or for W[2]. In Section 13.6, we �nish the chapter with
a selection of W[1]-hardness results, demonstrating some of the challenges
one faces in typical hardness proofs and ways of overcoming these di�cul-
ties. We remark that Section 14.4.1 contains further important parameterized
reductions.

Following our pragmatic viewpoint, we omit here the discussion of issues
that belong to structural complexity theory and hence are not essential to
the algorithm designer. What complexity classes can be de�ned and which
problems are complete for them? Which of these classes are equal? Are there
intermediate problems between two classes? What notions of reductions can
we de�ne? Can we increase the strength of our negative evidence by basing it
on weaker conjectures? What role does nonuniformity play in the complexity
of the problems? These are �ne theoretical questions, but are not of immedi-
ate importance to the algorithm designer who only wants some evidence that
the answer to a particular algorithmic question is negative.

Finally, let us comment on the fact that all the lower bounds of this and the
following chapters are conditional on various conjectures. The reader might be
skeptical of the validity of these lower bounds, as they are based on unproven
assumptions. In particular, the strongest of these conjectures, SETH, is still
somewhat controversial and not fully accepted by the computational com-
plexity community. Nevertheless, these lower bounds still send an important
and useful message. The reader might dismiss these lower bounds and spend
time on working towards an algorithmic result violating these lower bounds.
But then the reader should be aware that he or she is actually working to-
wards disproving one of the basic conjectures and the di�culty of proving
the algorithmic result is not speci�c to the problem at hand, but it requires
answering a basic well-studied question �rst. Then one could argue that per-
haps it is more e�cient to spend time on concentrating on this basic question
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directly, rather than answering it indirectly via some more problem-speci�c
algorithmic question.

13.1 Parameterized reductions

Let us recall the standard notion of polynomial-time reduction used in NP-
hardness proofs. A polynomial-time many-one1 reduction from problem A
to problem B is a polynomial-time algorithm that, given an instance x of
problem A, outputs an equivalent instance x′ of problem B, that is, x is a
yes-instance of problem A if and only if x′ is a yes-instance of problem B.
If there is such a reduction from A to B and B is polynomial-time solvable,
then A is also polynomial-time solvable: given an instance x of problem A,
we can run the reduction to get an instance x′ of problem B, which we can
solve using the assumed polynomial-time algorithm for B.

We need an analogous notion of reduction for parameterized problems that
transfers �xed-parameter tractability.

De�nition 13.1 (Parameterized reduction). Let A,B ⊆ Σ∗ ×N be two
parameterized problems. A parameterized reduction from A to B is an algo-
rithm that, given an instance (x, k) of A, outputs an instance (x′, k′) of B
such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,
2. k′ ≤ g(k) for some computable function g, and
3. the running time is f(k) · |x|O(1) for some computable function f .

As a minor technical remark, let us observe that it can be assumed that the
functions f and g are nondecreasing: for example, we may replace the com-
putable function g(k) with ĝ(k) = maxki=1 g(k) ≥ g(k), which is a computable
nondecreasing function.

Before comparing this notion of reduction to classic polynomial-time re-
ductions, let us formally state and prove that parameterized reductions work
as intended.

Theorem 13.2. If there is a parameterized reduction from A to B and B is
FPT, then A is FPT as well.

Proof. Let (x, k) be an instance of problem A. The parameterized reduction
gives an equivalent instance (x′, k′) in time f(k)|x|c1 with k′ ≤ g(k) and
|x′| ≤ f(k)|x|c1 (clearly, the running time of the reduction is an upper bound
on the size of the instance created). Suppose that B has an algorithm with
running time h(k)nc2 ; by the earlier discussion, we may assume that h is

1 The terminology �many-one� refers to the fact that many instances of problem A might
be mapped to the same instance of problem B. Some authors use the term Karp-reduction
for such a reduction.
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nondecreasing. Then running this algorithm on (x′, k′) determines whether
(x′, k′) is a yes-instance of B (equivalently, whether (x, k) is a yes-instance
of A) in time at most

h(k′)|x′|c2 ≤ h(g(k))(f(k)|x|c1)c2

(the inequality uses the fact that h is nondecreasing). Together with the time
required for the parameterized reduction, the total running time is at most
f ′(k)|x|c1c2 , where f ′(k) = f(k) + h(g(k))f(k)c2 is a computable function.
That is, the problem B is �xed-parameter tractable. ut

The second item in De�nition 13.1 requires something that is not re-
quired for classic polynomial-time reductions: the new parameter should
be bounded by a function of the parameter of the original instance.
Therefore, not every NP-hardness proof gives a parameterized reduc-
tion.

There is a very simple reduction from Independent Set to Clique: the
size of the maximum independent set in graph G is the same as the size of the
maximum clique in the complement G. Therefore, given an instance (G, k),
creating an instance (G, k) is a polynomial-time reduction from Indepen-
dent Set to Clique. In fact, this is a parameterized reduction: the new
parameter is the same in the original instance, hence g(k) = k is a trivial
bound on the new parameter. The same reduction can be used in the other
direction as well, that is, to reduce Clique to Independent Set. Therefore,
these two problems are equally hard in the sense that one is FPT if and only
if the other is.

It is a well-known fact that an n-vertex graph G has an independent set of
size k if and only if it has a vertex cover of size n− k. Therefore, (G, k) is a
yes-instance of Independent Set if and only if (G,n−k) is a yes-instance of
Vertex Cover. This immediately gives a polynomial-time reduction from
Independent Set to Vertex Cover. However, this is not a parameterized
reduction: as n can be arbitrarily large compared to k, there is no function
g(k) such that n− k ≤ g(k). We do not expect that there is a parameterized
reduction from Independent Set to Vertex Cover: as the latter problem
is FPT, the existence of such a reduction would imply by Theorem 13.2 that
Independent Set is FPT as well, which we do not believe.

The third item in De�nition 13.1 allows the running time of the reduction
to be more than polynomial: it can have an additional factor depending only
on the parameter k. This means that not every parameterized reduction is a
polynomial-time reduction and if there is a parameterized reduction from A
to B such that the unparameterized version of A is NP-hard, then this does
not necessarily imply that B is NP-hard. As an arti�cial example, consider the
problem Cliquelog, where (G, k) is a yes-instance if k ≤ log2 |V (G)| and G
has a clique of size k. The following simple transformation is a parameterized
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reduction from Clique to Cliquelog: given an instance (G, k), we output the
instance (G′, k), where G′ is obtained from G by adding 2k isolated vertices.
Then k ≤ log2 |V (G′)| always holds, and hence (G′, k) is a yes-instance of
Cliquelog if and only if G has a clique of size k. However, Cliquelog can be

solved in time |V (G)|O(log2 |V (G)|) by brute force, as the answer is trivial if
k > log2 |V (G)|. That is, the problem can be solved in quasi-polynomial time
nO(logn), which we do not expect to be possible for NP-hard problems.

In general, parameterized reductions and polynomial-time reductions
are incomparable. However, the vast majority of parameterized reduc-
tions (including most reductions appearing in this chapter) are actually
polynomial-time reductions.

Later in this section, a hardness proof for Dominating Set on Tour-
naments will be a more natural example of a parameterized reduction with
running time exponentially depending on the parameter k.

13.2 Problems at least as hard as Clique

In this section, we present a series of parameterized reductions showing that
Clique can be reduced to various basic problems. This means that these
problems are at least as hard as Clique in the sense that if any of them is
FPT, then it follows that Clique is FPT as well. This is strong evidence
that none of the problems considered in this section is FPT.

To be more precise, the reductions given in this section are not all from
Clique. We use the fact, stated in the following theorem, that parameterized
reductions compose: that is, a reduction from A to B and reduction from B to
C implies that there is a reduction from A to C. Therefore, to show that there
is a parameterized reduction from Clique to a problem C, it is su�cient to
reduce a problem B to C, where B is a problem to which we already have a
reduction from Clique.

Theorem 13.3. If there are parameterized reductions from A to B and from
B to C, then there is a parameterized reduction from A to C.

Proof. Let R1 be a parameterized reduction from A to B (with running
time f1(k) · |x|c1 and parameter bound g1(k)) and let R2 be a parameterized
reduction from B to C (with running time f2(k) · |x|c2 and parameter bound
g2(k)). As discussed after De�nition 13.1, we may assume that the functions
f1, f2, g1, g2 are nondecreasing. Given an instance (x, k) of A, reduction
R �rst uses R1 to create an equivalent instance (x′, k′) of B (with |x′| ≤
f1(k) · |x|c1 and k′ ≤ g1(k)), and then uses reduction R2 on (x′, k′) to create
an equivalent instance of C (with k′′ ≤ g2(k′)). It is clear that (x, k) is
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a yes-instance of A if and only if (x′′, k′′) is a yes-instance of C. We have
k′′ ≤ g2(k′) ≤ g2(g1(k)) (using the fact that g2 is nondecreasing), thus k′′ is
bounded by a computable function of k. The running time of the reduction
is

f1(k) · |x|c1 + f2(k′) · |x′|c2 ≤ f1(k) · |x|c1 + f2(g1(k)) · (f1(k) · |x|c1)c2

≤ (f1(k) + f2(g1(k))f1(k)) · |x|c1c2
= f∗(k) · |x|c1c2 ,

where f∗(k) = f1(k)+f2(g1(k))f1(k) is a computable function (we use in the
�rst inequality the fact that f2 is nondecreasing). Thus reduction R satis�es
all requirements of De�nition 13.1. ut

It is common practice to prove NP-hardness for the most restricted version
of a problem, as this can be convenient when the problem becomes the source
of a reduction later: it can be easier to devise a reduction if input instances
of only some restricted form need to be considered. The same principle holds
for parameterized problems and in particular for Clique, which is the source
of most parameterized reductions. We show �rst that Clique remains hard
even if the graph is regular, that is, every vertex has the same degree.

Theorem 13.4. There is a parameterized reduction from Clique to Clique
on regular graphs.

Proof. Given an instance (G, k) of Clique, we create a graph G′ as described
below and output the instance (G′, k). If k ≤ 2, then the Clique problem
is trivial, hence we can output a trivial yes- or no-instance. Let d be the
maximum degree of G.

(i) Take d distinct copiesG1, . . . ,Gd ofG and let vi be the copy of v ∈ V (G)
in graph Gi.

(ii) For every vertex v ∈ V (G), let us introduce a set Vv of d−dG(v) vertices
and add edges between every vertex of Vv and every vi for 1 ≤ i ≤ d.

Observe that every vertex of G′ has degree exactly d. To prove the correctness
of the reduction, we claim that G has a k-clique if and only if G′ has. The
left to right implication is clear: copies of G appear as subgraphs in G′,
thus any clique in G gives a corresponding clique in G′. For the reverse
direction, observe that the vertices introduced in step (ii) do not appear in
any triangles. Therefore, assuming k ≥ 3, these vertices cannot be part of
a k-clique. Removing these vertices gives d disjoint copies of G, thus any
k-clique appearing there implies the existence of a k-clique in G. ut

As the complement of a regular graph is also regular, we get an analogous
result for Independent Set.

Proposition 13.5. There is a parameterized reduction from Clique to In-
dependent Set on regular graphs.
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Note that we have restricted the graph to be regular, but we did not specify
that the graph is, say, 3-regular or has any other �xed degree bound. Indeed,
Clique and Independent Set are both FPT on r-regular graphs for every
�xed integer r, and moreover, FPT with combined parameters k + r (see
Exercise 3.2). This has to be contrasted with the fact that Independent
Set is NP-hard on 3-regular graphs.

The following reduction shows an example where we can exploit the fact
that the graph appearing in the Clique instance is regular. The input to the
Partial Vertex Cover problem is a graph G with two integers k and s,
and (G, k, s) is a yes-instance if G has a set S of k vertices that covers at least
s edges (we say that a set S covers an edge xy if at least one of x and y is in
S). Vertex Cover is the special case s = |E(G)|; the following reduction
shows that the general Partial Vertex Cover problem is probably harder
than Vertex Cover.

Theorem 13.6. There is a parameterized reduction from Independent Set
on regular graphs to Partial Vertex Cover parameterized by k.

Proof. Let (G, k) be an instance of Independent Set, where G is an r-
regular graph. We claim that G has an independent set of size k if and
only if (G, k, rk) is a yes-instance of Partial Vertex Cover. If G has an
independent set S of size k, then every edge of G is covered by at most one
vertex of S, hence together they cover exactly rk edges. Conversely, suppose
that G has a set S of k vertices covering rk edges. As each vertex of G covers
exactly r edges, this is only possible if no edge of G is covered twice by these
k vertices, that is, if they form an independent set. ut

Note that Partial Vertex Cover is �xed-parameter tractable parameter-
ized by s, the number of edges to cover (Exercise 5.11).

Next we consider a version of the Clique problem that is a useful starting
point for hardness proofs. The input ofMulticolored Clique2 (also called
Partitioned Clique) consists of a graph G, an integer k, and a partition
(V1, . . . , Vk) of the vertices of G; the task is to decide if there is a k-clique
containing exactly one vertex from each set Vi.

Theorem 13.7. There is a parameterized reduction from Clique on regular
graphs to Multicolored Clique on regular graphs.

Proof. Let (G, k) be an instance of Clique, where G is an r-regular graph
on n vertices. We construct an instance (G′, k, (V1, . . . , Vk)) as follows. For
every vertex v ∈ V (G), we introduce k vertices v1, . . . , vk into G′. The set
Vi contains vi for every v ∈ V (G). We de�ne the edges of G′ as follows:

(i) Every Vi is a set of n independent vertices.

2 The name �multicolored� comes from an alternate way of de�ning the problem: we can
say that the vertices of G are colored by k colors and we are looking for a clique where
every vertex has a distinct color.
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(ii) If u and v are di�erent and adjacent in G, then we make ui and vj
adjacent for every 1 ≤ i, j ≤ k, i 6= j.

Observe that the degree of every vertex in G′ is (k−1)r: vertex vi is adjacent
to r vertices from each Vj with i 6= j.

We claim that G has a k-clique if and only if G′ has a k-clique with exactly
one vertex from each Vi. Suppose that v

1, . . . , vk are the vertices of a k-clique
in G (ordered arbitrarily). Then v11 ∈ V1, . . . , v

k
k ∈ Vk is a k-clique in G′.

Conversely, suppose that v11 ∈ V1, . . . , vkk ∈ Vk is a k-clique in G′. It follows
from the de�nition of G′ that vii and v

j
j are only adjacent in G′ if vi and vj

are di�erent and adjacent in G. Therefore, {v1, . . . , vk} induces a k-clique in
G. ut

One may analogously de�ne the multicolored version of Independent Set,
where the k vertices of the independent set have to include one vertex from
each class of the given partition (V1, . . . , Vk). Taking the complement of the
graph is a parameterized reduction between Clique and Independent Set.
Observe that this also holds for the multicolored version.

Corollary 13.8. There are parameterized reductions between Multicol-
ored Clique on regular graphs and Multicolored Independent Set
on regular graphs.

Our next reduction gives evidence for the �xed-parameter intractability of
Dominating Set.

Theorem 13.9. There is a parameterized reduction from Multicolored
Independent Set to Dominating Set.

Proof. Let (G, k, (V1, . . . , Vk)) be an instance of Multicolored Indepen-
dent Set. We construct a graph G′ the following way (see Fig. 13.1).

(i) For every vertex v ∈ V (G), we introduce v into G′.
(ii) For every 1 ≤ i ≤ k, we make the set Vi a clique in G′.
(iii) For every 1 ≤ i ≤ k, we introduce two new vertices xi, yi into G

′ and
make them adjacent to every vertex of Vi.

(iv) For every edge e ∈ E(G) with endpoints u ∈ Vi and v ∈ Vj , we introduce
a vertex we into G

′ and make it adjacent to every vertex of (Vi ∪ Vj) \
{u, v}.

The intuitive idea of the reduction is the following. The vertices xi and
yi ensure that a dominating set of size k has to select exactly one vertex
from each Vi. The vertices we ensure that the selected vertices form an
independent set in the original graph: if both endpoints of an edge e
are selected, then the vertex we is not dominated.
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V1

x1 y1 x2 y2 xk yk

u

v

we

V2 Vk

Fig. 13.1: The reduction from Multicolored Independent Set to Dom-
inating Set in Theorem 13.9. The set Vi ∪ {xi, yi} induces a clique minus
the edge xiyi. If edge e connectes u ∈ Vi and v ∈ Vj , then we introduce a
vertex we adjacent to (Vi ∪ Vj) \ {u, v}

Formally, we claim that G has an independent set with exactly one vertex
from each Vi if and only if G′ has a dominating set of size k. Suppose that
there is an independent set I in G with one vertex from each Vi; we show
that it is a dominating set in G′. First, as I ∩Vi 6= ∅, the set I dominates the
set Vi ∪ {xi, yi}. Consider now a vertex we, where u ∈ Vi and v ∈ Vj are the
endpoints of edge e ∈ E(G). As u and v are adjacent, at least one of them
is not in I. In other words, I contains a vertex of either Vi \ {u} or Vj \ {v},
that is, I contains a vertex of (Vi ∪ Vj) \ {u, v}, which dominates we.

To prove the reverse direction of the equivalence, suppose now that D is a
dominating set of size k in G′. To dominate vertices xi and yi, the set D has
to contain at least one vertex from Vi ∪{xi, yi}. As these sets are disjoint for
di�erent values of i, we can assume that D contains exactly one vertex from
each of Vi ∪ {xi, yi}. As xi and yi are not adjacent, this vertex of D cannot
be xi or yi. Therefore, let us assume that the dominating set D consists of
the vertices v1 ∈ V1, . . . , vk ∈ Vk. We claim that D is an independent set in
G. Suppose that vi and vj are the endpoints of an edge e. Then vertex we
of G′ is adjacent only to (Vi ∪ Vj) \ {vi, vj}, and hence D does not dominate
we, a contradiction. ut

As there is a very simple reduction between (multicolored versions of)Clique
and Independent Set, a reduction from one can be reinterpreted to be a
reduction from the other with minimal changes. However, sometimes choosing
one of the two problems is more convenient notationally or conceptually; for
example, in the proof of Theorem 13.9, it is convenient notationally that (iv)
adds a new vertex we for every edge e (rather than for every nonedge).

Given a set system F over a universe U and an integer k, the Set Cover
problem asks if there are k sets in F such that their union is U . In this
chapter, we always parameterize Set Cover by the number k of selected
sets in the solution. The following easy reduction shows that Set Cover
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is as hard as Dominating Set (Exercise 13.2 asks for a reduction in the
reverse direction).

Theorem 13.10. There is a parameterized reduction from Dominating Set
to Set Cover.

Proof. Let (G, k) be an instance of Dominating Set. We create an instance
(F , U, k) of Set Cover as follows. We let U := V (G) and for every v ∈ V (G),
we introduce the set NG[v] (the closed neighborhood of v) into F . Suppose
that D is a dominating of size k in G. Then the union of the corresponding
k sets of F covers U : an uncovered element would correspond to a vertex of
G not dominated by D. Conversely, if the union of k sets in F is U , then the
corresponding k vertices of G dominate every vertex: a vertex not dominated
in G would correspond to an element of U not covered by the k sets. ut

On directed graphs, we de�ne dominating set in the following way: a set
D ⊆ V (G) is a dominating set of G if for every vertex v ∈ V (G) \D, there is
a vertex u ∈ D such that edge (u, v) is in G. Equivalently, we can say that
we want the union of the closed outneighborhoods to cover every vertex. It is
easy to reduce Dominating Set on undirected graphs to Dominating Set
on directed graphs: we can replace each undirected edge xy with two directed
edges (x, y) and (y, x) (in other words, we replace xy with a bidirected edge
between x and y). Furthermore, the reduction from Dominating Set to
Set Cover appearing in Theorem 13.10 can be adapted to directed graphs.
Therefore, Dominating Set on undirected graphs, Dominating Set on
directed graphs, and Set Cover are reducible to each other.

A very interesting special case of Dominating Set on directed graphs is
when the input graph is a tournament, that is, for every pair u, v of distinct
vertices, exactly one of (u, v) and (v, u) is in the graph. It is easy to see that
every tournament on n vertices has a dominating set of size O(log n).

Lemma 13.11. Every tournament on n vertices has a dominating set of size
at most 1 + log n.

Proof. We prove the claim by induction on n. For n = 1 it is trivial, so let
us assume n ≥ 2.

Since T has
(
n
2

)
edges, the sum of outdegrees of all the vertices is equal

to
(
n
2

)
= n(n−1)

2 . As there are n vertices in T , there exists some vertex u
with outdegree at least n−1

2 . Let U+ be the set of outneighbors of u, and
let U− be the set of inneighbors of u. Then U+ and U− form a partition of
V (T ) \ {u}, and |U−| ≤ n−1

2 ≤ bn2 c. Since bn2 c < n, by induction hypothesis
we may �nd a set D′ ⊆ U− that is a dominating set in T [U−] and has at
most 1 + logbn2 c ≤ log n vertices. Then D := D′ ∪ {u} is a dominating set in
T , and has size at most 1 + log n. ut

Therefore, Dominating Set on Tournaments can be solved by brute
force in time nO(logn), making it very unlikely that it is NP-hard. Is there
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such a spectacular collapse of complexity compared to general directed graphs
also for the parameterized version of the problem? Surprisingly, we are able
to show that this is not true: there is a parameterized reduction from Set
Cover to Dominating Set on Tournaments.

The crucial building block in our reduction will be a construction of su�-
ciently small tournaments that do not admit a dominating set of size k. Such
tournaments are traditionally called k-paradoxical, and were studied inten-
sively in combinatorics. Note that by Lemma 13.11, a k-paradoxical tourna-
ment must have at least 2k vertices. It turns out that once we increase the size
of the vertex set slightly over this threshold, the k-paradoxical tournaments
start to appear.

Theorem 13.12. For every n ≥ rk = 2 · 2k · k2 there exists a tournament on
n vertices that does not admit a dominating set of size k.

The proof of Theorem 13.12, due to Erd®s, is a classic application of the
probabilistic method: a randomly sampled tournament on at least rk vertices
does not admit a dominating set of size k with positive probability. The reader
is asked to verify this fact in Exercise 13.4. We remark that the multiplicative
constant 2 in the function rk can be in fact substituted with ln 2 + ok(1).

In our reduction we need to construct a k-paradoxical tournament, and
hence it seems necessary to have a constructive, deterministic version of The-
orem 13.12. Apparently, there exist deterministic constructions that achieve
similar asymptotic size of the vertex set as Theorem 13.12; in Exercise 13.5,
the reader is asked to work out details of a simple deterministic construction
with slightly worse bounds. We can, however, circumvent the need of a deter-
ministic construction at the cost of allowing the construction to run in doubly
exponential time in terms of k. The running time will be still �xed-parameter
tractable, which is su�cient for our purposes.

Lemma 13.13. There exists an algorithm that, given an integer k, works in

time 2(rk2 ) · rk+1
k ·kO(1) and outputs a tournament Tk that has rk vertices and

does not admit a dominating set of size k.

Proof. We construct Tk by iterating through all the 2(rk2 ) tournaments on rk
vertices, and for each of them verifying in time rk+1

k · kO(1) whether it is k-
paradoxical by checking all the k-tuples of vertices. Theorem 13.12 guarantees
that one of the veri�ed tournaments will be in fact k-paradoxical. ut

We are �nally ready to provide the reduction.

Theorem 13.14. There is a parameterized reduction from Set Cover to
Dominating Set on Tournaments.

Proof. The reduction starts with an instance (F , U, k) of Set Cover, and
outputs an equivalent instance (T, k+ 1) of Dominating Set on Tourna-
ments. The �rst step is a construction of a (k + 1)-paradoxical tournament
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vX1

VU

VF v∗

vX2
vX3

vX4
vX5

Ve1 Ve2 Ve3 Ve4 Ve5 Ve6

Vw1

Vw2

Vw3

Fig. 13.2: A schematic view of the construction of Theorem 13.14 for a uni-
verse of size 6, family of size 5, and S being a cyclic tournament on three
vertices. Edges adjacent to the sets Vei and Vwj represent appropriately ori-
ented complete bipartite graphs, and edges created in (i) between VF and VU
have been depicted only for the set X3 = {e1, e2, e5}

S = Tk+1 on rk+1 vertices using Lemma 13.13; this contributes a factor

2(r(k+1)
2 ) ·r(k+1)k+2 · (k+1)O(1) to the running time, which is just a function

of k.
The vertex set of the constructed tournament T is de�ned as follows:

(i) For every e ∈ U , create a set of rk+1 vertices Ve = {ve,w : w ∈ V (S)},
one for each vertex of S. Let Vw = {ve,w : e ∈ U}, and let VU =⋃
e∈U Ve =

⋃
w∈V (S) Vw.

(ii) For every X ∈ F , create one vertex vX . Let VF = {vX : X ∈ F}.
(iii) Moreover, create one vertex v∗.

We now create the edge set of T .

(i) For every set X ∈ F and every element e ∈ U , if e ∈ X then introduce
an edge from vX to every vertex of Ve, and if e /∈ X then introduce an
edge from every vertex of Ve to vX .

(ii) For every set X ∈ F , introduce an edge (v∗, vX).
(iii) For every element e ∈ X and w ∈ V (S), introduce an edge (ve,w, v

∗).
(iv) For every w1, w2 ∈ V (S) with w1 6= w2, introduce an edge from every

vertex of Vw1
to every vertex of Vw2

if (w1, w2) ∈ E(S), and introduce
the reverse edges if (w2, w1) ∈ E(S).

(v) For every w ∈ V (S), put edges between vertices of Vw arbitrarily.
(vi) Finally, put the edges between vertices of VF arbitrarily.

It is easy to see that the constructed digraph T is indeed a tournament, and
that the construction can be performed in time polynomial in |U |, |F|, and
rk+1 (provided S is already constructed). We now claim that T admits a
dominating set of size k + 1 if and only if the input instance (F , U, k) is a
yes-instance.
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Assume �rst that G ⊆ F is a subfamily of size at most k such that
⋃G = U .

Consider D = {v∗} ∪ {vX : X ∈ G}. Clearly |D| ≤ k + 1, and observe that
D is a dominating set of T : each vertex of VF is dominated by v∗, while each
vertex ve,w ∈ VU is dominated by a vertex vX ∈ D for X ∈ G such that
e ∈ X.

Conversely, suppose that T admits a dominating set D such that |D| ≤
k+1. Since D has to dominate v∗, either D contains v∗ or at least one vertex
of VU . Consequently, |D ∩ VF | ≤ k. Let G = {X ∈ F : vX ∈ D}. Clearly
|G| ≤ k, so it su�ces to prove that

⋃G = U .
For the sake of contradiction assume that there exists some e0 ∈ U that

does not belong to any set of G. Let Z ⊆ V (S) be the set of all vertices
z ∈ V (S) such that D ∩ Vz 6= ∅. Since |D| ≤ k + 1, we also have |Z| ≤ k + 1.
Since S is (k + 1)-paradoxical, we have that there exists some vertex w0 ∈
V (S) that is not dominated by Z in S. Consider now the vertex ve0,w0

in
T . By the de�nition of the edges between VF and VU , introduced in (i), we
have that ve0,w0 is not dominated by D ∩ VF , since then e0 would belong
to
⋃G by the de�nition of G. Since Z does not dominate w0 in S, by the

de�nition of the edges introduced in (iv) it also follows that D∩VU does not
dominate ve0,w0

. Note that in particular w0 /∈ Z, so D ∩ Vw0
= ∅ and ve0,w0

cannot be dominated from within Vw0
. Finally, ve0,w0

cannot be dominated
by D ∩ {v∗}, since v∗ does not have any outneighbor in VU . We infer that
ve0,w0 is not dominated by D at all, which contradicts the assumption that
D is a dominating set in T . ut

Note that, unlike most parameterized reductions in this book and also
in the literature, the reduction in Theorem 13.14 is not a polynomial-time
reduction: the size of the constructed instance has exponential dependence
on k and the running time depends double exponentially on k. Therefore,
this reduction crucially uses the fact that property 3 in De�nition 13.1 allows
f(k) · |x|O(1) time instead of just |x|O(1).
Connected Dominating Set is the variant of Dominating Set where

we additionally require that the dominating set induce a connected graph.
Not surprisingly, this version of the problem is also hard.

Theorem 13.15. There is a parameterized reduction from Dominating Set
to Connected Dominating Set.

Proof. Let (G, k) be an instance of Dominating Set. We construct a graph
G′ the following way.

(i) For every vertex v ∈ V (G), we introduce two adjacent vertices v1, v2.
(ii) We make the set {v1 : v ∈ V (G)} a clique K of size |V (G)|.
(iii) We make v1 and u2 adjacent if v and u are adjacent in G.

We claim that (G, k) is a yes-instance of Dominating Set if and only if
(G′, k) is a yes-instance of Connected Dominating Set. Suppose �rst
that S = {v1, . . . , vk} is a dominating set of size k in G. Then we claim that
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S′ = {v11 , . . . , vk1} is a connected dominating set of size k in G′. Clearly, G′[S′]
is a clique and hence it is connected. To see that S′ is a dominating set in
G′, observe that v11 dominates K, and if u is dominated by vi in G, then u2
is dominated by vi1 in G′.

For the proof of the reverse direction of the equivalence, let S′ be a con-
nected dominating set of size k in G′. Let v be in S if at least one of v1 and
v2 is in S′; clearly, |S| ≤ |S′| = k. We claim that S is a dominating set of G.
Consider any vertex u ∈ V (G). Vertex u2 of G

′ is dominated by some vertex
v1 or v2 that belongs to S′. Then v is in S and, by the construction of G′, it
dominates u in G, as required. ut

13.3 The W-hierarchy

As we have discussed above, most of the natural NP-hard problems are equiv-
alent to each other with respect to polynomial-time reductions (this holds for
problems that are NP-complete), but this does not seem to be true for hard
parameterized problems. For example, we have shown that (Multicolored)
Independent Set can be reduced to Dominating Set (Theorem 13.9), but
it is not known if there is a parameterized reduction in the other direction.
This suggests that, unlike in the case of NP-complete problems, there is a hier-
archy of hard parameterized problems, with, for example, Independent Set
and Dominating Set occupying di�erent levels of this hierarchy. Downey
and Fellows introduced the W-hierarchy in an attempt to capture the exact
complexity of various hard parameterized problems. In this section, we brie�y
overview the fundamental de�nitions and results related to this hierarchy. It
has to be noted, however, that if our only concern is to provide some evidence
that a speci�c problem is not �xed-parameter tractable (which is the usual
viewpoint of an algorithm designer), then the exact structure of this hierar-
chy is irrelevant: the reductions from Clique, as presented in Section 13.2
and appearing later in this chapter, already provide practical evidence that
a problem is unlikely to be FPT. Nevertheless, the reader should be aware
of the basic terminology of the W-hierarchy, as the parameterized algorithms
and complexity literature usually assumes its knowledge.

A Boolean circuit is a directed acyclic graph where the nodes are labeled
in the following way:

� every node of indegree 0 is an input node,
� every node of indegree 1 is a negation node,
� every node of indegree ≥ 2 is either an and-node or an or-node.

Additionally, exactly one of the nodes with outdegree 0 is labeled as the
output node (in addition to being, for example, an and-node). The depth
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Fig. 13.3: (a) A graph G with �ve vertices and seven edges. (b) A depth-3,
weft-1 circuit satis�ed by the independent sets ofG. Each or-node corresponds
to an edge of G and has indegree 2. (c) A depth-2, weft-2 circuit satis�ed by
the dominating sets of G. Each or-node corresponds to a vertex of G and its
inneighbors correspond to the closed neighborhood to the vertex

of the circuit is the maximum length of a path from an input node to
the output node.

Assigning 0-1 values to the input nodes determines the value of every node
in the obvious way. In particular, if the value of the output gate is 1 in an
assignment to the input nodes, then we say that the assignment satis�es the
circuit. It can be easily checked in polynomial time if a given assignment
satis�es the circuit.

Deciding if a circuit has a satisfying assignment is clearly an NP-complete
problem: for example, 3-SAT is its special case. We can de�ne a parame-
terized version of �nding a satisfying assignment in the following way. The
weight of an assignment is the number of input gates receiving value 1. In
the Weighted Circuit Satisfiability (WCS) problem, we are given a
circuit C and an integer k, the task is to decide if C has a satisfying as-
signment of weight exactly k. By trying all the O(nk) assignments of weight
exactly k and then checking whether it satis�es C, we can solve the problem
in polynomial time for every �xed k. However, the problem does not seem
to be �xed-parameter tractable: it is quite easy to reduce hard parameter-
ized problems such as Clique or Dominating Set to Weighted Circuit
Satisfiability (see Fig. 13.3).

The levels of the W-hierarchy are de�ned by restricting Weighted Cir-
cuit Satisfiability to various classes of circuits. Formally, if C is a class of
circuits, then we de�ne WCS[C] to be the restriction of the problem where
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the input circuit C belongs to C. It seems to be a natural idea to restrict
the depth of the circuits in the class C; there is a large body of literature on
the expressive power of bounded-depth circuits. However, the restriction we
need here is a bit more subtle than that. First, we distinguish between small
nodes, which have indegree at most 2, and large nodes, which have indegree
> 2 (as we shall see later, the choice of the constant 2 is not essential here).
The weft3 of a circuit is the maximum number of large nodes on a path from
an input node to the output node. We denote by Ct,d the class of circuits with
weft at most t and depth at most d.

De�nition 13.16 (W-hierarchy). For t ≥ 1, a parameterized problem P
belongs to the class W[t] if there is a parameterized reduction from P to
WCS[Ct,d] for some d ≥ 1.

Exercise 13.6 shows that the constant 2 in the de�nition of small/large nodes
is not essential: any other constant ≥ 2 would result in the same de�nition
for W[t].

As indicated in Fig. 13.3, it is possible to reduce Independent Set to
Weighted Circuit Satisfiability for circuits of depth 3 and weft 1. By
De�nition 13.16, membership in W[1] follows.

Proposition 13.17. Independent Set is in W[1].

One can also show the converse statement: every problem in W[1] can be
reduced to Independent Set, that is, the problem is W[1]-hard. The proof
of this statement is nontrivial and beyond the scope of this brief introduction.
Together with Proposition 13.17, it follows that Independent Set is W[1]-
complete.

Theorem 13.18 ([151]). Independent Set is W[1]-complete.

The circuit in Fig. 13.3 expressing Independent Set has a very speci�c
form: it consists of one layer of negation nodes, one layer of small or-nodes
with indegree 2, and a �nal layer consisting of a single large and-node. Theo-
rem 13.18 shows that this form is in some sense canonical for weft-1 circuits:
the satis�ability problem for (bounded-depth) weft-1 circuits can be reduced
to weft-1 circuits of this form.

What would be the corresponding canonical forms for weft-t circuits for
t ≥ 2? We need some de�nitions �rst. We say that a Boolean formula is t-
normalized if it is of the following form: it is the conjunction of disjunctions
of conjunctions of disjunctions, . . ., alternating for t levels. For example, the
formula

(x1 ∨ x̄3 ∨ x̄5) ∧ (x̄1 ∨ x2 ∨ x̄4 ∨ x5) ∧ (x1 ∨ x̄2)

is 2-normalized, as it is the conjunction of disjunctions of literals. More for-
mally, we �rst de�ne both ∆0 and Γ0 to be the set of formulas consisting of

3 Weft is a term related to weaving cloth: it is the thread that runs from side to side in
the fabric.
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only a single literal. Then for t ≥ 1, we de�ne ∆t to contain formulas that are
the disjunction of an arbitrary number of Γt−1 formulas and Γt to contain
formulas that are the conjunction of an arbitrary number of ∆t−1 formulas.
With these de�nitions, Γt is exactly the set of t-normalized formulas. We say
that a t-normalized formula is monotone (resp., antimonotone) if every literal
is positive (resp., negated).

The Weighted t-normalized Satisfiability problem is the weighted
satis�ability problem corresponding to circuits representing t-normalized for-
mulas; the monotone/antimonotone versions of the problem are de�ned in
the obvious way. The following theorem, whose proof again goes beyond the
scope of this introduction, characterizes the classes W[t] for t ≥ 2 in terms of
these problems.

Theorem 13.19 ([149, 150, 151]).

1. For every even t ≥ 2, the following problems are W[t]-complete:

� Weighted t-normalized Satisfiability
� Weighted Monotone t-normalized Satisfiability
� Weighted Monotone (t+ 1)-normalized Satisfiability

2. For every odd t ≥ 3, the following problems are W[t]-complete:

� Weighted t-normalized Satisfiability
� Weighted Antimonotone t-normalized Satisfiability
� Weighted Antimonotone (t+ 1)-normalized Satisfiability

Theorem 13.19 has three rather surprising aspects. First, it shows that t-
normalized formulas are su�cient to express the full power of (bounded-
depth) weft-t circuits. These formulas have very speci�c structures: besides
the negation nodes at the inputs, they consist of t layers of large nodes, al-
ternating between and-nodes and or-nodes. One can interpret Theorem 13.19
as saying that additional layers of small nodes do not increase the expressive
power, as t-normalized formulas already give rise to W[t]-complete problems.
This justi�es why we de�ned W[t] based on weft instead of depth. Second,
Theorem 13.19 states that already monotone t-normalized formulas (for even
t) and antimonotone t-normalized formulas (for odd t) are su�cient to cap-
ture the full power of W[t]. Finally, Theorem 13.19 also states the surprising
fact that the power of monotone/antimonotone t-normalized and (t + 1)-
normalized formulas coincide for certain values of t.

Let us focus now on W[2], the second level of the hierarchy. Figure 13.3
shows that it is possible to reduce Dominating Set toWeighted Circuit
Satisfiability for circuits of depth 2 and weft 2; hence membership in W[2]
follows. We have seen in Section 13.2 that Dominating Set and Set Cover
(and hence Hitting Set) are equally hard with respect to parameterized
reductions (Theorem 13.10 and Exercise 13.2).

Proposition 13.20. Dominating Set, Set Cover, and Hitting Set are
in W[2].
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We observe now that these problems are complete for W[2]. All we have
to note is that Hitting Set is equivalent to Weighted Monotone 2-
normalized Satisfiability. A 2-monotone normalized formula is of the
form

(x1 ∨ x3 ∨ x6) ∧ (x2 ∨ x3) ∧ (x1 ∨ x5 ∨ x6).

To satisfy such a formula, we have to set at least one variable xi to 1 in each
clause. This is exactly the Hitting Set problem, where the universe is the
set of variables and the sets are the clauses. Thus Theorem 13.19 shows that
Hitting Set is W[2]-complete.

Theorem 13.21. Dominating Set, Set Cover, and Hitting Set are
W[2]-complete.

The usual expectation is that the W-hierarchy is a proper hierarchy: W[t] 6=
W[t + 1] for every t ≥ 1. In Theorem 13.9, we have seen a reduction from
Independent Set to Dominating Set. In light of Theorem 13.21, we do
not expect a reduction in the reverse direction: this would imply that In-
dependent Set is both W[1]- and W[2]-complete and hence W[1] = W[2]
would follow.

*13.4 Turing machines

Clique and Independent Set are among the most studied optimization
problems in computer science; hence the fact that no algorithm with run-
ning time no(k) was found despite massive e�orts is good practical evidence
suggesting that these problems are not �xed-parameter tractable. The reduc-
tions in Section 13.2 (and those appearing later in Section 13.6) transfer this
apparent intractability to several other problems. In this section, we give a
more theoretical supporting evidence for the intractability of these problems.

Turing machines formalize the intuitive notion of computation in a precise
mathematical way. Computational problems where the task is to predict what
a Turing machine will do are typically very hard: as Turing machines can
express arbitrarily complex computations, it seems that one needs to simulate
the computation of the Turing machine to answer these questions. In the case
of the Halting problem, there is even a formal proof of hardness: a classic
diagonalization argument shows that there is no algorithm deciding whether
a Turing machine halts in a �nite number of steps. The P 6= NP problem is
a time-bounded version of this question: one has to decide in deterministic
polynomial time whether a nondeterministic polynomial-time Turing machine
has an accepting path. While there is no proof that this is not possible, it
seems that a nondeterministic Turing machine is such an opaque and generic
object that it is unlikely that one can avoid simulating a superpolynomial
number of computation paths.
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We de�ne a parameterized problem analogously to the acceptance prob-
lem of nondeterministic polynomial-time Turing machines, and use it to give
further evidence that Clique is not �xed-parameter tractable. In the Short
Turing Machine Acceptance problem, the input contains the description
of a nondeterministic Turing machine M , a string x, and an integer k; the
task is to decide if M with input x has a computation path reaching an ac-
cepting state in at most k steps. If the reader sees this problem for the �rst
time, it might appear that simulating a Turing machine for a small number k
of steps is an easy task, but let us point out that a nondeterministic Turing
machine may branch into an unbounded number of states (bounded only by
the length n of the input), hence naive simulation of k steps would lead to
an nO(k) time algorithm. Therefore, the same intuitive argument suggesting
P 6= NP also supports the conjecture that Short Turing Machine Ac-
ceptance is not �xed-parameter tractable: it is unlikely that a problem that
requires understanding a Turing machine with nO(k) computation paths is
FPT.

We present a parameterized reduction from Short Turing Machine
Acceptance to Independent Set in this section. This can be considered
as evidence for the fact that Independent Set (as well as all the other
problems considered in Section 13.2) are not �xed-parameter tractable. The
reduction is fairly tedious, but the principle is simple. An accepting compu-
tation path of k steps can be fully described by O(k2) pieces of information:
a sequence of k states, a sequence of k transitions, the content of the �rst k
cells of the tape of a Turing machine in each of the �rst k steps. We need
to construct a graph where the choice of vertices for an independent set of
size O(k2) represents all this information, and then make sure that this infor-
mation is consistent, that is, correctly describes a sequence of con�gurations
forming an accepting computation path.

We assume that the reader is familiar with the concept of Turing machines
(see standard textbooks such as [269, 417, 380] for more background). Here we
review only the basic notation required for the discussion of Turing machines.
Since we are using Turing machines as evidence for hardness, and not as a
basis for building complexity theory, we avoid treating them in greater detail.
We remind the reader that certain details and conventions in the de�nition
(such as whether the tape is in�nite in both directions, whether the machine
can leave an accepting state, etc.) usually do not matter for the computational
power of Turing machines and proofs can be changed accordingly.

A single-tape nondeterministic Turing machine is described by a tuple
M = (Q,Σ,∆, s0, F ), where

� Q is a �nite set of states,
� Σ is the alphabet,
� s0 ∈ Q is the initial state,
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� F ⊆ Q is the set of accepting states, and
� ∆ ⊆ Q× (Σ ∪ {$,�})×Q× (Σ ∪ {$})×{←,−,→} is the transition

relation.

The meaning of the transition relation is the following: if, for example,
(q, a, q′, b,←) ∈ ∆, then this means that whenever the Turing machine is in
state q and symbol a appears under the head, then one possible legal step
is to move into state q′, write b on the tape, and move the head one step to
the left. The special symbol � represents empty cells of the tape and special
symbol $ appears at the left end (position 0) of the tape. Initially, the tape
contains an input word x followed by an in�nite sequence of � symbols; the
head is at position 1. We assume that whenever the Turing machine reads
the symbol $, it does not change it (that is, writes $ on it) and does not move
further to the left.

Theorem 13.22. There is a parameterized reduction from Short Turing
Machine Acceptance to Independent Set.

Proof. Let (M,x, k) be an instance of Short Turing Machine Accep-
tance. We construct an equivalent instance (G, k′) of Independent Set
in the following way. By minimal modi�cations of the Turing machine M ,
we may assume that whenever it reaches an accepting state, it stays there.
Therefore, we may assume that the computation path is in�nite and the ques-
tion is whetherM happens to be in an accepting state after step k. Note that
during the �rst k steps, the Turing machine can visit only positions 0, 1, . . . ,
k + 1 of the tape; hence it is su�cient to �simulate� what happens on these
positions. The vertices of G are

� ai,j,σ for every 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1, σ ∈ Σ ∪ {$,�} and
� bi,j,δ for every 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1, δ ∈ ∆.
The intuitive meaning of ai,j,σ being in the independent set is that after
step i, the symbol at position j of the tape is σ and the head is not on
this position. The intuitive meaning of bi,j,δ being in the independent set is
that after step i, the head is at position j, and the next transition is δ; in
particular, if, say, δ = (q, σ, q′, σ′,←) ∈ ∆, then this means that after step
i, the symbol at position j of the tape is σ and the internal state is q. Let
Ai,j = {ai,j,σ : σ ∈ Σ ∪ {$,�}}, let Bi,j,q,σ contain every bi,j,δ where δ ∈ ∆
is a transition such that the �rst coordinate of δ is q and the second coordinate
of δ is σ. Let Bi,j,q,_ =

⋃
σ∈Σ∪{$,�}Bi,j,q,σ, let Bi,j,_,σ =

⋃
q∈QBi,j,q,σ, and

let Bi,j =
⋃
q∈Q

⋃
σ∈Σ∪{$,�}Bi,j,q,σ,. Let k

′ = (k + 1)(k + 2).
We remove some of the vertices of the graph to enforce certain boundary

conditions:

(i) Let us remove A0,1∪ (B0,1 \B0,1,s0,σ), where σ is the �rst symbol under
the head in the initial position. This ensures that a vertex b0,1,δ ∈
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B0,1,s0,σ of the independent set correctly describes the initial state of
the Turing machine.

(ii) For every 2 ≤ j ≤ k + 1, let us remove (A0,j \ {a0,j,σ}) ∪B0,j , where σ
is the j-th symbol of the tape in the initial con�guration. This ensures
that the initial state of the input tape is correctly represented by the
independent set.

(iii) For every 0 ≤ i ≤ k, let us remove (Ai,0 \ {ai,0,$}) ∪ (Bi,0 \ Bi,0,_,$).
This ensures that the symbol at position 0 of the tape is always $.

(iv) For every 0 ≤ j ≤ k + 1, let us remove Bk,j,q,_ for every q 6∈ F .
This ensures that the vertex bk,j,δ representing the state of the Turing
machine after step k represents an accepting state.

To enforce the interpretation of the vertices described above, we add edges
in the following way.

(i) For every 0 ≤ i ≤ k, 0 ≤ j ≤ k + 1, we make Ai,j ∪ Bi,j a clique.
This ensures that the only way to have an independent set of size k′ =
(k + 1)(k + 2) is to select exactly one vertex from each Ai,j ∪Bi,j .

(ii) For every 0 ≤ i ≤ k, we make
⋃k+1
j=0 Bi,j a clique. This ensures that, for

every i, at most one vertex of the independent set can be from some
Bi,j ; the rest has to be from the Ai,j 's, corresponding to the fact that
the head of the Turing machine is at one position after step i.

(iii) For every 0 ≤ i < k, 0 ≤ j ≤ k + 1, and σ ∈ Σ ∪ {$,�}, we make ai,j,σ
adjacent to every vertex of (Ai+1,j \ {ai+1,j,σ}) ∪ (Bi+1,j \ Bi+1,j,_,σ).
This ensures that if the head of the Turing machine is not at position
j after step i, then the same symbol σ appears at position j also after
step i + 1. That is, the vertex selected from Ai+1,j ∪ Bi+1,j should be
either ai+1,j,σ or a vertex from Bi+1,j,_,σ.

(iv) For every 0 ≤ i < k, 0 ≤ j ≤ k+ 1, and δ ∈ ∆, we add edges to bi,j,δ in
the following way:

� if δ = (q, σ, q′, σ′,←), then bi,j,δ is adjacent to every vertex of
Ai+1,j−1∪ (Bi+1,j−1 \Bi+1,j−1,q′,_)∪ (Ai+1,j \{ai+1,j,σ′}) (note that
such a left move is not possible for j = 0, since then bi,j,δ ∈ Bi,j,_,$
and no left move is de�ned on symbol $. This ensures that if bi,j,δ
is in the independent set, then the independent set represents that
after step i+ 1, the head is at position j − 1, the state is q′, and the
symbol at position j is σ′.

� if δ = (q, σ, q′, σ′,−), then bi,j,δ is adjacent to every vertex of Ai+1,j∪
(Bi+1,j \Bi+1,j,q′,σ′),

� if δ = (q, σ, q′, σ′,→), then bi,j,δ is adjacent to every vertex of (Ai+1,j\
{ai+1,j,σ′}) ∪Ai+1,j+1 ∪ (Bi+1,j+1 \Bi+1,j+1,q′,_).

As every bi,j,δ is fully connected to one of Ai+1,j−1, Ai+1,j , and Ai+1,j+1,
these edges ensure that if some bi,j,δ is in the independent set, then a
vertex of Bi+1,j−1 ∪ Bi+1,j ∪ Bi+1,j+1 is also in the independent set,
that is, a position of the head and a state is de�ned after step i + 1
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as well. Moreover, this new state and position are the result of a valid
transition δ ∈ ∆.

We claim that M can be in an accepting state on input x after k steps if and
only if G has an independent set of size k′. For the �rst direction, ifM has an
accepting path, then we can select k′ vertices according to the interpretation
of the vertices ai,j , bi,j,δ described above. Then it can be veri�ed that this
set remains independent after adding the edges introduced in (i)-(iv).

