Combinatorial Characterizations for Monadically Stable and Monadically NIP Graph Classes

Nikolas Mählmann¹

joint work with: Jan Dreier², Sebastian Siebertz³, Szymon Toruńczyk⁴

AlMoTh 2024 - 29.02.2024

¹University of Bremen

²TU Wien

³University of Bremen

⁴University of Warsaw

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

The FO Model Checking Problem

Problem: Given a graph G and an FO sentence φ , decide whether

$$G \models \varphi$$
.

Example: G contains a dominating set of size k iff.

$$G \models \exists x_1 \ldots \exists x_k \forall y : \bigvee_{i \in [k]} (y = x_i \lor y \sim x_i).$$

Question: On which classes is FO model checking fixed-parameter tractable, i.e., solvable in time $f(\varphi) \cdot n^c$?

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

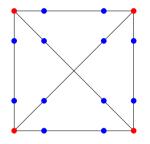


Figure: The 2-subdivided K_4 .

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...

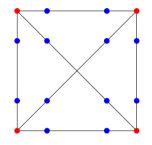


Figure: The 2-subdivided K_4 .

Nowhere Dense Classes of Graphs

Definition [Něsetřil, Ossona de Mendez, 2011]

A class C is nowhere dense, if for every r there exists k such C that does not contain the r-subdivided clique of size k as a subgraph.

Generalizes many notions of sparsity such as: bounded degree, bounded treewidth, planarity, excluding a minor, ...

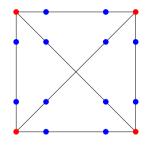


Figure: The 2-subdivided K_4 .

Theorem [Grohe, Kreutzer, Siebertz, 2014]

Let $\mathcal C$ be a *monotone* class of graphs. If $\mathcal C$ is nowhere dense, then FO model checking on $\mathcal C$ can be done in time $f(\varphi,\varepsilon)\cdot n^{1+\varepsilon}$ for every $\varepsilon>0$. Otherwise it is AW[*]-hard.

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

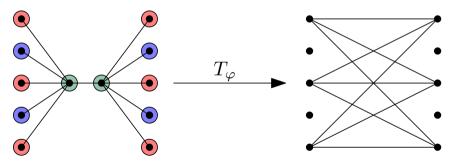
How to produce well behaved hereditary classes from sparse classes?

FO Transductions

To go beyond sparse classes, we need to shift from monotone to hereditary classes.

How to produce well behaved hereditary classes from sparse classes?

Transductions $\hat{=}$ coloring + interpreting + taking an induced subgraph



$$\varphi(x,y) := \operatorname{Red}(x) \wedge \operatorname{Red}(y) \wedge \operatorname{dist}(x,y) = 3$$

Monadic Stability and Monadic NIP

Definition

A class $\mathcal C$ is *structurally nowhere dense*, if there exists a transduction $\mathcal T$ and a nowhere dense class $\mathcal D$ such that $\mathcal C\subseteq \mathcal T(\mathcal D)$.

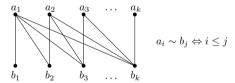
Monadic Stability and Monadic NIP

Definition

A class C is *structurally nowhere dense*, if there exists a transduction T and a nowhere dense class D such that $C \subseteq T(D)$.

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.



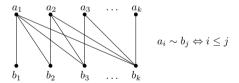
Monadic Stability and Monadic NIP

Definition

A class $\mathcal C$ is *structurally nowhere dense*, if there exists a transduction $\mathcal T$ and a nowhere dense class $\mathcal D$ such that $\mathcal C\subseteq \mathcal T(\mathcal D)$.

Definition

A class is monadically stable, if it does not transduce the class of all half graphs.



Definition

A class is monadically NIP, if it does not transduce the class of all graphs.

Limits of Tractability

Theorem

Model checking is fixed-parameter tractable on classes that are

- nowhere dense [Grohe, Kreutzer, Siebertz, 2014]
 - structurally nowhere dense

[Dreier, Mählmann, Siebertz, 2023]

monadically stable

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Limits of Tractability

Theorem

Model checking is fixed-parameter tractable on classes that are

nowhere dense

[Grohe, Kreutzer, Siebertz, 2014]

structurally nowhere dense

[Dreier, Mählmann, Siebertz, 2023]

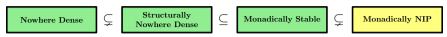
monadically stable

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Model checking is AW[*]-hard on every hereditary class that is **not** monadically NIP.

