
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326648380

Graphical Models with R 1st talk: Graphs and Markov properties with R

Presentation · July 2018

CITATIONS

0
READS

12

1 author:

Some of the authors of this publication are also working on these related projects:

Education and R&D View project

IMGT/StatClonotype View project

Dhafer Malouche

University of Carthage

77 PUBLICATIONS 268 CITATIONS

SEE PROFILE

All content following this page was uploaded by Dhafer Malouche on 27 July 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/326648380_Graphical_Models_with_R_1st_talk_Graphs_and_Markov_properties_with_R?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/326648380_Graphical_Models_with_R_1st_talk_Graphs_and_Markov_properties_with_R?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Education-and-R-D?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/IMGT-StatClonotype?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dhafer_Malouche?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dhafer_Malouche?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Carthage?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dhafer_Malouche?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Dhafer_Malouche?enrichId=rgreq-7b1589827552bcc4c43fcf88271554e9-XXX&enrichSource=Y292ZXJQYWdlOzMyNjY0ODM4MDtBUzo2NTI5MTQzMjIzMzM2OTZAMTUzMjY3ODMxMzM3OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Graphical Models with R
1st talk: Graphs and Markov properties with R

Dhafer Malouche

essai.academia.edu/DhaferMalouche

essai.academia.edu/DhaferMalouche

Table of contents

1. Terminology of graphs

Undirected graphs (UG)

Directed Acyclic Graphs (DAG)

2. Markov properties

3. Visualizing graphs with R

1

Terminology of graphs

What’s a graph?

• A graph is G = (V, E) where V is a finite set and E ⊆ V× V.
• V the of vertices
• E is the set edges (its elements are denoted by αβ)

• undirected when α− β:

αβ ∈ E ⇐⇒ βα ∈ E

• directed when α→ β or α← β

If αβ ∈ E ⇒ βα /∈ E

• bi-directed when α↔ β

2

Undirected Graphs

3

Undirected Graph (UG)

• V = {a,b, c,d, e}
• E = {ab,bc, cd,bd}
• cliques: ab, bcd, e

A clique in G is a maximal
complete subset of V

a

b

c

d

e

4

Undirected Graph (UG)

• V = {a,b, c,d, e}
• E = {ab,bc, cd,bd}
• cliques: ab, bcd, e

A clique in G is a maximal
complete subset of V

a

b

c

d

e

4

UG with R, gRbase

• graphNEL objects
• ug() function

> library(gRbase)
> ug0 <- ug(~a:b,~b:c:d,~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
> ug0
A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 4
> library(Rgraphviz)
> plot(ug0)

a

b

c

d

e

5

UG with R, gRbase

• graphNEL objects
• ug() function

> library(gRbase)
> ug0 <- ug(~a:b,~b:c:d,~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
> ug0
A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 4
> library(Rgraphviz)
> plot(ug0)

a

b

c

d

e

5

UG with R, gRbase

• graphNEL objects
• ug() function

> library(gRbase)
> ug0 <- ug(~a:b,~b:c:d,~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
> ug0
A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 4
> library(Rgraphviz)
> plot(ug0)

a

b

c

d

e

5

Adjacency matrix with R, gRbase

G = (V, E) 7−→ A = [a(αβ)] ∈ {0, 1}|V|×|V| such that

a(αβ) = 1 ⇐⇒ αβ ∈ E

> ug01 <- ug(~a:b+b:c:d+e,result="matrix")
> ug01

a b c d e
a 0 1 0 0 0
b 1 0 1 1 0
c 0 1 0 1 0
d 0 1 1 0 0
e 0 0 0 0 0

6

Adjacency matrix with R, gRbase

G = (V, E) 7−→ A = [a(αβ)] ∈ {0, 1}|V|×|V| such that

a(αβ) = 1 ⇐⇒ αβ ∈ E

> ug01 <- ug(~a:b+b:c:d+e,result="matrix")
> ug01

a b c d e
a 0 1 0 0 0
b 1 0 1 1 0
c 0 1 0 1 0
d 0 1 1 0 0
e 0 0 0 0 0

6

Nodes and Edges R, gRbase

> nodes(ug0)
[1] "a" "b" "c" "d" "e"
> edges(ug0)
$a
[1] "b"
$b
[1] "c" "d" "a"
$c
[1] "d" "b"
$d
[1] "b" "c"
$e
character(0)