For the other direction, suppose that G has an independent set I of size k′.
This is only possible if it contains exactly one vertex from Ai,j∪Bi,j for every
0 ≤ i ≤ k, 0 ≤ j ≤ k+1. We claim that, for every 0 ≤ i ≤ k, the set Ii of k+2
vertices selected from Ai,0∪Bi,0, . . . , Ai,k+1∪Bi,k+1 describe a con�guration
Ci of the Turing machine, and these k + 1 con�gurations together describe
an accepting computation path. The way we removed vertices ensures the
statement for i = 0, and in fact the con�guration C0 corresponding to I0 is the
initial state of the Turing machine and the tape. Let us prove the statement
by induction on i: suppose that the con�gurations C0, . . . , Ci describe the
�rst i steps of a computation path. Then the way we have added edges ensure
that Ii+1 describes a con�guration Ci+1 that can follow Ci. In particular, as
Bi+1,0 ∪ · · · ∪ Bi+1,k+1 is a clique, at most one vertex of Ii+1 can describe
the position of the head. One vertex of Ii describes the position of the head
after step i, that is, Ii contains a vertex of Bi,j for some 0 ≤ j ≤ k+ 1. Then
the edges introduced in (iv) ensure that Ii+1 also contains at least one vertex
describing the position of the head: every vertex of Bi,j is fully connected
to either Ai+1,j−1, Ai+1,j , or Ai+1,j+1, which forces the selection of a vertex
from Bi+1,j−1, Bi+1,j , or Bi+1,j+1, respectively. Therefore, exactly one vertex
of Ii+1 describes the position of the head. This means that we can de�ne the
con�guration Ci+1 based on Ii+1, and it can be veri�ed (by analysing the
edges added in (iii)-(iv)) that it is indeed a con�guration that can follow
Ci. ut

It is not di�cult to give a reduction in the reverse direction: from Inde-
pendent Set to Short Turing Machine Acceptance (Exercise 13.8),
showing the W[1]-completeness of the latter problem.

Theorem 13.23. Short Turing Machine Acceptance is W[1]-complete.

*13.5 Problems complete for W[1] and W[2]

In Section 13.2, we have seen a set of problems that are at least as hard
as Clique or Dominating Set, and therefore W[1]-hard or W[2]-hard, re-
spectively. Now we complete the picture by showing that those problems are
actually W[1]-complete or W[2]-complete.
Clique and Independent Set are both W[1]-complete (Theorem 13.18).

We have reduced Independent Set to Partial Vertex Cover in The-
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orem 13.6, showing that Partial Vertex Cover is W[1]-hard. To show
membership in W[1], we can reduce Partial Vertex Cover to Short
Turing Machine Acceptance.

Theorem 13.24. There is a parameterized reduction from Partial Vertex
Cover to Short Turing Machine Acceptance.

Proof (sketch). The idea is the following. We encode the input instance to
Partial Vertex Cover using the states and transitions of the output Tur-
ing machine. Moreover, we take a large alphabet that includes a distinct
symbol for each vertex of the input graph. In the �rst k steps of the Turing
machine, a set S of k vertices is guessed and written on the tape. The re-
maining steps are deterministic. The Turing machine checks whether the k
vertices are distinct and counts the total degree of the k vertices. The total
degree can be more than the number of edges covered by S, as edges with
both endpoints in S are counted twice. Therefore, the Turing machine counts
the number of edges induced by S: it reads every pair of vertices from the
tape, keeps it in the internal state and increases the counter if they are adja-
cent. In particular, the input graph is encoded by the transition function: for
every state representing a pair of vertices and the value of the counter, the
transition function de�nes a new state where the counter is increased by 1 (if
the two vertices are adjacent) or has the same value (if the two vertices are
nonadjacent). Finally, the Turing machine accepts if the total degree minus
the number of induced edges is at least s. It is not di�cult to implement this
procedure with a Turing machine that takes f(k) steps; the details are left
to the reader (Exercise 13.10). ut

An instance (G, k, (V1, . . . , Vk)) of Multicolored Clique can be easily
reduced to Clique: all we need to do is remove those edges whose both end-
points are in the same Vi. Then any k-clique has exactly one vertex from each
Vi. Therefore, Multicolored Clique and Multicolored Independent
Set are both W[1]-complete.

Theorem 13.25. The following parameterized problems are W[1]-complete:

� Clique
� Multicolored Clique
� Independent Set
� Multicolored Independent Set
� Partial Vertex Cover
� Short Turing Machine Acceptance

We have seen in Theorem 13.21 that Dominating Set, Set Cover, and
Hitting Set are W[2]-complete. Theorem 13.15 presented a reduction from
Dominating Set to Connected Dominating Set, hence Connected
Dominating Set is W[2]-hard. Let us try to show a reduction in the reverse
direction to prove that Connected Dominating Set is W[2]-complete. For
this purpose, we introduce an auxiliary problem �rst. The Dominating Set
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with Pattern is a version of Dominating Set where we prescribe what
subgraph the dominating set should induce. Formally, the input is a graph G,
an integer k, and a graph H on the vertex set [k]. The task is to �nd a k-tuple
(v1, . . . , vk) of distinct vertices such that (1) they form a dominating set and
(2) vertices vi and vj are adjacent if and only if ij is an edge of H. It is easy to
observe that Dominating Set with Pattern is W[2]-hard: the reduction
of Theorem 13.15 from Dominating Set to Connected Dominating Set
has the property that if the created instance has a connected dominating set of
size k, then it has a dominating set of size k inducing a clique (Exercise 13.12).
We can show that Dominating Set with Pattern is in W[2] by reducing
it to Dominating Set.

Theorem 13.26. There is a parameterized reduction from Dominating Set
with Pattern to Dominating Set.

Proof. Let (G, k,H) be an instance of Dominating Set with Pattern.
We construct a graph G′ as follows.

(i) For every vertex v ∈ V (G), we introduce k vertices v1, . . . , vk.
(ii) For every 1 ≤ i ≤ k, the set Vi = {vi : v ∈ V (G)} forms a clique.
(iii) For every 1 ≤ i ≤ k, we introduce two vertices xi, yi, and make them

adjacent to every vertex of Vi.
(iv) For every v ∈ V (G), we introduce a vertex v∗ and make it adjacent to

every vertex of {ui : u ∈ NG[v], 1 ≤ i ≤ k}.
(v) For every 1 ≤ i < j ≤ k such that ij is an edge of H and for every

pair (a, b) of nonadjacent vertices in G (including the possibility a = b),
we introduce a vertex wi,j,a,b and make it adjacent to every vertex of
(Vi ∪ Vj) \ {ai, bj}.

(vi) For every 1 ≤ i < j ≤ k such that ij is not an edge of H and for
every pair (a, b) such that either a and b are adjacent in G or a = b,
we introduce a vertex wi,j,a,b and make it adjacent to every vertex of
(Vi ∪ Vj) \ {ai, bj}.

Let (v1, . . . , vk) be a k-tuple of distinct vertices of G forming a dominating
set such that vi and vj are adjacent if and only if ij is an edge of H. We
claim that S′ = {v11 , . . . , vkk} is a dominating set of G′. Vertex vii dominates
every vertex in Vi ∪ {xi, yi}. Consider a vertex v∗ introduced in (iv). There
is a vertex vi dominating v in G, hence vii dominates v∗ in G′. Consider now
a vertex wi,j,a,b introduced in (v). As ij is an edge of H, vertices vi and vj

are adjacent. As either a = b or a and b are not adjacent, assertions vi = a
and vj = b cannot be both true, and hence assertions vii = ai and v

j
j = bj

cannot be both true. This implies that (Vi ∪ Vj) \ {ai, bj} contains at least
one of vii and v

j
j , and we can conclude that wi,j,a,b is dominated by S′. We

argue similarly for a vertex wi,j,a,b introduced in (vi): now, as ij is not an
edge of H, vertices vi and vj are not adjacent. As a and b are adjacent or
a = b, we have again that (Vi ∪ Vj) \ {ai, bj} contains at least one of vii and
vjj , dominating wi,j,a,b.
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For the reverse direction, let S′ be a dominating set of G′. It has to contain
at least one vertex from the set Vi ∪ {xi, yi} to dominate the vertices xi and
yi. As these sets are disjoint for distinct values of i, we can conclude that S′

contains exactly one vertex from Vi∪{xi, yi}; in fact, exactly one vertex from
Vi, as xi and yi do not dominate each other. Let S′ = {v11 , . . . , vkk}, where
vii ∈ Vi. We claim �rst that S = {v1, . . . , vk} is a dominating set of G: if a
vertex v ∈ V (G) is not dominated by S, then vertex v∗ is not dominated by
S′ in G′. Next we claim that if ij is an edge of H, then vi and vj are di�erent
and adjacent in G. Suppose that ij is an edge of H for some 1 ≤ i < j ≤ k.
If vi and vj are equal or not adjacent, then we have introduced a vertex
wi,j,vi,vj that is adjacent only to (Vi∪Vj)\{vii , vjj}, hence it is not dominated
by S′ in G′, a contradiction. Similarly, we claim that if ij is not an edge of H,
then vi and vj are two distinct nonadjacent vertices. Indeed, if vi and vj are
adjacent or equal, then we have introduced a vertex wi,j,vi,vj that is adjacent

only to (Vi ∪Vj) \ {vii , vjj}, hence not dominated by S′. In particular, the two

claims imply that (v1, . . . , vk) are distinct vertices, as any two of them are
either connected by an edge or nonadjacent distinct vertices. Therefore, we
get that (v1, . . . , vk) is a k-tuple of distinct vertices forming a dominating set
in G and inducing the required pattern. ut

In the light of Theorem 13.26, we can show that Connected Dominat-
ing Set is in W[2] by reducing it to Dominating Set with Pattern. A
solution of Connected Dominating Set induces a connected graph on k
vertices and there are f(k) = 2O(k2) connected graphs on k labelled vertices.
Therefore, it is tempting to say that Connected Dominating Set can be
reduced to Dominating Set with Pattern by trying every possible such
pattern and applying an algorithm for Dominating Set with Pattern.
However, this is not a many-one parameterized reduction, as de�ned in De�-
nition 13.1: given an instance I of Connected Dominating Set, instead of
creating a single equivalent instance I ′ of Dominating Set with Pattern,
we create a set I ′1, . . . , I

′
t of instances of Dominating Set with Pattern

such that I is a yes-instance if and only if at least one I ′i is a yes-instance.
This is an example of a so-called parameterized Turing reduction. Without
formalizing the details, a parameterized Turing reduction from A to B is an
algorithm that solves an instance of A by having access to an �oracle� that
can solve instances of B in constant time. The reduction has the property
that, given an instance (x, k) of A, the running time is f(k)|x|O(1) and the
parameter of every created instance of B can be bounded by f(k).

Turing reductions transfer �xed-parameter tractability the same way as
many-one reductions: one could state an analogue of Theorem 13.2 saying
that parameterized Turing reduction from A to B implies that if B is FPT,
then A is FPT as well. Therefore, from the point of view of giving negative ev-
idence for �xed-parameter tractability, Turing reductions are just as good as
many-one reductions. However, we de�ned the W-hierarchy by closure under
many-one reductions, thus to complete the picture, we need a many-one re-
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duction to prove the membership of Connected Dominating Set in W[2].
It is possible to modify the reduction of Theorem 13.26 to output a single
instance of Dominating Set for a collection of patterns (Exercise 13.13).
Alternatively, we can use the de�nition of W[2] directly and reduce Con-
nected Dominating Set to the circuit satis�ability problem.

Theorem 13.27. Connected Dominating Set is in W[2].

Proof. Given an instance (G, k) of Connected Dominating Set, we con-
struct an equivalent instance (C, k) of Weighted Circuit Satisfiability.
Let v1, . . . , vn be the vertices of G. The input nodes of the constructed circuit
are xi,j for 1 ≤ i ≤ k, 1 ≤ j ≤ n. The interpretation of xi,j = 1 is that the
i-th vertex of the solution is vj .

(i) For 1 ≤ i ≤ k, node zi is the disjunction of {xi,j : 1 ≤ j ≤ n} and
O1 is the conjunction of all the zi nodes. Then O1 = 1 expresses the
requirement that there are integers s1, . . . , sk such that x1,s1 , . . . , xk,sk
are exactly the input nodes with value 1, describing a tuple (vs1 , . . . , vsk)
of k vertices.

(ii) For 1 ≤ j ≤ i, node wj expresses that vertex vj is dominated in the
solution: it is the disjunction of the input nodes {xi,j′ : 1 ≤ i ≤ k, vj′ ∈
N [vj ]}.

(iii) Node O2 expresses that the input represents a dominating set: it is the
conjunction of wj for every 1 ≤ j ≤ n.

(iv) For every P such that ∅ ( P ( [k], node cP expresses that there is an
edge between {vsi : i ∈ P} and {vsi : i 6∈ P}. For every i1 ∈ P ,
i2 ∈ [k] \ P , and pair (vj1 , vj2) of adjacent or equal vertices in G, we
introduce a node eP,i1,i2,j1,j2 that is the conjunction of xi1,j1 and xi2,j2 ;
the node cP is the disjunction of all these nodes.

(v) Node O3 expresses that (vs1 , . . . , vsk) induces a connected graph: it is
the conjunction of all the nodes cP .

(vi) The output node is the conjunction of O1, O2, and O3 (more precisely,
there is a small node O′ that is the conjunction of O1 and O2, and the
output node is a small node that is the conjunction of O′ and O3).

Observe that the constructed circuit C has constant depth (independent of
k) and weft 2: a path from an input to the output contains either

� a large node zi and the large node O1,
� or a large node wj and the large node O2,
� or a large node cP and the large node O3.

It is easy to see that if (vs1 , . . . , vsk) is a connected dominating set, then
setting x1,s1 , . . . , xk,sk to 1 satis�es the circuit. In particular, as (vs1 , . . . , vsk)
induces a connected graph, for every ∅ ( P ( [k] there has to be an i1 ∈ P
and i2 ∈ [k] \ P such that vsi1 and vsi2 are adjacent. This means that the
node ei1,i2,si1 ,si2 has value 1, implying that cP is 1 as well.
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The reverse direction is also easy to show: it is clear that any satisfying as-
signment describes a k-tuple (vs1 , . . . , vsk) of vertices (possibly with repeated
vertices) that forms a dominating set of the graph. If these vertices did not
induce a connected graph, then they can be partitioned into two disconnected
parts, that is, there is a ∅ ( P ( [k] such that there is no edge between vi1
and vi2 for any i1 ∈ P and i2 ∈ [k] \ P . Then cP has value 0, implying that
O3 has value 0, and hence the output has value 0 as well. ut

We have shown in Section 13.2 that Dominating Set on undirected
graphs, general directed graphs, tournaments, and Set Cover (or Hitting
Set) are equally hard (see also Exercises 13.2). We summarize these results
in the following theorem.

Theorem 13.28. The following problems are W[2]-complete:

� Dominating Set
� Dominating Set for directed graphs
� Dominating Set on Tournaments
� Connected Dominating Set
� Set Cover
� Hitting Set
� Weighted 2-normalized Satisfiability
� Weighted Monotone 2-normalized Satisfiability
� Weighted Monotone 3-normalized Satisfiability

13.6 Parameterized reductions: further examples

In Section 13.2 we have presented reductions showing that basic problems
such as Dominating Set are unlikely to be �xed-parameter tractable. The
goal of this section is to explain, via further examples, the di�erent types of
parameterized reductions one can encounter in the parameterized complexity
literature.

13.6.1 Reductions keeping the structure of the graph

The simplest type of reduction is when there is relatively simple correspon-
dence between the input graph and the output graph. This is the case, for
example, in the trivial reduction from Clique to Independent Set, or
when reducing Dominating Set to Connected Dominating Set (Theo-
rem 13.15). In other examples, the reduction may involve more complicated
operations than just taking the complement of the graph (e.g., subdividing
edges, replacing vertices/edges with certain �xed subgraphs, etc.), but the
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Fig. 13.4: W[1]-complete and W[2]-complete problems in Sections 13.2�
*13.5 and the reductions between them. WCS[Mon 2-Norm] is short for
Weighted Monotone 2-normalized Satisfiability

correspondence between the vertices/edges of the two graphs is fairly straight-
forward. The following reduction is an example where the correspondence is
still relatively clear, although not completely trivial. In the Balanced Ver-
tex Separator problem, we are given a graph G and integer k; the task is
to �nd a set S of at most k vertices such that every component of G−S has
at most |V (G)|/2 vertices.

Theorem 13.29. Balanced Vertex Separator is W[1]-hard.

Proof. We give a parameterized reduction from Clique. Let (G, k) be an
instance of Clique. Let n = |V (G)| and m = |E(G)|. We may assume
that n is su�ciently large compared to k, for example, n ≥ 4k2: adding 4k2
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isolated vertices to the graph G does not change the problem. Let us set
` = n+m− 2(k +

(
k
2

)
) ≥ 0. We construct a graph G′ as follows.

(i) The vertex set of G′ contains V (G), which forms a clique in G′.
(ii) For every edge e = uv of G, we introduce a vertex we in G

′ and make
it adjacent to u and v.

(iii) We introduce a clique K on ` new vertices as another component of G′.

The output instance is (G′, k).

The intuition behind the construction is that if we remove a set S of
vertices from the clique formed by V (G) in G′, then it creates some
number of components of size 1, corresponding to the edges induced
by S in G. Therefore, if we want to maximize the number of these
components appearing (to reduce the size of the other components),
then we need a set S that maximizes the number of edges induced in
G, that is, forms a k-clique.

Note thatG′ has n+m+` = 2(n+m−k−
(
k
2

)
) ≥ 2` vertices. Suppose that S

is a k-clique of G. Then G′ \S has the following components:
(
k
2

)
components

of size 1, the clique K of size ` ≤ |V (G′)|/2, and one component containing
the remaining (n + m + `) − |S| −

(
k
2

)
− ` = n + m − k −

(
k
2

)
= |V (G′)|/2

vertices, that is, every component of G′ − S has size at most |V (G′)|/2.
For the reverse direction, suppose that S is a set of at most k vertices

in G′ such that every component of G′ − S has size at most |V (G′)|/2 =
n + m − k −

(
k
2

)
. First we show that it can be assumed that S ⊆ V (G).

Clearly, it makes no sense to remove any vertex of the clique K of size `,
as the size of this component is already at most |V (G′)|/2. Suppose that
we ∈ S for some edge e = uv. If u, v ∈ S, then we many omit we from S:
now we becomes an isolated vertex in G − (S \ {we}). If, say, u 6∈ S, then
(S \ {we}) ∪ {u} is also a solution: omitting we from S increases the size of
the component of u by 1 (note that u and v are adjacent, hence they cannot
be in two di�erent components of G′−S), and introducing u into S decreases
the size of this component by 1. Therefore, we may assume S ⊆ V (G).

Consider the component C of G′−S that contains the clique V (G)\S (as
we have assumed that n = |V (G)| > k, the component C is nonempty). If an
edge e ∈ E(G) has an endpoint not in S, then vertex we 6∈ S of G′ is also in
the component C. Thus if we denote by p the number of edges induced by S
in G, then component C has size (n− |S|) +m− p. Then the bound on the
size of C implies (n − |S|) + m − p ≤ |V (G′)|/2 = n + m − k −

(
k
2

)
, that is,

we get |S| + p ≥ k +
(
k
2

)
. As |S| ≤ k, this is only possible if |S| = k and S

induces a clique in G. ut
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13.6.2 Reductions with vertex representation

The most common technique for NP-hardness proofs is to represent parts of
the original instance by gadgets. When reducing a graph problem to another
graph problem, this is done by replacing each vertex and each edge of the
original graph by a �gadget�: a small graph satisfying certain properties. Then
it is argued that these gadgets have properties ensuring that the solutions of
the constructed instance correspond to the solutions of the original instance.
A typical example of a reduction of this type is reducing Vertex Cover
to Hamiltonian Cycle. Similarly, when reducing from 3-SAT, one may
use gadgets representing the variables and clauses of the original formula. A
typical example is reducing 3-SAT to Clique.

Representing vertices and edges of the original graph (or variables and
clauses of the original formula) by gadgets is usually not a suitable tech-
nique for parameterized reductions. The problem is that, in most cases, by
introducing a new gadget, one has to increase the parameter of the con-
structed instance. Therefore, the parameter of the new instance would be
proportional to the number of vertices/edges/variables/clauses of the origi-
nal instance, which can be much larger than the parameter of the original
instance, violating the second requirement of De�nition 13.1.

A typical parameterized reduction from Clique uses gadgets in a very
di�erent way than NP-hardness proofs. Instead of creating a gadget
for each vertex/edge of the input graph, we create k gadgets, one for
each vertex of the solution. If we can ensure that the new parameter
is proportional to the number of gadgets, then we satisfy the require-
ment that the new parameter is bounded by a function of the original
parameter.

A consequence of using only k gadgets is that we need very di�erent, much
more powerful gadgets than in typical NP-hardness proofs. For example, in
a polynomial-time reduction from, say, Vertex Cover, the gadget needs to
be able to represent only a constant number of di�erent states: each vertex
is either selected or not, and each edge can be covered in three possible ways
(�rst endpoint, second endpoint, both endpoints). On the other hand, if we
want a gadget to represent one of the vertices of the solution, then we need
a gadget that is able to represent n di�erent states, where n is the number
of vertices of the original graph.

Theorem 13.9, the reduction from Multicolored Independent Set
to Dominating Set, can be considered as an example of representing the
vertices of the solution by gadgets. Selecting one vertex of the clique Vi of
G′ corresponds to selecting a vertex of Vi into the independent set. Thus
we may view the clique Vi as a gadget with |Vi| possible states. Then the
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vertices we �verify� that the states of the gadgets V1, . . . , Vk correspond to
an independent set of G.

The following reduction demonstrates the same principle: we want to rep-
resent the k vertices of the solution by k gadgets and, for any two of these
gadgets, we want to ensure that they represent nonadjacent vertices. This
reduction also serves as an example for a reduction to a problem where the
parameter is not related to the solution size, but it is a structural parame-
ter measuring some property of the instance (in our case, the treewidth). In
such a reduction, what we need to ensure is that the structural parameter is
proportional to the number of gadgets.
List Coloring is a generalization of Vertex Coloring: given a graph

G, a set of colors C, and a list function L : V (G)→ 2C (that is, a subset of
colors L(v) for each vertex v), the task is to assign a color c(v) ∈ L(v) to each
vertex v ∈ V (G) such that adjacent vertices receive di�erent colors. Vertex
Coloring on a graph with treewidth w can be solved in time 2O(w logw)·nO(1)

by standard dynamic-programming techniques (Theorem 7.10). However, the
straightforward application of dynamic programming yields only a nO(w)-
time algorithm for the more general List Coloring problem (Exercise 7.20).
The following theorem shows that there is a reason for that: the problem is
W[1]-hard parameterized by treewidth.

Theorem 13.30. List Coloring is W[1]-hard when parameterized by the
treewidth of the graph.

Proof. We present a parameterized reduction from Multicolored Inde-
pendent Set. Let (G, k, (V1, . . . , Vk)) be an instance of Multicolored
Independent Set. The set C of colors corresponds to V (G). We construct
a graph G′ in the following way (see Fig. 13.5).

(i) For every 1 ≤ i ≤ k, we introduce a vertex ui with L(ui) = Vi.
(ii) For every 1 ≤ i < j ≤ k and for every edge ab with a ∈ Vi, b ∈ Vj , we

introduce a vertex wi,j,a,b with L(wi,j,a,b) = {a, b} and make it adjacent
to ui and uj .

Observe that {u1, . . . , uk} is a vertex cover of G′, hence G′ has treewidth at
most k. Therefore, the reduction satis�es the requirement that the parameter
of the constructed instance is bounded by a function of the parameter of the
original instance. Suppose that G has an independent set of size k, consisting
of vertices v1 ∈ V1, . . . , vk ∈ Vk. We can construct the following list coloring
of G′. First, we set the color of ui to vi ∈ Vi. Then for every vertex wi,j,a,b, it
is true that either ui has a color di�erent from a, or uj has a color di�erent
from b (as a and b are adjacent, while vi and vj are not). Therefore, one of
the two colors appearing in the list of wi,j,a,b is not used on its neighbors;
hence we can extend the coloring to wi,j,a,b.

For the reverse direction, suppose that c : V (G′)→ V (G) is a list coloring
of G′. We claim that c(u1) ∈ L(u1) = V1, . . . , c(uk) ∈ L(uk) = Vk is an
independent set in G. For a contradiction, suppose that a = c(ui) and b =
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u1 u3

u2

u4u5

Fig. 13.5: The graph G′ of the List Coloring instance constructed in the
reduction of Theorem 13.30 for k = 5

c(uj) are adjacent for some 1 ≤ i < j ≤ k. Then the vertex wi,j,a,b exists in
G with list {a, b}. However, this vertex is adjacent to both ui and uj , hence
c(wi,j,a,b) can be neither a nor b, a contradiction. ut

13.6.3 Reductions with vertex and edge representation

In reductions from Clique/Independent Set based on vertex representa-
tion, we need to enforce that gadgets represent adjacent/nonadjacent vertices.
In Theorem 13.9 we enforced this condition by introducing the vertices we.
Introducing these vertices had no e�ect on the parameter, as these vertices
were supposed to be dominated by the k vertices selected from V1, . . . , Vk.
Similarly, in Theorem 13.30, we introduced the vertices wi,j,a,b to enforce
that the coloring on w1, . . . , wk represents an independent set. The intro-
duction of these vertices did not increase the treewidth of the constructed
instance. However, there are reductions where it seems di�cult to enforce
the adjacency/nonadjacency condition on two gadgets. We present two ex-
amples of such problems and show how to prove W[1]-hardness in this case
by representing both the edges and the vertices of the clique by gadgets.

Example 1: Odd Set and variants

In the Odd Set problem, where given a set system F over a universe U and
an integer k, the task is to �nd a subset S ⊆ U of size at most k such that the
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intersection of S with every set in F has odd size. A natural idea for reducing
an instance (G, k, (V1, . . . , Vk)) of Multicolored Independent Set to an
instance of Odd Set would be to let U be V (G), keep the same parameter
k, and introduce the sets V1, . . . , Vk. The only way a set S of size at most
k can have odd intersection with these k disjoint sets is to have exactly one
vertex from each of V1, . . . , Vk. Now we would like to introduce sets into F
to enforce that the vertex of the solution in Vi is not adjacent to the vertex
of the solution in Vj . If a ∈ Vi and b ∈ Vj are adjacent, then introducing the
set {a, b} into F certainly prevents the possibility that both a and b is in a
solution S. However, it also prevents the possibility that neither of a and b is
in S, which may very well be the case for a solution. The reader may try other
simple tricks, but it seems that the parity requirement is not strong enough
to represent the complicated condition that two vertices are not adjacent.

We get around this di�culty by a reduction fromMulticolored Clique
where we represent both the vertices and the edges of the clique, that is, we
have k vertex gadgets and

(
k
2

)
edge gadgets. Then what we need to ensure is

that if an edge gadget represents the edge uv, then the corresponding vertex
gadgets represent u and v, respectively. As we shall see, such conditions are
much easier to express and enforce.

Theorem 13.31. Odd Set is W[1]-hard.

Proof. We present a parameterized reduction fromMulticolored Clique.
Let (G, k, (V1, . . . , Vk)) be an instance of Multicolored Clique. Let Ei,j
be the set of edges between Vi and Vj , and let Ei,j,v be the subset of Ei,j
consisting of the edges incident to v. We construct an instance (F , U, k′) of
Odd Set as follows.

(i) The universe is U :=
⋃k
i=1 Vi ∪

⋃
1≤i<j≤k Ei,j .

(ii) Let k′ := k +
(
k
2

)
.

(iii) For every 1 ≤ i ≤ k, let F contain Vi, and for every 1 ≤ i < j ≤ k, let
F contain Ei,j .

(iv) For every 1 ≤ i < j ≤ k, let F contain E′i,j,v := Ei,j,v ∪ (Vi \ {v}) for
every v ∈ Vi and E′i,j,w := Ei,j,w ∪ (Vj \ {w}) for every w ∈ Vj .

The intuitive idea of the reduction is the following. The solution needs
to select one vertex from each of V1, . . . , Vk (describing k vertices of
G) and one vertex from each Ei,j (describing

(
k
2

)
edges of G). Then the

sets introduced in (iv) ensure that the vertices selected from Vi and Vj
are the endpoints of the edge represented by the vertex selected from
Ei,j . More precisely, the set E′i,j,v ensures that exactly one of Vi \ {v}
and Ei,j,v contains a vertex of the solution, that is, v ∈ Vi is in the
solution if and only if the solution contains a vertex of Ei,j,v.
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Formally, let v1 ∈ V1, . . . , vk ∈ Vk be a k-clique in G and let ei,j be the

edge between vi and vj . We claim that the set S :=
⋃k
i=1{vi}∪

⋃
1≤i<j≤k{ei,j}

has odd intersection with every set in F . This is clearly true for the sets Vi
and Ei,j . Consider now a set E′i,j,v introduced in (iv). Suppose that v ∈ Vi
(the argument is similar for the case v ∈ Vj). If the endpoint of ei,j in Vi is
v, then v = vi and ei,j ∈ Ei,j,v hold and hence S ∩E′i,j,v = {ei,j}, which has
odd size. If the endpoint of ei,j in Vi is not v, then v 6= vi and ei,j 6∈ Ei,j,v,
hence S ∩ E′i,j,v = {vi}, which is again odd.

For the reverse direction, let S ⊆ U be a set of size at most k′. As the
k′ = k+

(
k
2

)
sets introduced in (iii) are disjoint, each of them contains exactly

one vertex of S. Let S∩Vi = {vi} and S∩Ei,j = {ei,j}. We claim that v1 ∈ V1,
. . . , vk ∈ Vk is a k-clique in G and ei,j is the edge between vi and vj . Suppose
that vi is not an endpoint of ei,j . Then vi 6∈ E′i,j,vi and ei,j 6∈ E′i,j,vi hold
and hence S ∩ E′i,j,vi = ∅, a contradiction. The argument is similar if vj is
not an endpoint of ei,j . Therefore, ei,j is the edge between vi and vj ; hence
{v1, . . . , vk} indeed induces a clique in G. ut

In general, the requirement that a ∈ Vi and b ∈ Vj are adjacent can be an
arbitrarily complicated binary relation: the bipartite graph between Vi and Vj
can be arbitrarily complicated. The key idea in the proof of Theorem 13.31 is
that the requirement that v ∈ Vi is an endpoint of an edge e ∈ Ei,j is a much
simpler binary relation: it is a projection, that is, for every e ∈ Ei,j , there
is only a single v ∈ Vi that satis�es the requirement. The general principle
that we can learn from this example is that, after setting up the gadgets
representing the k vertices and the

(
k
2

)
edges of the clique, all we need to

ensure is that each state of an edge gadget forces a particular state for the
the two vertex gadgets representing the endpoints of the edge. That is, we do
not need to implement arbitrarily complicated relations between the gadgets,
only a very speci�c simple relation requiring that a state of an edge gadget
always implies a particular state on a vertex gadget.

The proof of Theorem 13.31 allows us to prove W[1]-hardness for some
variants of Odd Set. First, Exact Odd Set is the variant that asks for a
solution of size exactly k. Observe that, given a yes-instance of Multicol-
ored Clique, the reduction of Theorem 13.31 produces an instance of Odd
Set that has a solution of size exactly k′. Therefore, this is also a correct
parameterized reduction fromMulticolored Clique to Exact Odd Set,
proving the W[1]-hardness of the latter problem.

One can de�ne the Even Set and Exact Even Set problems analo-
gously: now each set has to contain an even number of vertices of the solu-
tion. Note, however, that the empty set is always a correct solution for Even
Set with this de�nition. Therefore, in the Even Set problem, we require
the solution to be a nonempty set of at most k elements such that every set
in the instance contains an even number of elements of the solution. It is not
di�cult to reduce Exact Odd Set to Exact Even Set (Exercise 13.19),
showing that Exact Even Set is also W[1]-hard. On the other hand, the
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�xed-parameterized tractability of Even Set is a notorious open question.
It is equivalent to other very interesting and deep questions: it can be also
formulated as �nding the minimum distance of a binary linear code or the
minimum length cycle in a binary matroid. Therefore, settling this question
may require a deeper combinatorial understanding and could be more chal-
lenging than the simple reduction of Theorem 13.31.
Unique Hitting Set is the variant of Odd Set where we require that

each set contains exactly one element of the solution; Exact Unique Hit-
ting Set is de�ned analogously. Looking at the reduction in Theorem 13.31,
we can observe that if theMulticolored Clique instance is a yes-instance,
then the constructed instance of Odd Set has the property that every set
contains in fact only a single element of the solution. Therefore, the proof of
Theorem 13.31 actually provides a reduction from Multicolored Clique
to Unique Hitting Set or Exact Unique Hitting Set.

Theorem 13.32. The following problems are W[1]-hard:

� Odd Set
� Exact Odd Set
� Exact Even Set
� Unique Hitting Set
� Exact Unique Hitting Set

Interestingly, one can prove that Unique Hitting Set and Exact Unique
Hitting Set are actually W[1]-complete by a reduction to Short Turing
Machine Acceptance (Exercise 13.20), but this is open for the other three
problems.

It is natural to de�ne analogues of Odd Set (and its variants) on graphs
with the closed neighborhoods of the vertices playing the role of the set
system, the same way as Dominating Set can be considered as a graph-
theoretic analogue of Hitting Set. For example, the graph version of Odd
Set asks for a set of at most k vertices such thatN [v] contains an odd number
of vertices of the solution for every vertex v. The graph version of Exact
Unique Hitting Set is also known under the name Perfect Code. If the
vertex set of a graph G is the set of all potential codewords and two vertices
are adjacent if the corresponding codewords are �close,� then Perfect Code
asks for a code containing exactly k words such that every word is close to
exactly one word in the code. One can show that the graph versions of all �ve
problems considered in Theorem 13.32 are also W[1]-hard (Exercise 13.21).

Example 2: Steiner problems in directed graphs

Given an undirected graph G, a set K ⊆ V (G) of terminals, and an integer `,
the Steiner Tree problem asks for a tree H with at most ` edges connecting
all the terminals. In Sections 6.1.2 and 10.1.2 we gave algorithms for Steiner
Tree running in time 3|K|nO(1) and 2|K|nO(1), respectively. One can de�ne
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similar problems on directed graphs. Given a set of terminals K ⊆ V (G) and
a root r ∈ V (G), Directed Steiner Tree asks for a directed tree rooted
at r such that every terminal in K is reachable from r on the tree. This
problem generalizes Steiner Tree to directed graphs in the sense that we
are looking for a subgraph that provides reachability from one distinguished
vertex to every other terminal. See Exercise 6.7 for a 3|K|nO(1)-time algorithm
for Directed Steiner Tree. Another, equally natural, generalization is
the Strongly Connected Steiner Subgraph problem, where the input
is a directed graph G, a set K ⊆ V (G) of terminals, and an integer `; the
task is to �nd a strongly connected subgraph of G with at most ` vertices
that contains every vertex of K. This problem generalizes Steiner Tree
in the sense that we have to provide a path from any terminal to every
other terminal. Note that one can de�ne Strongly Connected Steiner
Subgraph by requiring either at most ` edges or at most ` vertices in the
solution. The two versions are di�erent, but here we discuss only the vertex
version for simplicity. The parameter we consider is the number ` of vertices
in the solution. Unlike Directed Steiner Tree, this problem is W[1]-hard
and the proof is another example of the edge representation strategy.

Theorem 13.33. Strongly Connected Steiner Subgraph is W[1]-
hard.

Proof. We present a parameterized reduction fromMulticolored Clique.
Let (G, k, (V1, . . . , Vk)) be an instance of Multicolored Clique. Let Ei,j
be the set of edges between Vi and Vj . We construct an instance (G′,K, `) of
Strongly Connected Steiner Subgraph as follows (see Fig. 13.6).

(i) G′ contains all the vertices of G, a vertex x, vertices yi,j (1 ≤ i < j ≤ k),
and a vertex we for every e ∈ E(G). We de�ne E′i,j = {we : e ∈ Ei,j}
for 1 ≤ i < j ≤ k.

(ii) Let K := {x} ∪ {yi,j : 1 ≤ i < j ≤ k} and let ` := k + 1 + 2
(
k
2

)
=

|K|+ k +
(
k
2

)
.

(iii) For every 1 ≤ i ≤ k and v ∈ Vi, we introduce the edges (x, v) and (v, x).
(iv) For every 1 ≤ i < j ≤ k and e ∈ Ei,j , we introduce the edges (yi,j , we)

and (we, yi,j).
(v) For every 1 ≤ i < j ≤ k and e ∈ Ei,j , if a ∈ Vi and b ∈ Vj are the

endpoints of e, then we introduce the edges (a,we) and (we, b).

The intuitive idea of the reduction is the following. The solution can
a�ord to select only one vertex from each of V1, . . . , Vk (�vertex gad-
gets� describing k vertices of G) and one vertex from each E′i,j (�edge

gadgets� describing
(
k
2

)
edges of G). Each vertex we in Ei,j has only

one inneighbor and one outneighbor di�erent from yi,j ; thus if we is
part of the solution, then those two vertices have to be selected as well.



458 13 Fixed-parameter intractability

y1,2

E′1,2

y1,3 y1,4 y2,3 y2,4 y3,4

x

E′1,3 E′1,4 E′2,3 E′2,4 E′3,4

V1 V2 V3 V4

Fig. 13.6: An overview of the reduction in the proof of Theorem 13.33. The
circled vertices are the terminals and the red edges show a possible solution.
For clarity, we show only those edges of the graph between the Vi's and E

′
i,j

that are in the solution

Therefore, the state of each edge gadget forces a state on two vertex
gadgets, implying that the k-vertex gadgets describe a k-clique in G.

Formally, let v1 ∈ V1, . . . , vk ∈ Vk be a k-clique inG and let ei,j be the edge
between vi and vj . We claim that the set S := K ∪{vi : 1 ≤ i ≤ k}∪{ei,j :
1 ≤ i < j ≤ k} induces a strongly connected subgraph G′[S]; note that
|S| = `. For every 1 ≤ i < j ≤ k, the directed closed walk xviwei,jyi,jwei,jvjx

uses only vertices of S. Moreover, these
(
k
2

)
directed closed walks cover every

vertex of S, hence G′[S] is strongly connected.
For the reverse direction, let S be a set of size at most ` such that K ⊆

S ⊆ V (G′) and G′[S] is strongly connected. Clearly, such a set has to include
at least one outneighbor of each vertex in K, which means that S contains
at least one vertex of E′i,j for every 1 ≤ i < j ≤ k. All the inneighbors of
E′i,j ∪ {yi,j} are in Vi, while all the outneighbors are in Vj , hence each of Vi
and Vj has to contain at least one vertex of the solution. Taking into account

the quota of ` = |K|+k+
(
k
2

)
on the size of the solution, this is only possible

if S contains exactly one vertex vi ∈ Vi for every 1 ≤ i ≤ k and exactly one
vertex wei,j ∈ E′i,j for every 1 ≤ i < j ≤ k. We claim that v1 ∈ V1, . . . ,
vk ∈ Vk is a k-clique in G and ei,j is the edge between vi and vj . Suppose
that vi is not an endpoint of ei,j . Then vi is not an inneighbor of wei,j . The
only other inneighbor of wei,j is yi,j and the only inneighbor of yi,j in S is
wei,j itself. Therefore, the strongly connected component of G′[S] containing
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wei,j consists of only yi,j and wei,j , a contradiction. The argument is similar
if vj is not an endpoint of ei,j . Therefore, ei,j is the edge between vi and vj ,
hence {v1, . . . , vk} indeed induces a clique in G. ut

Note that the reduction in Theorem 13.33 creates a directed graph containing
bidirected edges, that is, there are pairs of vertices that are connected by
directed edges in both directions. Exercise 13.26 asks for a reduction that
does not create bidirected edges.

Exercises

13.1 (l). Is there a parameterized reduction fromVertex Cover to Independent Set?

13.2 (l). Give a parameterized reduction from Set Cover to Dominating Set.

13.3 (l). In theMulticolored Biclique problem the input consists of a bipartite graph
G with bipartition classes A,B, an integer k, a partition of A into k sets A1, A2, . . . , Ak,
and a partition of B into k sets B1, B2, . . . , Bk; the question is whether there exists a
subgraph of G isomorphic to the biclique Kk,k, with one vertex in each of the sets Ai and
Bi. Prove that Multicolored Biclique is W[1]-hard.

13.4. Prove Theorem 13.12.

13.5. In this exercise we will work out an alternative, purely combinatorial construction
of k-paradoxical tournaments of size 2poly(k).

� Find a 2-paradoxical tournament T ∗ on seven vertices.
� Assume we are given some tournament T . Construct a tournament T ′ as follows. The

vertices of T ′ are triples of vertices of T , i.e., V (T ′) = V (T ) × V (T ) × V (T ). Let us
consider a pair of triples u1 = (a1, b1, c1) and u2 = (a2, b2, c2), where a1 6= a2, b1 6= b2,
and c1 6= c2. Consider now pairs {a1, a2}, {b1, b2}, {c1, c2}, and count for how many
of them the edge in T was directed from the vertex with subscript 1 to the vertex of
subscript 2 (e.g., from a1 to a2). If for at least two pairs this was the case, we put
(u1, u2) ∈ E(T ′), and otherwise we put (u2, u1) ∈ E(T ′). For all the pairs of triples
where at least one of the coordinates is the same, we put the edge between the triples
arbitrarily. Prove that if T was k-paradoxical, then T ′ is

⌊
3k
2

⌋
-paradoxical.

� De�ne the sequence T0, T1, T2, . . . as follows: T0 = T ∗, and for m ≥ 1 the tournament
Tm is constructed from Tm−1 using the construction from the previous point. Prove
that |V (Tm)| = 73

m
and that Tm is g(m)-paradoxical for a function g(m) ∈ Ω((3/2)m).

� Using the previous point, provide an algorithm that, given an integer k, constructs a

k-paradoxical tournament of size 2
O
(
k
log3/2 3

)
≤ 2O(k2.71). The construction should

work in time polynomial with respect to the size of the constructed tournament.

13.6. Let Cs,t,d be the class of circuits having depth at most d where every path from an
input node to the output node contains at most t nodes with indegree larger than s. (Thus
the class Ct,d de�ned in Section 13.3 is C2,t,d.) Show that, for every t, d ≥ 1, s ≥ 2, there is
a parameterized reduction from WCS[Cs,t,d] to WCS[Ct,ds]. Conclude that replacing Ct,d
in De�nition 13.16 with Cs,t,d for some �xed s ≥ 2 would not change the de�nition of W[t].

13.7. Consider the Weighted Circuit Satisfiability problem, restricted to monotone
(i.e., without negations) circuits from the class C1,d for some �xed constant d. Prove that
this problem is FPT when parameterized by k, the weight of the assignment in question.
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13.8. Give a parameterized reduction from Independent Set to Short Turing Machine
Acceptance.

13.9. Consider a restricted variant of the Short Turing Machine Acceptance problem,
where we consider only instances (M,x, k) with x being an empty string. Reduce the general
Short Turing Machine Acceptance problem to the restricted one.

13.10. Work out the details of the parameterized reduction from Partial Vertex Cover
to Short Turing Machine Acceptance (Theorem 13.24).

13.11. Prove that Dominating Set remains W[2]-hard even if restricted to graphs ex-
cluding the star K1,4 as an induced subgraph.

13.12. Give a parameterized reduction from Dominating Set to Dominating Set with
Pattern.

13.13 (A). Modify the reduction in the proof of Theorem 13.26 to obtain a parameterized
many-one reduction from Connected Dominating Set to Dominating Set.

13.14. Given a graph G and an integer k, the Induced Matching problem asks for an
induced matching of size k, that is, k edges x1y1, . . . , xkyk such that the 2k endpoints are
all distinct and there is no edge between {xi, yi} and {xj , yj} for any i 6= j. Prove that
Induced Matching is W[1]-complete.

13.15. Given a graph G and an integer k, the Independent Dominating Set problem
asks for a set of exactly k vertices that is both an independent set and a dominating set.
Prove that Independent Dominating Set is W[2]-complete.

13.16. In the Long Induced Path problem the input consists of a graph G and an integer
k, and the question is whether G contains the path on k vertices as an induced subgraph.
Prove that this problem is W[1]-hard when parameterized by k.

13.17. Consider the following variant of the Steiner Tree problem: We are given a graph
G, a set of terminals K ⊆ V (G), and an integer parameter k. The question is whether one
can �nd a set X ⊆ V (G) \K of cardinality at most k such that G[K ∪X] is connected. In
other words, we parameterize the Steiner Tree by the number of nonterminals that can
be added to the tree, while the number of terminals can be unbounded. Prove that this
parameterization of Steiner Tree is W[2]-hard.

13.18 (l). Is List Coloring W[1]-hard parameterized by the vertex cover number?

13.19. Give a parameterized reduction from Exact Odd Set to Exact Even Set.

13.20 (A). Show that Unique Hitting Set and Exact Unique Hitting Set are in
W[1].

13.21. Show that the graph versions of all �ve problems in Theorem 13.32 are W[1]-hard.
(The graph version of Exact Unique Hitting Set is called Perfect Code.)

13.22. In the Subset Sum problem the input consists of a sequence of n integers
a1, a2, . . . , an and two integers s, k, and the question is whether one can �nd a set
I ⊆ {1, 2, . . . , n} of exactly k indices such that

∑
i∈I ai = s. Prove that Subset Sum

is W[1]-hard when parameterized by k.

13.23. In the Set Packing problem the input consists of family F of subsets of a �nite
universe U and an integer k, and the question is whether one can �nd k pairwise disjoint
sets in F . Prove that Set Packing is W[1]-hard when parameterized by k.
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13.24. In the Exact CNF-SAT problem the input consists of formula ϕ in the conjunctive
normal form and an integer k, and the question is whether one can �nd an assignment ψ
of weight exactly k such that in each clause of ϕ exactly one literal is satis�ed. Prove that
Exact CNF-SAT is W[1]-hard when parameterized by k.

13.25. In the Permutation Composition problem the input consists of a family P of
permutations of a �nite universe U , additional permutation π of U , and an integer k,
and the question is whether one can �nd a sequence π1, π2, . . . , πk ∈ P such that π =

π1 ◦π2 ◦ . . .◦πk. Prove that Permutation Composition is W[1]-hard when parameterized
by k.

13.26 (l). Modify the reduction of Theorem 13.33 in such a way that the constructed
graph has no bidirected edges.

13.27. In the Vertex k-Way Cut problem the input consists of a graph G and two
integers k, s, and the question is whether one can �nd a set X of at most k vertices such
that the graph G − X has at least s connected components. Prove that Vertex k-Way
Cut is W[1]-hard when parameterized by k + s.

13.28. Given a bipartite graph G with bipartite classes A,B ⊆ V (G) and an integer k,
the Hall Set problem asks for a Hall set of size at most k, that is, a set S ⊆ A of size at
most k such that |N(S)| < |S|. Show that Hall Set is W[1]-hard.

13.29 (A). Recall that a graph is 2-degenerate if its every subgraph contains a vertex of
degree at most 2. In the 2-degenerate Vertex Deletion problem one is given a graph
G and an integer k, and the question is whether there exists a set X of at most k vertices
such that the graph G−X is 2-degenerate. Prove that 2-degenerate Vertex Deletion
is W[2]-hard when parameterized by k (if you �nd it more convenient, you may prove just
W[1]-hardness).

13.30 (A). In the Longest Common Subsequence problem the input consists of a
�nite alphabet Σ, a set of strings s1, s2, . . . , s` ∈ Σ∗ and an integer k, and the question is
whether there exists a string s ∈ Σ∗ of length k such that s is a subsequence of si for every
1 ≤ i ≤ s. Prove that Longest Common Subsequence is W[1]-hard when parameterized
by k.

Hints

13.1 The following algorithm satis�es the formal de�nition of a parameterized reduction:
solve the Vertex Cover instance in FPT time and output a trivial yes-instance or no-
instance of Independent Set. More generally, if A is FPT, then A has a parameterized
reduction to any parameterized problem B that is nondegenerate in the sense that it has
at least one yes-instance and at least one no-instance.

13.4 Sample the tournament by choosing the orientation of each edge independently and
uniformly at random. Prove that for n ≥ r(k) the sampled tournament is k-paradoxical
with positive probability.

13.6 Every OR-node or AND-node with indegree at most s can be simulated with a chain
of at most s − 1 nodes with indegree 2. This way, we can construct an equivalent circuit
such that depth increases only by a factor of at most s. In fact, by replacing a node with
indegree s with an (almost) complete binary tree of indegree-2 nodes, we can restrict the
increase of depth to O(log s).
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13.7 Observe that there is only a constant number of large gates. Guess the output of all
large gates. For each large OR gate, guess which in-edge of this gate is satis�ed, and what
the assignment is of the input gates that make this particular in-edge satis�ed (it depends
only on a constant number of input gates). Finally, to resolve large AND-gates, design a
simple branching algorithm.

13.8 In the �rst k steps, the Turing machine guesses k vertices and writes them on the
tape. In the next

(
k
2

)
phases, the Turing machine checks whether every pair of the guessed

vertices is distinct and nonadjacent. Each phase can be implemented in O(k) steps.

13.9 Modify the Turing machine in such a way that it writes x on the tape in the �rst |x|
steps (and then the head returns to the starting position).

