Statistical phylogenetics

Niko Beerenwinkel

Outline

- Phylogenetic trees
- Nucleotide substitution models
- Likelihood
- ML estimation and bootstrapping
- Bayesian inference
- Rate heterogeneity
- Phylo-HMMs

Rooted phylogenetic tree

Time

Unrooted phylogenetic tree

Phylogenetic trees

- Leaves = contemporary species
- Interior vertices = common ancestors
- Topology (graph structure) defines branching order (subtrees)
- Branch lengths (parameters) define time
- absolute time t, or
- phylogenetic time $w=\lambda t$ ($\lambda=$ nucleotide substitution rate)

Phylogenetic inference

- Given a multiple alignment

Frog
Chicken
Human
Rabbit
Mouse
Opossum

| \mathbf{G} | C | T | T | G | A | C | T | T | C | T | G | A | G | G | T |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | T, C

- Find the best tree explaining the data

Phylogeny reconstruction methods

- Distance-based clustering methods
- Define an evolutionary distance
- Use hierarchical clustering
- UPGMA, Neighbor joining
- Shortcomings: information loss, not robust against violations of tree assumption
- Parsimony
- "Minimum evolution" principle: Find the tree explaining the data by the minimum number of mutations.
" Shortcomings: "model-free", not consistent
- Likelihood methods

Nucleotide substitution models

- For characters $x, y \in\{A, C, G, T\}$, we define $P(y \mid x, w)$ as the probability of observing y after w time units given that the same site was originally occupied by x .

Continuous-time homogeneous Markov chain

- Let $y_{i}(t) \in\{A, C, G, T\}$ be the nucleotide at position i at time t.
- We assume for all $\mathrm{s}, \mathrm{t}>0$ and $\mathrm{i}, \mathrm{k} \in\{1, \ldots, \mathrm{~N}\}$,

1) a Markov process

$$
P\left[y_{i}(t+\Delta t) \mid y_{i}(t), y_{i}(t-\Delta t), \ldots\right]=P\left[y_{i}(t+\Delta t) \mid y_{i}(t)\right]
$$

2) homogeneous in time

$$
P\left[y_{i}(s+t) \mid y_{i}(s)\right]=P\left[y_{i}(t) \mid y_{i}(0)\right]
$$

3) identical across sites

$$
P\left[y_{i}(t) \mid y_{i}(0)\right]=P\left[y_{k}(t) \mid y_{k}(0)\right]
$$

4) independent among sites

$$
P\left[y_{1}(t), \ldots, y_{N}(t) \mid y_{1}(0), \ldots, y_{N}(0)\right]=\prod_{i=1}^{N} P\left[y_{i}(t) \mid y_{i}(0)\right]
$$

Transition matrix

- The nucleotide substitution process is defined by the 4×4 transition matrix

$$
\mathbf{P}(t)=(P[y(t)=a \mid y(0)=b])_{a, b \in\{A, C, G, T\}}
$$

- $\mathbf{P}(0)=\mathbf{I}$
- Chapman-Kolmogorov equation for continuous-time homogeneous Markov chains:

$$
\mathbf{P}(t+s)=\mathbf{P}(t) \mathbf{P}(s)
$$

for all $\mathrm{s}, \mathrm{t}>0$.

Rate matrix

- Ansatz: $\mathbf{P}(d t)=\mathbf{P}(0)+\mathbf{R} d t$, where \mathbf{R} is the rate matrix.
- Then

$$
\begin{aligned}
& \mathbf{P}(t+d t)=\mathbf{P}(d t) \mathbf{P}(t)=(\mathbf{I}+\mathbf{R} d t) \mathbf{P}(t) \\
\Rightarrow & \frac{d \mathbf{P}(t)}{d t}=\mathbf{R P}(t) \\
\Rightarrow & \mathbf{P}(t)=\exp (\mathbf{R} t)=\sum_{k=0}^{\infty} \frac{1}{k!}(\mathbf{R} t)^{k}
\end{aligned}
$$

