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Preface

The goal of this textbook is twofold. First, the book serves as an introduction
to the field of parameterized algorithms and complexity accessible to graduate
students and advanced undergraduate students. Second, it contains a clean
and coherent account of some of the most recent tools and techniques in the
area.

Parameterized algorithmics analyzes running time in finer detail than clas-
sical complexity theory: instead of expressing the running time as a function
of the input size only, dependence on one or more parameters of the input in-
stance is taken into account. While there were examples of nontrivial param-
eterized algorithms in the literature, such as Lenstra’s algorithm for integer
linear programming [319] or the disjoint paths algorithm of Robertson and
Seymour [402], it was only in the late 1980s that Downey and Fellows [149)],
building on joint work with Langston [180, [182] [183], proposed the system-
atic exploration of parameterized algorithms. Downey and Fellows laid the
foundations of a fruitful and deep theory, suitable for reasoning about the
complexity of parameterized algorithms. Their early work demonstrated that
fixed-parameter tractability is a ubiquitous phenomenon, naturally arising
in various contexts and applications. The parameterized view on algorithms
has led to a theory that is both mathematically beautiful and practically ap-
plicable. During the 30 years of its existence, the area has transformed into
a mainstream topic of theoretical computer science. A great number of new
results have been achieved, a wide array of techniques have been created,
and several open problems have been solved. At the time of writing, Google
Scholar gives more than 4000 papers containing the term “fixed-parameter
tractable”. While a full overview of the field in a single volume is no longer
possible, our goal is to present a selection of topics at the core of the field,
providing a key for understanding the developments in the area.
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Why This Book?

The idea of writing this book arose after we decided to organize a summer
school on parameterized algorithms and complexity in Bedlewo in August
2014. While planning the school, we realized that there is no textbook that
contains the material that we wanted to cover. The classical book of Downey
and Fellows [I53] summarizes the state of the field as of 1999. This book
was the starting point of a new wave of research in the area, which is ob-
viously not covered by this classical text. The area has been developing at
such a fast rate that even the two books that appeared in 2006, by Flum and
Grohe [I89] and Niedermeier [376], do not contain some of the new tools and
techniques that we feel need to be taught in a modern introductory course.
Examples include the lower bound techniques developed for kernelization in
2008, methods introduced for faster dynamic programming on tree decompo-
sitions (starting with Cut & Count in 2011), and the use of algebraic tools for
problems such as LONGEST PATH. The book of Flum and Grohe [189] focuses
to a large extent on complexity aspects of parameterized algorithmics from
the viewpoint of logic, while the material we wanted to cover in the school is
primarily algorithmic, viewing complexity as a tool for proving that certain
kinds of algorithms do not exist. The book of Niedermeier [376] gives a gen-
tle introduction to the field and some of the basic algorithmic techniques. In
2013, Downey and Fellows [I54] published the second edition of their clas-
sical text, capturing the development of the field from its nascent stages to
the most recent results. However, the book does not treat in detail many
of the algorithmic results we wanted to teach, such as how one can apply
important separators for EDGE MULTIWAY CUT and DIRECTED FEEDBACK
VERTEX SET, linear programming for ALmMosT 2-SAT, Cut & Count and
its deterministic counterparts to obtain faster algorithms on tree decompo-
sitions, algorithms based on representative families of matroids, kernels for
FEEDBACK VERTEX SET, and some of the reductions related to the use of
the Strong Exponential Time Hypothesis.

Our initial idea was to prepare a collection of lecture notes for the school,
but we realized soon that a coherent textbook covering all basic topics in
equal depth would better serve our purposes, as well as the purposes of those
colleagues who would teach a semester course in the future. We have or-
ganized the material into chapters according to techniques. Each chapter
discusses a certain algorithmic paradigm or lower bound methodology. This
means that the same algorithmic problem may be revisited in more than one
chapter, demonstrating how different techniques can be applied to it. Thanks
to the rapid growth of the field, it is now nearly impossible to cover every
relevant result in a single textbook. Therefore, we had to carefully select what
to present at the school and include in the book. Our goal was to include a
self-contained and teachable exposition of what we believe are the basic tech-
niques of the field, at the expense of giving a complete survey of the area. A
consequence of this is that we do not always present the strongest result for
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a particular problem. Nevertheless, we would like to point out that for many
problems the book actually contains the state of the art and brings the reader
to the frontiers of research. We made an effort to present full proofs for most
of the results, where this was feasible within the textbook format. We used
the opportunity of writing this textbook to revisit some of the results in the
literature and, using the benefit of hindsight, to present them in a modern
and didactic way.

At the end of each chapter we provide sections with exercises, hints to
exercises and bibliographical notes. Many of the exercises complement the
main narrative and cover important results which have to be omitted due
to space constraints. We use () and (&) to identify easy and challenging
exercises. Following the common practice for textbooks, we try to minimize
the occurrence of bibliographical and historical references in the main text
by moving them to bibliographic notes. These notes can also guide the reader
on to further reading.

Organization of the Book

The book is organized into three parts. The first seven chapters give the
basic toolbox of parameterized algorithms, which, in our opinion, every course
on the subject should cover. The second part, consisting of Chapters
covers more advanced algorithmic techniques that are featured prominently
in current research, such as important separators and algebraic methods.
The third part introduces the reader to the theory of lower bounds: the
intractability theory of parameterized complexity, lower bounds based on the
Exponential Time Hypothesis, and lower bounds on kernels. We adopt a
very pragmatic viewpoint in these chapters: our goal is to help the algorithm
designer by providing evidence that certain algorithms are unlikely to exist,
without entering into complexity theory in deeper detail. Every chapter is
accompanied by exercises, with hints for most of them. Bibliographic notes
point to the original publications, as well as to related work.

e Chapter [I] motivates parameterized algorithms and the notion of fixed-
parameter tractability with some simple examples. Formal definitions of
the main concepts are introduced.

e Kernelization is the first algorithmic paradigm for fixed-parameter tractabil-
ity that we discuss. Chapter [2] gives an introduction to this technique.

e Branching and bounded-depth search trees are the topic of Chapter
We discuss both basic examples and more advanced applications based on
linear programming relaxations, showing the fixed-parameter tractability
of, e.g., ODD CYCLE TRANSVERSAL and ALMOST 2-SAT.

e Iterative compression is a very useful technique for deletion problems.
Chapter M| introduces the technique through three examples, including
FEEDBACK VERTEX SET and ODD CYCLE TRANSVERSAL.
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e Chapter 5| discusses techniques for parameterized algorithms that use ran-
domization. The classic color coding technique for LONGEST PATH will
serve as an illustrative example.

e Chapter [6] presents a collection of techniques that belong to the basic tool-
box of parameterized algorithms: dynamic programming over subsets, in-
teger linear programming (ILP), and the use of well-quasi-ordering results
from graph minors theory.

e Chapter[7]introduces treewidth, which is a graph measure that has impor-
tant applications for parameterized algorithms. We discuss how to use dy-
namic programming and Courcelle’s theorem to solve problems on graphs
of bounded treewidth and how these algorithms are used more generally,
for example, in the context of bidimensionality for planar graphs.

o Chapter [ presents results that are based on a combinatorial bound on the
number of so-called “important separators”. We use this bound to show the
fixed-parameter tractability of problems such as EDGE MULTICUT and D1i-
RECTED FEEDBACK VERTEX SET. We also discuss randomized sampling
of important cuts.

o The kernels presented in Chapter [0] form a representative sample of more
advanced kernelization techniques. They demonstrate how the use of min-
max results from graph theory, the probabilistic method, and the proper-
ties of planar graphs can be exploited in kernelization.

e Two different types of algebraic techniques are discussed in Chapter
algorithms based on the inclusion—exclusion principle and on polynomial
identity testing. We use these techniques to present the fastest known
parameterized algorithms for STEINER TREE and LONGEST PATH.

e In Chapter we return to dynamic programming algorithms on graphs
of bounded treewidth. This chapter presents three methods (subset convo-
lution, Cut & Count, and a rank-based approach) for speeding up dynamic
programming on tree decompositions.

e The notion of matroids is a fundamental concept in combinatorics and
optimization. Recently, matroids have also been used for kernelization and
parameterized algorithms. Chapter [12] gives a gentle introduction to some
of these developments.

o Chapter T3] presents tools that allow us to give evidence that certain prob-
lems are not fixed-parameter tractable. The chapter introduces parame-
terized reductions and the W-hierarchy, and gives a sample of hardness
results for various concrete problems.

o Chapter[I4]uses the (Strong) Exponential Time Hypothesis to give running
time lower bounds that are more refined than the bounds in Chapter
In many cases, these stronger complexity assumptions allow us to obtain
lower bounds essentially matching the best known algorithms.

e Chapter[15]|gives the tools for showing lower bounds for kernelization algo-
rithms. We use methods of composition and polynomial-parameter trans-
formations to show that certain problem, such as LONGEST PATH, do not
admit polynomial kernels.
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Fig. 0.1: Dependencies between the chapters

As in any textbook we will assume that the reader is familiar with the
content of one chapter before moving to the next. On the other hand, for
most chapters it is not necessary for the reader to have read all preceeding
chapters. Thus the book does not have to be read linearly from beginning to
end. Figure depicts the dependencies between the different chapters. For
example, the chapters on Iterative Compression and Bounded Search Trees
are considered necessary prerequisites to understand the chapter on finding
cuts and separators.

Using the Book for Teaching

A course on parameterized algorithms should cover most of the material in
Part I, except perhaps the more advanced sections marked with an asterisk.
In Part II, the instructor may choose which chapters and which sections to
teach based on his or her preferences. Our suggestion for a coherent set of
topics from Part IT is the following:
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All of Chapter [§] as it is relatively easily teachable. The sections of this
chapter are based on each other and hence should be taught in this order,
except that perhaps Section [B.4] and Sections [B.5H8.6] are interchangeable.
Chapter [9] contains four independent sections. One could select Section 0.1
(FEEDBACK VERTEX SET) and Section [9.3|(CONNECTED VERTEX COVER
on planar graphs) in a first course.

From Chapter we suggest presenting Section (inclusion—exclusion
principle), and Section (LONGEST PATH in time 2F - n©M).

From Chapter we recommend teaching Sections[11.2.1] and [F11.2.2] as
they are most illustrative for the recent developments on algorithms on
tree decompositions.

From Chapter [I2] we recommend teaching Section If the students are
unfamiliar with matroids, Section [I2.1] provides a brief introduction to the
topic.

Part III gives a self-contained exposition of the lower bound machinery. In

this part, the sections not marked with an asterisk give a set of topics that
can form the complexity part of a course on parameterized algorithms. In
some cases, we have presented multiple reductions showcasing the same kind
of lower bounds; the instructor can choose from these examples according to
the needs of the course. Section [14.4.1] contains some more involved proofs,
but one can give a coherent overview of this section even while omitting most
of the proofs.

Bergen, Budapest, Chennai, Warsaw

June 2015

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov,
Daniel Marx, Marcin Pilipczuk, Michat Pilipczuk and Saket Saurabh
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Chapter 1
Introduction

A squirrel, a platypus and a hamster walk into a bar...

Imagine that you are an exceptionally tech-savvy security guard of a bar
in an undisclosed small town on the west coast of Norway. Every Friday,
half of the inhabitants of the town go out, and the bar you work at is well
known for its nightly brawls. This of course results in an excessive amount
of work for you; having to throw out intoxicated guests is tedious and rather
unpleasant labor. Thus you decide to take preemptive measures. As the town
is small, you know everyone in it, and you also know who will be likely to
fight with whom if they are admitted to the bar. So you wish to plan ahead,
and only admit people if they will not be fighting with anyone else at the
bar. At the same time, the management wants to maximize profit and is not
too happy if you on any given night reject more than k people at the door.
Thus, you are left with the following optimization problem. You have a list
of all of the n people who will come to the bar, and for each pair of people
a prediction of whether or not they will fight if they both are admitted. You
need to figure out whether it is possible to admit everyone except for at most
k troublemakers, such that no fight breaks out among the admitted guests.
Let us call this problem the BAR FIGHT PREVENTION problem. Figure
shows an instance of the problem and a solution for k¥ = 3. One can easily
check that this instance has no solution with k£ = 2.



4 1 Introduction

Christos

Daniel

Fig. 1.1: An instance of the BAR FIGHT PREVENTION problem with a solution
for k = 3. An edge between two guests means that they will fight if both are
admitted

Efficient algorithms for BAR FIGHT PREVENTION

Unfortunately, BAR FIGHT PREVENTION is a classic NP-complete problem
(the reader might have heard of it under the name VERTEX COVER), and so
the best way to solve the problem is by trying all possibilities, right? If there
aren = 1000 people planning to come to the bar, then you can quickly code up
the brute-force solution that tries each of the 21999 ~ 1.07-103°! possibilities.
Sadly, this program won’t terminate before the guests arrive, probably not
even before the universe implodes on itself. Luckily, the number k of guests
that should be rejected is not that large, k¥ < 10. So now the program only
needs to try (1(1)80) ~ 2.63 - 10?3 possibilities. This is much better, but still
quite infeasible to do in one day, even with access to supercomputers.

So should you give up at this point, and resign yourself to throwing guests
out after the fights break out? Well, at least you can easily identify some
peaceful souls to accept, and some troublemakers you need to refuse at the
door for sure. Anyone who does not have a potential conflict with anyone else
can be safely moved to the list of people to accept. On the other hand, if some
guy will fight with at least £ 4+ 1 other guests you have to reject him — as
otherwise you will have to reject all of his £+ 1 opponents, thereby upsetting
the management. If you identify such a troublemaker (in the example of
Fig. Daniel is such a troublemaker), you immediately strike him from
the guest list, and decrease the number k of people you can reject by oneEI

If there is no one left to strike out in this manner, then we know that each
guest will fight with at most k other guests. Thus, rejecting any single guest
will resolve at most k potential conflicts. And so, if there are more than k2

1 The astute reader may observe that in Fig. after eliminating Daniel and setting k = 2,
Fedor still has three opponents, making it possible to eliminate him and set k = 1. Then
Bob, who is in conflict with Alice and Christos, can be eliminated, resolving all conflicts.
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potential conflicts, you know that there is no way to ensure a peaceful night
at the bar by rejecting only k guests at the door. As each guest who has not
yet been moved to the accept or reject list participates in at least one and at
most k potential conflicts, and there are at most k2 potential conflicts, there
are at most 2k? guests whose fate is yet undecided. Trying all possibilities

for these will need approximately (2’;2) < (21000) ~ 2.24 - 106 checks, which
is feasible to do in less than a day on a modern supercomputer, but quite
hopeless on a laptop.

If it is safe to admit anyone who does not participate in any potential
conflict, what about those who participate in exactly one? If Alice has a
conflict with Bob, but with no one else, then it is always a good idea to admit
Alice. Indeed, you cannot accept both Alice and Bob, and admitting Alice
cannot be any worse than admitting Bob: if Bob is in the bar, then Alice has
to be rejected for sure and potentially some other guests as well. Therefore,
it is safe to accept Alice, reject Bob, and decrease k by one in this case. This
way, you can always decide the fate of any guest with only one potential
conflict. At this point, each guest you have not yet moved to the accept or
reject list participates in at least two and at most k potential conflicts. It is
easy to see that with this assumption, having at most k? unresolved conflicts
implies that there are only at most k% guests whose fate is yet undecided,
instead of the previous upper bound of 2k2. Trying all possibilities for which

of those to refuse at the door requires (’f) < (11000) ~ 1.73 - 10'3 checks.
With a clever implementation, this takes less than half a day on a laptop,
so if you start the program in the morning you’ll know who to refuse at the
door by the time the bar opens. Therefore, instead of using brute force to
go through an enormous search space, we used simple observations to reduce
the search space to a manageable size. This algorithmic technique, using
reduction rules to decrease the size of the instance, is called kernelization,
and will be the subject of Chapter [2| (with some more advanced examples
appearing in Chapter [9).

It turns out that a simple observation yields an even faster algorithm for
BAR FIGHT PREVENTION. The crucial point is that every conflict has to
be resolved, and that the only way to resolve a conflict is to refuse at least
one of the two participants. Thus, as long as there is at least one unresolved
conflict, say between Alice and Bob, we proceed as follows. Try moving Alice
to the reject list and run the algorithm recursively to check whether the
remaining conflicts can be resolved by rejecting at most k& — 1 guests. If this
succeeds you already have a solution. If it fails, then move Alice back onto the
undecided list, move Bob to the reject list and run the algorithm recursively
to check whether the remaining conflicts can be resolved by rejecting at most
k — 1 additional guests (see Fig. . If this recursive call also fails to find
a solution, then you can be sure that there is no way to avoid a fight by
rejecting at most k guests.

What is the running time of this algorithm? All it does is to check whether
all conflicts have been resolved, and if not, it makes two recursive calls. In
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Alice vs. Bob

. Christos
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Fig. 1.2: The search tree for BAR FIGHT PREVENTION with k£ = 3. In the
leaves marked with “Fail”, the parameter k is decreased to zero, but there
are still unresolved conflicts. The rightmost branch of the search tree finds a
solution: after rejecting Bob, Daniel, and Fedor, no more conflicts remain

both of the recursive calls the value of k£ decreases by 1, and when k reaches
0 all the algorithm has to do is to check whether there are any unresolved
conflicts left. Hence there is a total of 2¥ recursive calls, and it is easy to
implement each recursive call to run in linear time O(n + m), where m is
the total number of possible conflicts. Let us recall that we already achieved
the situation where every undecided guest has at most k conflicts with other
guests, so m < nk/2. Hence the total number of operations is approximately
2k .p -k < 2'9.10,000 = 10,240,000, which takes a fraction of a second
on today’s laptops. Or cell phones, for that matter. You can now make the
BAR FIGHT PREVENTION app, and celebrate with a root beer. This simple
algorithm is an example of another algorithmic paradigm: the technique of
bounded search trees. In Chapter [3] we will see several applications of this
technique to various problems.

The algorithm above runs in time O(2¥ - k - n), while the naive algorithm
that tries every possible subset of k people to reject runs in time O(nk).
Observe that if & is considered to be a constant (say & = 10), then both
algorithms run in polynomial time. However, as we have seen, there is a quite
dramatic difference between the running times of the two algorithms. The
reason is that even though the naive algorithm is a polynomial-time algorithm
for every fixed value of k, the exponent of the polynomial depends on k.
On the other hand, the final algorithm we designed runs in linear time for
every fixed value of k! This difference is what parameterized algorithms and
complexity is all about. In the O(2¥ - k- n)-time algorithm, the combinatorial
explosion is restricted to the parameter k: the running time is exponential
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in k&, but depends only polynomially (actually, linearly) on n. Our goal is to
find algorithms of this form.

Algorithms with running time f(k)-n¢, for a constant ¢ independent of
both n and k, are called fized-parameter algorithms, or FPT algorithms.
Typically the goal in parameterized algorithmics is to design FPT al-
gorithms; trying to make both the f(k) factor and the constant ¢ in
the bound on the running time as small as possible. FPT algorithms
can be put in contrast with less efficient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k)-n9®*), for some
functions f,g. There is a tremendous difference in the running times

f(k) -n9® and f(k)-ne.

In parameterized algorithmics, & is simply a relevant secondary mea-
surement that encapsulates some aspect of the input instance, be it the
size of the solution sought after, or a number describing how “struc-
tured” the input instance is.

A negative example: vertex coloring

Not every choice for what k measures leads to FPT algorithms. Let us have
a look at an example where it does not. Suppose the management of the
hypothetical bar you work at doesn’t want to refuse anyone at the door, but
still doesn’t want any fights. To achieve this, they buy k£ —1 more bars across
the street, and come up with the following brilliant plan. Every night they
will compile a list of the guests coming, and a list of potential conflicts. Then
you are to split the guest list into k groups, such that no two guests with
a potential conflict between them end up in the same group. Then each of
the groups can be sent to one bar, keeping everyone happy. For example,
in Fig. we may put Alice and Christos in the first bar, Bob, Erik, and
Gerhard in the second bar, and Daniel and Fedor in the third bar.

We model this problem as a graph problem, representing each person as
a vertex, and each conflict as an edge between two vertices. A partition of
the guest list into k& groups can be represented by a function that assigns
to each vertex an integer between 1 and k. The objective is to find such a
function that, for every edge, assigns different numbers to its two endpoints.
A function that satisfies these constraints is called a proper k-coloring of the
graph. Not every graph has a proper k-coloring. For example, if there are
k + 1 vertices with an edge between every pair of them, then each of these
vertices needs to be assigned a unique integer. Hence such a graph does not
have a proper k-coloring. This gives rise to a computational problem, called
VERTEX COLORING. Here we are given as input a graph G and an integer k,
and we need to decide whether G has a proper k-coloring.
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It is well known that VERTEX COLORING is NP-complete, so we do not
hope for a polynomial-time algorithm that works in all cases. However, it is
fair to assume that the management does not want to own more than k =5
bars on the same street, so we will gladly settle for a O(2F-n¢)-time algorithm
for some constant ¢, mimicking the success we had with our first problem.
Unfortunately, deciding whether a graph G has a proper 5-coloring is NP-
complete, so any f(k) - n®time algorithm for VERTEX COLORING for any
function f and constant ¢ would imply that P = NP ; indeed, suppose such
an algorithm existed. Then, given a graph G, we can decide whether G has a
proper 5-coloring in time f(5)-n¢ = O(n°). But then we have a polynomial-
time algorithm for an NP-hard problem, implying P = NP . Observe that
even an XP algorithm with running time f(k)-n9* for any functions f and
g would imply that P = NP by an identical argument.

A hard parameterized problem: finding cliques

The example of VERTEX COLORING illustrates that parameterized algorithms
are not all-powerful: there are parameterized problems that do not seem to
admit FPT algorithms. But very importantly, in this specific example, we
could explain very precisely why we are not able to design efficient algorithms,
even when the number of bars is small. From the perspective of an algorithm
designer such insight is very useful; she can now stop wasting time trying to
design efficient algorithms based only on the fact that the number of bars is
small, and start searching for other ways to attack the problem instances. If
we are trying to make a polynomial-time algorithm for a problem and failing,
it is quite likely that this is because the problem is NP-hard. Is the theory
of NP-hardness the right tool also for giving negative evidence for fixed-
parameter tractability? In particular, if we are trying to make an f(k) - n°-
time algorithm and fail to do so, is it because the problem is NP-hard for
some fixed constant value of k, say k = 1007 Let us look at another example
problem.

Now that you have a program that helps you decide who to refuse at the
door and who to admit, you are faced with a different problem. The people in
the town you live in have friends who might get upset if their friend is refused
at the door. You are quite skilled at martial arts, and you can handle at most
k — 1 angry guys coming at you, but probably not k. What you are most
worried about are groups of at least k people where everyone in the group is
friends with everyone else. These groups tend to have an “all for one and one
for all” mentality — if one of them gets mad at you, they all do. Small as the
town is, you know exactly who is friends with whom, and you want to figure
out whether there is a group of at least k& people where everyone is friends
with everyone else. You model this as a graph problem where every person
is a vertex and two vertices are connected by an edge if the corresponding
persons are friends. What you are looking for is a clique on k vertices, that
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is, a set of k vertices with an edge between every pair of them. This problem
is known as the CLIQUE problem. For example, if we interpret now the edges
of Fig. [I.I] as showing friendships between people, then Bob, Christos, and
Daniel form a clique of size 3.

There is a simple O(n*)-time algorithm to check whether a clique on at

least k vertices exists; for each of the (}) = (9(2—;) subsets of vertices of
size k, we check in time O(k?) whether every pair of vertices in the subset
is adjacent. Unfortunately, this XP algorithm is quite hopeless to run for
n = 1000 and k£ = 10. Can we design an FPT algorithm for this problem?
So far, no one has managed to find one. Could it be that this is because
finding a k-clique is NP-hard for some fixed value of k7 Suppose the problem
was NP-hard for £ = 100. We just gave an algorithm for finding a clique of
size 100 in time O(n!%), which is polynomial time. We would then have a
polynomial-time algorithm for an NP-hard problem, implying that P = NP.
So we cannot expect to be able to use NP-hardness in this way in order to
rule out an FPT algorithm for CLIQUE. More generally, it seems very difficult
to use NP-hardness in order to explain why a problem that does have an XP
algorithm does not admit an FPT algorithm.

Since NP-hardness is insufficient to differentiate between problems with
f(k) - n9®)_time algorithms and problems with f(k) - n°~time algorithms, we
resort to stronger complexity theoretical assumptions. The theory of W[1]-
hardness (see Chapter allows us to prove (under certain complexity as-
sumptions) that even though a problem is polynomial-time solvable for every
fixed k, the parameter k has to appear in the exponent of n in the running
time, that is, the problem is not FPT. This theory has been quite successful
for identifying which parameterized problems are FPT and which are unlikely
to be. Besides this qualitative classification of FPT versus W[1]-hard, more
recent developments give us also (an often surprisingly tight) quantitative
understanding of the time needed to solve a parameterized problem. Under
reasonable assumptions about the hardness of CNF-SAT (see Chapter ,
it is possible to show that there is no f(k) - n¢ or even a f(k) - n°*)-time
algorithm for finding a clique on k vertices. Thus, up to constant factors
in the exponent, the naive O(n*)-time algorithm is optimal! Over the past
few years, it has become a rule, rather than an exception, that whenever
we are unable to significantly improve the running time of a parameterized
algorithm, we are able to show that the existing algorithms are asymptoti-
cally optimal, under reasonable assumptions. For example, under the same
assumptions that we used to rule out an f(k) - n°*)-time algorithm for solv-
ing CLIQUE, we can also rule out a 2°F) . n@(_time algorithm for the BAR
FI1GHT PREVENTION problem from the beginning of this chapter.

Any algorithmic theory is incomplete without an accompanying com-
plexity theory that establishes intractability of certain problems. There
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Problem Good news Bad news

Bar FiguT PrREVENTION O(2F - k- n)-time algorithm ~ NP-hard
(probably not in P)

CLIQUE with A 024 - A% . n)-time algorithm NP-hard
(probably not in P)

CLIQUE with k n@®)_time algorithm W(1]-hard
(probably not FPT)

VERTEX COLORING NP-hard for k =3
(probably not XP)

Fig. 1.3: Overview of the problems in this chapter

is such a complexity theory providing lower bounds on the running time
required to solve parameterized problems.

Finding cliques — with a different parameter

OK, so there probably is no algorithm for solving CLIQUE with running time
f (k) -.n°*) But what about those scary groups of people that might come for
you if you refuse the wrong person at the door? They do not care at all about
the computational hardness of CLIQUE, and neither do their fists. What can
you do? Well, in Norway most people do not have too many friends. In fact,
it is quite unheard of that someone has more than A = 20 friends. That
means that we are trying to find a k-clique in a graph of maximum degree
A. This can be done quite efficiently: if we guess one vertex v in the clique,
then the remaining vertices in the clique must be among the A neighbors of
v. Thus we can try all of the 22 subsets of the neighbors of v, and return
the largest clique that we found. The total running time of this algorithm
is O(24 - A% . n), which is quite feasible for A = 20. Again it is possible to
use complexity theoretic assumptions on the hardness of CNF-SAT to show
that this algorithm is asymptotically optimal, up to multiplicative constants
in the exponent.

What the algorithm above shows is that the CLIQUE problem is FPT when
the parameter is the maximum degree A of the input graph. At the same time
CLIQUE is probably not FPT when the parameter is the solution size k. Thus,
the classification of the problem into “tractable” or “intractable” crucially
depends on the choice of parameter. This makes a lot of sense; the more we
know about our input instances, the more we can exploit algorithmically!
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The art of parameterization

For typical optimization problems, one can immediately find a relevant pa-
rameter: the size of the solution we are looking for. In some cases, however,
it is not completely obvious what we mean by the size of the solution. For
example, consider the variant of BAR FIGHT PREVENTION where we want
to reject at most k£ guests such that the number of conflicts is reduced to at
most ¢ (as we believe that the bouncers at the bar can handle ¢ conflicts,
but not more). Then we can parameterize either by k or by ¢. We may even
parameterize by both: then the goal is to find an FPT algorithm with running
time f(k, ) - n® for some computable function f depending only on %k and /.
Thus the theory of parameterization and FPT algorithms can be extended to
considering a set of parameters at the same time. Formally, however, one can
express parameterization by k and ¢ simply by defining the value k + ¢ to be
the parameter: an f(k,¢) - n® algorithm exists if and only if an f(k + ¢) - n©
algorithm exists.

The parameters k and /¢ in the extended BAR FIGHT PREVENTION exam-
ple of the previous paragraph are related to the objective of the problem: they
are parameters explicitly given in the input, defining the properties of the so-
lution we are looking for. We get more examples of this type of parameter if
we define variants of BAR FIGHT PREVENTION where we need to reject at
most k guests such that, say, the number of conflicts decreases by p, or such
that each accepted guest has conflicts with at most d other accepted guests,
or such that the average number of conflicts per guest is at most a. Then
the parameters p, d, and a are again explicitly given in the input, telling us
what kind of solution we need to find. The parameter A (maximum degree
of the graph) in the CLIQUE example is a parameter of a very different type:
it is not given explicitly in the input, but it is a measure of some property of
the input instance. We defined and explored this particular measure because
we believed that it is typically small in the input instances we care about:
this parameter expresses some structural property of typical instances. We
can identify and investigate any number of such parameters. For example,
in problems involving graphs, we may parameterize by any structural pa-
rameter of the graph at hand. Say, if we believe that the problem is easy on
planar graphs and the instances are “almost planar”, then we may explore the
parameterization by the genus of the graph (roughly speaking, a graph has
genus g if it can be drawn without edge crossings on a sphere with g holes in
it). A large part of Chapter [7] (and also Chapter is devoted to parame-
terization by treewidth, which is a very important parameter measuring the
“tree-likeness” of the graph. For problems involving satisfiability of Boolean
formulas, we can have such parameters as the number of variables, or clauses,
or the number of clauses that need to be satisfied, or that are allowed not
to be satisfied. For problems involving a set of strings, one can parameter-
ize by the maximum length of the strings, by the size of the alphabet, by
the maximum number of distinct symbols appearing in each string, etc. In
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a problem involving a set of geometric objects (say, points in space, disks,
or polygons), one may parameterize by the maximum number of vertices of
each polygon or the dimension of the space where the problem is defined. For
each problem, with a bit of creativity, one can come up with a large number
of (combinations of) parameters worth studying.

For the same problem there can be multiple choices of parameters. Se-
lecting the right parameter(s) for a particular problem is an art.

Parameterized complexity allows us to study how different parameters in-
fluence the complexity of the problem. A successful parameterization of a
problem needs to satisfy two properties. First, we should have some rea-
son to believe that the selected parameter (or combination of parameters)
is typically small on input instances in some application. Second, we need
efficient algorithms where the combinatorial explosion is restricted to the
parameter(s), that is, we want the problem to be FPT with this parameter-
ization. Finding good parameterizations is an art on its own and one may
spend quite some time on analyzing different parameterizations of the same
problem. However, in this book we focus more on explaining algorithmic tech-
niques via carefully chosen illustrative examples, rather than discussing every
possible aspect of a particular problem. Therefore, even though different pa-
rameters and parameterizations will appear throughout the book, we will not
try to give a complete account of all known parameterizations and results for
any concrete problem.

1.1 Formal definitions

We finish this chapter by leaving the realm of pub jokes and moving to more
serious matters. Before we start explaining the techniques for designing pa-
rameterized algorithms, we need to introduce formal foundations of param-
eterized complexity. That is, we need to have rigorous definitions of what a
parameterized problem is, and what it means that a parameterized problem
belongs to a specific complexity class.

Definition 1.1. A parameterized problem is a language L C X* x N, where
Y is a fixed, finite alphabet. For an instance (z,k) € X* x N, k is called the
parameter.

