Statistical Data Analysis 2, Cancer phylogenetics

Ewa Szczurek

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

You may think of the gamma function as a continuous generalization of the factorial n! function.

Gamma function $\Gamma(x)$

Let X be the set of all real and complex numbers, except for the negative integers and zero. The gamma function $\Gamma(x) \colon X \to \mathbb{R}$ is defined as

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt.$$

Since $\Gamma(x + 1) = x\Gamma(x)$ (integration by parts) and $\Gamma(1) = 1$, for positive integer x we have

$$\Gamma(x) = (x-1)!$$

Beta function $B(\alpha, \beta)$

The beta function $B(\alpha,\beta):\mathbb{R}_+\times\mathbb{R}_+ o\mathbb{R}$ is defined as

$$B(\alpha,\beta) = \int_{0}^{1} t^{\alpha-1} (1-t)^{\beta-1} dt = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

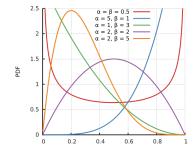
For α and β positive integer

$$B(\alpha,\beta) = \frac{(\alpha-1)!(\beta-1)!}{(\alpha+\beta-1)!}.$$

Beta distribution (Beta(α , β))

Beta (α, β)

$$f(x) = \frac{x^{\alpha}(1-x)^{\beta-1}}{B(\alpha,\beta)}, \text{ for } x \in [0,1]$$
$$E(X) = \frac{\alpha}{\alpha+\beta}, \quad Var(X) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$$



Dirichlet distribution (Dirichlet(α))

Generalization of the Beta distribution. α is a vector $\alpha \in \mathbb{R}_+^K$, with α_i called the concentration parameters and K the number of categories.

$\mathsf{Dirichlet}(\alpha)$

Let
$$B(\alpha) = \frac{\prod_{i=1}^{K} \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^{K} \alpha_i)}$$
.
 $f(x_1, \dots, x_K) = \frac{1}{B(\alpha)} \prod_{i=1}^{K} x_i^{\alpha_i - 1}$,
for $x \in \Delta_{K-1}$, i.e., $\sum_{i=1}^{K} x_i = 1, x_i \ge 0$ for all $i \in 1, \dots, K$.
 $E(X) = \frac{\alpha_i}{\sum_i \alpha_i}$

Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution. Illustration on a gif how the log of the density function changes when K = 3 as we change the vector α from $\alpha = (0.3, 0.3, 0.3)$ to (2.0, 2.0, 2.0), keeping all the individual α_i 's equal to each other.

Bayesian mixture model with K components

$$\begin{array}{rcl} \theta_k & \sim & H \\ \pi | \alpha & \sim & \mathrm{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}) \\ z_i | \pi & \sim & \mathrm{Multinomial}(\pi) \end{array}$$
$$x_i | z_i = k, \{\theta_k\} & \sim & F(\theta_k) \end{array}$$

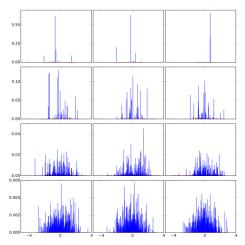
where

- *K* is the number of mixture components,
- $\pi_{k=1,...K}$ is the mixture weight of component k, with $\sum_k \pi_k = 1$,
- $z_{i=1,...N}$ is the component of observation *i*,
- θ_k is the parameter of distribution associated with component k,
- *H* is the prior probability of parameters θ .

This model induces a clustering of observations x_i .

- A stochastic process whose realizations are probability distributions
- H base distribution the expected value of the process
 - Although H can be any, also continuous distribution, the distributions drawn from DP are almost surely discrete
- α concentration parameter
 - For $\alpha\to$ 0, the distributions are concentrated at single value, for $\alpha\to\infty$ approach continuous distribution
- Infinite dimensional ($K = \infty$) generalization of the Dirichlet distribution.

Draws from the Dirichlet process



Draws from the Dirichlet process $DP(N(0,1), \alpha)$. Each row uses a different α : 1, 10, 100 and 1000. A row contains 3 repetitions of the same experiment.