13.11 Try to adjust the reduction for Connected Dominating Set of Theorem 13.15
so that the output graph has no K1,4 as an induced subgraph. You would probably want
to turn as many big parts of the graph into cliques as possible.

13.12 The reduction of Theorem 13.15 from Dominating Set to Connected Dominat-
ing Set has the property that if the created instance has a connected dominating set of
size k, then it has a dominating set of size k inducing a clique.

13.13 Express Connected Dominating Set as 2O(k2) instances of Dominating Set

with Pattern and reduce them to 2O(k2) instances of Dominating Set (or Set Cover if
you will). Then use the composition algorithm of Section 15.2.3 to create a single instance
of Set Cover.

13.16 Reduce from Multicolored Independent Set. Given a Multicolored Inde-
pendent Set instance (G, k, (V1, V2, . . . , Vk)), aim at an instance (G′, k′) of Long In-
duced Path with k′ = 3k. In the intended solution, the (3i − 1)-th vertex of the path
belongs to Vi, whereas the remaining vertices belong to some gadgets you introduce.

13.17 Reduce from Set Cover.

13.18 Note that treewidth of a graph is at most its vertex cover number. Therefore, the
statement of Theorem 13.30 (W[1]-hardness parmeterized by treewidth) does not imply
W[1]-hardness parameterized by vertex cover number, as vertex cover can be a much larger
parameter. However, by looking at the proof of Theorem 13.30, we can observe that the
reduction creates instances of List Coloring with vertex cover number at most k, which
means that the same proof proves also the (stronger) result that the problem is W[1]-hard
parameterized by the vertex cover number.

13.19 By introducing a new element x and a new set {x} on it, we may assume that
the parameter k of the Exact Odd Set instance is even. To create an instance of Exact
Even Set, introduce a new element y, add it to every set, let us introduce a new set
U \ {y}, and set k′ := k + 1 (which is an odd number). Now the set U \ {y} ensures that
every solution of size exactly k′ contains y. Consequently, if A is a set of the Exact Odd
Set instance, then the fact that the solution of the Exact Even Set instance has even
intersection with A ∪ {y} implies that it has odd intersection with A.

13.20 We can prove membership by a reduction to Short Turing Machine Accep-
tance. The Turing machine �rst guesses the (at most k) elements of the solution. Then
by testing all the

(
k
2

)
pairs, it veri�es that there is no set in the instance that contains

two elements of the solution. Finally, to check that all the sets are hit by the solution, the
Turing machine sums the total degree of the elements (that is, the number of sets they are
contained in) of the solution. As no set is hit by more than one element of the solution,
this sum is exactly the number of sets hit by the solution. To implement this algorithm in
a Turing machine, we have to hard-code which pairs of elements are contained in some set
together and the degree of each element.
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13.22 Reduce from Perfect Code or Exact Unique Hitting Set.

13.23 Reduce from Independent Set: for each vertex v of the input instance (G, k),
create a set Fv consisting of all edges of G incident to v.

13.24 Reduce from Perfect Code or Exact Unique Hitting Set.

13.25 Reduce from Perfect Code or Exact Unique Hitting Set.

13.26 Split each nonterminal vertex v into two vertices vin and vout connected by an edge
(vin, vout). Modify k′ appropriately.

13.27 Try a reduction similar to the one given in the proof of Theorem 13.29.

13.28 Reduction from Clique. Given a graph G, we construct a bipartite graph where
class A corresponds to the edges of G and class B corresponds to the vertices of B; the
vertex of A corresponding to edge uv of G is adjacent to the two vertices u, v ∈ B.
Additionally, we introduce a set of

(
k
2

)
− k− 1 vertices into B and make them adjacent to

every vertex of A. Show that every Hall set of size at most
(
k
2

)
has size exactly

(
k
2

)
and

corresponds to the edges of a k-clique in G.

13.29 You may �nd the following characterization of d-degenerate graphs useful: a graph
is d-degenerate if one can delete all the vertices of the graph one by one, each time removing
a vertex that at the current moment has degree at most d.

Start the reduction from Set Cover. Create k set-choice gadgets that emulate choices
of k sets of the solution. Each gadget should be 3-regular, and should become 2-degenerate
after removing any of its vertices. Then create a gadget for each element of the universe,
and wire these gadgets with the set-choice gadgets to encode the input instance. Ensure
the following properties: (i) If an element is not covered, then the closed neighborhood of
the corresponding gadget induces a 3-regular graph untouched by the solution. (ii) If an
element is covered, then the closed neighborhood of the corresponding gadget is a�ected
by the solution and it is possible to �rip� the whole gadget in the process described in the
previous paragraph.

13.30 Reduce from Multicolored Clique. Let (G, k, (V1, V2, . . . , Vk)) be a Multicol-
ored Clique instance. The string s should encode the choice of vertices and edges of the
clique, that is, V (G) ∪ E(G) ⊆ Σ (you may need some additional special symbols in Σ
that will serve as separators or markers). To this end, �x an arbitrary total order � on
each set Vi. Let V

↑
i be the string consisting of all vertices of Vi in the increasing order of

�, and V ↓i be the string V ↑i reversed. The orders on Vi and Vj impose a lexicographical
order on each set Ei,j of edges connecting Vi and Vj in the graph G, and hence the strings

E↑i,j and E
↓
i,j are de�ned in a natural manner. Consider two strings

s1 = V ↑1 V
↑
2 . . . V

↑
k E
↑
1,2E

↑
1,3 . . . E

↑
k−1,k and

s2 = V ↓1 V
↓
2 . . . V

↓
k E
↓
1,2E

↓
1,3 . . . E

↓
k−1,k.

Observe that the longest common subsequence of s1 and s2 is of length k+
(
k
2

)
and contains

exactly one vertex vi from each set Vi and exactly one edge ei,j from each set Ei,j .
Now, design a �gadget� consisting of two strings that ensures that vi is an endpoint of

ei,j , for each 1 ≤ i < j ≤ n. Similarly, verify the second endpoint of ei,j .
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hardness is usually attributed to Fellows, Hermelin, Rosamond, and Vialette [179], but
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tournaments, i.e., Theorem 13.12, was given by Erd®s [166]. The best known determin-
istic construction, given by Graham and Spencer [233], achieves size O(4k · k2) for a k-
paradoxical tournament and is based on number-theoretical concepts. The combinatorial
construction of Exercise 13.5 has been proposed by Tyszkiewicz [422]. The vast majority
of parameterized reductions in the literature are actually polynomial-time reductions. The
reduction to Dominating Set on Tournaments presented in Theorem 13.14 is one of
the rare exceptions: the running time depends superpolynomially on k. Other examples
of such reductions can be found in the W[1]-hardness proofs of the Vapnik-Chervonenkis
(VC) dimension [152] and certain parameterizations of Closest Substring [349] (see
Theorem 14.27 in Section 14.4).

The W-hierarchy was de�ned by Downey and Fellows [149, 148, 149, 152, 150, 151].
These series of papers prove, among other results, the W[1]-completeness of Independent
Set (Theorem 13.18) and the characterization of W[t] by normalized circuit satis�ability
(Theorem 13.19). The connection of W[1] and Turing machines was investigated by Cai,
Chen, Downey, and Fellows [67]. They show W[1]-hardness of Short Turing Machine
Acceptance by a reduction from Clique and show membership in W[1] by reducing
Short Turing Machine Acceptance toWeighted Circuit Satisfiability with weft-
1 circuits. Together with the W[1]-hardness of Independent Set (Theorem 13.18), this
gives a reduction from Short Turing Machine Acceptance to Independent Set. In
Section 13.22, we worked out a direct reduction from Short Turing Machine Accep-
tance to Independent Set to provide self-contained evidence (without the need for the
W-hierarchy and Theorem 13.18) why Independent Set is unlikely to be �xed-parameter
tractable.

Cesati [72, 71] observed that reduction to Short Turing Machine Acceptance can
be a convenient way of proving membership in W[1]. We used this technique for Partial
Vertex Cover (Theorem 13.24) and for Unique Hitting Set (Exercise 13.20).

The W[1]-hardness proof ofBalanced Vertex Separator is by Marx [347]. The W[1]-
hardness proof of List Coloring parameterized by treewidth is by Fellows, Fomin, Lok-
shtanov, Rosamond, Saurabh, Szeider, and Thomassen [177]. In Section 14.29, we will see
a di�erent way of proving W[1]-hardness for List Coloring parameterized by treewidth,
which also works for planar graphs.

Downey and Fellows [151] proved the W[1]-hardness of Perfect Code. Downey, Fel-
lows, Vardy, and Whittle [155] used the W[1]-hardness of Perfect Code to show (via com-
plicated reductions) the W[1]-hardness of variants of Odd Set (and of further problems
that we do not discuss here). In Section 13.6, we presented a very simple and self-contained
W[1]-hardness proof for Odd Set that can be adapted for other variants.

The W[2]-hardness of Dominating Set in graphs excluding K1,4 as an induced sub-
graph has been proved independently by Cygan, Philip, Pilipczuk, Pilipczuk, and Woj-
taszczyk [119] and Hermelin, Mnich, van Leeuwen, and Woeginger [259]. It is worth men-
tioning that, as proved in both of these papers,Dominating Set becomes FPT if restricted
to graphs excluding K1,3 as an induced subgraph (i.e., in claw-free graphs).
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The W[1]-hardness of various edge and vertex versions of Strongly Connected
Steiner Subgraph was shown by Guo, Niedermeier, and Suchý [244] and by Chitnis,
Hajiaghayi, and Marx [92]. In Section 13.6, we have presented a somewhat simpler proof
that works only for the vertex variant.

Vertex deletion problems to d-degenerate graphs (Exercise 13.29) were studied by Math-
ieson [360]. It appears that they are even harder than as stated in Exercise 13.29.

Given a graph G and an integer k, the Biclique problem asks for a Kk,k subgraph,
that is, two disjoint sets X,Y ⊆ V (G) of vertices of size exactly k such that every vertex
of X is adjacent to every vertex of Y . The �xed-parameter tractability of Biclique was a
longstanding open question. Very recently, Lin [322] proved that Biclique is W[1]-hard,
resolving this question. (Exercise 13.3 considers the multicolored version of the problem,
which can be shown to be W[1]-hard in a much easier way.)





Chapter 14

Lower bounds based on the
Exponential-Time Hypothesis

The Exponential Time Hypothesis (ETH) is a conjec-
ture stating that, roughly speaking, n-variable 3-SAT
cannot be solved in time 2o(n). In this chapter, we
prove lower bounds based on ETH for the time needed
to solve various problems. In many cases, these lower
bounds match (up to small factors) the running time
of the best known algorithms for the problem.

In the previous chapter, we have learned tools for distinguishing param-
eterized problems that do admit �xed-parameter tractable algorithms from
those that probably do not. However, as we have seen before, FPT algo-
rithms come with a full variety of running times. On one hand, we have
very e�cient subexponential parameterized algorithms following from bidi-
mensionality (see Section 7.7), with a typical running time of the form

O∗(2O(
√
k·polylog(k)))1. On the other hand we have algorithms derived from

Courcelle's theorem, where the dependency on the treewidth of the graph is
not even elementary. Somewhere in between lie �standard� �xed-parameter
tractable problems amenable to other techniques, like branching, color cod-
ing, iterative compression, kernelization, algebraic tools, representative sets,
etc. For these problems the typical running time of an FPT algorithm is
O∗(2O(k)), O∗(2O(k log k)), O∗(2poly(k)), or doubly exponential in k. There-
fore, it seems that the class FPT has to contain an inner hierarchy of classes,
corresponding to respective forms of parameter dependency of the running
times of FPT algorithms. In order to uncover and describe this inner hier-

1 In this chapter we focus on lower bounds on the parametric dependence of the running
times of parameterized algorithms. For this reason, we extensively use the O∗-notation that
suppresses factors polynomial in the input size; recall that we de�ned it in Section 1.1.
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archy, we need to develop a methodology for proving lower bounds: Given a
particular problem, we need to establish an asymptotic lower bound on func-
tion f that can appear in the running time of any FPT algorithm solving the
problem. The assumption that FPT 6= W[1] seems too weak to achieve this
goal, and therefore we will introduce stronger complexity assumptions.

The Exponential Time Hypothesis (ETH) is a conjecture stating that,
roughly speaking, 3-SAT has no algorithm subexponential in the number of
variables. As we will see this conjecture implies that FPT 6= W[1], hence it
can be also used to give conditional evidence that certain problems are not
�xed-parameter tractable. More importantly, ETH allows us to prove quanti-
tative results of various forms. For example, we can prove results saying that
(assuming ETH) a problem cannot be solved in time 2o(n), or a parameterized
problem cannot be solved in time f(k)no(k), or a �xed-parameter tractable
problem does not admit a 2o(k)nO(1)-time algorithm.2 In many cases, the
lower bounds obtained this way match (up to small factors) the best known
algorithm, giving a tight understanding of the complexity of the problem.
In recent years, the �eld of parameterized complexity has been completely
revolutionized by the fact that such tight lower bounds can be proved. Ob-
taining tight lower bounds seems to be a reachable goal for many problems
and working towards this goal opens up new algorithmic questions to explore.
A variant of ETH, called the Strong Exponential Time Hypothesis (SETH)
can be used to give even more re�ned lower bounds saying, e.g., that a pa-
rameterized problem cannot be solved in time (2− ε)knO(1) for any ε > 1.

In Section 14.1 we introduce ETH and SETH, and derive classic conse-
quences of the former. In Section 14.3 we show how ETH can be used to
establish lower bounds on the running times of FPT algorithms. Section 14.4
is devoted to the study of problems that are W[1]-hard and hence probably
not FPT; it appears that for such problems ETH can be used to provide
sharp estimates on the asymptotic behavior of the function of the parameter
appearing in the exponent of n. Finally, in Section *14.5 we present selected
lower bounds based on SETH.

14.1 The Exponential-Time Hypothesis: motivation and
basic results

The starting point of our considerations will be the hardness of theCNF-SAT
problem. Recall that in the CNF-SAT problem we are given a propositional
formula ϕ on n Boolean variables x1, x2, . . . , xn that is in conjunctive normal
form (CNF). This means that ϕ = C1 ∧C2 ∧ . . . ∧Cm, where the Cis, called
clauses, are of the form Ci = `i1∨`i2∨. . .∨`iri . Here, the `ijs are literals, that is,

2 Recall that we say that f(n) ∈ o(n) if f(n) ≤ n
s(n)

for some unbounded and nondecreasing
function s.
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appearances of some variable in a negated or non-negated form. The question
is whether there exists an assignment of true/false values to the variables so
that ϕ becomes true. By restricting the number of variables appearing in
each clause to some constant q we arrive at the q-SAT problem.

Since for q ≥ 3 the q-SAT is NP-complete, we do not expect it to be solv-
able in polynomial time. Our current knowledge, however, is very far from this
unattainable goal. Obviously, the general CNF-SAT problem can be solved
in time O∗(2n) by trying all possible true/false assignments. Apparently, we
do not know any algorithm that is substantially faster than this brute-force
solution. Some improvement is possible, however, when the length of clauses
is restricted: for every q ≥ 3, there exists γq = 1 − Θ( 1

q ) and an algorithm

resolving q-SAT in time O∗(2γqn). For the most studied case of q = 3, the
current champion achieves γ3 ≤ 0.387.

The current status of research on satis�ability problems suggests that
the following two natural barriers are hard to break:

1. Obtaining a subexponential algorithm for 3-SAT, i.e., one with run-
ning time 2o(n).

2. Finding an algorithm for the general CNF-SAT problem with run-
ning time O∗((2− ε)n) for some constant ε > 0.

These two barriers motivate the complexity assumptions that we will in-
troduce in a moment. For q ≥ 3, let δq be the in�nimum of the set of constants
c for which there exists an algorithm solving q-SAT in time O∗(2cn). In this
de�nition, we allow only deterministic algorithms; we will discuss random-
ized analogues in what follows. The Exponential-Time Hypothesis and Strong
Exponential-Time Hypothesis are then de�ned as follows.

Conjecture 14.1 (Exponential-Time Hypothesis, ETH).

δ3 > 0

Conjecture 14.2 (Strong Exponential-Time Hypothesis, SETH).

lim
q→∞

δq = 1

Intuitively, ETH states that any algorithm for 3-SAT needs to search
through an exponential number of alternatives, while SETH states that as
q grows to in�nity, brute-force check of all possible assignments becomes
more and more inevitable. As we will see later, ETH actually implies that
FPT 6= W[1], which supports the intuition that we are introducing stronger
assumptions in order to obtain sharper estimates of the complexity of param-
eterized problems.
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Looking back at the motivating barriers, note that ETH implies that 3-
SAT cannot be solved in time 2o(n), while SETH implies that CNF-SAT
cannot be solved in time O∗((2 − ε)n) for any ε > 0. However, the converse
implications are unclear. It appears that the (possibly slightly stronger) state-
ments of ETH and SETH, as stated in Conjectures 14.1 and 14.2, are much
more robust when it comes to inferring their corollaries via reductions. As
we will see later, SETH actually implies ETH; see Theorem 14.5.

Let us brie�y discuss the possibility of de�ning the randomized versions of
ETH and SETH. In Chapter 5 we have already seen a notion of one-sided er-
ror in the case of Monte Carlo algorithms. One can also consider randomized
algorithms with two-sided error. Such an algorithm both for any yes-instance
and for any no-instance returns an incorrect answer with probability bounded
by a constant that is strictly smaller than 1/2. Here, we modify the de�ni-
tion of δq by allowing also randomized two-sided error algorithms. Let δ?q ≤ δq
be the modi�ed constant for q-SAT. Then randomized ETH and randomized
SETH state that δ?3 > 0 and limq→∞ δ?q = 1, respectively. Clearly, randomized
ETH and SETH imply their deterministic analogues. In principle, whenever
the existence of a deterministic algorithm with some running time can be ex-
cluded under deterministic ETH, the same chain of reductions usually shows
that a randomized algorithm with the same running time is excluded under
randomized ETH.

Allowing randomization in the de�nitions of ETH and SETH seems rea-
sonable from the point of view of the research on satis�ability: the vast ma-
jority of fast algorithms for q-SAT are inherently randomized, including the
currently fastest O(20.386n) algorithm for 3-SAT. On the other hand, the as-
sumption of allowing randomization is inconvenient from a pragmatic point
of view: dealing with the error probability in multiple reductions that we
present in this chapter would lead to more technical and obfuscated proofs.
Therefore, we decided to use the deterministic versions of ETH and SETH
as our main assumptions, and the reader is asked to verify the steps where
randomization creates technical di�culties in Exercises 14.1 and 14.4. Hence-
forth, whenever we are referring to an algorithm, we mean a deterministic
algorithm.

Before we proceed, let us remark that while ETH is generally considered
a plausible complexity assumption, SETH is regarded by many as a quite
doubtful working hypothesis that can be refuted any time. For this reason,
lower bounds proved under the assumption of SETH should not be regarded
as supported by very strong arguments, but rather that the existence of
better algorithms would constitute a major breakthrough in the complexity
of satis�ability.

Most reductions from, say, 3-SAT, output instances of the target problem
whose sizes depend on the actual size of the input formula, rather than on the
cardinality of its variable set. However, an arbitrary instance of 3-SAT can
have up to Θ(n3) distinct clauses; as we will see in the next chapter, this size
cannot be nontrivially shrunk in polynomial time under plausible complexity
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assumptions (see Theorem 15.29). Therefore, a reduction that starts from an
arbitrary instance of 3-SAT and proceeds directly to constructing the output
instance, would inevitably construct an instance of size at least cubic in the
number of input variables.

Suppose now that we are trying to prove a lower bound on the running time
of algorithms solving the target problem. Then given such a reduction with
a cubic blow-up, the best we could hope for is excluding an algorithm for the

target problem that on any input instance x achieves running time 2o(|x|
1/3);

here, |x| is the size of instance x. Indeed, composing the reduction with such
an algorithm would yield a 2o(n) algorithm for 3-SAT, contradicting ETH.
However, if we could somehow assume that the number of clauses of the input
instance was linear in terms of n, then the reduction could give even an 2o(|x|)

lower bound, providing that the output size is linear in the size of the input
formula.

Therefore, it seems natural to try to sparsify the input instance of 3-SAT
(or more generally q-SAT), in order to be able to assume that the number
of clauses is comparable to the number of variables. This is exactly the idea
behind the milestone result of this theory, called the sparsi�cation lemma.

Theorem 14.3 (Sparsi�cation lemma, [273]). For all ε > 0 and positive
q, there is a constant K = K(ε, q) such that any q-CNF formula ϕ with n
variables can be expressed as ϕ =

∨t
i=1 ψi, where t ≤ 2εn and each ψi is a

q-CNF formula with the same variable set as ϕ and at most Kn clauses.
Moreover, this disjunction can be computed by an algorithm running in time
O∗(2εn).

Since the proof of the sparsi�cation lemma is not necessary to understand
the remainder of this chapter, we omit it in this book and refer the reader to
original work [273] for an exposition.

Before we proceed, let us elaborate on what this result actually says. The
sparsi�cation lemma provides a reduction that sparsi�es the given instance
of q-SAT so that its total size is comparable to the size of its variable set. In
order to circumvent the aforementioned incompressibility issues for q-SAT,
we allow the reduction to use exponential time and output a logical OR of
exponentially many instances (i.e., it is a Turing reduction, see Section *13.5),
yet these exponential functions can be as small as we like. Thus, whenever
reducing from q-SAT for a constant q, we can essentially assume that the
number of clauses is bounded linearly in the number of variables.

The following immediate consequence of the sparsi�cation lemma will be
our main tool for obtaining further corollaries.

Theorem 14.4. Unless ETH fails, there exists a constant c > 0 such that no
algorithm for 3-SAT can achieve running time O∗(2c(n+m)). In particular,
3-SAT cannot be solved in time 2o(n+m).

Proof. Assume that for every c > 0 there exists an algorithm Ac that solves
3-SAT in time O∗(2c(n+m)). We are going to show that for every d > 0 there
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exists an algorithm Bd that solves 3-SAT in time O∗(2dn), contradicting
ETH. Fix any d > 0, and let K be the constant given by Theorem 14.3 for
ε = d/2 and q = 3. Consider an algorithm Bd for the 3-SAT problem that
works as follows:

1. Apply the algorithm of Theorem 14.3 to the input formula ϕ and param-
eter ε = d/2.

2. Apply algorithm Ac′ for c′ = d
2(K+1) to each output formula ψi, and

return that ϕ is satis�able if at least one of the ψis is.

The correctness of the algorithm follows directly from Theorem 14.3. By
Theorem 14.3, the �rst step of the algorithm takes time O∗(2 dn2 ), while the

second takes time O∗(2 dn2 · 2 d
2(K+1)

·(K+1)n) = O∗(2dn), as each formula ψi
has at most Kn clauses and n variables. Hence, the whole algorithm runs in
time O∗(2dn). ut

To see another application of the sparsi�cation lemma, we will now show
that SETH implies ETH.

Theorem 14.5. If SETH holds, then so does ETH.

Proof. For the sake of contradiction, assume that δ3 = 0. Hence, for every
c > 0 there exists an algorithm Ac that solves 3-SAT in time O∗(2cn). We
will show that this implies δq = 0 for every q ≥ 3, which contradicts SETH.

Consider the following algorithm for q-SAT. Given the input formula ϕ,
�rst apply the algorithm of Theorem 14.3 for some ε > 0, to be determined
later. This algorithm runs in time O∗(2εn) and outputs at most 2εn formulas
ψi such that ϕ is satis�able if and only if any of the ψis is, and each ψi has
at most K(ε, q) · n clauses. We now focus on resolving satis�ability of one
ψ = ψi.

Consider the following standard reduction from q-SAT to 3-SAT: as long
as there exists some clause C = `1 ∨ `2 ∨ . . . ∨ `p for some p ≥ 4, add a fresh
variable y and replace C with clauses C1 = `1∨`2∨y and C2 = ¬y∨`3∨. . .∨`p.
Observe that this transformation preserves satis�ability of the formula, and
every original clause of length p > 3 gives rise to p − 3 new variables and
p − 2 new clauses in the output formula. Hence, if we apply this reduction
to the formula ψ, we obtain an equivalent formula ψ′ that is in 3-CNF and
that has at most (1 + q · K(ε, q)) · n variables. If we now apply algorithm
Aδ to ψ′, for some 0 < δ < 1, then we resolve satis�ability of ψ′ in time
O∗(2δ′n) for δ′ = δ · (1 + q · K(ε, q)). By applying this procedure to each
of the listed formulas ψi, we resolve satis�ability of ϕ in time O∗(2δ′′n) for
δ′′ = ε+ δ′ = ε+ δ · (1 + q ·K(ε, q)).

Recall that the constant ε in Theorem 14.3 can be chosen to be arbitrarily
close to 0. Since δ3 = 0, then having chosen ε > 0 (and thus K(ε, q)) we
can choose δ so that δ′ is arbitrarily close to 0. Therefore, ε and δ can be
chosen in such a manner that δ′′ is arbitrarily close to 0, which implies that
δq = 0. ut
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14.2 ETH and classical complexity

The CNF-SAT and 3-SAT problems lie at the very foundations of the theory
of NP-completeness. Problems around satis�ability of propositional formulas
were the �rst problems whose NP-completeness has been settled, and the
standard approach to prove NP-hardness of a given problem is to try to �nd
a polynomial-time reduction from 3-SAT, or from some problem whose NP-
hardness is already known. Thus, 3-SAT is in some sense the �mother of all
NP-hard problems�, and the current knowledge about NP-completeness can
be viewed as a net of reductions originating precisely at 3-SAT. Therefore,
it should not be surprising that by making a stronger assumption about the
complexity of 3-SAT, we can infer stronger corollaries about all the problems
that can be reached via polynomial time reductions from 3-SAT.

Consider, for instance, a problem A that admits a linear reduction from
3-SAT, i.e., a polynomial-time algorithm that takes an instance of 3-SAT
on n variables and m clauses, and outputs an equivalent instance of A whose
size is bounded by O(n + m). Then, if A admitted an algorithm with run-
ning time 2o(|x|), where |x| is the size of the input instance, then composing
the reduction with such an algorithm would yield an algorithm for 3-SAT
running in time 2o(n+m), which contradicts ETH by Theorem 14.4. Actu-
ally, many known reductions for classic problems are in fact linear. Examples
include Vertex Cover, Dominating Set, Feedback Vertex Set, 3-
Coloring, and Hamiltonian Cycle; the reader is asked to verify this fact
in Exercise 14.2. As a corollary we infer that none of these problems admits
an algorithm running in subexponential time in terms of the instance size.
Hence, while all of them can be solved in time O∗(2N ) for graphs on N ver-
tices and M edges, the existence of algorithms with running time 2o(N) or
even 2o(M) is unlikely.3

Theorem 14.6. Each of the following problems has a linear reduction from
3-SAT: Vertex Cover, Dominating Set, Feedback Vertex Set, 3-
Coloring, Hamiltonian Cycle. Therefore, unless ETH fails, none of
them admits an algorithm working in time 2o(N+M), where N and M are
the cardinalities of the vertex and edge sets of the input graph, respectively.

Of course, if the polynomial-time reduction from 3-SAT to the target
problem has a di�erent output size guarantee than linear, then the transferred
lower bound on the complexity of the target problem is also di�erent. The
following basic observation can be used to transfer lower bounds between
problems.

3 In this chapter, we will consistently use n and m to denote the number of variables and
clauses of a formula, respectively, whereas N and M will refer to the number of vertices
and edges of a graph.
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Observation 14.7. Suppose that there is a polynomial-time reduction from
problem A to problem B that, given an instance x of A, constructs an equiv-
alent instance of B having length at most g(|x|) for some nondecreasing func-
tion g. Then an O∗(2o(f(|x|)))-time algorithm for B for some nondecreasing
function f implies an O∗(2o(f(g(|x|))))-time algorithm for A.

Therefore, in order to exclude an algorithm for a problem B with run-
ning time O∗(2o(f(|x|))), we need to provide a reduction from 3-SAT to
B that outputs instances of size O(g(n + m)), where g is the inverse
of f .

Let us now make an example of an application of this framework where
f and g are not linear. To this end, we will consider problems on planar
graphs such as Planar Vertex Cover, Planar Dominating Set, Pla-
nar Feedback Vertex Set, Planar 3-Coloring and Planar Hamil-
tonian Cycle. The NP-hardness of these problems can be established by
the means of a pivot problem called Planar 3-SAT. For an instance ϕ of
3-SAT, we can consider its incidence graph Gϕ de�ned as follows: the vertex
set of Gϕ contains one vertex per each variable of ϕ and one vertex per clause
of ϕ, and we put an edge between a variable x and a clause C if and only
if x appears in C (either positively or negatively). In the Planar 3-SAT
problem we require that the input formula of 3-SAT has a planar incidence
graph. The following theorem, which we leave without a proof due to its
technicality, provides a lower bound for Planar 3-SAT.

Theorem 14.8 ([320]). There exists a polynomial-time reduction from 3-
SAT to Planar 3-SAT that, for a given instance ϕ with n variables and m
clauses, outputs an equivalent instance ϕ′ of Planar 3-SAT with O((n +
m)2) variables and clauses. Consequently, Planar 3-SAT is NP-hard and

does not admit an algorithm working in time 2o(
√
n+m), unless ETH fails.

We remark that the reduction of Theorem 14.8 actually outputs a for-
mula ϕ′ and an ordering (x1, x2, . . . , xn′) of the variables of ϕ

′ such that Gϕ′

remains planar even after adding the edges x1x2, x2x3, . . . , xn′−1xn′ , xn′x1.
This property, called in what follows the existence of a variable circuit, turns
out to be very useful in more complicated reductions.

Roughly speaking, in the proof of Theorem 14.8, one embeds the input
formula arbitrarily on the plane, and then replaces each crossing of edges of
Gϕ by a constant-size crossover gadget that transfers the information via the
crossing without disturbing planarity. Since the number of edges of Gϕ is at
most 3m, the number of crossings is at most 9m2 and thus the bound on the
size of the output formula follows.

The gist of standard NP-hardness reductions for problems like Vertex
Cover, 3-Coloring or Dominating Set is to replace each variable x with
a variable gadgetHx, replace each clause C with a clause gadgetHC , and wire
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the gadgets to simulate the behavior of the input instance of 3-SAT using
the properties of the target problem. Due to Theorem 14.8, we can use the
same approach for planar problems as well: with a little bit of carefulness,
replacing every variable and clause in a planar embedding of Gϕ with a
respective gadget will not disturb planarity. The reader is asked to verify the
following theorem in Exercise 14.3.

Theorem 14.9. Let A be any of the following problems: Planar Vertex
Cover, Planar Dominating Set, Planar Feedback Vertex Set.
There exists a polynomial-time reduction that takes an instance ϕ of Planar
3-SAT with n variables and m clauses, and outputs an equivalent instance of
A whose graph has O(n+m) vertices and edges. The same is true if A is Pla-
nar 3-Coloring or Planar Hamiltonian Cycle, and ϕ has a variable
circuit. Consequently, unless ETH fails none of the aforementioned problems

admits an algorithm with running time 2o(
√
N), where N is the number of

vertices of the input graph.

Note, however, that all the problems considered in Theorem 14.9 can in fact

be solved in time 2O(
√
N): this can be easily seen by pipelining the fact that a

planar graph on N vertices has treewidth O(
√
N) (see Corollary 7.244) with

a single-exponential dynamic-programming routine on a tree decomposition
(see Theorem 7.9 and Theorem 11.13). Thus, we have obtained essentially

matching upper and lower bounds on the complexity: achieving 2O(
√
N) is

possible, and it is hard to break this barrier.

14.3 ETH and �xed-parameter tractable problems

So far we have seen how ETH can be used to prove lower bounds on the
classic complexity of NP-hard problems, i.e., complexity measured only in
terms of the size of the input instance. We now proceed to the multivariate
world: we shall present applications of ETH to parameterized problems, and
in particular to problems that are �xed-parameter tractable. It turns out that
ETH is a very convenient tool for proving lower bounds on the parameter
dependence of the running time of FPT algorithms. In many cases these
lower bounds (almost) match known algorithmic upper bounds.

4 Note that Corollary 7.24 not only proves an upper bound on treewidth, but also gives a
polynomial-time algorithm which provides a desired decomposition.
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14.3.1 Immediate consequences for parameterized
complexity

Observe that ETH and SETH can be seen as assumptions about the complex-
ity of the q-SAT problems equipped with parameterization by the number of
variables n. The sparsi�cation lemma serves then as a reduction from param-
eterization by n to parameterization by n+m, and Theorem 14.4 establishes
a lower bound for the latter. Therefore, if we consider 3-SAT as a source
of parameterized reductions rather than classic ones, then we can infer lower
bounds on the parameterized complexity of problems, instead of the standard
instance-size complexity.

Suppose, for instance, that a parameterized problem A admits a linear
parameterized reduction from 3-SAT: a polynomial-time algorithm that takes
an instance of 3-SAT on n variables andm clauses, and outputs an equivalent
instance of A with parameter k bounded by O(n+m). If A admitted an FPT
algorithm with running time O∗(2o(k)), then we could compose the reduction
with this algorithm and thus solve 3-SAT in time 2o(n+m), contradicting
ETH by Theorem 14.4. Note here that we bound only the output parameter,
while the whole output instance may have superlinear size.

Again, for many classic FPT problems on general graphs, like Vertex
Cover or Feedback Vertex Set, the known NP-hardness reductions in
fact yield linear parameterized reductions from 3-SAT. In the case of these
two particular problems this conclusion is trivial: we already know that Ver-
tex Cover and Feedback Vertex Set admit classical linear reductions
from 3-SAT, and parameters in meaningful instances are bounded by the
cardinality of the vertex set. This shows that both these problems, and any
others that admit linear parameterized reductions from 3-SAT, probably do
not admit subexponential parameterized algorithms, that is, FPT algorithms
with running time O∗(2o(k)).

Similarly as before, we may prove lower bounds for di�erent forms of FPT
running time by having di�erent guarantees on the output parameter. This
is encapsulated in the following analogue of Observation 14.7.

Observation 14.10. Suppose that there is a polynomial-time parameterized
reduction from problem A to problem B such that if the parameter of an
instance of A is k, then the parameter of the constructed instance of B is
at most g(k) for some nondecreasing function g. Then an O∗(2o(f(k)))-time
algorithm for B for some nondecreasing function f implies an O∗(2o(f(g(k))))
algorithm for A.

Therefore, in order to exclude an algorithm for a parameterized problem
B with running time O∗(2o(f(k))), we need to provide a reduction from
3-SAT to B that outputs instances with the parameter k bounded by
O(g(n+m)), where g is the inverse of f .
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Observe that formally a nondecreasing function f might not have an in-
verse. For that reason throughout the chapter we slightly overuse the de�ni-
tion of an inverse function, and for a nondecreasing function f its inverse is
any function g satisfying g(f(x)) = Θ(x).

Again, to see how this framework works in practice, consider the exam-
ples of Planar Vertex Cover, Planar Dominating Set, and Planar
Feedback Vertex Set problems. By composing Theorems 14.8 and 14.9
we obtain NP-hardness reductions for these problems that start with a 3-
SAT instance with n variables and m clauses, and output instances of the
target problem with at most O((n+m)2) vertices. Obviously, we can assume
that the requested size of vertex cover/dominating set/feedback vertex set
in the output instance is also bounded by O((n + m)2). Thus, following the
notation of Observation 14.10, these reductions can serve as parameterized
reductions from 3-SAT for a quadratic function g. The following corollary is
immediate.

Theorem 14.11. Unless ETH fails, none of the following problems admits

an FPT algorithm running in time O∗(2o(
√
k)): Planar Vertex Cover,

Planar Dominating Set, Planar Feedback Vertex Set.

Recall that in Chapter 7 we have given algorithms for all the problems

mentioned in Theorem 14.11 that run in time O∗(2O(
√
k)) (in the cases

of Planar Vertex Cover and Planar Dominating Set) or in time

O∗(2O(
√
k log k)) (in the case of Planar Feedback Vertex Set), using the

technique of bidimensionality (see Corollaries 7.30 and 7.31). In fact, by us-
ing the faster dynamic-programming routine for Feedback Vertex Set
from Theorem 11.13, we can solve Planar Feedback Vertex Set also

in time O∗(2O(
√
k)). Therefore, the lower bounds of Theorem 14.11 essen-

tially match the upper bounds for all the considered problems. This shows
that appearance of the square root in the exponent is not just an artifact
of the technique of bidimensionality, but rather an intrinsic property of the
problems' complexity.

*14.3.2 Slightly super-exponential parameterized
complexity

One class of problems, for which we have some understanding of the method-
ology of proving sharp lower bounds, is the problems solvable in slightly super-
exponential parameterized time, i.e., in time O∗(2O(k log k)) for the parameter
k. The running time of such a form appears naturally in the following situa-
tions:
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(i) A seemingly optimal FPT algorithm is a branching procedure that
performs O(k) guesses, each time choosing from a set of possibilities
of cardinality kO(1). An example of such algorithm is the one given
for Closest String in Section 3.5.

(ii) The parameter is the treewidth t of a given graph, and the natural
dynamic-programming routine has 2O(t log t) states per bag of the
tree decomposition, usually formed by partitions of the bag. An
example of such an algorithm is the one given by Theorem 7.8 for
the Steiner Tree problem.

By excluding the existence of an O∗(2o(k log k)) algorithm for the prob-
lem under ETH, we can support the claim that the obtained slightly super-
exponential upper bound is not just a result of the approach taken, but such
running time is necessary because of the nature of the problem itself.

We now aim at providing a base set of auxiliary problems that will be help-
ful for further reductions. At the end of this section we will see some examples
of how they can be utilized for proving lower bounds for `real-life' parameter-
ized problems, say of type (i) or (ii) from the list above. The following problem
will be our `canonical' example where slightly super-exponential running time
is both achievable and optimal under ETH. Intuitively, it re�ects a generic
situation with which we are faced when approaching a parameterized problem
of type (i).

In the k × k Clique problem we are given a graph H on a vertex set
[k] × [k]. In other words, the vertex set is formed by a k × k table, and
vertices are of form (i, j) for 1 ≤ i, j ≤ k. The question is whether there
exists a clique X in H that contains exactly one vertex from each row of the
table, i.e., for each i ∈ [k] there is exactly one element of X that has i on
the �rst coordinate. Note that without loss of generality we may assume that
each row of the table forms an independent set.

Obviously, k×k Clique can be solved in time O∗(kk) by trying all possi-
ble choices of vertices from the consecutive rows. It appears that this running
time is essentially optimal assuming ETH, which is proved in the following
theorem. In the proof, we will use the fact that the 3-Coloring problem
admits a linear reduction from 3-SAT, and hence does not admit a subex-
ponential algorithm in terms of N +M , unless ETH fails; see Theorem 14.6
and Exercise 14.2.

Theorem 14.12. Unless ETH fails, k × k Clique cannot be solved in time
O∗(2o(k log k)).

Proof. We shall present a polynomial-time reduction that takes a graph G on
N vertices, and outputs an instance (H, k) of k×k Clique such that (i) (H, k)
is a yes-instance if and only if G is 3-colorable, and (ii) k = O(N/ logN).
Composing this reduction with an O∗(2o(k log k)) algorithm for k× k Clique



14.3 ETH and �xed-parameter tractable problems 479

would yield an algorithm for 3-Coloring working in time 2o(N), which would
contradict ETH by Theorem 14.6.

Let k = d 2N
log3N

e. Arbitrarily partition the vertex set of the input graph into
k parts V1, V2, . . . , Vk, so that each part Vi has cardinality at most d log3N

2 e.
For every part Vi, list all the possible 3-colorings of G[Vi]; note that there

are at most 3|Vi| ≤ 3d
log3 N

2 e ≤ 3
√
N such colorings. If no coloring has been

found for some part, we conclude that we are dealing with a no-instance.
Observe also that without loss of generality we may assume that 3

√
N ≤ k,

since otherwise N is bounded by a universal constant and we may solve the
input instance by brute-force.

Duplicate some of the listed colorings if necessary, so that for each part
Vi we have a list of exactly k 3-colorings. Let c1i , c

2
i , . . . , c

k
i be the 3-colorings

listed for Vi. For each i ∈ [k] and j ∈ [k], create a vertex (i, j). For every pair
of vertices (i1, j1) and (i2, j2) make them adjacent if and only if i1 6= i2 and
cj1i1 ∪ c

j2
i2
is a valid 3-coloring on G[Vi1 ∪ Vi2 ]. This concludes the construction

of the graph H, and of the output instance (H, k) of k × k Clique.
We now argue equivalence of the instances. If c is a valid 3-coloring of G,

then c|Vi is a valid 3-coloring of G[Vi]. Hence, for each i ∈ [k], there exists
an index ji ∈ [k] such that cji = c|Vi . By the construction, it follows that
vertices (i, ji) for i ∈ [k] form a k-clique in H: for each i1, i2 ∈ [k], i1 6= i2,

we have that c
ji1
i1
∪ cji2i2 is equal to c|Vi1∪Vi2 , and hence is a valid 3-coloring

of G[Vi1 ∪ Vi2 ].
Conversely, assume that a set {(i, ji) : i ∈ [k]} induces a k-clique in H.

We claim that c =
⋃
i∈[k] c

ji
i is a valid 3-coloring of G. Take any uv ∈ E(G);

we prove that c(u) 6= c(v). If u, v ∈ Vi for some i ∈ [k], then we have
c(u) 6= c(v) since cjii = c|Vi is a valid 3-coloring of G[Vi]. Suppose then that
u ∈ Vi1 and v ∈ Vi2 for i1 6= i2. Since (i1, ji1) and (i2, ji2) are adjacent in

H, we have that c
ji1
i1
∪ cji2i2 is a valid 3-coloring of G[Vi1 ∪ Vi2 ], and hence

c(u) = c
ji1
i1

(u) 6= c
ji2
i2

(v) = c(v). ut

In the k×k Clique problem the constraint is that each row of the table has
to contain one vertex of the clique. It is natural to ask about the more robust
version of this problem, where we additionally require that each column of the
table also needs to contain one vertex of the clique, or, equivalently, that the
vertices of the clique must induce a permutation of [k]. We call this problem
k× k Permutation Clique. The following theorem provides a randomized
lower bound for this version.

Theorem 14.13. Assume there exists an algorithm solving k × k Permu-
tation Clique in time O∗(2o(k log k)). Then there exists a randomized algo-
rithm solving k × k Clique in time O∗(2o(k log k)). The algorithm can have
only false negatives, that is, on a no-instance it always gives a negative an-
swer, whereas on a yes-instance it gives a positive answer with probability at
least 1

2 .
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Proof. Suppose that we are given an algorithm for k × k Permutation
Clique that works in time O∗(2o(k log k)). We are going to present a random-
ized algorithm for k × k Clique with the stated speci�cation.

Let (H, k) be the input instance of k × k Clique. Consider the following
algorithm: for each row i of the table, uniformly and independently at random
pick a permutation πi of [k], and permute the vertices of this row according
to πi keeping the original adjacencies. More precisely, if we denote by H ′

the obtained graph, then V (H ′) = [k]× [k] and vertices (i, j) and (i′, j′) are
adjacent in H ′ if and only if vertices (i, π−1i (j)) and (i′, π−1i′ (j′)) are adjacent
in H. Apply the supposed algorithm for k× k Permutation Clique to the
instance (H ′, k); if this algorithm has found a solution to (H ′, k), then return
a positive answer, and otherwise provide a negative answer.

Let π be the permutation of [k] × [k] that de�nes the graph H ′, that
is, π(i, j) = (i, πi(j)). Obviously, if a solution X ′ in the instance (H ′, k) of
k × k Permutation Clique has been found, then in particular π−1(X ′) is
a solution to the input instance (H, k) of k × k Clique. Therefore, if the
algorithm returns a positive answer, then it is always correct. Assume now
that the input instance (H, k) admits some solution X; we would like to show
that with high probability the shu�ed instance (H ′, k) admits a clique that
induces a permutation of [k]. Let X ′ = π(X). Obviously, X ′ is still a clique in
H ′ and it contains one vertex from each row; we claim that with high enough
probability it also contains one vertex from each column.

Let fX and fX′ be functions from [k] to [k] such that (i, fX(i)) ∈ X and
(i, fX′(i)) ∈ X ′ for each i ∈ [k]. We have that fX′(i) = πi(fX(i)) for each
i ∈ [k], and we need to provide a lower bound on the probability that fX′

is a permutation. However, by the choice of π, for every index i ∈ [k] the
value of πi(fX(i)) is chosen uniformly and independently at random among
the elements of [k]. Hence, every function from [k][k] is equally probable as
fX′ . Since there are k! permutations of [k], and kk functions in [k][k] in total,
we infer that

Pr(fX′ is a permutation) =
k!

kk
> e−k.

The last inequality follows from the known fact that k! > (k/e)k; recall that
we used this inequality in the same manner in the proof of Lemma 5.4. Hence,
with probability at least e−k the instance (H ′, k) will be a yes-instance of k×k
Permutation Clique, and the algorithm will provide a positive answer.

Using the standard technique of independent runs (see Chapter 5), we
repeat the algorithm ek times in order to reduce the error probability from

at most 1 − e−k to at most (1 − e−k)e
k ≤ e−e

−k·ek = 1/e < 1/2. Note that
thus the whole procedure runs in time ek ·O∗(2o(k log k)) = O∗(2o(k log k)). ut

The presented proof of Theorem 14.13 gives a randomized Turing reduc-
tion from k× k Clique to k× k Permutation Clique. It is therefore easy
to see that the existence of an O∗(2o(k log k)) algorithm for k × k Permuta-
tion Clique can be refuted under the stronger assumption of randomized
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ETH; the reader is asked to verify this fact in Exercise 14.4. However, since
the reduction of Theorem 14.13 is randomized, we cannot a priori state the
same lower bound under deterministic ETH. Fortunately, the construction
can be derandomized using perfect hash families, and thus we may obtain
a deterministic Turing reduction. Hence, we have in fact the following lower
bound; we omit its proof due to technicality.

Theorem 14.14 ([326]). Unless ETH fails, k × k Permutation Clique
cannot be solved in time O∗(2o(k log k)).

Let us now de�ne the k× k Hitting Set problem: we are given a family
F of subsets of [k] × [k], and we would like to �nd a set X, consisting of
one vertex from each row, such that X ∩ F 6= ∅ for each F ∈ F . Again, in
the permutation variant we ask for a set X that induces a permutation of
[k]. Hardness for k × k (Permutation) Hitting Set follows from an easy
reduction from k × k (Permutation) Clique.

Theorem 14.15. Unless ETH fails, k × k (Permutation) Hitting Set
cannot be solved in time O∗(2o(k log k)).

Proof. Let (H, k) be an instance of k×k (Permutation) Clique. Construct
an instance (F , k) of k×k (Permutation) Hitting Set as follows: for each
pair of nonadjacent vertices (i1, j1) and (i2, j2) where i1 6= i2, introduce a set
F ∈ F that consists of all the vertices in rows i1 and i2 apart from vertices
(i1, j1) and (i2, j2). Thus, any set X that contains one vertex from each row
has a nonempty intersection with F if and only if both pairs (i1, j1) and
(i2, j2) are not included in X simultaneously. It follows that any such X is
a solution to the instance (F , k) of k × k (Permutation) Hitting Set if
and only if it is a solution to the instance (H, k) of k × k (Permutation)
Clique, and so the instances (H, k) and (F , k) are equivalent. The theorem
follows from an application of Theorems 14.12 and 14.14. ut

It turns out that for further reductions it is most convenient to have one
more assumption about the k × k (Permutation) Hitting Set problem.
Namely, we say that an instance (F , k) of one of these problems uses only
thin sets if each F ∈ F contains at most one vertex from each row. Note that
the instance obtained in the reduction of Theorem 14.15 does not have this
property; however, hardness can be also obtained under this assumption.

Theorem 14.16 ([326]). Unless ETH fails, k×k (Permutation) Hitting
Set with thin sets cannot be solved in time O∗(2o(k log k)).

The proof of Theorem 14.16 is a chain of three technical reductions, and
we give it as Exercises 14.5, 14.6 and 14.7.

As already mentioned in the beginning of this section, the presented prob-
lems form a convenient base for further reductions. We now provide one such
example. The problem of our interest will be the Closest String problem,
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1 2 3 4 5

1

2

3

4

5

⇒ 3F3F1

⇒ 11F43

⇒ 142F5

x1 = 11111

x2 = 22222

x3 = 33333

x4 = 44444

x5 = 55555

Fig. 14.1: Example of the reduction of Theorem 14.17 applied to an instance
of 5 × 5 Permutation Hitting Set with thin sets that has three sets,
with each set containing at most one element from each row. The elements
of these sets are denoted by circles, squares, and hexagons, respectively

studied in Section 3.5. In this problem, we are given a �nite alphabet Σ, a
set of strings {x1, x2, . . . , xn} over Σ, each of length L, and an integer d. The
question is whether there exists a string y ∈ ΣL such that xi and y di�er on
at most d positions, for each i. In Section 3.5 we have shown how to solve
Closest String in time O∗((d + 1)d) whereas Exercise 3.25 asked for an
analysis of an O∗(cd|Σ|d)-time algorithm for some constant c. We can now
show that both these running times are essentially optimal.