Example: Kimura model

- Purines $=\{\mathrm{A}, \mathrm{G}\}$
- Pyrimidines $=\{\mathrm{C}, \mathrm{T}\}$
- Transitions (rate α)
- purine \leftrightarrow purine
- pyrimidine \leftrightarrow pyrimidine
- Transversions (rate β)
- purine \leftrightarrow pyrimidine

$$
\mathbf{R}=\left(\begin{array}{cccc}
-2 \beta-\alpha & \beta & \alpha & \beta \\
\beta & -2 \beta-\alpha & \beta & \alpha \\
\alpha & \beta & -2 \beta-\alpha & \beta \\
\beta & \alpha & \beta & -2 \beta-\alpha
\end{array}\right)
$$

Equilibrium base distribution

- The marginal distribution of nucleotides

$$
\mathbf{u}(w)=(P[y(w)=a])_{a \in\{A, C, G, T\}}
$$

defines a homogeneous Markov chain,

$$
\mathbf{u}(v+w)=\mathbf{P}(w) \mathbf{u}(v)
$$

- An ergodic Markov chain converges to a unique stationary distribution

$$
\lim _{w \rightarrow \infty} \mathbf{u}(w)=\pi=\left(\Pi_{A}, \Pi_{C}, \Pi_{G}, \Pi_{T}\right)
$$

characterized by $\mathbf{P}(w) \pi=\pi$.

- For the Kimura model, we find $\pi=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$.

HKY85 model

- The following modified rate matrix has the stationary distribution $\pi=\left(\Pi_{A}, \Pi_{C}, \Pi_{G}, \Pi_{T}\right)$

$$
\mathbf{R}=\left(\begin{array}{cccc}
* & \Pi_{A} \beta & \Pi_{A} \alpha & \Pi_{A} \beta \\
\Pi_{C} \beta & * & \Pi_{C} \beta & \Pi_{C} \alpha \\
\Pi_{G} \alpha & \Pi_{G} \beta & * & \Pi_{G} \beta \\
\Pi_{T} \beta & \Pi_{T} \alpha & \Pi_{T} \beta & *
\end{array}\right)
$$

- We assume stationarity of the Markov chain: The nucleotide distribution is equal to π over the whole tree.

Felsenstein hierarchy

- JC69 [Jukes and Cantor, 1969]
- K80 [Kimura, 1980]
- K81 [Kimura, 1981]
- CS05 [Yap and Pachter, 2004]
- F81 [Felsenstein, 1981]
- HKY85 [Hasegawa et al., 1985]
- F84 [Felsenstein, 1989]
- TN93 [Tamura and Nei, 1993]
- SYM [Zharkikh, 1994]
- REV [Lanave et al., 1984, Tavare, 1986]

A phylogenetic tree is a Bayesian network

The nucleotide substitution model defines the LPDs

- In general, $x_{i} \in\{A, C, G, T\}$ is the random variable indicating the nucleotide at vertex i .

$$
\begin{aligned}
P\left(x_{1}, \ldots, x_{M}\right) & =\Pi\left(x_{r}\right) \prod_{i \in V \backslash\{r\}} P\left(x_{i} \mid x_{\mathrm{pa}(i)}, w_{i}\right) \\
& =\Pi\left(x_{r}\right) \prod_{i \in V \backslash\{r\}} \mathbf{P}\left(w_{i}\right)_{x_{i}, x_{\mathrm{pa}(i)}}
\end{aligned}
$$

- Choice of the root vertex does not matter as long as the Markov chain is reversible, i.e.,

$$
P(y \mid x, w) \Pi(x)=P(x \mid y, w) \Pi(y)
$$

Marginalization over extinct species

- y = extant (contemporary) species
- $\mathbf{z}=$ extinct common ancestors

$$
P(\mathbf{y} \mid \mathbf{w}, S)=\sum_{\mathbf{z}} P(\mathbf{y}, \mathbf{z} \mid \mathbf{w}, S)
$$

where S indicates the tree topology.

- This marginal distribution can be computed efficiently with the sum-product algorithm (\rightarrow "peeling algorithm", "Felsenstein algorithm"), a generalization of the forward algorithm.

