Forbidden Induced Subgraphs for Bounded Shrub-Depth Bounded SC-Depth with Applications in Logic

Nikolas Mählmann, University of Warsaw

LOGALG 2025

The order-property

Fix: logic $\mathcal{L} \in \{FO, MSO\}$, \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, graph class \mathcal{C}

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

The order-property

Fix: logic $\mathcal{L} \in \{FO, MSO\}$, \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, graph class \mathcal{C}

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \quad \Leftrightarrow \quad i \leq j.$$

Example FO: $\varphi(x,y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

The order-property

Fix: logic $\mathcal{L} \in \{FO, MSO\}$, \mathcal{L} -formula $\varphi(\bar{x}, \bar{y})$, graph class \mathcal{C}

 φ has the *order-property* on \mathcal{C} , if for every $\ell \in \mathbb{N}$ there is a graph $G \in \mathcal{C}$ and a sequence $\bar{a}_i, \ldots, \bar{a}_\ell$ of tuples of vertices of G, such that for all $i, j \in [\ell]$

$$G \models \varphi(\bar{a}_i, \bar{a}_j) \Leftrightarrow i \leq j.$$

Example FO: $\varphi(x,y) := "N(x) \supseteq N(y)"$

$$a_1 \prec_{\varphi} a_2 \prec_{\varphi} a_3 \prec_{\varphi} a_4$$

Example MSO: $\psi(x_1x_2, y_1y_2) :=$ "the interval $[x_1, x_2]$ contains $[y_1, y_2]$ "

$$p_1$$
 p_2 p_3 p_4 p_5 p_6

$$p_1p_6 \prec_{\psi} p_2p_6 \prec_{\psi} p_3p_6 \prec_{\psi} \cdots \prec_{\psi} p_6p_6$$

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

FO-stable:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

FO-unstable:

- half-graphs
- the class of all 1-subdivided graphs

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

FO-stable:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

MSO-stable:

- bounded tree-depth
- bounded shrub-depth

FO-unstable:

- half-graphs
- the class of all 1-subdivided graphs

MSO-unstable:

paths

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

FO-stable:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

MSO-stable:

- bounded tree-depth
- bounded shrub-depth

FO-unstable:

- half-graphs
- the class of all 1-subdivided graphs

MSO-unstable:

paths

Hereditary FO-stable classes are very well-behaved: various combinatorial characterizations, fpt FO model checking...

For a logic \mathcal{L} , a graph class \mathcal{C} is \mathcal{L} -stable, if no \mathcal{L} -formula has the order-property on \mathcal{C} .

FO-stable:

- planar graphs
- map graphs
- bounded tree-width
- bounded degree

MSO-stable:

- bounded tree-depth
- bounded shrub-depth

FO-unstable:

- half-graphs
- the class of all 1-subdivided graphs

MSO-unstable:

paths

Hereditary FO-stable classes are very well-behaved: various combinatorial characterizations, fpt FO model checking...

What about hereditary MSO-stable classes?

For every hereditary graph class \mathcal{C} , the following are equivalent:

1. C has bounded SC-depth (shrub-depth)

5. \mathcal{C} is MSO-stable

For every hereditary graph class C, the following are equivalent:

1. C has bounded SC-depth (shrub-depth)

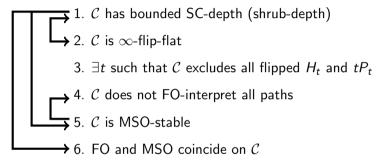
3. $\exists t$ such that $\mathcal C$ excludes all flipped H_t and tP_t

5. \mathcal{C} is MSO-stable

For every hereditary graph class \mathcal{C} , the following are equivalent:

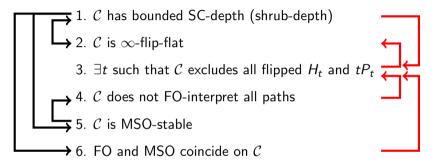
- 1. C has bounded SC-depth (shrub-depth)
- 2. C is ∞ -flip-flat
- 3. $\exists t$ such that $\mathcal C$ excludes all flipped H_t and tP_t
- 4. $\mathcal C$ does not FO-interpret all paths
- 5. \mathcal{C} is MSO-stable
- 6. FO and MSO coincide on ${\cal C}$