Dirichlet process- intuition

• A model of data $x_1, x_2, ...$ that tends to repeat previous values ("rich get richer" fashion) according to the following algorithm

Input: H, α

- **1** Draw x_1 from the distribution H.
- For n > 1:
 - a) With probability $\frac{\alpha}{\alpha+n-1}$ draw x_n from H.
 - b) With probability $\frac{n_x}{\alpha+n-1}$ set $x_n = x$, where n_x is the number of previous observations of x.
 - Equivalently, the data can be obtained by
- **1** Draw distribution *P* from $DP(H, \alpha)$.
- **2** Draw observations x_1, x_2, \ldots from *P*

Dirichlet process- formally

Given

- Measurable set S
- Base probability distribution H
- Concentration parameter $\alpha \in \mathbb{R}_+$

Dirichlet process $DP(H, \alpha)$

Stochastic process, whose realization (set of random variates drawn from the process) is a probability distribution over S such that the following holds. For any measurable finite partition of S, denoted $\{B_i\}_{i=1}^n$, if

 $\boldsymbol{X} \sim \mathrm{DP}(\boldsymbol{H}, \boldsymbol{\alpha})$

then

 $(X(B_1),\ldots,X(B_n)) \sim \text{Dirichlet}(\alpha H(B_1),\ldots,\alpha H(B_n)).$

Finite versus infinite mixture model

Example mixture model with K components

$$\begin{array}{rcl} \mu_k & \sim & H \\ \pi | \alpha & \sim & \mathrm{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}) \\ z_i | \pi & \sim & \mathrm{Multinomial}(\pi) \end{array}$$
$$x_i | z_i = k, \mu_k & \sim & \mathrm{N}(\mu_k, \sigma^2) \end{array}$$

Equivalent model

$$\mu_{k} \sim H$$

$$\pi | \alpha \sim \text{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

$$\mu_{i} \sim G = \sum_{k=1}^{K} \pi_{k} \delta_{\mu_{k}}(\mu_{i})$$

$$x_{i} | \mu_{i} \sim N(\mu_{i}, \sigma^{2})$$

Finite versus infinite mixture model

Example mixture model with K components

Equivalent model

$$\begin{array}{rcl} \mu_{k} & \sim & H \\ \mu_{k} & \sim & H \\ \pi | \alpha & \sim & \text{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}) \\ z_{i} | \pi & \sim & \text{Multinomial}(\pi) \end{array} \qquad \qquad \mu_{k} & \sim & H \\ \pi | \alpha & \sim & \text{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K}) \\ \mu_{i} & \sim & G = \sum_{k=1}^{K} \pi_{k} \delta_{\mu_{k}}(\mu_{i}) \\ x_{i} | \mu_{i} & \sim & \text{N}(\mu_{i}, \sigma^{2}) \end{array}$$

Extended model without pre-specifying K ($G(\mu_i) = \sum_{k=1}^{\infty} \pi_k \delta_{\mu_k}(\mu_i)$).

$$egin{array}{rcl} G &\sim & \mathrm{DP}(H, lpha) \ \mu_i &\sim & G \ x_i | \mu_i &\sim & \mathrm{N}(\mu_i, \sigma^2) \end{array}$$

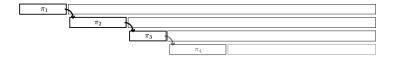
Stick-breaking construction of the Dirichlet process

$$\beta_k \sim \text{Beta}(1, \alpha)$$

$$\pi_k = \beta_k \prod_{l=1}^{k-1} (1 - \beta_k)$$

$$\theta_k \sim H$$

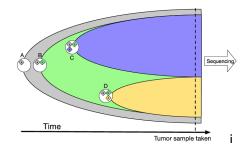
$$G(\theta) = \sum_{k=1}^{\infty} \pi_k \delta_{\theta_k}(\theta)$$



Tumor cell populations - clones

Tumor cell populations are

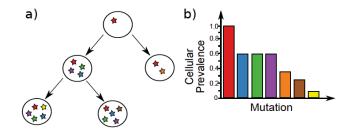
- heterogeneous
- shaped by evolution
- clone: a subpopulation of tumor cells with the same genotype
- samples taken for sequencing are 'contaminated' with normal cells.
- How to reconstruct the clones from tumor sequencing data?



Cellular prevalence of mutation

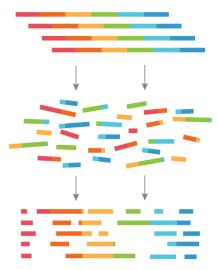
Cellular prevalence ϕ_n of mutation n

Fraction of tumor cells that carry mutation *i*.

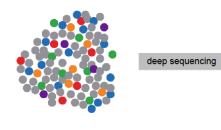


- Mutations occurring higher up the tree always have a greater cellular prevalence than their descendants.
- Green, blue and purple mutations occur at the same cellular prevalence because they co-occur in the clones of the tree.
- Clustering of cellular prevalences \rightarrow clones.

How does DNA sequencing work?



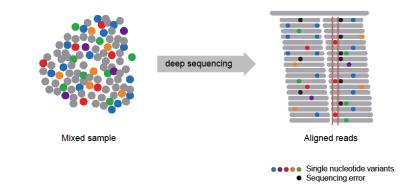
Deep sequencing of heterogeneous samples



Mixed sample

Aligned reads

Allelic variant prevalence



For a variant at position (locus) i

- fraction of reads at this position that carry the variant allele
- also called variant allele frequency (VAF)
- in tumor samples it is not equal to cellular prevalence!