Limits of Tractability



Theorem

Model checking is fixed-parameter tractable on classes that are

nowhere dense

[Grohe, Kreutzer, Siebertz, 2014]

structurally nowhere dense

[Dreier, Mählmann, Siebertz, 2023]

monadically stable

[Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Model checking is AW[*]-hard on every hereditary class that is **not** monadically NIP.

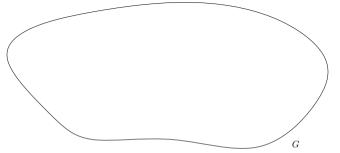
Conjecture

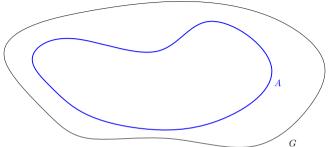
A hereditary class has fpt model checking iff it is monadically NIP.

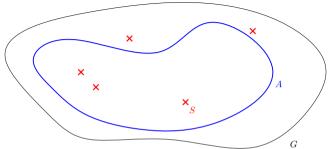
Agenda

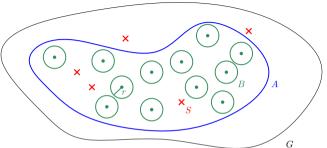
Goals for today:

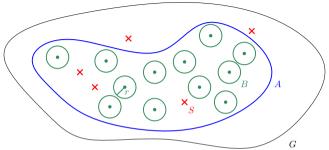
- 1. Define and motivate mon. stable and mon. NIP classes.
- 2. Give combinatorial structure characterizations of the two.
 - Build the foundation for fpt model checking.
 - Reveal connections to nowhere denseness and other graph parameters.
- 3. Give combinatorial non-structure characterizations of the two.
 - Various hardness results are implied.





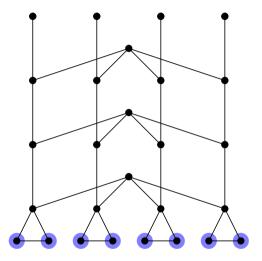


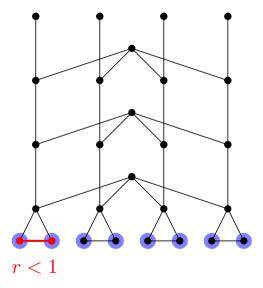


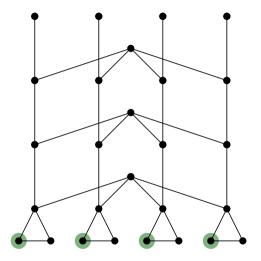


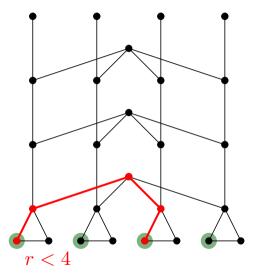
Uniform Quasi-Wideness (slightly informal)

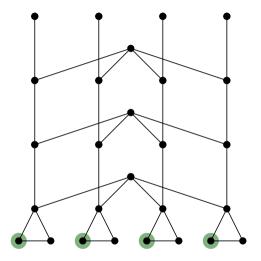
A class C is *uniformly quasi-wide* if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

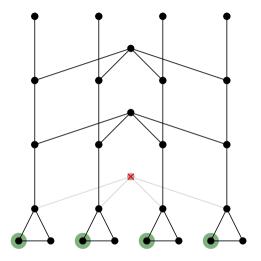


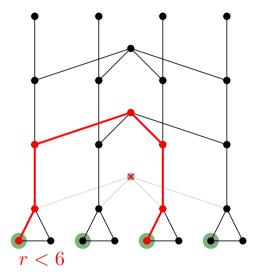


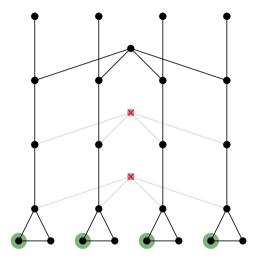


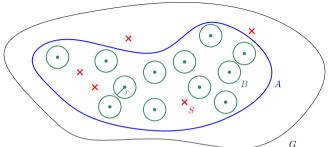












Uniform Quasi-Wideness (slightly informal)

A class C is *uniformly quasi-wide* if for every radius r, in every large set A we find a still large set B that is r-independent after removing a set S of constantly many vertices.