7

UG with R, igraph

> ug0i <- ug(c("a","b"),c("b","c","d"),c("e","b"),
+ result="igraph")
> ug0i
IGRAPH UNW- 5 5 --
+ attr: name (v/c), label (v/c), weight (e/n)
+ edges (vertex names):
[1] a--b b--c b--d b--e c--d
> library(igraph)
> ## vertices
> V(ug0i)
+ 5/5 vertices, named:
[1] a b c d e
> ## edges
> E(ug0i)
+ 5/5 edges (vertex names):
[1] a--b b--c b--d b--e c--d

8

UG with R, igraph

> V(ug0i)$size <- 25
> V(ug0i)$label.cex <- 2
> plot(ug0i, layout=layout.spring)

a

b

c
d

e

9

UG with R, igraph

> V(ug0i)$size <- 25
> V(ug0i)$label.cex <- 2
> plot(ug0i, layout=layout.spring)

a

b

c
d

e

9

Cliques in an UG with R,

> library(RBGL)
> is.complete(ug0, c("b","c","d"))
[1] TRUE
> maxClique(ug0)
$maxCliques
$maxCliques[[1]]
[1] "b" "c" "d"

$maxCliques[[2]]
[1] "b" "a"

$maxCliques[[3]]
[1] "e"

10

Paths and separators in an UG

• A path (of length n) between α and β in an undirected graph is a
set of vertices α = α0, α1, . . . , αn = β where αi−1 ∼ αi for
i = 1, . . . , n.

• If α = β then the path is said to be a cycle of length n.

• A subset S ⊂ V in an undirected graph is said to separate A ⊆ V
from B ⊆ V if every path between a vertex in A and a vertex in B
intersects S.

11

Paths and separators in an UG

a

b

c

d

e

12

Paths and separators in an UG with R

> separates(a = "a", b = "d",S1 = c("b", "c"), ug0)
[1] TRUE
> separates(a = "a", b = "b",S1 = c("d", "c"), ug0)
[1] FALSE

13

Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14

Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14

Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14

Boundary

Boundary bd(α) = {β ∈ V, β ∼ α}

Closure cl(α) = bd(α) ∪ {α}

> adj(object = ug0, "c")
$c
[1] "d" "b"
> closure(object = ug0,set = "c")
[1] "c" "d" "b"

15

Boundary

Boundary bd(α) = {β ∈ V, β ∼ α}

Closure cl(α) = bd(α) ∪ {α}

> adj(object = ug0, "c")
$c
[1] "d" "b"
> closure(object = ug0,set = "c")
[1] "c" "d" "b"

15

Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is
complete.

> is.simplicial(set = "b", object = ug0)
[1] FALSE
> simplicialNodes(object = ug0)
[1] "a" "c" "d" "e"
> connectedComp(g = ug0)
$`1`
[1] "a" "b" "c" "d"

$`2`
[1] "e"

16

Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is
complete.

> is.simplicial(set = "b", object = ug0)
[1] FALSE
> simplicialNodes(object = ug0)
[1] "a" "c" "d" "e"
> connectedComp(g = ug0)
$`1`
[1] "a" "b" "c" "d"

$`2`
[1] "e"

16

A chord, a triangulated UG

• An edge αi ∼ αj is a chord if the nodes of this edge belong to a
cycle α = α0 ∼ α1 ∼ . . . αn = α and where j /∈ {i− 1, i+ 1}

• A graph where all the cycle of length ≥ 4 are chorldless is called
triangulated graph

> is.triangulated(ug0)
[1] TRUE

17

A chord, a triangulated UG

• An edge αi ∼ αj is a chord if the nodes of this edge belong to a
cycle α = α0 ∼ α1 ∼ . . . αn = α and where j /∈ {i− 1, i+ 1}

