See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/326648380

Graphical Models with R 1st talk: Graphs and Markov properties with R

Presentation • July 2018

Some of the authors of this publication are also working on these related projects:

Projet Education and R\&D View project

Project IMGT/StatClonotype View project

Graphical Models with R

1st talk: Graphs and Markov properties with R

Dhafer Malouche
essai.academia.edu/DhaferMalouche

Table of contents

1. Terminology of graphs

Undirected graphs (UG)
Directed Acyclic Graphs (DAG)
2. Markov properties
3. Visualizing graphs with R

Terminology of graphs

What's a graph?

- A graph is $\mathcal{G}=(V, E)$ where V is a finite set and $E \subseteq V \times V$.
- V the of vertices
- E is the set edges (its elements are denoted by $\alpha \beta$)
- undirected when $\alpha-\beta$:

$$
\alpha \beta \in E \quad \Longleftrightarrow \quad \beta \alpha \in E
$$

- directed when $\alpha \rightarrow \beta$ or $\alpha \leftarrow \beta$

$$
\text { If } \alpha \beta \in E \Rightarrow \beta \alpha \notin E
$$

- bi-directed when $\alpha \leftrightarrow \beta$

Undirected Graphs

Undirected Graph (UG)

Undirected Graph (UG)

- $V=\{a, b, c, d, e\}$
- $E=\{a b, b c, c d, b d\}$
- cliques: ab, bcd, e

A clique in \mathcal{G} is a maximal
complete subset of V

UG with R, gRbase

- graphNEL objects
- ug() function

UG with R, gRbase

- graphNEL objects
- ug() function
> library (gRbase)
> ug0 <- ug(~a:b,~b:c:d,~e)
> ug0 <- ug(~a:b+b:c:d+e)
> ug0 <- ug(c("a","b"),c("b","c","d"),"e")
$>$ ug0
A graphNEL graph with undirected edges
Number of Nodes $=5$
Number of Edges $=4$
> library(Rgraphviz)
> plot(ug0)

UG with R, gRbase

Adjacency matrix with R, gRbase

$$
\begin{gathered}
\mathcal{G}=(V, E) \longmapsto A=[a(\alpha \beta)] \in\{0,1\}^{|V| \times|V|} \text { such that } \\
a(\alpha \beta)=1 \Longleftrightarrow \alpha \beta \in E
\end{gathered}
$$

Adjacency matrix with R, gRbase

$$
\begin{gathered}
\mathcal{G}=(V, E) \longmapsto A=[a(\alpha \beta)] \in\{0,1\}^{|V| \times|V|} \text { such that } \\
a(\alpha \beta)=1 \Longleftrightarrow \alpha \beta \in E
\end{gathered}
$$

> ug01 <- ug(~a:b+b:c:d+e,result="matrix")
> ug01
a b c d e
a 01000
b 10110
c 01010
d 01100
e 00000

Nodes and Edges R, gRbase

> nodes(ug0)
[1] "a" "b" "c" "d" "e"
> edges(ug0)
\$a
[1] "b"
\$b
[1] "c" "d" "a"
\$c
[1] "d" "b"
\$d
[1] "b" "c"
\$e
character(0)

```
> ug0i <- ug(c("a","b"),c("b","c","d"),c("e","b"),
+ result="igraph")
> ug0i
IGRAPH UNW- 5 5 --
+ attr: name (v/c), label (v/c), weight (e/n)
+ edges (vertex names):
[1] a--b b--c b--d b--e c--d
> library(igraph)
> ## vertices
> V(ug0i)
+ 5/5 vertices, named:
[1] a b c d e
> ## edges
> E(ug0i)
+ 5/5 edges (vertex names):
[1] a--b b--c b--d b--e c--d
```


UG with R, igraph

> V(ug0i)\$size <- 25
> V(ug0i)\$label.cex <- 2
> plot(ug0i, layout=layout.spring)

UG with R, igraph

Cliques in an UG with R ,

> library(RBGL)
> is.complete(ug0, c("b","c","d"))
[1] TRUE
> maxClique(ug0)
\$maxCliques
\$maxCliques[[1]]
[1] "b" "c" "d"
\$maxCliques[[2]]
[1] "b" "a"
\$maxCliques[[3]]
[1] "e"

Paths and separators in an UG

- A path (of length n) between α and β in an undirected graph is a set of vertices $\alpha=\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}=\beta$ where $\alpha_{i-1} \sim \alpha_{i}$ for $i=1, \ldots, n$.
- If $\alpha=\beta$ then the path is said to be a cycle of length n.
- A subset $S \subset V$ in an undirected graph is said to separate $A \subseteq V$ from $B \subseteq V$ if every path between a vertex in A and a vertex in B intersects S.