For example, an instance of CLIQUE parameterized by the solution size is
a pair (G, k), where we expect G to be an undirected graph encoded as a
string over X, and k is a positive integer. That is, a pair (G, k) belongs to the
CLIQUE parameterized language if and only if the string G correctly encodes
an undirected graph, which we will also denote by G, and moreover the graph
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G contains a clique on k vertices. Similarly, an instance of the CNF-SAT
problem (satisfiability of propositional formulas in CNF'), parameterized by
the number of variables, is a pair (¢, n), where we expect ¢ to be the input
formula encoded as a string over X' and n to be the number of variables of
¢. That is, a pair (p,n) belongs to the CNF-SAT parameterized language
if and only if the string ¢ correctly encodes a CNF formula with n variables,
and the formula is satisfiable.

We define the size of an instance (x,k) of a parameterized problem as
|z| + k. One interpretation of this convention is that, when given to the
algorithm on the input, the parameter k is encoded in unary.

Definition 1.2. A parameterized problem L C X* x N is called fized-
parameter tractable (FPT) if there exists an algorithm A (called a fized-
parameter algorithm), a computable function f: N — N, and a constant
¢ such that, given (z,k) € X* x N, the algorithm A correctly decides
whether (z,k) € L in time bounded by f(k) - |(x, k)|°. The complexity
class containing all fixed-parameter tractable problems is called FPT.

Before we go further, let us make some remarks about the function f in
this definition. Observe that we assume f to be computable, as otherwise we
would quickly run into trouble when developing complexity theory for fixed-
parameter tractability. For technical reasons, it will be convenient to assume,
from now on, that f is also nondecreasing. Observe that this assumption
has no influence on the definition of fixed-parameter tractability as stated in
Definition [1.2} since for every computable function f: N — N there exists a
computable nondecreasing function f that is never smaller than f: we can
simply take f(k) = max;—o1,. x f(i). Also, for standard algorithmic results
it is always the case that the bound on the running time is a nondecreasing
function of the complexity measure, so this assumption is indeed satisfied in
practice. However, the assumption about f being nondecreasing is formally
needed in various situations, for example when performing reductions.

We now define the complexity class XP.

Definition 1.3. A parameterized problem L C X* x N is called slice-wise
polynomial (XP) if there exists an algorithm A and two computable functions
fy9: N — N such that, given (x,k) € 2* x N, the algorithm A correctly de-
cides whether (z, k) € L in time bounded by f(k)-|(x, k)[?**). The complexity
class containing all slice-wise polynomial problems is called XP.

Again, we shall assume that the functions f, g in this definition are nonde-
creasing.

The definition of a parameterized problem, as well as the definitions of
the classes FPT and XP, can easily be generalized to encompass multiple
parameters. In this setting we simply allow k to be not just one nonnegative
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integer, but a vector of d nonnegative integers, for some fixed constant d.
Then the functions f and g in the definitions of the complexity classes FPT
and XP can depend on all these parameters.

Just as “polynomial time” and “polynomial-time algorithm” usually refer
to time polynomial in the input size, the terms “FPT time” and “FPT algo-
rithms” refer to time f(k) times a polynomial in the input size. Here f is a
computable function of k£ and the degree of the polynomial is independent of
both n and k. The same holds for “XP time” and “XP algorithms”, except
that here the degree of the polynomial is allowed to depend on the parameter
k, as long as it is upper bounded by g(k) for some computable function g.

Observe that, given some parameterized problem L, the algorithm de-
signer has essentially two different optimization goals when designing FPT
algorithms for L. Since the running time has to be of the form f(k) - n¢, one
can:

e optimize the parametric dependence of the running time, i.e., try to design
an algorithm where function f grows as slowly as possible; or

e optimize the polynomial factor in the running time, i.e., try to design an
algorithm where constant c is as small as possible.

Both these goals are equally important, from both a theoretical and a practi-
cal point of view. Unfortunately, keeping track of and optimizing both factors
of the running time can be a very difficult task. For this reason, most research
on parameterized algorithms concentrates on optimizing one of the factors,
and putting more focus on each of them constitutes one of the two dominant
trends in parameterized complexity. Sometimes, when we are not interested in
the exact value of the polynomial factor, we use the O*-notation, which sup-
presses factors polynomial in the input size. More precisely, a running time
O*(f(k)) means that the running time is upper bounded by f(k) - n®®,
where n is the input size.

The theory of parameterized complexity has been pioneered by Downey
and Fellows over the last two decades [148, [149] 150, 151} [153]. The main
achievement of their work is a comprehensive complexity theory for param-
eterized problems, with appropriate notions of reduction and completeness.
The primary goal is to understand the qualitative difference between fixed-
parameter tractable problems, and problems that do not admit such effi-
cient algorithms. The theory contains a rich “positive” toolkit of techniques
for developing efficient parameterized algorithms, as well as a correspond-
ing “negative” toolkit that supports a theory of parameterized intractability.
This textbook is mostly devoted to a presentation of the positive toolkit: in
Chapters [2] through [I2] we present various algorithmic techniques for design-
ing fixed-parameter tractable algorithms. As we have argued, the process of
algorithm design has to use both toolkits in order to be able to conclude that
certain research directions are pointless. Therefore, in Part [[TI] we give an
introduction to lower bounds for parameterized problems.
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Chapter 2
Kernelization

Kernelization 1is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sunflower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for VERTEX COVER, FEEDBACK ARC SET
IN TOURNAMENTS, EDGE CLIQUE COVER, MAXIMUM
SATISFIABILITY, and d-HiTTING SET.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrink it) to its com-
putationally difficult “core” structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent “smaller sized” instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the effectiveness of such a preprocessing subrou-
tine? Suppose we define a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal definition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a definition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

17
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do not have to be processed further. These ideas open up the “lost continent”
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion [2:1] provides formal definitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on MAXIMUM SATISFIABILITY. Section studies tools based on linear
programming and gives a kernel for VERTEX COVER. Finally, we study the
sunflower lemma in Section [2.6] and use it to obtain a polynomial kernel for
d-HITTING SET.

2.1 Formal definitions

We now turn to the formal definition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem @ is a function ¢: X* x N — X* x N that maps an instance (I, k)
of @ to an equivalent instance (I',k’) of @ such that ¢ is computable in
time polynomial in || and k. We say that two instances of Q are equivalent
if (I,k) € Q if and only if (I, k") € Q; this property of the reduction rule ¢,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I,k) € X* x N of @), works in polynomial time, and returns an
equivalent instance (I',k’) of Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the output size of a preprocessing algorithm A is a function
sizes: N — N U {oo} defined as follows:

sizea(k) = sup{|I'| + k' : (I')K') = A(L,k), I € Z*}.

In other words, we look at all possible instances of @ with a fixed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be infinite; this happens when we do not have
any bound on the size of A(I,k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is finite and bounded by a computable function of the parameter.

Definition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem @ is an algorithm A that, given
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an instance (I, k) of @, works in polynomial time and returns an equivalent
instance (I’, k") of Q. Moreover, we require that size4(k) < g(k) for some
computable function g: N — N.

The size requirement in this definition can be reformulated as follows:
There exists a computable function g(-) such that whenever (I’,k’) is the
output for an instance (I, k), then it holds that |I'| + k¥’ < g(k). If the upper
bound g¢(-) is a polynomial (linear) function of the parameter, then we say
that @ admits a polynomial (linear) kernel. We often abuse the notation and
call the output of a kernelization algorithm the “reduced” equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to fit into the introduced definition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
yes-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, k) of @, the size of the kernel is defined
as the number of bits needed to encode the reduced equivalent instance I’
plus the parameter value k’. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem @, we could say that @
admits a kernel with O(k3) vertices and O(k®) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem defined on formulas, we could say that the problem admits a
kernel with O(k) variables.

It is important to mention here that the early definitions of kernelization
required that &' < k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem — thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k' < k.

While usually in Computer Science we measure the efficiency of an
algorithm by estimating its running time, the central measure of the
efficiency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-
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ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance I is
simply a function of k (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem Q) is FPT then it admits a kernel-
ization algorithm.

Proof. Since @ is FPT, there is an algorithm A deciding if (I, k) € @ in time
f(k)-]I]¢ for some computable function f and a constant c. We obtain a ker-
nelization algorithm for @) as follows. Given an input (I, k), the kernelization
algorithm runs A on (I, k), for at most |I|°T! steps. If it terminates with an
answer, use that answer to return either that (I, k) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|°*! steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|°"! steps, we have that f(k) - [I|¢ > |I|°T!, and
thus |I| < f(k). Consequently, we have |I| + k < f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. O

Lemma [2.2)implies that a decidable problem admits a kernel if and only
if it is fixed-parameter tractable. Thus, in a sense, kernelization can be
another way of defining fixed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-specific data reduction rules often
achieve quadratic (g(k) = O(k?)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = k°M). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter [0} we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for VERTEX COVER and
FEEDBACK ARC SET IN TOURNAMENTS (FAST) based on a few natural
reduction rules.
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2.2.1 VERTEX COVER

Let G be a graph and S C V(G). The set S is called a vertez cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G — S contains no edges and thus V(G) \ S is an independent set. In
the VERTEX COVER problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The first reduction rule is based on the following simple observation. For
a given instance (G, k) of VERTEX COVER, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G — v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k& 4 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least k + 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G — v,k — 1).

Observe that exhaustive application of reductions and completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules
is applicable to G, then |V(G)| < k* + k and |E(G)| < k2.

Proof. Because we cannot apply Reductions anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of

G — S should be adjacent to some vertex from S. Since we cannot apply
Reductions every vertex of G has degree at most k. It follows that
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V(G — S)| < k|S| and hence |[V(G)| < (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |[V(G)| < (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G’ has more than k? edges, this is
again a no-instance. m]

Lemma[2.3]allows us to claim the final reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions[VC.]|
and are not applicable to (G, k). If k < 0 and G has more than k? + k
vertices, or more than k? edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. VERTEX COVER admits a kernel with O(k?) wvertices and
O(k?) edges.

2.2.2 FEEDBACK ARC SET IN TOURNAMENTS

In this section we discuss a kernel for the FEEDBACK ARC SET IN TOURNA-
MENTS problem. A tournament is a directed graph T such that for every pair
of vertices u,v € V(T), exactly one of (u,v) or (v,u) is a directed edge (also
often called an arc) of T. A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then E(G) is a
transitive relation). In the FEEDBACK ARC SET IN TOURNAMENTS problem
we are given a tournament 7" and a nonnegative integer k. The objective is
to decide whether 7 has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of “reversing edges”.
We start with the following well-known result about topological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u,v), we
have u < v.

We leave the proof of Lemma [2.5| as an exercise; see Exercise Given
a directed graph G and a subset F' C E(G) of edges, we define G & F' to be
the directed graph obtained from G by reversing all the edges of F'. That is,
if rev(F) = {(u,v) : (v,u) € F}, then for G ® F the vertex set is V(G)
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and the edge set E(G ® F) = (E(G) Urev(F)) \ F. Lemma [2.5| implies the
following.

Observation 2.6. Let G be a directed graph and let F' be a subset of edges
of G. If G ® F is a directed acyclic graph then F' is a feedback arc set of G.

The following lemma shows that, in some sense, the opposite direction
of the statement in Observation [2.6] is also true. However, the minimality
condition in Lemma [2.7]is essential, see Exercise [2.2

Lemma 2.7. Let G be a directed graph and F be a subset of E(G). Then
F is an inclusion-wise minimal feedback arc set of G if and only if F is an
inclusion-wise minimal set of edges such that G ® F is an acyclic directed
graph.

Proof. We first prove the forward direction of the lemma. Let F be an
inclusion-wise minimal feedback arc set of G. Assume to the contrary that
G®F has a directed cycle C. Then C cannot contain only edges of E(G)\F, as
that would contradict the fact that F'is a feedback arc set. Let f1, fo, -+, fe
be the edges of C Nrev(F) in the order of their appearance on the cycle C,
and let e; € F be the edge f; reversed. Since F' is inclusion-wise minimal,
for every e;, there exists a directed cycle C; in G such that F N C; = {e;}.
Now consider the following closed walk W in G: we follow the cycle C, but
whenever we are to traverse an edge f; € rev(F') (which is not present in
G), we instead traverse the path C; — e;. By definition, W is a closed walk
in G and, furthermore, note that W does not contain any edge of F. This
contradicts the fact that F is a feedback arc set of G.

The minimality follows from Observation That is, every set of edges
F such that G ® F is acyclic is also a feedback arc set of G, and thus, if F' is
not a minimal set such that G ® F is acyclic, then it will contradict the fact
that F' is a minimal feedback arc set.

For the other direction, let F' be an inclusion-wise minimal set of edges
such that G ® F' is an acyclic directed graph. By Observation [2.6] F' is a
feedback arc set of GG. Moreover, F' is an inclusion-wise minimal feedback arc
set, because if a proper subset F’ of F' is an inclusion-wise minimal feedback
arc set of G, then by the already proved implication of the lemma, G ® F’ is
an acyclic directed graph, a contradiction with the minimality of F'. O

We are ready to give a kernel for FEEDBACK ARC SET IN TOURNAMENTS.

Theorem 2.8. FEEDBACK ARC SET IN TOURNAMENTS admits a kernel with
at most k? + 2k wvertices.

Proof. Lemma implies that a tournament 7 has a feedback arc set of
size at most k if and only if it can be turned into an acyclic tournament by
reversing directions of at most k edges. We will use this characterization for
the kernel.

In what follows by a triangle we mean a directed cycle of length three. We
give two simple reduction rules.
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Reduction FAST.1. If an edge e is contained in at least k + 1 triangles,
then reverse e and reduce k by 1.

Reduction FAST.2. If a vertex v is not contained in any triangle, then
delete v from T

The rules follow similar guidelines as in the case of VERTEX COVER. In
Reduction we greedily take into a solution an edge that partic-
ipates in k + 1 otherwise disjoint forbidden structures (here, triangles).
In Reduction [FAST.2] we discard vertices that do not participate in any
forbidden structure, and should be irrelevant to the problem.

However, a formal proof of the safeness of Reduction is not
immediate: we need to verify that deleting v and its incident edges does
not make make a yes-instance out of a no-instance.

Note that after applying any of the two rules, the resulting graph is again
a tournament. The first rule is safe because if we do not reverse e, we have
to reverse at least one edge from each of k£ + 1 triangles containing e. Thus e
belongs to every feedback arc set of size at most k.

Let us now prove the safeness of the second rule. Let X = Nt (v) be the
set of heads of directed edges with tail v and let Y = N~ (v) be the set of
tails of directed edges with head v. Because T is a tournament, X and Y is a
partition of V(T')\ {v}. Since v is not a part of any triangle in T', we have that
there is no edge from X to Y (with head in Y and tail in X). Consequently,
for any feedback arc set A; of tournament 7T[X] and any feedback arc set
Az of tournament T'[Y], the set A; U Ay is a feedback arc set of T. As the
reverse implication is trivial (for any feedback arc set A in T', AN E(T[X]) is
a feedback arc set of T[X], and AN E(T[Y]) is a feedback arc set of T[Y]),
we have that (T, k) is a yes-instance if and only if (7' — v, k) is.

Finally, we show that every reduced yes-instance 7', an instance on which
none of the presented reduction rules are applicable, has at most k(k + 2)
vertices. Let A be a feedback arc set of a reduced instance T of size at most
k. For every edge e € A, aside from the two endpoints of e, there are at most
k vertices that are in triangles containing e — otherwise we would be able
to apply Reduction Since every triangle in T' contains an edge of A
and every vertex of T is in a triangle, we have that T has at most k(k + 2)
vertices.

Thus, given (T, k) we apply our reduction rules exhaustively and obtain
an equivalent instance (7", k’). If T has more than k'? + k' vertices, then the
algorithm returns that (7, %) is a no-instance, otherwise we get the desired
kernel. This completes the proof of the theorem. a
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2.2.3 EDGE CLIQUE COVER

Not all FPT problems admit polynomial kernels. In the EDGE CLIQUE
COVER problem, we are given a graph G and a nonnegative integer k£, and
the goal is to decide whether the edges of G can be covered by at most
k cliques. In this section we give an exponential kernel for EDGE CLIQUE
CoVER. In Theorem [14.20| of Section [*14.3.3] we remark that this simple
kernel is essentially optimal.

Let us recall the reader that we use N(v) = {u : uv € E(G)} to denote
the neighborhood of vertex v in G, and N[v] = N(v) U {v} to denote the
closed neighborhood of v. We apply the following data reduction rules in the
given order (i.e., we always use the lowest-numbered rule that modifies the
instance).

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an isolated edge uv (a connected component
that is just an edge), delete it and decrease k by 1. The new instance is
(G —{u,v}, k—1).

Reduction ECC.3. If there is an edge uv whose endpoints have exactly the
same closed neighborhood, that is, N[u] = NJv], then delete v. The new
instance is (G — v, k).

The crux of the presented kernel for EDGE CLIQUE COVER is an obser-
vation that two true twins (vertices u and v with N[u] = N[v]) can be
treated in exactly the same way in some optimum solution, and hence
we can reduce them. Meanwhile, the vertices that are contained in ex-
actly the same set of cliques in a feasible solution have to be true twins.
This observation bounds the size of the kernel.

The safeness of the first two reductions is trivial, while the safeness of
Reduction [ECC.3] follows from the observation that a solution in G — v can
be extended to a solution in G by adding v to all the cliques containing u
(see Exercise [2.3)).

Theorem 2.9. EDGE CLIQUE COVER admits a kernel with at most 2F ver-
tices.

Proof. We start with the following claim.

Claim. If (G, k) is a reduced yes-instance, on which none of the presented
reduction rules can be applied, then |V (G)| < 2*.

Proof. Let Cq,...,C) be an edge clique cover of G. We claim that G has at
most 2F vertices. Targeting a contradiction, let us assume that G has more
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than 2% vertices. We assign to each vertex v € V(G) a binary vector b, of
length k, where bit ¢, 1 < i < k, is set to 1 if and only if v is contained in clique
C;. Since there are only 2* possible vectors, there must be u # v € V(G)
with b, = b,. If b, and b, are zero vectors, the first rule applies; otherwise,
u and v are contained in the same cliques. This means that v and v are
adjacent and have the same neighborhood; thus either Reduction or
Reduction applies. Hence, if G has more than 2* vertices, at least one
of the reduction rules can be applied to it, which is a contradiction to the
initial assumption that G is reduced. This completes the proof of the claim.

O

The kernelization algorithm works as follows. Given an instance (G, k), it

applies Reductions [ECC.1] [ECC.2] and [ECC.3| exhaustively. If the resulting
graph has more than 2" vertices the kernelization algorithm outputs that the

input instance is a no-instance, else it outputs the reduced instance. a

2.3 Crown decomposition

Crown decomposition is a general kernelization technique that can be used
to obtain kernels for many problems. The technique is based on the classical
matching theorems of Kénig and Hall.

Recall that for disjoint vertex subsets U, W of a graph G, a matching M
is called a matching of U into W if every edge of M connects a vertex of U
and a vertex of W and, moreover, every vertex of U is an endpoint of some
edge of M. In this situation, we also say that M saturates U.

Definition 2.10 (Crown decomposition). A crown decomposition of a
graph G is a partitioning of V(@) into three parts C, H and R, such that

1. C is nonempty.

2. C is an independent set.

3. There are no edges between vertices of C' and R. That is, H separates C
and R.

4. Let E’ be the set of edges between vertices of C' and H. Then E’ contains
a matching of size |H|. In other words, G contains a matching of H into

C.

The set C can be seen as a crown put on head H of the remaining part R, see
Fig. Note that the fact that E’ contains a matching of size |H| implies
that there is a matching of H into C. This is a matching in the subgraph G’,
with the vertex set C' U H and the edge set E’, saturating all the vertices of
H.

For finding a crown decomposition in polynomial time, we use the following
well known structural and algorithmic results. The first is a mini-max theorem
due to Kénig.
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Fig. 2.1: Example of a crown decomposition. Set C'is an independent set, H
separates C' and R, and there is a matching of H into C

Theorem 2.11 (K6nig’s theorem, [303]). In every undirected bipartite
graph the size of a mazimum matching is equal to the size of a minimum
vertex cover.

Let us recall that a matching saturates a set of vertices S when every
vertex in S is incident to an edge in the matching. The second classic result
states that in bipartite graphs, a trivial necessary condition for the existence
of a matching is also sufficient.

Theorem 2.12 (Hall’s theorem, [256]). Let G be an undirected bipartite
graph with bipartition (V1,Va). The graph G has a matching saturating Vi if
and only if for all X C V1, we have |[N(X)| > | X]|.

The following theorem is due to Hopcroft and Karp [268]. The proof of
the (nonstandard) second claim of the theorem is deferred to Exercise [2.21

Theorem 2.13 (Hopcroft-Karp algorithm, [268]). Let G be an undi-
rected bipartite graph with bipartition V1 and Vi, on n vertices and m edges.
Then we can find a mazimum matching as well as a minimum vertex cover
of G in time O(m+/n). Furthermore, in time O(m+/n) either we can find a
matching saturating Vi or an inclusion-wise minimal set X C Vi such that
IN(X)| < [X].

The following lemma is the basis for kernelization algorithms using crown
decomposition.

Lemma 2.14 (Crown lemma). Let G be a graph without isolated vertices
and with at least 3k + 1 vertices. There is a polynomial-time algorithm that
either

e finds a matching of size k+ 1 in G; or
e finds a crown decomposition of G.

Proof. We first find an inclusion-maximal matching M in G. This can be
done by a greedy algorithm. If the size of M is k + 1, then we are done.
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Hence, we assume that |M| < k, and let Vj; be the endpoints of M. We have
|Var| < 2k. Because M is a maximal matching, the remaining set of vertices
I =V (G)\ Vi is an independent set.

Consider the bipartite graph Gy y,, formed by edges of G between Vj,
and I. We compute a minimum-sized vertex cover X and a maximum sized
matching M’ of the bipartite graph G; y,, in polynomial time using Theo-
rem We can assume that |M’| < k, for otherwise we are done. Since
|X| = |M’'| by Konig’s theorem (Theorem [2.11)), we infer that |X| < k.

If no vertex of X is in Vjy, then X C I. We claim that X = I. For
a contradiction assume that there is a vertex w € I\ X. Because G has no
isolated vertices there is an edge, say wz, incident to w in Gy y,,. Since G v,
is bipartite, we have that z € V). However, X is a vertex cover of Gy v,
such that X N Vj; = (0, which implies that w € X. This is contrary to our
assumption that w ¢ X, thus proving that X = I. But then |I| < |X]| < k,
and G has at most

[I| + |Vam| < k+ 2k =3k

vertices, which is a contradiction.

Hence, X NVj; # 0. We obtain a crown decomposition (C, H, R) as follows.
Since | X| = |M’|, every edge of the matching M’ has exactly one endpoint
in X. Let M* denote the subset of M’ such that every edge from M* has
exactly one endpoint in X N Vj; and let Vj;« denote the set of endpoints of
edges in M™. We define head H = X NV = X NV, crown C = Vi« N 1,
and the remaining part R = V(G) \ (C U H) = V(G) \ Vas+. In other words,
H is the set of endpoints of edges of M* that are present in Vj; and C is
the set of endpoints of edges of M* that are present in I. Obviously, C is
an independent set and by construction, M* is a matching of H into C.
Furthermore, since X is a vertex cover of Gy y,,, every vertex of C' can be
adjacent only to vertices of H and thus H separates C and R. This completes
the proof. O

The crown lemma gives a relatively strong structural property of graphs
with a small vertex cover (equivalently, a small maximum matching). If
in a studied problem the parameter upper bounds the size of a vertex
cover (maximum matching), then there is a big chance that the struc-
tural insight given by the crown lemma would help in developing a small
kernel — quite often with number of vertices bounded linearly in the
parameter.

We demonstrate the application of crown decompositions on kernelization
for VERTEX COVER and MAXIMUM SATISFIABILITY.
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2.8.1 VERTEX COVER

Consider a VERTEX COVER instance (G, k). By an exhaustive application of
Reduction we may assume that G has no isolated vertices. If |V (G)| >
3k, we may apply the crown lemma to the graph G and integer k, obtaining
either a matching of size k+ 1, or a crown decomposition V(G) = CUH UR.
In the first case, the algorithm concludes that (G, k) is a no-instance.

In the latter case, let M be a matching of H into C. Observe that the
matching M witnesses that, for every vertex cover X of the graph G, X
contains at least |M| = |H| vertices of H U C to cover the edges of M. On
the other hand, the set H covers all edges of G that are incident to H U C.
Consequently, there exists a minimum vertex cover of G that contains H, and
we may reduce (G, k) to (G—H, k—|H|). Note that in the instance (G—H, k—
|H|), the vertices of C' are isolated and will be reduced by Reduction

As the crown lemma promises us that H # (), we can always reduce the
graph as long as |V(G)| > 3k. Thus, we obtain the following.

Theorem 2.15. VERTEX COVER admits a kernel with at most 3k vertices.

2.3.2 MAXIMUM SATISFIABILITY

For a second application of the crown decomposition, we look at the following
parameterized version of MAXIMUM SATISFIABILITY. Given a CNF formula
F, and a nonnegative integer k, decide whether F' has a truth assignment
satisfying at least k clauses.

Theorem 2.16. MAXIMUM SATISFIABILITY admits a kernel with at most k
variables and 2k clauses.

Proof. Let ¢ be a CNF formula with n variables and m clauses. Let ¢ be an
arbitrary assignment to the variables and let =1 be the assignment obtained
by complementing the assignment of . That is, if ¢ assigns 6 € {T,L} to
some variable x then —) assigns —§ to z. Observe that either 1) or —1) satisfies
at least m/2 clauses, since every clause is satisfied by ¢ or —¢) (or by both).
This means that, if m > 2k, then (p, k) is a yes-instance. In what follows we
give a kernel with n < k variables.

Let G, be the variable-clause incidence graph of ¢. That is, G, is a bi-
partite graph with bipartition (X,Y’), where X is the set of the variables of
¢ and Y is the set of clauses of . In G, there is an edge between a variable
z € X and a clause ¢ € Y if and only if either z, or its negation, is in c. If
there is a matching of X into Y in G, then there is a truth assignment sat-
isfying at least | X| clauses: we can set each variable in X in such a way that
the clause matched to it becomes satisfied. Thus at least | X| clauses are sat-
isfied. Hence, in this case, if k < | X|, then (¢, k) is a yes-instance. Otherwise,
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k > |X| = n, and we get the desired kernel. We now show that, if ¢ has at
least n > k variables, then we can, in polynomial time, either reduce ¢ to an
equivalent smaller instance, or find an assignment to the variables satisfying
at least k clauses (and conclude that we are dealing with a yes-instance).

Suppose ¢ has at least k variables. Using Hall’s theorem and a polynomial-
time algorithm computing a maximum-size matching (Theoremsand,
we can in polynomial time find either a matching of X into Y or an inclusion-
wise minimal set C' C X such that |[N(C)| < |C|. As discussed in the previous
paragraph, if we found a matching, then the instance is a yes-instance and
we are done. So suppose we found a set C' as described. Let H be N(C') and
R =V(G,)\(CUH). Clearly, N(C') C H, there are no edges between vertices
of C'and R and G[C] is an independent set. Select an arbitrary z € C. We
have that there is a matching of C'\ {z} into H since |[N(C")| > |C’| for every
C’ C C\ {z}. Since |C| > |H|, we have that the matching from C'\ {z} to H
is in fact a matching of H into C. Hence (C, H, R) is a crown decomposition
of G.

We prove that all clauses in H are satisfied in every assignment satisfying
the maximum number of clauses. Indeed, consider any assignment 1 that does
not satisfy all clauses in H. Fix any variable € C. For every variable y in
C\{x} set the value of y so that the clause in H matched to y is satisfied. Let
¢’ be the new assignment obtained from ¢ in this manner. Since N(C) C H
and v’ satisfies all clauses in H, more clauses are satisfied by ¢’ than by .
Hence v cannot be an assignment satisfying the maximum number of clauses.

The argument above shows that (¢, k) is a yes-instance to MAXIMUM SAT-
ISFIABILITY if and only if (¢ \ H,k — |H|) is. This gives rise to the following
simple reduction.

Reduction MSat.1. Let (o, k) and H be as above. Then remove H from ¢
and decrease k by |H|. That is, (¢ \ H,k — |H|) is the new instance.

Repeated applications of Reduction and the arguments described
above give the desired kernel. This completes the proof of the theorem. O

2.4 Expansion lemma

In the previous subsection, we described crown decomposition techniques
based on the classical Hall’s theorem. In this section, we introduce a powerful
variation of Hall’s theorem, which is called the expansion lemma. This lemma
captures a certain property of neighborhood sets in graphs and can be used
to obtain polynomial kernels for many graph problems. We apply this result
to get an O(k?) kernel for FEEDBACK VERTEX SET in Chapter @

A g-star, ¢ > 1, is a graph with ¢+ 1 vertices, one vertex of degree ¢, called
the center, and all other vertices of degree 1 adjacent to the center. Let G be
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a bipartite graph with vertex bipartition (A, B). For a positive integer ¢, a
set of edges M C E(G) is called by a g-ezpansion of A into B if

e every vertex of A is incident to exactly ¢ edges of M;
e M saturates exactly g|A| vertices in B.

Let us emphasize that a g-expansion saturates all vertices of A. Also, for
every u,v € A, u # v, the set of vertices F, adjacent to u by edges of M does
not intersect the set of vertices E, adjacent to v via edges of M, see Fig.[2.2]
Thus every vertex v € A could be thought of as the center of a star with
its g leaves in B, with all these | A| stars being vertex-disjoint. Furthermore,
a collection of these stars is also a family of ¢ edge-disjoint matchings, each
saturating A.

A

Fig. 2.2: Set A has a 2-expansion into B

Let us recall that, by Hall’s theorem (Theorem[2.12)), a bipartite graph with
bipartition (A4, B) has a matching of A into B if and only if |[N(X)| > |X]|
for all X C A. The following lemma is an extension of this result.

Lemma 2.17. Let G be a bipartite graph with bipartition (A, B). Then there
is a g-expansion from A into B if and only if |[N(X)| > ¢q|X| for every X C A.
Furthermore, if there is no g-expansion from A into B, then a set X C A
with |[N(X)| < q|X| can be found in polynomial time.

Proof. If A has a ¢g-expansion into B, then trivially |[N(X)| > ¢|X| for every
X C A.

For the opposite direction, we construct a new bipartite graph G’ with
bipartition (A’, B) from G by adding (¢ — 1) copies of all the vertices in A.
For every vertex v € A all copies of v have the same neighborhood in B as v.
We would like to prove that there is a matching M from A’ into B in G'. If we
prove this, then by identifying the endpoints of M corresponding to the copies
of vertices from A, we obtain a g-expansion in G. It suffices to check that
the assumptions of Hall’s theorem are satisfied in G’. Assume otherwise, that
there is a set X C A’ such that |Ng/(X)| < |X|. Without loss of generality,
we can assume that if X contains some copy of a vertex v, then it contains
all the copies of v, since including all the remaining copies increases | X| but
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does not change |Ng/(X)|. Hence, the set X in A’ naturally corresponds to
the set X4 of size | X|/q in A, the set of vertices whose copies are in X. But
then [Ng(X4)| = |Ner(X)| < |X| = q|X 4|, which is a contradiction. Hence
A’ has a matching into B and thus A has a g-expansion into B.

For the algorithmic claim, note that, if there is no g-expansion from A
into B, then we can use Theorem to find a set X C A’ such that
|Ng/(X)| < |X]|, and the corresponding set X 4 satisfies |[Ng(Xa)| < q| X al-

O

Finally, we are ready to prove a lemma analogous to Lemma

Lemma 2.18. (Expansion lemma) Let ¢ > 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A, B) such that

(1) |B| = ¢|A], and
(1) there are no isolated vertices in B.

Then there exist nonempty vertex sets X C A and Y C B such that

e there is a g-expansion of X into Y, and
e no vertez in'Y has a neighbor outside X, that is, N(Y) C X.

Furthermore, the sets X and Y can be found in time polynomial in the size

of G.

Note that the sets X, Y and V(G) \ (X UY") form a crown decomposition
of G with a stronger property — every vertex of X is not only matched into
Y, but there is a g-expansion of X into Y. We proceed with the proof of
expansion lemma.

Proof. We proceed recursively, at every step decreasing the cardinality of A.
When |A| = 1, the claim holds trivially by taking X = A and Y = B.

