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Advancing mathematics by guiding human 
intuition with AI

Alex Davies1 ✉, Petar Veličković1, Lars Buesing1, Sam Blackwell1, Daniel Zheng1, 
Nenad Tomašev1, Richard Tanburn1, Peter Battaglia1, Charles Blundell1, András Juhász2, 
Marc Lackenby2, Geordie Williamson3, Demis Hassabis1 & Pushmeet Kohli1 ✉

The practice of mathematics involves discovering patterns and using these to 
formulate and prove conjectures, resulting in theorems. Since the 1960s, 
mathematicians have used computers to assist in the discovery of patterns and 
formulation of conjectures1, most famously in the Birch and Swinnerton-Dyer 
conjecture2, a Millennium Prize Problem3. Here we provide examples of new 
fundamental results in pure mathematics that have been discovered with the 
assistance of machine learning—demonstrating a method by which machine learning 
can aid mathematicians in discovering new conjectures and theorems. We propose a 
process of using machine learning to discover potential patterns and relations 
between mathematical objects, understanding them with attribution techniques and 
using these observations to guide intuition and propose conjectures. We outline this 
machine-learning-guided framework and demonstrate its successful application to 
current research questions in distinct areas of pure mathematics, in each case 
showing how it led to meaningful mathematical contributions on important open 
problems: a new connection between the algebraic and geometric structure of knots, 
and a candidate algorithm predicted by the combinatorial invariance conjecture for 
symmetric groups4. Our work may serve as a model for collaboration between the 
fields of mathematics and artificial intelligence (AI) that can achieve surprising results 
by leveraging the respective strengths of mathematicians and machine learning.

One of the central drivers of mathematical progress is the discovery 
of patterns and formulation of useful conjectures: statements that 
are suspected to be true but have not been proven to hold in all cases. 
Mathematicians have always used data to help in this process—from 
the early hand-calculated prime tables used by Gauss and others that 
led to the prime number theorem5, to modern computer-generated 
data1,5 in cases such as the Birch and Swinnerton-Dyer conjecture2. 
The introduction of computers to generate data and test conjectures 
afforded mathematicians a new understanding of problems that were 
previously inaccessible6, but while computational techniques have 
become consistently useful in other parts of the mathematical pro-
cess7,8, artificial intelligence (AI) systems have not yet established a 
similar place. Prior systems for generating conjectures have either 
contributed genuinely useful research conjectures9 via methods that 
do not easily generalize to other mathematical areas10, or have dem-
onstrated novel, general methods for finding conjectures11 that have 
not yet yielded mathematically valuable results.

AI, in particular the field of machine learning12–14, offers a collec-
tion of techniques that can effectively detect patterns in data and has 
increasingly demonstrated utility in scientific disciplines15. In math-
ematics, it has been shown that AI can be used as a valuable tool by 
finding counterexamples to existing conjectures16, accelerating calcu-
lations17, generating symbolic solutions18 and detecting the existence 
of structure in mathematical objects19. In this work, we demonstrate 

that AI can also be used to assist in the discovery of theorems and con-
jectures at the forefront of mathematical research. This extends work 
using supervised learning to find patterns20–24 by focusing on enabling 
mathematicians to understand the learned functions and derive useful 
mathematical insight. We propose a framework for augmenting the 
standard mathematician’s toolkit with powerful pattern recognition 
and interpretation methods from machine learning and demonstrate 
its value and generality by showing how it led us to two fundamental 
new discoveries, one in topology and another in representation theory. 
Our contribution shows how mature machine learning methodologies 
can be adapted and integrated into existing mathematical workflows 
to achieve novel results.

Guiding mathematical intuition with AI
A mathematician’s intuition plays an enormously important role in 
mathematical discovery—“It is only with a combination of both rigor-
ous formalism and good intuition that one can tackle complex math-
ematical problems”25. The following framework, illustrated in Fig. 1, 
describes a general method by which mathematicians can use tools 
from machine learning to guide their intuitions concerning complex 
mathematical objects, verifying their hypotheses about the existence 
of relationships and helping them understand those relationships. We 
propose that this is a natural and empirically productive way that these 
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well-understood techniques in statistics and machine learning can be 
used as part of a mathematician’s work.

