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Numerical sampling techniques

@ In practice, for most probabilistic models, exact inference is intractable
@ We are often interested in

e posterior probabilities
e evaluating expectations of the form

Elr) = [ f@)p(z)e

where p(z) probability distribution, f(z) some function.
@ General idea:

e obtain a set of samples z{/), for / € 1,..., L, drawn independently from
the distribution p(z).
e approximate the expectation by
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Importance sampling

@ Assume it is impractical to sample directly from p(z) but that we can
evaluate p(z) easily for any given value of z.
@ A simplistic strategy for evaluating expectations:

e Discretize z-space into a uniform grid
e Evaluate the integrand as

E[f] ~ Zp )f(20).

@ Problems with this approach:
o L grows exponentially with the dimensionality of z
o p(z) may have much of its mass confined to relatively small regions of
z space-uniform sampling very inefficient
o We would really like to choose the sample points to fall in regions
where p(z) is large, or ideally where the product p(z)f(z) is large.
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Importance sampling

e Instead, take a proposal distribution, g(z), from which it is easy to
draw samples.
o Take samples {z() from g(z) and estimate the expectation by:

E[f]:/f(z)p(z)dz:/f(z)qu LZPT (20

where r; = ZE g are the so called importance weights, correcting for

sampling from the wrong distribution.

p(2) q(2) fz)
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Importance sampling

e Often, p(z) = p(~z)/Zp can only be evaluated up to the normalization
constant Zp,.

e Use proposal distribution q(z) = p(z)/Z,
@ We have:

£l = [ flene)dz = 3 [ F2) 5 ale)de = > el

where 7 = gg).

—
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Importance sampling

@ The same sample set can be used to evaluate the ratio

p(z) 1
p ~
£== q(z2) =7 _#,
Z, = [ G5 =1 2
where the secon equality holds since Z% = 28
@ Thus,
L
Elf] =) wf(z\")
I=1
where /
Ao BEM)/q(z1)

w) =

Yomfm X P(2(™)/q(z(m)
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Problems with importance sampling

@ The proposal distribution g(z) cannot be small or zero where p(z) is
large
o Otherwise

e the importance weights {r;} are small or have only few significant values
o effective sample size is small.
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Importance sampling example

@ Assume p(z) is given by some graphical model, specifying set of
parents pa; for each variable z;

o If z; observed, we say it belongs to evidence set e
@ For each i,

e if z; € e it is set to its observed value
o otherwise, its value is sampled from the LPD p(z;|pa;)

For the resulting sample z, its weight is

H p(zilpa;) H P Z'|pa =[] r(zilpa;).

P\Z;i|Pa;
z,Qe ’|p zice zice
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Markov Chain Monte Carlo

@ Let z(7) record of the current state of the sampling algorithm

@ The proposal distribution g(z|z(7)) depends on the current state and
is easy to sample from

@ Thus, the sequence of samples, z(1),z(2),... forms a Markov chain.

@ At each cycle of the algorithm, we generate a candidate sample z
from the proposal distribution and then accept the sample according
to an appropriate criterion.

e Notation p(z) = p(z)/Z, indicates that 5(z) can be evaluated for any
given z, while Z, may be unknown.
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Metropolis algorithm

@ Assumes symmetric proposal distribution, i.e., g(za|zg) = q(z5|za)
for all z4, zg.
@ Algorithm iterates over steps 7 € 1,2,...

o Gnerate a candidate sample z* from g(z|z(7))
e The candidate sample z* is accepted with probability

et - 53).

(i.e., accept when A(z*,2(")) > u, for u sampled uniformly from (0,1))

o If z* is accepted, set z{"t1) to z*, otherwise set z("*1) to z(7)
o If g(zalzg) > 0, for T — oo, the distribution of z(7) converges to p(z)
o The samples z(1) 2 z(T) are not independent.

e To obtain independent samples, keep only every Mt sample.

Metropolis et al., 1953
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Example run of the Metropolis algorithm

A simple illustration using Metropo-
lis algorithm to sample from a
Gaussian distribution whose one
standard-deviation contour is shown 25
by the ellipse. The proposal distribu-
tion is an isotropic Gaussian distri-
bution whose standard deviation is 5|
0.2. Steps that are accepted are
shown as green lines, and rejected
steps are shown in red. A total of 15}
150 candidate samples are gener-
ated, of which 43 are rejected.