For every hereditary graph class \mathcal{C} , the following are equivalent:



- $1\Leftrightarrow 2$: [Dreier, NM, Toruńczyk; 2024] and [Ossona de Mendez, Pilipczuk, Siebertz; 2022]
- $1\Rightarrow5$: [Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez, Ramadurai; 2012]
- $1 \Rightarrow 6 \colon [\mathsf{Gajarsk\acute{y}} \ \mathsf{and} \ \mathsf{Hlin\check{e}n\acute{y}}; \ \mathsf{2015}], \ [\mathsf{Chen} \ \mathsf{and} \ \mathsf{Flum}; \ \mathsf{2020}] \quad \ 5 \Rightarrow 4 \colon \ [\mathsf{trivial}]$

For every hereditary graph class \mathcal{C} , the following are equivalent:

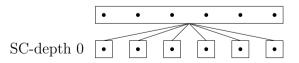


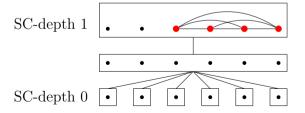
- $1 \Leftrightarrow 2 \colon [\mathsf{Dreier},\,\mathsf{NM},\,\mathsf{Toru\'nczyk};\,\mathsf{2024}] \;\mathsf{and}\; [\mathsf{Ossona}\;\mathsf{de}\;\mathsf{Mendez},\,\mathsf{Pilipczuk},\,\mathsf{Siebertz};\,\mathsf{2022}]$
- $1\Rightarrow5$: [Ganian, Hliněný, Nešetřil, Obdržálek, Ossona de Mendez, Ramadurai; 2012]
- $1\Rightarrow$ 6: [Gajarský and Hliněný; 2015], [Chen and Flum; 2020] $$ 5 \Rightarrow 4: [trivial]

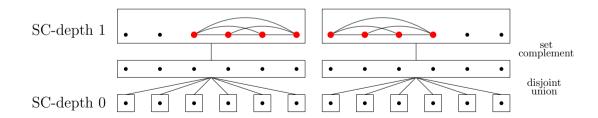
 $SC_0 := \{K_1\}, \quad SC_{k+1} := \textit{set complements} \text{ of a disjoint unions of graphs from } SC_k.$

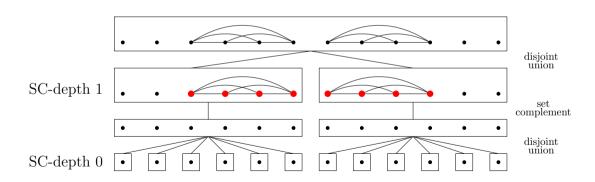
SC-depth $0 \bullet \bullet \bullet \bullet \bullet$

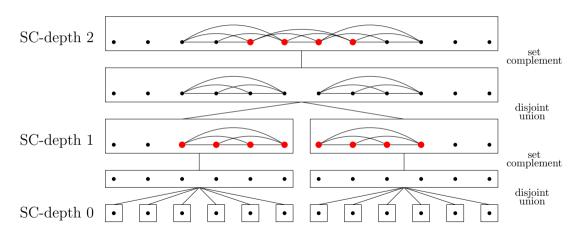
 $SC_0 := \{K_1\}, SC_{k+1} := set \ complements \ of \ a \ disjoint \ unions \ of \ graphs \ from \ SC_k.$



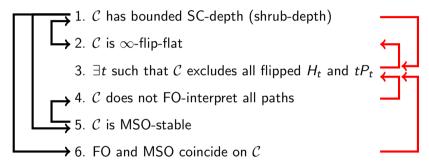




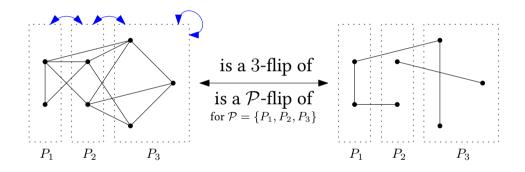




For every hereditary graph class C, the following are equivalent:



Flips



A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

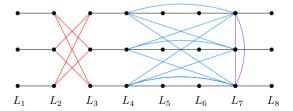
A class C has bounded SC-depth iff there is $t \in \mathbb{N}$ such that C excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t$; flipped $H_t = \{P_1, P_2\}$ -flip of H_t .