Paths and separators in an UG

(e)

Paths and separators in an UG with R

> separates(a = "a", b = "d",S1 = c("b", "c"), ug0)
[1] TRUE
> separates(a = "a", b = "b", S1 = c("d", "c"), ug0)
[1] FALSE

Subgraphs

The graph $G_{0}=\left(V_{0}, E_{0}\right)$ is said to be a subgraph of $G=(V, E)$ if $V_{0} \subseteq V$ and $E_{0} \subseteq E$.

Subgraphs

The graph $G_{0}=\left(V_{0}, E_{0}\right)$ is said to be a subgraph of $G=(V, E)$ if $V_{0} \subseteq V$ and $E_{0} \subseteq E$.
> ug1 <- subGraph(c("b","c","d","e"), ug0)
> plot(ug1)

Subgraphs

The graph G_{0} and $E_{0} \subseteq E$.
$>\operatorname{ug} 1$ <- si

(V, E) if $V_{0} \subseteq V$

Boundary

Boundary
$\operatorname{bd}(\alpha)=\{\beta \in V, \beta \sim \alpha\}$

Closure

$$
\mathrm{cl}(\alpha)=\operatorname{bd}(\alpha) \cup\{\alpha\}
$$

Boundary

Boundary $\quad \operatorname{bd}(\alpha)=\{\beta \in V, \beta \sim \alpha\}$

Closure $\quad \mathrm{cl}(\alpha)=\mathrm{bd}(\alpha) \cup\{\alpha\}$
> adj(object = ug0, "c")
\$c
[1] "d" "b"
> closure(object = ug0,set = "c")
[1] "c" "d" "b"

Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is complete.

Simplicial, Connected components

A node in an undirected graph is simplicial if its boundary is complete.
> is.simplicial(set = "b", object = ug0)
[1] FALSE
> simplicialNodes(object = ug0)
[1] "a" "c" "d" "e"
> connectedComp(g = ug0)
\$ 1
[1] "a" "b" "c" "d"
\$2
[1] "e"

A chord, a triangulated UG

- An edge $\alpha_{i} \sim \alpha_{j}$ is a chord if the nodes of this edge belong to a cycle $\alpha=\alpha_{0} \sim \alpha_{1} \sim \ldots \alpha_{n}=\alpha$ and where $j \notin\{i-1, i+1\}$
- A graph where all the cycle of length ≥ 4 are chorldless is called triangulated graph

A chord, a triangulated UG

- An edge $\alpha_{i} \sim \alpha_{j}$ is a chord if the nodes of this edge belong to a cycle $\alpha=\alpha_{0} \sim \alpha_{1} \sim \ldots \alpha_{n}=\alpha$ and where $j \notin\{i-1, i+1\}$
- A graph where all the cycle of length ≥ 4 are chorldless is called triangulated graph
> is.triangulated(ug0)
[1] TRUE

Decomposition of an UG

Let (A, B, S) be a triplet of subsets of $V .(A, B, S)$ is a decomposition of \mathcal{G} if
i. (A, B, S) are disjoints and $V=A \cup B \cup S$
ii. S is complete
iii. S separates A and B in \mathcal{G}

Decomposition of an UG

Let (A, B, S) be a triplet of subsets of $V .(A, B, S)$ is a decomposition of \mathcal{G} if
i. (A, B, S) are disjoints and $V=A \cup B \cup S$
ii. S is complete
iii. S separates A and B in \mathcal{G}
> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug0) [1] FALSE
> ug1<-subGraph(c("b","c","d","a"), ug0)
> is.decomposition(set = "a", set2 = "d", set3 = c("b","c"), ug1)
[1] TRUE
> is.decomposition(set = "a", set2 = c("d","b"), set3 = "c", ug1)
[1] FALSE

A decomposable UG

$\mathcal{G}=(V, E)$ is called a decomposable if
i. \mathcal{G} is complete, i.e; $E=V \times V$.
ii. or it can be decomposed into a decomposable subgraphs.