Concretely, it helps guide a mathematician’s intuition about the 
relationship between two mathematical objects X(z) and Y(z) associ-
ated with z by identifying a function f̂  such that f̂ (X(z))  ≈ Y(z) and 
analysing it to allow the mathematician to understand properties of 
the relationship. As an illustrative example: let z be convex polyhedra, 
X(z) ∈ Z R×2 2 be the number of vertices and edges of z, as well as the 
volume and surface area, and Y(z) ∈ ℤ be the number of faces of z. 
Euler’s formula states that there is an exact relationship between X(z) 
and Y(z) in this case: X(z) · (−1, 1, 0, 0) + 2 = Y(z). In this simple example, 
among many other ways, the relationship could be rediscovered by 
the traditional methods of data-driven conjecture generation1. How-
ever, for X(z) and Y(z) in higher-dimensional spaces, or of more complex 
types, such as graphs, and for more complicated, nonlinear f̂ , this 
approach is either less useful or entirely infeasible.

The framework helps guide the intuition of mathematicians in two 
ways: by verifying the hypothesized existence of structure/patterns in 
mathematical objects through the use of supervised machine learning; 
and by helping in the understanding of these patterns through the use 
of attribution techniques.

In the supervised learning stage, the mathematician proposes a 
hypothesis that there exists a relationship between X(z) and Y(z). By 
generating a dataset of X(z) and Y(z) pairs, we can use supervised learn-
ing to train a function f̂  that predicts Y(z), using only X(z) as input. The 
key contributions of machine learning in this regression process are 
the broad set of possible nonlinear functions that can be learned given 
a sufficient amount of data. If f̂  is more accurate than would be 
expected by chance, it indicates that there may be such a relationship 
to explore. If so, attribution techniques can help in the understanding 
of the learned function f̂  sufficiently for the mathematician to conjec-
ture a candidate f′. Attribution techniques can be used to understand 
which aspects of f̂  are relevant for predictions of Y(z). For example, 
many attribution techniques aim to quantify which component of X(z) 
the function f̂  is sensitive to. The attribution technique we use in our 
work, gradient saliency, does this by calculating the derivative of out-
puts of f̂ , with respect to the inputs. This allows a mathematician to 
identify and prioritize aspects of the problem that are most likely to 
be relevant for the relationship. This iterative process might need to 
be repeated several times before a viable conjecture is settled on. In 
this process, the mathematician can guide the choice of conjectures 
to those that not just fit the data but also seem interesting, plausibly 
true and, ideally, suggestive of a proof strategy.

Conceptually, this framework provides a ‘test bed for intuition’—
quickly verifying whether an intuition about the relationship between 
two quantities may be worth pursuing and, if so, guidance as to how 

they may be related. We have used the above framework to help math-
ematicians to obtain impactful mathematical results in two cases—dis-
covering and proving one of the first relationships between algebraic 
and geometric invariants in knot theory and conjecturing a resolution 
to the combinatorial invariance conjecture for symmetric groups4, 
a well-known conjecture in representation theory. In each area, we 
demonstrate how the framework has successfully helped guide the 
mathematician to achieve the result. In each of these cases, the neces-
sary models can be trained within several hours on a machine with a 
single graphics processing unit.

Topology
Low-dimensional topology is an active and influential area of mathemat-
ics. Knots, which are simple closed curves in 3R , are one of the key objects 
that are studied, and some of the subject’s main goals are to classify 
them, to understand their properties and to establish connections with 
other fields. One of the principal ways that this is carried out is through 
invariants, which are algebraic, geometric or numerical quantities that 
are the same for any two equivalent knots. These invariants are derived 
in many different ways, but we focus on two of the main categories: 
hyperbolic invariants and algebraic invariants. These two types of 
invariants are derived from quite different mathematical disciplines, 
and so it is of considerable interest to establish connections between 
them. Some examples of these invariants for small knots are shown in 
Fig. 2. A notable example of a conjectured connection is the volume 
conjecture26, which proposes that the hyperbolic volume of a knot (a 
geometric invariant) should be encoded within the asymptotic behav-
iour of its coloured Jones polynomials (which are algebraic invariants).

