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Rooted phylogenetic tree 
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Unrooted phylogenetic tree 
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Phylogenetic trees 

 Leaves = contemporary species 
 Interior vertices = common ancestors 
 Topology (graph structure) defines branching order 

(subtrees) 
 Branch lengths (parameters) define time 
 absolute time t, or 
 phylogenetic time  w = ¸t  (¸ = nucleotide substitution rate) 
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Phylogenetic inference 

 Given a multiple  
alignment 
 
 
 

 Find the best tree  
explaining the data 
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Phylogeny reconstruction methods 

 Distance-based clustering methods 
 Define an evolutionary distance 
 Use hierarchical clustering 
 UPGMA, Neighbor joining 
 Shortcomings: information loss, not robust against violations of tree 

assumption 
 

 Parsimony 
 “Minimum evolution” principle: Find the tree explaining the data by 

the minimum number of mutations. 
 Shortcomings: “model-free”, not consistent 

 

 Likelihood methods 
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 For characters x, y 2 {A,C,G,T}, we define P(y | x, w) as the 
probability of observing y after w time units given that the 
same site was originally occupied by x. 

Nucleotide substitution models 
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Continuous-time homogeneous Markov chain 

 Let yi(t) 2 {A,C,G,T} be the nucleotide at position i at time t. 
 We assume for all s, t > 0 and i, k 2 {1, ..., N}, 

1) a Markov process 
 
 

2) homogeneous in time 
 
 

3) identical across sites 
 
 

4) independent among sites 
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P [yi(t+¢t) j yi(t); yi(t¡¢t); : : : ] = P [yi(t+¢t) j yi(t)]

P [yi(s+ t) j yi(s)] = P [yi(t) j yi(0)]

P [yi(t) j yi(0)] = P [yk(t) j yk(0)]

P [y1(t); : : : ; yN(t) j y1(0); : : : ; yN(0)] =
NY

i=1

P [yi(t) j yi(0)]



Transition matrix 

 The nucleotide substitution process is defined by the 4 £ 4 
transition matrix 
 
 
 

 P(0) = I 
 

 Chapman-Kolmogorov equation for continuous-time 
homogeneous Markov chains: 
 
 
for all s, t > 0. 
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P(t) =
³
P [y(t) = a j y(0) = b]

´

a;b2fA;C;G;Tg

P(t+ s) = P(t)P(s)



Rate matrix 

 Ansatz:                                ,  where R is the rate matrix.   
 Then 
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P(dt) = P(0) + Rdt

P(t+ dt) = P(dt)P(t) = (I + Rdt)P(t)

)
dP(t)

dt
= RP(t)

) P(t) = exp(Rt) =
1X

k=0

1

k!
(Rt)k



Example: Kimura model 

¯
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CCCA

 Purines = {A, G} 
 Pyrimidines = {C, T} 
 Transitions (rate ®) 
 purine ↔ purine 
 pyrimidine ↔ pyrimidine 

 Transversions (rate ¯) 
 purine ↔ pyrimidine 

 



Equilibrium base distribution 

 The marginal distribution of nucleotides 
 
 
defines a homogeneous Markov chain, 
 
 

 An ergodic Markov chain converges to a unique stationary 
distribution 
 
characterized by                  . 
 

 For the Kimura model, we find                           . 
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u(w) = (P [y(w) = a])a2fA;C;G;Tg

u(v+ w) = P(w)u(v)

lim
w!1u(w) = ¼ = (¦A;¦C;¦G;¦T )

¼ =

µ
1

4
;
1

4
;
1

4
;
1

4

¶

P(w)¼ = ¼



 The following modified rate matrix has the stationary 
distribution  ¼ = (¦A, ¦C, ¦G, ¦T) 
 
 
 
 
 
 

 We assume stationarity of the Markov chain: The 
nucleotide distribution is equal to ¼ over the whole tree. 

HKY85 model 
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R =

0

BBB@
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1

CCCA



Felsenstein hierarchy 
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 JC69 [Jukes and Cantor, 1969] 
 K80 [Kimura, 1980] 
 K81 [Kimura, 1981] 
 CS05 [Yap and Pachter, 2004] 
 F81 [Felsenstein, 1981] 
 HKY85 [Hasegawa et al., 1985] 
 F84 [Felsenstein, 1989] 
 TN93 [Tamura and Nei, 1993] 
 SYM [Zharkikh, 1994] 
 REV [Lanave et al., 1984, Tavare, 1986] 



A phylogenetic tree is a Bayesian network 
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P (y1; y2; y3; y4; z1; z2 j w) = ¦(z1)P (y1 j z1; w1)P (y2 j z1; w2) ¢
¢ P (z2 j z1; w5) ¢
¢ P (y3 j z2; w3)P(y4 j z2; w4)

r



 In general, xi 2 {A,C,G,T} is the random variable indicating 
the nucleotide at vertex i.  
 