Allelic prevalence is a compound measure depending on

- the proportion of tumor cells harboring the mutation (cellular prevalence), but also
- proportion of 'contaminating' normal cells
- number of allelic copies of the mutation in each cell
- sequencing errors and other technical noise

PyClone: a graphical model of clonal populations in cancer

Input:

- allelic prevalence of each variant
- allele-specific copy number estimates

Output:

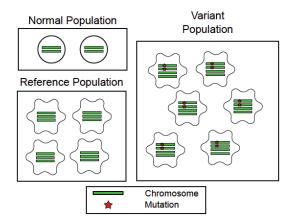
- posterior denisties for cellular prevalence of each mutation and for other model parameters
- clustering over mutations

Clonal populations follow

- a perfect phylogeny: no site mutates more than once in the evolutionary history, each site harbors at most one somatic mutation
- persistent phylogeny: mutations do not dissapear or reverse

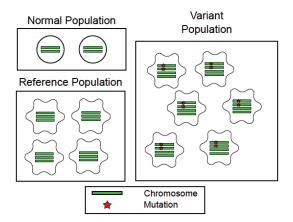
Consequently, clusters of mutations occuring at the same point in the clonal phylogeny are present at shared cellular prevalences.

Division of the sample into populations w.r.t mutation n



- 'normal population': all normal cells (circular)
- 'reference population': cancer cells (irregular) which do not contain the mutation
- 'variant population': all cancer cells with the mutation

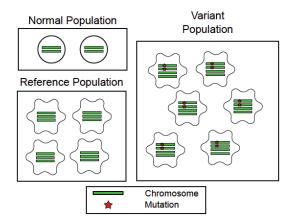
Division of the sample into populations w.r.t mutation n



Again, cellular prevalence \neq variant allelic prevalence

- Cellular prevalence: 6/10=0.6
- Variant allelic prevalence: $6 \cdot 4 \cdot \frac{2}{4}/(2 \cdot 2 + 4 \cdot 3 + 6 \cdot 4) = 0.3$

Division of the sample into populations w.r.t mutation n



Simplifying assumption:

- All cells within each population share the same genotype.
- Here the variant population has genotype AABB (two copies of the reference allele A, and two copies of the variant allele B)

Population genotypes w.r.t mutation n

- All cells within each population share the same genotype,
- but different populations may have different genotypes.

Population genotypes w.r.t mutation n

- All cells within each population share the same genotype,
- but different populations may have different genotypes.

Formally

- A collection of categorical random variables gⁿ_N, gⁿ_R, gⁿ_V
 ∈ G = {−, A, B, AA, AB, BB, AAA, AAB, ...}, the genotype of the normal, reference and variant populations w.r.t. mutation n.
 - AAB genotype with two reference alleles and one variant allele.
 - \bullet genotype with no alleles, a homogeneous deletion of the locus.
- $\bullet\,$ In practice, we choose finite ${\cal G}.$
- Vector $\psi^n = (g_N^n, g_R^n, g_V^n) \in \mathcal{G}^n$ state for mutation n
- π^n vector of prior probabilities over all possible states ψ^n for the *n*th mutation.

The probability of sampling a variant allele

- For a genotype $g \in \mathcal{G}$, $c(g) : \mathcal{G} \to \mathbb{N}$ copy number of the genotype.
 - c(AAB) = 3
- $b(g):\mathcal{G}
 ightarrow \mathbb{N}$ number of variant alleles in the genotype
 - b(AAB) = 1
- The probability of sampling a variant allele from a cell with genotype g is given by $\mu(g) = \frac{b(g)}{c(g)}$.
- When b(g) = 0, μ(g) = ε, where ε is the false positive probability of observing allele B when the true allele was A (sequencing error).
- When b(g) = c(g), $\mu(g) = 1 \epsilon$.

The probability of sampling a read

- Let *t* fraction of tumor cells (tumor content).
- The probability of sampling a read
 - containing the variant allele
 - covering a mutation with

• state
$$\psi = (g_N, g_R, g_V)$$
 and

 $\bullet\,$ cellular prevalence $\phi\,$

$$\zeta(\psi,\phi,t) = \frac{(1-t)c(g_N)}{Z}\mu(g_N) + \frac{t(1-\phi)c(g_R)}{Z}\mu(g_R) + \frac{t\phi c(g_V)}{Z}\mu(g_V)$$

where

$$Z = (1-t)c(g_N) + t(1-\phi)c(g_R) + t\phi c(g_V)$$

Posterior distribution of the prevalences

Let

- b^n number of reads observed with the B allele of the *n*th mutation
- d^n total number of reads covering the locus of the *n*th mutation