Our hypothesis was that there exists an undiscovered relationship 
between the hyperbolic and algebraic invariants of a knot. A supervised 
learning model was able to detect the existence of a pattern between a 
large set of geometric invariants and the signature σ(K), which is known 
to encode important information about a knot K, but was not previously 
known to be related to the hyperbolic geometry. The most relevant 
features identified by the attribution technique, shown in Fig. 3a, were 
three invariants of the cusp geometry, with the relationship visualized 
partly in Fig. 3b. Training a second model with X(z) consisting of only 
these measurements achieved a very similar accuracy, suggesting that 
they are a sufficient set of features to capture almost all of the effect of 
the geometry on the signature. These three invariants were the real and 
imaginary parts of the meridional translation μ and the longitudinal 
translation λ. There is a nonlinear, multivariate relationship between 
these quantities and the signature. Having been guided to focus on 
these invariants, we discovered that this relationship is best understood 
by means of a new quantity, which is linearly related to the signature. 

Hypothesize
∃f: f(X(z)) ≈ Y(z)

Generate data
(X(z), Y(z))z~Pz

Train supervised model
f(X(z)) ≈ Y(z)

Find patterns via attribution
Interrogate f̂ˆ

Conjecture candidate f′

Prove theoremMathematician steps

Computational steps

Reformulate hypothesis

Alter sampling
distribution

Fig. 1 | Flowchart of the framework. The process helps guide a mathematician’s 
intuition about a hypothesized function f, by training a machine learning model to 
estimate that function over a particular distribution of data PZ. The insights from 

the accuracy of the learned function f̂  and attribution techniques applied to it 
can aid in the understanding of the problem and the construction of a closed-form 
f′. The process is iterative and interactive, rather than a single series of steps.
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We introduce the ‘natural slope’, defined to be slope(K) = Re(λ/μ), where 
Re denotes the real part. It has the following geometric interpretation. 
One can realize the meridian curve as a geodesic γ on the Euclidean 
torus. If one fires off a geodesic γ⊥ from this orthogonally, it will even-
tually return and hit γ at some point. In doing so, it will have travelled 
along a longitude minus some multiple of the meridian. This multiple 
is the natural slope. It need not be an integer, because the endpoint of 
γ⊥ might not be the same as its starting point. Our initial conjecture 
relating natural slope and signature was as follows.
Conjecture: There exist constants c1 and c2 such that, for every hyper-
bolic knot K,

σ K K c K c|2 ( ) − slope( )| < vol( ) + (1)1 2

While this conjecture was supported by an analysis of several large 
datasets sampled from different distributions, we were able to con-
struct counterexamples using braids of a specific form. Subsequently, 
we were able to establish a relationship between slope(K), signature 
σ(K), volume vol(K) and one of the next most salient geometric invari-
ants, the injectivity radius inj(K) (ref. 27).
Theorem: There exists a constant c such that, for any hyperbolic knot K,

σ K K c K K|2 ( ) − slope( )| ≤ vol( )inj( ) (2)−3

It turns out that the injectivity radius tends not to get very small, 
even for knots of large volume. Hence, the term inj(K)−3 tends not to get 
very large in practice. However, it would clearly be desirable to have a 
theorem that avoided the dependence on inj(K)−3, and we give such a 

result that instead relies on short geodesics, another of the most salient 
features, in the Supplementary Information. Further details and a full 
proof of the above theorem are available in ref. 27. Across the datasets 
we generated, we can place a lower bound of c ≥ 0.23392, and it would 
be reasonable to conjecture that c is at most 0.3, which gives a tight 
relationship in the regions in which we have calculated.

The above theorem is one of the first results that connect the alge-
braic and geometric invariants of knots and has various interesting 
applications. It directly implies that the signature controls the 
non-hyperbolic Dehn surgeries on the knot and that the natural slope 
controls the genus of surfaces in R+

4 whose boundary is the knot. We 
expect that this newly discovered relationship between natural slope 
and signature will have many other applications in low-dimensional 
topology. It is surprising that a simple yet profound connection such 
as this has been overlooked in an area that has been extensively studied.

