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Problem 1: HMMs and EM: Expected Hidden Log Likelihood
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Consider the HMM represented by the above graph, where Xn are observed variables and Zn are
latent variables. The Zn are K-dimensional binary random vectors satisfying

∑K
k=1 znk = 1 and

znk ∈ {0, 1}. The parameters of the HMM are θ = {π,A,E}. The initial state probabilities are
given by

P (Z1 = z1) =

K∏
k=1

πz1kk ,

where
∑

k πk = 1. For the transition probabilities with A = (ajk) ∈ RK×K with 0 ≤ ajk ≤ 1 and∑
k ajk = 1 we have

P (Zn = zn | Zn−1 = zn−1, A) =
K∏
k=1

K∏
j=1

a
zn−1,jznk

jk .

The emission probabilities P (Xn = xn | Zn = zn, E) obey a probability distribution parametrized
by E, specified later. Given a set of successive observations x1, . . . , xL, the EM algorithm can be
used to approximate maximum likelihood estimators of all the parameters θ.

Let E(`hid(θ)) shortly denote EZ|X,θ(`hid(θ)), i.e., the expectation is computed with respect to the
posterior probability P (Z1, ..., ZL|X1, ..., XL, θ). Write down the factorization for the joint probabil-
ity distribution P (X,Z) of the HMM and derive that the expected hidden log likelihood E(`hid(θ))
can be written as

E(`hid(θ)) =

(
L∑

n=1

K∑
k=1

E(znk) log(P (Xn = xn | Zn = ek, E))

)
+

(
K∑
l=1

E(z1l) log(πl)

)

+

L∑
n=2

K∑
k=1

K∑
j=1

E(zn−1,jznk) log(ajk),



where ek is the unit vector with the k th entry equal to 1.

Problem 2: HMMs and EM: The E-Step

Consider the Hidden Markov model defined above. Show that E(znk) = P (Zn = ek | X1 =
x1, ..., XL = xL, θ) and E(zn−1,jznk) = P (Zn−1 = ej , Zn = ek | X1 = x1, . . . , XL = xL, θ) by
exploiting the binary character of Zn.

Problem 3: HMMs and EM: The M-Step
Consider the Hidden Markov model defined above. In the M-step, maximizing E(`hid(θ)) with
respect to π and A (while assuming that E(znk) and E(zn−1,jznk) are constant) we get

πk =
E(z1k)
K∑
k=1

E(z1k)

and ajk =

L∑
n=2

E(zn−1,jznk)

L∑
n=2

K∑
l=1

E(zn−1,jznl)

.

Show that if any elements of the parameters π or A are initially set to zero, then those elements
will remain zero in all subsequent updates of the EM algorithm.
Hint: Given that the posterior probability is

P (Z1, ..., ZL | X1, ..., XL, θ) =

(
L∏
n=1

P (Xn | Zn)
)
P (Z1)

L∏
n=2

P (Zn | Zn−1)

C
,

(where C is a normalization constant), derive expressions for P (Z1 | X1, ..., XL, θ) and P (Zu−1, Zu |
X1, ..., XL, θ).

Problem 4: HMMs and EM: Multinomial Emission Probabilities
Consider the Hidden Markov model defined above. If the emission probabilities E = (pjk) are
multinomial, i.e.

fXn|Zn
(xn | Zn = zn) =

m∏
j=1

K∏
k=1

p
xnjznk

jk

with parameters pjk ∈ [0, 1], show that the maximization step yields

pjk =

L∑
n=1

E(znk)xnj

L∑
n=1

E(znk)

.

Problem 5: Modelling the duration of hidden Markov processes
Consider again the hidden Markov model encoded by the graph of Problem 1. Assume that P (Zi+1 =
ξ | Zn = ξ) = p for a fixed state ξ of the hidden variable. Thus, after entering the state ξ there is
a probability of 1− p of leaving it.

(a) Show that the probability of staying in state ξ for l time steps is given by

P (Zi = ξ, Zi+1 = ξ, ..., Zi+l−1 = ξ, Zi+l 6= ξ) = (1− p)pl−1.

This exponentially decaying distribution on lengths (l) is called geometric distribution.



(b) Geometric distribution on lengths can be inappropriate in some applications, where the distri-
bution of lengths is important and significantly different from geometric. A way to circumvent
this issue is to model the state ξ with an array of N ∈ L identical states in which the transition
probabilities are as in the following figure:

1-p

p

Show that for any given path of length l through the model the probability of all its transitions
is given by pl−N (1− p)L. Moreover, show that the total probability summed over all possible
paths is

P (l) =

(
l − 1

N − 1

)
pl−N (1− p)L.


