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Terminology of graphs



What’s a graph?

• A graph is G = (V, E) where V is a finite set and E ⊆ V× V.
• V the of vertices
• E is the set edges (its elements are denoted by αβ)

• undirected when α− β:

αβ ∈ E ⇐⇒ βα ∈ E

• directed when α→ β or α← β

If αβ ∈ E ⇒ βα /∈ E

• bi-directed when α↔ β
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Undirected Graphs
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Undirected Graph (UG)

• V = {a,b, c,d, e}
• E = {ab,bc, cd,bd}
• cliques: ab, bcd, e

A clique in G is a maximal
complete subset of V

a

b

c

d

e
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UG with R, gRbase

• graphNEL objects
• ug() function

> library(gRbase)
> ug0 <- ug(~a:b,~b:c:d,~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
> ug0
A graphNEL graph with undirected edges
Number of Nodes = 5
Number of Edges = 4
> library(Rgraphviz)
> plot(ug0)

a

b

c

d

e
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Adjacency matrix with R, gRbase

G = (V, E) 7−→ A = [a(αβ)] ∈ {0, 1}|V|×|V| such that

a(αβ) = 1 ⇐⇒ αβ ∈ E

> ug01 <- ug(~a:b+b:c:d+e,result="matrix")
> ug01

a b c d e
a 0 1 0 0 0
b 1 0 1 1 0
c 0 1 0 1 0
d 0 1 1 0 0
e 0 0 0 0 0
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Nodes and Edges R, gRbase

> nodes(ug0)
[1] "a" "b" "c" "d" "e"
> edges(ug0)
$a
[1] "b"
$b
[1] "c" "d" "a"
$c
[1] "d" "b"
$d
[1] "b" "c"
$e
character(0)
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UG with R, igraph

> ug0i <- ug(c("a","b"),c("b","c","d"),c("e","b"),
+ result="igraph")
> ug0i
IGRAPH UNW- 5 5 --
+ attr: name (v/c), label (v/c), weight (e/n)
+ edges (vertex names):
[1] a--b b--c b--d b--e c--d
> library(igraph)
> ## vertices
> V(ug0i)
+ 5/5 vertices, named:
[1] a b c d e
> ## edges
> E(ug0i)
+ 5/5 edges (vertex names):
[1] a--b b--c b--d b--e c--d
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UG with R, igraph

> V(ug0i)$size <- 25
> V(ug0i)$label.cex <- 2
> plot(ug0i, layout=layout.spring)

a

b

c
d

e
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Cliques in an UG with R,

> library(RBGL)
> is.complete(ug0, c("b","c","d"))
[1] TRUE
> maxClique(ug0)
$maxCliques
$maxCliques[[1]]
[1] "b" "c" "d"

$maxCliques[[2]]
[1] "b" "a"

$maxCliques[[3]]
[1] "e"
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Paths and separators in an UG

• A path (of length n) between α and β in an undirected graph is a
set of vertices α = α0, α1, . . . , αn = β where αi−1 ∼ αi for
i = 1, . . . , n.

• If α = β then the path is said to be a cycle of length n.

• A subset S ⊂ V in an undirected graph is said to separate A ⊆ V
from B ⊆ V if every path between a vertex in A and a vertex in B
intersects S.
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Paths and separators in an UG
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Paths and separators in an UG with R

> separates(a = "a", b = "d",S1 = c("b", "c"), ug0)
[1] TRUE
> separates(a = "a", b = "b",S1 = c("d", "c"), ug0)
[1] FALSE
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Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14



Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14



Subgraphs

The graph G0 = (V0, E0) is said to be a subgraph of G = (V, E) if V0 ⊆ V
and E0 ⊆ E.

> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

b

c

d

e

14



Boundary

Boundary bd(α) = {β ∈ V, β ∼ α}

Closure cl(α) = bd(α) ∪ {α}

> adj(object = ug0, "c")
$c
[1] "d" "b"
> closure(object = ug0,set = "c")
[1] "c" "d" "b"
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Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is
complete.