Theorem 14.17. Unless ETH fails, Closest String cannot be solved in
O∗(2o(d log d)) nor O∗(2o(d log |Σ|)) time.

Proof. We provide a polynomial-time algorithm that takes an instance (F , k)
of k × k Permutation Hitting Set with thin sets, and outputs an
equivalent instance (Σ, d, {x1, x2, . . . , xn}) of Closest String with L = k,
d = k−1 and |Σ| = k+1. If there existed an algorithm for Closest String
with running time O∗(2o(d log d)) or O∗(2o(d log |Σ|)), then pipelining the re-
duction with this algorithm would give an algorithm for k×k Permutation
Hitting Set with thin sets with running time O∗(2o(k log k)), contradict-
ing ETH by Theorem 14.16.

Let Σ = [k]∪{F} for some additional symbolF that the reader may view
as `mismatch'. First, introduce k strings x1, x2, . . . , xk such that xi = ik, i.e.,
symbol i repeated k times. Then, for every F ∈ F introduce a string zF
constructed as follows. For each i ∈ [k], if F contains some pair (i, ji) in row
i, then put ji on the i-th position of zF . Otherwise, if no such pair exists, put
F on the i-th position of zF . Note that this de�nition is valid due to all the
sets being thin. Finally, we set d = k − 1 and conclude the construction; see
Fig. 14.1 for a small example.
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We now formally argue that instances (F , k) and (Σ, k − 1, {xi : i ∈
[k]}∪{zF : F ∈ F}) are equivalent. Assume �rst that X is a solution to the
instance (F , k). For each i ∈ [k], let ji ∈ [k] be the unique index such that
(i, ji) ∈ X. Construct a string y by putting ji on the i-th position of y for
each i ∈ [k]. Note that since X induces a permutation of [k], then for every
j ∈ [k] there exists i ∈ [k] such that j = ji, and so y and xj di�er on at most
k − 1 positions. Moreover, since X ∩ F is nonempty for each set F ∈ F , we
have that y coincides with zF on at least one position, so it di�ers on at most
k−1 positions. Hence y is a solution to the constructed instance of Closest
String.

Conversely, take any solution y of the constructed Closest String in-
stance. For each j, we have that xj and y di�er on at most k−1 positions, so
they coincide on at least one. Therefore, y needs to contain every j ∈ [k] at
least once. Since |y| = k, then we infer that y contains every j ∈ [k] exactly
once, and it does not contain anyF. Let X = {(i, y[i]) : i ∈ [k]}. We already
know that X ⊆ [k] × [k] and that X induces a permutation of [k]. We are
left with proving that X has a nonempty intersection with every F ∈ F . We
know that y and zF coincide on at least one position, say i. As y does not
contain any F, we have that zF [i] = y[i] = ji for some ji ∈ [k]. Consequently
(i, ji) ∈ X and (i, ji) ∈ F by the de�nitions of X and zF , so X ∩ F 6= ∅. ut

Another important problem that roughly �ts into the same category as
Closest String is Distortion, de�ned as follows. We are given a graph G
and an integer d. The task is to �nd an embedding η of the vertices of G into
Z such that dist(u, v) ≤ |η(u)−η(v)| ≤ d ·dist(u, v) for all u, v ∈ V (G), where
dist(u, v) is the distance between u and v in G. In other words, one is asked to
embed the graph metric into the linear structure of Z, so that the distances
are stretched at most d times. The problem of embedding various (graph)
metrics into low-dimensional vector spaces is the subject of intensive studies
both from a purely mathematical, and from a computational point of view;
Distortion is thus the most basic and fundamental problem in this theory.
Surprisingly, Distortion is �xed-parameter tractable when parameterized
by the stretch d, and it admits an O∗(dd) algorithm. Using the methodology
introduced in this section one can prove that this is optimal under ETH; we
omit the proof.

Theorem 14.18 ([176, 326]). Distortion can be solved in time O∗(dd).
Moreover, unless ETH fails there is no O∗(2o(d log d)) algorithm for this prob-
lem.

Recall that another class of problems where the complexity of the form
O∗(2O(t log t)) appears naturally, are treewidth t parameterizations where the
natural space of states of the dynamic-programming routine is formed by
partitions of the bag. In Chapter 7, we have presented one such dynamic pro-
gram running in time O∗(2O(t log t)), for the Steiner Tree problem. While
in Chapter 11 we have seen that Steiner Tree can be solved faster, in time
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O∗(2O(t)), for some other problems the presented framework can be used to
show that the running time of O∗(2O(t log t)) is essentially optimal. The next
theorem, which we leave without a proof, provides some examples.

Theorem 14.19 ([118, 326]). Unless ETH fails, the following problems
cannot be solved in time O∗(2o(t log t)), where t is the width of a given path
decomposition of the graph: Cycle Packing, Vertex Disjoint Paths.

Recall that in the Cycle Packing problem we want to decide whether a
given graph has k vertex-disjoint cycles, while in Vertex Disjoint Paths
given k pairs of vertices the question is whether one can connect those pairs
by vertex-disjoint paths. Note that Theorem 14.19 is stated in terms of a path
decomposition and not a tree decomposition, which makes the lower bound
stronger.

The idea behind the proof of Theorem 14.19 is to reduce from k×k (Per-
mutation) Hitting Set with thin sets and try to embed the search space
of this problem, which has size roughly kk, into the states of the standard
dynamic program working on a path decomposition. We create a graph which
has a long path decomposition of width O(k) and using problem-dependent
combinatorics we make sure that the choice the solution makes on the �rst
bag (for instance, a choice of a matching for the Cycle Packing problem)
is propagated along the decomposition to all the other bags. This propagated
choice has to re�ect the intended solution of the input k×k (Permutation)
Hitting Set with thin sets instance. Then we attach multiple gadgets
along the path decomposition, one for every set to be hit. Each gadget should
have O(k) pathwidth, and its role is to verify that the propagated solution
from the �rst bag indeed hits the corresponding set. Thus, all the gadgets are
satis�ed if and only if the chosen and propagated solution hits all the sets. We
will look more closely on reductions of this type in Section 14.5.2, where we
discuss optimality of bounded-treewidth dynamic programming under SETH.

In essence, the outcoming message is that the nature of problems ex-
empli�ed by those mentioned in Theorem 14.19 makes it necessary to
have 2Ω(t log t) states per bag of the decomposition. The space of states
cannot be pruned substantially, since each state is, roughly speaking,
meaningful on its own.

*14.3.3 Double exponential parameterized complexity

Recall that in Section 2.2.3 we have considered the Edge Clique Cover
problem: given a graph G and an integer k, verify whether G contains k
subgraphs C1, C2, . . . , Ck such that each Ci is complete and

⋃k
i=1E(Ci) =
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E(G). Already very simple reduction rules yield a kernel for Edge Clique
Cover with at most 2k vertices, and the problem can be solved in time

O∗(22O(k)

) by performing Set Cover-like dynamic programming on the edge
set of the kernel, similar to the one of Section 6.1. In the light of our lower
bound methodology, it is natural to ask whether such running time is optimal
under ETH. This appears to be the case.

Theorem 14.20 ([120]). There exists a polynomial-time algorithm that,
given a 3-SAT instance ϕ on n variables and m clauses, constructs an
equivalent Edge Clique Cover instance (G, k) with k = O(log n) and
|V (G)| = O(n + m). Consequently, Edge Clique Cover cannot be solved

in time O∗(22o(k)) unless ETH fails.

The proof of Theorem 14.20 is a technical reduction that we omit in this
book. Again, Theorem 14.20 shows that, despite the simplicity of the kernel-
ization approach, nothing substantially better can be achieved. The reason
for this lies not in the naivety of the technique, but in the problem itself.

14.4 ETH and W[1]-hard problems

In Chapter 13, we have seen techniques for giving evidence that a problem is
not �xed-parameter tractable, that is, the parameter k has to appear in the
exponent of the running time. But we have not explored the question of how
exactly the exponent has to depend on k for a W[1]-hard problem: for all we
know, it is possible that a W[1]-hard problem has a 2O(k) ·nO(log log log k)-time
algorithm, which would be �morally equivalent� to the problem being FPT.
In Section 14.3, we have seen how ETH can be used to classify FPT problems
by giving (often tight) lower bounds on the function f(k) appearing in the
running time. It turns out that ETH also allows us to prove (often tight)
lower bounds on the asymptotic behavior of the function g in an f(k)ng(k)

time algorithm. The �rst such lower bound result we present is for Clique
(or, equivalently, for Independent Set).

Theorem 14.21. Assuming ETH, there is no f(k)no(k)-time algorithm for
Clique or Independent Set for any computable function f .

Proof. We will show that if there is an f(k)no(k)-time algorithm for Clique
for some computable function f , then ETH fails. Suppose that Clique on
every graph H can be solved in time f(k)|V (H)|k/s(k), where s(k) is a nonde-
creasing unbounded function. We use this algorithm to solve 3-Coloring on
an n-vertex graph G in time 2o(n); by Theorem 14.6, this contradicts ETH.
The reduction is similar to the proof of Theorem 14.12, but instead of split-
ting the vertices into k = O(n/ log n) groups, the number k of groups now
depends on the function f .
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We split the vertices in the 3-Coloring instance into roughly k =
f−1(n) groups, where f−1 is the inverse of f (e.g., if f(k) = 2Θ(k), then
f−1(n) = Θ(log n)). We create a Clique instance where each vertex
represents a 3-coloring of one of the groups. The created graph H has
size at most k · 3n/k = k · 3n/f−1(n) = 2o(n). We can observe that the
running time of the assumed f(k)|V (H)|o(k)-time algorithm for Clique
on H is 2o(n): we have f(k) = f(f−1(n)) ≤ n and |V (H)|o(k) is roughly
(3n/k)o(k) = 2o(n).

We need to be very careful when de�ning the number k of groups we need;
one reason is that we have no assumption on the time needed to compute
f(k), besides the fact that it is computable. We may assume that the com-
putable function f satis�es f(k) ≥ max{k, kk/s(1)} for every k ≥ 1 (e.g., by
replacing it with the computable function f ′(k) = max{f(k), k, kk/s(1)} if
necessary). Let us start computing the values f(k) for k = 1, 2, . . . ; we stop
this computation when either a k with f(k) > n is reached, or when the total
number of steps used so far exceeds n. Let k be the last value for which we
computed f(k) and we have f(k) ≤ n (we may assume that f(1) ≤ n and
we can compute f(1) in n steps, otherwise n is bounded by a universal con-
stant). The value k selected this way is a function of n only, that is, we have
computed the value k = g(n) for some computable function g(n). Moreover,
computing k = g(n) took only time O(n). Note that from the way function
g is de�ned it follows that it is nondecreasing, unbounded, and f(g(n)) ≤ n.
Moreover, the assumption f(k) ≥ k and the inequality f(g(n)) ≤ n imply
that g(n) ≤ n.

Split the vertices of G into k groups V1, . . . , Vk of size at most dn/ke each.
Let us build a graph H where each vertex corresponds to a proper 3-coloring
of one of the groups. The number of vertices in H is at most

|V (H)| ≤ k · 3dn/ke ≤ k · 32(n/k) = k · 32(n/g(n)) = 2o(n)

(we used that k = g(n) ≤ n in the second inequality and the fact that g(n) is
nondecreasing and unbounded in the last equality). We connect two vertices
of H if they are not con�icting. That is, if u represents a coloring of G[Vi]
and v represents a coloring of G[Vj ] for some i 6= j, then u and v are adjacent
only if the union of the colorings corresponding to u and v is a valid coloring
of G[Vi ∪Vj ]. It is easy to verify that a k-clique of H corresponds to a proper
3-coloring of G and one can construct this coloring in time polynomial in the
size of H, that is, in time 2o(n). Therefore, using the assumed algorithm for
Clique, a 3-coloring of G can be found in time
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f(k)|V (H)|k/s(k) ≤ n(k · 3dn/ke)k/s(k) (using f(k) = f(g(n)) ≤ n)
≤ n(k · 32n/k)k/s(k) (using k = g(n) ≤ n)
≤ n · kk/s(1) · 32n/s(g(n)) (s(k) is nondecreasing)

≤ n2 · 32n/s(g(n)) (using kk/s(1) ≤ f(k) ≤ n)
= 2o(n). (function s(g(n)) is

nondecreasing and unbounded)

Therefore, we have shown that the assumed algorithm would contradict ETH.
ut

In particular, Theorem 14.21 shows that, assuming ETH, Clique is not
FPT. Therefore, Theorem 14.21 shows that ETH implies that FPT 6= W[1].

Having established a tight lower bound for Clique, we can easily transfer
it to other problems with parameterized reductions. As in Observation 14.10,
the strength of the lower bound on the target problem depends on the bound
on the new parameter in the reduction.

Observation 14.22. Suppose that there is a polynomial-time parameterized
reduction from problem A to problem B such that if the parameter of an
instance of A is k, then the parameter of the constructed instance of B is
at most g(k) for some nondecreasing function g. Then an f(k) · no(h(k))-time
algorithm for B for some computable function f and nondecreasing function
h implies an f(g(k)) · no(h(g(k))) algorithm for A.

Therefore, in order to exclude an algorithm for a parameterized problem
B with running time f(k) · no(h(k)) for any computable function f , we
need to provide a reduction from Clique to B that outputs instances
with the parameter k bounded by O(g(k)), where g is the inverse of h.

Observing that most of the parameterized reductions in Chapter 13 have
linear parameter dependence, we can obtain tight lower bounds for a number
of problems.

Corollary 14.23. Assuming ETH, there is no f(k)no(k)-time algorithm for
the following problems for any computable function f :

� Clique on regular graphs,
� Independent Set on regular graphs,
� Multicolored Clique on regular graphs,
� Multicolored Independent Set on regular graphs,
� Dominating Set,
� Dominating Set on Tournaments,
� Connected Dominating Set,
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� Balanced Vertex Separator parameterized by the size k of the solu-
tion,

� List Coloring parameterized by the treewidth k.

Let us point out the surprising fact that we have the same lower bound
here for Dominating Set and Dominating Set on Tournaments (the
exponent of n cannot be o(k)), despite the signi�cant di�erence in complexity
for the unparameterized versions: only 2Θ(n)-time algorithms are known for
Dominating Set and they are optimal under ETH (see Theorem 14.6), while
Dominating Set on Tournaments can be solved in time nO(logn). From
the viewpoint of Observation 14.22, all that matters is that the reduction
of Theorem 13.14 has the property that the new parameter is linear in the
original parameter. The double-exponential dependence on k in the running
time of the reduction does not a�ect the quality of the lower bound obtained
in terms of the exponent of n.

There are W[1]-hard problems for which it seems hard to obtain tight lower
bounds using a parameterized reduction from Clique and Observation 14.22;
we need new technology to make the lower bounds tighter for these problems.
Consider, for example, the Odd Set problem. In Theorem 13.31, we have
presented a parameterized reduction from Multicolored Clique to Odd
Set. A crucial idea of the reduction was to represent both the vertices and the
edges of the k-clique in the Odd Set instance, and this was the reason why
the parameter of the constructed instance was k +

(
k
2

)
= O(k2). Therefore,

Observation 14.22 with g(k) = O(k2) and h(k) =
√
k implies that, assuming

ETH, there is no f(k)no(
√
k)-time algorithm for Odd Set for any computable

function f . The naive algorithm solves the problem in time nO(k) by brute
force, giving a signi�cant gap between the upper and the lower bound. As we
have discussed in Section 13.6.3, it seems di�cult to design a reduction from
Clique to Odd Set in which we represent only the vertices of the k-clique,
and representing the

(
k
2

)
edges of the k-clique inevitably leads to a quadratic

blow-up of the parameter.
A key idea for making these reductions from Clique tighter is to interpret

them as reductions from Subgraph Isomorphism instead. In the Subgraph
Isomorphism problem, we are given two graphs H and G; the task is to de-
cide if H is isomorphic to a (not necessarily induced) subgraph of G. Param-
eterized reductions from Clique where vertices and edges are represented by
gadgets (e.g, Theorem 13.31) can be usually generalized to reductions from
Subgraph Isomorphism with minimal modi�cations. As �nding a k-clique
is a special case of Subgraph Isomorphism, Theorem 14.21 implies that,

assuming ETH, there is no f(k)no(
√
k)-time algorithm for Subgraph Iso-

morphism for any computable function f , where k is the number of edges of
the smaller graph H. The following result, whose proof is beyond the scope
of this chapter, gives a lower bound parameterized by the number of edges
of H:
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Theorem 14.24 ([352]). Assuming ETH, there is no f(k)no(k/ log k)-time
algorithm for Subgraph Isomorphism, where k is the number of edges of
the smaller graph H and f is a computable function.

We remark that it is an interesting open question whether the factor log k in
the exponent can be removed, making this result tight. We can modify the
reduction of Theorem 13.31 to be a reduction from Subgraph Isomorphism
to Odd Set, where the new parameter is linear in the number of edges of the
smaller graphH (Exercise 14.11). Then Theorem 14.24 and Observation 14.22
give a tighter lower bound, almost matching the trivial nO(k)-time algorithm.

Theorem 14.25. Assuming ETH, there is no f(k)no(k/ log k)-time algorithm
for Odd Set.

Similarly, one can modify the reduction in the proof of Theorem 13.33 to
get tighter lower bounds for Strongly Connected Steiner Subgraph
(Exercise 14.12).

Theorem 14.26. Assuming ETH, there is no f(k)no(k/ log k)-time algorithm
for Strongly Connected Steiner Subgraph.

Closest Substring (a generalization of Closest String) is an extreme
example where reductions increase the parameter exponentially or even dou-
ble exponentially, and therefore we obtain very weak lower bounds. In this
problem, the input consists of strings s1, . . . , st over an alphabet Σ, and in-
tegers L and d. The task is to �nd a string s of length L such that, for every
1 ≤ i ≤ t, si has a substring s′i of length L with dH(s, si) ≤ d. Here dH(x, y) is
the Hamming-distance of two strings, that is, the number of positions where
they di�er.

Let us restrict our attention to the case where the alphabet is of constant
size, say binary. There is a (very involved) reduction from Clique (with k
being the size of the clique we are looking for) to Closest Substring where

d = 2O(k) and t = 22
O(k)

in the constructed instance. Therefore, we get weak
lower bounds with only o(log d) and o(log log t) in the exponent. Interestingly,
these lower bounds are actually tight, as there are algorithms matching them.

Theorem 14.27 ([349]). Closest Substring over an alphabet of constant
size can be solved in time f(d)nO(log d) or in time f(t, d)nO(log log t). Further-
more, assuming ETH, there are no algorithms for the problem with running
time f(t, d)no(log d) or f(t, d)no(log log t) for any computable function f .

14.4.1 Planar and geometric problems

We have seen in earlier chapters that many parameterized problems are �xed-
parameter tractable when restricted to planar graphs. There are powerful
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S1,1:

(1,1)
(3,1)
(2,4)

S1,2:

(5,1)
(1,4)
(5,3)

S1,3:

(1,1)
(2,4)
(3,3)

S2,1:

(2,2)
(1,4)

S2,2:

(3,1)
(1,2)

S2,3:

(2,2)
(2,3)

S3,1:

(1,3)
(2,3)
(3,3)

S3,2:

(1,1)
(1,3)

S3,3:

(2,3)
(5,3)

Fig. 14.2: An instance of Grid Tiling with k = 3 and n = 5. The red pairs
form a solution

techniques available for attacking planar problems, for example, the shift-
ing strategy (Section 7.7.3) or bidimensionality (Section 7.7.2). Nevertheless,
there exist natural parameterized problems that are W[1]-hard on planar
graphs. In this section, we develop a convenient technology for proving the
W[1]-hardness of these problems. Moreover, assuming ETH, this technology

allows us to prove that there is no f(k) · no(
√
k) algorithm for the problem

for any computable function f . This is very often matched by a correspond-
ing algorithm, giving us tight understanding of the complexity of a planar
problem.

The key tool of the section is the following (somewhat arti�cial) problem,
which will be a convenient starting point for reductions to planar problems.
The input of Grid Tiling consists of an integer k, an integer n, and a
collection S of k2 nonempty sets Si,j ⊆ [n] × [n] (1 ≤ i, j ≤ k). The task is
to �nd, for each 1 ≤ i, j ≤ k, a pair si,j ∈ Si,j such that

� If si,j = (a, b) and si+1,j = (a′, b′), then a = a′.
� If si,j = (a, b) and si,j+1 = (a′, b′), then b = b′.

In other words, if (i, j) and (i′, j′) are adjacent in the �rst or second coordi-
nate, then si,j and si′,j′ agree in the �rst or second coordinate, respectively.
An instance of Grid Tiling with a solution is shown in Fig. 14.2: we imagine
Si,j to be in row i and column j of a matrix. Observe that the constraints
ensure that the �rst coordinate of the solution is the same in each column and
the second coordinate is the same in each row. We can prove the hardness of
Grid Tiling by a simple reduction from Clique.

Theorem 14.28. Grid Tiling is W[1]-hard and, unless ETH fails, it has
no f(k)no(k)-time algorithm for any computable function f .
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Proof. The proof is by reduction from Clique. Let (G, k) be an instance of
Clique. Let n = |V (G)|; we assume that the vertices of G are the integers
in [n]. We construct an instance of Grid Tiling as follows. For every 1 ≤
i, j ≤ k, we de�ne

Si,j =

{
{(a, a) : 1 ≤ a ≤ n} if i = j,

{(a, b) : a 6= b and vertices a and b are adjacent in G} if i 6= j.

We claim that the constructed instance of Grid Tiling has a solution if
and only if G contains a k-clique. First, suppose that vertices v1, . . . , vk are
distinct and form a clique in G. Then it is easy to verify that si,j = (vj , vi)
(note that the order of i and j is swapped in the indices5) is a solution ofGrid
Tiling. Conversely, suppose that the pairs si,j (1 ≤ i, j ≤ k) form a solution.
As si,j and si+1,j agree in the �rst coordinate and si,j and si,j+1 agree in the
second coordinate, it follows that there are values v1, . . . , vk, v

′
1, . . . , v

′
k such

that si,j = (vj , v
′
i) for every 1 ≤ i, j ≤ k. As Si,i = {(a, a) : 1 ≤ a ≤ n},

this is only possible if vi = v′i for every 1 ≤ i ≤ k. It follows that vi and vj
are two adjacent (distinct) vertices: as (vj , vi) = (vj , v

′
i) ∈ Si,j , the de�nition

of Si,j implies that vivj is an edge of G. Therefore, v1, . . . , vk is indeed a
k-clique in G. ut

There are two aspects of Grid Tiling that make it particularly suited
for reduction to planar problems:

1. If the sets are represented by gadgets, then each gadget has to
interact only with the gadgets representing adjacent sets, making
the high-level structure of the constructed instance planar.

2. The constraint that needs to be enforced on adjacent gadgets is
fairly simple: equality of the �rst/second coordinate of the value.

The following reduction demonstrates the �rst aspect of Grid Tiling. In
Section 13.6, we have shown, by a reduction from Multicolored Clique,
that List Coloring is W[1]-hard parameterized by treewidth. Furthermore,
in Section 14.4, we have observed that the reduction actually shows that it
has no f(t)no(t)-time algorithm for any computable function f , unless ETH
fails. As the reduction in Theorem 13.30 was from Multicolored Clique,
the created instance is highly non-planar (see Fig. 13.5), being essentially a
subdivided clique. On the other hand, when we reduce from Grid Tiling,
the resulting graph is grid-like, and hence planar.

5 We could have de�ned Grid Tiling by swapping the meaning of the coordinates of si,j ,
that is, si,j and si,j+1 have to agree in the �rst coordinate. Then we would have avoided
the unnatural swap of indices in this proof. However, as we shall see, in many proofs (e.g.,
Theorems 14.32 and 14.34), the current de�nition is much more convenient.
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u1,1 u1,n

un,1 un,n

h1,1,.,.

v1,1,.,.

Fig. 14.3: The graph G′ of the List Coloring instance constructed in the
reduction of Theorem 14.29 for k = 4

Theorem 14.29. List Coloring on planar graphs parameterized by the
treewidth t is W[1]-hard. Moreover, it has no f(t)no(t)-time algorithm for
any computable function f , unless ETH fails.

Proof. We present a parameterized reduction fromGrid Tiling. Let (n, k,S)
be an instance ofGrid Tiling. The set C of colors will correspond to [n]×[n];
then every set Si,j can be interpreted as a set of colors. We construct a graph
G′ the following way (see Fig. 14.3).

(i) For every 1 ≤ i, j ≤ k, we introduce a vertex ui,j with L(ui,j) = Si,j .
(ii) For every 1 ≤ i < k, 1 ≤ j ≤ k and for every pair (a, b), (a′, b′) ∈

[n] × [n] with a 6= a′, we introduce a vertex vi,j,(a,b),(a′,b′) whose list is
{(a, b), (a′, b′)} and make it adjacent to ui,j and ui+1,j .

(iii) For every 1 ≤ i ≤ k, 1 ≤ j < k and for every pair (a, b), (a′, b′) ∈
[n] × [n] with b 6= b′, we introduce a vertex hi,j,(a,b),(a′,b′) whose list is
{(a, b), (a′, b′)} and make it adjacent to ui,j and ui,j+1.

To bound the treewidth of G′, observe that every vertex other than the
vertices ui,j has degree 2. Suppressing degree-2 vertices of G

′ does not change
its treewidth (see Exercise 7.13), assuming its treewidth is at least 3, and gives
a k × k-grid with parallel edges, which has treewidth k.

Suppose that {si,j ∈ Si,j : 1 ≤ i, j ≤ k} is a solution of the Grid Tiling
instance; let si,j = (ai,j , bi,j). We can construct the following list coloring
of G′. First, we set the color of ui,j to si,j ∈ Si,j = L(ui,j). Then for every
vertex vi,j,(a,b),(a′,b′), it is true that either ui,j has a color di�erent from (a, b),
or ui+1,j has a color di�erent from (a′, b′) (as ai,j = ai+1,j , while a 6= a′).
Therefore, one of the two colors appearing in the list of vi,j,(a,b),(a′,b′) is not
used on its neighbors, hence we can extend the coloring to this vertex. The
argument is similar for the vertices hi,j,(a,b),(a′,b′).
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For the reverse direction, suppose that c : V (G′) → [n] × [n] is a list
coloring of G′. We claim that the pairs si,j = c(ui,j) ∈ L(ui,j) = Si,j form
a solution for the Grid Tiling instance. For a contradiction, suppose that
si,j = (a, b) and si+1,j = (a′, b′) do not agree in the �rst coordinate, that is,
a 6= a′. Then the vertex vi,j,(a,b),(a′,b′) exists in G and has list {(a, b), (a′, b′)}.
However, this vertex is adjacent to both ui,j and ui+1,j , which have colors
(a, b) and (a′, b′) in the coloring; hence vi,j,(a,b),(a′,b′) cannot have either color
on its list, a contradiction. The argument is similar in the case when si,j
and si,j+1 do not agree in the second coordinate; in this case, we arrive to a
contradiction by observing that both colors in the list vertex hi,j,(a,b),(a′,b′)
are already used by its neighbors. ut

The second reason why Grid Tiling is a useful starting point for reduc-
tions to planar problems is that the constraints between adjacent gadgets
are very simple: it requires that the �rst/second coordinates of the values of
the two gadgets are equal. This can be much simpler than testing adjacency
of two vertices in a reduction from Multicolored Clique and is similar
to the projection constraint between edge gadgets and vertex gadgets (see
Theorem 13.31). In Theorem 14.29, the List Coloring problem was very
powerful and it was easy to express arbitrary binary relations, hence this
aspect of Grid Tiling was not exploited.

There are reductions, however, where it does matter that the constraints
between the gadgets are simple. We introduce a variant of Grid Tiling
where the constraints are even more suited for planar problems. The input of
Grid Tiling with ≤ is the same as the input of Grid Tiling, but we have
less than or equal constraints between the �rst/second coordinates instead of
equality (see Fig. 14.4). That is, the task is to �nd, for each 1 ≤ i, j ≤ k, a
value si,j ∈ Si,j such that

� If si,j = (a, b) and si+1,j = (a′, b′), then a ≤ a′.
� If si,j = (a, b) and si,j+1 = (a′, b′), then b ≤ b′.
This variant of Grid Tiling is very convenient when we want to prove
lower bounds for a problem involving planar/geometric objects or distances
between points: the ≤ constraints have natural interpretations in such prob-
lems.

We show �rst that the lower bounds of Theorem 14.28 hold for Grid
Tiling with ≤ as well.

Theorem 14.30. Grid Tiling with ≤ is W[1]-hard and, unless ETH fails,
it has no f(k)no(k)-time algorithm for any computable function f .

Proof. Given an instance (n, k,S) of Grid Tiling, we construct an equiva-
lent instance (n′, k′,S ′) ofGrid Tiling with ≤ with n′ = 3n2(k+1)+n2+n
and k′ = 4k. For every set Si,j of the input instance, there are 16 correspond-
ing sets S′i′,j′ (4i− 3 ≤ i′ ≤ 4i, 4j − 3 ≤ j′ ≤ 4j) in the constructed instance
(see Fig. 14.5). We call these sets the gadget representing Si,j. The four inner
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S1,1:

(1,1)
(3,1)
(2,4)

S1,2:

(5,1)
(1,4)
(5,3)

S1,3:

(1,1)
(2,5)
(3,3)

S2,1:

(2,2)
(1,4)

S2,2:

(3,1)
(2,2)

S2,3:

(3,2)
(2,3)

S3,1:

(1,3)
(2,3)
(3,3)

S3,2:

(1,1)
(2,3)

S3,3:

(5,4)
(3,4)

Fig. 14.4: An instance of Grid Tiling with ≤ with k = 3 and n = 5. The
red pairs form a solution

sets S4i−2,4j−2, S4i−2,4j−1, S4i−1,4j−2, S4i−1,4j−1 are dummy sets containing
only the single pair shown in the �gure. The 12 outer sets are de�ned as
follows. We de�ne the mapping ι(a, b) = na + b and let N = 3n2. For every
(a, b) ∈ Si,j , we let z = ι(a, b) and introduce the pairs shown in Fig. 14.5 into
the 12 outer sets. It can be easily veri�ed that both coordinates of each pair
are positive and at most n′. This concludes the description of the constructed
instance.

The intuition behind the construction is the following. Selecting a pair
from one of the 12 outer sets in a gadget selects a pair from Si,j . We
show that in every solution, a �vortex� on the 12 outer sets ensures that
each of them select the same pair si,j ∈ Si,j . Then we show that the in-
teraction of the outer sets of the gadgets enforce exactly the constraints
of the Grid Tiling problem. For example, the second set of the last
row of the gadget representing Si,j and the second set of the �rst row of
the gadget representing Si+1,j interact in a way that ensures that the
�rst coordinate of si,j is at most the �rst coordinate of si+1,j , while the
third sets of these rows ensure the reverse inequality, implying that the
two �rst coordinates are equal.

Let si,j ∈ Si,j for 1 ≤ i, j ≤ k be a solution of the Grid Tiling instance.
For every si,j = (a, b), we select the corresponding pairs from the 16 sets in
the gadget of Si,j for z = ι(a, b), as shown in Fig. 14.5. First, it is easy to
verify that the constraints are satis�ed between the sets of the same gadget.
Consider now the last row of the gadget of Si,j and the �rst row of the
gadget of Si+1,j . For the �rst sets in these rows, the constraints are satis�ed:
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S′4i−3,4j−3:

(iN − z, jN + z)

S′4i−3,4j−2:

(iN + a, jN + z)

S′4i−3,4j−1:

(iN − a, jN + z)

S′4i−3,4j :

(iN + z, jN + z)

S′4i−2,4j−3:

(iN − z, jN + b)

S′4i−2,4j−2:

((i+ 1)N, (j + 1)N)

S′4i−2,4j−1:

(iN, (j + 1)N)

S′4i−2,4j :

(iN + z, (j+ 1)N + b)

S′4i−1,4j−3:

(iN − z, jN − b)

S′4i−1,4j−2:

((i+ 1)N, jN)

S′4i−1,4j−1:

(iN, jN)

S′4i−1,4j :

(iN + z, (j+ 1)N − b)

S′4i,4j−3:

(iN − z, jN − z)

S′4i,4j−2:

((i+ 1)N +a, jN − z)

S′4i,4j−1:

((i+ 1)N −a, jN − z)

S′4i,4j :

(iN + z, jN − z)

Fig. 14.5: The 16 sets of the constructed Grid Tiling with ≤ instance
representing a set Si,j of the Grid Tiling in the reduction in the proof of
Theorem 14.30, together with the pairs corresponding to a pair (a, b) ∈ S′i,j
(with z = ι(a, b))

the pair selected from S′4i,4j−3 has �rst coordinate less than iN , while the
pair selected from S′4(i+1)−3,4j−3 = S′4i+1,4j−3 has the �rst coordinate at least

(i+ 1)N − (n2 +n) > iN . Similarly, there is no con�ict between the last sets
of these rows. If ai,j = ai+1,j are the �rst coordinates of si,j and si+1,j , then
the �rst coordinates of the sets selected from the second sets of the rows,
S′4i,4j−2 and S

′
4i+4j−2, are (i+ 1)N + ai,j and (i+ 1)N + ai+1,j , respectively,

and the former is equal to the latter. One can show in a similar way that
there is no con�ict between the third sets of the rows, and that there is no
con�ict between the last column of the gadget representing Si,j and the �rst
column of the gadget representing Si,j+1.
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For the reverse direction, suppose that s′i,j for 1 ≤ i, j ≤ k′ is a solution
of the constructed Grid Tiling with ≤ instance. Consider the 12 outer
sets in the gadget representing Si,j . The 12 pairs selected in the solution
from these sets de�ne 12 values z; let z4i−3,4j−3, etc., be these 12 values. We
claim that all these 12 values are the same. The second coordinate of the
set selected from S′4i−3,4j−3 is jN + z4i−3,4j−3, the second coordinate of the
set selected from S′4i−3,4j−2 is jN + z4i−3,4j−2; hence the de�nition of Grid
Tiling with ≤ implies z4i−3,4j−3 ≤ z4i−3,4j−2. With similar reasoning, by
going around the outer sets, we get the following inequalities.

z4i−3,4j−3 ≤ z4i−3,4j−2 ≤ z4i−3,4j−1 ≤ z4i−3,4j (�rst row)

z4i−3,4j ≤ z4i−2,4j ≤ z4i−1,4j ≤ z4i,4j (last column)

−z4i,4j−3 ≤ −z4i,4j−2 ≤ −z4i,4j−1 ≤ −z4i,4j (last row)

−z4i−3,4j−3 ≤ −z4i−2,4j−3 ≤ −z4i−1,4j−3 ≤ −z4i,4j−3 (�rst column)

Putting everything together, we get a cycle of inequalities showing that these
12 values are all equal; let zi,j be this common value and let si,j = (ai,j , bi,j)
be the corresponding pair, that is, ι(ai,j , bi,j) = zi,j . The fact that zi,j was
de�ned using the pairs appearing in the gadget of Si,j implies that si,j ∈ Si,j .
Let us show now that ai,j = ai+1,j . The pair selected from S′4i,4j−2 has �rst
coordinate (i + 1)N + ai,j , while the pair selected from S′4(i+1)−3,4j−2 =

S′4i+1,4j−2 has �rst coordinate (i + 1)N + ai+1,j . The de�nition of Grid
Tiling with ≤ implies now that ai,j ≤ ai+1,j holds. Similarly, comparing
the �rst coordinates of the pairs selected from S′4i,4j−1 and S′4i+1,4j−1 shows
−ai,j ≤ −ai+1,j ; hence ai,j = ai+1,j follows. A similar argument, by looking
at the last column of the gadget representing Si,j and the �rst column of the
gadget representing Si,j+1 shows bi,j = bi,j+1. Therefore, we have proved that
the constructed si,j 's indeed form a solution of the Grid Tiling instance.

ut

Scattered Set is a generalization of Independent Set: given a graph
G and integers k and d, the task is to �nd a set S of k vertices in G such that
the distance between any two distinct u, v ∈ S is at least d. Clearly, Indepen-
dent Set is the special case d = 2, hence there is no f(k)no(k)-time algorithm
for Scattered Set on general graphs, unless ETH fails (Corollary 14.23).
On planar graphs, we have seen that the special case Independent Set is
FPT (parameterized by k) and has subexponential parameterized algorithms.
Moreover, we can show that Scattered Set remains FPT on planar graphs
for any �xed d, or with combined parameters k and d (Exercise 7.41). If d is
part of the input, we can do somewhat better than �nding a solution by an
nO(k) time brute-force algorithm.

Theorem 14.31 ([355]). Scattered Set on planar graphs can be solved

in time nO(
√
k).
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We show now that the algorithm of Theorem 14.31 is optimal with respect
to the dependence of the exponent on k.

Theorem 14.32. Scattered Set on planar graphs is W[1]-hard when pa-

rameterized by k only. Moreover, it has no f(k)no(
√
k)-time algorithm for any

computable function f , unless ETH fails.

Proof. We present a parameterized reduction fromGrid Tiling with ≤. Let
(n, k,S) be an instance of Grid Tiling with ≤; without loss of generality
assume that k ≥ 2. We represent each Si,j with an n × n grid Ri,j ; let v

i,j
a,b

be the vertex of this grid in row a and column b. (Note that the distance
between the �rst and last columns or rows of an n × n grid is n − 1.) Let
L = 100n and d = 4L+ n− 1. We construct a graph G′ in the following way
(see Fig. 14.6).

(i) For every 1 ≤ i, j ≤ k and (a, b) ∈ Si,j , we introduce a vertex wi,ja,b and

connect it to the vertex vi,ja,b with a path of length L.
(ii) For every 1 ≤ i ≤ k, 1 ≤ j < k, we introduce a new vertex αi,j and

connect αi,j to v
i,j
a,n and vi,j+1

a,1 for every a ∈ [n] with a path of length
L.

(iii) For every 1 ≤ i < k, 1 ≤ j ≤ k, we introduce a new vertex γi,j and

connect γi,j to v
i,j
n,b and v

i+1,j
1,b for every b ∈ [n] with a path of length L.

Note that the resulting graph is planar, see Fig. 14.6.

We may assume that the solution selects exactly one vertex wi,ja,b from
each grid Ri,j . The locations of these vertices correspond to a solution
of the Grid Tiling with ≤ instance. The distance constraint of Scat-
tered Set ensures that the row number of the selected vertex in Ri,j is
at most the row number of the selected vertex in Ri+1,j , and the column
number of the selected vertex in Ri,j is at most the column number of
the selected vertex in Ri,j+1.

Suppose that si,j ∈ Si,j is a solution for the Grid Tiling with ≤
instance; let si,j = (ai,j , bi,j). For every 1 ≤ i, j ≤ k, let Z contain

zi,j = wi,jai,j ,bi,j . We claim that vertices in Z are at distance at least d from
each other. Notice �rst that two adjacent grids have distance at least 2L from
each other: we have to go through at least two paths of length L to go from
Ri,j to Ri+1,j for example. Therefore, if |i− i′|+ |j− j′| ≥ 2, then every path
between zi,j and zi′,j′ has to go through at least 2 · 2 + 2 = 6 paths of length
L (the extra 2 comes from the 2 paths with endpoints zi,j and zi′,j′), hence
their distance is at least 6L > d. Consider now the vertices zi,j and zi+1,j . If
a path P connecting these two vertices has length less than 6L, then P has
to go through γi,j . The distance between zi,j and γi,j is 2L+ n− ai,j < 3L,
which is realized by a path using two paths of length L and a vertical subpath
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R1,1v1,11,1 v1,11,5

v1,15,5v1,15,1

R1,3

R3,3R3,1

α1,1

γ1,1

Fig. 14.6: Theorem 14.32: reducing the instance of Grid Tiling with ≤
in Fig. 14.4 with k = 3 and n = 5 to an instance of Scattered Set. The
red edges represent paths of length L, the circled vertices correspond to the
solution shown in red in Fig. 14.4

of the grid. Note that the shortest path cannot leave the grid and return to
it, as then it would use at least four paths of length L. Similarly, we can
observe that the distance between zi+1,j and γi,j is 2L+ai+1,j−1 . Thus the
distance between zi,j and zi+1,j is 4L+n−1+(ai+1,j−ai,j) ≥ 4L+n−1 = d,
since si,j and si+1,j satisfy the constraint that the �rst coordinate of si,j is
at most the �rst coordinate of si+1,j . A similar argument (using the fact that
the second coordinate of si,j is at most the second coordinate of si,j+1) shows
that the distance between zi,j and zi,j+1 is at least d. Therefore, the distance
between any two vertices in Z is at least d.
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For the reverse direction, suppose that Z is a set of k2 vertices with pair-
wise distance at least d. Let Xi,j be the set of all vertices that are at distance
at most L < d/2 from some vertex of Ri,j . Observe that the distance between
any two vertices in Xi,j is less than d, hence Xi,j can contain at most one
vertex of Z. Furthermore, observe that the union of the Xi,j 's cover the entire
graph. Therefore, each of the k2 vertices of Z appear in at least one of these
sets, which is only possible if each Xi,j contains exactly one vertex of Z and
each vertex of Z appears in only one Xi,j . In particular, this means that the
vertices αi,j , γi,j of G, which are contained in two of these sets, cannot be
part of the solution Z. We claim that no vertex of the grid Ri,j is selected. As
k ≥ 2, grid Ri,j has a neighbor Ri′,j′ , that is, |i− i′|+ |j− j′| = 1. Now every
vertex of Xi′,j′ is at distance at most n− 1 + 2L+ n− 1 +L < d from every
vertex of Ri,j . This means that if a vertex of Ri,j is in Z, then Xi′,j′ is disjoint
from Z, contradicting our observation above. A similar argument shows that
a vertex of Xi,j ∩Z cannot lie on any path connecting a side of Ri,j with one
of the neighboring vertices αi,j , αi,j−1, γi,j , γi−1,j . Hence, the single vertex of
Xi,j∩Z has to be on some vi,jai,j ,bi,j−w

i,j
ai,j ,bi,j

path for some (ai,j , bi,j) ∈ Si,j�
otherwise it would be too close to an adjacent grid. We may actually assume
that this vertex is the degree-1 vertex wi,jai,j ,bi,j at the end of the path: moving
the vertex closer to the end of the path does not make it any closer to the other
vertices of Z. Let zi,j = wi,jai,j ,bi,j be the vertex of Z contained in Xi,j , and

let si,j = (ai,j , bi,j). We claim that the pairs si,j form a solution for the Grid
Tiling instance. First, si,j = (ai,j , bi,j) ∈ Si,j follows from the way the graph
is de�ned. To see that ai,j ≤ ai+1,j , let us compute the distance between zi,j
and zi+1,j . The distance between zi,j = wi,jai,j ,bi,j and γi,j is L+ n− ai,j , the
distance between zi+1,j = wi+1,j

ai+1,j ,bi+1,j
and γi,j is L+ai+1,j−1, hence the dis-

tance between zi,j and zi+1,j is 4L+n−1+(ai+1,j−ai,j) = d+(ai+1,j−ai,j).
As we know that this distance is at least d, the inequality ai,j ≤ ai+1,j fol-
lows. By a similar argument, computing the distance between zi,j and zi,j+1

shows that bi,j ≤ bi,j+1 holds. Thus the pairs si,j indeed form a solution of
the Grid Tiling with ≤ instance. ut

We �nish this section with a geometric problem. Given a set of disks of
unit diameter in the plane (described by the coordinates of their centers)
and an integer k, Unit Disk Independent Set asks for a subset S of k
disks that are pairwise disjoint. In other words, we need to select k centers
such that any two of them are at distance at least 1 from each other. It is
possible to solve the problem more e�ciently than the nO(k)-time brute-force
algorithm.

Theorem 14.33 ([9]). Unit Disk Independent Set can be solved in time

nO(
√
k).

We show that the exponent O(
√
k) in Theorem 14.33 is best possible by a

reduction fromGrid Tiling with ≤. In the proof, we face a minor notational
di�culty. When de�ning theGrid Tiling problem, we imagined the sets Si,j
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arranged in a matrix, with Si,j being in row i and column j. When reducing
Grid Tiling to a geometric problem, the natural idea is to represent Si,j
with a gadget located around coordinate (i, j). However, this introduces an
unnatural 90 degrees rotation compared to the layout of the Si,j 's in the
matrix, which can be confusing in the presentation of a reduction. Therefore,
for geometric problems, it is convenient to imagine that Si,j is �located� at
coordinate (i, j). To emphasize this interpretation, we use the notation S[x, y]
to refer to the sets; we imagine that S[x, y] is at location (x, y), hence sets
with the same x are on a vertical line and sets with the same y are on the
same horizontal line (see Fig. 14.7). The constraints of Grid Tiling are the
same as before: the pairs selected from S[x, y] and S[x + 1, y] agree in the
�rst coordinate, while the pairs selected from S[x, y] and S[x, y + 1] agree in
the second coordinate. Grid Tiling with ≤ is de�ned similarly. With this
notation, we can give a very clean and transparent reduction to Unit Disk
Independent Set.

Theorem 14.34. Unit Disk Independent Set is W[1]-hard and, unless

ETH fails, it has no f(k)no(
√
k)-time algorithm for any computable function

f .

Proof. It will be convenient to work with open disks of radius 1
2 (that is,

diameter 1) in this proof: then two disks are nonintersecting if and only if
the distance between their centers is at least 1. The proof is by reduction
from Grid Tiling with ≤. Let I = (n, k,S) be an instance of Grid Tiling
with ≤. We construct a set D of unit disks such that D contains a set of k2

pairwise nonintersecting disks if and only if I is a yes-instance.
Let ε = 1/n2. For every 1 ≤ x, y ≤ k and every (a, b) ∈ S[x, y] ⊆ [n]× [n],

we introduce into D an open disk of radius 1
2 centered at (x+ εa, y+ εb); let

D[x, y] be the set of these |S[x, y]| disks introduced for a �xed x and y (see
Fig. 14.7). Note that the disks in D[x, y] all intersect each other. Therefore,
if D′ ⊆ D is a set of pairwise nonintersecting disks, then |D′| ≤ k2 and
|D′| = k2 is possible only if D′ contains exactly one disk from each D[x, y]. In
the following, we prove that there is such a set of k2 pairwise nonintersecting
disks if and only if I is a yes-instance.

We need the following observation �rst. Consider two disks centered at
(x+ εa, y+ εb) and (x+ 1 + εa′, y+ εb′) for some (a, b), (a′, b′) ∈ [n]× [n]. We
claim that they are nonintersecting if and only if a ≤ a′. Indeed, if a > a′,
then the square of the distance of the two centers is

(1 + ε(a′ − a))2 + ε2(b′ − b)2 ≤ (1 + ε(a′ − a))2 + ε2n2

≤ (1− ε)2 + ε = 1− ε+ ε2 < 1

(in the �rst inequality, we have used b′, b ≤ n; in the second inequality, we
have used a ≥ a′ + 1 and ε = 1/n2). On the other hand, if a ≤ a′, then the
square of the distance is at least (1 + ε(a′ − a))2 ≥ 1, hence the two disks do
not intersect (recall that the disks are open). This proves our claim. A similar



14.4 ETH and W[1]-hard problems 501

S[1, 3]:

(1,1)
(2,5)
(3,3)

S[2, 3]:

(3,2)
(2,3)

S[3, 3]:

(5,4)
(3,4)

S[1, 2]:

(5,1)
(1,4)
(5,3)

S[2, 2]:

(3,1)
(2,2)

S[3, 2]:

(1,1)
(2,3)

S[1, 1]:

(1,1)
(3,1)
(2,4)

S[2, 1]:

(2,2)
(1,4)

S[3, 1]:

(1,3)
(2,3)
(3,3)

Fig. 14.7: An instance of Grid Tiling with ≤ with k = 3 and n = 5 and the
corresponding instance of Unit Disk Independent Set constructed in the
reduction of Theorem 14.34. The small dots show the potential positions for
the centers, the large dots are the actual centers in the constructed instance.
The shaded disks with red centers correspond to the solution of Grid Tiling
with ≤ shown on the left

claim shows that disks centered at (x+εa, y+εb) and (x+εa′, y+1+εb′) are
nonintersecting if and only if b ≤ b′. Moreover, it is easy to see that the disks
centered at (x+ εa, y+ εb) and (x′+ εa′, y′+ εb′) for some 1 ≤ a, a′, b, b′ ≤ n
cannot intersect if |x− x′|+ |y − y′| ≥ 2: the square of the distance between
the two centers is at least 2(1− εn)2 > 1.

Let the pairs s[x, y] ∈ S[x, y] form a solution of the instance I; let s[x, y] =
(a[x, y], b[x, y]). For every 1 ≤ x, y ≤ k, we select the disk d[x, y] centered at
(x+ εa[x, y], y+ εb[x, y]) ∈ D[x, y]. As we have seen, if |x− x′|+ |y− y′| ≥ 2,
then d[x, y] and d[x′, y′] cannot intersect. As the s[x, y]'s form a solution of
instance I, we have that a[x, y] ≤ a[x + 1, y]. Therefore, by our claim in
the previous paragraph, the disks d[x, y] and d[x + 1, y] do not intersect.
Similarly, we have b[x, y] ≤ b[x, y+ 1], implying that d[x, y] and d[x, y+ 1] do
not intersect either. Hence there is indeed a set of k2 pairwise nonintersecting
disks in D.