Representation theory
Representation theory is the theory of linear symmetry. The building 
blocks of all representations are the irreducible ones, and understand-
ing them is one of the most important goals of representation theory. 
Irreducible representations generalize the fundamental frequencies of 
Fourier analysis28. In several important examples, the structure of irreduc-
ible representations is governed by Kazhdan–Lusztig (KL) polynomials, 
which have deep connections to combinatorics, algebraic geometry and 
singularity theory. KL polynomials are polynomials attached to pairs of 
elements in symmetric groups (or more generally, pairs of elements in 

z: Knot X(z): Geometric invariants Y(z): Algebraic invariants

Volume Signature Jones polynomial ......Chern–Simons Meridional translation

2.0299 i ... 0 t−2 − t−1 + 1 − t + t2 ...

2.8281 0.7381 + 0.8831i ... –2 t − t2 + 2t3 − t4 + t5 − t6 ...

3.1640

0

–0.1532

0.1560 –0.7237 + 1.0160i ... 0 t−2 − t−1 + 2 − 2t + t2 − t3 + t4 ...

Fig. 2 | Examples of invariants for three hyperbolic knots. We hypothesized that there was a previously undiscovered relationship between the geometric and 
algebraic invariants.
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Coxeter groups). The combinatorial invariance conjecture is a fascinating 
open conjecture concerning KL polynomials that has stood for 40 years, 
with only partial progress29. It states that the KL polynomial of two ele-
ments in a symmetric group SN can be calculated from their unlabelled 
Bruhat interval30, a directed graph. One barrier to progress in understand-
ing the relationship between these objects is that the Bruhat intervals for 
non-trivial KL polynomials (those that are not equal to 1) are very large 
graphs that are difficult to develop intuition about. Some examples 
of small Bruhat intervals and their KL polynomials are shown in Fig. 4.

We took the conjecture as our initial hypothesis, and found that a 
supervised learning model was able to predict the KL polynomial from 
the Bruhat interval with reasonably high accuracy. By experimenting on 
the way in which we input the Bruhat interval to the network, it became 
apparent that some choices of graphs and features were particularly con-
ducive to accurate predictions. In particular, we found that a subgraph 
inspired by prior work31 may be sufficient to calculate the KL polynomial, 
and this was supported by a much more accurate estimated function.

Further structural evidence was found by calculating salient subgraphs 
that attribution techniques determined were most relevant and analysing 
the edge distribution in these graphs compared to the original graphs. 
In Fig. 5a, we aggregate the relative frequency of the edges in the salient 
subgraphs by the reflection that they represent. It shows that extremal 
reflections (those of the form (0, i) or (i, N − 1) for SN) appear more com-
monly in salient subgraphs than one would expect, at the expense of 
simple reflections (those of the form (i, i + 1)), which is confirmed over 
many retrainings of the model in Fig. 5b. This is notable because the 
edge labels are not given to the network and are not recoverable from 
the unlabelled Bruhat interval. From the definition of KL polynomials, 
it is intuitive that the distinction between simple and non-simple reflec-
tions is relevant for calculating it; however, it was not initially obvious 
why extremal reflections would be overrepresented in salient subgraphs. 
Considering this observation led us to the discovery that there is a natural 
decomposition of an interval into two parts—a hypercube induced by 
one set of extremal edges and a graph isomorphic to an interval in SN−1.

z: Pair of permutations X(z): Unlabelled Bruhat interval Y(z): KL polynomial

(03214), (34201) 1 + q2

(021435), (240513) 1 + 2q + q2

Fig. 4 | Two example dataset elements, one from S5 and one from S6. The combinatorial invariance conjecture states that the KL polynomial of a pair of 
permutations should be computable from their unlabelled Bruhat interval, but no such function was previously known.
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Fig. 5 | Representation theory attribution. a, An example heatmap of 
the percentage increase in reflections present in the salient subgraphs 
compared with the average across intervals in the dataset when predicting q4. 
b, The percentage of observed edges of each type in the salient subgraph for 10 
retrainings of the model compared to 10 bootstrapped samples of the same 
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significance level shown was determined using a two-sided two-sample t-test. 
*p < 0.05; ****p < 0.0001. c, Illustration for the interval 021435–240513 ∈ S6 
of the interesting substructures that were discovered through the iterative 
process of hypothesis, supervised learning and attribution. The subgraph 
inspired by previous work31 is highlighted in red, the hypercube in green and 
the decomposition component isomporphic to an interval in SN−1 in blue.
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The importance of these two structures, illustrated in Fig. 5c, led 

to a proof that the KL polynomial can be computed directly from the 
hypercube and SN−1 components through a beautiful formula that is 
summarized in the Supplementary Information. A further detailed 
treatment of the mathematical results is given in ref. 32.