A decomposable UG

$\mathcal{G}=(V, E)$ is called a decomposable if
i. \mathcal{G} is complete, i.e; $E=V \times V$.
ii. or it can be decomposed into a decomposable subgraphs.

Theorem
\mathcal{G} is decomposable if and only if \mathcal{G} is triangulated

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=\operatorname{bd}(i) \cap\{1, \ldots, i-1\}$ is complete

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$b d(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	bd (i)	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{2,3,4,5\}$	$\{2\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	bd (i)	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{2,3,4,5\}$	$\{2\}$	Y
4	$\{2,3,6\}$	$\{2,3\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$b d(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{2,3,4,5\}$	$\{2\}$	Y
4	$\{2,3,6\}$	$\{2,3\}$	Y
5	$\{1,2,3\}$	$\{1,2,3\}$	N

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	bd (i)	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{2,3,4,5\}$	$\{2\}$	Y
4	$\{2,3,6\}$	$\{2,3\}$	Y
5	$\{1,2,3\}$	$\{1,2,3\}$	N
6	$\{2,4\}$	$\{2,4\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$b d(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$b d(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{1,2,4\}$	$\{1,2\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$\operatorname{bd}(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{1,2,4\}$	$\{1,2\}$	Y
4	$\{2,3,5\}$	$\{2,3\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

i	$b d(i)$	$S(i)$	Complete?
2	$\{1,3,4,5,6\}$	$\{1\}$	Y
3	$\{1,2,4\}$	$\{1,2\}$	Y
4	$\{2,3,5\}$	$\{2,3\}$	Y
5	$\{2,4,6\}$	$\{2\}$	Y

Perfect ordering

Assume $V=\{1, \ldots,|V|\}$. This is order called perfect if $\forall i=2, \ldots,|V|$, $S(i)=b d(i) \cap\{1, \ldots, i-1\}$ is complete

Perfect ordering and decomposability

- If \mathcal{G} is decomposable, then the perfect ordering can be obtained using the maximum cardinality search algorithm

Perfect ordering and decomposability

- If \mathcal{G} is decomposable, then the perfect ordering can be obtained using the maximum cardinality search algorithm

Theorem

\mathcal{G} is decomposable if and only if \mathcal{G} is triangulated if and only if the vertices of \mathcal{G} admit a perfect ordering.

Perfect ordering and decomposability

- If \mathcal{G} is decomposable, then the perfect ordering can be obtained using the maximum cardinality search algorithm

Theorem
\mathcal{G} is decomposable if and only if \mathcal{G} is triangulated if and only if the vertices of \mathcal{G} admit a perfect ordering.
$>\operatorname{g} 2<-\operatorname{ug}(\sim 1 * 2 * 5, \sim 2 * 5 * 3, \sim 2 * 6 * 4, \sim 2 * 4 * 3)$
$>\operatorname{mcs}(\mathrm{g} 2)$
[1] "1" "2" "5" "3" "4" "6"

RIP ordering for the cliques

- Let $\left\{C_{1}, \ldots, C_{p}\right\}$ be the set of cliques for \mathcal{G}
- A Running Intersection Property of $\left\{C_{1}, \ldots, C_{p}\right\}$ means that for all $j=2, \ldots, p, \exists i<j$ such that

$$
C_{j} \cap\left(C_{1} \cup \ldots \cup C_{j-1}\right) \subset C_{i}
$$

- $S_{1}=\emptyset, S_{2}=C_{2} \cap C_{1}, S_{3}=C_{3} \cap\left(C_{1} \cup C_{2}\right), \ldots$, $S_{p}=C_{p} \cap\left(C_{1} \cup \ldots \cup C_{p-1}\right)$
- $R_{1}=C_{1}, R_{2}=C_{2} \backslash S_{2}, \ldots, R_{j}=C_{j} \backslash S_{j}, \ldots, R_{p}=C_{p} \backslash S_{p}$.
- $S_{2}=C_{2} \cap C_{1}$ separates R_{2} from $H_{2}=C_{1} \backslash S 2$
- $\forall j \geq 2, S_{j}$ separates R_{j} from $H_{j}=\left(C_{1} \cup \ldots \cup C_{j-1}\right) \backslash S_{j}$.

