

Statistical Data
 Analysis 2

Ewa Szczurek
Lukasz Kozlowski
September 19, 2018

Problem 1: HMMs and EM: Expected Hidden Log Likelihood

Consider the HMM represented by the above graph, where X_{n} are observed variables and Z_{n} are latent variables. The Z_{n} are K-dimensional binary random vectors satisfying $\sum_{k=1}^{K} z_{n k}=1$ and $z_{n k} \in\{0,1\}$. The parameters of the HMM are $\theta=\{\pi, A, E\}$. The initial state probabilities are given by

$$
P\left(Z_{1}=z_{1}\right)=\prod_{k=1}^{K} \pi_{k}^{z_{1 k}}
$$

where $\sum_{k} \pi_{k}=1$. For the transition probabilities with $A=\left(a_{j k}\right) \in \mathbb{R}^{K \times K}$ with $0 \leq a_{j k} \leq 1$ and $\sum_{k} a_{j k}=1$ we have

$$
P\left(Z_{n}=z_{n} \mid Z_{n-1}=z_{n-1}, A\right)=\prod_{k=1}^{K} \prod_{j=1}^{K} a_{j k}^{z_{n-1, j} z_{n k}}
$$

The emission probabilities $P\left(X_{n}=x_{n} \mid Z_{n}=z_{n}, E\right)$ obey a probability distribution parametrized by E, specified later. Given a set of successive observations x_{1}, \ldots, x_{L}, the EM algorithm can be used to approximate maximum likelihood estimators of all the parameters θ.
Let $\mathrm{E}\left(\ell_{h i d}(\theta)\right)$ shortly denote $\mathrm{E}_{Z \mid X, \theta}\left(\ell_{\text {hid }}(\theta)\right)$, i.e., the expectation is computed with respect to the posterior probability $P\left(Z_{1}, \ldots, Z_{L} \mid X_{1}, \ldots, X_{L}, \theta\right)$. Write down the factorization for the joint probability distribution $P(X, Z)$ of the HMM and derive that the expected hidden log likelihood $\mathrm{E}\left(\ell_{\text {hid }}(\theta)\right)$ can be written as

$$
\begin{aligned}
\mathrm{E}\left(\ell_{\text {hid }}(\theta)\right)=\left(\sum _ { n = 1 } ^ { L } \sum _ { k = 1 } ^ { K } \mathrm { E } (z _ { n k }) \operatorname { l o g } \left(P \left(X_{n}=x_{n} \mid Z_{n}\right.\right.\right. & \left.\left.\left.=e_{k}, E\right)\right)\right)+\left(\sum_{l=1}^{K} \mathrm{E}\left(z_{1 l}\right) \log \left(\pi_{l}\right)\right) \\
& +\sum_{n=2}^{L} \sum_{k=1}^{K} \sum_{j=1}^{K} \mathrm{E}\left(z_{n-1, j} z_{n k}\right) \log \left(a_{j k}\right)
\end{aligned}
$$

where e_{k} is the unit vector with the k th entry equal to 1 .

Problem 2: HMMs and EM: The E-Step

Consider the Hidden Markov model defined above. Show that $\mathrm{E}\left(z_{n k}\right)=P\left(Z_{n}=e_{k} \mid X_{1}=\right.$ $\left.x_{1}, \ldots, X_{L}=x_{L}, \theta\right)$ and $\mathrm{E}\left(z_{n-1, j} z_{n k}\right)=P\left(Z_{n-1}=e_{j}, Z_{n}=e_{k} \mid X_{1}=x_{1}, \ldots, X_{L}=x_{L}, \theta\right)$ by exploiting the binary character of Z_{n}.

Problem 3: HMMs and EM: The M-Step

Consider the Hidden Markov model defined above. In the M -step, maximizing $\mathrm{E}\left(\ell_{h i d}(\theta)\right)$ with respect to π and A (while assuming that $\mathrm{E}\left(z_{n k}\right)$ and $\mathrm{E}\left(z_{n-1, j} z_{n k}\right)$ are constant) we get

$$
\pi_{k}=\frac{\mathrm{E}\left(z_{1 k}\right)}{\sum_{k=1}^{K} \mathrm{E}\left(z_{1 k}\right)} \quad \text { and } \quad a_{j k}=\frac{\sum_{n=2}^{L} \mathrm{E}\left(z_{n-1, j} z_{n k}\right)}{\sum_{n=2}^{L} \sum_{l=1}^{K} \mathrm{E}\left(z_{n-1, j} z_{n l}\right)}
$$

Show that if any elements of the parameters π or A are initially set to zero, then those elements will remain zero in all subsequent updates of the EM algorithm.
Hint: Given that the posterior probability is

$$
P\left(Z_{1}, \ldots, Z_{L} \mid X_{1}, \ldots, X_{L}, \theta\right)=\frac{\left(\prod_{n=1}^{L} P\left(X_{n} \mid Z_{n}\right)\right) P\left(Z_{1}\right) \prod_{n=2}^{L} P\left(Z_{n} \mid Z_{n-1}\right)}{C}
$$

(where C is a normalization constant), derive expressions for $P\left(Z_{1} \mid X_{1}, \ldots, X_{L}, \theta\right)$ and $P\left(Z_{u-1}, Z_{u} \mid\right.$ $\left.X_{1}, \ldots, X_{L}, \theta\right)$.

Problem 4: HMMs and EM: Multinomial Emission Probabilities

Consider the Hidden Markov model defined above. If the emission probabilities $E=\left(p_{j k}\right)$ are multinomial, i.e.

$$
f_{X_{n} \mid Z_{n}}\left(x_{n} \mid Z_{n}=z_{n}\right)=\prod_{j=1}^{m} \prod_{k=1}^{K} p_{j k}^{x_{n j} z_{n k}}
$$

with parameters $p_{j k} \in[0,1]$, show that the maximization step yields

$$
p_{j k}=\frac{\sum_{n=1}^{L} \mathrm{E}\left(z_{n k}\right) x_{n j}}{\sum_{n=1}^{L} \mathrm{E}\left(z_{n k}\right)}
$$

Problem 5: Modelling the duration of hidden Markov processes

Consider again the hidden Markov model encoded by the graph of Problem 1. Assume that $P\left(Z_{i+1}=\right.$ $\left.\xi \mid Z_{n}=\xi\right)=p$ for a fixed state ξ of the hidden variable. Thus, after entering the state ξ there is a probability of $1-p$ of leaving it.
(a) Show that the probability of staying in state ξ for l time steps is given by

$$
P\left(Z_{i}=\xi, Z_{i+1}=\xi, \ldots, Z_{i+l-1}=\xi, Z_{i+l} \neq \xi\right)=(1-p) p^{l-1}
$$

This exponentially decaying distribution on lengths (l) is called geometric distribution.
(b) Geometric distribution on lengths can be inappropriate in some applications, where the distribution of lengths is important and significantly different from geometric. A way to circumvent this issue is to model the state ξ with an array of $N \in \mathbb{L}$ identical states in which the transition probabilities are as in the following figure:

Show that for any given path of length l through the model the probability of all its transitions is given by $p^{l-N}(1-p)^{L}$. Moreover, show that the total probability summed over all possible paths is

$$
P(l)=\binom{l-1}{N-1} p^{l-N}(1-p)^{L}
$$