> is.simplicial(set = "b", object = ug0)
[1] FALSE
> simplicialNodes(object = ug0)
[1] "a" "c" "d" "e"
> connectedComp(g = ug0)
$`1`
[1] "a" "b" "c" "d"

$`2`
[1] "e"
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Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is
complete.

> is.simplicial(set = "b", object = ug0)
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[1] "a" "c" "d" "e"
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A chord, a triangulated UG

• An edge αi ∼ αj is a chord if the nodes of this edge belong to a
cycle α = α0 ∼ α1 ∼ . . . αn = α and where j /∈ {i− 1, i+ 1}

• A graph where all the cycle of length ≥ 4 are chorldless is called
triangulated graph

> is.triangulated(ug0)
[1] TRUE
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Decomposition of an UG

Let (A,B, S) be a triplet of subsets of V. (A,B, S) is a decomposition
of G if

i. (A,B, S) are disjoints and V = A ∪ B ∪ S
ii. S is complete
iii. S separates A and B in G

> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug0)
[1] FALSE
> ug1<-subGraph(c("b","c","d","a"), ug0)
> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug1)
[1] TRUE
> is.decomposition(set = "a", set2 = c("d","b"), set3 = "c", ug1)
[1] FALSE
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A decomposable UG

G = (V, E) is called a decomposable if

i. G is complete, i.e; E = V× V.
ii. or it can be decomposed into a decomposable subgraphs.

Theorem
G is decomposable if and only if G is triangulated
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Perfect ordering

Assume V = {1, . . . , |V|}. This is order called perfect if ∀i = 2, . . . , |V|,
S(i) = bd(i) ∩ {1, . . . , i− 1} is complete

i bd(i) S(i) Complete?

3 {1, 2, 4} {1, 2} Y
4 {2, 3, 5} {2, 3} Y
5 {2, 4, 6} {2} Y
6 {2, 5} {2, 5} Y

1

2

6
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Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21



Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21



Perfect ordering and decomposability

• If G is decomposable, then the perfect ordering can be obtained
using the maximum cardinality search algorithm

Theorem
G is decomposable if and only if G is triangulated if and only if the
vertices of G admit a perfect ordering.

> g2<-ug(~1*2*5,~2*5*3,~2*6*4,~2*4*3)
> mcs(g2)
[1] "1" "2" "5" "3" "4" "6"

21



RIP ordering for the cliques

• Let {C1, . . . , Cp} be the set of cliques for G

• A Running Intersection Property of {C1, . . . , Cp} means that for
all j = 2, . . . ,p, ∃ i < j such that

Cj ∩
(
C1 ∪ . . . ∪ Cj−1

)
⊂ Ci

• S1 = ∅, S2 = C2 ∩ C1, S3 = C3 ∩ (C1 ∪ C2), . . .,
Sp = Cp ∩ (C1 ∪ . . . ∪ Cp−1)

• R1 = C1, R2 = C2 \ S2, . . .,Rj = Cj \ Sj, . . ., Rp = Cp \ Sp.

• S2 = C2 ∩ C1 separates R2 from H2 = C1 \ S2

• ∀j ≥ 2, Sj separates Rj from Hj = (C1 ∪ . . . ∪ Cj−1) \ Sj.

22



RIP ordering for the cliques

j Cj Sj Rj Hj Sep. ⊂ Ci?
1 {1, 2, 3} ∅
2 {2, 3, 4} {2, 3} {4} {1} Y C1
3 {2, 4, 5} {2, 4} {5} {1, 3} Y C2
4 {2, 5, 6} {2, 5} {6} {1, 3, 4} Y C3

1

2

3

4 6

5
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RIP ordering for the cliques

• If G is triangulated RIP ordering exists (iff )

• ∃i < j such Sj ⊂ Ci, Ci is called the parent and the Sj are called
separators.

> g1<-ug(~1*2*3,~2*3*4,~2*4*5,~2*6*5)
> rip(g1)
cliques

1 : 2 3 1
2 : 2 3 4
3 : 2 5 4
4 : 2 5 6

separators
1 :
2 : 2 3
3 : 2 4
4 : 2 5

parents
1 : 0
2 : 1
3 : 2
4 : 3
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Recap.