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class C is uniformly quasi-wide if and only if it is nowhere dense.

Flips

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class $\ensuremath{\mathcal{C}}$ is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

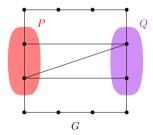
Flips

Theorem [Něsetřil, Ossona de Mendez, 2011]

A class $\mathcal C$ is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.



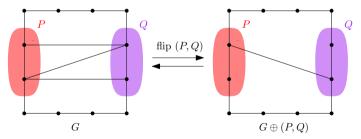
Flips

Theorem [Něsetřil, Ossona de Mendez, 2011]

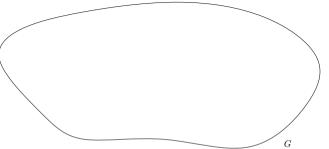
A class $\mathcal C$ is uniformly quasi-wide if and only if it is nowhere dense.

Question: Similar combinatorial characterizations for monadic stability/NIP?

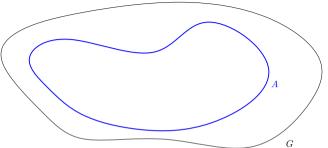
Denote by $G \oplus (P, Q)$ the graph obtained from G by complementing edges between pairs of vertices from $P \times Q$.



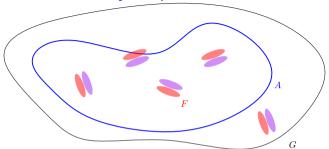
Characterizing Monadic Stability: Flip-Flatness



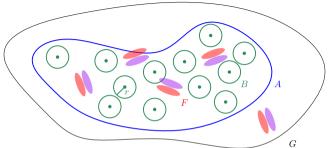
Characterizing Monadic Stability: Flip-Flatness



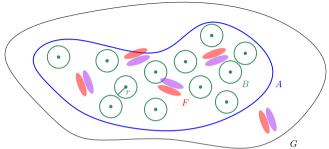
Characterizing Monadic Stability: Flip-Flatness



Characterizing Monadic Stability: Flip-Flatness

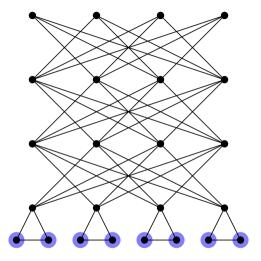


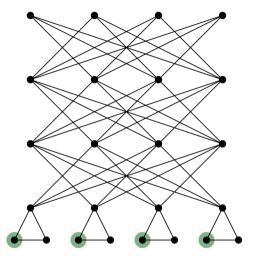
Characterizing Monadic Stability: Flip-Flatness

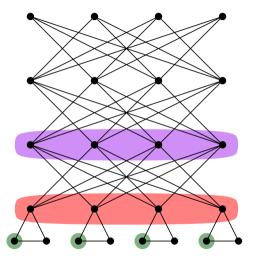


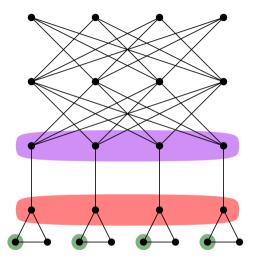
Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

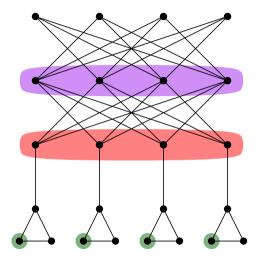
A class C is *flip-flat* if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

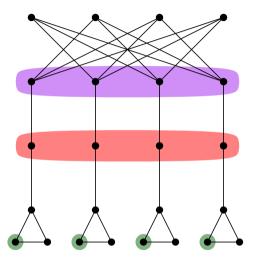




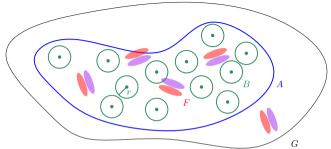








Characterizing Monadic Stability: Flip-Flatness



Flip-Flatness (slightly informal) [Gajarský, Kreutzer]

A class C is *flip-flat* if for every radius r, in every large set A we find a still large set B that is r-independent after performing a set F of constantly many flips.