• A graph where all the cycle of length ≥ 4 are chorldless is called
triangulated graph

> is.triangulated(ug0)
[1] TRUE

17

Decomposition of an UG

Let (A,B, S) be a triplet of subsets of V. (A,B, S) is a decomposition
of G if

i. (A,B, S) are disjoints and V = A ∪ B ∪ S
ii. S is complete
iii. S separates A and B in G

> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug0)
[1] FALSE
> ug1<-subGraph(c("b","c","d","a"), ug0)
> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug1)
[1] TRUE
> is.decomposition(set = "a", set2 = c("d","b"), set3 = "c", ug1)
[1] FALSE

18

Decomposition of an UG

Let (A,B, S) be a triplet of subsets of V. (A,B, S) is a decomposition
of G if

i. (A,B, S) are disjoints and V = A ∪ B ∪ S
ii. S is complete
iii. S separates A and B in G

> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug0)
[1] FALSE
> ug1<-subGraph(c("b","c","d","a"), ug0)
> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug1)
[1] TRUE
> is.decomposition(set = "a", set2 = c("d","b"), set3 = "c", ug1)
[1] FALSE

18

A decomposable UG

G = (V, E) is called a decomposable if

i. G is complete, i.e; E = V× V.
ii. or it can be decomposed into a decomposable subgraphs.

Theorem
G is decomposable if and only if G is triangulated

19

A decomposable UG

G = (V, E) is called a decomposable if

i. G is complete, i.e; E = V× V.
ii. or it can be decomposed into a decomposable subgraphs.

Theorem
G is decomposable if and only if G is triangulated

19

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

6

20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y

3 {2, 3, 4, 5} {2} Y
4 {2, 3, 6} {2, 3} Y
5 {1, 2, 3} {1, 2, 3} N
6 {2, 4} {2, 4} Y

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

5

3 6

4 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {2, 3, 4, 5} {2} Y

4 {2, 3, 6} {2, 3} Y
5 {1, 2, 3} {1, 2, 3} N
6 {2, 4} {2, 4} Y

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

5

3 6

4 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {2, 3, 4, 5} {2} Y
4 {2, 3, 6} {2, 3} Y

5 {1, 2, 3} {1, 2, 3} N
6 {2, 4} {2, 4} Y

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

5

3 6

4 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {2, 3, 4, 5} {2} Y
4 {2, 3, 6} {2, 3} Y
5 {1, 2, 3} {1, 2, 3} N

6 {2, 4} {2, 4} Y

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

5

3 6

4 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {2, 3, 4, 5} {2} Y
4 {2, 3, 6} {2, 3} Y
5 {1, 2, 3} {1, 2, 3} N
6 {2, 4} {2, 4} Y

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

5

3 6

4 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {1, 2, 4} {1, 2} Y

4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y

5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y

6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?
2 {1, 3, 4, 5, 6} {1} Y
3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

3

4 6

5 20

Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21

Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21

Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21

RIP ordering for the cliques

• Let {C1, . . . , Cp} be the set of cliques for G

• A Running Intersection Property of {C1, . . . , Cp} means that for
all j = 2, . . . ,p, ∃ i < j such that

Cj ∩
(
C1 ∪ . . . ∪ Cj−1

)
⊂ Ci

• S1 = ∅, S2 = C2 ∩ C1, S3 = C3 ∩ (C1 ∪ C2), . . .,
Sp = Cp ∩ (C1 ∪ . . . ∪ Cp−1)

• R1 = C1, R2 = C2 \ S2, . . .,Rj = Cj \ Sj, . . ., Rp = Cp \ Sp.

• S2 = C2 ∩ C1 separates R2 from H2 = C1 \ S2

• ∀j ≥ 2, Sj separates Rj from Hj = (C1 ∪ . . . ∪ Cj−1) \ Sj.

22

RIP ordering for the cliques

j Cj Sj Rj Hj Sep. ⊂ Ci?
1 {1, 2, 3} ∅
2 {2, 3, 4} {2, 3} {4} {1} Y C1
3 {2, 4, 5} {2, 4} {5} {1, 3} Y C2
4 {2, 5, 6} {2, 5} {6} {1, 3, 4} Y C3

1

2

3

4 6

5
23

RIP ordering for the cliques

• If G is triangulated RIP ordering exists (iff)

• ∃i < j such Sj ⊂ Ci, Ci is called the parent and the Sj are called
separators.

> g1<-ug(~1*2*3,~2*3*4,~2*4*5,~2*6*5)
> rip(g1)
cliques

1 : 2 3 1
2 : 2 3 4
3 : 2 5 4
4 : 2 5 6

separators
1 :
2 : 2 3
3 : 2 4
4 : 2 5

parents
1 : 0
2 : 1
3 : 2
4 : 3

24

Recap.

• G ⇒ Cliques
Separators

• G decomposable = Triangulated
Only chordless cycles

• G decomposable = Perfect ordering for vertices
RIP ordering for cliques

25

Directed Acyclic Graphs

26

A Directed Acyclic Graph

• G⃗ = (V, E),
if αβ ∈ E then βα /∈ E.

• edges= arrows
• there’s no cycles acyclics:
arrows pointing in the same
direction all the way around.

• V = {a,b, c,d, e, f,g}
• E = {ab,ac,ae,bc, cd, ed, fg}

27

A Directed Acyclic Graph

• G⃗ = (V, E),
if αβ ∈ E then βα /∈ E.

• edges= arrows
• there’s no cycles acyclics:
arrows pointing in the same
direction all the way around.

• V = {a,b, c,d, e, f,g}
• E = {ab,ac,ae,bc, cd, ed, fg}

a

b

c

d

e

g

f

27

A Directed Acyclic Graph

• If αβ ∈ E then α is the parent
of β

• a is the parent of b
• in R:

• ∼b*a means b is the child
of a

• ∼d*c*e means d is the
child of c and e

28

A Directed Acyclic Graph

• If αβ ∈ E then α is the parent
of β

• a is the parent of b
• in R:

• ∼b*a means b is the child
of a

• ∼d*c*e means d is the
child of c and e

a

b

c

d

e

g

f

28

A Directed Acyclic Graph

> dag0 <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)
> dag0 <- dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)
> dag0 <- dag(~a + b|a + c|a*b + d|c*e + e|a + g|f)
> dag0 <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),
+ c("e","a"),c("g","f"))
> dag0
A graphNEL graph with directed edges
Number of Nodes = 7
Number of Edges = 7

29

Adjacency matrix

> dag0a=dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f,
+ result="matrix")
> dag0a

a b c d e g f
a 0 1 1 0 1 0 0
b 0 0 1 0 0 0 0
c 0 0 0 1 0 0 0
d 0 0 0 0 0 0 0
e 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0
f 0 0 0 0 0 1 0

30

Path, child, parent

• A path (of length n) from α to β is a sequence of vertices
α = α0, . . . , αn = βn such that αi−1 → αi is an edge in the graph.
If there is a path from α to β we write α 7→ β.

• If α→ β α is a parent of β and β is a children of α.

> parents("d",dag0)
[1] "c" "e"
> children("c",dag0)
[1] "d"

31

Path, child, parent

• A path (of length n) from α to β is a sequence of vertices
α = α0, . . . , αn = βn such that αi−1 → αi is an edge in the graph.
If there is a path from α to β we write α 7→ β.

• If α→ β α is a parent of β and β is a children of α.

> parents("d",dag0)
[1] "c" "e"
> children("c",dag0)
[1] "d"

31

Ancestrals

• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =

∪
β∈A

an(β) ancestral set of A.

> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2
> plot(ancestralGraph(c("b","e"),dag0))

a

b e

32

Ancestrals

• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =

∪
β∈A

an(β) ancestral set of A.

> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2
> plot(ancestralGraph(c("b","e"),dag0))

a

b e

32

Ancestrals

• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =

∪
β∈A

an(β) ancestral set of A.

> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2
> plot(ancestralGraph(c("b","e"),dag0))

a

b e
32

Moralizing a DAG

Moralizing a DAG = Transforming it
into an UG (arrows become
non-directed) and adding an edge
to all parents

33

Moralizing a DAG

Moralizing a DAG = Transforming it
into an UG (arrows become
non-directed) and adding an edge
to all parents

a

b

c

d

e

g

f

33

Moralizing a DAG

Moralizing a DAG = Transforming it
into an UG (arrows become
non-directed) and adding an edge
to all parents

a

b

c

d

e

g

f

G⃗ ←→ Gm

33

d−Separation

• Let α 7→ β in the DAG G = (V, E) and S ⊂ V.

• α 7→ β is active according to S if two following conditions hold:
i. every node with converging edges (→ αi) is either in S or has a
descendant in S,

ii. every other node is not in S.

• α 7→ β is blocked by S if it is not active according to G

• (A,B, S) three disjoint subsets of V, S d−separate A from B if for
any path from A to B is blocked by S.

34

d−Separation, Examples

A = {a}, B = {d}, S = {c, e}

a → c → d blocked by S
a → e → d blocked by S

Then S d−separates A and B.

a

b

c

d

e

g

f

> library(ggm)
> dSep(amat = as(dag0, "matrix"),
+ first = "a", second = "d",cond = c("c","e"))
[1] TRUE

35

d−Separation, Examples

A = {a}, B = {d}, S = {c, e}

a → c → d blocked by S
a → e → d blocked by S

Then S d−separates A and B.

a

b

c

d

e

g

f

> library(ggm)
> dSep(amat = as(dag0, "matrix"),
+ first = "a", second = "d",cond = c("c","e"))
[1] TRUE

35

d−Separation, Examples

A = {b}, B = {e}, S = {c,d}

No paths btw A and B
can be blocked by S

Then S doesn’t d−separate A and B.

a

b

c

d

e

g

f

> dSep(amat = as(dag0, "matrix"),
+ first = "b", second = "e",cond = c("c","d"))
[1] FALSE

36

d−Separation, Examples

A = {b}, B = {e}, S = {c,d}

No paths btw A and B
can be blocked by S

Then S doesn’t d−separate A and B.

a

b

c

d

e

g

f

> dSep(amat = as(dag0, "matrix"),
+ first = "b", second = "e",cond = c("c","d"))
[1] FALSE

36

d−Separation and Moralization

Theorom
Let G⃗ be a DAG and Gm its moral UG associated to G⃗.

S d−separates A and B if and only if S separates A and B in the
sub-graph deduced from Gm.

37

Moralization with R

> dag0m <- moralize(dag0)
> dag0m
A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8
> plot(dag0m)

a

b

c

d

e

g

f

a

b

c

d

e

g

f

38

Moralization with R

> dag0m <- moralize(dag0)
> dag0m
A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8
> plot(dag0m)

a

b

c

d

e

g

f

a

b

c

d

e

g

f

38

Moralization with R

> dag0m <- moralize(dag0)
> dag0m
A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8
> plot(dag0m)

a

b

c

d

e

g

f

a

b

c

d

e

g

f

38

Markov properties

Conditional Independence

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|)

• For A ⊆ V, XA = (Xv, v ∈ A)

• for all A, B, S ⊆ V, A ⊥⊥ B | S means that XA ⊥⊥ XB | XS.

• If f(.) is the generic density

A ⊥⊥ B | S ⇐⇒ f(xA, xB | xc) = f(xA | xS) f(xB | xS)
⇐⇒ f(xA, xB, xS) = h(xA, xS)g(xB, xS)

39

Markov properties for UG

G = (V, E) is an undirected graph.

(P) We say that P is pairwise Markov w.r.t G, if

α ̸∼G β ⇒ α ⊥⊥ β | V \ {α, β}

(G) We say that P is global Markov w.r.t. G = (V, E),

S separates A and B in G ⇒ XA ⊥⊥ XB | XS

(F) If P has a density f, C is the set of cliques of G, we say that P
factorized Markov w.r.t G, then

f(xV) =
∏
c∈C

gc(xc)

.

Theorem
if P has a density f, then

(F) ⇐⇒ (G) ⇐⇒ (P)

40

Markov properties for UG

G = (V, E) is an undirected graph.

