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Numerical sampling techniques

In practice, for most probabilistic models, exact inference is intractable

We are often interested in

posterior probabilities

evaluating expectations of the form

E [f ] =

∫
f (z)p(z)dz ,

where p(z) probability distribution, f (z) some function.

General idea:

obtain a set of samples z (l), for l ∈ 1, . . . , L, drawn independently from

the distribution p(z).

approximate the expectation by

1

L

L∑
l=1

f (z (l)).
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Importance sampling

Assume it is impractical to sample directly from p(z) but that we can

evaluate p(z) easily for any given value of z .

A simplistic strategy for evaluating expectations:

Discretize z-space into a uniform grid

Evaluate the integrand as

E [f ] '
L∑

l=1

p(z (l))f (z (l)).

Problems with this approach:

L grows exponentially with the dimensionality of z

p(z) may have much of its mass confined to relatively small regions of

z space-uniform sampling very inefficient

We would really like to choose the sample points to fall in regions

where p(z) is large, or ideally where the product p(z)f (z) is large.
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Importance sampling

Instead, take a proposal distribution, q(z), from which it is easy to

draw samples.

Take samples {z(l) from q(z) and estimate the expectation by:

E [f ] =

∫
f (z)p(z)dz =

∫
f (z)

p(z)

q(z)
q(z)dz ' 1

L

L∑
l=1

p(z)

q(z)
f (z(l))

where rl = p(z)
q(z) are the so called importance weights, correcting for

sampling from the wrong distribution.
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Importance sampling

Often, p(z) = ˜p(z)/Zp can only be evaluated up to the normalization

constant Zp.

Use proposal distribution q(z) = p̃(z)/Zq

We have:

E [f ] =

∫
f (z)p(z)dz =

Zq

Zp

∫
f (z)

p̃(z)

q̃(z)
q(z)dz ' 1

L

L∑
l=1

r̃l f (z(l),

where r̃l = p̃(z)
q̃(z) .
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Importance sampling

The same sample set can be used to evaluate the ratio

Zp

Zq
=

1

Zq

∫
p̃(z)dz =

∫
p̃(z)

q̃(z)
q(z) =

1

L

L∑
l=1

r̃l ,

where the secon equality holds since 1
Zq

= q(z)
q̃(z) .

Thus,

E [f ] '
L∑

l=1

wl f (z(l)),

where

wl =
r̃l∑
m r̃m

=
p̃(z(l))/q(z(l))∑
m p̃(z(m))/q(z(m))

.
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Problems with importance sampling

The proposal distribution q(z) cannot be small or zero where p(z) is

large

Otherwise

the importance weights {rl} are small or have only few significant values

effective sample size is small.
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Importance sampling example

Assume p(z) is given by some graphical model, specifying set of

parents pai for each variable zi

If zi observed, we say it belongs to evidence set e

For each i ,

if zi ∈ e it is set to its observed value

otherwise, its value is sampled from the LPD p(zi |pai )

For the resulting sample z , its weight is

r(z) =
∏
zi 6∈e

p(zi |pai )
p(zi |pai )

∏
zi∈e

p(zi |pai )
1

=
∏
zi∈e

p(zi |pai ).
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Markov Chain Monte Carlo

Let z(τ) record of the current state of the sampling algorithm

The proposal distribution q(z |z(τ)) depends on the current state and

is easy to sample from

Thus, the sequence of samples, z(1), z(2), . . . forms a Markov chain.

At each cycle of the algorithm, we generate a candidate sample z

from the proposal distribution and then accept the sample according

to an appropriate criterion.

Notation p(z) = p̃(z)/Zp indicates that p̃(z) can be evaluated for any

given z , while Zp may be unknown.
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Metropolis algorithm

Assumes symmetric proposal distribution, i.e., q(zA|zB) = q(zB |zA)

for all zA, zB .

Algorithm iterates over steps τ ∈ 1, 2, . . .

Gnerate a candidate sample z∗ from q(z |z (τ))
The candidate sample z∗ is accepted with probability

A(z∗, z (τ)) = min

(
1,

p̃(z∗)

p̃(z (τ))

)
,

(i.e., accept when A(z∗, z (τ )) > u, for u sampled uniformly from (0, 1))

If z∗ is accepted, set z (τ+1) to z∗, otherwise set z (τ+1) to z (τ)

If q(zA|zB) > 0, for τ →∞, the distribution of z(τ) converges to p(z)

The samples z(1), z(2), . . . z(T ) are not independent.

To obtain independent samples, keep only every Mth sample.