We apply Lemma [2.17 to G. If A has a g-expansion into B, then we
are done as we may again take X = A and Y = B. Otherwise, we can in
polynomial time find a (nonempty) set Z C A such that |[N(Z)| < ¢q|Z|. We
construct the graph G’ by removing Z and N(Z) from G. We claim that G’
satisfies the assumptions of the lemma. Indeed, because we removed less than
g times more vertices from B than from A, we have that (¢) holds for G’.
Moreover, every vertex from B\ N(Z) has no neighbor in Z, and thus (i)
also holds for G'. Note that Z # A, because otherwise N(A) = B (there are
no isolated vertices in B) and |B| > ¢|A|. Hence, we recurse on the graph G’
with bipartition (A \ Z, B\ N(Z)), obtaining nonempty sets X C A\ Z and
Y C B\ N(Z) such that there is a g-expansion of X into Y and such that
N/ (Y) € X. Because Y C B\ N(Z), we have that no vertex in Y has a
neighbor in Z. Hence, Ng/(Y) = Ng(Y) C X and the pair (X,Y) satisfies
all the required properties. a
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The expansion lemma is useful when the matching saturating the head
part H in the crown lemma turns out to be not sufficient for a reduction,
and we would like to have a few vertices of the crown C matched to
a single vertex of the head H. For example, this is the case for the
FEEDBACK VERTEX SET kernel presented in Section[9.1] where we need
the case ¢ = 2.

2.5 Kernels based on linear programming

In this section we design a 2k-vertex kernel for VERTEX COVER exploiting
the solution to a linear programming formulation of VERTEX COVER.

Many combinatorial problems can be expressed in the language of INTE-
GER LINEAR PROGRAMMING (ILP). In an INTEGER LINEAR PROGRAMMING
instance, we are given a set of integer-valued variables, a set of linear inequal-
ities (called constraints) and a linear cost function. The goal is to find an (in-
teger) evaluation of the variables that satisfies all constraints, and minimizes
or maximizes the value of the cost function.

Let us give an example on how to encode a VERTEX COVER instance (G, k)
as an INTEGER LINEAR PROGRAMMING instance. We introduce n = |V (G)|
variables, one variable x, for each vertex v € V(G). Setting variable x, to 1
means that v is in the vertex cover, while setting x, to 0 means that v is not
in the vertex cover. To ensure that every edge is covered, we can introduce
constraints x,,+x, > 1 for every edge uv € E(G). The size of the vertex cover
is given by >, ev (@) To- In the end, we obtain the following ILP formulation:

minimize Y-, cy g To

subject to x, + x, > 1 for every uv € E(G),
0<z, <1 foreveryveV(G),
Ty €L for every v € V(G).

(2.1)

Clearly, the optimal value of is at most k if and only if G has a vertex
cover of size at most k.

As we have just seen, INTEGER LINEAR PROGRAMMING is at least as hard
as VERTEX COVER, so we do not expect it to be polynomial-time solvable. In
fact, it is relatively easy to express many NP-hard problems in the language of
INTEGER LINEAR PROGRAMMING. In Section [6.2] we discuss FPT algorithms
for INTEGER LINEAR PROGRAMMING and their application in proving fixed-
parameter tractability of other problems.

Here, we proceed in a different way: we relax the integrality requirement
of INTEGER LINEAR PROGRAMMING, which is the main source of the hard-
ness of this problem, to obtain LINEAR PROGRAMMING. That is, in LINEAR
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PROGRAMMING the instance looks exactly the same as in INTEGER LINEAR
PROGRAMMING, but the variables are allowed to take arbitrary real values,
instead of just integers.

In the case of VERTEX COVER, we relax by dropping the constraint
x, € Z for every v € V(G). In other words, we obtain the following LINEAR
PROGRAMMING instance. For a graph G, we call this relaxation LPVC(G).

minimize Y, cy ) To
subject to xz, +x, > 1 for every uv € E(G), (2.2)
0<z,<1 foreveryveV(Q).

Note that constraints =, < 1 can be omitted because every optimal solu-
tion of LPVC(G) satisfies these constraints.

Observe that in LPVC(G), a variable x, can take fractional values in the
interval [0, 1], which corresponds to taking “part of the vertex v” into a vertex
cover. Consider an example of G being a triangle. A minimum vertex cover
of a triangle is of size 2, whereas in LPVC(G) we can take z, = 1 for every
v € V(G), obtaining a feasible solution of cost 2. Thus, LPVC(G) does not
express exactly the VERTEX COVER problem on graph G, but its optimum
solution can still be useful to learn something about minimum vertex covers
in G.

The main source of utility of LINEAR PROGRAMMING comes from the
fact that LINEAR PROGRAMMING can be solved in polynomial time, even in
some general cases where there are exponentially many constraints, accessed
through an oracle. For this reason, LINEAR PROGRAMMING has found abun-
dant applications in approximation algorithms (for more on this topic, we
refer to the book of Vazirani [427]). In this section, we use LP to design a
small kernel for VERTEX COVER. In Section we will use LPVC(G) to
obtain an FPT branching algorithm for VERTEX COVER.

Let us now have a closer look at the relaxation LPVC(G). Fix an optimal
solution (2, )yev () of LPVC(G). In this solution the variables corresponding
to vertices of G take values in the interval [0, 1]. We partition V(G) according
to these values into three sets as follows.

e Vo={veV(G) : z, <3},

o Vi={veV(GQ) : z,= 3},

e Vi={veV(G) : z, >3}

Theorem 2.19 (Nemhauser-Trotter theorem). There is a minimum
vertex cover S of G such that

ncscwvu V%.
Proof. Let S* C V(G) be a minimum vertex cover of G. Define

S=(S*\ Vo) UVA.
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By the constraints of (2.2), every vertex of V; can have a neighbor only in
V1 and thus S is also a vertex cover of G. Moreover, V; C S C V; U V%. It
suffices to show that S is a minimum vertex cover. Assume the contrary, i.e.,
|S] > |S*|. Since |S| = |S*| — [Vo N S*| + |V1 \ S*| we infer that

Vo S| < |3\ SI. (2.3)

Let us define
e =min{|z, — 3| : vEV UV}

We decrease the fractional values of vertices from V; \ S* by € and increase
the values of vertices from Vy N S* by €. In other words, we define a vector
(Yo)vev(a) as
x, —e ifveVp\ S
Yo =R Ty + ifveVygnS*,
Ty otherwise.

Note that &€ > 0, because otherwise V5 = V4 = (), a contradiction with (2.3).
This, together with (2.3), implies that

Z Yo < Z Ly - (24)

veV(G) veV(G)

Now we show that (y,)vev(q) is a feasible solution, i.e., it satisfies the con-
straints of LPVC(G). Since (z,),cv () is a feasible solution, by the defi-
nition of £ we get 0 < y, < 1 for every v € V(G). Consider an arbitrary
edge uwv € E(QG). If none of the endpoints of uv belong to V; \ S*, then both
Yu = Ty and Yy > Ty, SO Yy + Yo = Ty + T, > 1. Otherwise, by symmetry we
can assume that u € V4 \ S*, and hence y,, = x,, — €. Because S* is a vertex
cover, we have that v € S*. If v € V, N S*, then

yu+yv:xu_€+l’v+f§:$u+$v21.

Otherwise, v € (V% uVi)NS*. Then y, > z, > % Note also that z, —e > %
by the definition of . It follows that
1 1
Yut Yo =Ty —E+ Yp = 54—5:1.
Thus (yu)vev(q) is a feasible solution of LPVC(G) and hence (2.4) contra-
dicts the optimality of (24 )vev(a)- |

Theorem allows us to use the following reduction rule.

Reduction VC.4. Let (z,),cv (@) be an optimum solution to LPVC(G) in
a VERTEX COVER instance (G, k) and let Vg, V1 and V) be defined as above.
If ZUeV(G) x, > k, then conclude that we are dealing with a no-instance.
Otherwise, greedily take into the vertex cover the vertices of V;. That is,
delete all vertices of Vo U Vi, and decrease k by |V].
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Let us now formally verify the safeness of Reduction [VC.4]
Lemma 2.20. Reduction [VC]] is safe.

Proof. Clearly, if (G,k) is a yes-instance, then an optimum solution to
LPVC(G) is of cost at most k. This proves the correctness of the step if
we conclude that (G, k) is a no-instance.

Let G’ = G—(VoUV1) = G[Vi] and k" = k—|V1|. We claim that (G, k) is a
yes-instance of VERTEX COVER if and only if (G’, k') is. By Theorem we
know that G has a vertex cover S of size at most k such that V; C S C VluV%.
Then S’ = SN Vi is a vertex cover in G’ and the size of S’ is at most
E—|Vi| =K.

For the opposite direction, let S’ be a vertex cover in G’. For every solution
of LPVC(G), every edge with an endpoint from Vj should have an endpoint
in V1. Hence, S = S’ U V; is a vertex cover in G and the size of this vertex
cover is at most k' + |V1| = k. O

Reduction leads to the following kernel for VERTEX COVER.
Theorem 2.21. VERTEX COVER admits a kernel with at most 2k vertices.

Proof. Let (G,k) be an instance of VERTEX COVER. We solve LPVC(G)
in polynomial time, and apply Reduction [VC.4] to the obtained solution
(7)vev(a), either concluding that we are dealing with a no-instance or ob-
taining an instance (G’,k’). Lemma guarantees the safeness of the re-
duction. For the size bound, observe that

V(@) =Vil= > 2w, <2 > @ <2k

UGV% veV(G)
O

While it is possible to solve linear programs in polynomial time, usually
such solutions are less efficient than combinatorial algorithms. The specific
structure of the LP-relaxation of the vertex cover problem (2.2) allows us to
solve it by reducing to the problem of finding a maximum-size matching in a
bipartite graph.

Lemma 2.22. For a graph G with n vertices and m edges, the optimal
(fractional) solution to the linear program LPVC(G) can be found in time

O(my/n).

Proof. We reduce the problem of solving LPVC(G) to a problem of finding
a minimum-size vertex cover in the following bipartite graph H. Its vertex
set consists of two copies V3 and V5 of the vertex set of G. Thus, every
vertex v € V(@) has two copies v; € V; and vy € V5 in H. For every edge
wv € E(H), we have edges ujvy and viug in H.
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Using the Hopcroft-Karp algorithm (Theorem [2.13), we can find a mini-
mum vertex cover S of H in time O(m/n). We define a vector (z,),cv (q)
as follows: if both vertices v; and vo are in S, then z, = 1. If exactly one of
the vertices v; and vy is in S, we put z, = % We put z, = 0 if none of the
vertices v; and vy are in S. Thus

> w =L

veV(G)

Since S is a vertex cover in H, we have that for every edge uwv € E(G) at
least two vertices from {u, ug, vy, v} should be in S. Thus z,, + z, > 1 and
vector (,)yev (i) satisfies the constraints of LPVC(G).

To show that (z,)ycv (@) is an optimal solution of LPVC(G), we argue
as follows. Let (y,)yev(g) be an optimal solution of LPVC(G). For every
vertex v;, ¢ € {1,2}, of H, we assign the weight w(v;) = y,. This weight
assignment is a fractional vertex cover of H, i.e., for every edge vius € E(H),
w(v1) + w(uz) > 1. We have that

S o=y X (wlon) +wlw))

veV(G) UEV(G)

On the other hand, the value ZUGV(H)W(U) of any fractional solution of
LPVC(H) is at least the size of a maximum matching M in H. A reader
familiar with linear programming can see that this follows from weak duality;
we also ask you to verify this fact in Exercise

By Kénig’s theorem (Theorem 2.11), M| = |S|. Hence

1 |S|
> yv—g > (wlo) +we)) =5 Y w( 27 Z
veV(G) veV(G) veV (H) ev(G
Thus (7,),ev () is an optimal solution of LPVC(G). O
We immediately obtain the following.

Corollary 2.23. For a graph G with n vertices and m edges, the kernel of
Theorem can be found in time O(m/n).

The following proposition is another interesting consequence of the proof
of Lemma [2.221

Proposition 2.24. Let G be a graph on n wvertices and m edges. Then
LPVC(G) has a half-integral optimal solution, i.e., all variables have values
in the set {0, 1 5, 1}. Furthermore, we can find a half-integral optimal solution

in time O(my/n).
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In short, we have proved properties of LPVC(G). There exists a half-
integral optimal solution (z),cv (@) to LPVC(G), and it can be found
efficiently. We can look at this solution as a partition of V(G) into
parts Vj, V1 , and V; with the following message: greedily take V7 into a
solution, do not take any vertex of V[ into a solution, and in V1 we do
not know what to do and that i 1s the hard part of the problem. However
as an optimum solution pays 3 1 for every vertex of V1 the hard part —
the kernel of the problem — cannot have more than 2k vertices.

2.6 Sunflower lemma

In this section we introduce a classical result of Erdés and Rado and show
some of its applications in kernelization. In the literature it is known as the
sunflower lemma or as the Erdgs-Rado lemma. We first define the terminology
used in the statement of the lemma. A sunflower with k petals and a core Y
is a collection of sets Si,...,Sk such that §;NS; =Y for all i # j; the sets
S;\Y are petals and we require none of them to be empty. Note that a family
of pairwise disjoint sets is a sunflower (with an empty core).

Theorem 2.25 (Sunflower lemma). Let A be a family of sets (without
duplicates) over a universe U, such that each set in A has cardinality exactly
d. If |[A] > d!(k — 1)%, then A contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in |A|, |U|, and k.

Proof. We prove the theorem by induction on d. For d = 1, i.e., for a family
of singletons, the statement trivially holds. Let d > 2 and let A be a family
of sets of cardinality at most d over a universe U such that |A| > d!(k —1)%.

Let G = {S1,...,S¢} C A be an inclusion-wise maximal family of pairwise
disjoint sets in A. If £ > k then G is a sunflower with at least k petals. Thus
we assume that £ < k. Let S = Ule S;. Then |S| < d(k — 1). Because G is
maximal, every set A € A intersects at least one set from G, i.e., AN S # (.
Therefore, there is an element v € U contained in at least

Al dl(k—1)¢

151> D) =(d-1)!(k—1)""

sets from 4. We take all sets of A containing such an element wu, and construct
a family A’ of sets of cardinality d — 1 by removing from each set the element
u. Because |A’| > (d—1)!(k—1)?"!, by the induction hypothesis, A’ contains
a sunflower {S7,...,5;} with k petals. Then {S7 U {u},...,S, U{u}} is a
sunflower in A with k petals.

The proof can be easily transformed into a polynomial-time algorithm, as
follows. Greedily select a maximal set of pairwise disjoint sets. If the size
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of this set is at least k, then return this set. Otherwise, find an element
u contained in the maximum number of sets in A, and call the algorithm
recursively on sets of cardinality d — 1, obtained from deleting u from the
sets containing wu. a

2.6.1 d-HITTING SET

As an application of the sunflower lemma, we give a kernel for d-HITTING
SET. In this problem, we are given a family A of sets over a universe U, where
each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there is a subset H C U of size at most k such
that H contains at least one element from each set in A.

Theorem 2.26. d-HITTING SET admits a kernel with at most 'k sets and
at most d'k? - d? elements.

Proof. The crucial observation is that if A contains a sunflower

S={S1,..., %41}

of cardinality k + 1, then every hitting set H of A of cardinality at most k
intersects the core Y of the sunflower S. Indeed, if H does not intersect Y,
it should intersect each of the k 4+ 1 disjoint petals S; \ Y. This leads to the
following reduction rule.

Reduction HS.1. Let (U, A, k) be an instance of d-HITTING SET and as-
sume that A contains a sunflower S = {S,...,Sk41} of cardinality k& + 1
with core Y. Then return (U, A’, k), where A’ = (A4\ S) U {Y'} is obtained
from A by deleting all sets {Si,...,Sk+1} and by adding a new set ¥ and

U =Uyen X.

Note that when deleting sets we do not delete the elements contained in
these sets but only those which do not belong to any set. Then the instances
(U, A k) and (U’, A", k) are equivalent, i.e. (U, A) contains a hitting set of
size k if and only if (U, A") does.

The kernelization algorithm is as follows. If for some d' € {1,...,d} the
number of sets in A of size exactly d’ is more than d'!k? , then the kerneliza-
tion algorithm applies the sunflower lemma to find a sunflower of size k£ + 1,
and applies Reduction on this sunflower. It applies this procedure ex-
haustively, and obtains a new family of sets A’ of size at most d!k? - d. If
) € A’ (that is, at some point a sunflower with an empty core has been
discovered), then the algorithm concludes that there is no hitting set of size
at most k£ and returns that the given instance is a no-instance. Otherwise,
every set contains at most d elements, and thus the number of elements in
the kernel is at most d!k? - d?. 0
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Exercises

2.1 (&Z). Prove Lemma A digraph is acyclic if and only if it is possible to order its
vertices in such a way such that for every arc (u,v), we have u < v.

2.2 (&&). Give an example of a feedback arc set F' in a tournament G, such that G ® F is
not acyclic.

2.3 (&). Show that Reductions [ECC.1] [ECC.2] and [ECC.3| are safe.

2.4 (£Z). In the PoinT LiNe COVER problem, we are given a set of n points in the plane
and an integer k, and the goal is to check if there exists a set of k lines on the plane that
contain all the input points. Show a kernel for this problem with O(k?) points.

2.5. A graph G is a cluster graph if every connected component of GG is a clique. In the
CLUSTER EDITING problem, we are given as input a graph G and an integer k, and the
objective is to check whether one can edit (add or delete) at most k edges in G to obtain a
cluster graph. That is, we look for a set F' C (V(2G)) of size at most k, such that the graph
(V(@),(E(G)\ F)U(F\ E(Q@))) is a cluster graph.

1. Show that a graph G is a cluster graph if and only if it does not have an induced path
on three vertices (sequence of three vertices u, v, w such that uv and vw are edges and
uw ¢ E(G)).

2. Show a kernel for CLUsTER EpiTiNG with O(k?2) vertices.

2.6. In the SET SPLITTING problem, we are given a family of sets F over a universe U and
a positive integer k, and the goal is to test whether there exists a coloring of U with two
colors such that at least k sets in F are nonmonochromatic (that is, they contain vertices
of both colors). Show that the problem admits a kernel with at most 2k sets and O(k?)
universe size.

2.7. In the MiNnIMUM MAXiMAL MATCHING problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a maximal
matching in G on at most k edges. Obtain a polynomial kernel for the problem (parame-
terized by k).

2.8. In the MiN-ONEs-2-SAT problem, we are given a 2-CNF formula ¢ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for ¢ with at
most k variables set to true. Show that MiIN-ONEs-2-SAT admits a polynomial kernel.

2.9. In the d-BounDED-DEGREE DELETION problem, we are given an undirected graph G
and a positive integer k, and the task is to find at most k vertices whose removal decreases
the maximum vertex degree of the graph to at most d. Obtain a kernel of size polynomial
in k and d for the problem. (Observe that Verrex CovVER is the case of d = 0.)

2.10. Show a kernel with O(k2) vertices for the following problem: given a graph G and
an integer k, check if G contains a subgraph with exactly k edges, whose vertices are all
of odd degree in the subgraph.

2.11. A set of vertices D in an undirected graph G is called a dominating set if N[D] =
V(QG). In the DOMINATING SET problem, we are given an undirected graph G and a positive
integer k, and the objective is to test whether there exists a dominating set of size at most
k. Show that DoMINATING SET admits a polynomial kernel on graphs where the length of
the shortest cycle is at least 5. (What would you do with vertices with degree more than
k? Note that unlike for the VERTEX CoOVER problem, you cannot delete a vertex once you
pick it in the solution.)
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2.12. Show that FEEDBACK VERTEX SET admits a kernel with O(k) vertices on undirected
regular graphs.

2.13. We say that an n-vertex digraph is well-spread if every vertex has indegree at least
v/n. Show that DirEcTED FEEDBACK ARC SET, restricted to well-spread digraphs, is FPT
by obtaining a polynomial kernel for this problem. Does the problem remain FPT if we
replace the lower bound on indegree by any monotonically increasing function of n (like
logn or logloglogn)? Does the assertion hold if we replace indegree with outdegree? What
about DIRECTED FEEDBACK VERTEX SET?

2.14. In the ConNECTED VERTEX COVER problem, we are given an undirected graph G
and a positive integer k, and the objective is to decide whether there exists a vertex cover
C of G such that |C| < k and G[C] is connected.

1. Explain where the kernelization procedure described in Theorem for VERTEX
CoVER breaks down for the CoNNECTED VERTEX COVER problem.

2. Show that the problem admits a kernel with at most 2% + O(k?) vertices.

3. Show that if the input graph G does not contain a cycle of length 4 as a subgraph,
then the problem admits a kernel with at most O(k2) vertices.

2.15 (2). Extend the argument of the previous exercise to show that, for every fixed
d > 2, CoNNECTED VERTEX CoOVER admits a kernel of size O(k?) if restricted to graphs
that do not contain the biclique K4 4 as a subgraph.

2.16 (&). A graph G is chordal if it contains no induced cycles of length more than 3, that
is, every cycle of length at least 4 has a chord. In the CHOrRDAL COMPLETION problem, we
are given an undirected graph G and a positive integer k, and the objective is to decide
whether we can add at most k edges to G so that it becomes a chordal graph. Obtain a
polynomial kernel for CHorDAL COMPLETION (parameterized by k).

2.17 (2). In the Epce Disjoint CycLE PACKING problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether G has k pairwise
edge disjoint cycles. Obtain a polynomial kernel for Epge DissoinTt CycLE PaAckING
(parameterized by k).

2.18 (&). A bisection of a graph G with an even number of vertices is a partition of V(G)
into V7 and V3 such that |Vi| = |Va|. The size of (V1, V2) is the number of edges with one
endpoint in V7 and the other in V5. In the MaxiMmuM BISECTION problem, we are given
an undirected graph G with an even number of vertices and a positive integer k, and the
objective is to test whether there exists a bisection of size at least k.

1. Show that every graph with m edges has a bisection of size at least [7]. Use this to
show that MaxmmuMm BisecTion admits a kernel with 2k edges.

2. Consider the following “above guarantee" variant of Maximum BisecTioN, where we
are given an undirected graph G and a positive integer k, but the objective is to test
whether there exists a bisection of size at least [ %] +k. Show that the problem admits
a kernel with O(k?) vertices and O(k?) edges.

2.19 (£2). Byteland, a country of area exactly n square miles, has been divided by the
government into n regions, each of area exactly one square mile. Meanwhile, the army of
Byteland divided its area into n military zones, each of area again exactly one square mile.
Show that one can build n airports in Byteland, such that each region and each military
zone contains one airport.

2.20. A magician and his assistant are performing the following magic trick. A volunteer
from the audience picks five cards from a standard deck of 52 cards and then passes the
deck to the assistant. The assistant shows to the magician, one by one in some order, four
cards from the chosen set of five cards. Then, the magician guesses the remaining fifth
card. Show that this magic trick can be performed without any help of magic.
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2.21. Prove the second claim of Theorem 2.131

2.22. In the DuaL-CoLORING problem, we are given an undirected graph G on n vertices
and a positive integer k, and the objective is to test whether there exists a proper coloring
of G with at most n — k colors. Obtain a kernel with O(k) vertices for this problem using
crown decomposition.

2.23 (;‘;) In the MAX-INTERNAL SPANNING TREE problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether there exists a spanning
tree with at least k internal vertices. Obtain a kernel with O(k) vertices for MAX-INTERNAL
SPANNING TREE.

2.24 (£&). Let G be an undirected graph, let (z4),ecv(g) be any feasible solution to
LPVC(G), and let M be a matching in G. Prove that |M| < ZvEV(G) Ty.

2.25 (&). Let G be a graph and let (zv)vev(q) be an optimum solution to LPVC(G)
(not necessarily a half-integral one). Define a vector (Yo)vev(a) as follows:

if ¢, <
if ¢, =
if Ty >

Yo =

= ole O
M NIER IR

Show that (yv),ev () is also an optimum solution to LPVC(G).

2.26 (&). In the MIn-ONEs-2-SAT, we are given a CNF formula, where every clause has
exactly two literals, and an integer k, and the goal is to check if there exists a satisfying
assignment of the input formula with at most k variables set to true. Show a kernel for
this problem with at most 2k variables.

2.27 (£7). Consider a restriction of d-HirTing SET, called Ed-HiTTING SET, where we
require every set in the input family A to be of size exactly d. Show that this problem
is not easier than the original d-HitrTiNG SET problem, by showing how to transform a
d-HiTTING SET instance into an equivalent Ed-HiTTing SET instance without changing
the number of sets.

2.28. Show a kernel with at most f(d)k? sets (for some computable function f) for the
Ed-HitTiNG SET problem, defined in the previous exercise.

2.29. In the d-SeT PACKING problem, we are given a family A of sets over a universe
U, where each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there are sets Si,...,Sr € A that are pairwise disjoint.
Use the sunflower lemma to obtain a kernel for d-SET PackiNG with f(d)k? sets, for some
computable function d.

2.30. Consider a restriction of d-SET PackiNng, called Ed-SET PACKING, where we require
every set in the input family A to be of size exactly d. Show that this problem is not easier
than the original d-SET PAckING problem, by showing how to transform a d-SET Packing
instance into an equivalent Ed-SET Packing instance without changing the number of sets.

2.31. A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set. In the VERTEX DisjoiNnT PaTus problem, we are given an undirected
graph G and k pairs of vertices (s;,t;),¢ € {1,...,k}, and the objective is to decide whether
there exists paths P; joining s; to t; such that these paths are pairwise vertex disjoint.
Show that VERTEX DisjoINT ParHs admits a polynomial kernel on split graphs (when
parameterized by k).
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2.32. Consider now the VERTEX DisjoiNT PaTHS problem, defined in the previous exercise,
restricted, for a fixed integer d > 3, to a class of graphs that does not contain a d-vertex
path as an induced subgraph. Show that in this class the VErRTEX DissoINT PaTHS problem
admits a kernel with O(k?~1) vertices and edges.

2.33. In the CLusTER VERTEX DELETION problem, we are given as input a graph G and
a positive integer k, and the objective is to check whether there exists a set S C V(G) of
size at most k such that G — S is a cluster graph. Show a kernel for CLUSTER VERTEX
DEeLETION with O(k3) vertices.

2.34. An undirected graph G is called perfect if for every induced subgraph H of G, the
size of the largest clique in H is same as the chromatic number of H. In the Opp CvycLE
TRANSVERSAL problem, we are given an undirected graph G and a positive integer k,
and the objective is to find at most k vertices whose removal makes the resulting graph
bipartite. Obtain a kernel with O(k2) vertices for Opp CvcLE TRANSVERSAL on perfect
graphs.

2.35. In the SpLiT VERTEX DELETION problem, we are given an undirected graph G and
a positive integer k and the objective is to test whether there exists a set S C V(G) of size
at most k such that G — S is a split graph (see Exercise for the definition).

1. Show that a graph is split if and only if it has no induced subgraph isomorphic to
one of the following three graphs: a cycle on four or five vertices, or a pair of disjoint
edges.

2. Give a kernel with O(k®) vertices for SPLIT VERTEX DELETION.

2.36 (;';) In the SpLiT EpGE DELETION problem, we are given an undirected graph G
and a positive integer k, and the objective is to test whether G can be transformed into
a split graph by deleting at most k edges. Obtain a polynomial kernel for this problem
(parameterized by k).

2.37 (;';) In the RaMsEY problem, we are given as input a graph G and an integer k, and
the objective is to test whether there exists in G an independent set or a clique of size at
least k. Show that Ramsey is FPT.

2.38 (&). A directed graph D is called oriented if there is no directed cycle of length at
most 2. Show that the problem of testing whether an oriented digraph contains an induced
directed acyclic subgraph on at least k vertices is FPT.

Hints

Consider the following reduction rule: if there exists a line that contains more than &
input points, delete the points on this line and decrease k by 1.

Consider the following natural reduction rules:

1. delete a vertex that is not a part of any P3 (induced path on three vertices);
2. if an edge wv is contained in at least k + 1 different Pss, then delete uv;
3. if a non-edge uw is contained in at least k + 1 different Pss, then add ww.

Show that, after exhaustive application of these rules, a yes-instance has O(k2) vertices.

First, observe that one can discard any set in F that is of size at most 1. Second,
observe that if every set in F is of size at least 2, then a random coloring of U has at least
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|F|/2 nonmonochromatic sets on average, and an instance with |F| > 2k is a yes-instance.
Moreover, observe that if we are dealing with a yes-instance and F' € F is of size at least
2k, then we can always tweak the solution coloring to color F' nonmonochromatically: fix
two differently colored vertices for k — 1 nonmonochromatic sets in the solution, and color
some two uncolored vertices of F' with different colors. Use this observation to design a
reduction rule that handles large sets in F.

Observe that the endpoints of the matching in question form a vertex cover of the
input graph. In particular, every vertex of degree larger than 2k needs to be an endpoint
of a solution matching. Let X be the set of these large-degree vertices. Argue, similarly as
in the case of O(k?) kernel for VErTEX COVER, that in a yes-instance, G\ X has only few
edges. Design a reduction rule to reduce the number of isolated vertices of G \ X.

Proceed similarly as in the O(k?) kernel for VERTEX COVER.

Proceed similarly as in the case of VERTEX CoVER. Argue that the vertices of degree
larger than d 4+ k need to be included in the solution. Moreover, observe that you may
delete isolated vertices, as well as edges connecting two vertices of degree at most d. Argue
that, if no rule is applicable, then a yes-instance is of size bounded polynomially in d + k.

The important observation is that a matching of size k is a good subgraph. Hence,
we may restrict ourselves to the case where we are additionally given a vertex cover X of
the input graph of size at most 2k. Moreover, assume that X is inclusion-wise minimal. To
conclude, prove that, if a vertex v € X has at least k neighbors in V(G) \ X, then (G, k)
is a yes-instance.

The main observation is that, since there is no 3-cycle nor 4-cycle in the graph, if
z,y € N(v), then only v can dominate both = and y at once. In particular, every vertex of
degree larger than k needs to be included in the solution.

However, you cannot easily delete such a vertex. Instead, mark it as “obligatory” and
mark its neighbors as “dominated”. Note now that you can delete a “dominated” vertex,
as long as it has no unmarked neighbor and its deletion does not drop the degree of an
“obligatory” vertex to k.

Prove that, in a yes-instance, if no rule is applicable, then the size is bounded polyno-
mially in k. To this end, show that

1. any vertex can dominate at most k unmarked vertices, and, consequently, there are
at most k2 unmarked vertices;

2. there are at most k “obligatory” vertices;

3. every remaining “dominated” vertex can be charged to one unmarked or obligatory
vertex in a manner that each unmarked or obligatory vertex is charged at most k + 1
times.

Let (G, k) be a FEEDBACK VERTEX SET instance and assume G is d-regular. If d < 2,
then solve (G, k) in polynomial time. Otherwise, observe that G has dn/2 edges and, if
(G, k) is a yes-instance and X is a feedback vertex set of G of size at most k, then at most
dk edges of G are incident to X and G — X contains less than n — k edges (since it is a
forest). Consequently, dn/2 < dk + n — k, which gives n = O(k) for d > 3.

Show, using greedy arguments, that if every vertex in a digraph G has indegree at
least d, then G contains d pairwise edge-disjoint cycles.

For the vertex-deletion variant, design a simple reduction that boosts up the indegree
of every vertex without actually changing anything in the solution space.

Let X be the set of vertices of G of degree larger than k. Clearly, any connected
vertex cover of G of size at most k needs to contain X. Moreover, as in the case of VERTEX
COVER, in a yes-instance there are only O(k?) edges in G — X. However, we cannot easily
discard the isolated vertices of G — X, as they may be used to make the solution connected.
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To obtain an exponential kernel, note that in a yes-instance, |X| < k, and if we have
two vertices u, v that are isolated in G — X, and Ng(u) = Ng(v) (note that Ng(u) C X
for every u that is isolated in G — X), then we need only one of the vertices u,v in a
ConNECTED VERTEX COVER solution. Hence, in a kernel, we need to keep:

1. G[X], and all edges and non-isolated vertices of G — X;

2. for every x € X, some k + 1 neighbors of z;

3. for every Y C X, one vertex u that is isolated in G — X and Ng(u) = Y (if there
exists any such vertex).