Example

- Two extinct species (= hidden variables)

Likelihood of a phylogenetic tree

- Given a multiple alignment $\mathcal{D}=\left\{\mathbf{y}_{1}, \ldots, \mathbf{y}_{N}\right\}$, where \mathbf{y}_{t} is the alignment column at position t, the likelihood of tree topology S and branch lengths w is

$$
\begin{aligned}
P(\mathcal{D} \mid \mathbf{w}, S) & =\prod_{t=1}^{N} P\left(\mathbf{y}_{t} \mid \mathbf{w}, S\right) \\
& =\prod_{t=1}^{N} \sum_{\mathbf{z}} P\left(\mathbf{y}_{t}, \mathbf{z}_{t} \mid \mathbf{w}, S\right)
\end{aligned}
$$

- We have omitted here and will continue to omit the parameters of the nucleotide substitution model (the rate matrix).

Eidgenössische Technische Hochschule Zürich

Likelihood of a phylogenetic tree

Maximum likelihood

- No analytical solution exists for the MLE problem

$$
\max _{S, \mathbf{w}} P(\mathcal{D} \mid \mathbf{w}, S)
$$

and numerical optimization is NP-hard.

- Branch lengths are optimized by a gradient ascent scheme:

$$
\mathbf{w} \rightarrow \mathbf{w}+\mathbf{A} \nabla_{\mathbf{w}} \log P(\mathcal{D} \mid \mathbf{w}, S)
$$

- There are $(2 n-5)$!! unrooted tree topologies for n taxa. \Rightarrow heuristic search procedures:
- DNAML
- Quartet puzzling

Branch lengths are optimized for each topology

DNAML: Iterative attachment of branches

DNAML: Branch regrafting

- DNAML employs greedy search strategies
- Results depend on the order in which alignment columns are considered
- Only few branch manipulations can be computationally afforded

Quartet puzzling

1. Construct all (n choose 4) quartet trees on four of the n given taxa using maximum likelihood

Topology 1

Topology 2

Topology 3
2. Combine the quartet trees into a global tree by adding taxa iteratively minimizing conflicts (puzzling step).

Example

- Consider five taxa A, B, C, D, and E.
- There are (5 choose 4) = 5 quartets.

Where to place E ?

E should not be placed anywhere on the path between B and C.

Eidgenössische Technische Hochschule Zürich

Example

select least penalized branch

Eidgenössische Technische Hochschule Zürich
swiss Federal Institute of Technology Zurich

Performance of quartet puzzling

Bootstrapping phylogenetic trees

- How sure can we be that the estimated ML phylogenetic tree is correct?

Eidgenössische Technische Hochschule Zürich
swiss Federal Institute of Technology Zurich

Example: (Human, Chimp)

- $B=1000$ bootstrap samples

Eidgenössische Technische Hochschule Zürich
swiss Federal Institute of Technology Zurich

Example: (Human, Chimp, Gorilla)

- Same B = 1000 bootstrap samples

$P[(($ Human, Chimp $)$, Gorilla $)]=\frac{921+39+28}{1000}=0.988$

Bootstrapped tree

Bayesian inference

$$
\begin{aligned}
P(S \mid \mathcal{D}) & \propto P(S) P(\mathcal{D} \mid S) \\
& =P(S) \int P(\mathcal{D} \mid \mathbf{w}, S) P(\mathbf{w} \mid S) d \mathbf{w}
\end{aligned}
$$

but the marginal likelihood $\mathrm{P}(\mathcal{D} \mid \mathrm{S})$ is analytically intractable

Sample from (S, w) and marginalize

$$
\begin{aligned}
P(S \mid \mathcal{D}) & =\int P(S, \mathbf{w} \mid \mathcal{D}) d \mathbf{w} \\
& \approx(\# \text { trees with topology } S) / M
\end{aligned}
$$

Rate heterogeneity

- Nucleotide substitution rates may vary across sites because of varying selective pressures. For example,
- between coding and non-coding regions
- among different regions of a protein (loops, catalytic residues)
- among the three bases of a triplet coding for an amino acid
- Let us assume site-specific substitution rates r_{t} such that the local probabilities become $P\left(\mathbf{y}_{t} \mid r_{t} \mathbf{w}, S\right)$ and

$$
P(\mathcal{D} \mid \mathbf{w}, S)=\int \prod_{t=1}^{N} P\left(\mathbf{y}_{t} \mid r_{t} \mathbf{w}, S\right) \mathrm{d} P\left(r_{1}, \ldots, r_{N}\right)
$$