 
 
 
 
 
 

 Choice of the root vertex does not matter as long as the 
Markov chain is reversible, i.e., 

The nucleotide substitution model defines the LPDs 
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P (x1; : : : ; xM) = ¦(xr)
Y

i2V nfrg
P
³
xi j xpa(i); wi

´

= ¦(xr)
Y

i2V nfrg
P(wi)xi;xpa(i)

P(y j x; w)¦(x) = P (x j y; w)¦(y)



 y = extant (contemporary) species 
 z = extinct common ancestors 

 
 
 
where S indicates the tree topology. 
 

 This marginal distribution can be computed efficiently with 
the sum-product algorithm ( “peeling algorithm”, 
“Felsenstein algorithm”), a generalization of the forward 
algorithm. 

Marginalization over extinct species 
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P (y j w; S) =
X

z
P(y; z j w; S)



Example 

 Two extinct species (= hidden variables) 
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Likelihood of a phylogenetic tree 

 Given a multiple alignment D = {y1, ..., yN}, where yt is the 
alignment column at position t, the likelihood of tree 
topology S and branch lengths w is 
 
 
 
 
 
 
 

 We have omitted here and will continue to omit the parameters 
of the nucleotide substitution model (the rate matrix). 
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P (D j w; S) =
NY

t=1

P(yt j w; S)

=
NY

t=1

X

z
P (yt; zt j w; S)



Likelihood of a phylogenetic tree 
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 No analytical solution exists for the MLE problem 
 
 
 
and numerical optimization is NP-hard. 

 Branch lengths are optimized by a gradient ascent scheme: 
 
 

 There are (2n − 5)!! unrooted tree topologies for n taxa.  
) heuristic search procedures: 
 DNAML 
 Quartet puzzling 

 
 

 
 

Maximum likelihood 
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max
S;w

P(D j w; S)

w ! w + Arw logP (D j w; S)



Branch lengths are optimized for each topology 
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S1

S3

S2



DNAML: Iterative attachment of branches 
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DNAML: Branch regrafting 

 DNAML employs greedy search strategies 
 Results depend on the order in which alignment columns 

are considered 
 Only few branch manipulations can be computationally 

afforded 
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accept if likelihood increases 



Quartet puzzling 

1. Construct all (n choose 4) quartet trees on four of the n 
given taxa using maximum likelihood 
 
 
 
 
 
 

2. Combine the quartet trees into a global tree by adding 
taxa iteratively minimizing conflicts (puzzling step). 
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Example 

 Consider five taxa A, B, C, D, and E. 
 There are (5 choose 4) = 5 quartets. 
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E should not be placed 
anywhere on the path 

between B and C. 

Where to place E? 

optimal 
quartets 



Example 
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select least  
penalized branch 



Performance of quartet puzzling 
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£  DNAML 
o   Neighbor joining 



Bootstrapping phylogenetic trees 

 How sure can we be that the estimated ML phylogenetic 
tree is correct? 
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(~S1; ~w1)

(S; w)

Data1 

Data2 

DataB 

…
 

Data 
(~S2; ~w2)

(~SB; ~wB)



Example: (Human, Chimp) 

 B = 1000 bootstrap samples 
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P [(Human,Chimp)] =
921+ 7+ 4

1000
= 0:932



Example: (Human, Chimp, Gorilla) 

 Same B = 1000 bootstrap samples 
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P [((Human,Chimp),Gorilla)] =
921+ 39+ 28

1000
= 0:988



Bootstrapped tree 
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Bayesian inference 
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P (S j D) / P (S)P (D j S)

= P (S)
Z
P (D j w; S)P (w j S)dw

but the marginal likelihood P(D | S) is analytically intractable 



Sample from (S, w) and marginalize 
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(S1; w1)

(S2; w2)

(SM; wM)

Data …
 

P (S j D) =
Z
P (S;w j D)dw

¼ (# trees with topology S)=M



Rate heterogeneity 

 Nucleotide substitution rates may vary across sites 
because of varying selective pressures. For example, 
 between coding and non-coding regions 
 among different regions of a protein (loops, catalytic residues) 
 among the three bases of a triplet coding for an amino acid 

 Let us assume site-specific substitution rates rt such that 
the local probabilities become                      and 
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P (yt j rtw; S)

P (D j w; S) =
Z NY

t=1

P (yt j rtw; S) dP (r1; : : : ; rN)



