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Useful function: gamma

You may think of the gamma function as a continuous generalization of

the factorial n! function.

Gamma function Γ(x)

Let X be the set of all real and complex numbers, except for the negative

integers and zero. The gamma function Γ(x) : X→ R is defined as

Γ(x) =

∞∫
0

tx−1e−tdt.

Since Γ(x + 1) = xΓ(x) (integration by parts) and Γ(1) = 1, for positive

integer x we have

Γ(x) = (x − 1)!
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Useful function: beta

Beta function B(α, β)

The beta function B(α, β) : R+ × R+ → R is defined as

B(α, β) =

1∫
0

tα−1(1− t)β−1dt =
Γ(α)Γ(β)

Γ(α + β)
.

For α and β positive integer

B(α, β) =
(α− 1)!(β − 1)!

(α + β − 1)!
.
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Beta distribution (Beta(α, β ))

Beta(α, β)

f (x) =
xα(1− x)β−1

B(α, β)
, for x ∈ [0, 1]

E (X ) =
α

α + β
, Var(X ) =

αβ

(α + β)2(α + β + 1)
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Dirichlet distribution (Dirichlet(α))

Generalization of the Beta distribution. α is a vector α ∈ RK
+, with αi

called the concentration parameters and K the number of categories.

Dirichlet(α)

Let B(α) =
∏K

i=1 Γ(αi )

Γ(
∑K

i=1 αi )
.

f (x1, . . . , xK ) =
1

B(α)

K∏
i=1

xαi−1
i ,

for x ∈ ∆K−1, i.e.,
∑K

i=1 xi = 1, xi ≥ 0 for all i ∈ 1, . . . ,K .

E (X ) =
αi∑
i αi

Dirichlet distribution is the conjugate prior of the categorical distribution

and multinomial distribution.
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Illustration of the Dirichlet distribution

Illustration on a gif how the log of the density function changes when

K = 3 as we change the vector α from α = (0.3, 0.3, 0.3) to (2.0, 2.0, 2.0),

keeping all the individual αi ’s equal to each other.
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Bayesian mixture model with K components

θk ∼ H

π|α ∼ Dirichlet(
α

K
, . . .

α

K
)

zi |π ∼ Multinomial(π)

xi |zi = k , {θk} ∼ F (θk)

where

K is the number of mixture components,

πk=1,...K is the mixture weight of component k , with
∑

k πk = 1,

zi=1,...N is the component of observation i ,

θk is the parameter of distribution associated with component k ,

H is the prior probability of parameters θ.

This model induces a clustering of observations xi .
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Dirichlet process (DP( H , α))

A stochastic process whose realizations are probability distributions

H - base distribution - the expected value of the process

Although H can be any, also continuous distribution, the distributions

drawn from DP are almost surely discrete

α concentration parameter

For α→ 0, the distributions are concentrated at single value, for

α→∞ approach continuous distribution

Infinite dimensional (K =∞) generalization of the Dirichlet

distribution.
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Draws from the Dirichlet process

Draws from the Dirichlet process DP(N(0, 1), α). Each row uses a different α: 1, 10,

100 and 1000. A row contains 3 repetitions of the same experiment.
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Dirichlet process- intuition

A model of data x1, x2, . . . that tends to repeat previous values (”rich

get richer” fashion) according to the following algorithm

Input: H, α

1 Draw x1 from the distribution H.

2 For n > 1:

a) With probability α
α+n−1 draw xn from H.

b) With probability nx
α+n−1 set xn = x , where nx is the number of previous

observations of x .

Equivalently, the data can be obtained by

1 Draw distribution P from DP(H, α).

2 Draw observations x1, x2, . . . from P
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Dirichlet process- formally

Given

Measurable set S

Base probability distribution H

Concentration parameter α ∈ R+

Dirichlet process DP(H, α)

Stochastic process, whose realization (set of random variates drawn from

the process) is a probability distribution over S such that the following

holds. For any measurable finite partition of S , denoted {Bi}ni=1, if

X ∼ DP(H, α)

then

(X (B1), . . . ,X (Bn)) ∼ Dirichlet(αH(B1), . . . , αH(Bn)).
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Finite versus infinite mixture model

Example mixture model with K

components

µk ∼ H

π|α ∼ Dirichlet(
α

K
, . . .

α

K
)

zi |π ∼ Multinomial(π)

xi |zi = k , µk ∼ N(µk , σ
2)

Equivalent model

µk ∼ H

π|α ∼ Dirichlet(
α

K
, . . .

α

K
)

µi ∼ G =
K∑

k=1

πkδµk (µi )

xi |µi ∼ N(µi , σ
2)

Extended model without pre-specifying K (G (µi ) =
∑∞

k=1 πkδµk (µi )).

G ∼ DP(H, α)

µi ∼ G

xi |µi ∼ N(µi , σ
2)
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Stick-breaking construction of the Dirichlet process

βk ∼ Beta(1, α)

πk = βk

k−1∏
l=1

(1− βk)

θk ∼ H

G (θ) =
∞∑
k=1

πkδθk (θ)
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Tumor cell populations - clones

Tumor cell populations are

heterogeneous

shaped by evolution

clone: a subpopulation of tumor cells with the same genotype

samples taken for sequencing are ’contaminated’ with normal cells.