•
$$b^n \sim \text{Binomial}(d^n, \zeta(\psi_n, \phi_n, t)).$$

Posterior distribution for prevalences $\phi = (\phi^1, \ldots, \phi^N)$

$$p(\phi|b, d, \pi, t) \propto p(\phi) \prod_{n=1}^{N} p(b^{n}|\phi^{n}, d^{n}, \pi^{n}, t)$$

$$= p(\phi) \prod_{n=1}^{N} \sum_{\psi^{n} \in \mathcal{G}^{3}} p(b^{n}|\phi^{n}, d^{n}, \psi^{n}, t) p(\psi^{n}|\pi^{n})$$

$$= p(\phi) \prod_{n=1}^{N} \sum_{\psi^{n} \in \mathcal{G}^{3}} \text{Binomial}(d^{n}, \zeta(\psi_{n}, \phi_{n}, t)) \pi_{\psi^{n}}^{n}$$

Dirichlet process prior on cellular prevalences

- $\bullet\,$ Cellular prevalences ϕ should cluster by the clones.
- The prior on prevalences chosen as

 $\phi \sim DP(\text{Uniform}(0, 1), \alpha)$

- If Uniform(0, 1) (or any continuous probability) used as a prior, the prevalences of all mutations would be different with probability one.
- DP prior converts Uniform(0, 1) into a discrete distribution mutations share the same prevalence with non-zero probability.

Dirichlet process prior on cellular prevalences

- $\bullet\,$ Cellular prevalences ϕ should cluster by the clones.
- The prior on prevalences chosen as

 $\phi \sim DP(\text{Uniform}(0,1),\alpha)$

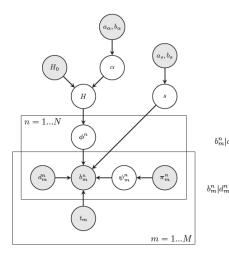
- If Uniform(0, 1) (or any continuous probability) used as a prior, the prevalences of all mutations would be different with probability one.
- DP prior converts Uniform(0, 1) into a discrete distribution mutations share the same prevalence with non-zero probability.
- $\bullet\,$ The prior on concentration parameter α is chosen as

 $\alpha \sim \text{Gamma}(a, b)$

with the density

$$p(\alpha|a,b) = \frac{b^a \alpha^{\alpha-1} \exp(-b\alpha)}{\Gamma(a).}$$

The PyClone graphical model



$$\begin{array}{rcl} \alpha &\sim \operatorname{Gamma}(a_{\alpha},b_{\alpha}) \\ H_{0} &= \operatorname{Uniform}([0,1]^{M}) \\ H|\alpha,H_{0} &\sim \operatorname{DP}(\alpha,H_{0}) \\ \phi^{n}|H &\sim H \\ \psi^{n}_{m}|\pi^{n}_{m} &\sim \operatorname{Categorical}(\pi^{n}_{m}) \\ \psi^{n}_{m} &= (g^{n}_{m,\mathrm{N}},g^{n}_{m,\mathrm{R}},g^{n}_{m,\mathrm{V}}) \\ & \text{either} \\ b^{n}_{m}|d^{n}_{m},\psi^{n}_{m},\phi^{n}_{m},t_{m} &\sim \operatorname{Binomial}(d^{n}_{m},\xi(\psi^{n}_{m},\phi^{n}_{m},t_{m})) \\ & \text{or} \\ s|a,b &\sim \operatorname{Gamma}(a_{s},b_{s}) \\ \overset{\mathrm{t}}{}_{n}|d^{n}_{m},\psi^{n}_{m},\phi^{n}_{m},t_{m},s &\sim \operatorname{BetaBinomial}(d^{n}_{m},\xi(\psi^{n}_{m},\phi^{n}_{m},t_{m}),s) \\ & \text{where} \\ \xi(\psi,\phi,t) &= \frac{(1-t)c(g_{\mathrm{N}})}{Z}\mu(g_{\mathrm{N}}) + \frac{t(1-\phi)c(g_{\mathrm{R}})}{Z}\mu(g_{\mathrm{R}}) + \\ & \frac{t\phi c(g_{\mathrm{N}})}{Z}\mu(g_{\mathrm{V}}) \\ Z &= (1-t)c(g_{\mathrm{N}}) + t(1-\phi)c(g_{\mathrm{R}}) + \end{array}$$

 $t\phi c(g_V)$

30/31

- Yee Whye Teh, Dirichlet Process
- Wikipedia
- Roth *et al.*, PyClone: Statistical inference of clonal population structure in cancer, Nat Methods, 2016