For the last part of the exercise, note that in the presence of this assumption, no two
vertices of X share more than one neighbor and, consequently, there are only O(]X|2) sets
Y C X for which there exist u ¢ X with Ng(u) =Y.

We repeat the argument of the previous exercise, and bound the number of sets
Y C X for which we need to keep a vertex u € V(G) \ X with Ng(u) = Y. First, there
are O(d|X|?~1) sets Y of size smaller than d. Second, charge every set Y of size at least d
to one of its subset of size d. Since G does not contain Ky 4 as a subgraph, every subset X

of size d is charged less than d times. Consequently, there are at most (d —1) ('ij‘) vertices
u € V(GQ) \ X such that Ng(u) C X and |[Ng(u)| > d.

The main observation is as follows: an induced cycle of length ¢ needs exactly £ — 3
edges to become chordal. In particular, if a graph contains an induced cycle of length
larger than k + 3, then the input instance is a no-instance, as we need more than k edges
to triangulate the cycle in question.

First, prove the safeness of the following two reduction rules:

1. Delete any vertex that is not contained in any induced cycle in G.

2. A vertex z is a friend of a non-edge wv, if u, z, v are three consecutive vertices of some
induced cycle in G. If uv ¢ E(G) has more than 2k friends, then add the edge uv and
decrease k by one.

Second, consider the following procedure. Initiate A to be the vertex set of any inclusion-
wise maximal family of pairwise vertex-disjoint induced cycles of length at most 4 in G.
Then, as long as there exists an induced cycle of length at most 4 in G that contains two
consecutive vertices in V(G) \ A, move these two vertices to A. Show, using a charging
argument, that, in a yes-instance, the size of A remains O(k). Conclude that the size of a
reduced yes-instance is bounded polynomially in k.

Design reduction rules that remove vertices of degree at most 2 (you may obtain a
multigraph in the process). Prove that every n-vertex multigraph of minimum degree at
least 3 has a cycle of length O(logn). Use this to show a greedy argument that an n-vertex
multigraph of minimum degree 3 has £2(n®) pairwise edge-disjoint cycles for some ¢ > 0.

Consider the following argument. Let |V (G)| = 2n and pair the vertices of G arbi-
trarily: V(G) = {x1,y1,22,¥2, ..., %n, Yn}. Consider the bisection (Vi,Va2) where, in each
pair (z;,y;), one vertex goes to V4 and the other goes to Va, where the decision is made
uniformly at random and independently of other pairs. Prove that, in expectation, the ob-
tained bisection is of size at least (m + £)/2, where ¢ is the number of pairs (x;,y;) where
zyi € E(G).

Use the arguments in the previous paragraph to show not only the first point of the
exercise, but also that the input instance is a yes-instance if it admits a matching of size
2k. If this is not the case, then let X be the set of endpoints of a maximal matching in Gj
note that | X| < 4k.

First, using a variation of the argument of the first paragraph, prove that, if there exists
x € X that has at least 2k neighbors and at least 2k non-neighbors outside X, then the
input instance is a yes-instance. Second, show that in the absence of such a vertex, all but
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O(k?) vertices of V(G) \ X have exactly the same neighborhood in X, and design a way
to reduce them.

Construct the following bipartite graph: on one side there are regions of Byteland, on
the second side there are military zones, and a region R is adjacent to a zone Z if RNZ # (.
Show that this graph satisfies the condition of Hall’s theorem and, consequently, contains
a perfect matching.

Consider the following bipartite graph: on one side there are all (552) sets of five cards

possibly chosen by the volunteer), and on the other side there are all 52-51-50-49 tuples
of pairwise different four cards (possibly shown by the assistant). A set S is adjacent to a
tuple T if all cards of T" belong to S. Using Hall’s theorem, show that this graph admits a
matching saturating the side with all sets of five cards. This matching induces a strategy
for the assistant and the magician.

We now show a relatively simple explicit strategy, so that you can impress your friends
and perform this trick at some party. In every set of five cards, there are two cards of the
same color, say a and b. Moreover, as there are 13 cards of the same color, the cards a and
b differ by at most 6, that is, a+i = b or b+ = a for some 1 < ¢ < 6, assuming some cyclic
order on the cards of the same color. Without loss of generality, assume a + ¢ = b. The
assistant first shows the card a to the magician. Then, using the remaining three cards, and
some fixed total order on the whole deck of cards, the assistant shows the integer ¢ (there
are 3! = 6 permutations of remaining three cards). Consequently, the magician knows the
card b by knowing its color (the same as the first card show by the assistant) and the value
of the card a and the number 3.

Let M be a maximum matching, which you can find using the Hopcroft-Karp algo-
rithm (the first part of Theorem . If M saturates V7, then we are done. Otherwise,
pick any v € V1 \ V(M) (i.e., a vertex v € V; that is not an endpoint of an edge of M) and
consider all vertices of G that are reachable from v using alternating paths. (A path P is
alternating if every second edge of P belongs to M.) Show that all vertices from V; that
are reachable from v using alternating paths form an inclusion-wise minimal set X with
IN(X)| < |X].

@] Apply the crown lemma to G, the edge complement of G (G has vertex set V(G)
and uwv € E(G) if and only if uv ¢ E(G)) and the parameter k — 1. If it returns a matching
My of size k, then note that one can color the endpoints of each edge of My with the same
color, obtaining a coloring of G with n —k colors. Otherwise, design a way to greedily color

the head and the crown of the obtained crown decomposition.

Your main tool is the following variation of the crown lemma: if V(G) is sufficiently
large, then you can find either a matching of size k + 1, or a crown decomposition V(G) =
CUH UR, such that G[H U C] admits a spanning tree where all vertices of H and |H| —1
vertices of C are of degree at least two. Prove it, and use it for the problem in question.

Observe that for every uv € M we have z, + xz, > 1 and, moreover, all these
inequalities for all edges of M contain different variables. In other words,

3 owe) > Y w@)= Y (wle) Fwe) = S 1= M|,

veV(G) veV (M) vueM vu€EM

Let Vs ={v € V(G) : 0<ay < iland Vi_s={veV(G) : I <z, <1}
For sufficiently small € > 0, consider two operations: first, an operation of adding ¢ to all
variables z, for v € Vs and subtracting e from z,, for v € V;_g4, and second, an operation of
adding € to all variables z, for v € Vj_;s and subtracting e from z, for v € V5. Show that
both these operations lead to feasible solutions to LPVC(G), as long as ¢ is small enough.
Conclude that |Vs| = |Vi_s|, and that both operations lead to other optimal solutions
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to LPVC(G). Finally, observe that, by repeatedly applying the second operation, one can
empty sets V5 and V1_s, and reach the vector (yv)yev(q)-

[2:26] First, design natural reduction rules that enforce the following: for every variable z
in the input formula ¢, there exists a truth assignment satisfying ¢ that sets x to false,
and a truth assignment satisfying ¢ that sets x to true. In other words, whenever a value
of some variable is fixed in any satisfying assignment, fix this value and propagate it in the
formula.

Then, consider the following closure of the formula ¢: for every two-literal clause C that
is satisfied in every truth assignment satisfying ¢, add C to ¢. Note that testing whether
C' is such a clause can be done in polynomial time: force two literals in C' to be false and
check if ¢ remains satisfiable. Moreover, observe that the sets of satisfying assignments for
o and ¢’ are equal.

Let ¢’ be the closure of ¢. Consider the following auxiliary graph H: V (H) is the set of
variables of ¢, and zy € E(H) iff the clause zVy belongs to ¢’. Clearly, if we take any truth
assignment 1 satisfying ¢, then ¢»=1(T) is a vertex cover of H. A somewhat surprising fact
is that a partial converse is true: for every inclusion-wise minimal vertex cover X of H,
the assignment 1 defined as ¢ (z) = T if and only if z € X satisfies ¢’ (equivalently, ¢).
Note that such a claim would solve the exercise: we can apply the LP-based kernelization
algorithm to Verrex CoVER instance (H, k), and translate the reductions it makes back
to the formula .

Below we prove the aforementioned claim in full detail. We encourage you to try to
prove it on your own before reading.

Let X be a minimal vertex cover of H, and let 1 be defined as above. Take any clause
C in ¢’ and consider three cases. If C = z V y, then zy € E(H), and, consequently, either
z or y belongs to X. It follows from the definition of ¢ that (z) = T or ¢¥(y) = T, and
1 satisfies C.

In the second case, C = x V —y. For a contradiction, assume that 1 does not satisfy
C and, consequently, z ¢ X and y € X. Since X is a minimal vertex cover, there exists
z € Ny (y) such that z ¢ X and the clause C’ = y V z belongs to ¢’. If 2 = z, then any
satisfying assignment to ¢’ sets y to true, a contradiction to our first preprocessing step.
Otherwise, the presence of C' and C’ implies that in any assignment v’ satisfying ¢’ we
have ¢/(z) = T or ¢/(2) = T. Thus, z V z is a clause of ¢/, and zz € E(H). However,
neither x nor z belongs to X, a contradiction.

In the last case, C' = —x V —y and, again, we assume that 1 does not satisfy C, that is,
z,y € X. Since X is a minimal vertex cover, there exist s € Ny (x), t € Ng(y) such that
s,t ¢ X. It follows from the definition of H that the clauses C; =z Vsand Cy =y V't
are present in ¢’. If s = ¢, then the clauses C, C; and Cy imply that ¢ is set to true in
any truth assignment satisfying ¢’, a contradiction to our first preprocessing step. If s # ¢,
then observe that the clauses C, C and Cy imply that either s or t is set to true in any
truth assignment satisfying ¢’ and, consequently, s V t is a clause of ¢’ and st € E(H).
However, s,t ¢ X, a contradiction.

If ) € A, then conclude that we are dealing with a no-instance. Otherwise, for every
set X € A of size | X| < d, create d — | X| new elements and add them to X.

There are two ways different ways to solve this exercise. First, you can treat the
input instance as a d-HiTTiING SET instance, proceed as in Section and at the end
apply the solution of Exercise to the obtained kernel, in order to get an Ed-HiTTING
SET instance.

In a second approach, try to find a sunflower with k + 2 sets, instead of k 4+ 1 as in
Section [2.6.1] If a sunflower is found, then discard one of the sets: the remaining k + 1 sets
still ensure that the core needs to be hit in any solution of size at most k.
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Show that in a (dk + 2)-sunflower, one set can be discarded without changing the
answer to the problem.

[2-30] Proceed as in Exercise pad every set X € A with d—|X| newly created elements.

Show that, in a split graph, every path can be shortened to a path on at most
four vertices. Thus, for every 1 < i < k, we have a family F; of vertex sets of possible
paths between s; and t;, and this family is of size O(n*). Interpret the problem as a d-SET
PackinG instance for some constant d and family F = Uf:l Fi. Run the kernelization
algorithm from the previous exercise, and discard all vertices that are not contained in any
set in the obtained kernel.

Show that, in a graph excluding a d-vertex path as an induced subgraph, every
path in a solution can shortened to a path on at most d — 1 vertices. Proceed then as in
Exercise

Let A be a family of all vertex sets of a P3 (induced path on three vertices) in G. In
this manner, CLUSTER VERTExX DELETION becomes a 3-HiTTING SET problem on family
A, as we need to hit all induced Pss in G. Reduce A, but not exactly as in the d-HiTTiNG
SET case: repeatedly find a k + 2 sunflower and delete one of its elements from A. Show
that this reduction is safe for CLUSTER VERTEX DELETION. Moreover, show that, if A’
is the family after the reduction is exhaustively applied, then (G[|JA’], k) is the desired
kernel.

2.34] Use the following observation: a perfect graph is bipartite if and only if it does not
contain a triangle. Thus, the problem reduces to hitting all triangles in the input graph,
which is a 3-HiTTING SET instance.

2.35| Proceed as in the case of CLUSTER VERTEX DELETION: interpret a SPLIT VERTEX
DELETION instance as a 5-HiTTiNGg SET instance.

Let {C4,Cs,2K>} be the set of forbidden induced subgraphs for split graphs. That
is, a graph is a split graph if it contains none of these three graphs as an induced subgraph.

You may need (some of) the following reduction rules. (Note that the safeness of some
of them is not so easy.)

1. The “standard” sunflower-like: if more than k forbidden induced subgraphs share a
single edge (and otherwise are pairwise edge-disjoint), delete the edge in question.

2. The irrelevant vertex rule: if a vertex is not part of any forbidden induced subgraph,
then delete the vertex in question. (Safeness is not obvious here!)

3. If two adjacent edges uwv and ww are contained in more than k induced Cys, then
delete uv and ww, and replace them with edges va and wb, where a and b are new
degree-1 vertices.

4. If two adjacent edges uv and uw are contained in more than k pairwise edge-disjoint
induced Css, then delete uv and uw, and decrease k by 2.

5. If the edges viv2, vovs and v3zvg are contained in more than k induced Css, delete
vov3 and decrease k by 1.

By induction, show that every graph on at least 4F vertices has either a clique or
an independent set on k vertices. Observe that this implies a kernel of exponential size for
the problem.

Show that every tournament on n vertices has a transitive subtournament on O(logn)
vertices. Then, use this fact to show that every oriented directed graph on n vertices has an
induced directed acyclic subgraph on logn vertices. Finally, obtain an exponential kernel
for the considered problem.
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Chapter 3
Bounded search trees

In this chapter we introduce a variant of exhaustive
search, namely the method of bounded search trees.
This is one of the most commonly used tools in the de-
sign of fized-parameter algorithms. We illustrate this
technique with algorithms for two different parameter-
izations of VERTEX COVER, as well as for the prob-
lems (undirected) FEEDBACK VERTEX SET and CLOS-
EST STRING.

Bounded search trees, or simply branching, is one of the simplest and most
commonly used techniques in parameterized complexity that originates in the
general idea of backtracking. The algorithm tries to build a feasible solution to
the problem by making a sequence of decisions on its shape, such as whether
to include some vertex into the solution or not. Whenever considering one
such step, the algorithm investigates many possibilities for the decision, thus
effectively branching into a number of subproblems that are solved one by
one. In this manner the execution of a branching algorithm can be viewed
as a search tree, which is traversed by the algorithm up to the point when a
solution is discovered in one of the leaves. In order to justify the correctness of
a branching algorithm, one needs to argue that in case of a yes-instance some
sequence of decisions captured by the algorithm leads to a feasible solution.
If the total size of the search tree is bounded by a function of the parameter
alone, and every step takes polynomial time, then such a branching algorithm
runs in FPT time. This is indeed the case for many natural backtracking
algorithms.

More precisely, let I be an instance of a minimization problem (such as
VERTEX COVER). We associate a measure p(I) with the instance I, which, in
the case of FPT algorithms, is usually a function of k£ alone. In a branch step
we generate from I simpler instances I, ..., Iy (£ > 2) of the same problem
such that the following hold.

51
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1. Every feasible solution S of I;, i € {1,...,¢}, corresponds to a feasible
solution h;(S) of I. Moreover, the set

{hi(S) : 1 <i</fand S is a feasible solution of IZ-}

contains at least one optimum solution for I. Informally speaking, a
branch step splits problem I into subproblems Ii,...,I;, possibly tak-
ing some (formally justified) greedy decisions.
2. The number ¢ is small, e.g., it is bounded by a function of u(I) alone.
3. Furthermore, for every I;, i € {1,...,¢}, we have that u(I;) < u(I) — ¢
for some constant ¢ > 0. In other words, in every branch we substantially
simplify the instance at hand.

In a branching algorithm, we recursively apply branching steps to instances
I, 15, ..., I, until they become simple or even trivial. Thus, we may see an
execution of the algorithm as a search tree, where each recursive call cor-
responds to a node: the calls on instances Iy, I, ..., I, are children of the
call on instance I. The second and third conditions allow us to bound the
number of nodes in this search tree, assuming that the instances with non-
positive measure are simple. Indeed, the third condition allows us to bound
the depth of the search tree in terms of the measure of the original instance,
while the second condition controls the number of branches below every node.
Because of these properties, search trees of this kind are often called bounded
search trees. A branching algorithm with a cleverly chosen branching step
often offers a drastic improvement over a straightforward exhaustive search.

We now present a typical scheme of applying the idea of bounded search
trees in the design of parameterized algorithms. We first identify, in polyno-
mial time, a small (typically of size that is constant, or bounded by a function
of the parameter) subset S of elements of which at least one must be in some
or every feasible solution of the problem. Then we solve |S| subproblems:
for each element e of S, create one subproblem in which we include e in the
solution, and solve the remaining task with a reduced parameter value. We
also say that we branch on the element of S that belongs to the solution.
Such search trees are analyzed by measuring the drop of the parameter in
each branch. If we ensure that the parameter (or some measure bounded by
a function of the parameter) decreases in each branch by at least a constant
value, then we will be able to bound the depth of the search tree by a function
of the parameter, which results in an FPT algorithm.

It is often convenient to think of branching as of “guessing” the right
branch. That is, whenever performing a branching step, the algorithm guesses
the right part of an (unknown) solution in the graph, by trying all possibili-
ties. What we need to ensure is that there will be a sequence of guesses that
uncovers the whole solution, and that the total time spent on wrong guesses
is not too large.

We apply the idea of bounded search trees to VERTEX COVER in Sec-
tion Section briefly discusses methods of bounding the number of
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nodes of a search tree. In Section we give a branching algorithm for
FEEDBACK VERTEX SET in undirected graphs. Section [3.4] presents an al-
gorithm for a different parameterization of VERTEX COVER and shows how
this algorithm implies algorithms for other parameterized problems such as
ODD CYCLE TRANSVERSAL and ALMOST 2-SAT. Finally, in Section [3.5] we
apply this technique to a non-graph problem, namely CLOSEST STRING.

3.1 VERTEX COVER

As the first example of branching, we use the strategy on VERTEX COVER.
In Chapter (Lemma, we gave a kernelization algorithm which in time
O(n+/m) constructs a kernel on at most 2k vertices. Kernelization can be
easily combined with a brute-force algorithm to solve VERTEX COVER in
time O(ny/m+4*k°M). Indeed, there are at most 22* = 4* subsets of size at
most k in a 2k-vertex graph. Thus, by enumerating all vertex subsets of size at
most k in the kernel and checking whether any of these subsets forms a vertex
cover, we can solve the problem in time O(ny/m + 4*k°(1)). We can easily
obtain a better algorithm by branching. Actually, this algorithm was already
presented in Chapter [I] under the cover of the BAR FIGHT PREVENTION
problem.

Let (G, k) be a VERTEX COVER instance. Our algorithm is based on the
following two simple observations.

e For a vertex v, any vertex cover must contain either v or all of its
neighbors N (v).

e VERTEX COVER becomes trivial (in particular, can be solved opti-
mally in polynomial time) when the maximum degree of a graph is
at most 1.

We now describe our recursive branching algorithm. Given an instance
(G, k), we first find a vertex v € V(G) of maximum degree in G. If v is of
degree 1, then every connected component of G is an isolated vertex or an
edge, and the instance has a trivial solution. Otherwise, [N (v)| > 2 and we
recursively branch on two cases by considering

either v, or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and reduce
the parameter by 1. In the second branch, we add N(v) to the vertex cover,
delete N[v] from the graph and decrease k by |N(v)| > 2.

The running time of the algorithm is bounded by
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(the number of nodes in the search tree) x (time taken at each node).

Clearly, the time taken at each node is bounded by n®™). Thus, if 7(k) is the
number of nodes in the search tree, then the total time used by the algorithm
is at most 7(k)n®W.

In fact, in every search tree T that corresponds to a run of a branching
algorithm, every internal node of 7 has at least two children. Thus, if
T has ¢ leaves, then the number of nodes in the search tree is at most
2¢ — 1. Hence, to bound the running time of a branching algorithm, it
is sufficient to bound the number of leaves in the corresponding search
tree.

In our case, the tree T is the search tree of the algorithm when run with
parameter k. Below its root, it has two subtrees: one for the same algorithm
run with parameter k£ — 1, and one recursive call with parameter at most
k — 2. The same pattern occurs deeper in 7. This means that if we define a
function T'(k) using the recursive formula

L (TG-1)+T(-2) ifi>2,
T() = { 1 otherwise,

then the number of leaves of 7 is bounded by T'(k).
Using induction on k, we prove that T'(k) is bounded by 1.6181*. Clearly,
this is true for £ = 0 and k = 1, so let us proceed for k > 2:

T(k)=T(k—1)+T(k—2) < 1.6181" 1 4 1.6181%2
< 1.6181%72(1.6181 + 1) < 1.6181%72(1.6181)% < 1.6181".

This proves that the number of leaves is bounded by 1.6181%. Combined with
kernelization, we arrive at an algorithm solving VERTEX COVER in time
O(ny/m + 1.6181°k°W),

A natural question is how did we know that 1.6181% is a solution to the
above recurrence. Suppose that we are looking for an upper bound on function
T(k) of the form T'(k) < c¢- A, where ¢ > 0, A > 1 are some constants. Clearly,
we can set constant ¢ so that the initial conditions in the definition of T'(k)
are satisfied. Then, we are left with proving, using induction, that this bound
holds for every k. This boils down to proving that

EED LI Lt Sy L (3.1)
since then we will have

Tk)=T(k—-1)+T(k—-2) <c- A1 pe N2 < \E
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Observe that is equivalent to A2 > X + 1, so it makes sense to look
for the lowest possible value of A for which this inequality is satisfied; this is
actually the one for which equality holds. By solving equation A\ = A + 1 for
A > 1, we find that \ = % < 1.6181, so for this value of A the inductive
proof works.

The running time of the above algorithm can be easily improved using the
following argument, whose proof we leave as Exercise [3.1}

Proposition 3.1. VERTEX COVER can be solved optimally in polynomial
time when the mazimum degree of a graph is at most 2.

Thus, we branch only on the vertices of degree at least 3, which immediately
brings us to the following upper bound on the number of leaves in a search

tree: ( ) ( ) ¢
| Tk-1)+T(k-3) itk>3,
T(k) = { 1 otherwise.

Again, an upper bound of the form c¢- A* for the above recursive function can
be obtained by finding the largest root of the polynomial equation A\* = A\2+1.
Using standard mathematical techniques (and/or symbolic algebra packages)
the root is estimated to be at most 1.4656. Combined with kernelization, this
gives us the following theorem.

Theorem 3.2. VERTEX COVER can be solved in time O(n/m-+1.4656Fk° 1)),

Can we apply a similar strategy for graphs of vertex degree at most 37
Well, this becomes more complicated as VERTEX COVER is NP-hard on this
class of graphs. But there are more involved branching strategies, and there
are faster branching algorithms than the one given in Theorem

3.2 How to solve recursive relations

For algorithms based on the bounded search tree technique, we need to bound
the number of nodes in the search tree to obtain an upper bound on the
running time of the algorithm. For this, recurrence relations are used. The
most common case in parameterized branching algorithms is when we use
linear recurrences with constant coefficients. There exists a standard tech-
nique to bound the number of nodes in the search tree for this case. If the
algorithm solves a problem of size n with parameter k& and calls itself re-
cursively on problems with decreased parameters k — di,k —ds, ...,k —dp,
then (di,ds,...,dp) is called the branching vector of this recursion. For ex-
ample, we used a branching vector (1,2) to obtain the first algorithm for
VERTEX COVER in the previous section, and a branching vector (1, 3) for the
second one. For a branching vector (di,ds,...,d,), the upper bound T'(k)
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on the number of leaves in the search tree is given by the following linear
recurrence:

Tk)=T(k—-d)+T(k—do)+---+T(k—dp).

Again, for £ < d, where d = max;—1,,.. pd;, we put the initial condition
T(k) = 1. Assuming that new subproblems with smaller parameters can
be computed in time polynomial in n, the running time of such recursive
algorithm is T'(k) - n®™),

If we now look for an upper bound of the form T'(k) < c¢- A*, then the
inductive step boils down to proving the following inequality:

/\k 2 )\k*dl + )\k*dz N )\k*dp' (32)
Inequality (3.2) can be rewritten as P(\) > 0, where
PA) =X —\dmdh — ydmde o \dmd (3.3)

is the characteristic polynomial of the recurrence for T'(k) (recall d =
max;—12, . pd;). Using standard techniques of calculus it is not hard to show
that if a polynomial P has a form as in , then P has a unique positive
root Ag, and moreover P(A\) < 0 for 0 < A < Mg and P(X\) > 0 for A > XAo.
This means that A\g is the best possible value that can be used in an upper
bound for T'(k). In the bibliographic notes we provide further references to
the relevant literature on solving recursive formulas.

The root Ag is often called the branching number corresponding to the

branching vector (dy,da,...,d,). Hence, the running time of the considered
branching algorithm is bounded by Afn®(). In Table we give branching
numbers corresponding to branching vectors (i, j) for 4,5 € {1,...,6}.
G, 1 2 3 4 5 6

T [2.0000 1.6181 1.4656 1.3803 1.3248 1.2852

2 1.4143 1.3248 1.2721 1.2366 1.2107

3 1.2560 1.2208 1.1939 1.1740

4 1.1893 1.1674 1.1510

5 1.1487 1.1348

6 1.1225

Table 3.1: A table of branching numbers (rounded up)

Two natural questions arise:

e How good is the estimation of T'(k) using the exponent of the correspond-
ing branching number?
e How well does T'(k) estimate the actual size of the search tree?
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The answer to the first question is “it is good”: up to a polynomial factor,
the estimation is tight. The second question is much more difficult, since the
actual way a branching procedure explores the search space may be more
complex than our estimation of its behavior using recursive formulas. If, say,
a branching algorithm uses several ways of branching into subproblems (so-
called branching rules) that correspond to different branching vectors, and/or
is combined with local reduction rules, then so far we do not know how
to estimate the running time better than by using the branching number
corresponding to the worst branching vector. However, the delicate interplay
between different branching rules and reduction rules may lead to a much
smaller tree than what follows from our imprecise estimations.

3.3 FEEDBACK VERTEX SET

For a given graph G and a set X C V(G), we say that X is a feedback vertex
set of G if G—X is an acyclic graph (i.e., a forest). In the FEEDBACK VERTEX
SET problem, we are given an undirected graph G and a nonnegative integer
k, and the objective is to determine whether there exists a feedback vertex
set of size at most k in G. In this section, we give a branching algorithm
solving FEEDBACK VERTEX SET in time k9% . nO1),

It is more convenient for us to consider this problem in the more general
setting of multigraphs, where the input graph G may contain multiple edges
and loops. We note that both a double edge and a loop are cycles. We also
use the convention that a loop at a vertex v contributes 2 to the degree of v.

We start with some simple reduction rules that clean up the graph. At
any point, we use the lowest-numbered applicable rule. We first deal with
the multigraph parts of GG. Observe that any vertex with a loop needs to be
contained in any solution set X.

Reduction FVS.1. If there is a loop at a vertex v, delete v from the graph
and decrease k by 1.

Moreover, notice that the multiplicity of a multiple edge does not influence
the set of feasible solutions to the instance (G, k).

Reduction FVS.2. If there is an edge of multiplicity larger than 2, reduce
its multiplicity to 2.

We now reduce vertices of low degree. Any vertex of degree at most 1 does
not participate in any cycle in G, so it can be deleted.

Reduction FVS.3. If there is a vertex v of degree at most 1, delete v.

Concerning vertices of degree 2, observe that, instead of including into the
solution any such vertex, we may as well include one of its neighbors. This
leads us to the following reduction.
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Reduction FVS.4. If there is a vertex v of degree 2, delete v and connect
its two neighbors by a new edge.

Two remarks are in place. First, a vertex v in Reduction [FVS.4] cannot have
a loop, as otherwise Reduction should be triggered on v instead. This
ensures that the neighbors of v are distinct from v, hence the rule may be ap-
plied and the safeness argument works. Second, it is possible that v is incident
to a double edge: in this case, the reduction rule deletes v and adds a loop
to a sole “double” neighbor of v. Observe that in this case Reduction [FVS.]
will trigger subsequently on this neighbor.

We remark that after exhaustively applying these four reduction rules, the
resulting graph G

(P1) contains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.

Moreover, all rules are trivially applicable in polynomial time. From now
on we assume that in the input instance (G, k), graph G satisfies properties
(P1)-(P3).

We remark that for the algorithm in this section, we do not need prop-
erties (P1) and (P2). However, we will need these properties later for the
kernelization algorithm in Section [9.1

Finally, we need to add a rule that stops the algorithm if we already
exceeded our budget.

Reduction FVS.5. If £ < 0, terminate the algorithm and conclude that
(G, k) is a no-instance.

The intuition behind the algorithm we are going to present is as follows.
Observe that if X is a feedback vertex set of G, then G — X is a forest.
However, G — X has at most |[V(G)| — |X| — 1 edges and thus G — X
cannot have “many” vertices of high degree. Thus, if we pick some f(k)
vertices with the highest degrees in the graph, then every solution of
size at most k must contain one of these high-degree vertices. In what
follows we make this intuition work.

Let (v1,v2,...,v,) be a descending ordering of V(G) according to vertex
degrees, i.e., d(v1) > d(ve) > -+ > d(v,). Let Vi, = {v1,...,v3r}. Let us
recall that the minimum vertex degree of G is at least 3. Our algorithm for
FEEDBACK VERTEX SET is based on the following lemma.

Lemma 3.3. Fvery feedback vertex set in G of size at most k contains at
least one vertex of V3.

Proof. To prove this lemma we need the following simple claim.



3.3 FEEDBACK VERTEX SET 59

Claim 3.4. For every feedback verter set X of G,

Y (d(v) = 1) > |BE(G) — [V (G)| + L.

veX

Proof. Graph F' = G — X is a forest and thus the number of edges in F'is at
most |V (G)| — | X| — 1. Every edge of E(G) \ E(F) is incident to a vertex of
X. Hence

S d(w) + [V(G)] - [X] 1> [EG)],

veEX

J

Targeting a contradiction, let us assume that there is a feedback vertex set
X of size at most k such that X N V3 = 0. By the choice of Vi, for every
v € X, d(v) is at most the minimum of vertex degrees from Vs;. Because
|X| < k, by Claim [3.4] we have that

3k

S 1) 23 (3 (dw) - 1) 2 3-(1BG)| - [V(G)] +1).

i=1 veX

In addition, we have that X C V(G) \ Vs, and hence

D (o) =1) = Y (d(v) = 1) = (|B(G)| = V(G| +1).

>3k veX

Therefore,

Z(d(vi) —1)>4-(E@G)| = V(G) +1).

However, observe that Y., d(v;) = 2|E(G)|: every edge is counted twice,
once for each of its endpoints. Thus we obtain

4-(IE(G@)] - V(@)+1) SZ (vi) = 1) = 2|E(G)| - [V(G)],
which implies that 2|E(G)| < 3|V (G)|. However, this contradicts the fact

that every vertex of G is of degree at least 3. O

We use Lemma[3.3]to obtain the following algorithm for FEEDBACK VER-
TEX SET.

Theorem 3.5. There exists an algorithm for FEEDBACK VERTEX SET run-
ning in time (3k)F - n@M,

Proof. Given an undirected graph G and an integer £ > 0, the algorithm

works as follows. It first applies Reductions [FVS.1] [FVS.2] [FVS.3] [FVS.4]
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and exhaustively. As the result, we either already conclude that we
are dealing with a no-instance, or obtain an equivalent instance (G’, k') such
that G’ has minimum degree at least 3 and k' < k. If G’ is empty, then we
conclude that we are dealing with a yes-instance, as ¥’ > 0 and an empty set
is a feasible solution. Otherwise, let Vi be the set of 3" vertices of G’ with
largest degrees. By Lemma [3.3] every solution X to the FEEDBACK VERTEX
SET instance (G’, k') contains at least one vertex from V3j,. Therefore, we
branch on the choice of one of these vertices, and for every vertex v € V3,
we recursively apply the algorithm to solve the FEEDBACK VERTEX SET
instance (G’ — v, K’ — 1). If one of these branches returns a solution X', then
clearly X’ U {v} is a feedback vertex set of size at most k' for G'. Else, we
return that the given instance is a no-instance.