Theorem: Every Bruhat interval admits a canonical hypercube decom-
position along its extremal reflections, from which the KL polynomial 
is directly computable.

Remarkably, further tests suggested that all hypercube decomposi-
tions correctly determine the KL polynomial. This has been computa-
tionally verified for all of the ∼3 × 106 intervals in the symmetric groups 
up to S7 and more than 1.3 × 105 non-isomorphic intervals sampled from 
the symmetric groups S8 and S9.

Conjecture: The KL polynomial of an unlabelled Bruhat interval can be cal-
culated using the previous formula with any hypercube decomposition.

This conjectured solution, if proven true, would settle the combinatorial 
invariance conjecture for symmetric groups. This is a promising direction 
as not only is the conjecture empirically verified up to quite large examples, 
but it also has a particularly nice form that suggests potential avenues for 
attacking the conjecture. This case demonstrates how non-trivial insights 
about the behaviour of large mathematical objects can be obtained from 
trained models, such that new structure can be discovered.

Conclusion
In this work we have demonstrated a framework for mathematicians 
to use machine learning that has led to mathematical insight across 
two distinct disciplines: one of the first connections between the alge-
braic and geometric structure of knots and a proposed resolution to a 
long-standing open conjecture in representation theory. Rather than use 
machine learning to directly generate conjectures, we focus on helping  
guide the highly tuned intuition of expert mathematicians, yielding 
results that are both interesting and deep. It is clear that intuition 
plays an important role in elite performance in many human pursuits.  
For example, it is critical for top Go players and the success of AlphaGo 
(ref. 33) came in part from its ability to use machine learning to learn 
elements of play that humans perform intuitively. It is similarly seen 
as critical for top mathematicians—Ramanujan was dubbed the Prince 
of Intuition34 and it has inspired reflections by famous mathematicians 
on its place in their field35,36. As mathematics is a very different, more 
cooperative endeavour than Go, the role of AI in assisting intuition is 
far more natural. Here we show that there is indeed fruitful space to 
assist mathematicians in this aspect of their work.

Our case studies demonstrate how a foundational connection in a 
well-studied and mathematically interesting area can go unnoticed, 
and how the framework allows mathematicians to better understand 
the behaviour of objects that are too large for them to otherwise 
observe patterns in. There are limitations to where this framework 
will be useful—it requires the ability to generate large datasets of the 
representations of objects and for the patterns to be detectable in 
examples that are calculable. Further, in some domains the functions of 
interest may be difficult to learn in this paradigm. However, we believe 
there are many areas that could benefit from our methodology. More 
broadly, it is our hope that this framework is an effective mechanism to 
allow for the introduction of machine learning into mathematicians’ 
work, and encourage further collaboration between the two fields.
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Methods

Framework
Supervised learning. In the supervised learning stage, the mathema-
tician proposes a hypothesis that there exists a relationship between 
X(z) and Y(z). In this work we assume that there is no known function 
mapping from X(z) to Y(z), which in turn implies that X is not invertible 
(otherwise there would exist a known function Y ° X −1). While there may 
still be value to this process when the function is known, we leave this 
for future work. To test the hypothesis that X and Y are related, we gen-
erate a dataset of X(z), Y(z) pairs, where z is sampled from a distribution 
PZ. The results of the subsequent stages will hold true only for the dis-
tribution PZ, and not the whole space Z. Initially, sensible choices for PZ 
would be, for example, uniformly over the first N items for Z with a 
notion of ordering, or uniformly at random where possible. In subse-
quent iterations, PZ may be chosen to understand the behaviour on 
different parts of the space Z (for example, regions of Z that may be 
more likely to provide counterexamples to a particular hypothesis). 
To first test whether a relation between X(z) and Y(z) can be found, we 
use supervised learning to train a function f̂  that approximately maps 
X(z) to Y(z). In this work we use neural networks as the supervised learn-
ing method, in part because they can be easily adapted to many differ-
ent types of X and Y and knowledge of any inherent geometry (in terms 
of invariances and symmetries) of the input domain X can be incorpo-
rated into the architecture of the network37. We consider a relationship 
between X(z) and Y(z) to be found if the accuracy of the learned function 
f̂  is statistically above chance on further samples from PZ on which the 