Conversely, let D′ ⊆ D be a set of k2 pairwise independent disks. This is
only possible if for every 1 ≤ x, y ≤ k, the set D′ contains a disk d[x, y] ∈
D[x, y], that is, centered at (x+εa[x, y], j+εb[x, y]) for some (a[x, y], b[x, y]) ∈
[n]× [n]. We claim that the pairs s[x, y] = (a[x, y], b[x, y]) form a solution of
the instance I. First, d[x, y] ∈ D[x, y] implies that s[x, y] ∈ S[x, y]. As we
have seen above, the fact that d[x, y] and d[x+ 1, y] do not intersect implies
that a[x, y] ≤ a[x+ 1, y]. Similarly, the fact that d[x, y] and d[x, y+ 1] do not
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intersect each other implies that b[x, y] ≤ b[x, y + 1]. Thus the s[x, y]'s form
a solution for the Grid Tiling with ≤ instance I. ut

*14.5 Lower bounds based on the Strong
Exponential-Time Hypothesis

In essence, ETH enables us to estimate the optimal magnitude of the para-
metric dependency of the running time of parameterized algorithms. SETH is
a more precise tool, using which one can pinpoint almost exactly the asymp-
totic behavior of the optimal running time, at a cost of adopting a much
stronger complexity assumption. For instance, suppose we are working with
a parameterized problem admitting an O∗(3k) algorithm. A typical lower
bound under ETH is of the form �No algorithm with running time O∗(2o(k))
can be expected�. Under SETH one can prove statements like �For any ε > 0,
there is no algorithm with running time O∗((3 − ε)k)�, thus showing that
even the constant 3 in the base of the exponent is hard to improve.

Observe that for any constant c, saying that there exists an algorithm with
running time O∗((c − ε)k) for some ε > 0 is equivalent to saying that there
exists an algorithm with running time O∗(cδk) for some δ < 1. While the �rst
notation gives a more intuitive feeling about what the lower bound actually
means, the second is more convenient when it comes to formal proofs. We
will hence use both notations, jumping between them implicitly.

Lower bounds under SETH can be proved by providing reductions from
variants of CNF-SAT, similarly to the lower bounds under ETH. However,
they are typically much more delicate. For ETH we are usually interested
only in the asymptotics of how the parameter is transformed � it is relevant
whether the output parameter is linear or quadratic in the input one, but the
precise leading coe�cient of the linear function does not play any role. For
SETH it is precisely this coe�cient that is crucial. To see it on an example,
say that we provide two reductions from CNF-SAT to some parameterized
problem L, where in the �rst reduction the output parameter k is equal to 2n
(here, n is the number of variables), and in the second reduction the output
parameter is equal to n. Then the �rst reduction shows only that, for any
ε > 0, there is no algorithm with running time O∗((

√
2 − ε)k) assuming

SETH, while the second one improves this lower bound to nonexistence of an
O∗((2− ε)k) algorithm.

Interestingly, observe that in the presented example we could state the
lower bound under a slightly weaker assumption that the general CNF-SAT
problem cannot be solved in time O∗((2−ε)n) for some ε > 0. This is a com-
mon phenomenon in many lower bounds under SETH, where the reduction
can be assumed to start from general CNF-SAT, rather than from q-SAT
for increasing, yet constant values of q. However, there are examples where
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it is helpful to use the full power of SETH; we will see one such lower bound
in the next section.

Before we proceed, let us comment that the problems for which SETH
is known to give a tight understanding of their (parameterized) complexity
are much scarcer than the problems a�ected by ETH. The di�culty lies in
the very speci�c requirements that reductions proving lower bounds under
SETH have to satisfy. Most known reductions from CNF-SAT or its variants
encode the clauses of the input formula using some kind of gadgets. Therefore,
in most cases it is hard to avoid the situation where the output parameter
(or the total output size, if we are interested in the classical complexity of
the problem) depends on the number of clauses instead of just variables;
this is completely unacceptable when trying to prove a lower bound based on
SETH. This applies in particular to problems parameterized by the requested
size of the solution, like Vertex Cover or Feedback Vertex Set. In
fact, basically all the known lower bounds under SETH for FPT problems
concern structural parameterizations, such as the size of the universe of the
instance (say, in the Hitting Set problem) or some width parameter of the
input graph; such parameters are often much easier to control in terms of the
number of variables.

Hence, one could argue that we are missing some important theoretical
tool for SETH, similar to the sparsi�cation lemma, which would enable us
to unlock the full potential of this conjecture. Alternatively, this state of the
art might indicate that SETH is simply too weak an assumption for proving
precise statements about the running times of exponential-time algorithms,
and we need stronger and better-suited working conjectures.

In the following three sections we present exemplary lower bounds that can
be proved under the assumption of SETH. Actually, these examples almost
cover all the signi�cant applications of SETH in parameterized complexity
that are known so far, as explained in the previous paragraphs.

14.5.1 Hitting Set parameterized by the size of the
universe

Recall that theHitting Set problem can be solved by a brute-force search in
time O∗(2n), where n is the size of the universe.6 It is natural to ask whether
the constant 2 in the base of the exponent could be improved, or, in other
words, whether one can search through signi�cantly less than 2n possible
candidates for the solution. It appears that this is not the case under the
assumption of SETH � the barrier of brute-force 2n enumeration is hard to
break.

6 We recall that the O∗(·) notation hides factors polynomial in the total input size, i.e.,
here polynomial in |U |+ |F|, and not just polynomial in n = |U |.
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The �rst natural idea for a reduction from CNF-SAT would be the follow-
ing. Create two elements of the universe tx, fx for each variable x, and add a
set containing this pair to the constructed family. Set the budget for the size
of the hitting set to be equal to n, so that in each of these two-element sets
exactly one of the elements must be chosen. Choosing tx corresponds to set-
ting the variable to true, and choosing fx corresponds to setting it to false, so
we have one-to-one correspondence between assignments of the variables and
candidate solutions. Now satisfaction of clauses can be encoded directly as
hitting sets: for instance for a clause x∨¬y∨z we will create a set {tx, fy, tz},
which is hit if and only if the clause is satis�ed.

Unfortunately, this reduction gives only an O∗((
√

2 − ε)n) lower bound,
since the universe in the output instance is of size 2n. The problem is about
redundancy: if we know that some tx is chosen to the solution, then we are
sure that fx is not chosen, and thus we did not exploit the whole 22n search
space of the output instance, but rather a subspace of cardinality 2n. We
hence need a smarter way of packing the information.

Suppose that the reduction we are going to construct will create a universe
U of size n′, which is slightly larger than n; for now think that n′ = n +
O(log n). Suppose further that k is the intended size of the hitting set. Now
observe that k must be very close to n′/2 for the following reason. If k <
0.49 · n′ or k > 0.51 · n′ for some n′, then the solution might be found
by brute-force veri�cation of all the sets of

(
U

<0.49n′

)
or
(

U
>0.51n′

)
, and there

are only O((2 − ε)n) such sets for some ε > 0. Therefore, the intuition is
that the 2n search space of CNF-SAT has to be embedded roughly into(
U
n′/2

)
; since

∣∣∣( U
n′/2

)∣∣∣ = O
(

2n
′

√
n′

)
by Stirling approximation, the additional

additive O(log n) factor in n′ should be su�cient to ensure enough space to
accommodate all possible variable assignments.

It seems, however, challenging to implement such an embedding so that the
clauses can be also conveniently checked. Now is the point when it becomes
useful to start with q-SAT instead of general CNF-SAT. Let us arbitrarily
partition the variable set into large, but constant-size groups. Let p be the
size of the group. Each group X will have a corresponding part of the universe
UX of size p′ = p+O(log p), and the space of assignments of variables of X

will be embedded roughly into
(
UX
p′/2

)
, which has size

(
p′

p′/2

)
> 2p. Thus we

have n′ = p′

p · n, and when p grows to in�nity then n′ becomes bounded by

(1 + α)n, for any α > 0. Finally, provided that we start with q-SAT instead
of general CNF-SAT, every clause touches at most q groups of size p each,
and hence it can be modelled using a constant (yet exponential in q and p)
number of sets in the family.

We now proceed to a formal explanation.

Theorem 14.35. Unless SETH fails, there is no algorithm for Hitting Set
that achieves running time O∗((2− ε)n) for any ε > 0, where n is the size of
the universe.
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Proof. We shall present a reduction that for any constants α > 0 and q ≥ 3,
takes an instance of q-SAT on n variables and transforms it in time poly-
nomial in the input size into an equivalent instance of Hitting Set on a
universe of size at most (1 + α)n. We note that in this reduction we will
treat q and α as constants, and thus both the size of the family of the output
Hitting Set instance and the running time of the reduction can depend
exponentially on q and 1/α.

We �rst verify that the existence of such a reduction will provide us with
the claimed lower bound. For the sake of contradiction, assume that Hitting
Set indeed can be solved in time O∗(2δn) for some constant δ < 1. Fix some
α > 0 so that α < 1 and δ′ := δ(1 + α) < 1. Assuming SETH, there exists
a constant q such that q-SAT cannot be solved in time O∗(2δ′n). Consider
now the following algorithm for q-SAT: apply the presented reduction for
parameters α and q, and then solve the resulting instance of Hitting Set
using the assumed faster algorithm. Thus we could solve q-SAT in time
O∗(2δ(1+α)n) = O∗(2δ′n), which contradicts our choice of q.

We now proceed to the reduction itself. Let ϕ be the input instance of
q-SAT, let Vars be the variable set of ϕ, let Cls be the clause set of ϕ,
and let n = |Vars|, m = |Cls|. We �x some odd constant p ≥ 3 such that
p + 2dlog2 pe ≤ (1 + α/3)p. Let p′ = p + 2dlog2 pe; note that p′ is also odd.
Without loss of generality we will assume that n is divisible by p. This can
be achieved by adding at most p− 1 dummy variables not appearing in any
clause, which increases the size of the variable set by multiplicative factor at
most 1 + α/3, unless the input instance is of constant size and we may solve
it by brute-force.

Partition Vars into n/p groups of variables Vars1,Vars2, . . . ,Varsn/p,
each of size p. For each group Varsi we create a set of elements Ui of size p

′.

Let A↓i =
( Ui
p′−1

2

)
and A↑i =

( Ui
p′+1

2

)
. Note that |A↓i | = |A↑i | ≥ 2p

′

1+p′ ≥
p2

1+p′ · 2p.
It can be readily checked that for p ≥ 3 it holds that p2 ≥ 1 + p′, so |A↓i | =
|A↑i | ≥ 2p. Therefore, let us �x an arbitrary injective mapping ηi from the set

Vars{⊥,>}i of all the true/false assignments of the variables of Varsi to the

set A↓i . Let Bi = A↓i \ Im(ηi), where Im(ηi) denotes the image of ηi.
Take any clause C ∈ Cls and let VarsjC,1 ,VarsjC,2 , . . . ,VarsjC,rC be all

the variable groups that contain any variable appearing in C. Since C has at
most q literals, we have that rC ≤ q. Hence the set VarsC :=

⋃rC
t=1 VarsjC,t

has cardinality at most p′q, which is a constant. Now consider all the
true/false assignments of the variables of VarsC , and let ZC be the set of
those assignments for which the clause C is not satis�ed. For each ζ ∈ ZC
construct a set FCζ by taking

FCζ =

rC⋃
t=1

ηjC,t(ζ|VarsjC,t ).
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Now we construct the universe of the output Hitting Set instance by tak-

ing U =
⋃n/p
i=1 Ui, while the family F is de�ned as follows. The family F

comprises:

� all the sets contained in A↑i , for each i = 1, 2, . . . , n/p;
� all the sets contained in Bi, for each i = 1, 2, . . . , n/p; and
� all the sets FCζ for C ∈ Cls and ζ ∈ ZC .

Finally, we set budget k = n/p · p′+1
2 and output the instance (U,F , k) of

Hitting Set. Note that |U | ≤ (1 + α/3)n, which, together with the pre-
liminary blow-up of the universe size due to introducing dummy variables,
gives a total increase of the universe size by a multiplicative factor at most
(1 + α/3)2 ≤ 1 + α (as α < 1).

We now argue equivalence of the instances. Assume �rst that ϕ admits a
satisfying assignment ψ : Vars→ {⊥,>}. Construct a set X by taking

X =

n/p⋃
i=1

Ui \ ηi(ψ|Varsi),

and observe that |X| = k. We claim that X is a solution to the Hitting

Set instance (U,F , k). For any i ∈ [n/p] and any F ∈ A↑i we have that

|F | = |X ∩Ui| = p′+1
2 and |Ui| = p′, so X ∩ F must be nonempty. Moreover,

we have that Ui \X ∈ Im(ηi) by the de�nition of X, so X ∩ F 6= ∅ for any
F ∈ Bi.

Now consider any C ∈ Cls and any ζ ∈ ZC . Since C is satis�ed by the
assignment ψ, there exists a variable x such that x belongs to some group
VarsjC,t and a literal of x satis�es C. Let j = jC,t. Since ζ does not satisfy C,
we in particular have that ψ|Varsj 6= ζ|Varsj . Hence FCζ ∩ Uj = ηj(ζ|Varsj ) 6=
ηj(ψ|Varsj ) = Uj \X. Since |X ∩Uj | = p′+1

2 , |FCζ ∩Uj | = p′−1
2 , |Uj | = p′ and

FCζ ∩ Uj 6= Uj \X, we have that FCζ ∩X ∩ Uj 6= ∅ and we are done with the
�rst implication.

Conversely, assume that there exists a set X ⊆ U , |X| ≤ k, that has a

nonempty intersection with every set of F . First observe that |X∩Ui| ≥ p′+1
2

for each i ∈ [n/p], since otherwise |Ui \X| ≥ p′+1
2 and X would not hit any

subset of Ui \ X of size p′+1
2 , but A↑i ⊆ F . Since |X| ≤ k = n/p · p′+1

2 and

sets X ∩ Ui are pairwise disjoint, we infer that |X| = k and |X ∩ Ui| = p′+1
2

for each i ∈ [n/p]. Moreover, since X ∩ F 6= ∅ for each F ∈ Bi, we infer
that Ui \X ∈ Im(ηi). For each i let us construct an assignment ψi : Varsi →
{⊥,>} by taking ψi = η−1i (Ui\X). We claim that ψ =

⋃n/p
i=1 ψi is a satisfying

assignment for ϕ.
Take any clause C ∈ Cls, and assume for the sake of contradiction that

ψ does not satisfy C. Let ζ = ψ|VarsC ; then we have that ζ ∈ ZC by the
de�nition of ZC . Since X was a solution, we have that X ∩ FCζ 6= ∅; hence
X ∩ FCζ ∩ Uj 6= ∅ for some j = jC,t. By the de�nition of FCζ we have that
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FCζ ∩Uj = ηj(ζ|Varsj ) = ηj(ψ|Varsj ). On the other hand, by the de�nition of

ψ we have that Uj \X = ηj(ψ|Varsj ). Consequently Uj \X = FCζ ∩ Uj , and
so X ∩ FCζ ∩ Uj = ∅, a contradiction. ut

Observe that the proof of Theorem 14.35 substantially depends on the fact
that the starting point is an instance of q-SAT for a constant q, instead of
arbitrary CNF-SAT. This is used to be able to construct the families ZC : if
a clause could be arbitrarily large, then the size of the family ZC would be
exponential in n, and the reduction would use exponential time. Hence, the
lower bound of Theorem 14.35 holds only under the assumption of SETH,
and not under the weaker assumption that CNF-SAT cannot be solved in
time O∗((2− ε)n) for any ε > 0.

Lower bounds of a similar �avor to Theorem 14.35 can be proved for some
other problems; examples include Set Splitting parameterized by the size
of the universe, or NAE-SAT parameterized by the number of variables (see
Exercise 14.16). Both these problems do not admit O∗((2− ε)n) algorithms
for any ε > 0, unless SETH fails.

Recall, however, that for the Hitting Set problem we have also a
dynamic-programming algorithm working in time O∗(2m), where m is the
size of the family; equivalently, Set Cover can be solved in time O∗(2n),
where n is the size of the universe (see Theorem 6.1). Is the constant 2 in
the base of the exponent optimal also in this case? Actually, we neither have
a faster algorithm, nor are able to link non-existence of such to SETH. This
motivates the following conjecture; q-Set Cover is the Set Cover problem
with an additional assumption that every F ∈ F has cardinality at most q.

Conjecture 14.36 (Set Cover Conjecture, [112]). Let λq be the in�ni-
mum of the set of constants c such that q-Set Cover can be solved in time
O∗(2cn), where n is the size of the universe. Then limq→∞ λq = 1. In partic-
ular, there is no algorithm for the general Set Cover problem that runs in
O∗((2− ε)n) for any ε > 0.

It appears that several essentially tight lower bounds for classic parameter-
ized problems can be established under the Set Cover Conjecture. Therefore,
the question of �nding links between SETH and the Set Cover Conjecture
seems like a natural research direction.

Theorem 14.37 ([112]). Unless the Set Cover Conjecture fails,

� Steiner Tree cannot be solved in time O∗((2− ε)`) for any ε > 0, where
` is the target size of the tree;

� Connected Vertex Cover cannot be solved in time O∗((2 − ε)k) for
any ε > 0, where k is the target size of the solution;

� Subset Sum cannot be solved in time O∗((2− ε)m) for any ε > 0, where
m is the number of bits of the encoding of the target sum t.
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14.5.2 Dynamic programming on treewidth

Recall that in Chapter 7 we have learned how to design dynamic-programming
routines working on a tree decomposition of a graph. For many classic prob-
lems with simple formulations, the straightforward dynamic program has
running time O∗(ct) for some typically small constant c. For instance, for
Independent Set one can obtain running time O∗(2t), while for Dominat-
ing Set it is O∗(3t). The intuitive feeling is that this running time should be
optimal, since the natural space of states exactly corresponds to the informa-
tion about a subtree of the tree decomposition that needs to be remembered
for future computations. In other words, every state is meaningful on its own,
and can lead to an optimal solution at the end. It is natural to ask whether
under the assumption of SETH we can support this intuition by a formal
lower bound.

This is indeed the case, and we can use a similar approach as that for
Theorem 14.19 (we sketched the main ideas behind its proof in the discussion
after the statement). In this section we will discuss in detail the case of the
Independent Set problem parameterized by pathwidth, which turns out
not to admit an O∗((2 − ε)p) algorithm for any ε > 0, assuming SETH.
Before we proceed with a formal argumentation, let us discuss the intuition
behind the approach. Note that a lower bound for pathwidth is even stronger
than for treewidth.

We start the reduction from an arbitrary CNF-SAT instance on n vari-
ables and m clauses. The idea is to create a bundle of n very long paths
P 1, P 2, . . . , Pn of even length, corresponding to variables x1, x2, . . . , xn. As-
sume for now that on each of these paths the solution is allowed to make
one of two choices: incorporate into the independent set either all the odd-
indexed vertices, or all the even-indexed vertices. Then for every clause we
construct a clause veri�cation gadget and attach it to some place of the bun-
dle. The gadget is adjacent to paths corresponding to variables appearing
in the clause, and the attachment points re�ect whether the variable's ap-
pearance is positive or negative (glance at Fig. 14.9 for an idea of how this
will be technically carried out). As usual, the role of the clause gadget is to
verify that the clause is satis�ed. Satisfaction of the clause corresponds to
the condition that at least one of the attachment points of the clause gadget
needs to be not chosen into the constructed independent set; hence the clause
gadget needs to have the following property: the behavior inside the gadget
can be set optimally if and only if at least one of the attachment points is
free. Fortunately, it is possible to construct a gadget with exactly this prop-
erty, and moreover the gadget has constant pathwidth, so it does not increase
much the width of the whole construction. See Fig. 14.8 and Claim 14.39 for
the implementation.

One technical problem that we still need to overcome is the �rst technical
assumption about the choices the solution makes on the paths P i. It is namely
not true that on a path of even length there are only two maximum-size
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κ1 κ2 κ3 κ4 κ5 κ6

Fig. 14.8: Gadget M6 with maximum independent set Z4 (i.e., the one with
Z4 ∩ I = {κ4}) highlighted

independent sets: the odd-indexed vertices and the even-indexed vertices. The
solution can �rst start with picking only odd-indexed vertices, then make a
gap of two vertices, and continue further with even-indexed vertices. Thus, on
each path there can be one �cheat� where the solution �ips from odd indices
to even indices. The solution to this problem is a remarkably simple trick
that is commonly used in similar reductions. We namely repeat the whole
sequence of clause gadgets n+ 1 times, which ensures that at most n copies
are spoiled by possible cheats, and hence at least one of the copies is attached
to area where no cheat happens, and hence the behavior of the solution on
the paths P i correctly encodes some satisfying assignment of the variable set.

We now proceed to the formal argumentation.

Theorem 14.38. Suppose there exists a constant ε > 0 and an algorithm
that, given an integer k and a graph G with its path decomposition of width
p, checks whether G admits an independent set of size k in time O∗((2−ε)p).
Then CNF-SAT can be solved in time O∗((2−ε)n), and in particular SETH
fails.

Proof. We provide a polynomial-time reduction that takes a CNF-SAT in-
stance ϕ on n variables, and constructs an instance (G, k) of Independent
Set together with a path decomposition of G of width n + O(1). Provided
that the supposed faster algorithm for Independent Set existed, we could
compose the reduction with this algorithm and solve CNF-SAT in time
O∗((2− ε)n).

We �rst make an auxiliary gadget construction that will be useful in the
reduction. LetMr be the graph depicted in Fig. 14.8, consisting of a sequence
of r triangles with each two consecutive ones connected by two edges, and two
pendant vertices attached to the �rst and the last triangle. By κ1, κ2, . . . , κr
we denote the degree-2 vertices in the triangles, as shown on Fig. 14.8, and
we also denote I = {κ1, κ2, . . . , κr}. The following claim, whose proof is left
to the reader as Exercise 14.14, summarizes all the properties of Mr that we
will need.

Claim 14.39. Assume r is even. Then the maximum size of an independent
set in Mr is equal to r + 2, and each independent set of this size has a
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nonempty intersection with I. Moreover, for every a = 1, 2, . . . , r there exists
an independent set Za in Mr such that |Za| = r + 2 and Za ∩ I = {κa}.
Finally, the graph Mr has pathwidth at most 3.

Thus, graph Mr can be thought of as a gadget encoding a single 1-in-r
choice. A similar behavior could be modelled by taking Mr to be a clique on
r vertices, but the crucial property is that Mr has constant pathwidth. In
the reduction we will use multiple copies of Mr for various values of r. For a
copy H of Mr, by κa(H), Za(H), and I(H) we denote the respective objects
in H.

We now proceed to the construction itself. Let Vars = {x1, x2, . . . , xn},
Cls = {C1, C2, . . . , Cm} be the variable and the clause set of ϕ, respectively.
For C ∈ Cls, by |C| we will denote the number of literals appearing in
C, and let us enumerate them arbitrary as `C1 , `

C
2 , . . . , `

C
|C|. By duplicating

some literals if necessary we will assume that |C| is even for each C ∈ Cls.
Without loss of generality we assume that no clause of Cls contains two
opposite literals of the same variable, since such clauses are satis�ed in every
assignment.

We �rst construct an auxiliary graph G0 as follows. Introduce n paths
P 1, P 2, . . . , Pn, each having 2m vertices. Let pi0, p

i
1, . . . , p

i
2m−1 be the vertices

of P i in the order of their appearance. For each clause Cj , construct a graph
Hj being a copy of M|Cj |. For every a = 1, 2, . . . , |Cj |, let xia be the variable

appearing in literal `
Cj
a . If `

Cj
a = xia then connect κa(Hj) with p

ia
2j−2, and if

`
Cj
a = ¬xia then connect κa(Hj) with p

ia
2j−1. This concludes the construction

of the graph G0.
To construct the output graph G, we create n+ 1 copies of the graph G0;

denote them by G1, G2, G3, . . . , Gn+1. We follow the same convention that
an object from copy Ga, for a = 1, 2, . . . , n + 1, is denoted by putting Ga
in brackets after the object's name in G0. Connect the copies sequentially
as follows: for each a = 1, 2, . . . , n and each i = 1, 2, . . . , n, connect vertices
pi2m−1(Ga) and pi0(Ga+1). This concludes that construction of graph G. The
following claim, whose proof is left to the reader as Exercise 14.15, veri�es
that G indeed has low pathwidth.

Claim 14.40. G admits a path decomposition of width at most n+ 3, which
furthermore can be computed in polynomial time.

Finally, we set the expected size of the independent set to be k =

(n + 1) ·
(
mn+

∑m
j=1(|Cj |+ 2)

)
. It now remains to argue that G admits

an independent set of size k if and only if ϕ is satis�able.
Assume �rst that ϕ admits a satisfying assignment ψ : Vars → {⊥,>}.

We �rst construct an independent set X0 of size mn +
∑m
j=1(|Cj | + 2) in

G0. For every i = 1, . . . , n, if ψ(xi) = ⊥ then in X0 we include all vertices
pib with even b, and if ψ(xi) = > then we include all vertices pib with odd b.

For each clause Cj �x an index aj such that the literal `
Cj
aj satis�es Cj in the
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2j

2j + 1

P 1 P 2 P 3 P 4 P 5 P 6

G1

G2

G3

...

Fig. 14.9: Constructions in the proof of Theorem 14.38. Left side: Connections
adjacent to a clause gadget Hj for Cj = x1∨¬x2∨¬x4∨x6, together with the
constructed independent set for variable assignment ψ(x4) = ψ(x6) = ⊥ and
ψ(x1) = ψ(x2) = ψ(x3) = ψ(x5) = >. Note that the behavior in the gadget
Hj has been set according to the choice of literal ¬x4 as the literal satisfying
Cj , but we could also choose literal x1. Right side: Arranging copies of G0

into G

assignment ψ; let xij be the variable appearing in this literal. Then include
into X0 the independent set Zaj (Hj) given by Claim 14.39.

Clearly |X0| = mn+
∑m
j=1(|Cj |+2). We now verify that X0 is independent

in G0. From the construction it directly follows that the vertices of X lying
on paths P i are pairwise nonadjacent, and also vertices lying in di�erent
gadgets Hj are nonadjacent. Vertices of X0 lying in the same gadget Hj

are nonadjacent by Claim 14.39. It remains to verify that no vertex of X0

belonging to a gadget Hj can see any vertex of X0 lying on any path P i. The
only vertices of Hj adjacent to the vertices outside Hj are vertices of I(Hj),
and we have X0 ∩I(Hj) = {κaj (Hj)}. The only neighbor of κaj (Hj) outside

Hj is the vertex p
ij
2j−2 if `

Cj
aj = xij , or p

ij
2j−1 if `

Cj
aj = ¬xij . Since `

Cj
aj satis�es

Cj in the assignment ψ, it follows from the de�nition of X0 that precisely
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this vertex on P ij is not chosen to X0. So indeed X0 is an independent set
in G0.

Let X1, X2, . . . , Xn+1 be the images of X0 in the copies G1, G2, . . . , Gn+1,
and let X =

⋃n+1
i=1 Xi. Clearly |X| = k, and it follows easily from the con-

struction that X is independent: for every edge pi2m−1(Ga)pi0(Ga+1) con-
necting each two consecutive copies, exactly one of the assertions holds:
pi2m−1(Ga) ∈ Xa or pi0(Ga+1) ∈ Xa+1.

We are left with the converse implication. For i = 1, 2, . . . , n, let P̂ i =
G[
⋃n+1
a=1 V (P i(Ga))]. Observe that P̂ i is a path on (n+ 1) · 2m vertices, and

thus the maximum size of an independent set in P̂ i is (n+ 1)m. Assume that
G admits an independent set X of size k. We then have that |X ∩ V (P̂ i)| ≤
(n + 1)m for each i = 1, 2, . . . , n, and by Claim 14.39 we have that |X ∩
V (Hj(Ga))| ≤ |Cj |+ 2 for each j = 1, 2, . . . ,m and a = 1, 2, . . . , n+ 1. Since

the sum of these upper bounds through all the paths P̂ i and gadgets Hj(Ga)
is exactly equal to k, we infer that all these inequalities are in fact equalities:
|X∩V (P̂ i)| = (n+1)m for each i = 1, 2, . . . , n, and |X∩V (Hj(Ga))| = |Cj |+2
for each j = 1, 2, . . . ,m and a = 1, 2, . . . , n+ 1.

Examine now one path P̂ i and observe that any independent set of size
(n+ 1)m in P̂ i can leave at most one pair of consecutive vertices on P̂ i not
chosen. We will say that the copy Ga is spoiled by the path P̂

i if V (P i(Ga))\X
contains a pair of consecutive vertices on P i(Ga). It then follows that each
path P̂ i can spoil at most one copy Ga, so there exists at least one copy
Ga0 that is not spoiled at all. Recall that Ga0 is a copy of G0; let X0 ⊆
V (G0) be the set of originals of the vertices of the set V (Ga0) ∩X. We then
have that X0 contains every second vertex on each path P i, beginning with
pi0 and �nishing on pi2m−2, or beginning with pi1 and �nishing on pi2m−1.
Moreover, X0∩V (Hj) is a maximum-size independent set in each gadget Hj .
By Claim 14.39 it follows that for each j = 1, 2, . . . ,m there exists an index
aj such that κaj (Hj) ∈ X0.

Let ψ : Vars → {⊥,>} be an assignment de�ned as follows: ψ(xi) =
⊥ if X0 ∩ V (P i) = {pi0, pi2, . . . , pi2m−2}, and ψ(xi) = > if X0 ∩ V (P i) =
{pi1, pi3, . . . , pi2m−1}. Consider now any clause Cj , and let xij be the variable

appearing in the literal `
Cj
aj . Recall that κaj (Hj) ∈ X0, and it is adjacent to

p
ij
2j−2 if `

Cj
aj = xij , or to p

ij
2j−1 if `

Cj
aj = ¬xij . As X0 is independent, we infer

that this vertex on P ij does not belong to X0. Hence ψ(xij ) = > if `
Cj
aj = xij

and ψ(xij ) = ⊥ if `
Cj
aj = ¬xij , by the de�nition of ψ. In both cases we can

conclude that the literal `
Cj
aj satis�es Cj in the assignment ψ. Since Cj was

chosen arbitrarily, we infer that ψ satis�es ϕ. ut

Under SETH we can also prove the optimality of known dynamic-programming
routines for many other problems. The following theorem provides a handful
of the most important examples (note that the lower bound for q-Coloring
is given only for tree decompositions and not path decompositions).
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Theorem 14.41 ([113, 118, 325]). Assume that CNF-SAT cannot be
solved in time O∗((2−ε′)n) for any ε′ > 0. Then for every ε > 0 the following
holds (p/t is the width of a given path/tree decomposition of the input graph):

� Dominating Set cannot be solved in time O∗((3− ε)p);
� Odd Cycle Transversal cannot be solved in time O∗((3− ε)p);
� q-Coloring cannot be solved in time O∗((q−ε)t), for any constant q ≥ 3;
� Steiner Tree cannot be solved in time O∗((3− ε)p);
� Feedback Vertex Set cannot be solved in time O∗((3− ε)p);
� Connected Vertex Cover cannot be solved in time O∗((3− ε)p);
� Hamiltonian Cycle cannot be solved in time O∗((2 +

√
2− ε)p).

Note that for the last three points, naive dynamic-programming routines
work in slightly super-exponential time, which can be improved to single ex-
ponential using the techniques of Chapter 11. In particular, the lower bounds
given by Theorem 14.41 for Steiner Tree, Feedback Vertex Set, and
Connected Vertex Cover match the randomized upper bounds given by
the Cut & Count technique. Therefore, in these examples the bases of ex-
ponents in running times given by Cut & Count are not just coincidental
numbers stemming from the technique, but match inherent properties of the
problems themselves.

Observe also that all the lower bounds mentioned in Theorem 14.41 prove
that the optimal base of the exponent is a number larger than 2, in most
cases 3. In the case of Independent Set the reduction intuitively embed-
ded the 2n search space into 2p states of the dynamic program, which was
very convenient as we could use a one-to-one correspondence between vari-
ables xi and paths Pi. In the case of, say, Dominating Set, the reduction
should embed 2n possible variable assignments into 3n

′
states of the dynamic

program, where n′ = n · log3 2. Hence, in the resulting decomposition we can-
not have one element of a bag per each variable, but every element of a bag
has to bear information about more than one variable; more precisely, about
log2 3 ≈ 1.585 variables. Needless to say, this creates technical di�culties in
the proof.

These di�culties can be overcome using a similar technique as in the proof
of the lower bound for Hitting Set parameterized by the size of the universe
(Theorem 14.35). We namely partition the variables into groups of size q for

some large constant q, and assign q′ =
⌈

q
log2 3

⌉
vertices of a bag to each

group. In this manner, for each group we can encode all 2q ≤ 3q
′
variable

assignments as possible interactions of the solution with the assigned subset
of the bag. Also, the pathwidth of the resulting graph will be approximately

n · q′q ≤ n
log2 3 · (1 + α) for some α converging to zero as q grows to in�nity.

As in the case of Theorem 14.35, it is somewhat problematic to extract an
assignment of a particular clause from a group in order to check it against
a clause gadget. This is done via an additional layer of group gadgets that
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are responsible for decoding the assignment for a group; we refer the reader
to [118, 325] for details.

14.5.3 A re�ned lower bound for Dominating Set

In Section 14.4 we have seen that ETH can be used to provide estimates of
the magnitude of the function of k appearing in the exponent of n for W[1]-
hard problems. In particular, in Theorem 14.23 we have proved that, unless
ETH fails, Dominating Set does not admit an algorithm with running time
f(k) · no(k) for any computable function f . Again, it appears that having
assumed SETH we can establish even more precise lower bounds. This is
exempli�ed in the following theorem.

Theorem 14.42. Unless CNF-SAT can be solved in time O∗((2− ε′)n) for
some ε′ > 0, there do not exist constants ε > 0, k ≥ 3 and an algorithm
solving Dominating Set on instances with parameter equal to k that runs
in time O(Nk−ε), where N is the number of vertices of the input graph.

Proof. For the sake of contradiction assume that such constants ε > 0, k ≥ 3
and such an algorithm does exist. We are going to present an algorithm for
CNF-SAT working in time O∗(2δn) for δ = 1− ε

k < 1.
Let ϕ be the input instance of CNF-SAT, let Vars be the variable set

of ϕ, and let n,m be the numbers of variables and clauses of ϕ, respec-
tively. Partition Vars into k parts Vars1,Vars2, . . . ,Varsk, each of size at
most dn/ke. For every part Varsi and each of 2|Varsi| possible assignments
ψ : Varsi → {⊥,>}, create a vertex viψ. For each i ∈ [k], create an additional

vertex wi and let Vi be the set of vertices v
i
ψ created for the part Varsi plus

the vertex wi. Make Vi into a clique. For each clause C of ϕ, create a vertex
uC . For every i ∈ [k] and every assignment ψ of Varsi, create an edge uCv

i
ψ

if and only if Varsi contains a variable xi whose literal appears in C, and
moreover ψ evaluates xi so that this literal satis�es C. Let G be the resulting
graph and let N = |V (G)|. Observe that N ≤ k ·(1+2dn/ke)+m = O∗(2n/k),
so G contains at most

(
N
2

)
≤ O∗(22n/k) ≤ O∗(22n/3) edges. Moreover, G can

be constructed in time O∗(22n/k) ≤ O∗(22n/3).

The intuition is as follows. Vertices wi ensure that in the optimum so-
lution we will need to pick exactly one vertex from every clique Vi. The
vertex picked from Vi encodes the assignment of variables of Varsi, and
domination of each vertex uC checks satisfaction of the corresponding
clause C. Thus, the space of all the

∏k
i=1 |Vi| k-tuples that are candi-

dates for a dominating set in G corresponds to the space of all the 2n

variable assignments for the input formula ϕ.
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We now claim that G admits a dominating set of size k if and only if ϕ is
satis�able. If ϕ admits a satisfying assignment ψ : Vars → {⊥,>}, then let
us construct a set X = {viψ|Vi : i ∈ [k]}. Observe that |X| = k and X is a

dominating set in G: each clique Vi is dominated by viψ|Vi
, while each vertex

uC is dominated by the vertex viψ|Vi
for any part Vi that contains a variable

whose literal satis�es C.
Conversely, let X be a dominating set of size k in G. Since every vertex

wi is dominated by X and N [wi] = Vi, we infer that X contains exactly one
vertex from each clique Vi, and no other vertex. Let us de�ne assignment
ψi : Varsi → {⊥,>} for each i ∈ [k] as follows: if X ∩ Vi = {wi} then put
an arbitrary assignment as ψi, and otherwise ψi is such that X ∩Vi = {viψi}.
Let ψ =

⋃
i∈[k] ψi; we claim that the assignment ψ satis�es the input formula

ϕ. Take any clause C and examine the vertex uC . Since uC /∈ X, uC is
dominated by a vertex uiψi ∈ X for some i ∈ [k]. By the de�nition of the edge
set of G we infer that Varsi contains a variable whose literal is present in C,
and which is evaluated under the assignment ψi so that C becomes satis�ed.
Since ψi = ψ|Varsi , the same literal satis�es C in the assignment ψ.

To conclude the proof, observe that we could solve the CNF-SAT prob-
lem by pipelining the presented reduction with the supposed algorithm for
Dominating Set on instances with parameter k. As argued, the reduction
runs in time O∗(22n/3), while the application of the algorithm for Dominat-
ing Set takes time O(Nk−ε) = 2n·(1−ε/k) · (n + m)O(k). Since ε > 0 and k
is a constant, this means that CNF-SAT can be solved in time O∗(2δn) for
δ = 1− ε

k < 1. ut

Note that the trivial algorithm for Dominating Set that veri�es all k-
tuples of vertices runs in time O(Nk ·(N+M)) on graphs with N vertices and
M edges. However, it is known that this algorithm can be slightly improved,
to running time O(Nk+ok(1)). Thus, Theorem 14.42 essentially states that it
is hard to break the barrier of the cardinality of the brute-force search space.

Exercises

14.1 (l). Prove the randomized analogues of Theorems 14.4 and 14.5:

(a) Assuming randomized ETH, there exists a constant c > 0 such that no randomized
two-sided error algorithm for 3-SAT can achieve running time O∗(2c(n+m)).

(b) Randomized SETH implies randomized ETH.

14.2. Prove Theorem 14.6, that is, verify that the following problems admit linear reduc-
tions from 3-SAT:

(a) Vertex Cover (l),
(b) Dominating Set (l),
(c) Feedback Vertex Set (l),
(d) 3-Coloring,
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(e) Hamiltonian Cycle.

14.3. Prove Theorem 14.9, that is, verify that the following problems admit reductions
with linear output size from the Planar 3-SAT problem (assuming the existence of a
variable circuit, if needed):

(a) Planar Vertex Cover,
(b) Planar Dominating Set,
(c) Planar Feedback Vertex Set,
(d) Planar 3-Coloring (A),
(e) Planar Hamiltonian Cycle (A).

14.4 (l). Using Theorem 14.13 as a black box, prove that the existence of anO∗(2o(k log k))

algorithm for k × k Permutation Clique would contradict randomized ETH.

14.5. In the 2k × 2k Bipartite Permutation Independent Set we are given a graph
G with the vertex set [2k] × [2k], where every edge is between I1 = [k] × [k] and I2 =

([2k]\ [k])×([2k]\ [k]). The question is whether there exists an independent set X ⊆ I1∪I2
in G that induces a permutation of [2k]. Construct a polynomial-time reduction that takes
an instance of k× k Permutation Clique and outputs an equivalent instance of 2k× 2k

Bipartite Permutation Independent Set. Infer that 2k×2k Bipartite Permutation
Independent Set does not admit an O∗(2o(k log k)) algorithm unless ETH fails.

14.6. Construct a polynomial-time reduction that takes an instance of 2k× 2k Bipartite
Permutation Independent Set and outputs an equivalent instance of 2k × 2k Permu-
tation Hitting Set with thin sets. Infer that k× k Permutation Hitting Set with
thin sets does not admit an O∗(2o(k log k)) algorithm unless ETH fails, which is the �rst
half of Theorem 14.16.

14.7 (l). Construct a polynomial-time reduction that takes an instance of k×k Permu-
tation Hitting Set with thin sets and outputs an equivalent instance of k×k Hitting
Set with thin sets. Infer that k × k Hitting Set with thin sets does not admit an
O∗(2o(k log k)) algorithm unless ETH fails, which is the second half of Theorem 14.16.

14.8 (A). In the Maximum Cycle Cover problem the input consists of a graph G and
an integer k, and the question is whether one can �nd a collection of at least k vertex-
disjoint cycles in the graph so that every vertex belongs to exactly one of these cycles.
Prove that unless ETH fails, Maximum Cycle Cover does not admit an FPT algorithm
with running time O∗(2o(p log p)), where p is the width of a given path decomposition of
G.

14.9. In the Component Order Integrity problem we are given a graph G and two
integers k and `. The task is to determine whether there exists a set of vertices X of cardi-
nality at most k such that every connected component of G\X contains at most ` vertices.
Prove that Component Order Integrity admits an FPT algorithm with running time
O∗(2O(k log `)), but the existence of an algorithm with running time O∗(2o(k log `)) would
contradict ETH.

14.10 (A). Using Theorem 14.20 as a black box, prove the following statement: There
exists a universal constant δ > 0 such that, unless P 6= NP, there is no constant λ and a
kernelization algorithm for Edge Clique Cover that reduces the number of vertices to
at most λ · 2δk. In particular, Edge Clique Cover does not admit a 2o(k) kernel unless
P = NP.

14.11 (l). Modify the construction in the proof of Theorem 13.31 to get a parameter-
ized reduction from Subgraph Isomorphism to Odd Set where the parameter of the
constructed instance is linear in the number of edges of H in the Subgraph Isomorphism
instance.
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14.12 (l). Modify the construction in the proof of Theorem 13.33 to get a parameterized
reduction from Subgraph Isomorphism to Strongly Connected Steiner Subgraph
where the parameter of the constructed instance is linear in the number of edges of H in
the Subgraph Isomorphism instance.

14.13. The input of the Unit Square Independent Set problem is a set of axis-parallel
unit squares in the plane and an integer k; the task is to select a set of k pairwise disjoint
squares. Show that Unit Square Independent Set is W[1]-hard and, unless ETH fails,

it has no f(k)no(
√
k)-time algorithm for any computable function f .

14.14 (l). Prove Claim 14.39.

14.15 (l). Prove Claim 14.40.

14.16. In the NAE-SAT problem the input consists of a formula ϕ in the conjunctive
normal form (CNF), and the question is whether there exists an assignment of the variables
such that in each clause of ϕ there is at least one literal evaluated to true and at least one
evaluated to false. Prove that, unless SETH fails, for any ε > 0 there does not exist an
algorithm that solves NAE-SAT in time O∗((2− ε)n), where n is the number of variables
appearing in ϕ.

14.17. Show that the standard reduction from the q-SAT problem to Independent Set
proves that unless SETH fails, for any ε > 0 there is no O∗((

√
2− ε)p)-time algorithm for

the Independent Set problem given a path decomposition of width p.

14.18 (A). In the Connected Dominating Set problem the input consists of a graph
G and an integer k, and the question is whether there exists a subset X ⊆ V (G) of at most
k vertices such that G[X] is connected and N [X] = V (G). Prove that, unless SETH fails,
for any ε > 0 there does not exist an algorithm that, given a Connected Dominating
Set instance (G, k) together with a path decomposition of G of width p, solves (G, k) in
time O∗((4− ε)p).

14.19. Prove that, given a graph G, one can check whether G has a dominating set of size
at most 2 in O(|V (G)|ω) time, where ω is the matrix multiplication exponent.

Hints

14.1 Follow the lines of the proofs of Theorems 14.4 and 14.5, but, whenever some algo-
rithm Ac is used, repeat its usage many times in order to reduce the error probability.

14.2 Look at classic NP-hardness reductions for these problems that can be found in the
literature.

14.3

(a) Replace variables and clauses by gadgets, but watch out not to spoil planarity around
a variable gadget when edges corresponding to positive and negative occurrences in-
terleave around the vertex corresponding to the variable. To �x this, use a cycle of
length 2p for a variable gadget, where p is the number of occurrences of the variable.

(b) Design a similar construction as for Planar Vertex Cover, but use a cycle of length
3p.

(c) Modify slightly the construction for Planar Vertex Cover by applying the standard
reduction from Vertex Cover to Feedback Vertex Set at the end.
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Fig. 14.10: The ladder graph

(d) Use the variable circuit x1−x2− . . .−xn−x1 to propagate colors chosen to represent
true and false assignment. Carefully design a planar variable gadget of size Θ(p),
where p is the number of occurrences of the variable. Make sure that your gadget both
propagates colors representing true and false to the next variable, and also makes use
of them in the check against the clause gadget. The clause gadget can be of constant
size.

(e) Use the variable circuit x1−x2−. . .−xn−x1 as the `spine' of the intended Hamiltonian
cycle. The Hamiltonian cycle should be able to make small detours from the spine into
clause gadgets, and all clause gadgets can be visited if and only if the input formula
is satis�able. Use the ladder graph depicted in Fig. 14.10 as your variable gadget.
In the proof of correctness you will need to be very careful when arguing that the
Hamiltonian cycle cannot misbehave and jump between distant variable gadgets via
clause gadgets.

14.4 Start with the randomized version of Theorems 14.4, i.e., Exercise 14.1.(a), and verify
that the chain of reductions to k×k Clique via 3-Coloring gives also a randomized lower
bound.

14.5 By taking the complement of the graph, you may start with k × k Permutation
Independent Set. In the constructed instance of 2k × 2k Bipartite Permutation In-
dependent Set, the only possible independent sets should induce the same permutation
pattern on I1 and on I2, and this permutation pattern should correspond to a solution to
the input instance of k × k Permutation Independent Set.

14.6 Encode the constraint imposed by each edge of G using one thin set. Remember to
force the solution to be contained in I1 ∪ I2, which can also be done using thin sets.

14.7 The requirement that each column must contain at least one vertex of the solution
can easily be encoded using thin sets.

14.8 Follow the strategy sketched in the paragraph after Theorem 14.19. Start from k×k
Hitting Set with thin sets and encode choice of the solution as a choice of a perfect
matching in a Kk,k-biclique in the �rst bag. The main spine of the decomposition should
be formed by 2k paths originating in the 2k vertices of the biclique; along these paths k
cycles should `travel' at each point. A gadget verifying a set should allow closing one cycle
and beginning a new one in its place if and only if the set is hit by the solution.

14.9 For the positive result, apply a simple branching strategy. For the negative result,
start the reduction from k × k Clique and have ` = kO(1).

14.10 Since Edge Clique Cover is in NP, there exists a polynomial-time reduction
from Edge Clique Cover to 3-SAT. Consider the composition of (a) the reduction of
Theorem 14.20, (b) a supposed kernelization algorithm, and (c) the reduction back from
Edge Clique Cover to 3-SAT. Calculate an upper bound on the size of the output
instance in terms of the input one.

14.11 Let v1, . . . , v|V (H)| be the vertices of H. We include Ei,j in the universe only if vi
and vj are adjacent. The parameter is set to k′ = k + |E(H)|.
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14.12 Let v1, . . . , v|V (H)| be the vertices of H. We include the vertex yi,j and the
set of vertices E′i,j in G′ only if vi and vj are adjacent. The parameter is set to k′ =
k + 1 + 2|E(H)| = |K|+ k + |E(H)|.

14.13 The reduction in the proof of Theorem 14.34 does not work with squares: the
squares at (x+ aε, y+ aε) and (x+ 1 + aε, y+ 1 + aε) can intersect at their corners, which
was not an issue for unit disks. We show two possible workarounds.

Solution 1: Represent each pair (a, b) ∈ S[x, y] with the �ve squares at (3x+aε, 3y+aε),
(3x+ 1 + aε, 3y+ aε), (3x+ aε, 3y+ 1 + aε), (3x− 1 + aε, 3y+ aε), (3x+ aε, 3y− 1 + aε).
Set the new parameter to k′ = 5k.

Solution 2: Represent each pair (a, b) ∈ S[x, y] with a square at (x+aε−y/2, y+aε+x/2).

14.17 Create a clique of size q for each clause and a clique of size 2 for each variable.
Connect each vertex of each clique of size q with its negation in the corresponding clique
of size 2. Prove that the resulting graph has pathwidth at most 2n+O(1) for constant q.

14.18 As in the lower bound for Independent Set, the main part of the construction
consists of roughly p long �strings� that transmit a �xed choice of an assignment ψ. How-
ever, as we aim at s (4 − ε)p lower bound, each �string� needs to transmit information
about the assignment of two variables. In the Connected Dominating Set problem, the
four states of a vertex on a string may be chosen as follows: (1) not in the solution, but
dominated; (2) not in the solution, and not yet dominated; (3) in the solution, and already
connected to some �root vertex� of the constructed solution�; and (4) in the solution, but
not yet connected to the �root vertex�.
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√
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three lower bounds of Theorem 14.41 were also obtained in [325], while the next three,
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The last lower bound, for Hamiltonian Cycle, was given by Cygan, Kratsch, and Ned-
erlof [113]. Interestingly, in the same work the authors give a matching algorithm with
running time O∗((2 +

√
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Chapter 15

Lower bounds for kernelization

In this chapter we discuss methodologies for proving
lower bounds for kernelization. We describe the tech-
nique of compositionality, which is the main tool for
proving negative results about the existence of poly-
nomial kernels. We also give an introduction to weak
compositions, which can be used to provide more pre-
cise lower bounds on kernel sizes.