Independent substitution rates

- Let us assume that, for a hyperparameter v,

$$
P\left(r_{1}, \ldots, r_{N}\right)=\prod_{t=1}^{N} q\left(r_{t} \mid v\right)
$$

- Then the likelihood simplifies to

$$
P(\mathcal{D} \mid \mathbf{w}, v, S)=\prod_{t=1}^{N} \int_{0}^{\infty} P\left(\mathbf{y}_{t} \mid r_{t} \mathbf{w}, S\right) q\left(r_{t} \mid v\right) d r_{t}
$$

- $\mathrm{q}\left(\mathrm{r}_{\mathrm{t}} \mid \mathrm{v}\right)=\Gamma(\mathrm{v}, 1 / \mathrm{v})$, gamma distribution with mean 1 and variance $1 / v$.

Discrete gamma distribution

- Divide the positive real line into K intervals such that each interval contains an equal area of the gamma distribution.

$$
P(\mathcal{D} \mid \mathbf{w}, v, S)=\frac{1}{K} \prod_{t=1}^{N} \sum_{k=1}^{K} P\left(\mathbf{y}_{t} \mid r_{k}^{v} \mathbf{w}, S\right)
$$

Spatial correlation among substitution rates

- Substitution rates will tend to be similar at neighboring sites.
- Setting

$$
P\left(r_{1}, \ldots, r_{N}\right)=q\left(r_{1}\right) \prod_{t=2}^{N} q\left(r_{t} \mid r_{t-1}, v\right)
$$

gives rise to a hidden Markov model:

Hidden Markov chain:

Eidgenössische Technische Hochschule Zürich
5wiss Federal Institute of Technology Zurich

Markov chain state space

Eidgenössische Technische Hochschule Zürich

Phylogenetic hidden Markov models

HMM

$\mathbf{X}=$ TAACGGCAGA..

Phylo-HMM

$\mathrm{X}=\underset{\text { TTACGGCAGAG } \ldots . . .}{\substack{\text { TAAGGGCGCCGA. } \\ \\ \text { AAGGC }}}$

Phylo-HMM for gene finding

- Non-coding regions tend to have a higher substitution rate and a higher transition-transversion ratio
- $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ model codons
- S_{4} models non-coding sites
- $\Psi_{1}, \ldots, \Psi_{4}$ capture the parameters of the phylogenetic models

Detecting conserved genomic regions

http: / / genore. ucsc. edu

Phylo-HMMs are Bayesian networks

Phylogenetic

Phylo-HMM

Varying tree topologies are also possible (detection of recombination).

Summary

- Probabilistic phylogenetic tree models are Bayesian networks with observed and hidden random variables.
- The LPDs are defined by nucleotide substitution models, which are examples of continuous-time Markov chains.
- Phylogenetic trees can be learned using ML or Bayes.
- Rate heterogeneity across sites can be modeled using the Gamma distribution or by a HMM.
- Combining HMMs and phylogenetic trees gives rise to phylo-HMMs, a powerful model for sequence data with many applications.

References

- Husmeier D, Dybowski R, Roberts S (eds.). Probabilistic Modeling in Bioinformatics and Medical Informatics. Chapter 4.
- Beerenwinkel N and Siebourg J. Statistics, probability, and computational science. In Maria Anisimova, editor, Evolutionary Genomics: Statistical and Computational Methods, Volume 1, chapter 3, pages 77-110. Springer, New York, 2012. DOI: 10.1007/978-1-61779-582-4 3. Sections 5, 7.
- Siepel A, Haussler D (2004). Combining phylogenetic and hidden Markov models in biosequence analysis. J Comput Biol 11(2-3).
- Further reading:
- Durbin R, Eddy S, Krogh A, Mitchinson G. Biological Sequence Analysis. Chapter 8.
- Felsenstein J. Inferring Phylogenies. Sinauer, 2003.