A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

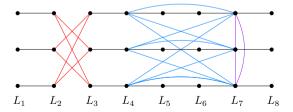
 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{flip of } tP_t \text{ respecting layers.}$



A class $\mathcal C$ has bounded SC-depth iff there is $t \in \mathbb N$ such that $\mathcal C$ excludes all flipped H_t and all flipped tP_t as induced subgraphs.

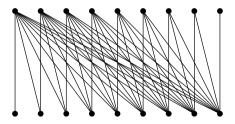
 $H_t = \text{half-graph of order } t; \quad \text{flipped } H_t = \{P_1, P_2\}\text{-flip of } H_t.$

 $tP_t = \text{disjoint union of } t \text{ many } P_t$; flipped $tP_t = \text{flip of } tP_t \text{ respecting layers.}$

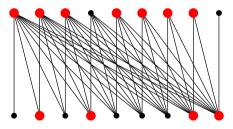


Next up: large flipped H_t and $tP_t \Rightarrow$ large SC-depth

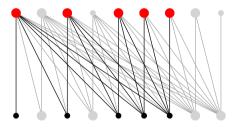
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



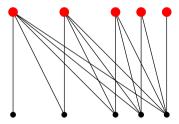
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



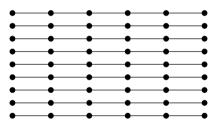
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



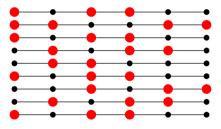
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



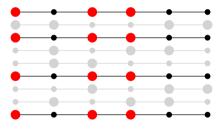
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



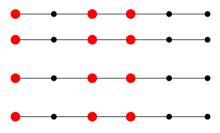
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.



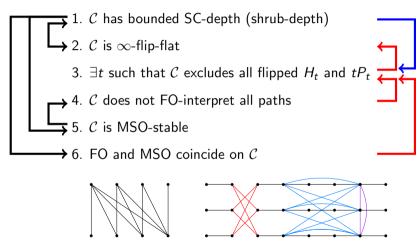
Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.

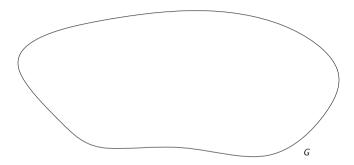


Huge flipped H_t or $tP_t \Rightarrow$ large flipped H_s or sP_s in every set complement.

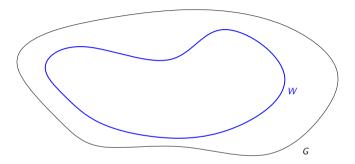


For every hereditary graph class C, the following are equivalent:

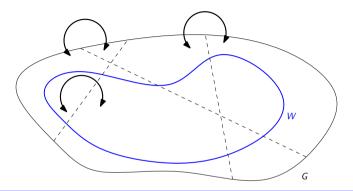




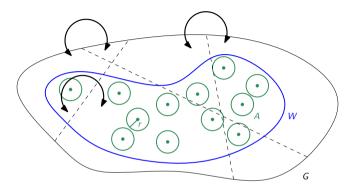
Flip-flatness (slightly informal)



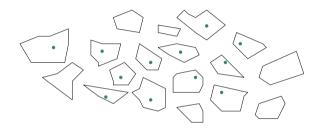
Flip-flatness (slightly informal)



Flip-flatness (slightly informal)

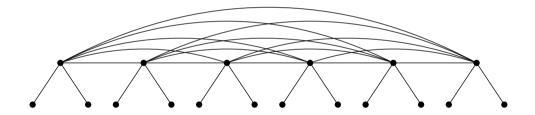


Flip-flatness (slightly informal)

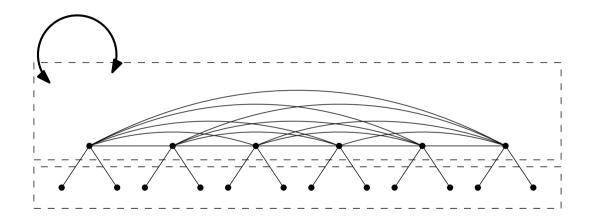


Flip-flatness (slightly informal)

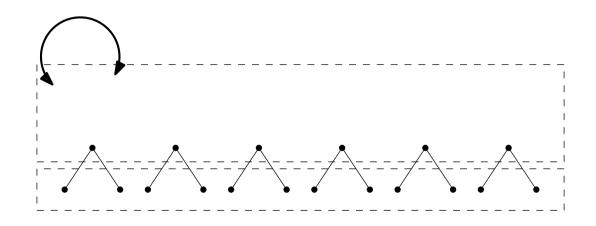
Flip-flatness example



Flip-flatness example



Flip-flatness example



Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is r-scattered after performing a k-flip of G.