In Chapters 2, 9, and 12 we have learned many di�erent approaches to
designing e�cient kernelization algorithms. While some parameterized prob-
lems are naturally amenable to various preprocessing techniques, we have so
far not discussed what properties of a given problem make it resistant from
the point of view of e�cient kernelization. In Chapter 2 we have seen that
the existence of any kernelization algorithm is equivalent to the existence of
a �xed-parameter tractable algorithm for a problem. Therefore, the theory
of parameterized intractability that was discussed in Chapter 13 can be used
to investigate whether a problem admits any kernel at all. This answer is,
however, quite unsatisfactory: we have argued that the interesting kerneliza-
tion algorithms are those that have good (say, polynomial) guarantees on the
output size, and for many problems such algorithms can be indeed designed.
Under what conditions and what assumptions can we refute the existence of
a polynomial kernel for a particular �xed-parameter tractable problem?

The best known answer to this question so far comes via the framework
of compositionality . The development of this technique around the year 2008
greatly increased the interest in kernelization as a research area. Indeed, the
existence of a methodology for proving negative results about kernelization
made it possible to perform a systematic classi�cation of problems into those
that do admit polynomial kernels, and those that probably do not. Before this
breakthrough, one could only investigate how di�erent combinatorial prop-
erties of problems can be used in designing e�cient preprocessing routines,
but understanding their limitations was out of reach.

523
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In this chapter we introduce the technique of compositionality. Fortunately,
the complexity foundations of the framework are quite simple to explain, so
many of the fundamental results to be presented will be proved in a self-
contained way. However, our main goal in this chapter, as in Chapters 13
and 14, is to provide a basic practitioner's toolbox. Therefore, after presenting
the complexity foundations for the technique we illustrate its usage with a
few selected examples that re�ect various scenarios appearing in �real life�. In
particular, we discuss the notion of cross-composition, which is a convenient
formalism for applying compositionality; we describe di�erent strategies for
designing compositions, focusing on the concept of an instance selector; and
we present polynomial parameter transformations, which serve the role of
reductions in the world of kernelization lower bounds.

Finally, at the end of this chapter we present the technique of weak com-
positions. It is a variant of compositionality, using which one can prove lower
bounds on kernel sizes for problems that actually do admit polynomial ker-
nels. We provide full details of the two probably most important results of this
area: that the Vertex Cover and Feedback Vertex Set problems do not
admit kernels with bitsize O(k2−ε) for any ε > 0, unless NP * coNP/ poly.

15.1 Compositionality

Since the principles of compositionality are very natural, whereas the formal
layer can be more challenging to understand, we �rst give a description of
the intuition behind the methodology before going into formal details.

Let us take as the working example the Longest Path problem: given
a graph G and an integer k, we ask whether G contains a simple path on
k vertices. Assume for a moment that this problem admits a kernelization
algorithm that reduces the number of vertices to at most k3. More formally,
given an instance (G, k) it outputs an equivalent instance (G′, k′) such that
|V (G′)|, k′ ≤ k3. Suppose somebody gave us k7 instances of Longest Path
with the same parameter k; denote them by (G1, k), (G2, k), . . . , (Gk7 , k).
Consider now a graph H obtained by taking the disjoint union of graphs
G1, G2, . . . , Gk7 , and observe that H contains a path on k vertices if and only
if at least one of the graphs G1, G2, . . . , Gk7 does. In other words, the answer
to the instance (H, k) is equal to the logical OR of the answers to instances
(G1, k), (G2, k), . . . , (Gk7 , k). We will also say that the instance (H, k) is an
OR-composition of instances (G1, k), (G2, k), . . . , (Gk7 , k).

Now apply the assumed kernelization algorithm to the instance (H, k),
and obtain some new instance (H ′, k′) such that |V (H ′)|, k′ ≤ k3. Observe
that (H ′, k′) can be encoded in roughly k6/2 + 3 log k bits: we can encode

the adjacency matrix of H ′ in
(
k3

2

)
bits, while the encoding of k′ takes 3 log k

bits. This is, however, much less than k7, the number of the input instances!
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Therefore, during the kernelization process the algorithm must have
`forgotten' information about a vast majority of instances. The desired
k-path, however, can lure in any of them. Losing information about
this instance can change the global answer to the problem, if it is the
only one with the positive outcome. Consequently, it seems that the
kernelization algorithm would need to be able to solve some of the given
instances, or at least to reason about which of them are less prone to
having a positive answer and can be safely discarded. Such an ability
would be highly suspicious for an algorithm running in polynomial time,
since the Longest Path problem is NP-hard.

Of course, there is nothing magical in the numbers 3 and 7 that we picked
in this example, and the reasoning is much more general: a kernelization
algorithm for Longest Path with polynomial guarantees on the output size
would need to discard some information that it should not be able to identify
as useless. Our goal is therefore to put into formal terms why the described
behavior is unlikely, and link this understanding to some well-established
assumptions from complexity theory.

15.1.1 Distillation

We �rst aim to formally capture the intuition that some information has to
be lost when packing too many instances into a too small space in the kernel.
In order to achieve this, we introduce the concept of distillation, which will
be a result of pipelining a composition for a parameterized problem with a
hypothetical polynomial kernel for it. Thus, by (a) designing a composition,
and (b) proving that the existence of a distillation is unlikely, we will be
able to refute the existence of a polynomial kernel. This section is devoted
to understanding issue (b). Since parameterizations will be needed only to
formally capture the concept of kernelization, the de�nition of distillation
considers classic (that is, not parameterized) languages.

Let Σ be some �xed, constant-size alphabet that we will use for encoding
the instances.

De�nition 15.1. Let L,R ⊆ Σ∗ be two languages. An OR-distillation of L
into R is an algorithm that, given a sequence of strings x1, x2, . . . , xt ∈ Σ∗,
runs in time polynomial in

∑t
i=1 |xi| and outputs one string y ∈ Σ∗ such

that

(a) |y| ≤ p(maxti=1 |xi|) for some polynomial p(·), and
(b) y ∈ R if and only if there exists at least one index i such that xi ∈ L.
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Thus, the answer to the output instance of R is equivalent to the logical
OR of the answers to the input instances of L.

In what follows we will be considering the complexity class coNP/ poly. We
assume that the reader is familiar with the concepts of co-nondeterminism
and nonuniform complexity classes; we refer her or him to any textbook on
complexity theory for an introduction to these topics. However, for the sake
of clarity we recall now the de�nition of coNP/poly.

De�nition 15.2. We say that a language L belongs to the complexity
class coNP/ poly if there is a Turing machine M and a sequence of strings
(αn)n=0,1,2,..., called the advice, such that:

� Machine M , when given input x of length n, has access to string αn and
has to decide whether x ∈ L. Machine M works in co-nondeterministic
polynomial time. That is, it makes a polynomial number of steps that may
be chosen co-nondeterministically: If x ∈ L, the algorithm should derive
this conclusion for every possible run, whereas if x /∈ L, then at least one
run needs to �nish with this conclusion.

� |αn| ≤ p(n) for some polynomial p(·).

Note that in this de�nition αn depends on n only; in other words, for each
n we need to design a �global� advice αn that will work for all the inputs of
length n. We are now ready to state the crucial result standing behind the
compositionality framework.

Theorem 15.3. Let L,R ⊆ Σ∗ be two languages. If there exists an OR-
distillation of L into R, then L ∈ coNP/ poly.

Before we proceed to the proof, let us see the consequences of the theorem
in the form of the following corollary. In the following, whenever we talk
about NP-hardness we mean NP-hardness with respect to Karp reductions.

Corollary 15.4. If an NP-hard language L ⊆ Σ∗ admits an OR-distillation
into some language R ⊆ Σ∗, then NP ⊆ coNP/ poly.

Proof. For any language L′ ∈ NP we can construct an algorithm resolving
membership in L′ in coNP/ poly as follows. We �rst apply the NP-hardness
reduction from L′ to L, and then run the algorithm resolving membership in
L in coNP/ poly implied by Theorem 15.3. Consequently NP ⊆ coNP/ poly,
which is a highly unexpected outcome from the point of view of the complex-
ity theory. ut

The assumption that NP * coNP/ poly may be viewed as a stronger vari-
ant of the statement that NP 6= coNP. The latter claim means that veri�ca-
tion of certi�cates in polynomial time cannot be simulated by veri�cation of
counterexamples in polynomial time. In the claim that NP * coNP/poly
we assume further that such a simulation is impossible even if the co-
nondeterministic polynomial-time algorithm resolving a problem in NP is
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given access to some polynomial-size advice string that depends on the input
length only. It is known that NP ⊆ coNP/ poly implies that ΣP

3 = PH, that
is, the polynomial hierarchy collapses to its third level. This is not as dramatic
a collapse as P = NP, but it is serious enough to be highly implausible.

Note here that we do not assume anything about the target language R
� it can be even undecidable. Therefore, in some sense the theorem has
an information-theoretical character. It shows that the possibility of packing
a lot of information into small space gives rise to a surprising algorithm
resolving the problem, lying roughly on the opposite side of the polynomial
hierarchy than expected. The way of organizing the information in the output
instance is not relevant at all.

Proof (of Theorem 15.3). Without loss of generality assume that Σ = {0, 1};
this can be easily done by encoding symbols of a larger alphabet using
constant-length binary strings. Let A be the assumed OR-distillation algo-
rithm, and let p(·) be a polynomial upper bounding the length of the output
of A. Without loss of generality we may assume that p(·) is nondecreasing.
Let K = p(n) so that algorithm A run on a sequence of strings, each of length
at most n, outputs a string of length at most K. Let us �x t = K + 1. Thus,
algorithm A maps the set D = (Σ≤n)t of t-tuples of input strings into the
set Σ≤K .1

Let now A = L ∩ Σ≤n and A = Σ≤n \ L be the sets of yes- and no-
instances of L of length at most n, respectively. Similarly, let B = R ∩Σ≤K
and B = Σ≤K \R. By the assumption that A is an OR-distillation, we have
that A maps (A)t into B, and D \ (A)t into B.

For strings x ∈ Σ≤n and y ∈ Σ≤K , we will say that x is covered by y if
there exists a t-tuple (x1, x2, . . . , xt) ∈ D such that (a) x = xi for some i,
and (b) A(x1, x2, . . . , xt) = y. In other words, x is contained in some tuple
from the preimage of y. More generally, for X ⊆ Σ≤n and Y ⊆ Σ≤K we will
say that X is covered by Y if every element of X is covered by at least one
element of Y . The following claim will be the core argument in the proof.

Claim 15.5. There exists a set Y ⊆ B such that

(a) |Y | ≤ n+ 1, and
(b) Y covers A.

Since A−1(B) = (A)t, no element of B can cover any string outside A.
Of course, B itself covers A, but the size of B can be huge in terms
of n. The gist of the proof is that we can �nd a covering set of size
polynomial in n, rather than exponential.

1 For a set S, notation St and S≤t denotes the set of sequences of elements from S that
have length exactly t, resp. at most t.
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Before we proceed to the proof of Claim 15.5, let us shed some light on
its motivation by showing how it implies Theorem 15.3. That is, we would
like to prove that L ∈ coNP/ poly. According to the de�nition, we need to
construct (a) an algorithm resolving membership in L in co-nondeterministic
polynomial time, and (b) a sequence of advice strings αn for n = 0, 1, 2, . . .
that will be given to the algorithm.

In our case, advice αn will be an encoding of the covering set Y . Since Y
contains at most n+1 strings, each of length at most K, the advice string αn
will be of length polynomial in n. The algorithm works as follows. Given the
input string x of length n, it tries to prove that x /∈ L. If this is the case, then
there exists a tuple (x1, x2, . . . , xt) ∈ D such that x = xi for some i, and
A(x1, x2, . . . , xt) ∈ Y . The algorithm guesses co-nondeterministically this
tuple, computes A(x1, x2, . . . , xt), and checks whether the result is contained
in the advice string αn. If indeed x /∈ L, then for at least one guess we will
compute a string belonging to Y , which is a certi�cate that x /∈ L since
Y ⊆ B. If x ∈ L, however, then by the de�nition of an OR-distillation every
tuple containing x is mapped to a string contained in B, so in particular
outside of Y .

Let us examine how the polynomial advice is used in this argument:
Claim 15.5 provides us only a proof of the existence of a small covering set
Y , and no means of computing it e�ciently. Indeed, computation of this set
would be extremely di�cult, as it depends on the actual behavior of algorithm
A on all the inputs from D. Instead, this set is provided to the algorithm in
the advice string, so there is no need to construct it. The crux is that the
constructed covering set Y works for all the input strings x of length n, and
hence we can have the same advice for all the inputs of the same length.

We now proceed to the proof of Claim 15.5. We will consecutively construct
strings y1, y2, y3, . . . ∈ B up to the point when the set Yi = {y1, y2, . . . , yi}
already covers the whole A. Let Si be the set of strings from A that are
not covered by Yi; we have that S0 = A. During the construction we will

guarantee that |Si| ≤ |A|2i , which is of course satis�ed at the beginning. Since

|A| ≤ |Σ≤n| < 2n+1 (here we use the assumption that |Σ| = 2), the construc-
tion will terminate after at most n+ 1 steps with Si being empty.

It remains to show how to construct string yi based on the knowledge of
Yi−1. Recall that algorithm A maps every tuple from the set (Si−1)t ⊆ (A)t

into B. Since |B| ≤ |Σ≤K | < 2K+1, it follows by the pigeonhole principle that

there exists some y ∈ B such that |A−1(y) ∩ (Si−1)t| ≥ |(Si−1)
t|

2K+1 =
(
|Si−1|

2

)t
.

Observe now that every string from Si−1 that is contained in any tuple from
A−1(y)∩(Si−1)t is covered by y. Therefore, if we set yi = y, then every string
from every tuple from the set A−1(y)∩ (Si−1)t is contained in Si−1 \Si, since
it gets covered. Consequently A−1(y) ∩ (Si−1)t ⊆ (Si−1 \ Si)t, and hence( |Si−1|

2

)t
≤
∣∣A−1(y) ∩ (Si−1)t

∣∣ ≤ ∣∣(Si−1 \ Si)t∣∣ = |Si−1 \ Si|t.
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Fig. 15.1: The core combinatorial argument in the proof of Claim 15.5: if a
small t-dimensional product hypercube is contained in a large t-dimensional
product hypercube, and it contains at least a 1

2t fraction of all the tuples,
then the side of the small hypercube must be at least half as long as the side
of the large one. The balls within the small hypercube depict tuples from
A−1(y) ∩ (Si−1)t

We infer that |Si−1 \ Si| ≥ |Si−1|
2 , which means that |Si| ≤ |Si−1|/2 and the

condition |Si| ≤ |A|
2i follows by a trivial induction. As we have argued, this

means that the construction will terminate after at most n+1 steps, yielding
a feasible set Y . This concludes the proof of Claim 15.5, and of Theorem 15.3.

ut

15.1.2 Composition

We now formalize what it means to compose instances. Recall that in the
Longest Path example we assumed that all the input instances have the
same parameter. It appears that we can make even stronger assumptions,
which is formalized in the following de�nition.

De�nition 15.6. An equivalence relation R on the set Σ∗ is called a poly-
nomial equivalence relation if the following conditions are satis�ed:

(a) There exists an algorithm that, given strings x, y ∈ Σ∗, resolves whether
x ≡R y in time polynomial in |x|+ |y|.

(b) Relation R restricted to the set Σ≤n has at most p(n) equivalence classes,
for some polynomial p(·).

Assume, for instance, that the input to our problem is some �xed encoding
of an undirected graph. We can then de�neR as follows. First, we put into one
equivalence class all the strings from Σ∗ that do not encode any graph. We
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call such instances malformed, while all the other instances are well-formed.
Next, note that we can choose the encoding in such a manner that graphs
with encoding of length at most n have at most n vertices and at most n
edges. Therefore, if we say that two well-formed instances are R-equivalent
if the corresponding graphs have the same numbers of vertices and edges,
then Σ≤n is divided by R into at most n2 + 1 classes (+1 comes from the
malformed class) and condition (b) is satis�ed. Of course, provided that we
chose a reasonable encoding, condition (a) holds as well. If the input to the
problem was a graph and an integer k, encoded in unary, then we could in
addition re�ne R by requiring that the instances x and y have the same value
of k� we would just increase the bound on the number of equivalence classes
in Σ≤n from n2 +1 to n3 +1. In the later sections we will see that the ability
to make such assumptions about the input instances can be very useful for
streamlining the composition.

We now proceed to the main de�nition.

De�nition 15.7. Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗ × N be a pa-
rameterized language. We say that L cross-composes into Q if there exists
a polynomial equivalence relation R and an algorithm A, called the cross-
composition, satisfying the following conditions. The algorithm A takes as
input a sequence of strings x1, x2, . . . , xt ∈ Σ∗ that are equivalent with re-
spect to R, runs in time polynomial in

∑t
i=1 |xi|, and outputs one instance

(y, k) ∈ Σ∗ × N such that:

(a) k ≤ p(maxti=1 |xi|+ log t) for some polynomial p(·), and
(b) (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L.

Note that in this de�nition, contrary to OR-distillation, it is only the out-
put parameter that is small, while the whole output string y may be even
as huge as the concatenation of the input instances. Moreover, the output
parameter can also depend poly-logarithmically on the number of input in-
stances. This seemingly innocent nuance will be heavily exploited in the later
sections.

To give an example, observe that the Hamiltonian Path problem cross-
composes into Longest Path parameterized by the requested path length
as follows. For the equivalence relation R we take a relation that puts all
malformed instances into one equivalence class, while all the well-formed in-
stances are partitioned with respect to the number of vertices of the graph.
The cross-composition algorithm, given a bunch of malformed instances, re-
turns some trivial no-instance of Longest Path, while given a sequence of
graphs on n vertices, it returns the encoding of their disjoint union together
with parameter k = n. For a reasonable encoding we have that n is bounded
by the maximum length of an input string, and so condition (a) holds. Clearly,
the disjoint union of graphs on n vertices has an n-vertex path if and only if
one of the input graphs admitted a Hamiltonian path. Hence condition (b)
is satis�ed as well.
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As the reader expects, pipelining the cross-composition from an NP-hard
problem with a polynomial kernel will yield an OR-distillation of the NP-
hard problem, implying that NP ⊆ coNP/ poly. However, since the output
of an OR-distillation can be an instance of any language, we will be able to
refute the existence of a larger class of preprocessing routines.

De�nition 15.8. A polynomial compression of a parameterized language
Q ⊆ Σ∗ × N into a language R ⊆ Σ∗ is an algorithm that takes as input
an instance (x, k) ∈ Σ∗×N, works in time polynomial in |x|+k, and returns
a string y such that:

(a) |y| ≤ p(k) for some polynomial p(·), and
(b) y ∈ R if and only if (x, k) ∈ Q.
If |Σ| = 2, the polynomial p(·) will be called the bitsize of the compression.

Whenever we talk about the existence of a polynomial compression and we
do not specify the target language R, we mean the existence of a polynomial
compression into any language R.

Obviously, a polynomial kernel is also a polynomial compression by treat-
ing the output kernel as an instance of the unparameterized version of Q.
Here, by an unparameterized version of a parameterized language Q we mean
a classic language Q̃ ⊆ Σ∗ where the parameter is appended in unary af-
ter the instance. The main di�erence between polynomial compression and
kernelization is that the polynomial compression is allowed to output an in-
stance of any language R, even an undecidable one. Clearly, if R is reducible
in polynomial time back to Q, then pipelining the compression with the re-
duction gives a polynomial kernel for Q. However, R can have much higher
complexity than Q, and there are examples of natural problems for which
there exists a polynomial compression, but a polynomial kernel is not known.

We are now ready to state and prove the main theorem of this section.

Theorem 15.9. Assume that an NP-hard language L cross-composes into a
parameterized language Q. Then Q does not admit a polynomial compression,
unless NP ⊆ coNP/poly.

Proof. Let A be a cross-composition of L into Q, let p0(·) be the polyno-
mial bounding the parameter of the output instance of A, and let R be the
polynomial equivalence relation used by A. Assume further that Q admits a
polynomial compression C into some language R. Let OR(R) be a language
consisting of strings of the form d1#d2# . . .#dq such that for at least one
index i it holds that di ∈ R. Here, # is some special symbol that is arti�cially
added to Σ and is not used in any string from R. We are going to construct
an OR-distillation of L into OR(R), which by Corollary 15.4 implies that
NP ⊆ coNP/ poly. The algorithm is depicted in Fig. 15.2.

Let x1, x2, . . . , xt be the sequence of input strings and let n = maxti=1 |xi|.
Apply the following polynomial-time preprocessing: examine the strings pair-
wise and remove all the duplicates. Note that this step does not change
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Fig. 15.2: The work�ow of the algorithm in the proof of Theorem 15.9

whether at least one of the strings belongs to L. Observe that the number of
di�erent strings overΣ of length at most n is bounded by

∑n
i=0 |Σ|i ≤ |Σ|n+1.

Hence, after removing the duplicates we have that t ≤ |Σ|n+1, and so we can
assume that log t = O(n).

Partition the input strings into equivalence classes C1, C2, . . . , Cq with
respect to the relation R. By the de�nition of the polynomial equivalence
relation, this step can be performed in polynomial time, and q, the number
of the obtained classes, is bounded by some polynomial p1(n).

For j = 1, 2, . . . , q, apply the cross-composition A to the strings contained
in the class Cj , obtaining a parameterized instance (cj , kj) such that (a)
kj ≤ p0(maxx∈Cj |x| + log |Cj |), which is polynomially bounded in n and
log t, and (b) (cj , kj) ∈ Q if and only if there exists at least one instance
x ∈ Cj such that x ∈ L. Consequently, there exists an index i, 1 ≤ i ≤ t,
such that xi ∈ L if and only if there exists an index j, 1 ≤ j ≤ q, such that
(cj , kj) ∈ Q. Since log t = O(n), we infer that for some polynomial p2(·) it
holds that kj ≤ p2(n) for j = 1, 2, . . . , q.

Now apply the assumed compression algorithm C to each instance (cj , kj),
obtaining a string dj such that dj ∈ R if and only if (cj , kj) ∈ Q. Since kj ≤
p2(n) and |dj | ≤ p3(kj) for some polynomial p3(·), we have that |dj | ≤ p4(n)
for some polynomial p4(·).

Finally, merge all the strings dj into one instance d = d1#d2# . . .#dq.
From the construction it immediately follows that d ∈ OR(R) if and only if
there exists an index i, 1 ≤ i ≤ t, such that xi ∈ L. Hence, condition (b)
of OR-distillation is satis�ed. For condition (a), we have that q ≤ p1(n) and
|dj | ≤ p4(n). Consequently |d| ≤ p1(n) · (p4(n) + 1) − 1, and condition (a)
follows. ut
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As an immediate corollary of the described cross-composition of Hamil-
tonian Path into Longest Path, the NP-hardness of the Hamiltonian
Path problem, and Theorem 15.9, we obtain the following result.

Corollary 15.10. Longest Path does not admit a polynomial kernel unless
NP ⊆ coNP/poly.

We remark that it is very rare for a problem to admit such a simple cross-
composition as in the case of Longest Path. Designing a cross-composition
usually requires a very good understanding of the combinatorics of the prob-
lem together with a few ingenious insights into how the construction can be
performed. One often needs to make a clever choice of the starting language
L, and/or do a lot of technical work. In Section 15.2 we shall present in a
number of examples what kind of strategies can be employed for designing a
cross-composition.

It is somewhat interesting that the composition framework, which is basi-
cally the only tool that we have so far for proving kernelization lower bounds,
seems to be unable to distinguish polynomial kernelization from the weaker
notion of polynomial compression. It remains open whether there are natural
problems that do admit polynomial compression algorithms, but for which
the existence of a polynomial kernel can be refuted.

15.1.3 AND-distillations and AND-compositions

In the previous sections we have been always using the OR function as the
template of behavior of distillations and compositions. It is very tempting
to conjecture that the same results can be obtained when we substitute OR
with AND. We could in the same manner de�ne AND-distillation by replacing
condition (b) of OR-distillation with a requirement that the output string y
belongs to R if and only if all the input strings xi belong to L. Likewise, AND-
cross-composition is de�ned by replacing condition (b) of cross-composition
by requiring that the resulting instance (y, k) belongs to Q if and only if all
the input strings xi belong to L.

The proof of Theorem 15.9 is oblivious to whether we use the OR func-
tion or the AND function; the outcome of the constructed distillation will be
just an instance of AND(R) instead of OR(R). Our arguments behind The-
orem 15.3, however, completely break when translating them to the AND
setting. It turns out that Theorem 15.3 is still true when we replace OR-
distillations with AND-distillations, but the proof is much more di�cult, and
hence omitted in this book.

Theorem 15.11 ([160]). Let L,R ⊆ Σ∗ be two languages. If there exists
an AND-distillation of L into R, then L ∈ coNP/poly.
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As we have already mentioned, the proof of Theorem 15.9 can be trans-
lated to the AND setting in a straightforward manner; we leave checking this
fact as an easy exercise. Therefore, by replacing usage of Theorem 15.3 with
Theorem 15.11 we obtain the following result.

Theorem 15.12. Assume that an NP-hard language L AND-cross-composes
into a parameterized language Q. Then Q does not admit a polynomial com-
pression, unless NP ⊆ coNP/ poly.

As an example of a problem that admits a trivial AND-cross-composition
take the Treewidth problem: given a graph G and parameter k, verify
whether tw(G) ≤ k. Since treewidth of a disjoint union of a family of
graphs is equal to the maximum over treewidths of these graphs, the disjoint
union yields an AND-cross-composition from the unparameterized version of
Treewidth into the parameterized one. Computing treewidth of a graph is
NP-hard, so by Theorem 15.12 we infer that Treewidth does not admit a
polynomial kernel, unless NP ⊆ coNP/poly. The same reasoning can be per-
formed for other graph parameters that behave similarly under the disjoint
union, for instance for pathwidth or rankwidth.

It is noteworthy that problems known to admit AND-cross-compositions
are much scarcer than those amenable to OR-cross-compositions. We hardly
know any natural examples other than the aforementioned problems of com-
puting graph parameters closed under taking the disjoint union. Therefore,
when trying to refute the existence of a polynomial kernel for a particular
problem, it is more sensible to �rst try to design an OR-cross-composition.

15.2 Examples

We now show four selected proofs of kernelization lower bounds, chosen to
present di�erent aspects of the compositions framework. We discuss instance
selectors, a common theme in many compositions appearing in the litera-
ture. We also present the so-called polynomial parameter transformations,
which serve the role of hardness reductions in the world of kernelization
lower bounds. We conclude with an example of a problem parameterized by
some structural measure of the input graph and see that the composition
framework works well also in such cases.

15.2.1 Instance selector: Set Splitting

Recall that, when designing a cross-composition, we are to encode a logi-
cal OR of multiple instances x1, x2, . . . , xt of the input language as a single
parameterized instance (y, k) of the output language. Clearly, we need to
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somehow include all input instances in (y, k), but we need also to encode the
OR behavior.

A natural approach would be to design some gadget that �chooses�
which instance xi we are going to actually solve. A bit more precisely,
such an instance selector Γ should interact with a potential solution
to (y, k) in t di�erent ways, called states. In one direction, if we choose
state i on Γ and solve the instance xi, we should be able to obtain a
valid solution to (y, k). In the second direction, a valid solution to (y, k)
that sets Γ in state i should yield a solution to xi.

In the design of instance selectors we will often heavily rely on the
fact that the parameter k of the output instance (y, k) may depend
polylogarithmically on the number of input instances. In particular, the
state i of the instance selector will often re�ect the binary representation
of the integer i.

We now illustrate the concept of an instance selector with a simple example
of the Set Splitting problem. Here, we are given a universe U and a family
F of subsets of U ; the goal is to choose a subset X ⊆ U that splits each set
in F . We say that a set X splits a set A if both A∩X 6= ∅ and A\X 6= ∅. We
are interested in the parameterization k = |U |. We remark that this problem
has a trivial brute-force FPT algorithm running in time O∗(2k).

It is not hard to prove that Set Splitting is NP-hard by a direct re-
duction from the satis�ability of CNF formulas. In this section we prove the
following.

Theorem 15.13. There exists a cross-composition from Set Splitting into
itself, parameterized by the size of the universe. Consequently, Set Splitting
parameterized by |U | does not admit a polynomial compression, unless NP ⊆
coNP/ poly.

Before we dive into the composition, let us comment what Theorem 15.13
actually means: There are instances of Set Splitting where the family F
is much larger than the universe U , and we do not expect that any e�-
cient (polynomial-time) algorithm is able to sparsify such a family F without
changing the answer in some cases.

Proof (Proof of Theorem 15.13). By choosing an appropriate polynomial
equivalence relation R, we may assume that we are given a family of t Set
Splitting instances (Fi, Ui)t−1i=0 where |Ui| = k for each i. More precisely,
relation R considers as equivalent all the malformed instances, and all the
well-formed instances with the same cardinality of the universe. Let us ar-
bitrarily identify all sets Ui; henceforth we assume that all input instances
operate on the same universe U of size k.

Note that we have numbered the input instances starting from 0: in this
way it is more convenient to work with the binary representations of indices i.
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instance selector
1 + log t pairs of vertices

universe U

Fig. 15.3: Part of the construction in the proof of Theorem 15.13 for s =
log t = 4. The depicted sets are A0 (elements in circles) and A1 (elements in
rectangles) for some 4-element set A ∈ Fi and i = 5 = 01012.

For the same reason, we duplicate some input instances so that t = 2s for
some integer s. Note that this step at most doubles the number of input
instances.

We now proceed to the construction of an instance selector. The selector
should have t states; if it attains state i, it should make all input instances
`void' except for the i-th one. We create 2(s + 1) new elements Γ = {dβα :
0 ≤ α ≤ s, β ∈ {0, 1}} and de�ne Û = U ∪Γ . The new elements are equipped
with a family FΓ = {{d0α, d1α} : 0 ≤ α ≤ s} of sets that force us to choose
exactly one element from each pair {d0α, d1α} into the solution X. Intuitively,
the choice of which element to include into the solution X for 1 ≤ α ≤ s
corresponds to the choice of the input instance (Fi, U); the additional pair
for α = 0 is needed to break the symmetry.

We are now ready to formally de�ne the family F̂ for the output instance.
We start with F̂ = FΓ and then, for each input instance (Fi, U), we proceed
as follows. Let i = b1b2 . . . bs be the binary representation of the index i,
bα ∈ {0, 1} for 1 ≤ α ≤ s; note that we add leading zeroes so that the length
of the representation is exactly s. De�ne b0 = 0. For each A ∈ Fi we insert
the following two sets into the family F̂ (see also Fig. 15.3):

A0 = A ∪ {dbαα : 0 ≤ α ≤ s} and A1 = A ∪ {d1−bαα : 0 ≤ α ≤ s}.

We output the instance (F̂ , Û). Note that |Û | = |U |+2(s+1) = k+2(log t+1)
and, moreover, the construction can be performed in polynomial time. Thus,
to �nish the proof we need to show that (F̂ , Û) is a yes-instance of Set
Splitting if and only if one of the instances (Fi, U) is.

In one direction, let X be a solution to the instance (Fi, U) for some
0 ≤ i < t. Moreover, let b1b2 . . . bs be the binary representation of the index
i. De�ne b0 = 0 and consider the set X̂ de�ned as

X̂ = X ∪ {dbαα : 0 ≤ α ≤ s}.
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Clearly, X̂ splits each set in FΓ , as for each α, 0 ≤ α ≤ s, it holds that
exactly one of elements d0α and d1α belongs to X̂ and exactly one does not.
The assumption that X is a solution to (Fi, U) implies that X̂ splits also
each set A ∈ Fi, so in particular it splits A0 and A1. Finally, take any j 6= i
and any A ∈ Fj . Since j 6= i, indices i and j di�er on at least one binary

position, say α. Now observe that d00 ∈ X̂ ∩ A0 and d1−bαα ∈ A0 \ X̂, and
d10 ∈ A1 \ X̂ and dbαα ∈ A1 ∩ X̂. Consequently, X̂ splits both A0 and A1.

In the other direction, let X̂ be a solution to (F̂ , Û). As Û \X̂ is a solution
as well, without loss of generality we may assume that d00 ∈ X̂. Note that
since X̂ splits each set of FΓ , for each 0 ≤ α ≤ s exactly one of the elements
d0α and d1α belongs to X̂ and one does not. Let then bα ∈ {0, 1} be an index
such that dbαα ∈ X̂ and d1−bαα /∈ X̂, for 0 ≤ α ≤ s. Note that b0 = 0.

Let 0 ≤ i < t be such that b1b2 . . . bs is the binary representation of the
index i. We claim that X = X̂ ∩U is a solution to the input instance (Fi, U).
Consider any A ∈ Fi. Observe that X̂ ∩ Γ = A0 ∩ Γ and, since X̂ splits
A0, we have A \X = A0 \ X̂ 6= ∅. Moreover, X̂ ∩ A1 ∩ Γ = ∅ and, since X̂
splits A1, we have A ∩X = A1 ∩ X̂ 6= ∅. Hence X splits A and the lemma is
proved. ut

15.2.2 Polynomial parameter transformations:
Colorful Graph Motif and Steiner Tree

In the classic theory of NP-hardness we very rarely show that a particular
problem L is NP-hard using the de�nition. Instead of proving from scratch
that every problem in NP is polynomial-time reducible to L, we can ben-
e�t from the work of Cook and Levin who proved this for satis�ability of
propositional formulas, and just construct a polynomial-time reduction from
a problem that is already known to be NP-hard. Thus we can focus on one
well-chosen hard problem as the source language of the reduction, rather than
on an arbitrary problem in NP.

In the world of kernel lower bounds, the situation is somewhat similar:
an explicit lower bound via the composition framework does not seem as
challenging as re-proving the Cook-Levin theorem (since we in fact reuse the
result of Fortnow and Santhanam), but in many cases it is easier to `transfer'
hardness from one problem to another. To be able to do so, we need an
appropriate notion of reduction.

De�nition 15.14. Let P,Q ⊆ Σ∗ × N be two parameterized problems. An
algorithm A is called a polynomial parameter transformation (PPT, for short)
from P to Q if, given an instance (x, k) of problem P , A works in polynomial

time and outputs an equivalent instance (x̂, k̂) of problem Q, i.e., (x, k) ∈ P
if and only if (x̂, k̂) ∈ Q, such that k̂ ≤ p(k) for some polynomial p(·).
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Let us verify that the reduction de�ned as above indeed serves our needs.
Assume that, apart from a PPT A from P to Q, there exists a compression
algorithm B for problem Q that, given an instance (x̂, k̂), in polynomial time

outputs an instance y of some problem R of size bounded by pB(k̂) for some
polynomial pB(·). Consider pipelining algorithms A and B: given an instance
(x, k) of P , we �rst use algorithm A to reduce it to an equivalent instance

(x̂, k̂) of Q, and then use algorithm B to compress it to an equivalent in-

stance y of R. Observe that |y| ≤ pB(k̂) and k̂ ≤ p(k), hence |y| is bounded
polynomially in k. Since all computations take polynomial time, we obtain
a polynomial compression of P into R. This reasoning allows us to state the
following.

Theorem 15.15. Let P,Q ⊆ Σ∗ × N be two parameterized problems and
assume there exists a polynomial parameter transformation from P to Q.
Then, if P does not admit a polynomial compression, neither does Q.

Hence, if we want to show kernelization hardness for problem Q, it su�ces
to `transfer' the hardness from some other problem P , for which we already
know that (probably) it does not admit a polynomial compression. We remark
that Theorem 15.15 uses the notion of compression instead of kernelization:
if we liked to prove an analogous statement for polynomial kernelization, we
would need to provide a way to reduce `back' Q to P (in an unparameterized
way). This, in turn, requires some additional assumptions, for example NP-
hardness of P and Q ∈ NP. Luckily, the composition framework refutes
the existence of not only polynomial kernelization, but also any polynomial
compression, and we can use the (simpler) statement of Theorem 15.15.

We illustrate the use of PPTs on the example of the Steiner Tree prob-
lem. Here, given a graph G with some terminals K ⊆ V (G) and an integer
`, one asks for a connected subgraph of G that both contains all terminals
and has at most ` edges. Note that without loss of generality we may assume
that the subgraph in question is a tree, as we care only about connectivity.
We are interested in the parameterization by `.

A direct composition for Steiner Tree may be quite involved and dif-
�cult. However, we make our life much easier by choosing an appropriate
auxiliary problem: for this problem a composition algorithm is almost trivial,
and a PPT reduction to Steiner Tree is also relatively simple.

The auxiliary problem that will be of our interest is called Colorful
Graph Motif. In this problem we are given a graph G, an integer k, and a
coloring c of vertices of G into k colors (formally, any function c : V (G) →
[k]). The task is to �nd a connected subgraph H of G that contains exactly
one vertex of each color (and hence has exactly k vertices). The Colorful
Graph Motif problem is NP-hard even if we restrict the input graphs to
being trees of maximum degree 3.

Observe now that a disjoint union yields a composition algorithm for
Colorful Graph Motif. More precisely, given any number of Colorful
Graph Motif instances (Gi, ki, ci)

t
i=1 with the same number of colors k =
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G

T̂

Fig. 15.4: Reduction from Colorful Graph Motif to Steiner Tree.
Black vertices are terminals. The shape of a non-terminal vertex corresponds
to its color in the input Colorful Graph Motif instance. A solution
to Colorful Graph Motif with additional edges for the corresponding
solution to Steiner Tree is highlighted with thick edges and grey nodes

ki, the connectivity requirement ensures that an instance (
⊎t
i=1Gi, k,

⋃t
i=1 ci)

is a yes-instance of Colorful Graph Motif if and only if one of the in-
stances (Gi, ki, ci) is; here,

⊎t
i=1Gi denotes the disjoint union of graphs Gi.

Hence, using the aforementioned NP-hardness of Colorful Graph Motif
we may state the following.

Theorem 15.16. Colorful Graph Motif cross-composes into itself pa-
rameterized by k, the number of colors. Consequently, Colorful Graph
Motif parameterized by k does not admit a polynomial compression, unless
NP ⊆ coNP/ poly.

Thus, we have obtained a hardness result for Colorful Graph Motif
almost e�ortlessly. It remains to `transfer' this result to Steiner Tree.

Theorem 15.17. There exists a PPT from Colorful Graph Motif pa-
rameterized by the number of colors to Steiner Tree parameterized by the
size of the tree. Consequently, Steiner Tree parameterized by the size of
the tree does not admit a polynomial compression, unless NP ⊆ coNP/poly.

Proof. Let (G, k, c) be a Colorful Graph Motif instance. Without loss
of generality assume that k > 1, since otherwise we are dealing with a trivial
yes-instance. We construct a graph Ĝ from G by creating k new terminals
K̂ = {t1, t2, . . . , tk}, one for each color, and making each terminal ti adjacent

to c−1(i), that is, to all vertices of color i; see Fig. 15.4. Let ˆ̀ = 2k − 1. We

claim that (Ĝ, K̂, ˆ̀) is a yes-instance of Steiner Tree if and only if (G, k, c)
is a yes-instance of Colorful Graph Motif.

In one direction, let H be a solution of the Colorful Graph Motif
instance (G, k, c). Without loss of generality assume that H is a tree; hence
|V (H)| = k and |E(H)| = k − 1. Let vi ∈ V (H) be the vertex of color i in
the subgraph H. Observe that Ĥ = H ∪ {viti : 1 ≤ i ≤ k} is a connected
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subgraph of Ĝ, containing all terminals ti and having exactly 2k − 1 = ˆ̀

edges.
In the other direction, let Ĥ be a solution of the Steiner Tree instance

(Ĝ, K̂, ˆ̀). As Ĥ is connected and has at most 2k − 1 edges, it contains at
most k non-terminal vertices. Recall that we assumed k > 1. Since ti ∈
V (Ĥ) for any 1 ≤ i ≤ k, Ĥ needs to contain a neighbor vi of ti in Ĝ. By
construction, vi ∈ V (G) and c(vi) = i; in particular, all the vertices vi are

pairwise distinct. However, |V (Ĥ)| ≤ ˆ̀+ 1 = 2k, hence the vertex set of Ĥ is
exactly K̂ ∪{vi : 1 ≤ i ≤ k}. In particular, each vertex ti is of degree 1 in Ĥ
and, consequently, H = Ĥ \ K̂ is connected. Observe that H is a subgraph
of G, and contains exactly one vertex vi of each color i. Hence, (G, k, c) is a
yes-instance of Colorful Graph Motif, and the claim is proved.

Finally, observe that the aforementioned construction can be performed in
polynomial time, and ˆ̀ = 2k − 1 is bounded polynomially in k. Hence, the
presented construction is indeed a PPT from Colorful Graph Motif to
Steiner Tree. ut

We remark that there are also other natural parameterizations of Steiner
Tree: we can parameterize by |K|, the number of terminals, or by `+1−|K|,
the number of non-terminal vertices of the tree in question. While the latter
parameterization yields a W [2]-hard problem, recall that for the parameter-
ization by |K| there exists an FPT algorithm with running time O∗(2|K|),
see Theorem 10.6. Since |K| ≤ ` + 1, in Theorem 15.17 we have considered
a weaker parameterization than by |K|, and so Theorem 15.17 refutes also
the existence of a polynomial compression for the parameterization by |K|,
under NP * coNP/ poly.

15.2.3 A more involved one: Set Cover

In the case of Set Splitting the construction of the instance selector was
somehow natural. Here we present a more involved reduction that shows a
lower bound for a very important problem, namely Set Cover. An input
to Set Cover consists of a universe U , a family F of subsets of U , and an
integer `. The goal is to choose at most ` sets from the family F that cover
the entire universe U . That is, we are looking for a subfamily X ⊆ F such
that |X | ≤ ` and ⋃X = U .

It is more convenient for us to work with a graph-theoretic formulation
of Set Cover, namely the Red-Blue Dominating Set problem (RBDS
for short): Given a bipartite graph G with sides of the bipartition R and B
(henceforth called red and blue vertices, respectively) and an integer `, �nd
a set X ⊆ R of at most ` vertices that together dominate the entire set B,
i.e., N(X) = B. To see that these problems are equivalent, note that given a
Set Cover instance (U,F , `), one may set R = F , B = U , and make each
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set A ∈ F adjacent to all its elements; the condition
⋃X = U translates to

N(X ) = U in the constructed graph.
The goal of this section is to show a kernelization lower bound for Set

Cover, parameterized by the size of the universe, |U |. Recall that for this pa-
rameterization we have a simple FPT algorithm running in timeO∗(2|U |) that
performs dynamic programming on subsets of U , see Theorem 6.1. Equiva-
lently, we are interested in RBDS, parameterized by |B|.

Theorem 15.18. Set Cover, parameterized by the size of the universe,
does not admit a polynomial compression unless NP ⊆ coNP/ poly.

Our �rst step is to move to a variant of this problem, called Colored
Red-Blue Dominating Set (Col-RBDS for short), where the red side
R is partitioned into ` sets, R = R1 ∪ R2 ∪ . . . ∪ R`, and the solution set
X is required to contain exactly one vertex from each set Ri. We will often
think of sets R1, R2, . . . , R` as of colors, and we are looking for a colorful
solution in a sense that the solution needs to pick exactly one vertex of each
color. We parameterize Col-RBDS by |B| + `, that is, we add the number
of colors to the parameter. Observe that RBDS becomes polynomial for
` ≥ |B| (each vertex w ∈ B may simply greedily pick one `private' neighbor
in R), so in this problem the parameterization by |B|+ ` is equivalent to the
parameterization by |B|. However, this is not the case for Col-RBDS, and
therefore we explicitly add ` to the parameter.

We now formally show that RBDS and Col-RBDS are equivalent.

Lemma 15.19. RBDS, parameterized by |B|, and Col-RBDS, parameter-
ized by |B|+ `, are equivalent with respect to polynomial parameter transfor-
mations. That is, there exists a PPT from one problem to the other, and vice
versa.

Proof. In one direction, observe that, given a RBDS instance (G, `), we may
replace each vertex v ∈ R with its ` copies {vj : 1 ≤ j ≤ `} (keeping their
neighborhood in B) and de�ne Rj = {vj : v ∈ R} for 1 ≤ j ≤ `. This
gives a PPT from RBDS to Col-RBDS with considered parameterizations,
provided that ` < |B|. Otherwise, as discussed before, the input RBDS
instance is polynomial-time solvable.

The second direction is a bit more involved. Let (Ĝ, `) be an instance of
Col-RBDS. Create a graphG from Ĝ by adding ` new vertices w1, w2, . . . , w`

to the blue side B, and making each wj adjacent to all the vertices of Rj ,
for 1 ≤ j ≤ `. We claim that (G, `) is an equivalent instance of RBDS; as
we parameterize Col-RBDS by |B|+ `, this construction will yield a desired
PPT from Col-RBDS to RBDS. To see the claim, note that to dominate
each vertex wj it is su�cient and necessary to take a vertex of Rj into the
constructed solution X. Therefore, any solution of the RBDS instance (G, `)
needs to contain at least one vertex from each set Rj , and since it contains
at most ` vertices in total, it must contain exactly one vertex from each set
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Fig. 15.5: Gadget in the cross-composition for Col-RBDS with ` = 5 col-
ors. The vertices from R1

3 are adjacent to the circle-shaped vertices, and the
vertices from R4

3 to the square-shaped ones

Rj . Consequently, a set X ⊆ V (Ĝ) of size at most ` is a solution of the Col-
RBDS instance (Ĝ, `) if and only if it is a solution of the RBDS instance
(G, `), and we are done. ut

Lemma 15.19 allows us to focus on Col-RBDS. The enhanced structure
of this problem allows us to design a cross-composition, concluding the proof
of Theorem 15.18.

Lemma 15.20. Col-RBDS cross-composes into itself, parameterized by |B|+
`.

Proof. By choosing an appropriate polynomial equivalence relation, we may
assume that we are dealing with a sequence (Gi, `i)

t−1
i=0 of Col-RBDS in-

stances with an equal number of blue vertices, denoted by n, and equal bud-
get ` = `i. For a graph Gi, we denote the sides of its bipartition as Bi and
Ri, and let Ri = R1

i ∪R2
i ∪ . . .∪R`i be the partition of the set of red vertices

into ` colors. We remark that we again number the input instances starting
from 0 in order to make use of the binary representation of the index i.

Our �rst step is to construct a graph H as follows. We �rst take a disjoint
union of the graphs Gi, and then we arbitrarily identify all blue sides Bi into
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one set B of size n, which constitutes the blue side of H. The red side of
H is de�ned as R =

⋃t−1
i=0 Ri, and partitioned into colors Rj =

⋃t−1
i=0 R

j
i , for

1 ≤ j ≤ `. We remark that the Col-RBDS instance (H, `) is not necessarily
equivalent to the logical OR of all input instances (Gi, `i): a solution to
(H, `) may contain vertices that originate from di�erent input instances Gi.
We now design a gadget � an instance selector in fact � that will prohibit
such behavior.

Let s be the smallest integer such that t ≤ 2s; note that s = O(log t). Let
Γ = {dβα : 1 ≤ α ≤ s, β ∈ {0, 1}}. For each 1 ≤ i ≤ t, let bi1b

i
2 . . . b

i
s be the

binary representation of the index i, and let γ(i) = {db
i
α
α : 1 ≤ α ≤ s} and

γ(i) = Γ \ γ(i).
We de�ne

B̂ = B ∪ (Γ × {2, 3, . . . , `}) .
That is, we make ` − 1 copies of the set Γ , indexed by integers 2, 3, . . . , `,
and add them to the blue side of the graph H. Finally, for each 1 ≤ i ≤ t we
make each vertex of R1

i adjacent to all the vertices of γ(i)×{2, 3, . . . , `} and
for each 2 ≤ j ≤ ` we make each vertex of Rji adjacent to all the vertices of

γ(i) × {j}; see Fig. 15.5. Let us denote the resulting graph by Ĝ. We claim
that the Col-RBDS instance (Ĝ, `) is a yes-instance if and only if one of the
instances (Gi, `i) is a yes-instance. As the construction can be performed in
polynomial time, and |B̂| = |B| + |Γ |(` − 1) = O((|B| + `) log t), this claim
would conclude the proof of the lemma.

Before we start the formal proof, let us give some intuition. To solve
(Ĝ, `), we need to pick a vertex xj from each color Rj . We would like
to ensure that whenever x1 ∈ Ri, then xj ∈ Ri as well for all j. This is
ensured by the blue vertices in Γ × {j}: only x1 and xj may dominate
them, and each such vertex dominates only s = |Γ |/2 vertices from
Γ × {j}. Hence, to dominate the entire Γ × {j}, we need to pick a
vertex xj that dominates the complement of the neighborhood of x1.
This, in turn, is only satis�ed if both x1 and xj originate from the same
input instance.

We now proceed to the formal argumentation.
In one direction, let X = {x1, x2, . . . , x`} be a solution to an instance

(Gi, `i), where x
j ∈ Rji for 1 ≤ j ≤ `. We claim that X is a solution to (Ĝ, `)

as well. Clearly, it contains exactly one vertex in each set Rj and B ⊆ NĜ(X).