• G ⇒ Cliques
Separators

• G decomposable = Triangulated
Only chordless cycles

• G decomposable = Perfect ordering for vertices
RIP ordering for cliques

25



Directed Acyclic Graphs
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A Directed Acyclic Graph

• G⃗ = (V, E),
if αβ ∈ E then βα /∈ E.

• edges= arrows
• there’s no cycles acyclics:
arrows pointing in the same
direction all the way around.

• V = {a,b, c,d, e, f,g}
• E = {ab,ac,ae,bc, cd, ed, fg}
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A Directed Acyclic Graph

• If αβ ∈ E then α is the parent
of β

• a is the parent of b
• in R:

• ∼b*a means b is the child
of a

• ∼d*c*e means d is the
child of c and e
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A Directed Acyclic Graph

> dag0 <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)
> dag0 <- dag(~a + b*a + c*a*b + d*c*e + e*a + g*f)
> dag0 <- dag(~a + b|a + c|a*b + d|c*e + e|a + g|f)
> dag0 <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),
+ c("e","a"),c("g","f"))
> dag0
A graphNEL graph with directed edges
Number of Nodes = 7
Number of Edges = 7
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Adjacency matrix

> dag0a=dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f,
+ result="matrix")
> dag0a

a b c d e g f
a 0 1 1 0 1 0 0
b 0 0 1 0 0 0 0
c 0 0 0 1 0 0 0
d 0 0 0 0 0 0 0
e 0 0 0 1 0 0 0
g 0 0 0 0 0 0 0
f 0 0 0 0 0 1 0
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Path, child, parent

• A path (of length n) from α to β is a sequence of vertices
α = α0, . . . , αn = βn such that αi−1 → αi is an edge in the graph.
If there is a path from α to β we write α 7→ β.

• If α→ β α is a parent of β and β is a children of α.

> parents("d",dag0)
[1] "c" "e"
> children("c",dag0)
[1] "d"
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Path, child, parent

• A path (of length n) from α to β is a sequence of vertices
α = α0, . . . , αn = βn such that αi−1 → αi is an edge in the graph.
If there is a path from α to β we write α 7→ β.

• If α→ β α is a parent of β and β is a children of α.

> parents("d",dag0)
[1] "c" "e"
> children("c",dag0)
[1] "d"
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Ancestrals

• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =

∪
β∈A

an(β) ancestral set of A.

> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2
> plot(ancestralGraph(c("b","e"),dag0))

a

b e
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• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =
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Ancestrals

• an(β) = {α ∈ V such α 7→ β} ancestrors of β
• A ⊆ V, an(A) =

∪
β∈A

an(β) ancestral set of A.

> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes = 3
Number of Edges = 2
> plot(ancestralGraph(c("b","e"),dag0))
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Moralizing a DAG

Moralizing a DAG = Transforming it
into an UG (arrows become
non-directed) and adding an edge
to all parents
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Moralizing a DAG

Moralizing a DAG = Transforming it
into an UG (arrows become
non-directed) and adding an edge
to all parents
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G⃗ ←→ Gm
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d−Separation

• Let α 7→ β in the DAG G = (V, E) and S ⊂ V.

• α 7→ β is active according to S if two following conditions hold:
i. every node with converging edges (→ αi) is either in S or has a
descendant in S,

ii. every other node is not in S.

• α 7→ β is blocked by S if it is not active according to G

• (A,B, S) three disjoint subsets of V, S d−separate A from B if for
any path from A to B is blocked by S.

34



d−Separation, Examples

A = {a}, B = {d}, S = {c, e}

a → c → d blocked by S
a → e → d blocked by S

Then S d−separates A and B.

a

b

c

d

e

g

f

> library(ggm)
> dSep(amat = as(dag0, "matrix"),
+ first = "a", second = "d",cond = c("c","e"))
[1] TRUE
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d−Separation, Examples

A = {b}, B = {e}, S = {c,d}

No paths btw A and B
can be blocked by S

Then S doesn’t d−separate A and B.

a

b

c

d

e

g

f

> dSep(amat = as(dag0, "matrix"),
+ first = "b", second = "e",cond = c("c","d"))
[1] FALSE
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d−Separation, Examples

A = {b}, B = {e}, S = {c,d}

No paths btw A and B
can be blocked by S

Then S doesn’t d−separate A and B.
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> dSep(amat = as(dag0, "matrix"),
+ first = "b", second = "e",cond = c("c","d"))
[1] FALSE
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d−Separation and Moralization

Theorom
Let G⃗ be a DAG and Gm its moral UG associated to G⃗.