Theorem [Dreier, Mählmann, Siebertz, Toruńczyk, 2022]

A class $\mathcal C$ is flip-flat if and only if it is monadically stable.

Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

ullet flip-flatness o flipper game

Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

ullet flip-flatness o flipper game

Quantitative properties of monadic stability:

ullet almost linear neighborhood complexity o neighborhood covers

Flip-Flatness: Towards Model Checking

Qualitative properties of monadic stability:

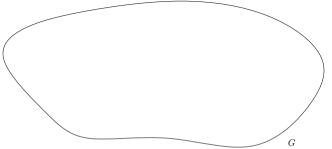
flip-flatness → flipper game

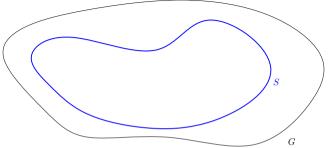
Quantitative properties of monadic stability:

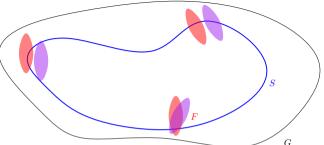
ullet almost linear neighborhood complexity o neighborhood covers

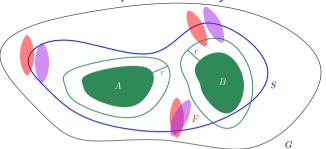
To solve model checking we combine both aspects to build:

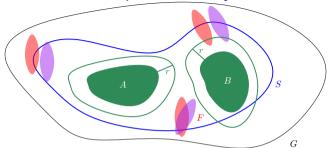
• small treelike neighborhood decompositions of bounded depth





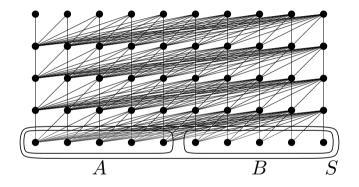


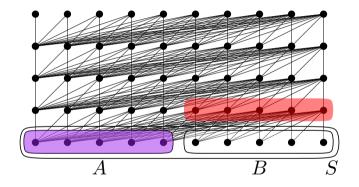


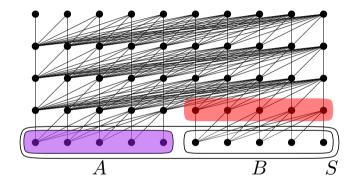


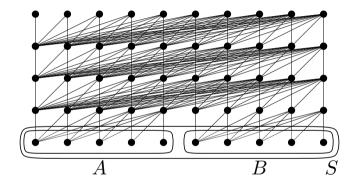
Flip-Breakability (slightly informal)

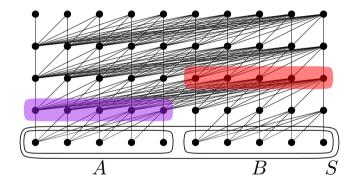
A class $\mathcal C$ is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N^r_{G \oplus F}(A) \cap N^r_{G \oplus F}(B) = \emptyset$.

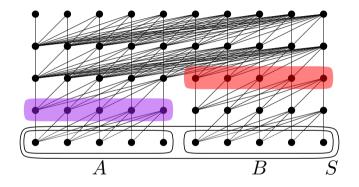


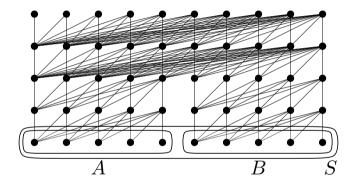


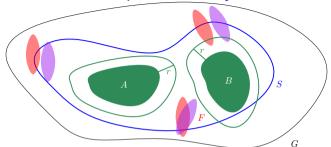












Flip-Breakability (slightly informal)

A class \mathcal{C} is *flip-breakable* if for every radius r, in every large set S we find two large sets A and B that and a flip F of bounded size such that $N_{G \oplus F}^r(A) \cap N_{G \oplus F}^r(B) = \emptyset$.

Theorem [Dreier, Mählmann, Toruńczyk, 2024]

A class C is flip-breakable if and only if it is monadically NIP.