It remains to show that X dominates also the new vertices of B̂. To this end,
consider an index j, where 2 ≤ j ≤ `. By construction, x1 is adjacent to
γ(i)×{j}, whereas xj is adjacent to γ(i)×{j}. Hence, Γ ×{j} ⊆ NĜ(X). As
the choice of j was arbitrary, we have that Γ × {2, 3, . . . , `} ⊆ NĜ(X), and

X is a solution to (Ĝ, `).
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In the second direction, let X = {x1, x2, . . . , x`} be a solution in the in-
stance (Ĝ, `). We claim that there exists 1 ≤ i ≤ t such that X ⊆ Ri; this
would imply that X is a solution to (Gi, `i) as well, �nishing the proof of the
equivalence. Assume that x1 ∈ Ri and xj ∈ Ri′ for some 1 ≤ j ≤ `. Consider
the vertices of Γ × {j}. By the construction, the neighbors of x1 in this set
are γ(i) × {j}, the neighbors of xj in this set are γ(i′) × {j}, and no other
vertex of X has a neighbor in Γ × {j}. Since |γ(i)| = |γ(i′)| = s = |Γ |/2 and
γ(i) ∪ γ(i′) = Γ , we infer that γ(i) = γ(i′) and, consequently, i = i′. This
�nishes the proof of the claim, of Lemma 15.20 and of Theorem 15.18. ut

We remark here that there are other natural parameters of Set Cover
to consider: we may parameterize it by `, or by |F| (which in the language
of RBDS means parameterization by |R|). It is easy to see that the �rst pa-
rameterization generalizes Dominating Set parameterized by the solution
size, and hence is W [2]-hard. For parameterization by |F| we have a triv-
ial FPT algorithm working in O∗(2|F|) time that checks all subsets of F . It
can be proved that also for this parameterization the existence of a polyno-
mial kernel may be refuted under the assumption of NP * coNP/poly; see
Exercise 15.4.10.

15.2.4 Structural parameters: Clique parameterized by
the vertex cover number

Our last example concerns the so-called structural parameters: instead of
considering a natural parameter such as solution size, we parameterize by
some structural measure of the input graph, such as treewidth or cliquewidth.
In this section we focus on the classic Clique problem, parameterized by the
vertex cover number of the input graph.

More formally, we assume that an input consists of a graph G, and integer
` and a vertex cover Z ⊆ V (G) of the graph G. The task is to check whether
G contains a complete subgraph on ` vertices. We parameterize by |Z|, the
size of the vertex cover given as an input.

One may wonder why we assume a vertex cover is given on the input:
a second option would be to consider a variant where no vertex cover is
present, and we only (theoretically) analyze the algorithm in terms of the
size of minimum vertex cover of the input graph. However, as the minimum
vertex cover problem admits an e�cient 2-approximation algorithm, from the
point of view of parameterized algorithms and polynomial kernelization these
variants are equivalent: we may always compute an approximate vertex cover
and use it as the input set Z.

We remark also that Clique, parameterized by the vertex cover number,
is trivially �xed-parameter tractable: any clique in Gmay contain at most one
vertex outside Z, so a brute-force algorithm may consider only 2|Z|(|V (G)|−
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Fig. 15.6: An illustration of the cross-composition for Clique parameterized
by the vertex cover number. The vertex f¬uuv for u = v2 is adjacent to all
vertices in P except for the column with subscript u

|Z|+1) possible solutions. Recall that, in contrast, the standard solution-size
parameterization of Clique yields a W [1]-hard problem.

Our goal in this section is to show that our structural parameterization
of Clique does not admit a polynomial compression. That is, we show the
following.

Theorem 15.21. Clique cross-composes into itself, parameterized by the
vertex cover number. Consequently, Clique parameterized by the vertex cover
number does not admit a polynomial compression, unless NP ⊆ coNP/ poly.

Proof. By choosing an appropriate polynomial equivalence relation, we may
assume that we are given a sequence (Gi, `i)

t
i=1 of (unparameterized) Clique

instances, where n = |V (Gi)| and ` = `i for all i. Without loss of generality
assume ` ≤ n. Let us arbitrarily identify the vertex sets of the input graphs,
so henceforth we assume that V (Gi) = V for each i, 1 ≤ i ≤ t. We are going

to construct a clique instance (Ĝ, ˆ̀) with vertex cover Ẑ of size bounded
polynomially in n.

The graph Ĝ will consist of two parts: one small central part, where the
clique in question is chosen, and a large scattered part, where we choose
in which input instance the clique resides. The scattered part will be an
independent set: this ensures that the small central part is actually a vertex
cover of Ĝ.

For the scattered part, we construct simply a vertex gi for each input
graph Gi. As promised, these vertices are pairwise nonadjacent. The choice
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of which vertex gi we include in the solution to (Ĝ, ˆ̀) determines the choice
of the instance where we actually exhibit a solution.

For the central part, we start with creating n` vertices P = {pav : v ∈
V, 1 ≤ a ≤ `}. We make pav adjacent to p

b
u if and only if v 6= u and a 6= b. Note

that this ensures that every maximum clique in Ĝ[P ] has ` vertices: it contains
exactly one vertex pav for each index a, and at most one vertex pav for each
index v. We also create 3

(
n
2

)
vertices F = {falluv , f¬uuv , f¬vuv : uv ∈

(
V
2

)
} and

make every two of them adjacent if they have di�erent subscripts. Moreover,
the vertex falluv is adjacent to all vertices of P , whereas vertex f¬uuv is adjacent
to P \ {pau : 1 ≤ a ≤ `} and f¬vuv is adjacent to P \ {pav : 1 ≤ a ≤ `}; see
Fig. 15.6.

For each input graph i, 1 ≤ i ≤ t, we make gi adjacent to all the vertices
of P . Then, for each uv ∈

(
n
2

)
, we make gi adjacent to f

all
uv if uv ∈ E(Gi),

and to both f¬uuv and f¬vuv otherwise. Finally, we set ˆ̀= 1 + `+
(
n
2

)
. Clearly,

the construction can be performed in polynomial time. Moreover, P ∪ F is
a vertex cover of Ĝ of size n` + 3

(
n
2

)
= O(n2). To �nish the proof of the

theorem it su�ces to show that there exists an ˆ̀-vertex clique in Ĝ if and
only if one of the input graphs Gi contains an `-vertex clique.

To give some intuition, let us �rst explore how an ˆ̀-vertex clique may
appear in graph Ĝ. Such a clique X̂ may contain only one vertex gi, at
most ` vertices of P (one for each index a) and at most

(
n
2

)
vertices of

F (one for each uv ∈
(
V
2

)
). However, ˆ̀= 1 + `+

(
n
2

)
; hence, X̂ contains

exactly one vertex gi, exactly one vertex pav for each 1 ≤ a ≤ `, and
exactly one vertex among vertices falluv , f

¬u
uv or f¬vuv for each uv ∈

(
V
2

)
.

The choice of gi determines the instance we are actually solving, the
choice of the vertices of P encodes a supposed clique in Gi, whereas the
vertices in F verify that the chosen vertices of P indeed correspond to
a clique in Gi.

Let us now proceed to the formal argumentation.
Assume �rst that X = {x1, x2, . . . , x`} induces an `-vertex clique in some

input graph Gi. Construct X̂ as follows: �rst, take X̂ = {gi}∪{paxa : 1 ≤ a ≤
`} and then, for each uv ∈

(
V
2

)
, add falluv to X̂ if uv ∈ E(Gi), add f

¬u
uv to X̂ if

uv /∈ E(Gi) and u /∈ X and add f¬vuv to X̂ if uv /∈ E(Gi), u ∈ X and v /∈ X.
Note that the fact that X induces a clique implies that it is not possible
that uv /∈ E(Gi) and u, v ∈ X and hence the presented case distinction is
exhaustive. It is straightforward to verify that X̂ induces a clique in Ĝ of size
ˆ̀= 1 + `+

(
n
2

)
.

In the other direction, let X̂ induce an ˆ̀-vertex clique in Ĝ. As discussed,
X̂ needs to contain exactly one vertex gi, exactly one of the vertices f

all
uv , f

¬u
uv

or f¬vuv for each uv ∈
(
V
2

)
, and exactly one vertex paxa for each 1 ≤ a ≤ `, where

the vertices xa are pairwise di�erent. We claim that X = {xa : 1 ≤ a ≤ `}
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is an `-vertex clique in Gi. Clearly |X| = `, so it remains to prove that Gi[X]
is a clique.

By contrary, assume that xaxb /∈ E(Gi) for some 1 ≤ a, b ≤ `, a 6= b. By
the construction, gi is not adjacent to f

all
xaxb and, consequently, either f

¬xa
xaxb

or f¬x
b

xaxb belongs to X̂. However, the �rst one is not adjacent to paxa ∈ X̂, and

the latter is not adjacent to pbxb ∈ X̂. This contradicts the assumption that

X̂ induces a clique in Ĝ, and concludes the proof of Theorem 15.21. ut

15.3 Weak compositions

The tools that we have seen so far are only able to distinguish problems having
polynomial kernels from those that do not admit such preprocessing routines.
However, is it possible to prove more re�ned lower bounds for problems which
actually do possess polynomial kernels? For example, in Section 2.5 we have
learned a basic kernelization algorithm for Vertex Cover that returns an
instance with at most 2k vertices, which therefore can be encoded using
O(k2) bits. At �rst glance, it seems implausible to obtain a kernel that can
be encoded in a subquadratic number of bits. Can we re�ne our methodology
to develop techniques for proving lower bounds of such type?

The answer to this question is a�rmative, and comes via the framework of
so-called weak compositions. Again, the intuition is very simple. In the pre-
vious sections we have not used the full power of the proof of Theorem 15.3.
Intuitively, an OR-distillation algorithm has to lose some information from
the input instances x1, x2, . . . , xt even if the bitsize of the output is bounded
by p(maxti=1 |xi|) · t1−ε for a polynomial p(·) and any ε > 0. And indeed,
it is easy to verify that our proof of Theorem 15.3 can be adjusted even to
this weaker notion of OR-distillation. Now assume that somebody gave us a
version of cross-composition from some NP-hard language L to the Vertex
Cover problem, whose output parameter k is allowed to be roughly propor-
tional to the square root of the number of input instances. More precisely, for
any δ > 0 we have some polynomial p(·) such that k ≤ p(maxti=1 |xi|) · t

1
2+δ.

If the Vertex Cover problem admitted a compression into bitsize O(k2−ε0)
for some �xed ε0 > 0, then by choosing δ = ε0/4 and pipelinining the com-
position with the compression, we would obtain a contradiction with the
strengthened version of Theorem 15.3.

This motivates the following de�nition.

De�nition 15.22. Let L ⊆ Σ∗ be a language and Q ⊆ Σ∗ × N be a pa-
rameterized language. We say that L weakly-cross-composes into Q if there
exists a real constant d ≥ 1, called the dimension, a polynomial equivalence
relation R, and an algorithm A, called the weak cross-composition, satisfy-
ing the following conditions. The algorithm A takes as input a sequence of
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strings x1, x2, . . . , xt ∈ Σ∗ that are equivalent with respect to R, runs in time
polynomial in

∑t
i=1 |xi|, and outputs one instance (y, k) ∈ Σ∗×N such that:

(a) for every δ > 0 there exists a polynomial p(·) such that for every choice of

t and input strings x1, x2, . . . , xt it holds that k ≤ p(maxti=1 |xi|) · t
1
d+δ,

and
(b) (y, k) ∈ Q if and only if there exists at least one index i such that xi ∈ L.

The following theorem easily follows from the described adjustments in
the proofs of Theorem 15.3 and Theorem 15.9. We leave its proof as an easy
exercise for the reader (Exercises 15.2 and 15.3).

Theorem 15.23. Assume that an NP-hard language L admits a weak cross-
composition of dimension d into a parameterized language Q. Assume further
that Q admits a polynomial compression with bitsize O(kd−ε), for some ε > 0.
Then NP ⊆ coNP/ poly.

Therefore, to refute the existence of a polynomial compression for Vertex
Cover with strictly subquadratic bitsize, it su�ces to design a weak cross-
composition of dimension 2 from some NP-hard problem to Vertex Cover.
It appears that we will be able to elegantly streamline the construction by
choosing the starting problem wisely. The problem of our interest is called
Multicolored Biclique: We are given a bipartite graph G = (A,B,E)
such that A is partitioned into k color classes A1, A2, . . . , Ak, each of size n,
and B is partitioned into k color classes B1, B2, . . . , Bk, each of size n. The
question is whether one can pick one vertex from each class Ai and one vertex
from each class Bi so that the graph induced by the chosen vertices is iso-
morphic to a complete bipartite graph Kk,k. The Multicolored Biclique
problem is known to be NP-hard.

Lemma 15.24. There exists a weak cross-composition of dimension 2 from
the Multicolored Biclique problem into the Vertex Cover problem
parameterized by the solution size.

Proof. By choosing the polynomial equivalence relation appropriately, we can
assume that we are given a sequence of well-formed instances I1, I2, . . . , It

having the same values of k and n. More precisely, each Ij contains a bipartite
graph Gj = (Aj , Bj , Ej), each Aj is partitioned into classes Aj1, A

j
2, . . . , A

j
k,

each Bj is partitioned into classes Bj1, B
j
2, . . . , B

j
k, and |A

j
i | = |Bji | = n for

each i = 1, 2, . . . , k and j = 1, 2, . . . , t. By duplicating some instances if
necessary, we assume that t = s2 for some integer s.

Construct now a graph H as follows. The vertex set of H consists of 2s
classes of vertices Â1, Â2, . . . , Âs, B̂1, B̂2, . . . , B̂s, each of size kn. Each class
Â` is further partitioned into classes Â`1, Â

`
2, . . . , Â

`
k, each of size n, and the

same is performed for the classes B̂` as well. The intuition now is that we
have s2 input instances Ij , and s2 pairs (Âj1 , B̂j2) that look exactly as the
sides of the bipartition of the graph Gj . Hence, we will pack the information
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1 Â1
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Â1

Â2
1 Â2
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Â2

Â3
1 Â3

2

Â3

B̂1
1 B̂1
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B̂2
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B̂2

B̂3
1 B̂3

2
B̂3

φ4((A4 × B4) \ E4)

Fig. 15.7: The graph H in the proof of Theorem 15.23 constructed for k = 2,
n = 3, and t = 9; the highlighted part contains the set of edges between
Â1 and B̂2 that is constructed in (c) to encode the input graph G4. To
avoid confusion, the complete bipartite graphs between every pair of classes
Â` and between every pair of classes B̂` have been depicted symbolically as
small K2,2s

about the edges between Aj and Bj from each input instance Ij into the
edge space between Âj1 and B̂j2 for a di�erent pair of indices (j1, j2).

Let us �x an arbitrarily chosen bijection τ between [s2] and [s]× [s]. The
edge set of H is de�ned as follows:

(a) For every 1 ≤ `1 < `2 ≤ s, introduce an edge between every vertex of
Â`1 and every vertex of Â`2 , and an edge between every vertex of B̂`1

and every vertex of B̂`2 .
(b) For every 1 ≤ ` ≤ s and every 1 ≤ i ≤ k, turn the sets Â`i and B̂

`
i into

cliques.
(c) For every 1 ≤ j ≤ t, let τ(j) = (j1, j2). Fix any bijection φj that, for each

i = 1, 2, . . . , k, matches vertices of Aji with vertices of Âj1i , and vertices

of Bji with vertices of B̂j2i . For every u ∈ Aj and v ∈ Bj , put an edge
between φj(u) and φj(v) if and only if the edge uv is not present in Gj .

The role of edges introduced in (a) is to enforce that the solution has
a nontrivial behavior for exactly one of the pairs (Âj1 , B̂j2), which will
emulate the choice of the instance to be satis�ed. Edges introduced in
(b) and (c) encode the instance itself.

Let us �x the budget for the resulting Vertex Cover instance as k̂ =
|V (H)| − 2k = 2snk − 2k. Since s =

√
t, this means that the obtained cross-

composition will have dimension 2. We are left with formally verifying that
the obtained instance (H, k̂) of Vertex Cover is equivalent to the OR of
the input instances of Multicolored Biclique.
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Claim 15.25. If there exists an index j, 1 ≤ j ≤ t, such that Ij is a yes-
instance of Multicolored Biclique, then (H, k̂) is a yes-instance of Ver-
tex Cover.

Proof. Let Y j be the vertex set of a Kk,k-biclique in G
j , where Y j contains

exactly one vertex from each color class Aj1, A
j
2, . . . , A

j
k, B

j
1, B

j
2, . . . , B

j
k. Let

us de�ne X = V (H)\φj(Y j). Since |Y j | = 2k, we have that |X| = k̂. We are

going to show that X is a vertex cover of H, which will certify that (H, k̂) is a
yes-instance. We prove an equivalent statement that Y = V (H)\X = φj(Y

j)
is an independent set in H.

This, however, follows directly from the construction of H. Let (j1, j2) =
τ(j) and let us take any distinct u, v ∈ Y . If u, v ∈ Âj1 , then u and v
have to belong to two di�erent classes among Âj11 , Â

j1
2 , . . . , Â

j1
k , and there

is no edge between any pair of these classes. The same reasoning also holds
when u, v ∈ B̂j2 . However, if u ∈ Âj1 and v ∈ B̂j2 , then we have that
φ−1j (u)φ−1j (v) ∈ Ej , because Y j induces a biclique in Gj . By the construction
of H it follows that uv /∈ E(H). y

Claim 15.26. If (H, k̂) is a yes-instance of Vertex Cover, then there ex-
ists an index j, 1 ≤ j ≤ t, such that Ij is a yes-instance of Multicolored
Biclique.

Proof. Let X be a vertex cover of H of size at most k̂. Hence, Y = V (H)\X
is an independent set in H of size at least 2k.

We �rst claim that there are two indices 1 ≤ j1, j2 ≤ s such that Y ⊆
Âj1 ∪ B̂j2 . Indeed, if there were two di�erent indices j′1 and j′′1 such that
there existed some u ∈ Y ∩ Âj′1 and v ∈ Y ∩ Âj′′1 , then by the construction
of H we would have that uv ∈ E(H), which contradicts the fact that Y is
an independent set. The same reasoning can be performed for the sets B̂`.
Let j = τ−1(j1, j2) then; since we have that Y ⊆ Âj1 ∪ B̂j2 , we can de�ne
Y j = φ−1j (Y ). The goal is to show that Y j is a solution to the instance Ij .

We now observe that Y j contains at most one vertex from each color class
Aj1, A

j
2, . . . , A

j
k, B

j
1, B

j
2, . . . , B

j
k. This follows directly from the fact that each

of the classes Âj11 , Â
j1
2 , . . . , Â

j1
k , B̂

j2
1 , B̂

j2
2 , . . . , B̂

j2
k induces a clique in H. Since

|Y j | = |Y | ≥ 2k and there are 2k color classes, we infer that Y j contains
exactly one vertex from each color class.

Finally, pick any u ∈ Y j∩Aj and v ∈ Y j∩Bj , and observe that since φj(u)
and φj(v) are not adjacent in H, the vertices u and v are adjacent in Gj .
Consequently, Y j induces a Kk,k-biclique in G

j that contains one vertex from
each color class, and Ij is hence a yes-instance ofMulticolored Biclique.

y

Claims 15.25 and 15.26 conclude the proof of Lemma 15.24. ut

From Theorem 15.23 and Lemma 15.24 we can derive the following corollary.
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Corollary 15.27. For any ε > 0, the Vertex Cover problem parameter-
ized by the solution size does not admit a polynomial compression with bitsize
O(k2−ε), unless NP ⊆ coNP/poly.

Observe now that the lower bounds on the bitsize of a compression can be
transferred in a similar manner via polynomial parameter transformations
as we have seen in Section 15.2.2. It is just the polynomial dependence of
the output parameter on the input one that determines the strength of the
obtained lower bound for the target problem. For instance, there is a simple
polynomial parameter transformation that takes as input an instance (G, k)
of Vertex Cover and outputs an equivalent instance (G′, k) of Feedback
Vertex Set: To obtain G′, take every edge uv ∈ E(G) and add a vertex
wuv that is adjacent only to u and to v, thus creating a triangle that must
be hit by the solution. By pipelining this reduction with Corollary 15.27, we
obtain the following result.

Corollary 15.28. For any ε > 0, the Feedback Vertex Set problem pa-
rameterized by the solution size does not admit a polynomial compression with
bitsize O(k2−ε), unless NP ⊆ coNP/poly.

As with classic cross-compositions, we can refute the possibility that an
algorithm with a too weak computational power packs the information con-
tained in the input instance into a too small bitsize of the output instance.
However, again we have no control over how the information needs to be
organized in, say, the kernel. For instance, Corollaries 15.27 and 15.28 show
that obtaining kernels for the Vertex Cover and Feedback Vertex Set
problems with a strictly subquadratic number of edges is implausible (since
O(k2−ε) edges can be encoded in O(k2−ε log k) bits). However, for Vertex
Cover we know a kernel that has a linear number of vertices, namely 2k,
whereas no such kernel is known for Feedback Vertex Set: the best known
one (given in Chapter 9) has O(k2) vertices. It seems hard to understand,
using solely weak compositions as a tool, whether obtaining a kernel for
Feedback Vertex Set with a subquadratic number of vertices is possible
or not.

We state the following theorem for the convenience of the reader, as it
provides a good set of basic problems for further reductions. In the Perfect
d-Set Matching problem we are given a universe U , of size divisible by d,
and a family F ⊆ 2U of subsets of U , each of size d. The question is whether
there exists a subfamily G ⊆ F of size |U |/d such that sets in G are pairwise
disjoint.

Theorem 15.29 ([129, 130]). Let ε > 0 be any constant. Unless NP ⊆
coNP/ poly, the following statements hold:

(a) For any q ≥ 3, the q-SAT problem parameterized by the number of vari-
ables n does not have a compression with bitsize O(nq−ε).
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(b) For any d ≥ 2, the d-Hitting Set problem parameterized by |U | does
not have a compression with bitsize O(|U |d−ε).

(c) For any d ≥ 3, the Perfect d-Set Matching problem parameterized
by |U | does not have a compression with bitsize O(|U |d−ε).

Note that for all the considered problems, already the trivial kernelization
algorithms, which just remove duplicates of clauses or sets in the input, match
the presented lower bounds.

The proofs of the presented statements are more di�cult, and hence omit-
ted from this book. Note that statement (b) for d = 2 is equivalent to Corol-
lary 15.27. The proof for d > 2 can be obtained using the same strategy,
or derived by an easy reduction from statement (a). The known proofs of
statement (a), which was actually the original motivation for introducing the
weak composition framework, use quite advanced results from number theory.
The proof of statement (c) is a fairly complicated weak cross-composition;
however, it is self-contained and does not use any external results.

Exercises

15.1 (l). In a few places (e.g., Steiner Tree parameterized by either ` or |K|) we have
used the following argument: If a problem P admits two parameterizations k1 and k2, and
k1 is always bounded polynomially in k2 in nontrivial instances, then a result that refutes
the existence of a polynomial compression for the parameterization by k2 also does the
same for the parameterization by k1. Prove this statement formally, using the notion of
polynomial parameter transformation.

15.2. Prove that Theorem 15.3 holds even if the output string of an OR-distillation is
allowed to have length at most p(maxti=1 |xi|) · t1−ε, for some polynomial p(·) and any
ε > 0. Would it be possible to use o(t) instead of t1−ε?

15.3 (l). Derive Theorem 15.23 from Exercise 15.2.

15.4. In this meta-exercise you are asked to prove that the following parameterized prob-
lems do not admit polynomial compressions unless NP ⊆ coNP/ poly. In each case, we
give problem name, the parameter in parentheses, and the problem de�nition. For each
problem, you may assume that it is NP-hard (without proof).

Some important de�nitions: We say that a graph G is d-degenerate for some positive
integer d if each subgraph of G contains a vertex of degree at most d. For example, forests
are 1-degenerate and planar graphs are 5-degenerate. A bull is a 5-vertex graph H with
V (H) = {a, b, c, d, e} and E(H) = {ab, bc, ac, bd, ce}. A proper coloring of a graph G with
q colors is a function c : V (G)→ [q] such that c(u) 6= c(v) whenever uv ∈ E(G).

1. (l) Directed Max Leaf (k): Does there exist an outbranching with at least k leaves
in a given directed graph G? An outbranching is a directed graph that (a) is a tree if
we suppress the directions of the edges, and (b) is rooted at one vertex, and all edges
are directed away from the root.

2. (l) Max Leaf Subtree (k): Does there exist a subtree of a given graph G with at
least k leaves?

3. Connected Vertex Cover (k): Does there exist a set X of at most k vertices in
the given graph G, such that G[X] is connected and G \X is edgeless?
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4. Connected Feedback Vertex Set (k): Does there exist a set X of at most k
vertices in the given graph G, such that G[X] is connected and G \X is a forest?

5. Connected Bull Hitting (k): Does there exist a set of vertices X in the given
graph G such that G[X] is connected and G\X does not contain a bull as an induced
subgraph?

6. 2-deg Connected Feedback Vertex Set (k): The same as Connected Feedback
Vertex Set, but the input graph is required to be 2-degenerate.

7. 2-deg Steiner Tree(k): The same as Steiner Tree, but the input graph is required
to be 2-degenerate.

8. 2-deg Connected Dominating Set(k): Does there exist a set of vertices X in the
given 2-degenerate graph G such that G[X] is connected and NG[X] = V (G)?

9. Set Packing (|U |): Do there exist k pairwise disjoint sets in a given family F of
subsets of some universe U?

10. Set Cover (|F|): Do there exist ` sets in a given family F of subsets of some universe
U that together cover the whole U?

11. Directed Edge Multiway Cut with 2 terminals(k): Does there exist a set X of
at most k edges of the given directed graph G with designated terminals s and t, such
that in G \X there does not exist a (directed) path from s to t nor from t to s?

12. Disjoint Factors (|Γ |): Do there exist pairwise disjoint subwords u1, u2, . . . , us of
the input word w over alphabet Γ = {γ1, γ2, . . . , γs} such that each ui is of length at
least 2 and begins and ends with γi?

13. Vertex Disjoint Paths (k): Do there exist vertex-disjoint paths P1, P2, . . . , Pk in
the input graph G with designated terminal pairs (s1, t1), (s2, t2), . . . , (sk, tk), such
that Pi connects si with ti for each i?

14. (A) Chromatic Number (VC): Does there exist a proper coloring of the input graph
G with q colors? The input consists of the graph G, the integer q and a set Z ⊆ V (G)

that is a vertex cover of G (i.e., G \ Z is edgeless).
15. (A) Feedback Vertex Set (Cluster Distance): Does there exist a set X ⊆ V (G)

of size at most ` such that G \X is a forest? The input consists of the graph G, the
integer `, and a set Z ⊆ V (G) such that G \Z is a cluster graph (i.e., each connected
component of G \ Z is a clique).

16. (A) Edge Clique Cover (k): Do there exist k subgraphs K1,K2, . . . ,Kk of the
input graph G such that each Ki is a clique and E(G) =

⋃k
i=1 E(Ki)?

17. Subset Sum (k + logm): Does there exist a subset X of at most k numbers from
the given set S of positive integers, such that

∑
x∈X x equals exactly a number m

prescribed in the input?
18. (A) s-Way Cut (k): Does there exist a set X of at most k edges of the input graph

G, such that G \X has at least s connected components? Both numbers s and k are
given as input.

19. (A) Eulerian Deletion (k): Does there exist a set of at most k edges in the input
directed graph G, such that G \X is Eulerian (i.e., weakly connected and each vertex
has equal in- and outdegree)?

15.5. The Odd Cycle Transversal problem asks for a set X of at most k vertices of
the input graph G such that G \X is bipartite. Prove that, unless NP ⊆ coNP/ poly, for
any ε > 0 Odd Cycle Transversal does not admit a kernel with O(k2−ε) edges.

15.6. Prove that there exists a function f : Z+ → Z+ with f(d) → ∞ as d → ∞ such
that if for some d ≥ 2 there exists a kernel of size O(kf(d)) for any of the following two
problems, restricted to d-degenerate graphs, then NP ⊆ coNP/ poly:

1. Connected Vertex Cover,
2. Dominating Set.
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Hints

15.2 Follow the same proof strategy, but modify the choice of t.

15.4

1 Try disjoint union.
2 Try disjoint union.
3 Reduce from Set Cover parameterized by the size of the universe.
4, 5, 6 Reduce from Connected Vertex Cover.
7, 8 Recall that Colorful Graph Motif is NP-hard already on trees. Use this result

to improve the kernelization lower bound for Colorful Graph Motif and reduce
from this problem.

9 Adjust the cross-composition for Set Cover parameterized by the size of the universe.
10 De�ne a colorful version of the problem and prove that it is equivalent to the original

one. Focus on proving hardness for the colorful version. Design an instance selector
consisting of 2 log t additional sets in log t new colors. The chosen sets of these colors
should cover completely the universes of all the input instances apart from exactly one,
which should be covered by `regular' sets.

11 Compose the input instances `sequentially'. However, enrich the input instances be-
fore performing the composition, in order to make sure that the solution to the com-
posed instance will not be spread among several of the input instances, but will rather
be concentrated in one instance.

12 Start the composition with instances over the same alphabet Γ , and add log t symbols
to Γ to emulate an instance selector.

13 Reduce from Disjoint Factors.
14 Carefully prepare your input language for composition. For example, consider the

task of checking whether a planar graph is properly colorable with four colors, which
is NP-hard. Note that it is de�nitely colorable with four colors. Design an instance
selector that allows all input instances to use four colors, except for one instance that
may use only three.

15 Reduce from a colorful variant of the Set Packing problem.
16 Use an AND-cross-composition rather than an OR-cross-composition. You need a

careful construction to ensure that all the edges of the resulting instance are covered.
For this, use the following observation: If the input graph contains a simplicial vertex,
then we can assume that any solution contains its closed neighborhood as one of the
cliques. Thus, by adding simplicial vertices we can create cliques of edges that will be
covered for sure.

17 Make a cross-composition from the same problem, but watch out for the bound on
the number of equivalence classes in the polynomial equivalence relation � you cannot
directly classify the instances according to their target value m. How to go around this
problem? Then, design an instance selector to ensure that all integers in the solution
come from the same input instance.

18 First, show that a weighted variant, where each edge has small integer weight, is
equivalent. Then, cross-compose from Clique to the weighted variant. Your intended
solution should pick one input instance, and cut out all vertices not contained in the
supposed clique as isolated vertices, and leave the rest of the graph as one large con-
nected component.

19 Prove NP-hardness and cross-compose the following auxiliary problem: given a di-
rected graph G with terminals s and t and some forbidden pairs F ⊆

(
E(G)

2

)
, does there

exist a path from s to t that, for any e1e2 ∈ F , does not contain both edges e1 and e2.

15.5 Reduce from Vertex Cover.

15.6 Reduce from any of the problems considered in Theorem 15.29.
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presented in this chapter. More precisely, the formalism presented in [50] does not use poly-
nomial equivalence relations, assumes that the source and target languages of a composition
are the same, and does not allow the output parameter to depend poly-logarithmically on
the number of input instances. Later it turned out that the lacking features are helpful
in streamlining compositions for many problems, and many authors developed ad hoc,
problem-dependant methods for justifying them. The cross-composition framework, which
was eventually proposed by Bodlaender, Jansen, and Kratsch [53], elegantly explains why
these features can be added in general. The fact that the whole approach should work
when the OR function is replaced with AND was initially conjectured by Bodlaender et
al. [50]; the statement had been dubbed the AND-conjecture. The conjecture was even-
tually resolved by Drucker [160], who proved Theorem 15.11. We note that Drucker only
states that the existence of an AND-distillation for an NP-hard problem implies that
NP ⊆ coNP/poly, but the slightly stronger statement of Theorem 15.11 also follows from
his results. A shorter proof of the result of Drucker was recently announced by Dell [128].

The idea of an instance selector originates in the work of Dom, Lokshtanov, and
Saurabh [141]. The lower bound for Set Splitting was �rst obtained by Cygan, Pilipczuk,
Pilipczuk, and Wojtaszczyk [123] via a PPT from Set Cover parameterized by the size of
the family, i.e., Exercise 15.4.10. The lower bound for Steiner Tree was �rst proved by
Dom, Lokshtanov, and Saurabh [141], again via a PPT from Set Cover parameterized
by the size of the family. The proof using Graph Motif as a pivot problem was proposed
by Cygan, Pilipczuk, Pilipczuk, and Wojtaszczyk [121], and the main point was that the
resulting graph is 2-degenerate. The example of Set Cover parameterized by the size of
the universe has been taken from Dom, Lokshtanov, and Saurabh [141]; we note that the
original composition was slightly more complicated. Clique parameterized by vertex cover
was one of the �rst examples of the application of the cross-composition framework, and
was given by Bodlaender, Jansen and Kratsch [53]. For Exercise 15.4, point 1 originates
in [35], points 3, 9, 10, 17 originate in [141], points 7, 8 originate in [121], points 11, 16,
18 originate in [114], points 12, 13 originate in [56], point 14 originates in [276], point 15
originates in [53], and point 19 originates in [117].

The idea of weak compositions originates in the work of Dell and van Melkebeek [130],
who proved statements (a) and (b) of Theorem 15.29, and derived Corollary 15.27 from
it. The weak composition framework, as presented in this chapter, was introduced later,
independently by Dell and Marx [129] and by Hermelin and Wu [260]. In particular, Dell
and Marx [129] proved statement (c) of Theorem 15.29 and re-proved statement (b) in a
simpli�ed manner. The presented lower bound for kernelization of Vertex Cover is also
taken from [129].
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Appendix: Notation

Graph notation

We try to use as much as possible graph notation compatible with the text-
book of Diestel [138]. Here we recall the most basic de�nitions.

An undirected graph is a pair G = (V,E), where V is some set and E is a
family of 2-element subsets of V . The elements of V are the vertices of G, and
the elements of E are the edges of G. The vertex set of a graph G is denoted
by V (G) and the edge set of G is denoted by E(G). In this book all the
graphs are �nite, i.e., the sets V (G) and E(G) are �nite. We use shorthands
n = |V (G)| and m = |E(G)| whenever their use is not ambiguous. An edge of
an undirected graph with endpoints u and v is denoted by uv; the endpoints
u and v are said to be adjacent, and one is said to be a neighbor of the other.
We also say that vertices u and v are incident to edge uv.

Unless speci�ed otherwise, all the graphs are simple, which means that
no two elements of E(G) are equal, and that all edges from E(G) have two
di�erent endpoints. If we allow multiple edges with the same endpoints (al-
lowing E(G) to be a multiset), or edges having both endpoints at the same
vertex (allowing elements of E(G) to be multisets of size 2 over E(G), called
loops), then we arrive at the notion of a multigraph. Whenever we use multi-
graphs, we state it explicitly, making clear whether multiple edges or loops
are allowed.

Similarly, a directed graph is a pair G = (V,E), where V is the set of
vertices of G, and E is the set of edges of G, which this time are ordered
pairs of two di�erent vertices from V . Edges in directed graphs are often also
called arcs. For an edge (u, v) ∈ E(G), we say that it is directed from u to
v, or simply that it goes from u to v. Then v is an outneighbor of u and u is
an inneighbor of v. For an arc a = (u, v), u is the tail and v is the head of a.
Again, we can allow multiple edges with the same endpoints, as well as edges
with the same head as tail (loops). Thus we arrive at the notion of a directed
multigraph.
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For an undirected graph G and edge uv ∈ E(G), by contracting edge uv we
mean the following operation. We remove u and v from the graph, introduce
a new vertex wuv, and connect it to all the vertices u or v were adjacent to.
Note that the operation, as we de�ned it here, transforms a simple graph
into a simple graph; in other words, if u and v had a common neighbor x,
then the new vertex wuv will be connected to x only via one edge. We may
also view the operation of contraction as an operation on multigraphs: every
edge ux and vx for some x ∈ V (G) gives rise to one new edge wuvx, and
in particular every copy of the edge uv apart from the contracted one gives
rise to a new loop at wuv. For us the default type of contraction is the one
de�ned on simple graphs, and whenever we use the multigraph version, we
state it explicitly.

Graph H is a subgraph of graph G if V (H) ⊆ V (G) and E(H) ⊆ E(G).
Similarly, graph H is a supergraph of graph G if V (H) ⊇ V (G) and E(H) ⊇
E(G). For a subset S ⊆ V (G), the subgraph of G induced by S is denoted by
G[S]; its vertex set is S and its edge set consists of all the edges of E(G) that
have both endpoints in S. For S ⊆ V (G), we use G− S to denote the graph
G[V \S], and for F ⊆ E(G) by G−F we denote the graph (V (G), E(G)\F ).
We also write G − v instead of G − {v}. The neighborhood of a vertex v in
G is NG(v) = {u ∈ V : uv ∈ E(G)} and the closed neighborhood of v is
NG[v] = NG(v)∪ {v}. For a vertex set S ⊆ V , we de�ne NG[S] =

⋃
v∈S N [v]

and NG(S) = NG[S] \ S. We denote by dG(v) the degree of a vertex v in
graph G, which is just the number of edges incident to v. We may omit
indices if the graph under consideration is clear from the context. A graph
G is called r-regular if all vertices of G have degree r. For directed graphs,
the notions of inneighborhood, outneighborhood, indegree, and outdegree are
de�ned analogously.

In an undirected graph G, a walk of length k is a nonempty sequence of
vertices v0, . . . , vk such that for every i = 0, . . . , k−1 we have vivi+1 ∈ E(G).
If v0 = vk, then the walk is closed. A path is a walk where no two vertices
appear twice, and a cycle is a closed walk where no two vertices appear twice,
apart from the vertex that appears at the beginning and at the end. We often
think of paths and cycles as graphs induced by vertices and edges traversed
by them. Then a path is a graph P of the form

V (P ) = {v0, v1, . . . , vk} E(P ) = {v0v1, v1v2, . . . , vk−1vk}.

If P = v0v1 . . . vk is a path, then the graph obtained from P by adding edge
xkx0 is a cycle. Again, the length of a path or cycle is equal to the cardinality
of its edge set. We denote by dist(u, v) the distance between u and v in a
graph G, which is the shortest length of a path between u and v. The notions
of walks, paths, and cycles can be naturally generalized to directed graphs
by requesting compliance with the edge directions.

The girth of a graph G is the shortest length of a cycle in G. A Hamiltonian
path (cycle) in a graph G is a path (cycle) passing through all the vertices of
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G. A G graph is bipartite if V (G) can be partitioned into two subsets (A,B)
such that every edge of E(G) has one endpoint in A and the second in B.
Partition (A,B) is also called a bipartition of G. Equivalently, G is bipartite
if and only if G does not have any cycle of odd length.

An undirected graph G is connected if for every pair u, v of its vertices
there is a path between u and v. A vertex set X ⊆ V (G) is connected if the
subgraph G[X] is connected.

A tree T is a connected undirected graph without cycles. A tree T can
be rooted at a vertex r ∈ V (T ), which imposes on V (T ) natural parent-child
and ancestor-descendant relations. A forest F is an undirected graph without
cycles; thus all the connected components of F are trees. A spanning tree T
of a graph G is a tree such that V (T ) = V (G) and E(T ) ⊆ E(G). A directed
graph G is acyclic, or a DAG, if it does not contain any directed cycles.

Amatching M in a graphG is a set of edges that pairwise do not share end-
points. A vertex of G is saturated if it is incident to an edge in the matching.
Otherwise the vertex is unsaturated. For a given matching M , an alternating
path is a path in which the edges alternately belong to the matching and
do not belong to the matching. An augmenting path is an alternating path
that starts from and ends at an unsaturated vertex. A perfect matching is a
matching M that saturates all the vertices of the graph, i.e., every vertex of
the graph is an endpoint of an edge in M .

An independent set I in a graph G is a subset of the vertex set V (G)
such that the vertices of I are pairwise nonadjacent. A clique C in a graph
G is a subset of the vertex set V (G) such that the vertices of C are pairwise
adjacent. A vertex cover X of a graph G is a subset of the vertex set V (G)
such that X covers the edge set E(G), i.e., every edge of G has at least one
endpoint in X. A dominating set D of a graph G is a subset of the vertex
set V (G) such that every vertex of V (G) \D has a neighbor in D. A proper
coloring of a graph G assigns a color to each vertex of G in such a manner
that adjacent vertices receive distinct colors. The chromatic number of G is
the minimum χ such that there is a proper coloring of G using χ colors.

We now de�ne the notion of a planar graph and an embedding of a graph
into the plane. First, instead of embedding into the plane we will equivalently
embed our graphs into a sphere: in this manner, we do not distinguish unnec-
essarily the outer face of the embedding. Formally, an embedding of a graph
G into a sphere is a mapping that maps (a) injectively each vertex of G into a
point of the sphere, and (b) each edge uv of G into a Jordan curve connecting
the images of u and v, such that the curves are pairwise disjoint (except for
the endpoints) and do not pass through any other image of a vertex. A face
is a connected component of the complement of the image of G in the sphere;
if G is connected, each face is homeomorphic to an open disc. A planar graph
is a graph that admits an embedding into a sphere, and a plane graph is a
planar graph together with one �xed embedding.

The classic theorems of Kuratowski and Wagner state that a graph is pla-
nar if and only if it does not contain K5 or K3,3 as a minor (equivalently, as
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a topological minor). In Chapters 6 and 7 we brie�y mention graphs embed-
dable into more complicated surfaces than plane or sphere. We refer to the
bibliographic notes at the end of Chapter 6 for pointers to the literature on
this topic.

SAT notation

Let Vars = {x1, x2, . . . , xn} be a set of Boolean variables. A variable x or
a negated variable ¬x is called a literal. A propositional formula ϕ is in
conjunctive normal form, or is a CNF formula, if it is of the form:

ϕ = C1 ∧ C2 ∧ . . . ∧ Cm.

Here, each Ci is a clause of the form

Ci = `i1 ∨ `i2 ∨ . . . ∨ `iri ,

where `ij are literals of some variables of Vars. The number of literals ri in a
clause Ci is called the length of the clause, and is denoted by |Ci|. The size of
formula ϕ is de�ned as |ϕ| = ∑m

i=1 |Ci|. The set of clauses of a CNF formula
is usually denoted by Cls.

For q ≥ 2, a CNF formula ϕ is in q-CNF if every clause from ϕ has at
most q literals. If ϕ is a formula and X a set of variables, then we denote
by ϕ − X the formula obtained from ϕ after removing all the clauses that
contain a literal of a variable from X.

For a CNF formula ϕ on variables Vars, a truth assignment is a mapping
ψ : Vars → {⊥,>}. Here, we denote the false value as ⊥, and the truth
value as >. This assignment can be naturally extended to literals by taking
ψ(¬x) = ¬ψ(x) for each x ∈ Vars. A truth assignment ψ satis�es a clause
C of ϕ if and only if C contains some literal ` with ψ(`) = >; ψ satis�es
formula ϕ if it satis�es all the clauses of ϕ. A formula is satis�able if it is
satis�ed by some truth assignment; otherwise it is unsatis�able.

The notion of a truth assignment can be naturally generalized to partial
assignments that valuate only some subset X ⊆ Vars; i.e., ψ is a mapping
from X to {⊥,>}. Here, a clause C is satis�ed by ψ if and only if C contains
some literal ` whose variable belongs to X, and which moreover satis�es
ψ(`) = >.



Problem de�nitions

(p, q)-Cluster

Input:
A graph G, a vertex v ∈ V (G) and integers
p and q.
Question:
Does there exist a (p, q)-cluster containing
v, that is, a set C ⊆ V (G) such that v ∈ C,
|C| ≤ p, and d(C) ≤ q?

(p, q)-Partition

Input:
A graph G and integers p and q.
Question:
Does there exist a partition of V (G) into
(p, q)-clusters? Here, a set C ⊆ V (G) is a
(p, q)-cluster if |C| ≤ p and d(C) ≤ q.

2-Matroid Intersection

Input:
A universe U , two matrices representing
matroids M1,M2 over U , and an integer
k.
Question:
Does there exist a set S ⊆ U of size at least
k that is independent both inM1 andM2?

2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals.
Question:
Does there exist a satisfying assignment for
ϕ?

2-degenerate Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a setX of at most k vertices
of G such that G−X is 2-degenerate?

2k×2k Bipartite Permutation Indepen-
dent Set

Input:
An integer k and a graph G with the vertex
set [2k]× [2k], where every edge is between
I1 = [k]×[k] and I2 = ([2k]\[k])×([2k]\[k]).
Question:
Does there exist an independent set
X ⊆ I1 ∪ I2 in G that induces a permuta-
tion of [2k]?

3-Coloring

Input:
A graph G.
Question:
Does there exist a coloring c : V (G) →
{1, 2, 3} such that c(u) 6= c(v) for every
uv ∈ E(G)?

3-Hitting Set

Input:
A universe U , a family A of sets over U ,
where each set in A is of size at most 3,
and an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every element of A?
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3-Matroid Intersection

Input:
A universe U , three matrices representing
matroids M1,M2,M3 over U , and an
integer k.
Question:
Does there exist a set S ⊆ U of size at least
k that is independent in every matroidMi,
i = 1, 2, 3?

3-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most three literals.
Question:
Does there exist a satisfying assignment for
ϕ?

G Vertex Deletion

Input:
A graph G, an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G − X ∈ G? Here,
G denotes any graph class that is a part of
the problem de�nition.

`-Matroid Intersection

Input:
A universe U , ` matrices representing
matroids M1,M2, . . . ,M` over U , and an
integer k.
Question:
Does there exist a set S ⊆ U of size at least
k that is independent in every matroidMi,
1 ≤ i ≤ `?

φ-Maximization

Input:
A graph G and an integer k.
Question:
Does there exist a set S of at least k vertices
of G such that φ(G,S) is true? Here, φ
denotes any computable Boolean predicate
that is a part of the problem de�nition.

φ-Minimization

Input:
A graph G and an integer k.
Question:
Does there exist a set S of at most k vertices
of G such that φ(G,S) is true? Here, φ
denotes any computable Boolean predicate
that is a part of the problem de�nition.

d-Bounded-Degree Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that the maximum
degree of G−X is at most d?

d-Clustering

Input:
A graph G and an integer k.
Question:
Does there exist a set A ⊆

(
V (G)

2

)
of

size at most k such that the graph
(V (G), (E(G) \ A) ∪ (A \ E(G))) is a
d-cluster graph? Here, a d-cluster graph is
a graph that contains exactly d connected
components, each being a clique.

d-Hitting Set

Input:
A universe U , a family A of sets over U ,
where each set in A is of size at most d,
and an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every element of A?

d-Set Packing

Input:
A universe U , a family A of sets over U ,
where each set in A is of size at most d,
and an integer k.
Question:
Does there exist a family A′ ⊆ A of k
pairwise disjoint sets?

k-Tree

A synonym for Tree Subgraph Isomor-
phism.

k × k Clique
Input:
An integer k and a graph G with a vertex
set [k]× [k].
Question:
Does there exist a set X ⊆ V (G) that is a
clique in G and that contains exactly one
element in each row {i} × [k], 1 ≤ i ≤ k?
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k × k Hitting Set

Input:
An integer k and a family A of subsets of
[k]× [k].
Question:
Does there exist a set X ⊆ [k]× [k] that has
a nonempty intersection with every element
of A and that contains exactly one element
in each row {i} × [k], 1 ≤ i ≤ k?

k × k Hitting Set with thin sets

Input:
An integer k and a family A of subsets of
[k]× [k], where every element of A contains
at most one element in each row {i} × [k],
1 ≤ i ≤ k.
Question:
Does there exist a set X ⊆ [k]× [k] that has
a nonempty intersection with every element
of A and that contains exactly one element
in each row {i} × [k], 1 ≤ i ≤ k?

k × k Permutation Clique

Input:
An integer k and a graph G with a vertex
set [k]× [k].
Question:
Does there exist a set X ⊆ V (G) that is a
clique in G and that induces a permutation
of [k]?

k × k Permutation Hitting Set

Input:
An integer k and a family A of subsets of
[k]× [k].
Question:
Does there exist a set X ⊆ [k]× [k] that has
a nonempty intersection with every element
of A and that induces a permutation of [k]?

k × k Permutation Hitting Set with
thin sets

Input:
An integer k and a family A of subsets of
[k]× [k], where every element of A contains
at most one element in each row {i} × [k],
1 ≤ i ≤ k.
Question:
Does there exist a set X ⊆ [k]× [k] that has
a nonempty intersection with every element
of A and that induces a permutation of [k]?

k × k Permutation Independent Set

Input:
An integer k and a graph G with a vertex
set [k]× [k].
Question:
Does there exist a set X ⊆ V (G) that is an
independent set in G and that induces a
permutation of [k]?

q-Coloring

Input:
A graph G.
Question:
Does there exist a coloring c : V (G) → [q]
such that c(u) 6= c(v) for every uv ∈ E(G)?

q-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most q literals.
Question:
Does there exist a satisfying assignment for
ϕ?

q-Set Cover

Input:
A universe U , a family F over U , where
every element of F is of size at most q, and
an integer k.
Question:
Does there exist a subfamily F ′ ⊆ F of size
at most k such that

⋃
F ′ = U?

r-Center

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that every vertex of G is
within distance at most r from at least one
vertex of X?

s-Way Cut

Input:
A graph G and integers s and k.
Question:
Does there exist a set X of at most k
edges of G such that G − X has at least s
connected components?
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Almost 2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals, and an
integer k.
Question:
Is it possible to make ϕ satis�able by
deleting at most k clauses?