S d−separates A and B if and only if S separates A and B in the
sub-graph deduced from Gm.
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Moralization with R

> dag0m <- moralize(dag0)
> dag0m
A graphNEL graph with undirected edges
Number of Nodes = 7
Number of Edges = 8
> plot(dag0m)
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Markov properties



Conditional Independence

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|)

• For A ⊆ V, XA = (Xv, v ∈ A)

• for all A, B, S ⊆ V, A ⊥⊥ B | S means that XA ⊥⊥ XB | XS.

• If f(.) is the generic density

A ⊥⊥ B | S ⇐⇒ f(xA, xB | xc) = f(xA | xS) f(xB | xS)
⇐⇒ f(xA, xB, xS) = h(xA, xS)g(xB, xS)

39



Markov properties for UG

G = (V, E) is an undirected graph.

(P) We say that P is pairwise Markov w.r.t G, if

α ̸∼G β ⇒ α ⊥⊥ β | V \ {α, β}

(G) We say that P is global Markov w.r.t. G = (V, E),

S separates A and B in G ⇒ XA ⊥⊥ XB | XS

(F) If P has a density f, C is the set of cliques of G, we say that P
factorized Markov w.r.t G, then

f(xV) =
∏
c∈C

gc(xc)

.

Theorem
if P has a density f, then

(F) ⇐⇒ (G) ⇐⇒ (P)
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Examples

• a ⊥⊥ c | b

• a ⊥⊥ e
• a ⊥⊥ d | b, c.
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Examples

• a ⊥⊥ c | b
• a ⊥⊥ e
• a ⊥⊥ d | b, c.
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Markov properties for DAGs

G⃗ = (V, E) is a directed acyclic graph.

(Fd) We say that P admits a recusive factorisation according to G⃗ if

f(xV) =
∏
c∈C

gc(xc | xpa(c))

(Gd) P obeys to the directed global Markov property w.r.t G⃗

S d− separates A and B in G ⇒ XA ⊥⊥ XB | XS

(Pd) P obeys to the directed pairwise Markov property w.r.t G⃗ if

α ̸∼G β ⇒ α ⊥⊥ β | nd(α) \ {β}

nd(α) = V \ desc(α) where

desc(α) = {β ∈ V, α 7→ β}

Theorem
if P has a density f, then

(Fd) ⇐⇒ (Gd) ⇐⇒ (Pd)
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Examples

• a ⊥⊥ d | {b, c, e}
• b ⊥⊥ d | {a, c, e}
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Examples
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Markov equivalence

b ⊥⊥ c | a
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Graphical Model

• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|):

I(P) = {(A,B, S) ⊂ V such that A ⊥⊥ B | S}
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• XV = (Xv, v ∈ V) ∼ P a random vector (∈ R|V|):

I(P) = {(A,B, S) ⊂ V such that A ⊥⊥ B | S}

• If DAG, G⃗ = (V, E):

S(G⃗) = {(A,B, S) ⊂ V such that Sd− separates A and B in G}

• (P, G⃗) is a Graphical Model then S(G⃗) ⊆ I(P)
• Two DAG G1 and G2 are Markov Equivalence if

S(G⃗1) = S(G⃗2)
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Example, Markov equivalence

Theorem
G⃗1 and G⃗2 are Markov equivalent iff(

G⃗1
)
m
=

(
G⃗2
)
m
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Visualizing graphs with R



Example 1, Customizing the graph

> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
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Example 1, Transforming the graph en LATEX

> library(tikzDevice)
> tikz("g.tex",standAlone = T)
> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
> dev.off()