(P) We say that P is pairwise Markov w.r.t G, if

α ̸∼G β ⇒ α ⊥⊥ β | V \ {α, β}

(G) We say that P is global Markov w.r.t. G = (V, E),

S separates A and B in G ⇒ XA ⊥⊥ XB | XS

(F) If P has a density f, C is the set of cliques of G, we say that P
factorized Markov w.r.t G, then

f(xV) =
∏
c∈C

gc(xc)

.

Theorem
if P has a density f, then

(F) ⇐⇒ (G) ⇐⇒ (P)

40

Examples

• a ⊥⊥ c | b

• a ⊥⊥ e
• a ⊥⊥ d | b, c.

a

b

c

d

e

41

Examples

• a ⊥⊥ c | b
• a ⊥⊥ e

• a ⊥⊥ d | b, c.

a

b

c

d

e

41

Examples

• a ⊥⊥ c | b
• a ⊥⊥ e
• a ⊥⊥ d | b, c.

a

b

c

d

e

41

Markov properties for DAGs

G⃗ = (V, E) is a directed acyclic graph.

(Fd) We say that P admits a recusive factorisation according to G⃗ if

f(xV) =
∏
c∈C

gc(xc | xpa(c))

(Gd) P obeys to the directed global Markov property w.r.t G⃗

S d− separates A and B in G ⇒ XA ⊥⊥ XB | XS

(Pd) P obeys to the directed pairwise Markov property w.r.t G⃗ if

α ̸∼G β ⇒ α ⊥⊥ β | nd(α) \ {β}

nd(α) = V \ desc(α) where

desc(α) = {β ∈ V, α 7→ β}

Theorem
if P has a density f, then

(Fd) ⇐⇒ (Gd) ⇐⇒ (Pd)

42

Markov properties for DAGs

G⃗ = (V, E) is a directed acyclic graph.

(Fd) We say that P admits a recusive factorisation according to G⃗ if

f(xV) =
∏
c∈C

gc(xc | xpa(c))

(Gd) P obeys to the directed global Markov property w.r.t G⃗

S d− separates A and B in G ⇒ XA ⊥⊥ XB | XS

(Pd) P obeys to the directed pairwise Markov property w.r.t G⃗ if

α ̸∼G β ⇒ α ⊥⊥ β | nd(α) \ {β}

nd(α) = V \ desc(α) where

desc(α) = {β ∈ V, α 7→ β}

Theorem
if P has a density f, then

(Fd) ⇐⇒ (Gd) ⇐⇒ (Pd)

42

Examples

• a ⊥⊥ d | {b, c, e}
• b ⊥⊥ d | {a, c, e}

a

b

c

d

e

g

f

43

Examples

• a ⊥⊥ d | {b, c, e}
• b ⊥⊥ d | {a, c, e}

a

b

c

d

e

g

f

a

b

c

d

e

g

f

43

Examples

• a ⊥⊥ d | {b, c, e}

• b ⊥⊥ d | {a, c, e}

a

b

c

d

e

g

f

a

b

c

d

e

g

f

43

Examples

• a ⊥⊥ d | {b, c, e}
• b ⊥⊥ d | {a, c, e}

a

b

c

d

e

g

f

a

b

c

d

e

g

f

43

Markov equivalence

b ⊥⊥ c | a

44

Graphical Model

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|):

I(P) = {(A,B, S) ⊂ V such that A ⊥⊥ B | S}

45

Graphical Model

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|):

I(P) = {(A,B, S) ⊂ V such that A ⊥⊥ B | S}

• If UG, G = (V, E):

S(G) = {(A,B, S) ⊂ V such that S separates A and B in G}

• (P,G) is a Graphical Model then S(G) ⊆ I(P)

45

Graphical Model

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|):

I(P) = {(A,B, S) ⊂ V such that A ⊥⊥ B | S}

• If DAG, G⃗ = (V, E):

S(G⃗) = {(A,B, S) ⊂ V such that Sd− separates A and B in G}

• (P, G⃗) is a Graphical Model then S(G⃗) ⊆ I(P)
• Two DAG G1 and G2 are Markov Equivalence if

S(G⃗1) = S(G⃗2)

45

Example, Markov equivalence

Theorem
G⃗1 and G⃗2 are Markov equivalent iff(

G⃗1
)
m
=

(
G⃗2
)
m

46

Example, Markov equivalence

Theorem
G⃗1 and G⃗2 are Markov equivalent iff(

G⃗1
)
m
=

(
G⃗2
)
m

46

Example, Markov equivalence

Theorem
G⃗1 and G⃗2 are Markov equivalent iff(

G⃗1
)
m
=

(
G⃗2
)
m

46

Visualizing graphs with R

Example 1, Customizing the graph

> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))

47

Example 1, Customizing the graph

> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))

47

Example 1, Transforming the graph en LATEX

> library(tikzDevice)
> tikz("g.tex",standAlone = T)
> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
> dev.off()

% Created by tikzDevice version 0.10.1 on 2017-03-31 14:50:06
% !TEX encoding = UTF-8 Unicode
\documentclass[10pt]{article}
\usepackage{tikz}

\usepackage[active,tightpage,psfixbb]{preview}

\PreviewEnvironment{pgfpicture}

\setlength\PreviewBorder{0pt}
\begin{document}

\begin{tikzpicture}[x=1pt,y=1pt]
\definecolor{fillColor}{RGB}{255,255,255}
\path[use as bounding box,fill=fillColor,fill opacity=0.00] (0,0) rectangle (505.89,505.89);
\begin{scope}

48

Example 1, Transforming the graph en LATEX

> library(tikzDevice)
> tikz("g.tex",standAlone = T)
> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
> dev.off()

% Created by tikzDevice version 0.10.1 on 2017-03-31 14:50:06
% !TEX encoding = UTF-8 Unicode
\documentclass[10pt]{article}
\usepackage{tikz}

\usepackage[active,tightpage,psfixbb]{preview}

\PreviewEnvironment{pgfpicture}

\setlength\PreviewBorder{0pt}
\begin{document}

\begin{tikzpicture}[x=1pt,y=1pt]
\definecolor{fillColor}{RGB}{255,255,255}
\path[use as bounding box,fill=fillColor,fill opacity=0.00] (0,0) rectangle (505.89,505.89);
\begin{scope}

48

Example 2, with Mixed edges,

Step 1: Construct the adjacency matrix

> d1 <- matrix(0,11,11)
> d1[1,2] <- d1[2,1] <- d1[1,3] <- d1[3,1] <- d1[2,4] <- d1[4,2] <-
+ d1[5,6] <- d1[6,5] <- 1
> d1[9,10] <- d1[10,9] <- d1[7,8] <- d1[8,7] <- d1[3,5] <-
+ d1[5,10] <- d1[4,6] <- d1[4,7] <- 1
> d1[6,11] <- d1[7,11] <- 1
> rownames(d1) <- colnames(d1) <- letters[1:11]
> d1

a b c d e f g h i j k
a 0 1 1 0 0 0 0 0 0 0 0
b 1 0 0 1 0 0 0 0 0 0 0
c 1 0 0 0 1 0 0 0 0 0 0
d 0 1 0 0 0 1 1 0 0 0 0
e 0 0 0 0 0 1 0 0 0 1 0
f 0 0 0 0 1 0 0 0 0 0 1
g 0 0 0 0 0 0 0 1 0 0 1
h 0 0 0 0 0 0 1 0 0 0 0
i 0 0 0 0 0 0 0 0 0 1 0
j 0 0 0 0 0 0 0 0 1 0 0
k 0 0 0 0 0 0 0 0 0 0 0

49

Example 2, with Mixed edges,

Step 2: Transform the adjacency matrix into igraph object.

> cG1 <- as(d1, "igraph")
> plot(cG1)

50

Example 2, with Mixed edges,

Step 2: Transform the adjacency matrix into igraph object.

> cG1 <- as(d1, "igraph")
> plot(cG1)

50

Example 2, with Mixed edges,

Step 3: Changing the type of the edges (only directed and undirected
edges

> E(cG1)
+ 18/18 edges (vertex names):
[1] a->b a->c b->a b->d c->a c->e d->b d->f d->g e->f e->j f->e f->k g->h

[15] g->k h->g i->j j->i
> is.mutual(cG1) ## checks the reciproc pair of the supplied edges
[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE

[12] TRUE FALSE TRUE FALSE TRUE TRUE TRUE
> ## Change the bidirected edges to undirected edges
> E(cG1)$arrow.mode <- c(2,0)[1+is.mutual(cG1)]
> plot(cG1, layout=layout.spring)

51

Example 2, with Mixed edges,

Step 3: Changing the type of the edges (only directed and undirected
edges

> E(cG1)
+ 18/18 edges (vertex names):
[1] a->b a->c b->a b->d c->a c->e d->b d->f d->g e->f e->j f->e f->k g->h

[15] g->k h->g i->j j->i
> is.mutual(cG1) ## checks the reciproc pair of the supplied edges
[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE

[12] TRUE FALSE TRUE FALSE TRUE TRUE TRUE
> ## Change the bidirected edges to undirected edges
> E(cG1)$arrow.mode <- c(2,0)[1+is.mutual(cG1)]
> plot(cG1, layout=layout.spring)

51

Example 2, with Mixed edges,

Step 4: Renaming and reshaping nodes, Recoloring edges according
to the type
> cG1a <- as(cG1, "graphNEL")
> nodes(cG1a)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"

> nodes(cG1a) <- c("alpha","theta","tau","beta","pi","upsilon","gamma",
+ "iota","phi","delta","kappa")
> edges <- buildEdgeList(cG1a)
> for (i in 1:length(edges)) {
+ if (edges[[i]]@attrs$dir=="both") {
+ edges[[i]]@attrs$dir <- "none"
+ edges[[i]]@attrs$color <- "blue"
+ }
+ if (edges[[i]]@attrs$dir=="forward") {
+ edges[[i]]@attrs$color <- "red"
+ }
+ }
> nodes <- buildNodeList(cG1a)
> for (i in 1:length(nodes)) {
+ nodes[[i]]@attrs$fontcolor <- "red"
+ nodes[[i]]@attrs$shape <- "ellipse"
+ nodes[[i]]@attrs$fillcolor <- "lightgrey"
+ if (i <= 4) {
+ nodes[[i]]@attrs$fillcolor <- "lightblue"
+ nodes[[i]]@attrs$shape <- "box"
+ }
+ }
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a",
+ layoutType="neato")
> plot(cG1al) 52

Example 2, with Mixed edges,

Step 4: Renaming and reshaping nodes, Recoloring edges according
to the type
> cG1a <- as(cG1, "graphNEL")
> nodes(cG1a)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"

> nodes(cG1a) <- c("alpha","theta","tau","beta","pi","upsilon","gamma",
+ "iota","phi","delta","kappa")
> edges <- buildEdgeList(cG1a)
> for (i in 1:length(edges)) {
+ if (edges[[i]]@attrs$dir=="both") {
+ edges[[i]]@attrs$dir <- "none"
+ edges[[i]]@attrs$color <- "blue"
+ }
+ if (edges[[i]]@attrs$dir=="forward") {
+ edges[[i]]@attrs$color <- "red"
+ }
+ }
> nodes <- buildNodeList(cG1a)
> for (i in 1:length(nodes)) {
+ nodes[[i]]@attrs$fontcolor <- "red"
+ nodes[[i]]@attrs$shape <- "ellipse"
+ nodes[[i]]@attrs$fillcolor <- "lightgrey"
+ if (i <= 4) {
+ nodes[[i]]@attrs$fillcolor <- "lightblue"
+ nodes[[i]]@attrs$shape <- "box"
+ }
+ }
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a",
+ layoutType="neato")
> plot(cG1al) 52

View publication statsView publication stats

https://www.researchgate.net/publication/326648380

	Terminology of graphs
	Undirected graphs (UG)
	Directed Acyclic Graphs (DAG)

	Markov properties
	Visualizing graphs with R