Independent substitution rates 

 Let us assume that, for a hyperparameter v, 
 
 
 

 Then the likelihood simplifies to 
 
 
 
 

 q(rt | v) = ¡(v, 1/v), gamma distribution with mean 1 and 
variance 1/v. 
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P (D j w; v; S) =
NY

t=1

Z 1

0
P (yt j rtw; S) q(rt j v) drt

P (r1; : : : ; rN) =
NY

t=1

q(rt j v)



Discrete gamma distribution 

 Divide the positive real line into K intervals such that each 
interval contains an equal area of the gamma distribution. 
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P (D j w; v; S) =
1

K

NY

t=1

KX

k=1

P (yt j rvkw; S)



Spatial correlation among substitution rates 

 Substitution rates will tend to be similar at neighboring sites. 
 Setting 
  

gives rise to a hidden Markov model: 
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P(r1; : : : ; rN) = q(r1)
NY

t=2

q(rt j rt¡1; v)



Markov chain state space 
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Phylogenetic hidden Markov models 
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HMM Phylo-HMM 



Phylo-HMM for gene finding 

 Non-coding regions tend to 
have a higher substitution 
rate and a higher 
transition-transversion ratio 
 s1, s2, s3 model codons 
 s4 models non-coding sites 

 ψ1, ..., ψ4 capture the 
parameters of the 
phylogenetic models 
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Detecting conserved genomic regions 
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http://genome.ucsc.edu 

http://genome.ucsc.edu/


Phylo-HMMs are Bayesian networks 
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HMM 

Phylo-HMM 

Phylogenetic 
tree model 

Varying tree topologies are also possible (detection of recombination). 



Summary 

 Probabilistic phylogenetic tree models are Bayesian 
networks with observed and hidden random variables. 

 The LPDs are defined by nucleotide substitution models, 
which are examples of continuous-time Markov chains. 

 Phylogenetic trees can be learned using ML or Bayes.  
 Rate heterogeneity across sites can be modeled using the 

Gamma distribution or by a HMM. 
 Combining HMMs and phylogenetic trees gives rise to 

phylo-HMMs, a powerful model for sequence data with 
many applications. 

45 © Niko Beerenwinkel, ETH Zurich 



References 

 Husmeier D, Dybowski R, Roberts S (eds.). Probabilistic Modeling in 
Bioinformatics and Medical Informatics. Chapter 4. 

 Beerenwinkel N and Siebourg J. Statistics, probability, and 
computational science. In Maria Anisimova, editor, Evolutionary 
Genomics: Statistical and Computational Methods, Volume 1, chapter 
3, pages 77–110. Springer, New York, 2012. DOI: 10.1007/978-1-
61779-582-4_3. Sections 5, 7. 

 Siepel A, Haussler D (2004). Combining phylogenetic and hidden 
Markov models in biosequence analysis. J Comput Biol 11(2–3). 
 

 Further reading: 
 Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis. 

Chapter 8. 
 Felsenstein J. Inferring Phylogenies. Sinauer, 2003. 

46 © Niko Beerenwinkel, ETH Zurich 

http://www.springerlink.com/content/k0155588308326k5/
http://www.springerlink.com/content/k0155588308326k5/

	Statistical phylogenetics
	Outline
	Rooted phylogenetic tree
	Unrooted phylogenetic tree
	Phylogenetic trees
	Phylogenetic inference
	Phylogeny reconstruction methods
	Nucleotide substitution models
	Continuous-time homogeneous Markov chain
	Transition matrix
	Rate matrix
	Example: Kimura model
	Equilibrium base distribution
	HKY85 model
	Felsenstein hierarchy
	A phylogenetic tree is a Bayesian network
	The nucleotide substitution model defines the LPDs
	Marginalization over extinct species
	Example
	Likelihood of a phylogenetic tree
	Likelihood of a phylogenetic tree
	Maximum likelihood
	Branch lengths are optimized for each topology
	DNAML: Iterative attachment of branches
	DNAML: Branch regrafting
	Quartet puzzling
	Example
	Example
	Performance of quartet puzzling
	Bootstrapping phylogenetic trees
	Example: (Human, Chimp)
	Example: (Human, Chimp, Gorilla)
	Bootstrapped tree
	Bayesian inference
	Sample from (S, w) and marginalize
	Rate heterogeneity
	Independent substitution rates
	Discrete gamma distribution
	Spatial correlation among substitution rates
	Markov chain state space
	Phylogenetic hidden Markov models
	Phylo-HMM for gene finding
	Detecting conserved genomic regions
	Phylo-HMMs are Bayesian networks
	Summary
	References