model was not trained. The converse is not true; namely, if the model 
cannot predict the relationship better than chance, it may mean that 
a pattern exists, but is sufficiently complicated that it cannot be cap-
tured by the given model and training procedure. If it does indeed 
exist, this can give a mathematician confidence to pursue a particular 
line of enquiry in a problem that may otherwise be only speculative.

Attribution techniques. If a relationship is found, the attribution stage 
is to probe the learned function f̂  with attribution techniques to further 
understand the nature of the relationship. These techniques attempt 
to explain what features or structures are relevant to the predictions 
made by f̂ , which can be used to understand what parts of the problem 
are relevant to explore further. There are many attribution techniques 
in the body of literature on machine learning and statistics, including 
stepwise forward feature selection38, feature occlusion and attention 
weights39. In this work we use gradient-based techniques40, broadly 
similar to sensitivity analysis in classical statistics and sometimes re-
ferred to as saliency maps. These techniques attribute importance to 
the elements of X(z), by calculating how much f̂  changes in predictions 
of Y(z) given small changes in X(z). We believe these are a particularly 
useful class of attribution techniques as they are conceptually simple, 
flexible and easy to calculate with machine learning libraries that sup-
port automatic differentiation41–43. Information extracted via attribu-
tion techniques can then be useful to guide the next steps of mathe-
matical reasoning, such as conjecturing closed-form candidates f′, 
altering the sampling distribution PZ or generating new hypotheses 
about the object of interest z, as shown in Fig. 1. This can then lead to 
an improved or corrected version of the conjectured relationship be-
tween these quantities.

Topology
Problem framing. Not all knots admit a hyperbolic geometry; however, 
most do, and all knots can be constructed from hyperbolic and torus 
knots using satellite operations44. In this work we focus only on hyper-
bolic knots. We characterize the hyperbolic structure of the knot com-
plement by a number of easily computable invariants. These invariants 
do not fully define the hyperbolic structure, but they are representative 
of the most commonly interesting properties of the geometry. Our 

initial general hypothesis was that the hyperbolic invariants would 
be predictive of algebraic invariants. The specific hypothesis we in-
vestigated was that the geometry is predictive of the signature. The 
signature is an ideal candidate as it is a well-understood and common 
invariant, it is easy to calculate for large knots and it is an integer, which 
makes the prediction task particularly straightforward (compared to, 
for example, a polynomial).

Data generation. We generated a number of datasets from different 
distributions PZ on the set of knots using the SnapPy software pack-
age45, as follows.
1. All knots up to 16 crossings (∼1.7 × 106 knots), taken from the Regina 

census46.
2. Random knot diagrams of 80 crossings generated by SnapPy’s ran-

dom_link function (∼106 knots). As random knot generation can po-
tentially lead to duplicates, we calculate a large number of invariants 
for each knot diagram and remove any samples that have identical 
invariants to a previous sample, as they are likely to represent that 
same knot with very high probability.

3. Knots obtained as the closures of certain braids. Unlike the previous 
two datasets, the knots that were produced here are not, in any sense, 
generic. Instead, they were specifically constructed to disprove 
Conjecture 1. The braids that we used were 4-braids (n = 11,756), 
5-braids (n = 13,217) and 6-braids (n = 10,897). In terms of the stand-
ard generators σi for these braid groups, the braids were chosen to 
be σ σ σ( . . . )i
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2  . The integers ij were chosen uniformly at random 
for the appropriate braid group. The powers nj were chosen uni-
formly at random in the ranges [−10, −3] and [3, 10]. The final power 
N was chosen uniformly between 1 and 10. The quantity ∑ |ni| was 
restricted to be at most 15 for 5-braids and 6-braids and 12 for 
4-braids, and the total number of crossings N ∑ |ni| was restricted to 
lie in the range between 10 and 60. The rationale for these restrictions 
was to ensure a rich set of examples that were small enough to avoid 
an excessive number of failures in the invariant computations.
For the above datasets, we computed a number of algebraic and geo-

metric knot invariants. Different datasets involved computing different 
subsets of these, depending on their role in forming and examining the 
main conjecture. Each of the datasets contains a subset of the follow-
ing list of invariants: signature, slope, volume, meridional translation, 
longitudinal translation, injectivity radius, positivity, Chern–Simons 
invariant, symmetry group, hyperbolic torsion, hyperbolic adjoint tor-
sion, invariant trace field, normal boundary slopes and length spectrum 
including the linking numbers of the short geodesics.