1. We modify a graph using either flips or vertex deletions.

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

- 1. We modify a graph using either flips or vertex deletions.
- We demand our resulting set is either flat or broken.flat: pairwise separated; broken: separated into two large sets
- 3. Separation means either distance-r or distance- ∞ .

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	
$dist\text{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-		
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-		

- 1. We modify a graph using either flips or vertex deletions.
- 2. We demand our resulting set is either flat or broken.

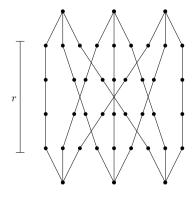
flat: pairwise separated; broken: separated into two large sets

		flatness	breakability
dist-r	flip-	monadic stability	monadic NIP
	deletion-	nowhere denseness	nowhere denseness
$dist ext{-}\infty$	flip-	bd. shrubdepth	bd. cliquewidth
	deletion-	bd. treedepth	bd. treewidth

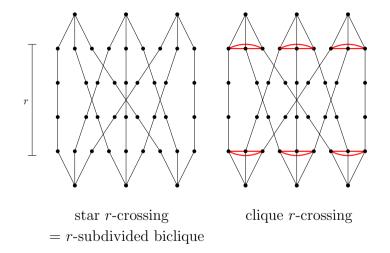
Agenda

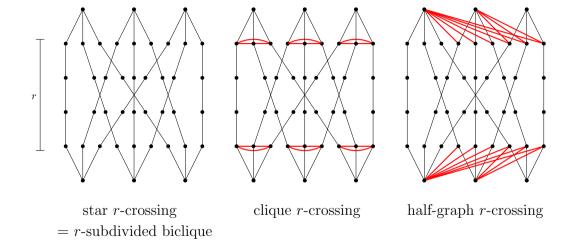
Goals for today:

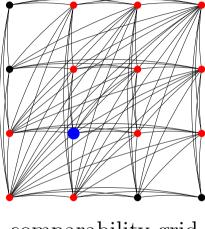
- 1. Define and motivate mon. stable and mon. NIP classes.
- 2. Give combinatorial structure characterizations of the two.
 - Build the foundation for fpt model checking.
 - Reveal connections to nowhere denseness and other graph parameters.
- 3. Give combinatorial non-structure characterizations of the two.
 - Various hardness results are implied.



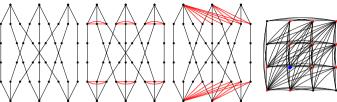
 $\begin{array}{l} {\rm star} \ r{\rm -crossing} \\ = r{\rm -subdivided} \ {\rm biclique} \end{array}$







comparability grid

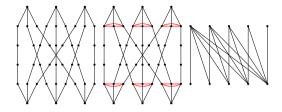


Theorem [Dreier, Mählmann, Toruńczyk, 2024]

Let $\mathcal C$ be a graph class. Then $\mathcal C$ is monadically NIP if and only if for every $r\geq 1$ there exists $k\in\mathbb N$ such $\mathcal C$ excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all layerwise flipped half-graph r-crossings of order k, and
- the comparability grid of order k.
- \Rightarrow Model checking is hard on every hereditary graph class that is not monadically NIP.

Characterizing Monadic Stability by Forbidden Induced Subgraphs

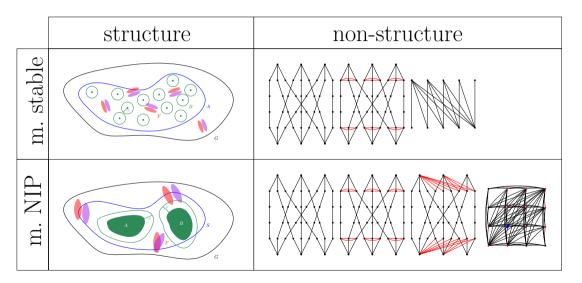


Theorem [Dreier, Eleftheriadis, Mählmann, McCarty, Pilipczuk, Toruńczyk, 2023]

Let \mathcal{C} be a graph class. Then \mathcal{C} is monadically stable if and only if for every $r \geq 1$ there exists $k \in \mathbb{N}$ such \mathcal{C} excludes as induced subgraphs

- all layerwise flipped star r-crossings of order k, and
- all layerwise flipped clique r-crossings of order k, and
- all semi-induced halfgraphs of order k

Summary



25 / 25

Vielen Dank!