How to reconstruct the clones from tumor sequencing data?
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Cellular prevalence of mutation

Cellular prevalence φn of mutation n

Fraction of tumor cells that carry mutation i .

Mutations occurring higher up the tree always have a greater cellular

prevalence than their descendants.

Green, blue and purple mutations occur at the same cellular

prevalence because they co-occur in the clones of the tree.

Clustering of cellular prevalences → clones.
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How does DNA sequencing work?
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Deep sequencing of heterogeneous samples
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Allelic variant prevalence

For a variant at position (locus) i

fraction of reads at this position that carry the variant allele

also called variant allele frequency (VAF)

in tumor samples it is not equal to cellular prevalence!
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Why allelic variant prevalence 6= cellular prevalence?

Allelic prevalence is a compound measure depending on

the proportion of tumor cells harboring the mutation (cellular

prevalence), but also

proportion of ’contaminating’ normal cells

number of allelic copies of the mutation in each cell

sequencing errors and other technical noise
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PyClone: a graphical model of clonal populations in cancer

Input:

allelic prevalence of each variant

allele-specific copy number estimates

Output:

posterior denisties for cellular prevalence of each mutation and for

other model parameters

clustering over mutations

Roth et al., Nat Methods (2014)
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PyClone assumptions

Clonal populations follow

a perfect phylogeny: no site mutates more than once in the

evolutionary history, each site harbors at most one somatic mutation

persistent phylogeny: mutations do not dissapear or reverse

Consequently, clusters of mutations occuring at the same point in the

clonal phylogeny are present at shared cellular prevalences.
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Division of the sample into populations w.r.t mutation n

’normal population’: all normal cells (circular)

’reference population’: cancer cells (irregular) which do not contain

the mutation

’variant population’: all cancer cells with the mutation 22 / 31



Division of the sample into populations w.r.t mutation n

Again, cellular prevalence 6= variant allelic prevalence

Cellular prevalence: 6/10=0.6

Variant allelic prevalence: 6 · 4 · 2
4/(2 · 2 + 4 · 3 + 6 · 4) = 0.3
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Division of the sample into populations w.r.t mutation n

Simplifying assumption:

All cells within each population share the same genotype.

Here the variant population has genotype AABB (two copies of the

reference allele A, and two copies of the variant allele B)
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Population genotypes w.r.t mutation n

All cells within each population share the same genotype,

but different populations may have different genotypes.

Formally

A collection of categorical random variables gn
N , gn

R , gn
V

∈ G = {−,A,B,AA,AB,BB,AAA,AAB, . . .}, - the genotype of the
normal, reference and variant populations w.r.t. mutation n.

AAB - genotype with two reference alleles and one variant allele.

− genotype with no alleles, a homogeneous deletion of the locus.

In practice, we choose finite G.

Vector ψn = (gn
N , g

n
R , g

n
V ) ∈ Gn - state for mutation n

πn - vector of prior probabilities over all possible states ψn for the nth

mutation.
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The probability of sampling a variant allele

For a genotype g ∈ G, c(g) : G → N - copy number of the genotype.

c(AAB) = 3

b(g) : G → N - number of variant alleles in the genotype

b(AAB) = 1

The probability of sampling a variant allele from a cell with genotype

g is given by µ(g) = b(g)
c(g) .

When b(g) = 0, µ(g) = ε, where ε is the false positive probability of

observing allele B when the true allele was A (sequencing error).

When b(g) = c(g), µ(g) = 1− ε.
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The probability of sampling a read

Let t - fraction of tumor cells (tumor content).

The probability of sampling a read

containing the variant allele
covering a mutation with

state ψ = (gN , gR , gV ) and

cellular prevalence φ

ζ(ψ, φ, t) =
(1− t)c(gN)

Z
µ(gN)+

t(1− φ)c(gR)

Z
µ(gR)+

tφc(gV )

Z
µ(gV )

where

Z = (1− t)c(gN) + t(1− φ)c(gR) + tφc(gV )
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Posterior distribution of the prevalences

Let

bn number of reads observed with the B allele of the nth mutation

dn total number of reads covering the locus of the nth mutation

bn ∼ Binomial(dn, ζ(ψn, φn, t)).

Posterior distribution for prevalences φ = (φ1, . . . , φN)

p(φ|b, d , π, t) ∝ p(φ)
N∏

n=1

p(bn|φn, dn, πn, t)

= p(φ)
N∏

n=1

∑
ψn∈G3

p(bn|φn, dn, ψn, t)p(ψn|πn)

= p(φ)
N∏

n=1

∑
ψn∈G3

Binomial(dn, ζ(ψn, φn, t))πnψn
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Dirichlet process prior on cellular prevalences

Cellular prevalences φ should cluster by the clones.

The prior on prevalences chosen as

φ ∼ DP(Uniform(0, 1), α)

If Uniform(0, 1) (or any continuous probability) used as a prior, the

prevalences of all mutations would be different with probability one.

DP prior converts Uniform(0, 1) into a discrete distribution -

mutations share the same prevalence with non-zero probability.

The prior on concentration parameter α is chosen as

α ∼ Gamma(a, b)

with the density

p(α|a, b) =
baαα−1 exp(−bα)

Γ(a).
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The PyClone graphical model
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Further reading

Yee Whye Teh, Dirichlet Process

Wikipedia

Roth et al., PyClone: Statistical inference of clonal population

structure in cancer, Nat Methods, 2016
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