The computation of the canonical triangulation of randomly gener-
ated knots fails in SnapPy in our data generation process in between 
0.6% and 1.7% of the cases, across datasets. The computation of the 
injectivity radius fails between 2.8% of the time on smaller knots up to 
7.8% of the time on datasets of knots with a higher number of crossings. 
On knots up to 16 crossings from the Regina dataset, the injectivity 
radius computation failed in 5.2% of the cases. Occasional failures can 
occur in most of the invariant computations, in which case the compu-
tations continue for the knot in question for the remaining invariants 
in the requested set. Additionally, as the computational complexity of 
some invariants is high, operations can time out if they take more than 
5 min for an invariant. This is a flexible bound and ultimately a trade-off 
that we have used only for the invariants that were not critical for our 
analysis, to avoid biasing the results.

Data encoding. The following encoding scheme was used for con-
verting the different types of features into real valued inputs for the 
network: reals directly encoded; complex numbers as two reals cor-
responding to the real and imaginary parts; categoricals as one-hot 
vectors.

All features are normalized by subtracting the mean and dividing by 
the variance. For simplicity, in Fig. 3a, the salience values of categoricals 
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are aggregated by taking the maximum value of the saliencies of their 
encoded features.

Model and training procedure. The model architecture used for the 
experiments was a fully connected, feed-forward neural network, with 
hidden unit sizes [300, 300, 300] and sigmoid activations. The task was 
framed as a multi-class classification problem, with the distinct values 
of the signature as classes, cross-entropy loss as an optimizable loss 
function and test classification accuracy as a metric of performance. 
It is trained for a fixed number of steps using a standard optimizer 
(Adam). All settings were chosen as a priori reasonable values and did 
not need to be optimized.

Process. First, to assess whether there may be a relationship between 
the geometry and algebra of a knot, we trained a feed-forward neural 
network to predict the signature from measurements of the geometry 
on a dataset of randomly sampled knots. The model was able to achieve 
an accuracy of 78% on a held-out test set, with no errors larger than ±2. 
This is substantially higher than chance (a baseline accuracy of 25%), 
which gave us strong confidence that a relationship may exist.

To understand how this prediction is being made by the network, 
we used gradient-based attribution to determine which measurements 
of the geometry are most relevant to the signature. We do this using a 
simple sensitivity measure ri that averages the gradient of the loss L 
with respect to a given input feature xi over all of the examples x in a 
dataset X :

X X∑ L
rr

xx
=

1 ∂
∂
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i

xx ∈

This quantity for each input feature is shown in Fig. 3a, where we can 
determine that the relevant measurements of the geometry appear to 
be what is known as the cusp shape: the meridional translation, which 
we will denote μ, and the longitudinal translation, which we will denote 
λ. This was confirmed by training a new model to predict the signature 
from only these three measurements, which was able to achieve the 
same level of performance as the original model.

To confirm that the slope is a sufficient aspect of the geometry to 
focus on, we trained a model to predict the signature from the slope 
alone. Visual inspection of the slope and signature in Extended Data 
Fig. 1a, b shows a clear linear trend, and training a linear model on this 
data results in a test accuracy of 78%, which is equivalent to the predic-
tive power of the original model. This implies that the slope linearly 
captures all of the information about the signature that the original 
model had extracted from the geometry.

Evaluation. The confidence intervals on the feature saliencies were 
calculated by retraining the model 10 times with a different train/test 
split and a different random seed initializing both the network weights 
and training procedure.

Representation theory
Data generation. For our main dataset we consider the symmetric 
groups up to S9. The first symmetric group that contains a non-trivial 
Bruhat interval whose KL polynomial is not simply 1 is S5, and the larg-
est interval in S9 contains 9! ≈ 3.6 × 105 nodes, which starts to pose 
computational issues when used as inputs to networks. The number 
of intervals in a symmetric group SN is O(N!2), which results in many 
billions of intervals in S9. The distribution of coefficients of the KL 
polynomials uniformly across intervals is very imbalanced, as higher 
coefficients are especially rare and associated with unknown com-
plex structure. To adjust for this and simplify the learning problem, 
we take advantage of equivalence classes of Bruhat intervals that 
eliminate many redundant small polynomials47. This has the added 
benefit of reducing the number of intervals per symmetric group 

(for example, to ~2.9 million intervals in S9). We further reduce the 
dataset by including a single interval for each distinct KL polynomial 
for all graphs with the same number of nodes, resulting in 24,322 
non-isomorphic graphs for S9. We split the intervals randomly into 
train/test partitions at 80%/20%.

Data encoding. The Bruhat interval of a pair of permutations is a par-
tially ordered set of the elements of the group, and it can be represented 
as a directed acyclic graph where each node is labelled by a permuta-
tion, and each edge is labelled by a reflection. We add two features at 
each node representing the in-degree and out-degree of that node.

Model and training procedure. For modelling the Bruhat intervals, 
we used a particular GraphNet architecture called a message-passing 
neural network (MPNN)48. The design of the model architecture (in 
terms of activation functions and directionality) was motivated by the 
algorithms for computing KL polynomials from labelled Bruhat inter-
vals. While labelled Bruhat intervals contain privileged information, 
these algorithms hinted at the kind of computation that may be useful 
for computing KL polynomial coefficients. Accordingly, we designed 
our MPNN to algorithmically align to this computation49. The model is 
bi-directional, with a hidden layer width of 128, four propagation steps 
and skip connections. We treat the prediction of each coefficient of the 
KL polynomial as a separate classification problem.

Process. First, to gain confidence that the conjecture is correct, we 
trained a model to predict coefficients of the KL polynomial from the 
unlabelled Bruhat interval. We were able to do so across the different 
coefficients with reasonable accuracy (Extended Data Table 1) giving 
some evidence that a general function may exist, as a four-step MPNN 
is a relatively simple function class. We trained a GraphNet model on 
the basis of a newly hypothesized representation and could achieve 
significantly better performance, lending evidence that it is a suf-
ficient and helpful representation to understand the KL polynomial.

To understand how the predictions were being made by the learned 
function f̂ , we used gradient-based attribution to define a salient sub-
graph SG for each example interval G, induced by a subset of nodes in 
that interval, where L is the loss and xv is the feature for vertex v:
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We then aggregated the edges by their edge type (each is a reflection) 
and compared the frequency of their occurrence to the overall data-
set. The effect on extremal edges was present in the salient subgraphs 
for predictions of the higher-order terms (q3, q4), which are the more 
complicated and less well-understood terms.

Evaluation. The threshold Ck for salient nodes was chosen a priori as the 
99th percentile of attribution values across the dataset, although the re-
sults are present for different values of Ck in the range [95,  99.5]. In Fig. 5a, 
we visualize a measure of edge attribution for a particular snapshot of 
a trained model for expository purposes. This view will change across 
time and random seeds, but we can confirm that the pattern remains by 
looking at aggregate statistics over many runs of training the model, as in 
Fig. 5b. In this diagram, the two-sample two-sided t-test statistics are as 
follows—simple edges: t = 25.7, P = 4.0 × 10−10; extremal edges: t = −13.8, 
P = 1.1 × 10−7; other edges: t = −3.2, P = 0.01. These significance results 
are robust to different settings of the hyper-parameters of the model.

Code availability
Interactive notebooks to regenerate the results for both knot theory 
and representation theory have been made available for download at 
https://github.com/deepmind.

https://github.com/deepmind


Data availability
The generated datasets used in the experiments have been made avail-
able for download at https://github.com/deepmind.
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Extended Data Fig. 1 | Empirical relationship between slope and signature. a Signature vs slope for random dataset. b Signature vs slope for Regina dataset.



Extended Data Table 1 | Model accuracies at predicting KL coefficients from Bruhat intervals in S9
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