Metropolis et al., 1953
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Example run of the Metropolis algorithm
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Homogeneous Markov Chains

A Markov Chain {Xn} is homogeneous if

P(Xn|Xn−1) = P(X2|X1), for all n ≥ 2

A homogeneous Markov Chain is defined by

the initial state distribution Π ∈ ∆K−1, where K is the number of

variable states

Πk = P(X1 = k)

and the K × K transition matrix T = (Tkl) given by

Tkl = P(Xn+1 = l |Xn = k)

X3 X2 X1 … XL 
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Stationary/invariant distributions

Marginal distribution of a particular variable can be expressed as

p(Xn+1)
∑
Xn

P(Xn+1|Xn)p(Xn)

For a homogeneous Markov chain

p(Xn+1)
∑
Xn

TXn+1Xnp(Xn)

Distribution p∗(x) over states of a homogeneous Markov chain is

stationary/invariant if

p∗(l) =
∑
k

Tklp
∗(k)
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Detailed balance

Detailed balance condition is a sufficient (but not necessary) condition

for a invariant distribution

p∗(l)Tlk = p∗(k)Tkl

Markov chain that respects detailed balance is said to be reversible
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Ergodicity

A Markov chain is ergodic if it is

1 aperiodic - return to any state is always possible

2 irreducible - any state is accessible from any other

3 positive recurrent - any state will evenually be reached with probability

1 and the mean recurrence time is finite
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Stationary/equilibrium distribution in ergodic Markov

chains

Theorem

An ergodic Markov chain has a unique equilibrium/stationary distribution

π = (πl)l∈[K ] such that

lim
n→∞

T n
kl = πl =

∑
k∈[K ]

πkTkl , l ∈ [K ],
∑
l∈[K ]

πl = 1,

independent of the initial distribution Π.

In matrix notation, π is the solution of πT = πT .
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How to set up MCMC

Goal: use sampling scheme that

1 generates samples from a given distribution p∗(z) of interest
2 converges to p∗(z) irrespective of choice of the initial distribution

Solution: set up a Markov chain

1 for which p∗(z) is invariant
2 which is ergodic

Then, p∗(z) is its equilibrium distribution.
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Constructing transition probabilities

”Base” transition matrices B1,B2, . . .BK ,

T =
K∑

b=1

αbBb

If a distribution is invariant with respect to each of the base

distributions it will also be with respect to the mixture Tkl

If each of the Bk satisfies detail balance, then also the mixture Tkl

does.
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Metropolis-Hastings algorithm

The proposal distribution does not need to be symmetric

Let p(z) = p̃(z)/Zp

Algorithm iterates over steps τ ∈ 1, 2, . . .

Generate a candidate sample z∗ from qb(z |z (τ)), where z (τ) denotes

current state

The candidate sample z∗ is accepted with probability

Ab(z∗, z (τ)) = min

(
1,

p̃(z∗)qb(z (τ)|z)

p̃(z (τ))qb(z∗|z (τ))

)
,

where b labels the possible transitions being considered.

If z∗ is accepted, set z (τ+1) to z∗, otherwise set z (τ+1) to z (τ)

If the proposal distribution is symmetric, this procedure reduces to the

Metropolis algorithm.

Hastings, 1970
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Metropolis-Hastings converges to p(z)

Detailed balance is satisfied

p(l)Tlk = p(l)qb(k |l)Ab(l , k)

=
1

Zp
min (p̃(l)qb(k |l), p̃(k)qb(l |k))

=
1

Zp
min (p̃(k)qb(l |k), p̃(l)qb(k |l))

= p(k)qb(l |k)Ab(k , l)

= p(k)Tkl .
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The choice of the proposal distribution impacts

convergence rate

For continuous state spaces, common choice is a Gaussian centered

around the current state
Trade-off in determining variance of the Gaussian

small: the proportion of accepted transitions high, but progress through

the state space slow

large: the rejection rate high because many of the proposed steps to

states for which the probability p(z) is low
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Gibbs sampling

We wish to sample from p(z) = p(z1, . . . , zM)

Choose some initial state

In each step, replace the value of one variable zb by a value drawn

from its distribution conditioned on the remaining variables p(zb|z\b)
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Gibbs sampling

1 Initialize {zi : i = 1, . . .M}
2 For τ = 1, . . . ,T

Sample z
(τ+1)
1 ∼ p(z1|z (τ)2 , z

(τ)
3 . . . , z

(τ)
M )

Sample z
(τ+1)
2 ∼ p(z2|z (τ+1)

1 , z
(τ)
3 . . . , z

(τ)
M )

. . .

Sample z
(τ+1)
i ∼ p(zi ||z (τ+1)

1 , . . . , z
(τ+1)
i−1 , z

(τ)
i+1 . . . , z

(τ)
M )

. . .

Sample z
(τ+1)
M ∼ p(zM |z (τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
M−1 )
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Gibbs sampling as an instance of Metropolis-Hastings

Regard the conditionals as the proposal distributions:

qb(z∗|z) = p(zb|z\b)

Note z∗\b = z\b because these components remain unchanged

We have p(z) = p(zb|z\b)p(z\b)

The acceptance probability in Metropolis-Hastings scheme would be

A(z∗, z) = min

(
1,

p(z∗)qb(z |z∗)
p(z)qb(z∗|z)

)
= min

(
1,

p(z∗b |z\b)p(z∗\b)qb(z |z∗)
p(zb|z\b)p(z\b)qb(z∗|z)

)
= 1.

24 / 26



Gibbs sampling for graphical models

Gibbs sampling is particularly useful, if it is much easier to sample

from the conditionals p(zb|z\b) than from the joint distribution

p(z1, . . . , zM)

For graphical models, p(zb|z\b) = p(zb|MBb)
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