3 T T T T T
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Homogeneous Markov Chains

e A Markov Chain {X,} is homogeneous if
P(Xn|Xn-1) = P(X2|X1), foralln>2

@ A homogeneous Markov Chain is defined by

e the initial state distribution 1 € Ak_1, where K is the number of
variable states
Mg = P(Xy = k)

e and the K x K transition matrix T = (Ty) given by

T = P(Xor1 = 11Xy = k)
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Stationary /invariant distributions

@ Marginal distribution of a particular variable can be expressed as

P(Xni1) 3 P(Xas1|Xa)P(Xn)
Xn

@ For a homogeneous Markov chain

p(Xn+1) Z TXn+1an(X”)
Xn

e Distribution p*(x) over states of a homogeneous Markov chain is
stationary/invariant if

pr(1) =" Tup*(k)
k
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Detailed balance

@ Detailed balance condition is a sufficient (but not necessary) condition
for a invariant distribution

p ()T = p*(k) Tw

@ Markov chain that respects detailed balance is said to be reversible
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Ergodicity

A Markov chain is ergodic if it is
© aperiodic - return to any state is always possible
@ irreducible - any state is accessible from any other

© positive recurrent - any state will evenually be reached with probability
1 and the mean recurrence time is finite
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Stationary/equilibrium distribution in ergodic Markov
ETHIS

Theorem

An ergodic Markov chain has a unique equilibrium /stationary distribution
T = (TFI)IE[K] such that

nli_}m TI?I =T = Z T Ty, | € [K], Z m =1,
ke[K] Ie[K]

independent of the initial distribution I1.

In matrix notation, 7 is the solution of 77 =7 T.
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How to set up MCMC

@ Goal: use sampling scheme that

@ generates samples from a given distribution p*(z) of interest
@ converges to p*(z) irrespective of choice of the initial distribution

@ Solution: set up a Markov chain
@ for which p*(z) is invariant
@ which is ergodic

e Then, p*(z) is its equilibrium distribution.
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Constructing transition probabilities

@ "Base” transition matrices By, B», ... Bk,

K
T = Z apBp
b=1

o If a distribution is invariant with respect to each of the base
distributions it will also be with respect to the mixture Ty

@ If each of the By satisfies detail balance, then also the mixture Ty
does.
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Metropolis-Hastings algorithm

@ The proposal distribution does not need to be symmetric
o Let p(z) = p(2)/Zp
@ Algorithm iterates over steps 7 € 1,2, ...

o Generate a candidate sample z* from g,(z|z(™)), where z(") denotes
current state
o The candidate sample z* is accepted with probability

5(2")as(27)]2)
Az 2 = min [ 1 B(z")g(z
e 2) =min (1 £ EE L)

where b labels the possible transitions being considered.
o If z* is accepted, set z{Tt1) to z*, otherwise set z("*1) to z(7)

o If the proposal distribution is symmetric, this procedure reduces to the
Metropolis algorithm.

Hastings, 1970
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Metropolis-Hastings converges to p(z)

@ Detailed balance is satisfied

—

Nab(k|1Ab(1, k)
min (B(1)qs(k|1), B(k)an(/|k))

p(NTwk = p

N = N| =

min (5(k)qs(/|k), B(1)an(k|1))

k)ab(I1k)Ap(k, 1)
k)Tk/.

= p
= p
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The choice of the proposal distribution impacts

convergence rate

@ For continuous state spaces, common choice is a Gaussian centered
around the current state
@ Trade-off in determining variance of the Gaussian
e small: the proportion of accepted transitions high, but progress through
the state space slow
o large: the rejection rate high because many of the proposed steps to
states for which the probability p(z) is low

Umax

o mi&
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Gibbs sampling

e We wish to sample from p(z) = p(z1,...,2zm)

@ Choose some initial state

@ In each step, replace the value of one variable z, by a value drawn
from its distribution conditioned on the remaining variables p(zp|z\)
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Gibbs sampling

Q Initialize {z;: i =1,... M}
Q@ Forr=1,..., T

e Sample szH) ~ p(zl|z2(T), Z?(,T) . ,z,(\;)
e Sample 22(T+1) ~ p(22|zl(T+1),z3(T) . ,z,(\;))
o Sample 2™ ~ p(zi|[27, L 2T 2D L2

o Sample ZI(\;+1) ~ P(ZM‘Z§T+1)7 22(T+1)7 s 7Zl(\/7l—jil))
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Gibbs sampling as an instance of Metropolis-Hastings

@ Regard the conditionals as the proposal distributions:
a6(2*|2) = p(zbl2\p)
o Note zikb = 2}, because these components remain unchanged
o We have p(z) = p(zs|2\p)p(2\p)
@ The acceptance probability in Metropolis-Hastings scheme would be
A(z*,z) = min <17p(z )qb(z*\z )>
p(z)qb(z*|2)
| ( p(zz|z\b)p(z¢b)qb(zrz*)>
= min|1

" p(zbl26)P(2,5)q6(2*]2)
= 1.
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Gibbs sampling for graphical models

@ Gibbs sampling is particularly useful, if it is much easier to sample
from the conditionals p(z|z\,) than from the joint distribution
p(zi, ..., 2zm)

e For graphical models, p(z|2\5) = p(z»|MBp)
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