At every recursive call we decrease the parameter by 1, and thus the height
of the search tree does not exceed k’. At every step we branch in at most 3k’
subproblems. Hence the number of nodes in the search tree does not exceed
(3k")¥" < (3k)*. This concludes the proof. O

3.4 VERTEX COVER ABOVE LP

Recall the integer linear programming formulation of VERTEX COVER and
its relaxation LPVC(G):

min Zvev(G) Ty
subject to x, + x, > 1 for every uv € E(G),
0<z,<1 foreveryveV(Q).

These programs were discussed in Section If the minimum value of
LPVC(G) is vc¢*(@G), then the size of a minimum vertex cover is at least
vc*(G). This leads to the following parameterization of VERTEX COVER,
which we call VERTEX COVER ABOVE LP: Given a graph G and an integer
k, we ask for a vertex cover of G of size at most k, but instead of seeking an
FPT algorithm parameterized by k as for VERTEX COVER, the parameter
now is k — vc*(G). In other words, the goal of this section is to design an
algorithm for VERTEX COVER on an n-vertex graph G with running time
f(k —ve*(@)) - n®M for some computable function f.

The parameterization by k — vc¢*(G) falls into a more general theme of
above guarantee parameterization, where, instead of parameterizing purely
by the solution size k, we look for some (computable in polynomial time)
lower bound ¢ for the solution size, and use a more refined parameter k& — ¢,
the excess above the lower bound. Such a parameterization makes perfect
sense in problems where the solution size is often quite large and, conse-
quently, FPT algorithms in parameterization by k& may not be very efficient.
In the VERTEX COVER problem, the result of Section [2.5]— a kernel with at
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most 2k vertices — can be on one hand seen as a very good result, but on
the other hand can be an evidence that the solution size parameterization for
VERTEX COVER may not be the most meaningful one, as the parameter can
be quite large. A more striking example is the MAXIMUM SATISFIABILITY
problem, studied in Section here an instance with at least 2k clauses is
trivially a yes-instance. In Section [F9.2] we study an above guarantee parame-
terization of a variant of MAXIMUM SATISFIABILITY, namely MAX-Er-SAT.
In Exercise [0.3] we also ask for an FPT algorithm for MAXIMUM SATISFIA-
BILITY parameterized by k — m/2, where m is the number of clauses in the
input formula. The goal of this section is to study the above guarantee pa-
rameterization of VERTEX COVER, where the lower bound is the cost of an
optimum solution to an LP relaxation.

Before we describe the algorithm, we fix some notation. By optimum
solution x = (2v),cy (g to LPVC(G), we mean a feasible solution with
1>z, > 0for all v € V(G) that minimizes the objective function (sometimes
called the cost) w(x) = 3°,cy(q) Zv- By Proposition for any graph G
there exists an optimum half-integral solution of LPVC(G), i.e., a solution
with z, € {0,4,1} for all v € V(G), and such a solution can be found in
polynomial time.

Let ve(G) denote the size of a minimum vertex cover of G. Clearly, ve(G) >
ve*(G). For a half-integral solution x = (24),,cy () and i € {0, 1,1}, we define
V¥={veV : z, =i} Wealso say that x = {z, },ev(c) is all-1-solution if
z, = 3 for every v € V(G). Because the all-1-solution is a feasible solution,
we have that ve*(G) < @ Furthermore, we define the measure of an
instance (G, k) to be our parameter of interest u(G, k) = k — vc¢*(G).

Recall that in Section [2.5] we have developed Reduction for VERTEX
CovER. This reduction, if restricted to half-integral solutions, can be stated
as follows: for an optimum half-integral LPVC(G) solution x, we (a) conclude
that the input instance (G, k) is a no-instance if w(x) > k; and (b) delete
V§&F U VX and decrease k by |V*| otherwise. As we are now dealing with

measure p(G, k) = k — vc*(G), we need to understand how this parameter
changes under Reduction

Lemma 3.6. Assume an instance (G', k') is created from an instance (G, k)
by applying Reduction [VC]] to a half-integral optimum solution x. Then
ve*(G) — ve* (@) = ve(G) — ve(G') = V¥ = k — k. In particular,
WG ) = (G, k).

We remark that, using Exercise [2.25] the statement of Lemma [3.6] is true
for any optimum solution x, not only a half-integral one (see Exercise [3.19).
However, the proof for a half-integral solution is slightly simpler, and, thanks
to Proposition we may work only with half-integral solutions.

Proof (of Lemma . Observe that every edge of G incident to V< has its
second endpoint in V*. Hence, we have the following:
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e For every vertex cover Y of G', Y UV is a vertex cover of G and, conse-
quently, ve(G) < ve(G') + |V

e For every feasible solution y’ to LPVC(G’), if we define a vector y =
(Yo)vev(a) as yo = ¥y, for every v € V(G') and y, = z, for every v €
V(G) \ V(G’), then we obtain a feasible solution to LPVC(G) of cost
w(y’) + |Vi¥|; consequently, v¢*(G) < ve*(G') + |V¥.

Now it suffices to prove the reversed versions of the two inequalities obtained
above. Theorem ensures that ve(G') < ve(G) — |Vi*|. Moreover, since x
restricted to V(G’) is a feasible solution to LPVC(G’) of cost ve*(G) — |V,
we have ve*(G') < ve*(G) — |V O

In Theorem [2.21] we simply solved LPVC(G), and applied Reduction
to obtain a kernel with at most 2k vertices. In this section we would like to do
something slightly stronger: to apply Reduction [VC.4] as long as there exists
some half-integral optimum solution x that is not the all—%—solution. Luckily,
by a simple self-reduction trick, we can always detect such solutions.

Lemma 3.7. Given a graph G, one can in O(mn®/?) time find an optimum
solution to LPVC(G) which is not the all—%-solutz’on, or correctly conclude
that the all—%—solution is the unique optimum solution to LPVC(G). More-
over, the returned optimum solution is half-integral.

Proof. First, use Proposition to solve LPVC(G), obtaining an optimum
half-integral solution x. If x is not the all—%—solution, then return x. Other-
wise, proceed as follows.

For every v € V(G), use Proposition again to solve LPVC(G — v),
obtaining an optimum half-integral solution x". Define a vector x”° as x”, ex-
tended with a value x,, = 1. Note that x”° is a feasible solution to LPVC(G)
of cost w(x"°) = w(x") +1 = v¢*(G — v) + 1. Thus, if for some v € V(G)
we have w(x") = vc¢*(G — v) < ve¢*(G) — 1, then x¥° is an optimum solu-
tion for LPVC(G). Moreover, x"° is half-integral, but is not equal to the
all-2-solution due to the value at vertex v. Hence, we may return x*°.

2
We are left with the case

ve* (G —v) > ve*(G) — 1 for every v € V(G). (3.4)

We claim that in this case the all—%—solution is the unique solution to
LPVC(G); note that such a claim would conclude the proof of the lemma, as
the computation time used so far is bounded by O(mn3/?) (n+1 applications
of Proposition . Observe that, due to Proposition both 2 ve* (G —v)
and 2 vc* (@) are integers and, consequently, we obtain the following strength-

ening of (3.4):
1
ve* (G —v) > ve*(G) — 3 for every v € V(QG). (3.5)

By contradiction, let x be an optimum solution to LPVC(G) that is not
the all-1-solution. As the all-$-solution is an optimum solution to LPVC(G),
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for some v € V(@) we have z, > % However, then x, restricted to G —wv, is a
feasible solution to LPVC(G—v) of cost w(x)—xz, = ve*(G)—z, < vc*(G)—3,

a contradiction to (3.5)). O

Lemma [3.7] allows us to enhance Reduction [VC.4]to the following form.

Reduction VC.5. Invoke the algorithm of Lemma [3.7] and, if an optimum
solution x is returned, then apply Reduction [VC.4]to G and solution x.

If Reduction is not applicable, then we know not only that the all—%—
solution is an optimum solution to LPVC(G), but also that this is the unique
optimum solution. This property is crucial for our branching algorithm, en-
capsulated in the next theorem.

Theorem 3.8. There exists an algorithm solving VERTEX COVER ABOVE
LP in time 4F—ve (&) . nOM),

Proof. Our algorithm for VERTEX COVER ABOVE LP is almost the same as
the branching algorithm described for VERTEX COVER in Section [3.1] After
Reduction [VC.F is applied exhaustively, we pick an arbitrary vertex v in
the graph and branch on it. In other words, in one branch, we add v into
the vertex cover, decrease k by 1, and delete v from the graph, and in the
other branch, we add N(v) into the vertex cover, decrease k by |N(v)|, and
delete N[v] from the graph. The correctness of this algorithm follows from
the safeness of Reduction [VC.5|and the fact that the branching is exhaustive.

Although the algorithm is very similar to the one of Section [3.1], we analyze
our algorithm in a completely different way, using the measure u(G, k) = k —
ve*(G). In Lemma [3.6] we have proved that Reduction does not change
the measure; as Reduction is in fact an application of Reduction [VC.4]
to a specific half-integral solution x, the same holds for Reduction [VC.5
Hence, it remains to analyze how the measure changes in a branching step.

Consider first the case when we pick v to the vertex cover, obtaining an
instance (G, k") = (G—v, k—1). We claim that vc*(G’) > vc*(G)—3. Suppose
that this is not the case. Let x’ be an optimum solution to LPVC(G’). We
have w(x’) < vc¢*(G) — 1 and we can obtain an optimum solution x” to
LPVC(G) by extending x’ with a new variable z, = 1 corresponding to v.
But this contradicts our assumption that the all—%—solution is the unique
optimum solution to LPVC(G). Hence, vc*(G’) > vc*(G) — 4, which implies
that u(G', k') < u(G,k) — %

In the second case, let p = |N(v)|. Recall that here the new instance is
(G',k') = (G — N[v],k — p). We claim that vc*(G’) > ve*(G) — p + 3, which
would imply again p(G', k') < u(G, k) — 1. Assume the contrary: let x’ be an
optimum solution to LPVC(G’) and suppose that w(x’) < vc*(G) —p. Define
a feasible solution x” to LPVC(G) by extending x’ with z, =0 and z,, = 1
for every u € N(v). Clearly, w(x"”) = w(x’) + p, thus x” is an optimum
solution to LPVC(G), contradicting the assumption that the all—%—solution is
the unique optimum solution.
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We have shown that the preprocessing rule does not increase the measure
(G, k), and that the branching step results in a (1, 1) decrease in u(G, k).
As a result, we obtain recurrence T'(y1) < 27 (p — £ ) for the number of leaves
in the search tree. This recurrence solves to 4# = 45=v¢"(G) and we obtain a

4(k=ve™ (@) . O _time algorithm for VERTEX COVER ABOVE LP. O

Let us now consider a different lower bound on the size of a minimum
vertex cover in a graph, namely the size of a maximum matching. Observe
that, if graph G contains a matching M, then for k < |M]| the instance
(G, k) is a trivial no-instance of VERTEX COVER. Thus, for a graph G with
a large maximum matching (e.g., when G has a perfect matching) the FPT
algorithm for VERTEX COVER of Section [3.1]is not practical, as in this case
k has to be quite large.

This leads to a second above guarantee variant of the VERTEX COVER
problem, namely the VERTEX COVER ABOVE M ATCHING problem. On input,
we are given an undirected graph G, a maximum matching M and a positive
integer k. As in VERTEX COVER, the objective is to decide whether G has
a vertex cover of size at most k; however, now the parameter is k — |M]|.
By the weak duality of linear programs, it follows that vc¢*(G) > | M| (see
Exercise and the corresponding hint for a self-contained argument) and
thus we have that k — v¢*(G) < k — |M|. Consequently, any parameterized
algorithm for VERTEX COVER ABOVE LP is also a parameterized algorithm
for VERTEX COVER ABOVE MATCHING, and Theorem [3:§]yields the following
interesting observation.

Theorem 3.9. VERTEX COVER ABOVE MATCHING can be solved in time
g4k—IM|  ,0(1)

The VERTEX COVER ABOVE MATCHING problem has been at the center
of many developments in parameterized algorithms. The reason is that faster
algorithms for this problem also yield faster algorithms for a host of other
problems. Just to show its importance, we design algorithms for Opp Cy-
CLE TRANSVERSAL and ALMOST 2-SAT by making use of the algorithm for
VERTEX COVER ABOVE MATCHING.

A subset X C V(G) is called an odd cycle transversal of G it G — X is a
bipartite graph. In Obb CYCLE TRANSVERSAL, we are given an undirected
graph G with a positive integer k, and the goal is to determine whether G
has an odd cycle transversal of size at most k.

For a given graph G, we define a new graph G as follows. Let V; = {u;

u € V(G)} for i € {1,2}. The vertex set V(G) consists of two copies of V(G),

ie. V(G) =V, UV;, and
E(G) = {ujuy : ue V(G)}U{uw; : w e E(G),ie{1,2}}.

In other words, G is obtained by taking two disjoint copies of G and by adding
a perfect matching such that the endpoints of every matching edge are the
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copies of the same vertex. In particular, M = {ujus : u € V(G)} is a perfect
matching in G and |M| = n. The graph G has some interesting properties
which are useful for designing an algorithm for ODD CYCLE TRANSVERSAL.

Lemma 3.10. Let G be a graph on n vertices. Then G has an odd cycle
transversal of size at most k if and only if G has a vertex cover of size at
most n + k.

Proof. Let X be an odd cycle transversal of size at most k in G, and let (A, B)
be a bipartition of G — X. For i € {1,2}, let A;, B; and X; be the copies of
A, B and X in Vj, respectively. Observe that A; U By is an independent set
in G and thus Ay U By U X UXs is a vertex cover of G. However,

(|Ag| + |B1|) + | X1 | + | X2 < (n—k)+k+k<n+k.

This completes the forward direction of the proof.

In the other direction, let Y be a vertex cover of G of size at most n + k.
Then I = V(G) \'Y is an independent set of G of size at least n — k. Let
A=1n V1 and B=1InN V5. Let A and B denote the vertices corresponding
to A and B in V(G), respectively. Since AU B is independent, we have that
AN B = 0. Therefore, AU B is of size at least n — k. Moreover, G[A U B] is
bipartite, as G[A] and G[B] are independent sets. Thus, V(G)\ (AU B) is an
odd cycle transversal of size at most k for G. This completes the proof. O

Using Lemma [3.10] and Theorem [3.9] we get the following result for OpD
CycLE TRANSVERSAL

Theorem 3.11. ODD CYCLE TRANSVERSAL can be solved in time 4¥n©®)

Proof. Given an input (G,k) to ObD CYCLE TRANSVERSAL, we first con-
struct the graph G. Let M = {uruz : u € V(G)} be a perfect matching of
G. Now we apply Theorem [3.9| to the instance (G, M,n+ k) to check in time
gntk—n pOQ) — g4k. 01 whether G has a vertex cover of size at most n+k,
where n = |V(G)| If a vertex cover of size at most n + k in G is found, then
using Lemma [3.10| we obtain an odd cycle transversal of size at most & in G.
Otherwise, by Lemma [3.10] G has no odd cycle transversal of size at most
k. O

In fact, the fastest currently known FPT algorithm for Opp CYCLE
TRANSVERSAL [328], [373] uses an improved version of the algorithm described
in Theorem as a subroutine. We will give a 3*n®(M)-time algorithm for
this problem in the next chapter using a different technique, called iterative
compression.

Next, we give an algorithm for ALMOST 2-SAT using the 4¥n°(M_time
algorithm for VERTEX COVER ABOVE MATCHING. In the ALMOST 2-SAT
problem, we are given a 2-CNF formula ¢ and an integer k, and the question
is whether one can delete at most k clauses from ¢ to make it satisfiable.
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In a variable-deletion variant, called VARIABLE DELETION ALMOST 2-SAT,
we instead allow deleting at most k variables; a variable is deleted together
with all clauses containing it. (One can think of deleting a variable as setting
it both to true and false at the same time, in this way satisfying all the
clauses containing it.) Exercises and ask you to prove that these
two variants are equivalent, and an f(k)n®1)-time algorithm for one of them
implies an f(k)n®M-time algorithm for the other one (with the same function
f). Hence, it suffices to focus only on the variable-deletion variant.

Theorem 3.12. VARIABLE DELETION ALMOST 2-SAT can be solved in
4kpO0M) time,

Proof. We proceed similarly as in the case of ODD CYCLE TRANSVERSAL: in
polynomial time, we construct a VERTEX COVER ABOVE M ATCHING instance
(G, M, |M|+k) that is equivalent to the input VARIABLE DELETION ALMOST
2-SAT instance (p, k). Then the theorem follows from an application of the
algorithm of Theorem [3.9|to the instance (G, M, |M| + k).

We construct the graph G as follows. For every variable x, and for every
literal ¢ € {x, —x}, we construct a vertex vy, and connect the vertices v, and
U by an edge. Let M be a set of edges defined in this step; note that M is
a matching in G. The intuitive meaning of vertices v, is that picking v, into
a vertex cover corresponds to valuating the variable of ¢ so that ¢ is true.
For every edge v,v—, € M, we expect to take one endpoint into a vertex
cover, which corresponds to setting the value of variable z. However, in k
edges v,v—, € M we are allowed to take both endpoints into a vertex cover,
corresponding to deleting x or, equivalently, setting x both to true and false
at once.

To encode clauses, we proceed as follows. For every binary clause ¢1 V {5,
we add an edge vy, vy, , so that either vy, or vy, needs to be taken into a vertex
cover. For every unary clause with literal ¢, we add a new vertex of degree 1,
adjacent to vy.

This concludes the construction of the graph G and the instance (G, M, | M|
+k). We refer to Fig. for an illustration of the construction. We claim that
(p, k) is a yes-instance of VARIABLE DELETION ALMOST 2-SAT if and only
if (G, M,|M|+ k) is a yes-instance of VERTEX COVER ABOVE MATCHING.

In one direction, let X be a set of at most k variables of ¢ such that ¢ — X,
the formula ¢ with all variables of X deleted, has a satisfying assignment
1. We define a set Y C V(G) as follows. First, for every x € X, we put
both v, and v—, into Y. Second, for every variable z ¢ X, we put v, into
Y if ¢¥(z) = T and otherwise, if ¢¥)(x) = L, we put v, into Y. Clearly
V] = [M] + X < M|+ k.

It remains to argue that Y is a vertex cover of G. By construction, Y
contains at least one endpoint of every edge in M. For the remaining edges,
consider a clause C. Since X is a feasible solution to (¢, k), there exists a
literal ¢ in C that is either evaluated to true by %, or its variable is deleted
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Fig. 3.1: The graph G for the formula ¢ = (21 V —@2) A (22 V 23) A (m22 V
—x3) A (mx3 V xg) A (—24). The thick edges are the edges of the matching M

(belongs to X). In both cases, vy € Y and the edge corresponding to the
clause C'is covered by Y.

In the other direction, let Y be a vertex cover of G, and assume Y| <
| M| + k. Without loss of generality, we may assume that ¥ C V(M): if, for
some unary clause C' = ¢, the corresponding degree 1 neighbor of v, belongs
to Y, we replace it with the vertex vy. Let X be the set of these variables x
for which both v, and v—, belong to Y. Since Y needs to contain at least one
endpoint of every edge of M, we have | X| < k. Let us define an assignment
1 on the variables outside X as follows: ¢(z) = T if v, € Y, and ¢(z) = L if
-z € Y. We claim that v is a satisfying assignment of ¢ — X; note that such
a statement implies that X is a feasible solution to the VARIABLE DELETION
ALmosT 2-SAT instance (i, k), concluding the proof of the theorem.

To this end, consider a clause C, and assume no variable of C' belongs to
X.If C =¥,V {yis a binary clause, then the edge vy, vy, ensures that either
vy, or vy, belongs to Y, and the corresponding literal is evaluated to true in
the assignment . If C' = /£ is a unary clause, then the corresponding edge
incident to vy, together with the assumption that Y C V(M), implies that
ve € Y and / is evaluated to true by .

Consequently, (¢, k) is a yes-instance to VARIABLE DELETION ALMOST
2-SAT if and only if (G, M,|M| + k) is a yes-instance to VERTEX COVER
ABOVE MATCHING. This concludes the proof of the theorem. a

3.5 CLOSEST STRING

In the last part of this chapter we give yet another example of branching
algorithms, this time for a string problem called CLOSEST STRING. Here,
we are given k strings xi,...,xg, each string over an alphabet X and of
length L, and an integer d. The question is whether there exists a string y of
length L over X' such that dy (y,z;) < dfor alli € {1,...,k}. Here, dy(z,y)
is the Hamming distance between strings = and y, that is, the number of
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positions where x and y differ. We call any such string y a center string. In
this section we consider the parameterization by d, the maximum allowed
distance between the center string and the input strings.

Let x be a string over alphabet Y. We denote the letter on the pth position
of z as z[p]. Thus = z[1]z[2]---z[L] for a string of length L. We say that
string « and y differ on the p-th position if x[p] # y[p|.

Given a set of k strings, each of length L, we can think of these strings
as a k x L character matrix. By columns of the set of strings, we mean the
columns of this matrix. That is, the j-th column is the sequence of letters
x1[j], z2[4], - . ., xx[j]. We call a column bad if it contains at least two different
symbols from alphabet X, and good otherwise. Clearly, if the j-th column is
a good one, then we have an obvious greedy choice for the j-th letter of the
solution: y[j] = z1[j] = z2[j] = ... = xx[j]. Thus, we obtain the following
reduction rule.

Reduction CS.1. Delete all good columns.

It is straightforward to implement Reduction [CS.1]in linear time.
We now observe that we cannot have too many bad columns in a yes-
instance.

Lemma 3.13. For every yes-instance of CLOSEST STRING, the correspond-
ing k X L matrix contains at most kd bad columns.

Proof. Fix a center string y. For every bad column j there exists a string x;(j
such that x;(;)[j] # yl[j]. Since every string z; differs from y on at most d
positions, for every ¢ we have i(j) = ¢ for at most d positions j. Consequently,
there are at most kd bad columns. a

Reduction CS.2. If there are more than kd bad columns, then conclude
that we are dealing with a no-instance.

We now give an intuition behind the algorithm.

Fix a center string y. The idea of our algorithm is to start with one
of the given strings, say z1, as a “candidate string”, denoted by z. As
long as there is a string z;, i € {1,...,k}, such that dg(z;,2) > d+ 1,
then for at least one of the positions p where z and x; differ, we have
that y[p] = z;[p]. Thus we can try recursively d + 1 ways to move
the candidate z string “closer” to y; moving closer here means that we
select a position p on which the candidate string z and z; differ and set
z[p] := z;[p]. As at every step we move closer to y, and at the beginning
z =27 and dg(x1,y) < d, we obtain a bounded number of possibilities.

Let us move to formal details.

Theorem 3.14. CLOSEST STRING can be solved in time O(kL+kd(d+1)%).
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Proof. First, we apply Reductions and Unless we have resolved
the instance already, we are left with k strings x1, xs, ..., xzk, each of length
L < kd. The time spent so far is O(kL), that is, linear in the input size.

Recursively, we solve the following augmented problem: given a candidate
string z and an integer ¢ < d, determine whether there exists a center string
y for the strings x1,za,...,z; with the additional property dp(y,z) < £.
Observe that, to solve CLOSEST STRING on our instance, it suffices to solve
our augmented problem for z = z; and ¢ = d.

Given z and ¢, we first perform the following checks. If z is a center string
itself, then we return z. Otherwise, if £ = 0, then we return that there is no
such center string y. In the remaining case, ¢ > 0 and there exists a string x;
with dg (z;,2) > d. Let P be a set of arbitrary d+1 positions on which z; and
z differ. Observe that for every center string y we have y[p] = x;[p] for at least
one position p € P. Hence, we branch into |P| = d + 1 subcases: for every
p € P, we define z, to be equal z except for position p where z,[p] = x;[p],
and we recursively solve our augmented problem for the pair (z,,¢ — 1). To
show correctness of this branching, observe that if there exists a center string
y with dg(z,y) < ¢, then for a position p € P satisfying x;[p] = y[p] we have
du(zp,y) <du(z,y) —1<0—-1.

Concerning the running time of the algorithm, note that we build a search
tree of depth at most d, and every node of the search tree has at most d + 1
children. Thus, the size of the search tree does not exceed O((d + 1)?%). With
small technical work which we omit here, every step of the algorithm can be
implemented in linear time. This completes the proof. a

Exercises

3.1 (4¥). Prove Proposition [3.1]

3.2 (¢¥). Show that Crique and INDEPENDENT SET, parameterized by the solution size
k, are FPT on r-regular graphs for every fixed integer r. Also show that these problems
are FPT with combined parameters k + .

3.3. Show that any graph has at most 2% inclusion-wise minimal vertex covers of size
at most k. Furthermore, show that given G and k, we can enumerate all inclusion-wise
minimal vertex covers of G of size at most k in time 2kn0(1),

3.4 (). In the CLuster VERTEX DELETION problem, we are given a graph G and
an integer k, and the task is to delete at most k vertices from G to obtain a cluster
graph (a disjoint union of cliques). Obtain a 3*n°(M)_time algorithm for CLusTER VERTEX
DELETION.

3.5 (¢&). In the CrLusTErR EpITING problem, we are given a graph G and an integer k,
and the objective is to check whether we can turn G into a cluster graph (a disjoint union
of cliques) by making at most k edge editions, where each edition is adding or deleting one
edge. Obtain a 3¥n®M_time algorithm for CLusTer Eprring.
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3.6 (). An undirected graph G is called perfect if for every induced subgraph H of G,
the size of the largest clique in H is the same as the chromatic number of H. In this exercise
we consider the Opp CycLE TRANSVERSAL problem, restricted to perfect graphs.

Recall that Exercise asked for a kernel with O(k) vertices for this problem. In this
exercise, we ask for a 3¥n9M)_time branching algorithm.

3.7. Let F be a set of graphs. We say that a graph G is F-free if G does not contain
any induced subgraph isomorphic to a graph in F; in this context the elements of F are
sometimes called forbidden induced subgraphs. For a fixed set F, consider a problem where,
given a graph G and an integer k, we ask to turn G into a F-free graph by:

(vertex deletion)  deleting at most k vertices;

(edge deletion)  deleting at most k edges;

(completion)  adding at most k edges;

(edition)  performing at most k editions, where every edition is adding or deleting one
edge.

Prove that, if F is finite, then for each of the four aforementioned problems there exists
a 20(F)pO(M)_time FPT algorithm. (Note that the constants hidden in the O()-notation
may depend on the set F.)

3.8. In the VErTEX CovER/OCT problem, we are given an undirected graph G, an integer
¢, and an odd cycle transversal Z of size at most k, and the objective is to test whether G
has a vertex cover of size at most £. Show that VeErrEx Cover/OCT admits an algorithm
with running time 2Fn©1),

3.9. In this exercise we consider FPT algorithms for FEEDBACK ARc SET IN TOURNA-
MENTS and FEeEpBACk VERTEX SET IN ToOURNAMENTS. Recall that a tournament is a
directed graph, where every pair of vertices is connected by exactly one directed edge (in
one of the directions).

1. Let G be a digraph that can be made into a tournament by adding at most k > 2
directed edges. Show that if G has a cycle then it has a directed cycle of length at
most 3v/k.

2. Show that FEEDBACK ARC SET IN TOURNAMENTS admits a branching algorithm with
running time (3vk)kn@@),

3. Show that FEEDBACK VERTEX SET IN TOURNAMENTS admits a branching algorithm
with running time 35¥n°1),

4. Observe that, in the FEEDBACK ARC SET IN TOURNAMENTS problem, we can equiv-
alently think of reversing an edge instead of deleting it. Use this observation to show

a branching algorithm for FEEDBACK ARC SET IN TOURNAMENTS with running time
3knOM),

3.10 (£&Z). A bipartite tournament is an orientation of a complete bipartite graph, meaning
its vertex set is a union of two disjoint sets V7 and Va2 and there is exactly one arc between
every pair of vertices v and v such that v € V7 and v € V5.

1. Show that a bipartite tournament has a directed cycle if and only if it has a directed
cycle on four vertices.

2. Show that DirecTED FEEDBACK VERTEX SET and DIRECTED FEEDBACK ARC SET
admit algorithms with running time 4kn©M) on bipartite tournaments.

3.11 (B). A graph is chordal if it does not contain a cycle on at least four vertices as
an induced subgraph. A triangulation of a graph G is a set of edges whose addition turns
G into a chordal graph. In the CHORDAL COMPLETION problem, given a graph G and an
integer k, we ask whether G admits a triangulation of size at most k.
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1. Show that CuorbarL CoMpLETION admits an algorithm with running time k€ (*¥)nO (1),

2. Show that there is a one-to-one correspondence between inclusion-wise minimal tri-
angulations of a cycle with ¢ vertices and binary trees with ¢ — 2 internal nodes.
Using this correspondence show that a cycle on £ vertices has at most 4/~2 minimal
triangulations.

3. Use the previous point to obtain an algorithm with running time 20(k) O for
CHORDAL COMPLETION.

You may use the fact that, given a graph G, one can in polynomial time check if G is
a chordal graph and, if this is not the case, find in G an induced cycle on at least four
vertices.

3.12. In the MIN-ONEs-r-SAT problem, we are given an r-CNF formula ¢ and an integer
k, and the objective is to decide whether there exists a satisfying assignment for ¢ with
at most k variables set to true. Show that MiIN-ONEs-r-SAT admits an algorithm with
running time f(r, k)no(l) for some computable function f.

3.13. In the MIN-2-SAT problem, we are given a 2-CNF formula ¢ and an integer k, and
the objective is to decide whether there exists an assignment for ¢ that satisfies at most k
clauses. Show that Min-2-SAT can be solved in time 28n@1),

3.14. In the MiniMmuMm MaximMaL MATCHING problem, we are given a graph G and an
integer k, and the task is to check if G admits an (inclusion-wise) maximal matching with
at most k edges.

1. Show that if G has a maximal matching of size at most k, then V(M) is a vertex cover
of size at most 2k.

2. Let M be a maximal matching in G and let X C V(M) be a minimal vertex cover
in G. Furthermore, let M; be a maximum matching of G[X] and M2 be a maximum
matching of G[V(G) \ V(M1)]. Show that M; U M2 is a maximal matching in G of
size at most |M|.

3. Obtain a 4*n®M)_time algorithm for MiINIMUM MAXiMAL MATCHING.

3.15 (£). In the Max Lear SpanniNG TREE problem, we are given a connected graph
G and an integer k, and the objective is to test whether there exists a spanning tree of
G with at least k leaves. Obtain an algorithm with running time 4*n©() for Max LEAF
SPANNING TREE.

3.16 (). An out-tree is an oriented tree with only one vertex of indegree zero called
the root. In the DIRECTED MAx LEAF problem, we are given an directed graph G and an
integer k, and the objective is to test whether there exists an out-tree in G with at least k
leaves (vertices of outdegree zero). Show that DiRecTED Max Lear admits an algorithm
with running time 4kn© 1),

3.17. Describe an algorithm running in time O(1.381™) which finds the number of inde-
pendent sets (or, equivalently, vertex covers) in a given n-vertex graph.

3.18. Show that if a graph on n vertices has minimum degree at least 3, then it contains a
cycle of length at most 2[logn]. Use this to design a (logn)®®n®M) _time algorithm for
FEEDBACK VERTEX SET on undirected graphs. Is this an FPT algorithm for FEEDBACK
VERTEX SET?

3.19. Prove that the statement of Lemma is true for any optimum solution x, not
necessarily a half-integral one. (For a not half-integral solution x, we define Vi* = {v €
V(G) : my>3}and VF={v e V(G) : zy < i})
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3.20. A graph G is a split graph if V(G) can be partitioned into sets C and I, such that
C'is a clique and I is an independent set in G. In the SpLIT VERTEX DELETION problem,
given a graph G and an integer k, the task is to check if one can delete at most k vertices
from G to obtain a split graph.

Give a polynomial-time algorithm that, given a SpLiT VERTEX DELETION instance
(G, k), produces an equivalent VERTEX COVER ABOVE MATCHING instance (G', M, |M| +
k). Use this to design a 4*n®M)_time algorithm for SPLIT VERTEX DELETION.

3.21. Show how to, given an ALmost 2-SAT instance (¢, k), compute in polynomial time
an equivalent instance (', k) of VARIABLE DELETION ALMmosT 2-SAT.

3.22. Show the reverse of the previous exercise. That is, show how to, given an instance
(¢, k) of VARIABLE DELETION ALMOST 2-SAT, compute in polynomial time an equivalent
instance (', k) of ALmost 2-SAT.

3.23 (2). For an independent set I in a graph G, the surplus of I is defined as |N(I)|—|1].

1. Show that a graph reduced with respect to Reduction (i.e., this reduction cannot
be further applied) does not admit independent sets with nonpositive surplus.

2. Show how to detect independent sets of surplus 1 in such a graph using the LP
relaxation of VERTEx COVER.

3. Design a reduction rule for VErTEX CoOVER that handles a (given) independent set of
surplus 1. How does the measure u(G, k) = k — vc*(G) behave in your reduction rule?

4. Show that, if a graph does not admit an independent set of surplus at most 1, then
the branching of Theorem has branching vector %, 1), and the algorithm runs in

time 2.6181k—ve™(G),O1)

3.24 (&). Consider the CLoSEST STRING problem, where in the input there are two strings
x; and x; with dg (x4, ;) = 2d. Show that in this case the CLOSEST STRING problem can
be solved in time O(kL + kd4?).

3.25 (B). Consider a generalization of CLosesT STRING where, apart from the strings
Z1,T2,...,Tk, each over alphabet X' and of length L, we are given integers di,dz,...,dg,
and we ask for a center string y of length L such that dg(y,z;) < d; for every 1 < i < k.
Consider the following recursive algorithm for this generalization.

1. First, try if x1 is a center string. If this is the case, then return x1 and finish.

2. Otherwise, if d; = 0, then return that there is no solution.

3. In the remaining case, take any j > 2 such that d(x1,z;) > d;. Let P be the set of
positions on which 1 and x; differ. If |P| > d1 + dj, return that there is no solution.

4. Guess the values y[p] for every p € P, where y is the center string we are looking for,
in such a way that y differs from z; on at most d; positions from P for every 1 <1i < k.

5. For every guess (y[p])pep, define d, =d; — |[{p € P : y[p] # x:[p]}| and let ) be the

string x; with letters on positions of P deleted.
. Observe that 27 = . Discard the string 2, and set d} := min(d}, d}).
7. Recurse on the strings «/ and integers d, for every guess (y[p])pep-

[=3]

Denote d = maxj << d;-

1. Show that in every recursive step it holds that d} < d1/2.
2. Use this fact to show that this algorithms solves the generalization of CLOSEST STRING
in time 2°0(d|2|4(kL)OM),
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Hints

Consider the following branching algorithm: given an instance (G, k), pick an arbitrary
edge uwv € E(G) and branch on two instances (G —u,k —1) and (G — v,k — 1). Stop when
G becomes edgeless or k < 0. Show that in this manner you generate at most 2 leaves
of the search tree, and every minimal vertex cover of G of size at most k appears in some
leaf.

Observe that a graph is a cluster graph if and only if it does not contain a path on
three vertices (P3) as an induced subgraph. As long as there exists a P3 as an induced
subgraph, branch by choosing one of its vertices to delete.

Proceed as in Exercise [3.4] and observe that you can break a Ps in three different
ways.

Observe that the class of perfect graphs is closed under taking induced subgraphs,
and a perfect graph is bipartite if and only if it does not contain a triangle.

Observe that, if F is finite and fixed, then

1. we can in polynomial time verify if a graph G is F-free and, if not, find an induced
subgraph of G that is isomorphic to a member of F;

2. there are only O(1) ways to break such a forbidden induced subgraph in all four
considered problem variants.

3.8| For every v € Z, branch on whether to include v or N(v) into the desired vertex cover.
Observe that the remaining graph is bipartite.

3.9] For the first point, observe that a shortest cycle in a directed graph cannot have any
chord. Moreover, if ¢ is the length of some chordless cycle in D, then there are at least
£(¢ — 3)/2 pairs of nonadjacent vertices in D. To solve the second point, show how to find
such a chordless cycle, and branch choosing which edge to delete from it.

For the third and fourth point, observe that a tournament is acyclic if and only if it
does not contain a directed triangle.

Use again the observation that in the DiRecTED FEEDBACK ARC SET problem you
can alternatively reverse edges instead of deleting them. Thus, the graph remains a bipartite
tournament in the course of the algorithm, and every directed cycle on four vertices can
be broken in exactly four ways in both considered problems.

First, design an algorithm that either verifies that G is a chordal graph, or finds an
induced cycle on at least four vertices in G. Second, observe that such a cycle on more
than k4 3 vertices is a certificate that (G, k) is a no-instance. For the first point, it suffices
to branch choosing one edge to add to the cycle found. For the last point, the branching
should consider all minimal triangulations of the cycle.

Start with an assignment that sets all variables to false. As long as there exists an
unsatisfied clause C, branch on C, in each subcases choosing one positive literal of C' to
be satisfied. In this way, you obtain an r*n®M) _time algorithm.

First, observe that if some variable appears only positively (or negatively), then we
can assign its value in such a way that it does not satisfy any clause. Second, note that
if the aforementioned preprocessing rule is not applicable, then branching on any variable
makes at least one clause satisfied, decreasing the budget k by at least 1.

The first point is straightforward. The fact that M; U My is a maximal matching
follows directly from the fact that Ms is a maximum matching in G — V(M7). For the
cardinality bound, let Mx C M be the set of edges of M that have both endpoints in
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X. Observe that |M| = |[Mx|+ |M\ Mx| = |Mx|+ (|X| —2|Mx|) = |X| — |Mx]|, while
|Mi1| > |[Mx| and [Ms| < |X|—|V(M1)| = |X|—2|M;|. For the last point, use Exercise [3.3]
to enumerate all minimal vertex covers of G of size at most 2k.

Start with the following observation: if G is connected and has a subtree T', rooted
at some vertex r, with at least k leaves, then G has also a spanning tree with at least k
leaves. In our algorithm, we start by guessing a non-leaf vertex r of the tree in question,
and consider all further trees as rooted in r.

At every node of the search tree we have a subtree T of G rooted at node r. Let L(T)
denote the set of leaves of T'. Our objective in this branch is to find a subtree with k leaves
(if it exists) that is a supergraph of T.

First, observe that if there exists a leaf v € L(T') with at least two neighbors in V(G) \
V(T), then we can branch on v. In one subcase, we consider v being an internal vertex of
the tree in question, adding all edges vu for u € N(v) \ V(T') to the tree T. In the second
subcase, we consider v being a leaf vertex of the tree in question, deleting all edges vu for
u € N(v) \ V(T) from the graph G. Show that this branching is correct. Observe that in
every branching step we either fix one vertex to be a leaf, or increase the number of leaves
of T. Hence, this branching leads to at most 22% leaves of the search tree.

We are left with the case when all vertices v € L(T') have at most one neighbor outside
V(T). Prove that in this case a similar branching is still valid: for a vertex v € L(T'), either
proclaim v a leaf, or fix as internal vertices both v and all its descendants, up to the closest
vertex of degree at least three, inclusive.

In the leaves of the search tree we have trees T with |L(T")| > k (where we report that
(G, k) is a yes-instance), or trees T where all the leaves have been fixed as leaves, but still
|L(T)| < k (where we report no solution in this branch).

Adapt the solution of Exercise to the directed case.

Note that there is a bijection between vertex covers and maximal independent sets,
since the complement of a vertex cover is an independent set. Show a counting counterpart
of Proposition and design a branching algorithm where the number of leaves in the
search tree is bounded by the solution of the recurrence T'(n) = T'(n — 1) +T(n —4). Solve
the recurrence by applying the techniques described in Section (use Table [3.1)).

3.18] To prove the desired upper bound on the length of the shortest cycle, consider a
breadth-first search tree of the input graph.

To show that the obtained algorithm is an FPT one, consider two possibilities. If n < k¥,
then logn < klogk and (logn)*® < 20(klogk) - Otherwise, k = O(logn/loglogn) and
(logn)k = 2000gn) = nOM)  Alternatively, you may use the Cauchy-Schwarz inequality
to observe that

2 og log n 2 b -
(logn)k = 2k loglogn < o= tloglog = 9k?/2  g(loglogn)?/2 _ ok*/2  po(1)

Apply Exercise to x, obtaining a half-integral solution y. Observe that Re-
duction behaves the same way when fed with the solution x and with the solution

y.
In short, modify the reduction of Lemma [3.10

For a given a graph G, we define a new graph G as follows. Let V; = {u; : v € V(G)},
i € {1,2}. The vertex set V(G) consists of two copies of V(G), i.e., V(G) = V1 U V3 and

E(G) ={uuz : ue V(@}U{uv1 : uw € E(G)}U{ugvs : w ¢ E(G)}.
In other words, G is obtained by taking a disjoint copy of G and a complement of G, and

adding a perfect matching such that the endpoints of every matching edge are copies of
the same vertex.
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The main idea is to make, for every variable z, a different copy for every appearance
of z in the formula ¢. To create the formula ¢’, we first copy all the clauses of ¢, replacing
every variable x with one of its copies so that no copy is used twice, and then we add
clauses enforcing equality between every pair of copies of the same variable. Show that a
deletion of a clause C in the original instance corresponds to the deletion of one of the
copies of a variable appearing in C' in the new instance.

The main idea is to replace every variable = with its two copies, T and z: =T has
the meaning “Is z true?”, whereas == has the meaning “Is z false?”. We connect them by a
clause ~z T V -z~ to enforce that only one value of z is chosen. Moreover, we replace every
literal = with 2T, and every literal == with x. Argue that in the new instance (¢, k)
of ALmosT 2-SAT there exists a minimum solution that deletes only clauses of the form
—z | V-zt. Observe that deleting such a clause corresponds to setting = to both true and
false at once in the input formula ¢, satisfying all the clauses containing x.

Let I be an independent set in G of surplus a. Define the following vector x =
(Tv)vev(a)y: Tv =0forv eI, xy, =1 for v € N(I) and xy = % for v ¢ N[I]. Observe that

x is a feasible solution to LPVC(G) of cost W + 5. This proves the first point.

Moreover, it also proves the following: if we pick any vertex v and solve LPVC(G) with
an additional constraint z, = 0 (in other words, solve LPVC(G — N[v]) and extend it with
zy = 0 and z,, = 1 for every u € N(v)), obtaining a half-integral solution x, then the set
V5© is an independent set of minimum surplus among all independent sets containing v. In
particular, this gives us a way to detect independent sets with surplus 1, as well as shows
that, if the minimum surplus of an independent set containing v is at least 2, then in a
branch where we exclude v from a vertex cover, the measure u(G, k) drops by at least 1.

It remains to argue about the third point, tackling with a reduction rule. To this end,
prove the following: if Reduction [VC.5|is not applicable, and I is of surplus 1, then there
exists a minimum vertex cover of G that contains the whole I or the whole N(I). Recall
[I| +1 = |N(I)|. If GIN(I)] contains an edge, then we can greedily take N(I) into the
vertex cover. Otherwise, we can replace N[I] with a single vertex incident to N(N[I]) and
decrease k by |I|. A direct check shows that the measure (G, k) does not increase in these
steps.

3.24] Observe that, in this case, for every center string y, y[p] equals x;[p] whenever
z;[p] = x;[p], whereas for every position p with z;[p] # x;[p] we have y[p] = z;[p] or
y[p] = x;[p]. Thus, there are two options for each of 2d positions where z; and x; differ.

3.25| For the first point, consider two cases depending on for how many positions p € P
the character y[p] has been guessed so that y[p] = x;[p]. If there are more than d;/2 such
positions, then z; differs on all of them from y, and we have d} < d1/2. Show that in the
second case, when there are at most di /2 such positions, it holds that d;- < di /2. Use here
the fact that |P| > d;.

For the second point, think of choosing (y[p])pep as a three stage process. First, we
choose an integer 0 < ¢ < dy: y will differ from z; on exactly ¢ positions of P. Second,
we choose the set Q of these ¢ positions; there are (‘?I) < (‘Hedl) possibilities. Third, we
choose y[p] for every p € Q; there are (| X| — 1)¢ possibilities.

Using d; as a measure for the complexity of an instance, and using the first point, we
obtain the following recurrence for time complexity.

dy
() < (17 M) 121 0 TOming — £,d/2)

£=0 ¢
Ld1/2] &
= > (YYMes-otr@m s > (Y as- 0t m@ - o,

=0 £=dy/2]+1
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It remains to use the aforementioned recurrence to prove by induction that

d+d
T(d1)§< e
dy

)2o4 (2] - .

(Constant 6 in the exponent is not optimal; it has been chosen so that the proof goes
smoothly.)
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Chapter 4
Iterative compression

In this chapter we introduce iterative compression, a
simple yet very useful technique for designing fized-
parameter tractable algorithms. Using this technique
we obtain FPT algorithms for FEEDBACK VERTEX
SET IN TOURNAMENTS, FEEDBACK VERTEX SET and
ObpD CycCLE TRANSVERSAL.

In 2004, Reed, Smith and Vetta [397] presented the first fixed-parameter
tractable algorithm for OpD CYCLE TRANSVERSAL, running in time 3¥n®).
This result is important not only because of the significance of the prob-
lem, but also because the proposed approach turned out to be a novel and
generic technique, applicable in many other situations. Based on this new
technique, called nowadays iterative compression, a number of FPT algo-
rithms for several important problems have been obtained. Besides OpD CY-
CLE TRANSVERSAL, examples include DIRECTED FEEDBACK VERTEX SET
and ALMOST 2-SAT.

Typically, iterative compression algorithms are designed for parameterized
minimization problems, where the goal is to find a small set of vertices or
edges of the graph, whose removal makes the graph admit some global prop-
erty. The upper bound on the size of this set is the parameter k. The main
idea is to employ a so-called compression routine. A compression routine is
an algorithm that, given a problem instance and a corresponding solution,
either calculates a smaller solution or proves that the given solution is of the
minimum size. Using a compression routine, one finds an optimal solution
to the problem by iteratively building up the structure of the instance and
compressing intermediate solutions.

The main point of the iterative compression technique is that if the com-
pression routine runs in FPT time, then so does the whole algorithm. The
strength of iterative compression is that it allows us to see the problem from
a different viewpoint: The compression routine has not only the problem

T
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instance as input, but also a solution, which carries valuable structural in-
formation about the instance. Therefore, constructing a compression routine
may be simpler than designing a direct FPT algorithm for the original prob-
lem.

While embedding the compression routine into the iteration framework is
usually straightforward, finding the compression routine itself is not. There-
fore, the art of iterative compression typically lies in the design of the com-
pression routine. In this chapter we design algorithms for FEEDBACK VER-
TEX SET IN TOURNAMENTS, FEEDBACK VERTEX SET and ODD CYCLE
TRANSVERSAL using the method of iterative compression. An important case
of ALMOST 2-SAT is covered in the exercises. This technique will be also ap-
plied in Chapter [7] to solve PLANAR VERTEX DELETION, and in Chapter
for DIRECTED FEEDBACK VERTEX SET.

4.1 Illustration of the basic technique

The technique described in this section is based on the following strategy.

Solution compression: First, apply some simple trick so that you can
assume that a slightly too large solution is available. Then exploit the
structure it imposes on the input graph to construct an optimal solution.

As a simple example of this approach, let us try to apply it to our favourite
example problem VERTEX COVER. The algorithm we are going to obtain now
is much worse than the one obtained in the previous chapter, but it serves well
for the illustration. Assume we are given a VERTEX COVER instance (G, k).
We use the well-known 2-approximation algorithm to obtain an approximate
vertex cover Z. If |Z| > 2k, then we can clearly conclude that (G,k) is a
no-instance, so assume otherwise. We are now going to exploit the structure
that Z imposes on the graph G: Z is small, so we can afford some branching
on Z, while at the same time G — Z is edgeless.

The branching step is as follows: we branch in all possible ways an optimal
solution X can intersect Z. Let Xz C Z be one such guess. We are searching
now for a vertex cover X of size at most k, such that X N Z = X . Let
W = Z\ Xgz. If there is an edge in G[W], then we can clearly conclude
that our guess of X, was wrong. Otherwise, note that any vertex cover X
satisfying X N Z = Xz needs to include Xz U Ng(W). Furthermore, since
G — Z is an independent set, Xz U Ng(W) is actually a vertex cover of G.
Consequently, if for some choice of Xz C Z we have | Xz U Ng(W)| < k,
then we return a solution X := Xz U Ng(W), and otherwise we conclude
that (G, k) is a no-instance. Thus, we obtain an algorithm solving VERTEX
COVER in time 2/41p01) < 4kp,00),
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Let us go back to the point when we have guessed the set Xz and defined
W = Z \ Xz. In the previous paragraph we have in fact argued that the
following D1sJOINT VERTEX COVER problem is polynomial-time solvable:
Does G — Xz contain a vertex cover of size at most k — | X z| that is disjoint
from W7 Note here that W is a vertex cover of G — Xz, giving us a lot of
insight into the structure of G — X 4.

In our example, the final dependency of the running time on % is much
worse than the one obtained by branching algorithms in the previous chapter.
One of the reasons is that we started with a large set Z, of size at most 2k.
Fortunately, there is an easy and very versatile way to obtain a set Z of size
k 4 1. This is exactly the main trick of iterative compression.

As the name suggests, in iterative compression we apply the compression
step iteratively. To exemplify this idea on VERTEX COVER, let us take an
arbitrary ordering (v1,vs,...,v,) of G. For i € {1,...,k}, we denote by G;
the subgraph of GG induced by the first i vertices. For i = k, we can take the
vertex set of GG; as a vertex cover X in G; of size k. We proceed iteratively.
Suppose that for some i > k, we have constructed a vertex cover X; of G;
of size at most k. Then in graph G;i1, set Z;11 := X; U {v;41} is a vertex
cover of size at most k + 1. If actually |Z; 1] < k then we are done: we can
simply put X; 11 = Z;41 and proceed to the next iteration. Otherwise we have
|Ziy1] = k + 1, and we need to compress the too large solution. By applying
the branching algorithm described above, i.e., solving 2/Zi+1l = 25+ 1 instances
of D1sJOINT VERTEX COVER, in time 25110 we can either find a vertex
cover X; 11 of G; of size at most k, or conclude that no such cover exists. If
G; does not admit a vertex of size at most k, then of course neither does G,
and we may terminate the whole iteration and provide a negative answer to
the problem. If X, has been found, however, then we may proceed further
to the graph G;2 and so on. To conclude, observe that G,, = G, so at the
last iteration we obtain a solution for the input VERTEX COVER instance in
time 2FpO),

Combined with other ideas, this simple strategy becomes a powerful tech-
nique which can be used to solve different parameterized problems. Let us
sketch how this method can be applied to a graph problem. The central idea
here is to design an FPT algorithm which for a given (k + 1)-sized solution
for a problem either compresses it to a solution of size at most k or proves
that there is no solution of size at most k. This is known as the compression
step of the algorithm. The method adopted usually is to begin with a sub-
graph that trivially admits a k-sized solution and then expand it iteratively.
In any iteration, we try to find a compressed k-sized solution for the instance
corresponding to the current subgraph. If we find such a solution, then by
adding a vertex or an edge we obtain a solution to the next instance, but
this solution can be too large by 1. To this solution we apply the compres-
sion step. We stop when we either obtain a solution of size at most k for the
entire graph, or if some intermediate instance turns out to be incompressible.
In order to stop in the case when some intermediate instance turns out to
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be incompressible, the problem must have the property that the optimum
solution size in any intermediate instance is at most the optimum solution
size in the whole graph.

4.1.1 A few generic steps

We start with explaining the generic steps of iterative compression that are
common to most of the problems. We focus here on vertex subset problems;
the steps for an edge subset problem are analogous. Suppose that we want
to solve (*)-COMPRESSION, where the wildcard (x) can be replaced by the
name of the problem we are trying to solve. In (*)-COMPRESSION, as input
we are given an instance of the problem (%) with a solution of size k + 1
and a positive integer k. The objective is to either find a solution of size at
most k or conclude that no solution of size at most k exists. For example,
for (x) =FEEDBACK VERTEX SET, we are given a graph G and a feedback
vertex set X of size k + 1. The task is to decide whether G has a feedback
vertex set, of size at most k.

The first observation that holds for all the problems in this section is the
following:

If there exists an algorithm solving (x)-COMPRESSION in time f(k)-n¢,
then there exists an algorithm solving problem () in time O(f(k)-n°*t1).

We already explained how to prove such an observation for VERTEX
CoVER. We will repeat it once again for FEEDBACK VERTEX SET IN TOUR-
NAMENTS and skip the proofs of this observation for FEEDBACK VERTEX
SET and ODD CYCLE TRANSVERSAL.

Now we need to compress a solution Z of size k + 1. In all our examples
we follow the same strategy as we did for VERTEX COVER. That is, for every
i € {0,...,k} and every subset Xz of Z of size i, we solve the following
DI1SJOINT- () problem: Either find a solution X to () in G — Xz such that
|X| <k —1i, where X and W := Z \ X are disjoint, or conclude that this is
impossible. Note that in the disjoint variant we have that |W| =k —i+1, so
again the size of the solution W is one larger than the allowed budget; the
difference now is that taking vertices from W is explicitly forbidden. We use
the following observation, which follows from simple branching.

If there exists an algorithm solving DISJOINT-(#) in time g(k) - n®™),
then there exists an algorithm solving (x)-COMPRESSION in time
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In particular, if g(k) = o, then (*)-COMPRESSION can be solved in
time (1 4+ a)Fn®®,

Thus, the crucial part of the algorithms based on iterative compression lies
in solving the disjoint version of the corresponding problem. We will provide
the detailed proof of the above observation for FEEDBACK VERTEX SET IN
TOURNAMENTS. We will not repeat these arguments for FEEDBACK VERTEX
SET and ODD CYCLE TRANSVERSAL, and explain only algorithms solving
DI1SJOINT- (%) for these problems.

Finally, let us point out that when designing algorithms for the compres-
sion and disjoint versions of a problem, one cannot focus only on the decision
version, where the task is just to determine whether a solution exists. This
is because constructing an actual solution is needed to perform the next step
of the iteration. This issue is almost never a real problem: either the algo-
rithm actually finds the solution on the way, or one can use the standard
method of self-reducibility to query a decision algorithm multiple times in
order to reconstruct the solution. However, the reader should be aware of the
caveat, especially when trying to estimate the precise polynomial factor of
the running time of the algorithm.

4.2 FEEDBACK VERTEX SET IN TOURNAMENTS

In this section we design an FPT algorithm for FEEDBACK VERTEX SET IN
TOURNAMENTS (FVST) using the methodology of iterative compression. In
this problem, the input consists of a tournament 7" and a positive integer k,
and the objective is to decide whether there exists a vertex set X C V(T
of size at most k such that 7' — X is a directed acyclic graph (equivalently,
a transitive tournament). We call the solution X a directed feedback vertex
set. Let us note that FEEDBACK VERTEX SET IN TOURNAMENTS is a special
case of DIRECTED FEEDBACK VERTEX SET, where the input directed graph
is restricted to being a tournament.

In what follows, using the example of FEEDBACK VERTEX SET IN TOUR-
NAMENTS we describe the steps that are common to most of the applications
of iterative compression.

We first define the compression version of the problem, called FEEDBACK
VERTEX SET IN TOURNAMENTS COMPRESSION. In this problem, the input
consists of a tournament T, a directed feedback vertex set Z of T of size
k 4+ 1, and a positive integer k, and the objective is either to find a directed
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feedback vertex set of T of size at most k, or to conclude that no such set
exists.

Suppose we can solve FEEDBACK VERTEX SET IN TOURNAMENTS COM-
PRESSION in time f(k)-n®(M). Given this, we show how to solve the original
problem in f(k)-n®® time. We take an arbitrary ordering (v, v, ...,v,) of
V(T) and for every i € {1,...,n} we define V; = {vy,...,v;} and T; = T[V}].
Notice that

e V. is a directed feedback vertex set of size k of T},.

e If X is a directed feedback vertex set of T;, then X U {v;11} is a directed
feedback vertex set of T; 4.

e If T; does not admit a directed feedback vertex set of size at most k, then
neither does T'.

These three facts together with an f(k) - n°-time algorithm for FEEDBACK
VERTEX SET IN TOURNAMENTS COMPRESSION imply an f(k)-n°t!-time al-
gorithm for FEEDBACK VERTEX SET IN TOURNAMENTS as follows. In tour-
nament T}, set V} is a directed feedback vertex set of size k. Suppose that for
1 > k we have constructed a directed feedback vertex set X; of T; of size at
most k. Then in T;14, set Z;11 := X; U {v;11} is a directed feedback vertex
set of size at most k + 1. If actually |Z;;1| < k, then we may proceed to the
next iteration with X;;1 = Z; 1. Otherwise we have |Z; ;1] = k+ 1. Then in
time f(k) - n® we can either construct a directed feedback vertex set X in
T, 41 of size k, or deduce that (T, k) is a no-instance of FEEDBACK VERTEX
SET IN TOURNAMENTS. By iterating at most n times, we obtain the following
lemma.

Lemma 4.1. The ezistence of an algorithm solving FEEDBACK VERTEX SET
IN TOURNAMENTS COMPRESSION in time f(k) - n® implies that FEEDBACK
VERTEX SET IN TOURNAMENTS can be solved in time O(f(k) - nctt).

In all applications of iterative compression one proves a lemma similar to
Lemma [.1] Hence, the bulk of the work goes into solving the compression
version of the problem. We now discuss how to solve the compression problem
by reducing it to a bounded number of instances of the following disjoint ver-
sion of the problem: DiSJOINT FEEDBACK VERTEX SET IN TOURNAMENTS.
In this problem, the input consists of a tournament 7' together with a di-
rected feedback vertex set W and the objective is either to find a directed
feedback vertex set X C V(T') \ W of size at most k, or to conclude that no
such set exists.

Let Z be a directed feedback vertex set of size k+1 in a tournament 7". To
decide whether T contains a directed feedback vertex set X of size k (i.e., to
solve a FEEDBACK VERTEX SET IN TOURNAMENTS COMPRESSION instance
(G, Z,k)), we do the following. We guess the intersection of X with Z, that
is, we guess the set Xz := X N Z, delete Xz from T and reduce parameter
k by |Xz|. For each guess of Xz, we set W := Z \ Xz and solve DISJOINT
FEEDBACK VERTEX SET IN TOURNAMENTS on the instance (T — Xz, W, k —
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| X z|). If for some guess X 7 we find a directed feedback vertex set X’ of T—X
of size at most k—|X | that is disjoint from W, then we output X := X'UX .
Otherwise, we conclude that the given instance of the compression problem
is a no-instance. The number of all guesses is bounded by Zf:o (kjl) So to
obtain an FPT algorithm for FEEDBACK VERTEX SET IN TOURNAMENTS
COMPRESSION, it is sufficient to solve DISJOINT FEEDBACK VERTEX SET IN

ToOURNAMENTS in FPT time. This leads to the following lemma.

Lemma 4.2. If there exists an algorithm solving DISJOINT FEEDBACK VER-
TEX SET IN TOURNAMENTS in time g(k)-n®®) | then there exists an algorithm
solving FEEDBACK VERTEX SET IN TOURNAMENTS COMPRESSION in time
Zf:o (kjl)g(/ﬁ —4)-n°W), In particular, if g(k) = o for some fized constant
«, then the algorithm runs in time (o + 1)* . n©W),

By Lemmas [{.1] and we have that

Solving FEEDBACK VERTEX SET IN TOURNAMENTS boils down to solv-
ing the disjoint variant of the problem.

There is nothing very particular about FEEDBACK VERTEX SET IN TOUR-
NAMENTS in Lemmaff.2] In many graph modification problems, for which the
corresponding disjoint version can be solved in time g(k)-n®®), one can ob-
tain an algorithm for the original problem by proving a lemma analogous to
Lemma We need only the following two properties: (i) a way to deduce
that if an intermediate instance is a no-instance, then the input instance is
a no-instance as well; and (i) a way to enhance a computed solution X; of
an intermediate instance G; with a new vertex or edge to obtain a slightly
larger solution Z; 1 of the next intermediate instance G;1.

4.2.1 Solving DISJOINT FEEDBACK VERTEX SET IN
TOURNAMENTS in polynomazal time

Our next step is to show that DiSJOINT FEEDBACK VERTEX SET IN TOUR-
NAMENTS can be solved in polynomial time. As we already discussed, to-
gether with Lemmas [I.1] and [£.2] this shows that FEEDBACK VERTEX SET
IN TOURNAMENTS can be solved in time 2¢n°(1),

For our proof we need the following simple facts about tournaments, which
are left as an exercise.

Lemma 4.3. Let T be a tournament. Then

1. T has a directed cycle if and only if T has a directed triangle;
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2. If T is acyclic then it has unique topological ordering. That is, there exists
a unique ordering < of the vertices of T' such that for every directed edge
(u,v), we have u < v (that is, u appears before v in the ordering <).

We now describe the algorithm for the disjoint version of the problem.

Let (T,W,k) be an instance of DISJOINT FEEDBACK VERTEX SET IN
TOURNAMENTS and let A = V(T') \ W. Recall that we have that |W| =
k + 1. Clearly, we can assume that both T[W] and T[4] induce transitive
tournaments, since otherwise (T, W, k) is a no-instance. By Lemma in
order to solve DISJOINT FEEDBACK VERTEX SET IN TOURNAMENTS it is
sufficient to find a set of at most k vertices from A intersecting all the directed
triangles in T'. This observation gives us the following simple reduction.

Reduction FVST.1. If T contains a directed triangle x,y, z with exactly
one vertex from A, say z, then delete z and reduce the parameter by 1. The
new instance is (T'— {z}, W, k — 1).

Reduction[FVST I]simply says that all directed triangles in T" with exactly
one vertex in A can be eliminated by picking the corresponding vertex in A.
Safeness of Reduction [EVST 1l follows from the fact that we are not allowed
to select any vertex from W.

Given an instance (T, W, k), we first apply Reductionexhaustively.
So from now onwards assume that Reduction [FVST 1]is no longer applicable.
Since tournaments T[W] and T[A] are acyclic, by Lemma [4.3| we know that
they both have unique topological orderings. Let the topological orderings of
T[W] and T[A] be denoted by ¢ = (w1, ...,w,) and p, respectively. Suppose
X is a desired solution; then T[W U (A \ X)] is a transitive tournament with
the unique ordering such that when we restrict this ordering to W, we obtain
o, and when we restrict it to A\ X, we get restriction of p to A\ X. Since
the ordering of o is preserved in the ordering of T[W U (A\ X)], our modified
goal now is as follows.

Insert a maximum-sized subset of A into ordering o = (w1, ..., wq).

Every vertex v € A has a “natural position” in o, say p[v], defined as follows.
Since Reduction is no longer applicable, for all v € A, we have that
T[W U {v}] is acyclic and the position of v in o is its position in the unique
topological ordering of T[W U {v}]. Thus, there exists an integer p[v] such
that for ¢ < p[v], there is an arc from w; to v and for all ¢ > p[v] there is an
arc from v to w;. Thus we get that

(v,w;) € BE(T) <= i>p[v]. (4.1)

Observe that p[v] is defined for all v € A, it is unique, and p[v] € {1,...,q+1}.
We now construct an ordering 7 of A as follows: u is before v in 7 if and
only if plu] < p[v] or plu] = p[v] and u is before v in the ordering p. That
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is, in the ordering = we take iteratively the sets {v € A : p[v] = i} for
1=1,2,...,9+ 1 and, within each set, we order the vertices according to p,
the topological order of T[A].

The main observation now is as follows:

1. In the transitive tournament 7" — X, the topological ordering of
T[A\ X] needs to be a restriction of m, because T[W] remains in
T — X and o is the topological ordering of T'[W].

2. On the other hand, the topological ordering of T[A \ X] needs to
be a restriction of p, the topological ordering of T[A].

Consequently, it suffices to search for the longest common subsequence
of 7 and p.

We next prove a lemma which formalizes the intuition suggested above.

Lemma 4.4. Let B C A. Then T[W UB] is acyclic if and only if the vertices
of B form a common subsequence of p and .

Proof. By p|p and 7| we denote restrictions of p and 7 to B, respectively.

For the forward direction, suppose that T'[W U B] is acyclic. We show that
plp = m|p and hence vertices of B form a common subsequence of p and
m. Targeting a contradiction, assume that there exist x,y € B such that x
appears before y in p|p and y appears before z in 7|g. Then (x,y) € E(T),
and ply] < plz]. Moreover, if it was that p[x] = p[y], then the order of z
and y in 7 would be determined by p. Thus we conclude that ply] < p|z].
By (4.1), we have that (y,wpp,)) € E(T) and (wp,),z) € E(T). Because of
the directed edges (z,y), (y,wppy), and (wppy), z), we have that {x,y, wy,}
induces a directed triangle in T[W U B], a contradiction.

Now we show the reverse direction of the proof. Assume that the vertices
of B form a common subsequence of p and 7. In particular, this means that
plp = m|p. To show that T[W U B] is acyclic, by Lemma it is sufficient
to show that T[W U B] contains no directed triangles. Since T[W] and T'[A4]
are acyclic and there are no directed triangles with exactly two vertices in
W (Reduction [FVST.I), it follows that there can only be directed triangles
with exactly two vertices in B. Since p|p = g, for all z,y € B with (z,y) €
E(T), we have that p[z] < p[y]. Then by (4.1), there is no w; € W with
(y,w;) € E(T) and (w;,z) € E(T). Hence there is no directed triangle in
T[W U B], and thus it is acyclic. This completes the proof of the lemma. O

We need the following known fact about the longest common subsequence
problem, whose proof we leave as Exercise

Lemma 4.5. A longest common subsequence of two sequences with p and q
elements can be found in time O(pq).
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We are ready to describe the algorithm now.

Lemma 4.6. DiSJOINT FEEDBACK VERTEX SET IN TOURNAMENTS is solv-
able in polynomial time.

Proof. Let (T, W, k) be an instance of the problem. We use Reduction[FVST 1]
exhaustively. Let R be the set of vertices deleted by Reduction and
let (T", W, k') be the reduced instance.

By Lemma the optimal way to make T’ acyclic by vertex deletions is
exactly the same as that to make sequences p and 7 equal by vertex deletions.
Thus, to find an optimal vertex deletion set, we can find a longest common
subsequence of p and 7, which can be done in polynomial time by Lemma[4.5]
Let B be the vertices of a longest common subsequence of p and 7 and let
X :=RU(V(T")\ B). If | X| > k; then (T, W, k) is a no-instance. Otherwise,
X is the desired directed feedback vertex set of size at most k. a

Lemmas [£.1] and .2 combined with Lemma [£.6] give the following result.

Theorem 4.7. FEEDBACK VERTEX SET IN TOURNAMENTS can be solved in
time 2kn0M)

4.3 FEEDBACK VERTEX SET

In this section we give an algorithm for the FEEDBACK VERTEX SET problem
on undirected graphs using the method of iterative compression. Recall that
X is a feedback vertex set of an undirected graph G if G — X is a forest.
We give only the algorithms for the disjoint version of the problem. As was
discussed in Section the existence of an algorithm with running time
oa*n®W for the disjoint variant problem would yield that FEEDBACK VERTEX
SET is solvable in time (1 4+ a)*n®M).

We start by defining DisJOINT FEEDBACK VERTEX SET. In this problem,
as input we are given an undirected graph G, integer k and a feedback vertex
set W in G of size k 4+ 1. The objective is to find a feedback vertex set
X CV(G)\W of size at most k, or correctly conclude that no such feedback
vertex set exists. We first give an algorithm for D1SJOINT FEEDBACK VERTEX
SET running in time 4*2°() | and then we provide a faster algorithm with
running time ©**n°M | where ¢ = % < 1.6181 denotes the golden ratio.
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4.3.1 First algorithm for DISJOINT FEEDBACK VERTEX
SET

Let (G, W, k) be an instance of DISJOINT FEEDBACK VERTEX SET and let
H = G — W. We first give a few reduction rules that simplify the input
instance.

Reduction FVS*.1. Delete all the vertices of degree at most 1 in G.

Reduction FVS*.2. If there exists a vertex v in H such that G[W U {v}]
contains a cycle, then include v in the solution, delete v and decrease the
parameter by 1. That is, the new instance is (G — {v}, W,k — 1).

Reduction FVS*.3. If there is a vertex v € V(H) of degree 2 in G such
that at least one neighbor of v in G is from V(H), then delete this vertex
and make its neighbors adjacent (even if they were adjacent before; the graph
could become a multigraph now).

It is easy to see that Reductions [FVS*.1] [FVS*.2] and [FVS™.J] are safe

and that they produce an equivalent instance. Furthermore, all of them can
be applied in polynomial time. Now we are ready to state the main lemma
of this section.

Lemma 4.8. DISJOINT FEEDBACK VERTEX SET is solvable in time 4¥n©M)

Proof. We give only an algorithm for the decision variant of the problem, i.e.,
we only verify whether a solution exists or not. It is straightforward to modify
the algorithm so that it actually finds a solution, provided there exists one.

We will follow a branching strategy with a nontrivial measure function.
Let (G, W, k) be the input instance. If G[W] is not a forest then return that
(G,W, k) is a no-instance. So from now onwards we assume that G[W] is
indeed a forest. The algorithm first applies Reductions[FVS*.1] [FVS*.2] and
exhaustively. For clarity we denote the reduced instance (the one on
which Reductions [FVS*.1 [FVS*.2|and [FVS*.3| do not apply) by (G, W, k).
If k <0, then return that (G, W, k) is a no-instance.

From now onwards we assume that k& > 0. Recall that H is a forest as W is
a feedback vertex set. Thus H has a vertex z of degree at most 1. Furthermore,
x has at least two neighbors in W, otherwise Reduction [FVS*.1] or [FVS*.3]
would have been applied. Since Reduction [FVS*.2]cannot be applied, we have
that no two neighbors of « belong to the same connected component of G[W].
Now branch by including « in the solution in one branch and excluding it in
the other branch. That is, we call the algorithm on instances (G—{xz}, W, k—1)
and (G,W U {z},k). If one of these branches returns a solution, then we
conclude that (G, W, k) is a yes-instance, otherwise (G, W, k) is a no-instance.
The correctness of this algorithm follows from the safeness of our reductions
and the fact that the branching is exhaustive.
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To estimate the running time of the algorithm, for instance I = (G, W, k),
we define its measure

u(l) =k +~(I),

where «(I) is the number of connected components of G[W]. Observe that
Reductions [FVS*.1] [FVS*.2] and [FVS*.3| do not increase the measure. How
does u(I) change when we branch? When we include = in the solution, k
decreases by 1 and ~(I) remains the same, and thus p(I) decreases by 1. In
the other branch, k& remains the same, while x has neighbors in at least two
connected components of W. Hence, when we include z in W, v(I) drops
by at least 1. Thus, we have a branching vector (1,1) and the running time
of our branching algorithm is 2#(1)p®()_ Since at the beginning we have
u(I) < k+|W| <2k + 1, we obtain the desired running time. O

Similarly to Lemmas and (see also the discussion in Section ,
one can use iterative compression to show that the o*n®M-time algorithm for
Di1sJOINT FEEDBACK VERTEX SET can be used to solve FEEDBACK VERTEX
SET in time (1 + a)*n®™). Hence, Lemma implies the following theorem.

Theorem 4.9. FEEDBACK VERTEX SET can be solved in time 5¥n®(1).

*4.3.2 Faster algorithm for DISJOINT FEEDBACK VERTEX
SET

Now we show how to modify the algorithm of Theorem [.9]to obtain “almost”
the fastest known deterministic algorithm for FEEDBACK VERTEX SET.

We start with a few definitions. Let (G, W, k) be an instance of DISJOINT
FEEDBACK VERTEX SET and H = G—W. A vertex v € V(H) is called a tent
if its degree in G is 3 and all its neighbors are in W. In other words, v has
degree 3 in G and it is an isolated vertex in H. We call a vertex v € V(H)
nice if its degree in G is 2 and both its neighbors are in W. The following
lemma explains why we are interested in nice vertices and tents.

Lemma 4.10. Let (G, W, k) be an instance of DISJOINT FEEDBACK VERTEX
SET such that every vertex from V (H) is either nice or a tent. Then DISJOINT
FEEDBACK VERTEX SET on (G, W, k) can be solved in polynomial time.

The proof of Lemma is based on a polynomial-time algorithm for the
“matroid parity” problem for graphic matroids. We defer the proof of this
Lemma, to Section [[2.2.2] and here we use it as a black box to obtain the
desired algorithm for FEEDBACK VERTEX SET.

For the new algorithm we also need one more reduction rule apart from

Reductions [FVS*.1] [FVS*.2| and [FVS*.3]

Reduction FVS*.4. Let v € V(H) be a vertex of degree 3 in G, with one
neighbor w in V(H) and two neighbors in W. In particular, v is a leaf in H.
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14 H w’ H

Fig. 4.1: Reduction [FVS*.4

Subdivide the edge vu and move the newly introduced vertex, say w, to W.
Let the new graph be named G’ and W' = W U {w}. The new instance is
(G', W' k). See Fig.

The safeness of Reduction [FVS*.4] follows from the fact that introducing
an undeletable degree-2 vertex in the middle of an edge does not change the
set of feasible solutions to DISJIOINT FEEDBACK VERTEX SET. Let us also
observe that even though Reduction [FVS*.4]increases the number of vertices,
it also increases the number of tents. Furthermore, as we never add vertices
to H, this rule can be applied at most |V (H)]| times.

Next we define the new measure which is used to estimate the running
time of the new algorithm for DiSJOINT FEEDBACK VERTEX SET. With an
instance I = (G, W, k), we associate the measure

p(l) =k +~(I) —7(I).

Here, v(I) denotes the number of connected components of G[W] and 7(I)
denotes the number of tents in G.
Next we show that our reduction rules do not increase the measure.

Lemma 4.11. An application of any of the Reductions [FVS .1, [FVS.3,
FVS .3 and[FVS* ]| does not increase u(I).

Proof. The proofs for Reductions [FVS*.1], [FVS*.2| and [FVS~.3| are straight-
forward. As for Reduction let I = (G, W, k) be the considered in-
stance. We add vertex w to W thus creating a new connected component and
increasing v by 1. We also create at least one tent at the vertex v (the vertex
u may also become a tent), see Fig. Thus we increase 7 by at least 1.
Thus, for the new instance I’ we have that p(I') < u(I). O

The important thing we have to keep in mind is that:

For a branching algorithm it is necessary that in all instances whose
measure is nonpositive, it should be possible to solve the problem in
polynomial time.
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So let us now verify that this is the case for DiSJOINT FEEDBACK VERTEX
SET. The next lemma implies that if for an instance I we have 7(I) > k+~(I),
that is, if the measure of I is nonpositive, then I is a no-instance. In fact, we
prove a slightly stronger statement.

Lemma 4.12. Let I = (G,W,k) be an instance of DISJIOINT FEEDBACK
VERTEX SET. If 7(I) > k + @, then I is a no-instance.

Proof. Suppose, for contradiction, that I is a yes-instance of the problem
and let X be a feedback vertex set of size at most k disjoint from W. Thus
G' = G — X is a forest. Let T C V(G) \ W be the set of tents in G. Now
consider G'[W U (T \ X)]. Clearly, G'[W U (T'\ X)] is also a forest. Now in
G'[WU(T\ X)] we contract each connected component of G[W] into a single
vertex and obtain a forest, say . Then F has at most v(I)+|T"\ X| vertices,
and hence has at most v(I)+ |7\ X|—1 edges. However, the vertices of T\ X
form an independent set in F' (as they are tents), and each of them is of
degree exactly three in F': the degree could not drop during the contraction
step, since we just contracted some subtrees of the forest G'[W U (T"\ X)].
Thus 3|7\ X| < v(I) + |T \ X|, and hence 2|T \ X| < v(I). As | X| <k, we
have that 7(I) = |T| < k + @ This concludes the proof. O

Now we are ready to state the main technical lemma of this section.

Lemma 4.13. DISJOINT FEEDBACK VERTEX SET can be solved in time
©*nOM) where v < 1.6181 is the golden ratio.

Proof. Again, we give an algorithm only for the decision version of the prob-
lem, and turning it into a constructive algorithm is straightforward.

We follow a similar branching strategy, but this time we shall use our
adjusted measure p(I) that takes into account also tents. Let (G, W, k) be
the input instance. If G[W] is not a forest, then return that (G,W,k) is a
no-instance. So from now onwards we assume that G[WW] is indeed a forest.

The algorithm first applies Reductions [FVS*.1] [FVS*.2] [FVS*.3|and [FVS*.4

exhaustively. For clarity we denote the reduced instance (the one on which
Reductions [FVS*.1] [FVS*.2} [FVS*.3|and [FVS*.4 do not apply) by (G, W, k).
If 4(I) < 0 then return that (G, W, k) is a no-instance. The correctness of
this step follows from the fact that if u(I) < 0 then 7(I) > k+~(I), and thus
by Lemma we have that the given instance is a no-instance.

From now onwards we assume that pu(I) > 0. We now check whether every
vertex in V(G) \ W is either nice or a tent. If this is the case, we apply
Lemma [4.10] and solve the problem in polynomial time. Otherwise, we move
to the branching step of the algorithm. The algorithm has only one branching
rule which is described below.

Pick a vertex z that is not a tent and has the maximum possible number
of neighbors in W.
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Now we branch by including x in the solution in one branch, and excluding
it in the other branch. That is we call the algorithm on instances (G —
{z}, W,k —1) and (G,W U{x}, k). If one of these branches is a yes-instance,
then (G,W,k) is a yes-instance. Otherwise (G, W, k) is a no-instance. The
correctness of this algorithm follows from the safeness of reductions and the
fact that the branching is exhaustive.

To compute the running time of the algorithm, let us see how measure
n(I) = k+~(I)—7(I) changes. By Lemma[f.11] we know that applications of
Reductions[FVS*.1] [FVS*.2l [FVS*.3]and [FVS¥.4 do not increase the measure.
Now we will see how x(I) changes when we branch. In the branch where we
include z in the solution, we have that k& decreases by 1, the number of tents
does not decrease, and the number of connected components of G[W] remains
the same. Thus, u(I) decreases by 1.

Now let us consider the other branch, where x is included into W. In this
branch, k remains the same and 7(I) does not decrease. Since Lemma m
is not applicable, we know that there exists a connected component of H
that is not just a single tent, and there exists a vertex u in this component
whose degree in H is at most one (since H is a forest). Furthermore, since
Reductions [FVS*.1] [FVS*.2] [FVS*.3] and [FVS~.4] are not applicable, vertex
u has at least three neighbors in W. Since in the branching algorithm we
chose a vertex z that is not a tent and has the maximum possible number
of neighbors in W, we have that = also has at least three neighbors in W.
Since Reduction is not applicable, when we include = to W, graph
G[W U {z}] remains a forest and its number of connected components ~(I)
drops by at least 2. Thus, u(I) drops by at least 2.

The last two paragraphs show that the algorithm has a branching vector
of (1,2). Hence, the algorithm solves DISJOINT FEEDBACK VERTEX SET in
time DM Since initially we have that u(I) < k + |[W| < 2k + 1, we
obtain the claimed running time. ad

Pipelined with the iterative compression framework (see the discussion in
Section , Lemma implies the following theorem.

Theorem 4.14. FEEDBACK VERTEX SET can be solved in time

(14 kW = 36181500,

4.4 OpD CYCLE TRANSVERSAL

In this section we give an algorithm for ODD CYCLE TRANSVERSAL using the
method of iterative compression. Recall that X is an odd cycle transversal
of G if graph G — X is bipartite. Again, we follow the same generic steps as
described in Section 111
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We start by defining D1SJOINT ODD CYCLE TRANSVERSAL. In this prob-
lem, on the input we are given an undirected graph G, an odd cycle transversal
W of size k+ 1 and a positive integer k. The objective is to find an odd cycle
transversal X C V(G) \ W of size at most k, or to conclude that no such
odd cycle transversal exists. We give an algorithm for D1sJoINT ODD CYCLE
TRANSVERSAL running in time 2¥n0().

Our algorithm for DiSJOINT ODD CYCLE TRANSVERSAL will use the fol-
lowing annotated problem as a subroutine. In the ANNOTATED BIPARTITE
COLORING problem, we are given a bipartite graph G, two sets By, By C
V(G), and an integer k, and the goal is to find a set X consisting of at most
k vertices, such that G — X has a proper 2-coloring f : V(G) \ X — {1,2}
(i.e., f(u) # f(v) for every edge uv) that agrees with the sets B; and Ba,
that is, f(v) =4 whenever v € B; \ X and i =1, 2.

An algorithm for ANNOTATED BIPARTITE COLORING. Let (G, By, Ba, k)
be an instance of ANNOTATED BIPARTITE COLORING. We can view vertices
of By and B; as precolored vertices. We do not assume that this precoloring
is proper, that is, a pair of adjacent vertices can be colored with the same
color. Moreover, we do not assume that B; and Bs are disjoint, thus some
vertices can have both colors. We want to find a set X of size at most k
such that in graph G — X there is a proper 2-coloring extending precolored
vertices. To find such a coloring we proceed as follows. We fix an arbitrary
proper 2-coloring f* of G, f*: V(G) — {1,2}. Clearly, such a coloring exists
as G is a bipartite graph. Let Bf = (f*)~1(i) for i = 1,2. The objective is
to find a set S of at most k vertices such that G — S has another 2-coloring
f such that B; \ X is colored ¢ for i = 1,2. Observe that each vertex of
C := (B1 N Bj) U (ByN BY) should be either included in X, or have different
colors with respect to f* and f. That is, for every v € C' \ X, it holds that
f*(v) # f(v), i.e., the vertices of C'\ X must change their colors. Similarly,
each vertex of R := (B; N B}) U (Bz N Bj) that is not included in X should
keep its color. Thus, for every v € R it holds that f*(v) = f(v), unless
v € X. See the diagram on Fig. The following lemma helps us in solving
the annotated problem.

Lemma 4.15. Let G be a bipartite graph and f* be an arbitrary proper 2-
coloring of G. Then set X is a solution for ANNOTATED BIPARTITE COL-
ORING if and only if X separates C and R, i.e., no component of G — X
contains vertices from both C'\ X and R\ X. Furthermore, such a set X of
size k (provided it exists) can be found in time O(k(n + m)).

Proof. We first prove the forward direction of the proof. In a proper 2-coloring
of G— X, say f, each vertex of V(G)\ X either keeps the same color (f(v) =
f*(v)) or changes its color (f(v) # f*(v)). Moreover, two adjacent vertices
have to pick the same decision. Therefore, for every connected component
of G\ X, either all vertices v satisfy f(v) = f*(v) or all vertices v satisfy
f(v) # f*(v). Consequently, no connected component of G \ X may contain
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Fig. 4.2: Sets C' and R

a vertex of both R (which needs to keep its color) and C' (which needs to
change its color).

For the backward direction, let X be a set separating R and C'. Define the
coloring f : V(G) \ X — {1,2} as follows: first set f = f* and then flip the
coloring of those components of G — X that contain at least one vertex of
C'\ X. No vertex of R is flipped and thus this is the required 2-coloring.

To find a vertex set of size at most k separating C' and R, one can use
the classic max-flow min-cut techniques, e.g., by k iterations of the Ford-
Fulkerson algorithm (see Theorem . Thus we obtain the promised running
time bound. O

Back to ODD CYCLE TRANSVERSAL. Now we are going to use our algorithm
for ANNOTATED BIPARTITE COLORING to solve ODD CYCLE TRANSVERSAL
by applying the iterative compression framework. As usual, to this end we
first give an algorithm for the disjoint variant of the problem, DisJOINT ODD
CycLE TRANSVERSAL. Recall that here we are given a graph G, an integer
k, and a set W of k41 vertices such that G — W is bipartite. The objective is
to find a set X C V(G)\ W of at most k vertices such that G — X is bipartite,
that is, admits a proper 2-coloring f, or to conclude that no such set exists.
Towards this we do as follows. Every vertex v € W remains in G — X and
hence G[W] has to be bipartite, as otherwise we are clearly dealing with a
no-instance. The idea is to guess the bipartition of W in G — X.

That is, we iterate over all proper 2-colorings fiw : W — {1,2} of G[W]
and we look for a set X C V(G) \ W such that G — X admits a proper
2-coloring that extends fy. Note that there are at most 21" = 25+ choices
for the coloring fy. Let B}V = fv}l (i) fori=1,2.

Observe that every vertex v in By := Ng(B}V) N (V(G) \ W) needs to be
either colored 2 by f, or deleted (included in X). Similarly, every vertex v in
By == Ng(BY¥) N (V(G) \ W) needs to be either colored 1 by f, or deleted.
Consequently, the task of finding the set X and the proper 2-coloring f
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that extends fy reduces to solving an ANNOTATED BIPARTITE COLORING
instance (G — W, By, B, k).

By Lemmal4.15] this instance can be solved in O(k(n+m)) time and hence
the total running time for solving D1SJOINT ODD CYCLE TRANSVERSAL is
O(2% - k(n +m)). Thus we obtain the following lemma.

Lemma 4.16. DISJOINT ODD CYCLE TRANSVERSAL can be solved in time
O2% - k(n +m)).

Now Lemma4.16] together with the iterative compression approach, yields
the following theorem.

Theorem 4.17. ODD CYCLE TRANSVERSAL is solvable in time O(3F-kn(n+

Exercises

4.1 (42). Prove Lemma[L.3]
4.2. Prove Lemma [£5]

4.3. Obtain an algorithm for 3-Hrrring Skt running in time 2.46565n°(1) using iterative
compression. Generalize this algorithm to obtain an algorithm for d-HiTTING SET running
in time ((d — 1) 4 0.4656)kn©).

4.4. An undirected graph G is called perfect if for every induced subgraph H of G, the size
of the largest clique in H is the same as the chromatic number of H. We consider the Opp
CvycLE TRANSVERSAL problem, restricted to perfect graphs.

Recall that Exercise asked for a kernel with O(k) vertices, whereas Exercise
asked for a 3*n°(W_time branching algorithm for this problem. Here we ask for a 28n@ (-
time algorithm based on iterative compression.

4.5 (&). In the CrusTer VErRTEX DELETION problem, we are given a graph G and an
integer k, and the task is to find a set X of at most k vertices of G such that G — X is a
cluster graph (a disjoint union of cliques). Using iterative compression, obtain an algorithm
for CLUSTER VERTEX DELETION running in time 25n©1),

4.6. A graph G is a split graph if V(G) can be partitioned into sets C and I, such that C
is a clique and [ is an independent set. In the SpLIT VERTEX DELETION problem, given a
graph G and an integer k, the task is to check if one can delete at most k vertices from G
to obtain a split graph.

Recall that Exercise asked for a 4*n®(M_time algorithm for this problem, via a
reduction to VERTEX CovER ABOVE Marching. Here we ask for a 2602 _time algorithm
for this problem using iterative compression.

4.7 (). A set X C V(G) of an undirected graph G is called an independent feedback
vertex set if G[X] is independent and G — X is acyclic. In the INDEPENDENT FEEDBACK
VERTEX SET problem, we are given as input a graph G and a positive integer k, and the
objective is to test whether there exists in G an independent feedback vertex set of size
at most k. Show that INDEPENDENT FEEDBACK VERTEX SET is in FPT by obtaining an
algorithm with running time 55n©().
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4.8. Obtain a polynomial kernel for DisjoiNT FEEDBACK VERTEX SET. Improve it to a
kernel with O(k) vertices.

4.9 (,;';) The EpGeE BIpaRrTiZATION problem is the edge-deletion variant of Opp CycLE
TRANSVERSAL: one is given a graph G and an integer k, and the task is to remove at most
k edges from G in order to make G bipartite. Give a 25 - n©(1_time algorithm for Epce
BIPARTIZATION using iterative compression.

In the next few exercises we study the VArIaABLE DELETION ALMOST 2-SAT problem:
given a Boolean formula ¢ in CNF, with every clause containing at most two literals, and
an integer k, the task is to delete at most k variables from ¢ to make it satisfiable; a
variable is deleted together with all clauses containing it. It is sometimes useful to think
of deleting a variable as setting it to both true and false at once, so that it satisfies all the
clauses where it appears.

In Theorem [3.12] we have shown an FPT algorithm for this problem, by a reduction
to VERTEX COVER ABOVE MATCHING. Furthermore, Exercises and asked you
to prove that VariaBLE DeLETION ALmosT 2-SAT is equivalent to the (more standard)
clause-deletion variant called simply ALmosT 2-SAT, where we are allowed only to delete
k clauses. Here, we study relations between Opp CycLE TRANSVERSAL and VARIABLE
DEeLETION ALMosT 2-SAT, and develop a different FPT algorithm for VARIABLE DELE-
TION ALMOST 2-SAT, based on iterative compression.

4.10. Express a given Opp CycLE TRANSVERSAL instance (G, k) as an instance (¢, k) of
VARIABLE DELETION ALMOST 2-SAT.

4.11. Consider the following annotated variant of VARIABLE DELETION ALMmOST 2-SAT,
which we call ANNOTATED SATISFIABLE ALMOST 2-SAT: Given a satisfiable formula ¢,
two sets of variables VT and V1, and an integer k, the task is to check if there exists a set
X of at most k variables of ¢ and a satisfying assignment v of ¢ — X such that ¢¥(z) =T
for every € VT \ X and v¥(z) = L for every € V- \ X. Assuming that there exists
a Fn®W_time FPT algorithm for Annorarep SarisriaBLe Armost 2-SAT for some
constant ¢ > 1, show that VARIABLE DELETION ALMOsT 2-SAT admits a (1 + 2c)kno(1>—
time algorithm.

4.12. Express a given ANNOTATED BIPARTITE COLORING instance (G, Bi, B2,k) as an
instance (o, VT, VL k) of ANNOTATED SATISFIABLE ALMOST 2-SAT.

4.13. Consider the following operation of flipping ¢ variable x in a VARIABLE DELETION
ALmMosT 2-SAT or an ANNOTATED SATISFIABLE ALMoOsT 2-SAT instance: we replace
every literal z with -« and every literal =« with x. Furthermore, in the case of ANNOTATED
SATISFIABLE ALMOST 2-SAT, if € V for some o € {T, L}, then we move x to V7.

Using the flipping operation, show that it suffices to consider only ANNOTATED SATIS-
FIABLE ALMOST 2-SA'T instances where an assignment that assigns false to every variable
satisfies the input formula ¢. That is, there are no clauses of the form z Vv y.

4.14 (£). Consider the following vertex-deletion variant of the DiGrapH Pair CuT prob-
lem with a sink: given a directed graph G, designated vertices s,t € V(G), a family of pairs
of vertices F C (V<2G)), and an integer k, check if there exists a set X C V(G)\{s, t} of size
at most k such that ¢ is unreachable from s in G — X and every pair in F either contains
a vertex of X or contains a vertex that is unreachable from s in G — X. Exercise asks
you to design a 26n®M_time algorithm for this problem.

1. Deduce from Exercise [£.13] that, when considering the ANNOTATED SATISFIABLE AL-
MosT 2-SAT problem, one can consider only instances where all the clauses are of
the form z = y or -z V —y. (Remember unary clauses.)

2. Use this insight to design a 2¥n®(M_time algorithm for ANNOTATED SATISFIABLE
ArLmosT 2-SAT, using the aforementioned algorithm of Exercise[8.19]as a subroutine.

3. Conclude that such a result, together with a solution to Exercise gives a 5kn@M).
time algorithm for VArRIABLE DELETION ALMOST 2-SAT.
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Hints

This problem is a standard example for dynamic programming. Let wp and wq be two
sequences, of length p and ¢, respectively. For every 0 < ¢ < p and 0 < j < g, we define
T[i, j] to be the length of the longest common subsequence of substrings wp[1,...,] and
wgq(1,...,]. Then, T[4, j] equals the maximum of: T[i—1, j], T[4, j — 1] and, if wp[i] = wq[j],
14+T[i—1,5—1].

In the case of 3-HiTTiNG SET, observe that the disjoint version of the problem is
essentially a VErTEX COVER instance, as every set of size 3 contains at least one undeletable
element. Then, use the algorithm of Theorem In the general case, generalize this
observation: the disjoint version of the problem is also a d-HirTing SET instance, but
every set lost at least one element.

Reduce the disjoint version of the problem to a minimum vertex cover problem on an
auxiliary bipartite graph. Some insight from Exercise may help you.

The exercise boils down to a task of showing that the disjoint version of the problem
is polynomial-time solvable.

First, observe that a graph is a cluster graph if and only if it does not have an induced
path on three vertices. In the disjoint version of the problem, given (G, S, k) such that
S| =k +1and G — S is a cluster graph, we are looking for a solution of size at most k
such that it is disjoint from S.

e We can assume that the subgraph induced on S is a cluster graph. Why?

e What can you do if there is a vertex in V(G) \ S that is adjacent to two of the clusters
of G[S], the subgraph induced on S? Or a vertex in V(G) \ S that is adjacent to some,
but not all vertices of one of the clusters of G[S]?

e Now we can assume that every vertex in V(G)\ S is either completely nonadjacent to .S,
or completely adjacent to exactly one cluster of G[S]. Argue that the resulting problem
(of finding a subset of vertices to be deleted from V(G)\ S to make the resulting graph
a cluster graph) can be solved by using an algorithm for finding a maximum matching
of minimum cost in a bipartite graph.

Again, the task reduces to showing that the disjoint version of the problem is
polynomial-time solvable.

The main observation is that a split graph on n vertices has at most n? partitions of
the vertex set into the clique and independent set part: for a fixed one partition, at most
one vertex can be moved from the clique side to the independent one, and at most one
vertex can be moved in the opposite direction. (In fact one can show that it has at most
O(n) split partitions.) Hence, you can afford guessing the “correct” partition of both the
undeletable and the deletable part of the instance at hand.

In short, mimic the 3.619¥n°(1_time algorithm for FEepBACK VERTEX SET.

That is, design a 4*n®@)_time algorithm for the disjoint version of the problem in
the following manner. Assume we are given an instance (G, W, k) of the following disjoint
version of INDEPENDENT FEEDBACK VERTEX SET: G — W is a forest, |W| = k + 1, and we
seek an independent feedback vertex set X of G that is of size at most k and is disjoint
from W. Note that we do not insist that G[W] be independent.

A tent is a vertex v ¢ W, of degree 2, with both neighbors in W. For an instance
I = (G,W,k), we let 7(I) be the number of tents, v(I) be the number of connected
components of G[W], and u(I) =k + v(I) — 7(I) be the potential of I. Proceed with the
following steps.

1. Adapt the reduction rules that deal with vertices of degree 1 and with vertices v ¢
W that have more than one incident edge connecting them to the same connected
component of G[W].
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2. Design a reduction that deals with vertices v ¢ W of degree 2 that have exactly one
neighbor in W. Note that you cannot simply move them to W, due to the condition
of solutions being independent. Instead, proceed similarly as we did in the FEEDBACK
VERTEX SET algorithm for vertices of degree 3, with exactly two neighbors in W.

3. Finally, prove that the potential is positive on a yes-instance by adapting the proof of

Lemma [£121

To perform the iterative compression step, observe that picking one endpoint of every
edge of a solution to EDGE BiPaRTIZATION yields an odd cycle transversal of the graph. Use
this observation to reduce the problem to designing a compression routine for the following
task: you are given a graph G with an odd cycle transversal W of size k + 1, and the task
is to find a solution to EbGE BIPARTIZATION of size at most k, or to conclude that no such
solution exists. Branch into 2¢t1 subproblems, guessing the right bipartition of W in the
bipartite graph after removing the edges of the solution. Then reduce verifying existence of
a solution in a branch to an auxiliary polynomial-time solvable cut problem, using similar
ideas as with sets C' and R in the algorithm for Obp CycLE TRANSVERSAL.

Apply the reduction rules given for the disjoint version of the problem. Argue that if
there are too many vertices (like k(1) or O(k)) of degree at most 2 in the deletable part,
then the given instance is a no-instance. Else, use a standard tree-based argument to show
that the instance is small.

Treat every vertex as a variable. For every edge zy € E(G), introduce clauses xVy and
-z V —y. This concludes the construction of the formula ¢. To show correctness, observe
that the clauses for an edge xy force x and y to attain different values in a satisfying
assignment.

Using iterative compression, the task boils down to designing a (2¢)*n®®-time
algorithm for the disjoint version of VAriaBLE DELETION ALMOST 2-SAT. Thus, we have
an instance (¢, W, k), where W is a set of k + 1 variables from ¢ such that ¢ — W is
satisfiable, and we seek a solution X to VArRiaBLE DEeLETION ArLmosT 2-SAT on (¢, k)
that is disjoint from W.

At the cost of 2FF1 subcases, we guess the values of variables of W in some satisfying
assignment of ¢ — X. Now, we can do the following cleaning: discard all clauses satisfied
by the guessed assignment, and discard the current branch if there exists a clause with all
literals evaluated to false by the guessed assignment. Observe that every remaining clause
C = (£1 V{2) that contains a literal with a variable from W (say, ¢1) satisfies the following:
01 is evaluated to false by the guessed assignment, and the second literal ¢ contains a
variable not in W. For every such clause C, we put the variable of fo into V1 if £ is a
positive literal, and otherwise we put the variable of ¢ into V1. Argue that it remains to
solve an ANNOTATED SATISFIABLE ALMOST 2-SAT instance (¢ — W, VT, VJ-,k).

.12l Proceed as in Exercise {10

The first and the last point are straightforward. Here we elaborate on the second
point.

We express the task of solving the input instance (¢, VT, VL k) of ANNOTATED SAT-
ISFIABLE ALMOST 2-SAT as a vertex-deletion DigraPH Pair Cut with a sink instance
(G, s,t, F, k) as follows.

Start with vertices s and t.

For every variable x, introduce a single vertex x.

For every clause z = y (i.e., ~z V y), introduce an edge (z,y).
For every clause —z V -y, introduce a pair {z,y} to the family F.
For every vertex y € VT, we introduce an edge (s,v).

For every vertex y € V1, we introduce an edge (y,t).

D O W N~
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Argue that solutions to the aforementioned node-deletion Dicrapr Pamr CurT instance
(G, s, F, k) are in one-to-one correspondence with the solutions to the original instance of
ANNOTATED SATISFIABLE ALMOST 2-SAT. The intuition is that the nodes x reachable
from s after the solution is removed correspond to the variables that are set to true in a
satisfying assignment.

Bibliographic notes

The idea of iterative compression was first introduced by Reed, Smith, and Vetta [397]
to prove that Opp CvycLE TRANSVERSAL is fixed-parameter tractable. The technique has
been used in several FPT algorithms for various problems, including DIRECTED FEEDBACK
Vertex SeT [85] and Aumost 2-SAT [394].

The algorithm for FEEDBACK VERTEX SET IN TOURNAMENTS of Theorem [£.7]is due to
Dom, Guo, Hiiffner, Niedermeier, and Truf [I40]. For the FEEDBACK VERTEX SET problem,
the parametric dependency in the running time has been systematically improved over the
years [393} 241, 127, [77), [70], resulting in the current best deterministic algorithm running in
time 3.592n () [30T]. If we allow randomization, then the problem admits an algorithm
with running time 3% .n@@) [I18] — we will actually see this algorithm in Section [11.2.1)).
Our simpler 55 (1) _time algorithm for FEEDBACK VERTEX SET follows the work of Chen,
Fomin, Liu, Lu, and Villanger [77]. The description of the 3.619¥n°(1) algorithm follows
Kociumaka and Pilipczuk [30T]. The observation that DisjoINT FEEDBACK VERTEX SET
instance becomes polynomial-time solvable if every deletable vertex is nice or a tent is due
to Cao, Chen, and Liu [70].

The algorithm for CLusTER VERTEX DELETION from Exercise 4.5 originates in the work
of Hiiffner, Komusiewicz, Moser, and Niedermeier [271]. A 25 - n©() algorithm for EpGE
BIPARTIZATION was first given by Guo, Gramm, Hiiffner, Niedermeier, and Wernicke [241];
their algorithm is actually quite different from the one sketched in the hint to Exercise [£.9]
The parameterized complexity of ALmosT 2-SAT was open for some time until Razgon
and O’Sullivan gave a 155721 algorithm. The current fastest algorithm for this problem
runs in time 2.3155n°(1) [328]. The algorithm for Armost 2-SAT from Exercise m
originates in the work of Kratsch and Wahlstrém [310]; they gave a polynomial kernel for
the problem, and the algorithm follows from their ideas implicitly.

In this book we will again use iterative compression to solve PLANAR VERTEX DELETION

in Chapter[7} and DirecTeD FEEDBACK VERTEX SET in Chapter [§



Chapter 5

Randomized methods in parameterized
algorithms

In this chapter, we study how the powerful paradigm
of randomization can help in designing FPT algo-
rithms. We introduce the general techniques of color
coding, divide and color, and chromatic coding, and
show the use of these techniques on the problems
LoNGEST PATH and d-CLUSTERING. We discuss also
how these randomized algorithms can be derandomized
using standard techniques.

» NN
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We give a few commonly used approaches to design randomized FPT al-
gorithms.

In Section 5.1} we start with a simple example of an algorithm for FEED-
BACK VERTEX SET. Here, we essentially observe that, after applying a few
easy reduction rules, a large fraction of the edges of the graph needs to be
adjacent to the solution vertices — and, consequently, taking into the solu-
tion a randomly chosen endpoint of a randomly chosen edge leads to a good
success probability.

Then, in Section [5.2] we move to the very successful technique of color
coding, where one randomly colors a universe (e.g., the vertex set of the in-
put graph) with a carefully chosen number of colors and argue that, with
sufficient probability, a solution we are looking for is somehow “properly col-
ored”. The problem-dependant notion of “properly colored” helps us resolve
the problem if we only look for properly colored solutions. For resolving the
colored version of the problem, we use basic tools learned in the previous
chapters, such as bounded search trees. In this section we start with the clas-
sic example of a color coding algorithm for LONGEST PATH. Then, we show
how a random partition (i.e., a random coloring with two colors) can be used
to highlight a solution, using an example of the SUBGRAPH ISOMORPHISM
problem in bounded degree graphs. Moreover, we present the so-called divide
and color technique for LONGEST PATH, where a recursive random partition-
ing scheme allows us to obtain a better running time than the simple color
coding approach. We conclude this section with a more advanced example of
a chromatic coding approach for d-CLUSTERING.

99
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Finally, in Section [5.6] we briefly discuss the methods of derandomizing
algorithms based on color coding. We recall the necessary results on con-
structing pseudorandom objects such as splitters, perfect hash families, uni-
versal sets and small k-wise independent sample spaces, and show how to
replace the random coloring step of (variants of) the color coding approach
by iterating over a carefully chosen pseudorandom object.

Let us briefly recall the principles of randomization in algorithms. We
assume that the algorithm is given access, apart from the input, to a stream
of random bits. If the algorithm reads at most r random bits on the given
input, then the probability space is the set of all 2" possible strings of random
bits read by the algorithm, with uniform probability distribution (i.e., each
bit is chosen independently and uniformly at random). Whenever we say
that “an algorithm does X with probability at least/at most p”, we mean the
probability measured in this probability space.

Consider an algorithm for a decision problem which given a no-instance
always returns “no,” and given a yes-instance returns “yes” with probability

€ (0,1). Such an algorithm is called a one-sided error Monte Carlo algorithm
with false negatives.

Sometimes we would like to improve the success probability p, especially
in our applications where we often have bounds like p = 1/ 20() or, more
generally, p = 1/f(k) for some computable function f. It is not difficult to
see that we can improve the success probability at the price of worse running
time. Namely, we get a new algorithm by repeating the original algorithm ¢
times and returning “no” only if the original algorithm returned “no” in each of
the t repetitions. Clearly, given a no-instance the new algorithm still returns
“no.” However, given a yes-instance, it returns “no” only if all ¢ repetitions
returned an incorrect “no” answer, which has probability at most

(1-p) < (e7)f =1/,

where we used the well-known inequality 1+ x < e®. It follows that the new
success probability is at least 1 — 1/ePt. Note that in particular it suffices to
put t = fﬁ to get constant success probabilityﬂ

If a one-sided error Monte Carlo algorithm has success probability at
least p, then repeating it independently f%] times gives constant success
probability. In particular, if p = 1/f(k) for some computable function
f, then we get an FPT one-sided error Monte Carlo algorithm with
additional f(k) overhead in the running time bound.

I In this chapter, by “constant success probability” or “constant error probability” we mean
that the success probability of an algorithm is lower bounded by a positive universal con-
stant (or, equivalently, the error probability is upper bounded by some universal constant
strictly smaller than 1).
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In the area of polynomial-time algorithms, quite often we develop an algo-
rithm that does something useful (e.g., solves the problem) with probability at
least p, where 1/p is bounded polynomially in the input size. If this is the case,
then we can repeat the algorithm a polynomial number of times, obtaining
a constant error probability. In the FPT world, the same principle applies;
however, now the threshold of “useful probability” becomes 1/(f(k)n®W).
That is, if we develop an algorithm that runs in FPT time and solves the
problem with probability at least 1/(f(k)n®(1)), then repeating the algorithm
f(k)no(l) times gives us constant error probability, while still maintaining
an FPT running time bound. This is the goal of most of the algorithms in
this chapter.

5.1 A simple randomized algorithm for FEEDBACK
VERTEX SET

In this section, we design a simple randomized algorithm for FEEDBACK VER-
TEX SET. As discussed in Section when tackling with FEEDBACK VER-
TEX SET, it is more convenient to work with multigraphs, not only simple
graphs. Recall that both a double edge and a loop are cycles, and we use the
convention that a loop at a vertex v contributes 2 to the degree of v.

The following crucial lemma observes that, once we apply to the input
instance basic reduction rules that deal with low-degree vertices, many edges
of the graph are incident to the solution vertices.

Lemma 5.1. Let G be a multigraph on n vertices, with minimum degree at
least 3. Then, for every feedback vertex set X of G, more than half of the
edges of G have at least one endpoint in X .

Proof. Let H = G — X. Since every edge in E(G) \ E(H) is incident to a
vertex in X, the claim of the lemma is equivalent to |E(G)\ E(H)| > |E(H)|.
However, since H is a forest, |V(H)| > |E(H)| and it suffices to show that
E(G)\ E(H)| > |V (H)|.

Let J denote the set of edges with one endpoint in X and the other in
V(H). Let V<1, V5 and V>3 denote the set of vertices in V' (H) such that they
have degree at most 1, exactly 2, and at least 3 in H, respectively. (Note that
we use here the degree of a vertex in the forest H, not in the input graph G.)
Since G has minimum degree at least 3, every vertex in V<; contributes at
least two distinct edges to J. Similarly, each vertex in V5 contributes at least
one edge to J. As H is a forest, we have also that |V>3| < [V<1|. Putting all
these bounds together, we obtain:
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|E(G)\ E(H)| > |J|
> 2\Var| + [Va| > [V | + [Va| + V>3]
= |V(H)|.

This concludes the proof of the lemma. a

Recall that in Section we have developed the simple reduction rules
[FVS.IHFVS.5 that reduce all vertices of degree at most 2 in the input graph.
Lemma [5.1] says that, once such a reduction has been performed, a majority
of the edges have at least one endpoint in a solution. Hence, if we pick an edge
uniformly at random, and then independently pick its random endpoint, with
probability at least 1/4 we would pick a vertex from the solution. By iterating
this process, we obtain an algorithm that solves the input FEEDBACK VERTEX
SET instance in polynomial time, with probability at least 4.

Theorem 5.2. There exists a polynomial-time randomized algorithm that,
given a FEEDBACK VERTEX SET instance (G, k), either reports a failure or
finds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with probability at least 47F.

Proof. We describe the algorithm as a recursive procedure that, given a graph
G and an integer k, aims at a feedback vertex set of G of size at most k.

We first apply exhaustively Reductions [FVS.IHFVS.5| to the FEEDBACK
VERTEX SET instance (G, k). If the reductions conclude that we are dealing
with a no-instance, then we report a failure. Otherwise, let (G’,k’) be the
reduced instance. Note that 0 < ¥’ < k and G’ has minimum degree at least
3. Let Xg be the set of vertices deleted due to Reduction Note that
the vertices of Xy have been qualified as mandatory vertices for a feedback
vertex set in G, that is, there exists a feedback vertex set in G of minimum
possible size that contains X, and for any feedback vertex set X' of G’,
X'U X is a feedback vertex set of G. Moreover, |Xo| =k — k'.

If G’ is an empty graph, then we return Xy; note that in this case | Xo| < k
as k' > 0, and X is a feedback vertex set of G. Otherwise, we pick an edge e of
G’ uniformly at random (i.e., each edge is chosen with probability 1/|E(G")|),
and choose one endpoint of e independently and uniformly at random. Let v
be the chosen endpoint. We recurse on (G’ — v, k' — 1). If the recursive step
returns a failure, then we return a failure as well. If the recursive step returns
a feedback vertex set X', then we return X := X’ U {v} U Xj.

Note that in the second case the set X’ is a feedback vertex set of G’ — v of
size at most k' — 1. First, observe that the size bound on X’ implies | X| < k.
Second, we infer that X'U{v} is a feedback vertex set of G’ and, consequently,
X is a feedback vertex set of G. Hence, the algorithm always reports a failure
or returns a feedback vertex set of G of size at most k. It remains to argue
about the probability bound; we prove it by induction on k.

Assume that there exists a feedback vertex set X of G of size at most
k. By the analysis of the reduction rules of Section Reduction is
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not triggered, the instance (G, k') is computed and there exists a feedback
vertex set X' of G’ of size at most k'. If G’ is empty, then the algorithm
returns Xo deterministically. Otherwise, since G’ has minimum degree at
least 3, Lemma implies that, with probability larger than 1/2, the edge e
has at least one endpoint in X’. Consequently, with probability larger than
1/4, the chosen vertex v belongs to X', and X’ \ {v} is a feedback vertex
set of size at most &' — 1 in the graph G’ — v. By the inductive hypothesis,
the recursive call finds a feedback vertex set of G’ — v of size at most k' — 1
(not necessarily the set X’ \ {v}) with probability at least 4~ (=1 Hence, a
feedback vertex set of GG of size at most k is found with probability at least
3 4= =1) = 4=F" > 4=k This concludes the inductive step, and finishes the
proof of the theorem. O

As discussed at the beginning of this section, we can repeat the algorithm
of Theorem [5.2]independently 4* times to obtain a constant error probability.

Corollary 5.3. There exists a randomized algorithm that, given a FEED-
BACK VERTEX SET instance (G, k), in time 4*n®M) either reports a failure
or finds a feedback vertex set in G of size at most k. Moreover, if the algorithm
is given a yes-instance, it returns a solution with a constant probability.

5.2 Color coding

The technique of color coding was introduced by Alon, Yuster and Zwick to
handle the problem of detecting a small subgraph in a large input graph. More
formally, given a k-vertex “pattern” graph H and an n-vertex input graph G,
the goal is to find a subgraph of G isomorphic to H. A brute-force approach
solves this problem in time roughly O(n*); the color coding technique ap-
proach allows us to obtain an FPT running time bound of 2°*)n°() in the
case when H is a forest or, more generally, when H is of constant treewidth
(for more on treewidth, we refer you to Chapter . We remark here that, as
we discuss in Chapter [13] such an improvement is most likely not possible in
general, as the case of H being a k-vertex clique is conjectured to be hard.

The idea behind the color coding technique is to randomly color the entire
graph with a set of colors with the number of colors chosen in a way that,
if the smaller graph does exist in this graph as a subgraph, then with high
probability it will be colored in a way that we can find it efficiently. In what
follows we mostly focus on a simplest, but very instructive case of H being a
k-vertex path.

We remark that most algorithms based on the color coding technique can
be derandomized using splitters and similar pseudorandom objects. We dis-
cuss these methods in Section
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5.2.1 A color coding algorithm for LONGEST PATH

In the LONGEST PATH problem, we are given a graph G and a positive integer
k as input, and the objective is to test whether there exists a simple path on
k vertices in the graph G. Note that this corresponds to the aforementioned
“pattern” graph search problem with H being a path on k vertices (henceforth
called a k-path for brevity).

Observe that finding a walk on k vertices in a directed graph is a simple
task; the hardness of the LONGEST PATH problem lies in the requirement that
we look for a simple path. A direct approach involves keeping track of the
vertices already visited, requiring an (Z) factor in the running time bound.
The color coding technique is exactly the trick to avoid such a dependency.

Color the vertices uniformly at random from {1,...,k}, and find a path
on k vertices, if it exists, whose all colors are pairwise distinct.

The essence of the color coding technique is the observation that, if we
color some universe with & colors uniformly at random, then a given k-element
subset is colored with distinct colors with sufficient probability.

Lemma 5.4. Let U be a set of size n, and let X C U be a subset of size
k. Let x : U — [k] be a coloring of the elements of U, chosen uniformly at
random (i.e., each element of U is colored with one of k colors uniformly and
independently at random). Then the probability that the elements of X are
colored with pairwise distinct colors is at least e *.

Proof. There are k™ possible colorings x, and k!k"~% of them are injective
on X. The lemma follows from the well-known inequality k! > (k/e). O

Hence, the color coding step reduces the case of finding a k-path in a graph
to finding a colorful k-path in a vertex-colored graph. (In what follows, a path
is called colorful if all vertices of the path are colored with pairwise distinct
colors.) Observe that this step replaces the (Z) factor, needed to keep track
of the used vertices in a brute-force approach, with a much better 2% factor,
needed to keep track of used colors. As the next lemma shows, in the case of
finding a colorful path, the algorithm is relatively simple.

Lemma 5.5. Let G be a directed or an undirected graph, and let x : V(G) —
[k] be a coloring of its vertices with k colors. There exists a deterministic
algorithm that checks in time 2°n°M) whether G contains a colorful path on
k vertices and, if this is the case, returns one such path.

Proof. Let Vi,..., Vi be a partitioning of V(G) such that all vertices in V;
are colored 7. We apply dynamic programming: for a nonempty subset S of
{1,...,k} and a vertex u € ;. ¢4 Vi, we define the Boolean value PATH(S, u)
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to be equal to true if there is a colorful path with vertices colored with all
colors from S and with an endpoint in u. For |S| = 1, note that PATH(S, u)
is true for any v € V(G) if and only if S = {x(u)}. For |S| > 1, the following
recurrence holds:

PATH(S, u) = {\/{PATH(S \{x(w},v) : w e EBG)} if y(u) €S
7 False otherwise.

Indeed, if there is a colorful path ending at w using all colors from S, then
there has to be colorful path ending at a neighbor v of u and using all colors
from S\ {x(u)}.

Clearly, all values of PATH can be computed in time 2*n°(1) by applying
the above recurrence, and, moreover, there exists a colorful k-path in G if
and only if PATH([k],v) is true for some vertex v € V(G). Furthermore, a
colorful path can be retrieved using the standard technique of backlinks in
dynamic programming. a

We now combine Lemmas [5.4] and to obtain the main result of this
section.

Theorem 5.6. There exists a randomized algorithm that, given a LONGEST
PaTH instance (G, k), in time (2¢)*n®() either reports a failure or finds a
path on k vertices in G. Moreover, if the algorithm is given a yes-instance,
it returns a solution with a constant probability.

Proof. We show an algorithm that runs in time 2*n°() and, given a yes-
instance, returns a solution with probability at least e~*. Clearly, by repeat-
ing the algorithm independently e times, we obtain the running time bound
and success probability guarantee promised by the theorem statement.

Given an input instance (G, k), we uniformly at random color the vertices
of V(G) with colors [k]. That is, every vertex is colored independently with
one color from the set [k] with uniform probability. Denote the obtained
coloring by x : V(G) — [k]. We run the algorithm of Lemma on the
graph G with coloring x. If it returns a colorful path, then we return this
path as a simple path in G. Otherwise, we report failure.

Clearly, any path returned by the algorithm is a k-path in G. It remains
to bound the probability of finding a path in the case (G, k) is a yes-instance.

To this end, suppose G has a path P on k vertices. By Lemma [5.4] P
becomes a colorful path in the coloring y with probability at least e~*. If this
is the case, the algorithm of Lemma finds a colorful path (not necessarily
P itself), and the algorithm returns a k-path in G. This concludes the proof
of the theorem. O
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5.3 Random separation

In this section we give a variant of the color coding technique that is par-
ticularly useful in designing parameterized algorithms on graphs of bounded
degree. The technique, usually called random separation in the literature,
boils down to a simple but fruitful observation that in some cases if we ran-
domly partition the vertex or edge set of a graph into two sets, the solution
we are looking for gets highlighted with good probability.

We illustrate the method on the SUBGRAPH ISOMORPHISM problem, where
we are given an n-vertex graph G and a k-vertex graph H, and the objective
is to test whether there exists a subgraph H of G such that H is isomorphic
to H. Observe that LONGEST PATH is a special case of SUBGRAPH ISOMOR-
PHISM where H is a path on k vertices. Exercise asks you to generalize
the color coding approach for LONGEST PATH to TREE SUBGRAPH ISOMOR-
PHISM, where H is restricted to being a tree, whereas Exercise takes
this generalization further, and assumes H has bounded treewidth (the no-
tion of treewidth, which measures resemblance of a graph to a tree, is the
topic of Chapter . Also, observe that the CLIQUE problem is a special case
of SUBGRAPH ISOMORPHISM, where H is a clique on k vertices. It is be-
lieved that CLIQUE is not FPT (see Chapter , and, consequently, we do
not expect that the general SUBGRAPH ISOMORPHISM problem is FPT when
parameterized by k.

In this section we restrict ourselves to graphs of bounded degree, and show
that if the degree of G is bounded by d, then SUBGRAPH ISOMORPHISM can be
solved in time f(d,k)n®® for some computable function f. In other words,
SUBGRAPH IsoMORPHISM is FPT when parameterized by both £ and d.

The idea of random separation is to color edges (vertices) randomly
such that the edges (vertices) of the solution are colored with one color
and the edges (vertices) that are adjacent to edges (vertices) of the
solution subgraph get colored with a different color. That is, we separate
the solution subgraph from its neighboring edges and vertices using a
random coloring.

In SUBGRAPH ISOMORPHISM, if we perform a successful coloring step,
then every connected component of the pattern graph H corresponds
to one connected component of the subgraph induced by the first color
in the colored graph G.

Let us now focus on the SUBGRAPH ISOMORPHISM problem. We first do
a sanity test and check whether the maximum degree of H is at most d; if
this is not the case, then we immediately report that the given instance is a
no-instance. Let us color independently every edge of G in one of two colors,
say red and blue (denoted by R and B), with probability % each. Denote
the obtained random coloring by x : E(G) — {R, B}. Suppose that (G, H)
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is a yes-instance. That is, there exists a subgraph H in G such that H is
isomorphic to H. R
Let I' denote the set of edges that are incident to some vertex of V(H),

but do not belong to E(H). We say that a coloring x is successful if both the
following two conditions hold:

1. every edge of E(H) is colored red, that is, E(H) C x~*(R); and
2. every edge of I" is colored blue, that is, I' C x~1(B).

Observe that E(H) and I' are disjoint. Thus, the two aforementioned condi-
tions are independent. Furthermore, since every edge of E(H)U T is incident
to a vertex of V(H), |[V(H)| = |V(H)| = k, and the maximum degree of G
is at most d, we obtain

|E(H)|+|I'| < d|V(H)| < dk.
Consequently, the probability that y is successful is at least

1 o1
2l BE(H)|+|r| — 24k

Let Gg be the subgraph of G containing only those edges that have been
colored red, that is, Ggr = (V(G),x ' (R)). The core observation now is as
follows: if x is successful, then Hisa subgraph of G as well and, moreover,
H consists of a number of connected components of G .

For simplicity assume first that H is connected. Thus, if x is successful,
then H is a connected component of Gg. Consequently, we can go over all
connected components C of G with exactly &k vertices and test if C is iso-
morphic to H. Such a single test can be done by brute force in time k!k°™), or
we can use a more involved algorithm for GRAPH ISOMORPHISM on bounded
degree graphs that runs in time k°(¢°24) on k-vertex graphs of maximum
degree d.

Let us now consider the general case when H is not necessarily connected.
Let Hy, Ho, ..., H, be the connected components of H, and let Cy,C5, ...,C,
be the connected components of Gg. We construct an auxiliary bipartite
graph B(H,GR), where every vertex corresponds to a connected component
H; or a connected component C}, and H; is adjacent to C} if they have at most
k vertices each and are isomorphic. Observe that the graph B(H,Ggr) can
be constructed in time k!n®® or in time k9@t )nOM) depending on the
GRAPH ISOMORPHISM algorithm we use, and the subgraph H isomorphic to
H corresponds to a matching in B(H, Gr) that saturates {H:, Ho, ..., Hp}.
(Note that every component of B(H,Gpg) is a complete bipartite graph, so
the matching can be found using a trivial algorithm.) Consequently, we can
check if there is a subgraph of G isomorphic to H that consists of a number
of connected components of G in time k!n®® or in time k©(dlogd)pO)
This completes the description the algorithm.
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We have proved that the probability that x is successful is at least 279,
Hence, to obtain a Monte Carlo algorithm with false negatives we repeat the
above procedure 2%* times, and obtain the following result:

Theorem 5.7. There exist Monte Carlo algorithms with false negatives that
solve the input SUBGRAPH ISOMORPHISM instance (G, H) in time 29 k!n© (1)
and in time 24k kOl )nO) " Here |V(G)| =n, |V(H)| = k, and the maa-
imum degree of G is bounded by d.

*5.4 A divide and color algorithm for LONGEST PATH

We now improve the running time bound of the algorithm for LONGEST
PATH, by using a different choice of coloring. The idea is inspired by the
“divide and conquer” approach: one of the basic algorithmic techniques to
design polynomial-time algorithms. In other words, we will see a technique
that is an amalgamation of divide and conquer and color coding. Recall that
for color coding we used k colors to make the subgraph we are seeking colorful.
A natural question is: Do we always need k colors, or in some cases can we
reduce the number of colors and hence the randomness used in the algorithm?
Some problems can naturally be decomposed into disjoint pieces and solutions
to individual pieces can be combined together to get the complete solution.
The idea of divide and color is to use randomization to separate the pieces.
For example, in the case of graph problems, we will randomly partition all
vertices (or edges) of a graph into the left and the right side, and show that
the structure we were looking for has been conveniently split between the
sides. We solve the problem recursively on a graph induced on left and right
sides separately and then combine them to get the structure we are searching
for.

Thus, the workflow of the algorithm is a bit different from the one in the
previous color coding example. We perform the partition step at every node
of the recursion tree, solving recursively the same problem in subinstances.
The leaves of the recursion tree correspond to trivial instances with k = O(1),
where no involved work is needed. On the other hand, the work needed to
glue the information obtained from subinstances to obtain a solution for the
current instance can be seen as a variant of dynamic programming.

The basic idea of the divide and color technique for the LONGEST PATH
problem is to randomly assign each vertex of the graph G to either a set
L (left) or another set R (right) with equal probability and thus obtain
a partitioning of the vertices of the input graph. By doing this, we hope
that there is a k-path P such that the first [£] vertices of P are in L
and the last L%J vertices of P are in R. Observe that for a fixed k-path
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SivMpLE-RANDOMIZED-PATHS(X, £)
Input: A subset X C V(G) and an integer £, 1 < ¢ <k
Output: Dx ¢

If £ = 1, then return ﬁx,g[’u, v] =T for all v € X, L otherwise.
Uniformly at random partition X into L and R.

D, [g]::SIMPLE—RANDOMIZED—PATHS(L, ]'%])
b2

D, ¢ ,:=SmupLE-RaNDOMIZED-PaTHS(R, | £])
R, 3] 2

oE W

Return ﬁX’Z = ﬁL,(gl > BR,L%j

Fig. 5.1: A simple algorithm to find a path on k vertices

this happens with probability exactly 27%. After the partitioning we
recurse on the two induced graphs G[L] and G[R].

However, the naive implementation of this scheme gives a success proba-
bility worse than 2=°*) and hence cannot be used to obtain an algorithm
with running time 2°®)n°M) and constant success probability. We need two
additional ideas to make this scheme work. First, we need to define the recur-
sion step in a way that it considers all possible pairs of endpoints for the path.
We present first an algorithm implementing this idea. Then we improve the
algorithm further by observing that we can do better than selecting a single
random partition in each recursion step and then repeating the whole al-
gorithm several times to increase the probability of success. Instead, in each
recursive step, we create several random partitions and make several recursive
calls.

In order to combine the subpaths obtained from G[L] and G[R], we need
more information than just one k-vertex path from each side. For a given
subset X C V(G), a number ¢ € {1,...,k} and a pair of vertices v and v
of X let Dy ¢[u,v] denote a Boolean value equal to true if and only if there
exists an ¢-vertex path from u to v in G[X]. Note that for a fixed subset X,
we can consider Dx ¢ as an |X| x |X| matrix. In what follows, we describe a
procedure SIMPLE-RANDOMIZED-PATHS(X, £) that computes a matrix ﬁxj.
The relation between 5X7g and Dy ¢ is the following. If lA)Xﬁ[u,v] is true
for some u,v € X, then so is Dx ¢[u,v]. The crux of the method will be in
ensuring that if Dy ¢[u,v] is true for some fixed u and v, then Dy ¢[u, ] is
also true with sufficiently high probability. Thus, we will get a one-sided error
Monte Carlo algorithm.

Given a partition (L, R) of X, an |L| x |L| matrix A, and an |R| x |R|
matrix B, we define A 1 B as an | X| x | X| Boolean matrix D. For every pair
of vertices u,v € X we have D[u,v] equal to true if and only if u € L, v € R



110 5 Randomized methods in parameterized algorithms

and there is an edge zy € E(G[X]) such that € L, y € R and both Alu, x]
and By, v] are set to true. Then, (DL,(gw B DR,L%J)[U, v] is true if and only if

there exists an (-path P in G[X] from u to v, whose first [£] vertices belong
to L and the remaining |£] vertices belong to R. In particular, (DL,féT >
DR’ng)[u, v] implies Dx s[u,v]. The main observation is that if Dx ¢[u, v]
is true, then one can hope that the random choice of L and R partitions
the vertices of the path P correctly, i.e., so that (DL,(g] D DR7L§J)[“7 v]
is also true with some sufficiently large probability. Thus, we compute the

matrices DLJ%] and DR,L%J recursively by invoking SIMPLE-RANDOMIZED-

Parus(L, [£]) and SiMPLE-RANDOMIZED-PATHS(R, | £]), respectively, and

then return ﬁx,g =Dy ey ﬁR,L%J' For the base case in this recurrence,

we take £ = 1 and compute Dx ; = Dx ; directly from the definition.

Let us analyze the probability that, if Dx ¢[u,v] is true for some u,v €
V(G), then lA)X,g[u, v] is also true. For fixed ¢, by py denote the infinimum of
this probability for all graphs G, all sets X C V(G), and all vertices u,v € X.
If ¢ =1, then ﬁx,g = Dx ¢ and, consequently, p; = 1. Otherwise, let P be
any ¢-path in G[X] with endpoints u and v; we now analyze how the path P
can be “detected” by the algorithm. Let x be the [%W—th vertex on P (counting
from u), and let y be the successor of z on P. Moreover, let P, be the subpath
of P between u and x, inclusive, and let Pr be the subpath of P between y
and v, inclusive. Note that, P, has [£] vertices, Pr has | %] vertices and, as
t>1 5] <51 <

Observe that, with probability 27, all vertices of P are assigned to L
and all vertices of Pr are assigned to R. Moreover, if this is the case, then
both Dy rey [, 2] and Dg 4 [y, v] are true, with the paths Py, and Pg being

the respective witnesses. Consequently, lA)LJ%W [u, 2] and lA)R’ng [y, v] are both

true with probability at least PreipLL)- If this is the case, lA)X)g[u,v] is set
to true by the definition of the > product. Hence, we 