Annotated Bipartite Coloring

Input:
A bipartite graph G, two sets
B1, B2 ⊆ V (G), and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X has a proper
2-coloring c : V (G) \ X → {1, 2} (i.e.,
c(u) 6= c(v) for every edge uv) that agrees
with the sets B1 and B2, that is, f(v) = i

whenever v ∈ Bi \X and i = 1, 2?

Annotated Satisfiable Almost 2-SAT

Input:
A satis�able formula ϕ in CNF form, where
every clause of ϕ consists of at most two
literals, two sets of variables V > and V ⊥,
and an integer k.
Question:
Does there exist a set X of at most k

variables of ϕ and a satisfying assignment
ψ of ϕ − X such that ψ(x) = > for every
x ∈ V > \ X and ψ(x) = ⊥ for every
x ∈ V ⊥ \ X? Here, ϕ − X denotes the
formula ϕ with every clause containing at
least one variable of X deleted.

Bar Fight Prevention

Input:
A bar, a list of n potential guests, for every
pair of guests a prediction whether they
will �ght if they are admitted together to
the bar, and an integer k.
Question:
Can you identify a set of at most k trou-
blemakers, so that if you admit to the bar
everybody except for the troublemakers,
no �ght breaks out among the admitted
guests?

Bipartite Matching

Input:
A bipartite graph G and an integer k.
Question:
Does there exist an edge set S ⊆ E(G) of
size at least k such that no two edges in S
share an endpoint?

CNF-SAT

Input:
A formula ϕ in conjunctive normal form
(CNF).
Question:
Does there exist a satisfying assignment for
ϕ?

Chordal Completion

Input:
A graph G and an integer k.
Question:
Can one add at most k edges to G to turn
it into a chordal graph?

Chromatic Number

Input:
A graph G.
Question:
What is the minimum integer q, such that
there exists a coloring c : V (G) → [q]
satisfying c(u) 6= c(v) for every edge
uv ∈ E(G)?

Clique

Input:
A graph G and an integer k.
Question:
Does there exist a set of k vertices of G
that is a clique in G?

Cliquelog

Input:
A graph G and an integer k such that
k ≤ log2 |V (G)|.
Question:
Does there exist a set of k vertices of G
that is a clique in G?
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Closest String

Input:
A set of k strings x1, . . . , xk, each string
over an alphabet Σ and of length L, and an
integer d.
Question:
Does there exist string y of length L over Σ
such that dH(y, xi) ≤ d for every 1 ≤ i ≤ k.
Here, dH(x, y) is the Hamming distance
between strings x and y, that is, the number
of positions where x and y di�er.

Closest Substring

Input:
A set of k strings x1, . . . , xk over an
alphabet Σ, and integers L and d
Question:
Does there exist a string s of length L such
that, for every 1 ≤ i ≤ k, xi has a substring
x′i of length L with dH(s, si) ≤ d. Here,
dH(x, y) is the Hamming distance between
strings x and y, that is, the number of
positions where x and y di�er.

Cluster Editing

Input:
A graph G and an integer k.
Question:
Does there exist a set A ⊆

(
V (G)

2

)
of

size at most k such that the graph
(V (G), (E(G) \A)∪ (A \E(G))) is a cluster
graph? Here, a cluster graph is a graph
where every connected component is a
clique.

Cluster Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G − X is a cluster
graph? Here, a cluster graph is a graph
where every connected component is a
clique.

Cochromatic Number

Input:
A graph G.
Question:
What is the minimum integer q, such that
there exists a coloring c : V (G) → [q]

satisfying c(u) 6= c(v) for every pair of
nonadjacent vertices u, v?

Colored Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition classes
R ]B = V (G), an integer ` and a partition
of R into ` sets R1, R2, . . . , R`.
Question:
Does there exist a set X ⊆ R that con-
tains exactly one element of every set Ri,
1 ≤ i ≤ ` and such that NG(X) = B?

Colorful Graph Motif

Input:
A graph G, an integer k and a coloring
c : V (G)→ [k].
Question:
Does there exist a connected subgraph of
G that contains exactly one vertex of each
color?

Component Order Integrity

Input:
A graph G and two integers k and `.
Question:
Does there exist a set X of at most k
vertices of G such that every connected
component of G − X contains at most `
vertices?

Connected Bull Hitting

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is connected
and G − X does not contain a bull as an
induced subgraph? Here, a bull is a 5-vertex
graph H with V (H) = {a, b, c, d, e} and
E(H) = {ab, bc, ac, bd, ce}.

Connected Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is connected
and NG[X] = V (G)?

Connected Feedback Vertex Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G[X] is connected
and G−X is a forest?
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Connected Vertex Cover

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G[X] is connected
and G−X is edgeless?

Cycle Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k pairwise
vertex-disjoint cycles?

Digraph Pair Cut

Input:
A directed graph G, a designated vertex
s ∈ V (G), a family of pairs of vertices
F ⊆

(
V (G)

2

)
, and an integer k.

Question:
Does there exist a set X of at most k edges
of G, such that for each pair {u, v} ∈ F ,
either u or v is not reachable from s in the
graph G−X.

Directed Edge Multicut

Input:
A directed graph G, a set of pairs (si, ti)

`
i=1

of vertices of G, and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that for every 1 ≤ i ≤ `, vertex ti
is not reachable from vertex si in the graph
G−X?

Directed Edge Multiway Cut

Input:
A directed graph G, a set T ⊆ V (G), and
an integer k.
Question:
Does there exist a set X of at most k

edges of G such that for every two distinct
vertices t1, t2 ∈ T , vertex t2 is not reachable
from vertex t1 in the graph G−X?

Directed Feedback Arc Set

Input:
A directed graph G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G−X is acyclic?

Directed Feedback Arc Set Compres-
sion

Input:
A directed graph G, a set W ⊆ V (G) such
that G−W is acyclic, and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G−X is acyclic?

Directed Feedback Vertex Set

Input:
A directed graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is acyclic?

Directed Max Leaf

Input:
A directed graph G and an integer k.
Question:
Does there exist an out-tree in G with
at least k leaves? Here, an out-tree is a
directed graph whose underlying undirected
graph is a tree, and every vertex of the
out-tree, except for one, has indegree
exactly one; a leaf of an out-tree is a vertex
with outdegree zero.

Directed Steiner Tree

Input:
A directed graph G, a designated root
vertex r, a set T ⊆ V (G), and an integer `.
Question:
Does there exist a subgraph H of G with at
most ` edges, such that every vertex t ∈ T
is reachable from r in H?

Directed Vertex Multiway Cut

Input:
A directed graph G, a set T ⊆ V (G), and
an integer k.
Question:
Does there exist a set X ⊆ V (G) \ T of size
at most k such that for every two distinct
vertices t1, t2 ∈ T , vertex t2 is not reachable
from vertex t1 in the graph G−X?
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Disjoint Factors

Input:
A word w over an alphabet Γ =
{γ1, γ2, . . . , γs}.
Question:
Does there exist pairwise disjoint subwords
u1, u2, . . . , us of w such that each ui is of
length at least two and begins and ends
with γi?

Disjoint Feedback Vertex Set

Input:
A graph G, a set W ⊆ V (G) such that
G−W is a forest, and an integer k.
Question:
Does there exist a set X ⊆ V (G) \ W of
size at most k such that G−X is a forest?

Disjoint Feedback Vertex Set in
Tournaments

Input:
A tournament G, a set W ⊆ V (G) such
that G−W is acyclic, and an integer k.
Question:
Does there exist a set X ⊆ V (G) \ W of
size at most k such that G−X is acyclic?

Disjoint Odd Cycle Transversal

Input:
A graph G, a set W ⊆ V (G) such that
G−W is bipartite, and an integer k.
Question:
Does there exist a set X ⊆ V (G)\W of size
at most k such that G−X is bipartite?

Disjoint Planar Vertex Deletion

Input:
A graph G, a set W ⊆ V (G) such that
G−W is planar, and an integer k.
Question:
Does there exist a set X ⊆ V (G) \ W of
size at most k such that G−X is planar?

Disjoint Vertex Cover

Input:
A graph G, a set W ⊆ V (G) such that
G−W is edgeless, and an integer k.
Question:
Does there exist a set X ⊆ V (G) \ W of
size at most k such that G−X is edgeless?

Distortion

Input:
A graph G and an integer d.
Question:
Does there exist an embedding η : V (G) →
Z such that for every u, v ∈ V (G) we have
distG(u, v) ≤ |η(u)− η(v)| ≤ d ·distG(u, v)?

Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that NG[X] = V (G)?

Dominating Set on Tournaments

Input:
A tournament G and an integer k.
Question:
Does there exist a set X of at most k ver-
tices of G such that for every v ∈ V (G) \X
there exists u ∈ X with (u, v) ∈ E(G)?

Dominating Set with Pattern

Input:
A graph G, an integer k, and a graph H on
vertex set [k]
Question:
Does there exist a tuple (v1, v2, . . . , vk)

of distinct vertices of G such that
NG[{v1, v2, . . . , vk}] = V (G) and
vivj ∈ E(G) if and only if ij ∈ E(H)?

Dual-Coloring

Input:
A graph G and an integer k.
Question:
Does there exist a coloring c : V (G) →
[n− k] such that c(u) 6= c(v) for every edge
uv?

Ed-Hitting Set

Input:
A universe U , a family A of sets over U ,
where each set in A is of size exactly d, and
an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every element of A?
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Ed-Set Packing

Input:
A universe U , a family A of sets over U ,
where each set in A is of size exactly d, and
an integer k.
Question:
Does there exist a family A′ ⊆ A of k
pairwise disjoint sets?

Edge Bipartization

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G−X is bipartite?

Edge Clique Cover

Input:
A graph G and an integer k.
Question:
Does there exist k subgraphs
H1, H2, . . . , Hk of G, such that each
Hi is a clique and E(G) =

⋃k
i=1 E(Hi)?

Edge Disjoint Cycle Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k pairwise
edge-disjoint cycles?

Edge Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G− V (X) is edgeless?

Edge Multicut

Input:
A graph G, a set of pairs (si, ti)

`
i=1 of

vertices of G, and an integer k.
Question:
Does there exist a set X of at most k
edges of G such that for every 1 ≤ i ≤ `,
vertices si and ti lie in di�erent connected
components of G−X?

Edge Multiway Cut

Input:
A graph G, a set T ⊆ V (G), and an integer
k.
Question:
Does there exist a set X of at most k edges
of G such that every element of T lies in a
di�erent connected component of G−X?

Edge Multiway Cut for Sets

Input:
A graph G, pairwise disjoint sets T1, . . . ,
Tp of vertices of G, and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that for every 1 ≤ i < j ≤ p there
is no path between any vertex of Ti and
any vertex of Tj in G−X?

Eulerian Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G − X contains an Euler
tour?

Even Set

Input:
A universe U , a family F of subsets of U ,
and an integer k.
Question:
Does there exist a nonempty set X ⊆ U of
size at most k such that |A ∩X| is even for
every A ∈ F?

Exact CNF-SAT

Input:
A formula ϕ in CNF and an integer k.
Question:
Does there exist an assignment ψ that
satis�es ϕ and sets to true exactly k
variables?

Exact Even Set

Input:
A universe U , a set F of subsets of U , and
an integer k.
Question:
Does there exist a nonempty set X ⊆ U of
size exactly k such that |A ∩X| is even for
every A ∈ F?
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Exact Odd Set

Input:
A universe U , a set F of subsets of U , and
an integer k.
Question:
Does there exist a nonempty set X ⊆ U of
size exactly k such that |A ∩ X| is odd for
every A ∈ F?

Exact Unique Hitting Set

Input:
A universe U , a set A of subsets of U , and
an integer k.
Question:
Does there exist a set X ⊆ U of size exactly
k such that |A ∩X| = 1 for every A ∈ A?

FAST

An abbreviation for Feedback Arc Set
in Tournaments.

FVST

An abbreviation for Feedback Vertex
Set in Tournaments.

Face Cover

Input:
A graph G embedded on a plane and an
integer k.
Question:
Does there exist a set X of at most k faces
of the embedding of G such that every
vertex of G lies on at least one face of X?

Feedback Arc Set in Tournaments

Input:
A tournament G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G−X is acyclic?

Feedback Vertex Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is a forest?

Feedback Vertex Set in Tournaments

Input:
A tournament G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is acyclic?

Feedback Vertex Set in Tournaments
Compression

Input:
A tournament G, a set W ⊆ V (G) such
that G−W is acyclic, and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is acyclic?

Graph Genus

Input:
A graph G and an integer g.
Question:
Can G be embedded on a surface of Euler
genus g?

Graph Isomorphism

Input:
Two graphs G and H.
Question:
Are G and H isomorphic?

Graph Motif

Input:
A graph G, an integer k, a coloring
c : V (G) → [k], and a multiset M with
elements from [k].
Question:
Does there exist a set X ⊆ V (G) such
that G[X] is connected and the multiset
{c(u) : u ∈ X} equals M?

Grid Tiling

Input:
An integer k, an integer n, and a collection
S of k2 nonempty sets Si,j ⊆ [n] × [n]

(1 ≤ i, j ≤ k).
Question:
Can one choose for each 1 ≤ i, j ≤ k a pair
si,j ∈ Si,j such that

� If si,j = (a, b) and si+1,j = (a′, b′), then
a = a′.

� If si,j = (a, b) and si,j+1 = (a′, b′), then
b = b′.
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Grid Tiling with ≤
Input:
An integer k, an integer n, and a collection
S of k2 nonempty sets Si,j ⊆ [n] × [n]

(1 ≤ i, j ≤ k).
Question:
Can one choose for each 1 ≤ i, j ≤ k a pair
si,j ∈ Si,j such that

� If si,j = (a, b) and si+1,j = (a′, b′), then
a ≤ a′.

� If si,j = (a, b) and si,j+1 = (a′, b′), then
b ≤ b′.

Hall Set

Input:
A bipartite graph G with bipartition classes
A ]B = V (G) and an integer k.
Question:
Does there exist a set X ⊆ A of size at
most k such that |NG(S)| < |S|?

Halting

Input:
A description of a deterministic Turing
machine M , an input word x.
Question:
Does M halt on x?

Hamiltonian Cycle

Input:
A graph G.
Question:
Does there exist a simple cycle C in G such
that V (C) = V (G)?

Hamiltonian Path

Input:
A graph G.
Question:
Does there exist a simple path P in G such
that V (P ) = V (G)?

Hitting Set

Input:
A universe U , a family A of sets over U ,
and an integer k.
Question:
Does there exist a set X ⊆ U of size at
most k that has a nonempty intersection
with every element of A?

Imbalance

Input:
A graph G and an integer k.
Question:
Does there exist a bijective function
π : V (G) → {1, 2, . . . , |V (G)|} (called an
ordering) whose imbalance is at most k?
Here, the imbalance of a vertex v ∈ V (G)

in an ordering π is de�ned as

ιπ(v) = ||{u ∈ NG(v) : π(u) < π(v)}|−
|{u ∈ NG(v) : π(u) > π(v)}||,

and the imbalance of an ordering π is de-
�ned as

ι(π) =
∑

v∈V (G)

ιπ(v).

Independent Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G[X] is edgeless and
NG[X] = V (G)?

Independent Feedback Vertex Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G[X] is edgeless and
G−X is a forest?

Independent Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G[X] is edgeless?

Induced Matching

Input:
A graph G and an integer k.
Question:
Does there exist a set X of exactly 2k

vertices of G such that G[X] is a matching
consisting of k edges?
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Integer Linear Programming

Input:
Integers m and p, a matrix A ∈ Zm×p, and
vectors b ∈ Zm, c ∈ Zp.
Question:
Find a vector x ∈ Zp that satis�es Ax ≤ b
and that minimizes the value of the scalar
product c · x.

Integer Linear Programming Feasibil-
ity

Input:
Integers m and p, a matrix A ∈ Zm×p, and
a vector b ∈ Zm.
Question:
Does there exist a vector x ∈ Zp such that
Ax ≤ b?

Linear Programming

Input:
Integers m and p, a matrix A ∈ Rm×p, and
vectors b ∈ Rm, c ∈ Rp.
Question:
Find a vector x ∈ Rp that satis�es Ax ≤ b
and that minimizes the value of the scalar
product c · x.

Linkless Embedding

Input:
A graph G and an integer k.
Question:
Does there exist an embedding of G into
R3 such that any pairwise linked family
of cycles in G has size at most k? Here,
we say that two vertex-disjoint cycles of G
are linked in an embedding into R3 if they
cannot be separated by a continuous defor-
mation (i.e., they look like two consecutive
links of a chain).

List Coloring

Input:
A graph G and a set L(v) for every
v ∈ V (G)
Question:
Can one choose a color c(v) ∈ L(v) for
every v ∈ V (G) such that c(u) 6= c(v) for
every uv ∈ E(G)?

Long Directed Cycle

Input:
A directed graph G and an integer k.
Question:
Does there exist a directed cycle in G of
length at least k?

Long Induced Path

Input:
A graph G and an integer k.
Question:
Does there exist an induced subgraph of G
that is isomorphic to a path on k vertices?

Longest Common Subsequence

Input:
Two strings a and b.
Question:
What is the length of the longest common
subsequence of a and b? That is, we ask for
the largest possible integer n for which there
exist indices 1 ≤ i1 < i2 < . . . < in ≤ |a|
and 1 ≤ j1 < j2 < . . . < jn ≤ |b| such that
a[ir] = b[jr] for every 1 ≤ r ≤ n.

Longest Cycle

Input:
A graph G and an integer k.
Question:
Does there exist a cycle in G of length at
least k?

Longest Path

Input:
A graph G and an integer k.
Question:
Does there exist a path in G consisting of k
vertices?

Matroid Ed-Set Packing

Input:
An integer k and a matrix M representing
a matroid M of rank d · k over a universe
U , and a family A of sets over U , where
each set in A is of size exactly d.
Question:
Does there exist a family A′ ⊆ A of k
pairwise disjoint sets, such that

⋃
A∈A′ A

is independent inM?

Matroid Parity

Input:
A matrix A representing a matroidM over
a universe U of size 2n, a partition of U
into n pairs P1, P2, . . . , Pn, and an integer
k.
Question:
Does there exist an independent set X in
M of size 2k that is a union of k pairs Pi?
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Max Leaf Spanning Tree

Input:
A graph G and an integer k.
Question:
Does there exist a spanning tree of G with
at least k leaves?

Max Leaf Subtree

Input:
A graph G and an integer k.
Question:
Does G contain a tree with at least k leaves
as a subgraph?

Max-r-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most r literals, and an integer
k.
Question:
Does there exist an assignment ψ that
satis�es at least k clauses of ϕ?

Max-Er-SAT

Input:
A CNF formula ϕ, where every clause
consists of exactly r literals with pairwise
di�erent variables, and an integer k.
Question:
Does there exist an assignment ψ that
satis�es at least k clauses of ϕ?

Max-Internal Spanning Tree

Input:
A graph G and an integer k.
Question:
Does there exist a spanning tree of G with
at least k internal vertices?

MaxCut

Input:
A graph G and an integer k.
Question:
Does there exist a partition A ] B of V (G)

such that at least k edges of G have one
endpoint in A and the second endpoint in
B?

Maximum Bisection

Input:
A graph G and an integer k.
Question:
Does there exist a partition A ] B of V (G)

such that ||A| − |B|| ≤ 1 and at least k
edges of G have one endpoint in A and the
second endpoint in B?

Maximum Cycle Cover

Input:
A graph G and an integer k.
Question:
Does there exist a family C of pairwise
vertex-disjoint cycles in G such that |C| ≥ k
and every vertex of G lies on some cycle of
C?

Maximum Flow

Input:
A directed graph G with edge capacity
function c : E(G) → R>0 and two desig-
nated vertices s, t ∈ V (G).
Question:
Find a maximum �ow from s to t. That is,
�nd a function f : E(G) → R>0 that satis-
�es the capacity constraints 0 ≤ f(e) ≤ c(e)
for every e ∈ E(G), �ow conserva-
tion constraints

∑
(v,u)∈E(G) f(v, u) =∑

(u,v∈E(G) f(u, v) for every v ∈
V (G) \ {s, t}, and that maximizes∑

(s,u)∈E(G) f(s, u)−
∑

(u,s)∈E(G) f(u, s).

Maximum Matching

Input:
A graph G and an integer k.
Question:
Does there exist an edge set S ⊆ E(G) of
size at least k such that no two edges in S
share an endpoint?

Maximum Satisfiability

Input:
A CNF formula ϕ and an integer k.
Question:
Does there exist an assignment ψ that
satis�es at least k clauses of ϕ?

Min-2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals, and an
integer k.
Question:
Does there exist an assignment ψ that
satis�es at most k clauses of ϕ?
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Min-Ones-2-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most two literals, and an
integer k.
Question:
Does there exist an assignment ψ that
satis�es ϕ and sets at most k variables to
true?

Min-Ones-r-SAT

Input:
A CNF formula ϕ, where every clause
consists of at most r literals, and an integer
k.
Question:
Does there exist an assignment ψ that
satis�es ϕ and sets at most k variables to
true?

Minimum Bisection

Input:
A graph G and an integer k.
Question:
Does there exist a partition A ] B of V (G)
such that ||A| − |B|| ≤ 1 and at most k
edges of G have one endpoint in A and the
second endpoint in B?

Minimum Maximal Matching

Input:
A graph G and an integer k.
Question:
Does there exist an inclusion-wise maximal
matching in G that consists of at most k
edges?

Multicolored Biclique

Input:
A bipartite graph G with bipartition classes
A]B = V (G), an integer k, a partition of A
into k sets A1, A2, . . . , Ak, and a partition
of B into k sets B1, B2, . . . , Bk.
Question:
Does there exist a set X ⊆ A ∪ B that
contains exactly one element of every set
Ai and Bi, 1 ≤ i ≤ ` and that induces a
complete bipartite graph Kk,k in G?

Multicolored Clique

Input:
A graph G, an integer k, and a partition of
V (G) into k sets V1, V2, . . . , Vk.
Question:
Does there exist a set X ⊆ V (G) that
contains exactly one element of every set Vi
and that is a clique in G?

Multicolored Independent Set

Input:
A graph G, an integer k, and a partition of
V (G) into k sets V1, V2, . . . , Vk.
Question:
Does there exist a set X ⊆ V (G) that
contains exactly one element of every set Vi
and that is an independent set in G?

Multicut

A synonym for Vertex Multicut.

NAE-SAT

Input:
A CNF formula ϕ.
Question:
Does there exist an assignment ψ such that
for every clause C in ϕ, at least one literal
of C is evaluated to true and at least one
literal is evaluated to false by ψ?

Odd Cycle Transversal

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is bipartite?

Odd Set

Input:
A universe U , a set F of subsets of U , and
an integer k.
Question:
Does there exist a nonempty set X ⊆ U of
size at most k such that |A ∩X| is odd for
every A ∈ F?

Partial Dominating Set

Input:
A graph G and integers k and r.
Question:
Does there exist a set X of at most k

vertices of G such that |NG[X]| ≥ r?
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Partial Vertex Cover

Input:
A graph G and integers k and r.
Question:
Does there exist a set X of at most k

vertices of G such that at least r edges of G
are incident to at least one vertex of X?

Partitioned Clique

A synonym for Multicolored Clique.

Perfect d-Set Matching

Input:
A universe U , a family A of sets over U ,
where each set in A is of size exactly d, and
an integer k.
Question:
Does there exist a family A′ ⊆ A of k
pairwise disjoint sets such that

⋃
A′ = U?

Perfect Code

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that for every u ∈ V (G)

there exists exactly one vertex v ∈ X for
which u ∈ NG[v]?

Permutation Composition

Input:
A family P of permutations of a universe
U , additional permutation π of U , and an
integer k.
Question:
Does there exist a sequence π1, π2, . . . , πk ∈
P such that π = π1 ◦ π2 ◦ . . . ◦ πk?

Planar 3-Coloring

Input:
A planar graph G.
Question:
Does there exist a coloring c : V (G) →
{1, 2, 3} such that c(u) 6= c(v) for every
uv ∈ E(G)?

Planar 3-SAT

Input:
A CNF formula ϕ, such that every clause
of ϕ consists of at most three literals and
the incidence graph of ϕ is planar. Here,
an incidence graph of a formula ϕ is a
bipartite graph with vertex sets consisting
of all variables and clauses of ϕ where a
variable is adjacent to all clauses it appears
in.
Question:
Does there exist a satisfying assignment for
ϕ?

Planar Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is planar?

Planar Deletion Compression

Input:
A graph G, a set W ⊆ V (G) such that
G−W is planar, and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is planar?

Planar Diameter Improvement

Input:
A planar graph G and an integer d.
Question:
Does there exist a supergraph of G that is
planar and has diameter at most d?

Planar Feedback Vertex Set

Input:
A planar graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G−X is a forest?

Planar Hamiltonian Cycle

Input:
A planar graph G.
Question:
Does there exist a simple cycle C in G such
that V (C) = V (G)?
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Planar Longest Cycle

Input:
A planar graph G and an integer k.
Question:
Does there exist a cycle in G of length at
least k?

Planar Longest Path

Input:
A planar graph G and an integer k.
Question:
Does there exist a path in G consisting of k
vertices?

Planar Vertex Cover

Input:
A planar graph G, an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is edgeless?

Point Line Cover

Input:
A set P of points in the plane and an
integer k.
Question:
Does there exist a family L of at most k
lines on the plane such that every point in
P lies on some line from L?

Polynomial Identity Testing

Input:
Two polynomials f and g over a �eld F ,
given as arithmetic circuits with addition,
subtraction and multiplication gates.
Question:
Is it true that f(x) = g(x) for every x ∈ F?

Pseudo Achromatic Number

Input:
A graph G and an integer k.
Question:
Does there exist a partition of V (G) into
k sets V1, V2, . . . , Vk such that for every
1 ≤ i < j ≤ k there exists at least one
edge of G with one endpoint in Vi and the
second endpoint in Vj?

Ramsey

Input:
A graph G and an integer k.
Question:
Does there exist a set X of exactly k
vertices of G such that G[X] is a clique or
G[X] is edgeless?

Red-Blue Dominating Set

Input:
A bipartite graph G with bipartition classes
R ]B = V (G) and an integer k.
Question:
Does there exist a set X ⊆ R of size at
most k such that NG(X) = B?

Satellite Problem

Input:
A graph G, integers p and q, a vertex
v ∈ V (G), and a partition V0, V1, . . . , Vr of
V (G) such that v ∈ V0 and there is no edge
between Vi and Vj for any 1 ≤ i < j ≤ r.
Question:
Does there exist a (p, q)-cluster C satisfying
V0 ⊆ C such that for every 1 ≤ i ≤ r,
either C ∩ Vi = ∅ or Vi ⊆ C? Here, a set
C ⊆ V (G) is a (p, q)-cluster if |C| ≤ p and
d(C) ≤ q.

Scattered Set

Input:
A graph G and integers r and k.
Question:
Does there exist a set X of at least k

vertices of G such that distG(u, v) > r for
every distinct u, v ∈ X?

Set Cover

Input:
A universe U , a family F over U , and an
integer k.
Question:
Does there exist a subfamily F ′ ⊆ F of size
at most k such that

⋃
F ′ = U?

Set Packing

Input:
A universe U , a family A of sets over U ,
and an integer k.
Question:
Does there exist a family A′ ⊆ A of k
pairwise disjoint sets?

Set Splitting

Input:
A universe U and a family F of sets over U .
Question:
Does there exist a set X ⊆ U such that
A ∩X 6= ∅ and A \X 6= ∅ for every A ∈ F?
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Short Turing Machine Acceptance

Input:
A description of a nondeterministic Turing
machine M , a string x, and an integer k.
Question:
Does there exist a computation path of M
that accepts x on at most k steps?

Skew Edge Multicut

Input:
A directed graph G, a set of pairs (si, ti)

`
i=1

of vertices of G, and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that for every 1 ≤ i ≤ j ≤ `,
vertex tj is not reachable from vertex si in
the graph G−X?

Special Disjoint FVS

Input:
A graph G, a set W ⊆ V (G) such that
G − W is edgeless and every vertex of
V (G) \W is of degree at most three in G,
and an integer k.
Question:
Does there exist a set X ⊆ V (G) \ W of
size at most k such that G−X is a forest?

Split Edge Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k edges
of G such that G−X is a split graph? Here,
a split graph is a graph whose vertex set can
be partitioned into two parts, one inducing
a clique and one inducing an independent
set.

Split Vertex Deletion

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that G − X is a split
graph? Here, a split graph is a graph whose
vertex set can be partitioned into two
parts, one being a clique and one being an
independent set.

Steiner Tree

Input:
A graph G, a set K ⊆ V (G), and an integer
k.
Question:
Does there exist a connected subgraph of G
that contains at most k edges and contains
all vertices of K?

Strongly Connected Steiner Sub-
graph

Input:
A directed graph G, a set K ⊆ V (G), and
an integer k.
Question:
Does there exist a strongly connected
subgraph of G that contains at most k

edges and contains all vertices of K?

Subgraph Isomorphism

Input:
Two graphs G and H.
Question:
Does there exist a subgraph of G that is
isomorphic to H?

Subset Sum

Input:
A set S of integers and integers k and m.
Question:
Does there exist a subset X ⊆ S of size at
most k whose elements sum up to m?

TSP

Input:
A graph G with edge weights
w : E(G)→ R>0.
Question:
Find a closed walk of minimum possible
total weight that visits all vertices of G.

Total Dominating Set

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k
vertices of G such that for every u ∈ V (G)

there exists v ∈ X with uv ∈ E(G)?
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Tree Spanner

Input:
A graph G and an integer k.
Question:
Does there exist a spanning tree T of G
such that for every u, v ∈ V (G) it holds
that distT (u, v) ≤ kdistG(u, v)?

Tree Subgraph Isomorphism

Input:
A graph G and a tree H.
Question:
Does there exist a subgraph of G that is
isomorphic to H?

Treewidth

Input:
A graph G and an integer k.
Question:
Is the treewidth of G at most k?

Treewidth-η Modulator

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X has treewidth
at most η?

Triangle Packing

Input:
A graph G and an integer k.
Question:
Does there exist in G a family of k pairwise
vertex-disjoint triangles?

Unique Hitting Set

Input:
A universe U , a set A of subsets of U , and
an integer k.
Question:
Does there exist a set X ⊆ U of size at most
k such that |A ∩X| = 1 for every A ∈ A?

Unit Disk Independent Set

Input:
A set P of unit discs in the plane and an
integer k.
Question:
Does there exist a set of k pairwise disjoint
elements of P?

Unit Square Independent Set

Input:
A set P of axis-parallel unit squares in the
plane and an integer k.
Question:
Does there exist a set of k pairwise disjoint
elements of P?

Variable Deletion Almost 2-SAT

Input:
A CNF formula ϕ, where every clause of
ϕ consists of at most two literals, and an
integer k.
Question:
Does there exist a set X of at most k

variables of ϕ such that ϕ−X is satis�able?
Here, ϕ − X denotes the formula ϕ with
every clause containing at least one variable
from X deleted.

Vertex k-Way Cut

Input:
A graph G and integer k and s.
Question:
Does there exist a set X of at most k
vertices of G such that G − X has at least
s connected components?

Vertex Coloring

A synonym for Chromatic Number.

Vertex Cover

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G−X is edgeless?

Vertex Cover Above Matching

Input:
A graph G, a matching M in G, and an
integer k.
Question:
Does there exist a set X of at most k

vertices of G such that G − X is edgeless?
Note that the question is the same as in
Vertex Cover, but the Vertex Cover
Above Matching problem is usually
used in the context of above guarantee
parameterization with the size of the given
matching M as a lower bound.
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Vertex Cover Above LP

Input:
A graph G and an integer k.
Question:
Does there exist a set X of at most k ver-
tices of G such that G−X is edgeless? Note
that this is the same problem as Vertex
Cover, but the name Vertex Cover
Above LP is usually used in the context of
above guarantee parameterization with an
optimum solution to a linear programming
relaxation as a lower bound.

Vertex Disjoint Paths

Input:
A graph G and k pairs of vertices (si, ti)

k
i=1.

Question:
Do there exist k pairwise vertex-disjoint
paths P1, P2, . . . , Pk such that Pi starts in
si and ends in ti?

Vertex Multicut

Input:
A graph G, a set of pairs (si, ti)

`
i=1 of

vertices of G, and an integer k.
Question:
Does there exist a set X of at most k

vertices of G, not containing any vertex
si or ti, such that for every 1 ≤ i ≤ `,
vertices si and ti lie in di�erent connected
components of G−X?

Vertex Multiway Cut

Input:
A graph G, a set T ⊆ V (G), and an integer
k.
Question:
Does there exist a set X ⊆ V (G) \ T of
size at most k such that every element of T
lies in a di�erent connected component of
G−X?

Weighted Circuit Satisfiability

Input:
A Boolean circuit C and an integer k.
Question:
Does there exist an assignment to the input
gates of C that satis�es C and that sets
exactly k input gates to true?

Weighted Independent Set

Input:
A graph G with vertex weights
w : V (G)→ R≥0.
Question:
Find an independent set in G of the
maximum possible total weight.

Weighted Longest Path

Input:
A graph G with vertex weights
w : V (G)→ N and an integer k.
Question:
Find a simple path in G on k vertices of the
minimum possible total weight.
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C-bridge, 217
#P -complete problem, 358
AND-conjecture, 555
O∗-notation, 14, 467
�t, see grid
GF(q), 337
≤m, 140
f -width, 229
k-path, see path
k-wise independent sample space, 100,

119, 121
q-CNF, 469, 580
LPVC(G), 60
Linear Program for Vertex Cover of G,

34

above guarantee parameterization, 60, 61,
64, 285, 286, 300, 301

apex graph, 210, 216
apex-minor-free graph, 210, 216
arc, 577
assignment, 436
weight, 436

atomic formula, 181

Baker's technique, 211, 490
BFS
breadth-�rst search, 212

biclique, 459
bidimensional problem, 207
bidimensionality, 207, 203�210, 477, 490
binomial theorem, 322
bipartite tournament, 70
bipartition, 579
bitsize, 286, 531
Bodlaender's algorithm, 191
Bollobás' lemma, 393

Boolean circuit, 435
Boolean formula, 437
t-normalized, 437
antimonotone, 438
monotone, 438

border
of a vertex set, 158

bramble, 189, 234
branch decomposition, 228
branch set, 140
branching number, 56
branching vector, 55, 88
branching walk, 325
branchwidth, 229
brute force, 266, 515

Catalan number, 260
Catalan structure, 374
Cauchy-Schwarz inequality, 303
center string, 68
characteristic (of a �eld), 337
chordal width, 188
chromatic coding, 99, 113�117, 119�121
chromatic number, 579
circuit, 435
and-node, 435
depth, 436
input node, 435
large nodes, 437
negation node, 435
or-node, 435
output node, 436
satisfying assignment, 436
weft, 437

clause, 468, 580
clique, 579
cliquewidth, 230
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cluster
(p, q)-cluster, 264

cluster graph, 40, 115
clustering, 248, 264
CNF formula, 468, 580
color and conquer, 113
color coding, 99, 100, 103�106, 117�120,

351, 403, 467
coloring, 326, 579
coloring family, 121, 122
composition, 529
AND-, 533
AND-cross-, 533, 534, 554
cross-, 524, 530, 530, 531, 534, 535, 538,

539, 542, 545, 554, 555
OR-, 524, 555
weak, 524, 547, 555
weak cross-, 547, 548

compositionality, 523, 524
computation path, 440
conjunctive normal form, 468, 580
connected set, 579
connected vertex cover, 308
connectivity function, 228
connectivity problem, 365
contraction, see edge contraction
contraction-closed problem, 207
cops and robber game, 233
Courcelle's theorem, 152, 178, 183�185,

241, 417, 467
cover
by independent sets, 327

cover product, 331
crossover gadget, 474, 519
crown
decomposition, 26
lemma, 27

cut
edge multiway, see edge multiway cut
important, see important cut
minimal, see minimal cut
minimum, see minimum cut

Cut & Count, 361, 513, 521
cut function, 228
cycle, 578

DAG, 273, 284, 579
data reduction rule, 18
de�ciency, 293
degree, 578
in-, 578
out-, 578

derandomization, 117�122, 264, 267, 270,
271

Dijkstra's algorithm, 132
directed feedback vertex set, 81
distance, 578
distillation, 525, 526
AND-, 533
OR-, 525, 526, 530, 531, 552

divide and color, 99, 108�113, 119, 414
divide and conquer, 108, 120
dominating set, 40, 579

edge contraction, 140, 203, 205, 214, 578
edge modi�cation problems, 113
edge multiway cut, 261
edge representation, 457
embedding, 140, 579
Erd®s-Rado lemma, 38
Euler's formula, 308
expander, 234
expansion, 31�33
of a set into a set, 31

Exponential Time Hypothesis, ETH, 468,
469, 519

randomized, 470, 481, 515

face, 140, 579
fast cover, 360
fast subset convolution, 333
feedback arc set, 22, 275, 276, 278
feedback vertex set, 57, 275, 276, 287
�eld, 337
�nite, 337

�xed-parameter tractable, 13
Ford-Fulkerson algorithm, 250, 283
forest, 579

Gallai's theorem, 289, 295
Gaussian elimination, 370, 380, 384
girth, 578
golden ratio, 86, 90, 414
graph
K4-minor-free, 232
k-tree, 234
bipartite, 64, 579
bull, 552
chordal, 41, 127, 188, 233, 234
co-, 230
complete, 160
complete bipartite, 160
degenerate, 461, 552, 552, 553, 555
directed, 577
directed acyclic, 273, 284, 579
expander, 160, 234
interval, 127, 186
multi-, 577
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outerplanar, 160, 232
perfect, 43, 70, 94, 124
planar, 140, 308, 579
plane, 140, 308, 579
proper interval, 127
regular, 427, 578
split, 42, 94, 124
sub-, 578
super-, 578
trivially perfect, 127
undirected, 577
variable-clause incidence, 29, 474

graph isomorphism, 107
bounded degree, 107

Graph Minors, 140�146, 151, 190, 200, 243
graph searching, 185
grid, 155, 217, 229, 417, 490
t× t grid �t, 201

grid minor, 153, 200, 202, 205, 229, 242

Hölder's inequality, 302
half-integral solution, 61
Hall set, 461
Hall's theorem, 27
Hamiltonian cycle, 578
Hamiltonian path, 578
Hamming distance, 67
head, 577
Hopcroft-Karp algorithm, 27, 36, 46

imbalance
at vertex, 136
of ordering, 136

important cut, 248, 254, 254�261, 268
directed, 272, 274

important separator, 279, 284
important set, 268
inclusion�exclusion principle, 322, 343
independent feedback vertex set, 94
independent set, 21, 138, 579
induced matching, 460
instance
malformed, 530, 530, 535
well-formed, 530, 530, 535, 548

instance selector, 524, 534�536, 540, 554
interval width, 186
inversion formula, 329
irrelevant vertex, 219
irrelevant vertex technique, 216�228, 243
isolation lemma, 363
iterative compression, 77�98, 217, 248, 276,

278, 467
Iverson bracket, 322

Jordan curve, 140, 579

K®nig's theorem, 27, 37
kernelization, 285, 467
Kuratowski's theorem, 150, 201

Laplace expansion, 396
linear recurrence, 56
linear program, 60
literal, 468, 580
local treewidth, 215
longest common subsequence, 85

matching, 26, 64, 579
perfect, 358
saturating, 26

matrix multiplication constant ω, 395
matroid, 230, 377, 377�418
binary, 379
graphic, 88, 381
linear, 379
representable, 379
transversal, 382
uniform, 379

matroid axioms, 377
matroid basis, 379, 384
matroid circuit, 379, 384
matroid edge, 379
matroid greedy algorithm, 384
matroid independent set, 379
matroid intersection, 388, 401
matroid matching, 388
matroid minor, 386
matroid parity, 88, 388
matroid partition, 383
matroid property
exchange, 377
hereditary, 377

matroid rank, 379, 384
matroids direct sum, 383
maximum, 592
maximum �ow, 130, 193, 250, 388
maximum �ow and minimum cut, 250
maximum matching, 27, 37, 64, 388
measure, 63, 88, 89
Menger's theorem, 192
meta-theorem, 152, 241
min-sum semiring, 335, 360
minimal cut, 249
minimal separator, 233
minimum cut, 248, 249, 249�254
minor, 140, 160, 232�234
forbidden, 142

minor model, 140
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minor-closed, 142
minor-closed problem, 207
Monadic Second Order logic

MSO1, 180, 231, 243
MSO2, 178, 180

Monte Carlo algorithm, 108, 124, 340, 364,
470

multilinear polynomial, 304

neighbor, 577
neighborhood, 578
closed, 578
in-, 578
out-, 578

Nemhauser-Trotter theorem, 34
node search number, 185
nonuniform �xed-parameter tractability,

144

odd cycle transversal, 64, 91
outbranching, 552

parameterized problem, 12
Pareto e�cient, 254
path, 578
k-, 104�105, 120, 337, 413�414
alternating, 579
augmenting, 579
colorful k-path, 104

path decomposition, 157, 513
nice, 159

pathwidth, 158, 508, 534
perfect hash family, 100, 118�121
perfect matching, 64
permanent, 146
planar graph, 140, 308, 579
plane graph, 140, 308, 579
pointwise product, 332
polynomial
multivariate, 338
zero, 338

polynomial compression, 307, 531, 535,
538, 539, 541, 545, 551, 552

polynomial equivalence relation, 529, 535,
542, 545, 555

polynomial parameter transformation, 524,
534, 537, 537�539, 541, 552, 555

posimodular function, 264, 265
problem

(p, q)-Cluster, 266�268, 270, 271, 284,
581

(p, q)-Partition, 247, 264, 266, 271, 581
2-Matroid Intersection, 387, 388,

415, 417, 581

2-SAT, 581
2-degenerate Vertex Deletion, 461,

581
2k × 2k Bipartite Permutation

Independent Set, 516, 518, 581
3-Coloring, 473, 474, 478, 479, 485,

486, 515, 518, 519, 581
3-Hitting Set, 94, 96, 581
3-Matroid Intersection, 387, 582
3-SAT, 436, 451, 467�478, 485, 515, 518,

519, 582
`-Matroid Intersection, 386, 387,

401, 402, 415, 417, 418, 582
G + kv Recognition, 144
φ-Maximization, 206, 207, 582
φ-Minimization, 206, 207, 582
Cliquelog, 425, 426, 584
d-Bounded-Degree Deletion, 40, 582
d-Clustering, 99, 113, 115�117, 121,

122, 126, 127, 582
d-Hitting Set, 17, 18, 39, 42, 47�49,

94, 96, 377, 378, 394, 398, 399, 415,
416, 418, 552, 582

d-Set Packing, 42, 48, 49, 377, 378,
399, 400, 418, 582

k-Tree, 582
k × k Clique, 478�481, 518, 582
k × k Hitting Set with thin sets,

481, 484, 516, 518, 583
k × k Hitting Set, 481, 583
k × k Permutation Clique, 479�481,

516, 583
k × k Permutation Hitting Set with

thin sets, 481, 482, 484, 516, 583
k × k Permutation Hitting Set, 481,

583
k × k Permutation Independent Set,

518, 583
q-Coloring, 176, 232, 512, 513, 583
q-SAT, 469�472, 476, 502, 504, 505, 507,

517, 551, 583
q-Set Cover, 507, 583
r-Center, 208, 209, 233, 235, 238, 583
s-Way Cut, 553, 583
G Vertex Deletion, 144, 145, 216, 582
(∗)-Compression, 80, 81
Almost 2-SAT, vi, vii, 53, 64, 65, 72,

75, 77, 78, 95, 98, 378, 418, 584
Annotated Bipartite Coloring,

92�95, 584
Annotated Satisfiable Almost

2-SAT, 95, 97, 98, 584
Balanced Vertex Separator, 449,

464, 488
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Bar Fight Prevention, 3�6, 9�11, 53,
584

Biclique, 465
Bipartite Matching, 388, 584
CNF-SAT, 9, 10, 13, 468�470, 473,

502�504, 507�509, 513�515, 521, 584
Chordal Completion, 41, 70, 71, 76,

584
Chromatic Number, 146, 176, 233,

237, 321, 326�329, 336, 553, 584, 597
Clique, 9�12, 69, 106, 137, 213, 422,

423, 425�430, 435, 436, 439, 440, 443,
444, 448, 449, 451, 453, 463, 464,
485�491, 544, 545, 554, 555, 584

Closest String, 51, 53, 67�69, 72, 76,
146, 147, 478, 481�483, 489, 585

Closest Substring, 464, 489, 585
Cluster Editing, 40, 69, 585
Cluster Vertex Deletion, 43, 48, 69,

94, 98, 585
Cochromatic Number, 585
Colored Red-Blue Dominating Set,

541�543, 585
Colorful Graph Motif, 353, 537�540,

554, 585
Component Order Integrity, 516,

585
Connected Bull Hitting, 553, 585
Connected Dominating Set, 176, 210,

233, 371, 372, 434, 444�449, 460, 462,
487, 517, 519, 553, 585

Connected Feedback Vertex Set,
176, 210, 233, 371, 553, 585

Connected Vertex Cover, x, 41, 45,
146, 148, 149, 176, 210, 233, 286, 287,
307, 308, 310, 318, 319, 371, 372, 507,
513, 552�554, 586

Cycle Packing, 147, 176, 199, 202,
203, 207, 208, 210, 233, 235, 238, 372,
375, 484, 519, 586

Digraph Pair Cut, 95, 97, 98, 281, 586
Directed Edge Multicut, 273, 274,

281, 586
Directed Edge Multiway Cut, 272,

273, 281, 284, 553, 586
Directed Feedback Arc Set

Compression, 276�278, 586
Directed Feedback Arc Set, 41, 70,

73, 146, 249, 275, 276, 278, 281, 284,
586

Directed Feedback Vertex Set, vi,
viii, 41, 70, 77, 78, 81, 98, 247�249,
274, 275, 278, 281, 284, 586

Directed Max Leaf, 71, 319, 552, 586

Directed Steiner Tree, 146, 457, 586
Directed Subset Feedback Vertex

Set, 284
Directed Vertex Multiway Cut,

284, 586
Disjoint Factors, 553, 554, 587
Disjoint Feedback Vertex Set in

Tournaments, 82�84, 86, 587
Disjoint Feedback Vertex Set,

86�91, 95, 98, 587
Disjoint Odd Cycle Transversal,

92�94, 587
Disjoint Planar Vertex Deletion,

217, 221�223, 228, 587
Disjoint Vertex Cover, 79, 587
Disjoint-(∗), 80, 81
Distortion, 483, 520, 587
Dominating Set on Tournaments,

426, 431, 432, 448, 449, 464, 487, 488,
587

Dominating Set with Pattern, 445,
446, 449, 460, 462, 587

Dominating Set, 40, 76, 152, 168, 171,
176, 206�210, 235, 241, 286, 357, 359,
361, 372, 422, 423, 429�431, 434�436,
438, 439, 443�445, 447�449, 451, 456,
459, 460, 462, 464, 473, 474, 487, 488,
508, 513�515, 521, 553, 587

Dual-Coloring, 42, 587
Ed-Hitting Set, 42, 47, 398�400, 587
Ed-Set Packing, 42, 399�401, 588
Edge Bipartization, 95, 97, 98, 588
Edge Clique Cover, 17, 25, 49, 285,

484, 485, 516, 518, 520, 553, 588
Edge Disjoint Cycle Packing, 41,

588
Edge Dominating Set, 231, 319, 588
Edge Multicut, viii, 263, 281, 284,

520, 588
Edge Multiway Cut for Sets, 263,

588
Edge Multiway Cut, vi, 247�249,

261�263, 272, 280, 281, 284, 588
Eulerian Deletion, 553, 588
Even Set, 385, 386, 455, 456, 588
Exact CNF-SAT, 461, 588
Exact Even Set, 455, 456, 460, 462,

588
Exact Odd Set, 455, 456, 460, 462,

589
Exact Unique Hitting Set, 456, 460,

463, 589
Face Cover, 147, 589
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Feedback Arc Set in Tournaments,
17, 20, 22, 23, 49, 70, 127, 275, 589

Feedback Vertex Set in Tour-
naments Compression, 81�83,
589

Feedback Vertex Set in Tourna-
ments, 70, 77, 78, 80�83, 86, 98,
589

Feedback Vertex Set, vi, vii, x, 30,
33, 41, 44, 51, 53, 57�60, 71, 76�78,
80, 81, 86, 88, 91, 96�99, 101�103,
126, 137, 140, 144, 145, 152, 175,
176, 199, 208�210, 233, 235, 274, 275,
285�289, 299, 317, 319, 371, 372, 375,
377, 378, 389, 392, 417, 418, 473, 476,
477, 503, 513, 515, 517, 524, 551, 553,
589

Graph Genus, 145, 150, 589
Graph Isomorphism, 107, 127, 589
Graph Motif, 353, 355, 555, 589
Grid Tiling with ≤, 493�502, 520, 590
Grid Tiling, 490�496, 499, 500, 520,

589
Hall Set, 461, 590
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