% Created by tikzDevice version 0.10.1 on 2017-03-31 14:50:06
% !TEX encoding = UTF-8 Unicode
\documentclass[10pt]{article}
\usepackage{tikz}

\usepackage[active,tightpage,psfixbb]{preview}

\PreviewEnvironment{pgfpicture}

\setlength\PreviewBorder{0pt}
\begin{document}

\begin{tikzpicture}[x=1pt,y=1pt]
\definecolor{fillColor}{RGB}{255,255,255}
\path[use as bounding box,fill=fillColor,fill opacity=0.00] (0,0) rectangle (505.89,505.89);
\begin{scope}
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Example 2, with Mixed edges,

Step 1: Construct the adjacency matrix

> d1 <- matrix(0,11,11)
> d1[1,2] <- d1[2,1] <- d1[1,3] <- d1[3,1] <- d1[2,4] <- d1[4,2] <-
+ d1[5,6] <- d1[6,5] <- 1
> d1[9,10] <- d1[10,9] <- d1[7,8] <- d1[8,7] <- d1[3,5] <-
+ d1[5,10] <- d1[4,6] <- d1[4,7] <- 1
> d1[6,11] <- d1[7,11] <- 1
> rownames(d1) <- colnames(d1) <- letters[1:11]
> d1

a b c d e f g h i j k
a 0 1 1 0 0 0 0 0 0 0 0
b 1 0 0 1 0 0 0 0 0 0 0
c 1 0 0 0 1 0 0 0 0 0 0
d 0 1 0 0 0 1 1 0 0 0 0
e 0 0 0 0 0 1 0 0 0 1 0
f 0 0 0 0 1 0 0 0 0 0 1
g 0 0 0 0 0 0 0 1 0 0 1
h 0 0 0 0 0 0 1 0 0 0 0
i 0 0 0 0 0 0 0 0 0 1 0
j 0 0 0 0 0 0 0 0 1 0 0
k 0 0 0 0 0 0 0 0 0 0 0
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Example 2, with Mixed edges,

Step 2: Transform the adjacency matrix into igraph object.

> cG1 <- as(d1, "igraph")
> plot(cG1)
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Example 2, with Mixed edges,

Step 3: Changing the type of the edges (only directed and undirected
edges

> E(cG1)
+ 18/18 edges (vertex names):
[1] a->b a->c b->a b->d c->a c->e d->b d->f d->g e->f e->j f->e f->k g->h

[15] g->k h->g i->j j->i
> is.mutual(cG1) ## checks the reciproc pair of the supplied edges
[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE

[12] TRUE FALSE TRUE FALSE TRUE TRUE TRUE
> ## Change the bidirected edges to undirected edges
> E(cG1)$arrow.mode <- c(2,0)[1+is.mutual(cG1)]
> plot(cG1, layout=layout.spring)
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Example 2, with Mixed edges,

Step 4: Renaming and reshaping nodes, Recoloring edges according
to the type
> cG1a <- as(cG1, "graphNEL")
> nodes(cG1a)
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"

> nodes(cG1a) <- c("alpha","theta","tau","beta","pi","upsilon","gamma",
+ "iota","phi","delta","kappa")
> edges <- buildEdgeList(cG1a)
> for (i in 1:length(edges)) {
+ if (edges[[i]]@attrs$dir=="both") {
+ edges[[i]]@attrs$dir <- "none"
+ edges[[i]]@attrs$color <- "blue"
+ }
+ if (edges[[i]]@attrs$dir=="forward") {
+ edges[[i]]@attrs$color <- "red"
+ }
+ }
> nodes <- buildNodeList(cG1a)
> for (i in 1:length(nodes)) {
+ nodes[[i]]@attrs$fontcolor <- "red"
+ nodes[[i]]@attrs$shape <- "ellipse"
+ nodes[[i]]@attrs$fillcolor <- "lightgrey"
+ if (i <= 4) {
+ nodes[[i]]@attrs$fillcolor <- "lightblue"
+ nodes[[i]]@attrs$shape <- "box"
+ }
+ }
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a",
+ layoutType="neato")
> plot(cG1al) 52
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