Theorem

For every hereditary graph class C:

- C is FO-stable iff C is r-flip-flat for every $r \in \mathbb{N}$. [Dreier, NM, Siebertz, Toruńczyk; 2023]
- C has bd. SC-depth iff C is ∞ -flip-flat.

[Dreier, NM, Toruńczyk; 2024]

[Ossona de Mendez, Pilipczuk, Siebertz; 2022]

Flip-flatness (slightly informal)

A class C is r-flip-flat if in every large set W we find a still large set A that is r-scattered after performing a k-flip of G.

Theorem

For every hereditary graph class C:

- $\mathcal C$ is FO-stable iff $\mathcal C$ is r-flip-flat for every $r\in\mathbb N$. [Dreier, NM, Siebertz, Toruńczyk; 2023]
- C has bd. SC-depth iff C is ∞ -flip-flat.

[Dreier, NM, Toruńczyk; 2024]

[Ossona de Mendez, Pilipczuk, Siebertz; 2022]

The plan:

t-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

t-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

Case 1: Many balls whose outermost BFS layer is empty: this is ∞-flip-flatness ✓

t-flip-flat + no large flipped $tP_t \Rightarrow \infty$ -flip-flat

Apply t-flip-flatness. Result: many disjoint radius-t balls in a k-flip.

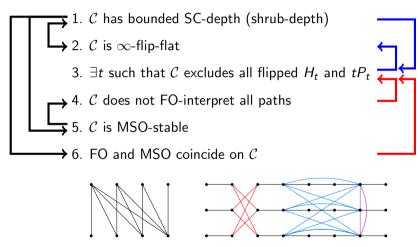
Case 1: Many balls whose outermost BFS layer is empty: this is ∞-flip-flatness ✓

Case 2: Many balls whose outermost layer is non-empty: flipped tP_t ; contradiction!



Main result

For every hereditary graph class \mathcal{C} , the following are equivalent:



The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

The expressive power of MSO

FO and MSO have the same expressive power on a graph class $\mathcal C$ if for every MSO-sentence φ there is an FO-sentence ψ such that for all $G \in \mathcal C$:

$$G \models \varphi \Leftrightarrow G \models \psi.$$

Theorem [Gajarský and Hliněný; 2015]

FO and MSO have the same expressive power on every class of bounded SC-depth.

Theorem [this paper]

MSO is more expressive than FO on every hereditary class of unbounded SC-depth.

"Philosophical meaning": MSO is more expressive than FO iff there are long orders.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

Quantify 2-coloring and check if the endpoints have different colors.

Separating MSO and FO on flipped half-graphs

We first separate MSO and FO on the class of paths.

Even length on paths is expressible in MSO:

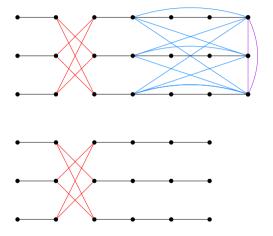
Quantify 2-coloring and check if the endpoints have different colors.

Even length on paths is not expressible in FO. (Ehrenfeucht-Fraissé Games)

(In)expressibility lifts to flipped half-graphs. \checkmark

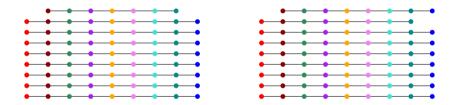
Separating MSO and FO on flipped tP_t

The flipped tP_t in $\mathcal C$ could be totally different from the flipped $(t+1)P_{t+1}$ in $\mathcal C$.



Separating MSO and FO on flipped tP_t

We separate two induced subgraphs of the same flipped tP_t :



FO cannot distinguish between the above two graphs (Hanf Locality), but MSO can.

Main result

For every hereditary graph class C, the following are equivalent:

