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Problem 1: The unsupervised naive Bayes model.
Let us assume we observe realizations of a random variable X = (X1, . . . , XL) with state space
{0, 1} and we want to cluster them into K distinct groups. For this we introduce a hidden random
variable Z ∈ {1, . . . ,K} indicating class membership. This is known as the unsupervised naive
Bayes model. We can now get the class membership by computing P (Z = k | X1, . . . , XL) for any
realization.
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(a) How does the joint probability P (X1, . . . , XL, Z) factorize for this model?

(b) The model parameters are the class prior P (Z), and the conditional probabilities θn,kx =
P (Xn = x | Z = k) for each Xn. The prior we assume to be constant, which means you can
use

P (X1, . . . , XL, Z) = P (Z)P (X1, . . . , XL | Z) ∝ P (X1, . . . , XL | Z).

We now want to learn θ from observed data. Show that the hidden or (complete-data)
likelihood of the observed data (X(1), . . . , X(N)) and hidden data (Z(1), . . . , Z(N)) is

N∏
i=1

L∏
n=1

∏
k∈[K]

∏
x∈{0,1}

θ
In,kx(Z

(i))
n,kx ,

where In,kx(Z(i))is equal to 1 if and only if X
(i)
n = x and Z(i) = k and 0 otherwise.

(c) Since we did not observe Z we also do not have the counts In,kx(Z(i)). We will apply the
EM algorithm to estimate the parameters without observing Z. For this, first write down the
hidden log-likelihood. Then compute the expected value of Z(i) (E step). This is also called the

responsibility of class k for observation X
(i)
n = x, written as γ

(i)
n,kx = EZ|X=x,θ′

[
In,kx(Z(i))

]
,

where θ′ is the current estimate of θ.

(d) Write down the expected hidden log-likelihood EZ|X,θ′ [`hid(θ)] in terms of the expected counts

Nn,kx =
∑N

i=1 γ
(i)
n,kx. Now maximize this function (M-step) w.r.t the θn,kx.



Problem 2: The EM algorithm and Gaussian mixtures
Let n,K ∈ N and consider an n-dimensional random vector X distributed according to a Gaussian
mixture distribution with K components. In other words, the joint probability density function of X
can be written as

fX(x) =

K∑
k=1

λkNorm(x | µk,Σk)

where λk ∈ [0, 1] with
∑K

k=1 λk = 1 and Norm(x | µk,Σk) stands for a multivariate Gaussian
probability density function with mean vector µk and covariance matrix Σk, which is assumed to be
symmetric and nonsingular. The goal of this exercise is to derive maximum likelihood estimators of
all the parameters λk, µk,Σk, k = 1, ...,K (which we represent by θ := (λk, µk,Σk)k=1,...,K), given
a set of data points x1, ..., xN which are independent samples of the random vector X. For reasons
that will become apparent while you try to solve this exercise, this cannot be accomplished in closed
form. However, approximate values of the maximum likelihood estimators can be calculated using
the EM algorithm.

(a) Show that the observed log-likelihood function `obs(θ) := log(
∏N
i=1 fX(xi | θ)) of the sample

x1, ..., xN can be written as

`obs(θ) =
N∑
i=1

log

[
K∑
k=1

λkNorm(xi | µk,Σk)

]

Furthermore, show1 that

∂`obs
∂µkj

(θ) =
N∑
i=1

λkNorm(xi | µk,Σk)(Σ
−1
k (xi − µk))j∑K

k=1 λkNorm(xi | µk,Σk)

and explain why it is in general very difficult to obtain a closed form expression for the maximum
likelihood estimators of the parameters θ.

(b) Let us introduce a latent K-dimensional binary random vector Z satisfying
∑K

k=1 zk = 1 and
zk ∈ {0, 1}. Thus, there are exactly K possible states for the vector Z according to which
entry is nonzero. The probability assigned to each of these states is specified in terms of the
mixing coefficients λk as

P (Z = z) =
K∏
k=1

λzkk

The value assumed by the latent variable specifies which of the K Gaussian distributions is
used to generate a data point x. Therefore, X | Z has the following probability density function

fX|Z(x | Z = z) =

K∏
k=1

Norm(x | µk,Σk)
zk

Now assume that every data point xi is preceded by a realization zi of the random variable
Zi. Show that the log-likelihood function `hid(θ) of the hidden data z1, x1, ..., zN , xN can be
written as

`hid(θ) =
N∑
i=1

K∑
k=1

zik(log(λk) + log(Norm(xi | µk,Σk))) (1)

1Recall from vector calculus (xtAx)′ = 2Ax for a symmetric matrix A.



Show that the expected value of the hidden log-likelihood (1) under the posterior probability
P (Z1, ..., ZN | X1 = x1, ..., XN = xN , θ) satisfies

EZ(`hid(θ)) =
N∑
i=1

K∑
k=1

γik(log(λk) + log(Norm(xi | µk,Σk)) (2)

with

γik =
λkNorm(xi | µk,Σk)
K∑
j=1

λjNorm(xi | µj ,Σj)

(γik is the so called responsibility of component k for observation i.)

Hint: For the expectation of the hidden log-likelihood (1) under the posterior probability
P (Z1, ..., ZN | X1 = x1, ..., XN = xN , θ) it holds

EZ(`hid(θ)) = EZ(

N∑
i=1

K∑
k=1

zik(log(λk) + log(Norm(xi | µk,Σk))))

=
N∑
i=1

K∑
k=1

EZ(zik)(log(λk) + log(Norm(xi | µk,Σk)))

It can be shown that the probability density function of the random variables Z1, ..., ZN |
X1 = x1, ..., XN = xN , θ can be factorized as

fZ1,...,ZN |X1,...,XN ,θ(z1, ..., zN | X1 = x1, ..., XN = xN , θ) =
N∏
i=1

fZi|Xi,θ(zi | Xi = xi, θ)

Under this assumption, show

EZ(zik) =
λkNorm(xi | µk,Σk)
K∑
j=1

λjNorm(xi | µj ,Σj)

With this result, the EM algorithm can be applied. After choosing some initial values θold for
the parameters, the E step consists of calculating the responsibilities γik. Keeping the values
γik fixed, the expectation (2) is maximized with respect to θ. This is the M step.

(c) Show that maximizing (2) yields the following expression for µk, k = 1, ...,K :

µk =

N∑
i=1

γikxi

N∑
i=1

γik

(d) Show that maximizing (2) yields the following expression for Σk, k = 1, ...,K :

Σk =

N∑
i=1

γik(xi − µk)(xi − µk)t

N∑
i=1

γik



To this end, show that maximizing the expression

N∑
i=1

K∑
k=1

EZ(zik)(log(λk) + log(Norm(xi | µk,Σk)))

is equivalent to maximizing

Γ

(
−n

2
log(2π)− 1

2
log(|Σj |)−

1

2Γ

N∑
i=1

γij(xi − µj)tΣ−1j (xi − µj)

)

where Γ :=
N∑
i=1

γij . Furthermore, show that maximizing the last expression is equivalent to

maximizing

−n
2

log(2π)− 1

2
log(|Σj |)−

1

2Γ

N∑
i=1

(
√
γijxi −

√
γijµj)

tΣ−1j (
√
γijxi −

√
γijµj)

The latter maximization is (up to a coordinate transform) equivalent to maximizing the
log-likelihood function of a sample of length N out of a multivariate Gaussian distribution
Norm(x | µj ,Σj). The solution is the well-known result

Σk =
1

Γ

N∑
i=1

γij(xi − µj)(xi − µj)t

which can be found in the literature. Its derivation is rather involved, meaning that you can
use it without providing a proof.

(e) Show that maximizing (2) yields the following expression for λk, k = 1, ...,K :

λk =

N∑
i=1

γik

N

Hint: Since the parameters λk, k = 1, ...,K obey the constraint
∑K

k=1 λk = 1, the maximiza-

tion must be performed among the values that satisfy
∑K

k=1 λk = 1. Recall from calculus
that this can be accomplished using a Lagrange multiplier α, i.e. maximizing the expression

Λ := EZ(`hid(θ))− α(

K∑
k=1

λk − 1)

From the equations ∂Λ/∂λk = 0, k = 1, ...,K and ∂Λ/∂α = 0, eliminate α and solve for λk,
k = 1, ...,K.

The values obtained constitute the θnew which can be used to calculate new values of the γik
in a subsequent E step of the EM algorithm. Another M step follows. Both steps are iter-
ated until the evaluation of (2) does not show significant increase. The sequence of param-
eter values θl obtained converges to a local maximum of the observed log-likelihood function
`obs(θ). Thus, we have overcome the hard problem of maximizing the observed-likelihood `obs(θ) in
task a) by estimating it from the hidden-likelihood `hid(θ) for which we were able to derive closed
form expressions for the maximum likelihood estimators of the parameters θ. The price we pay for
this, is that we only get an approximate local solution for `obs(θ).