RIP ordering for the cliques

RIP ordering for the cliques

- If \mathcal{G} is triangulated RIP ordering exists (iff)
- $\exists i<j$ such $S_{j} \subset C_{i}, C_{i}$ is called the parent and the S_{j} are called separators.

```
> g1<-ug(~1*2*3,~2*3*4,~2*4*5,~2*6*5)
> rip(g1)
cliques
    1 : 2 3 1
    2 : 2 3 4
    3 : 2 5 4
    4 : 2 5 6
separators
    1 :
    2 : 2 3
    3 : 2 4
    4 : 2 5
parents
    1 : 0
    2 : 1
    3 : 2
    4 : 3
```


Recap.

. $\mathcal{G} \Rightarrow \begin{aligned} & \text { Cliques } \\ & \text { Separators }\end{aligned}$
\mathcal{G} decomposable $=$ Triangulated Only chordless cycles
. \mathcal{G} decomposable $=$ Perfect ordering for vertices RIP ordering for cliques

Directed Acyclic Graphs

A Directed Acyclic Graph

- $\overrightarrow{\mathcal{G}}=(V, E)$, if $\alpha \beta \in E$ then $\beta \alpha \notin E$.
- edges= arrows
- there's no cycles acyclics: arrows pointing in the same direction all the way around.

A Directed Acyclic Graph

- $\overrightarrow{\mathcal{G}}=(V, E)$, if $\alpha \beta \in E$ then $\beta \alpha \notin E$.
- edges= arrows
- there's no cycles acyclics: arrows pointing in the same direction all the way around.
- $V=\{a, b, c, d, e, f, g\}$
- $E=\{a b, a c, a e, b c, c d, e d, f g\}$

A Directed Acyclic Graph

- If $\alpha \beta \in E$ then α is the parent of β

A Directed Acyclic Graph

- If $\alpha \beta \in E$ then α is the parent of β
- a is the parent of b
- in R:
- ~b*a means b is the child of a
- $\sim \mathrm{d} * \mathrm{c} * \mathrm{e}$ means d is the child of c and e

A Directed Acyclic Graph

```
> dag0 <- dag(~a, ~b*a, ~c*a*b, ~d*c*e, ~e*a, ~g*f)
\(>\operatorname{dag} 0<-\operatorname{dag}(\sim a+b * a+c * a * b+d * c * e+e * a+g * f)\)
\(>\operatorname{dag} 0<-\operatorname{dag}(\sim a+b|a+c| a * b+d|c * e+e| a+g \mid f)\)
> dag0 <- dag("a", c("b","a"), c("c","a","b"), c("d","c","e"),
    c("e", "a"), c("g","f"))
> dag0
A graphNEL graph with directed edges
Number of Nodes \(=7\)
Number of Edges \(=7\)
```

Adjacency matrix

$$
\begin{aligned}
& \text { > dag0a=dag(} \sim a, \sim b * a, \sim c * a * b, \sim d * c * e, \sim e * a, \sim g * f, \\
& \text { + result="matrix") } \\
& \text { > dag0a } \\
& \text { a b c d e g f } \\
& \text { a } 0110100 \\
& \text { b } 0010000 \\
& \text { c } 0001000 \\
& \text { d } 0000000 \\
& \text { e } 0001000 \\
& \text { g } 0000000 \\
& \text { f } 0000010
\end{aligned}
$$

Path, child, parent

- A path (of length n) from α to β is a sequence of vertices $\alpha=\alpha_{0}, \ldots, \alpha_{n}=\beta_{n}$ such that $\alpha_{i-1} \rightarrow \alpha_{i}$ is an edge in the graph. If there is a path from α to β we write $\alpha \mapsto \beta$.
- If $\alpha \rightarrow \beta \alpha$ is a parent of β and β is a children of α.

Path, child, parent

- A path (of length n) from α to β is a sequence of vertices $\alpha=\alpha_{0}, \ldots, \alpha_{n}=\beta_{n}$ such that $\alpha_{i-1} \rightarrow \alpha_{i}$ is an edge in the graph. If there is a path from α to β we write $\alpha \mapsto \beta$.
- If $\alpha \rightarrow \beta \alpha$ is a parent of β and β is a children of α.
> parents("d",dag0)
[1] "c" "e"
> children("c",dag0)
[1] "d"

Ancestrals

- $\operatorname{an}(\beta)=\{\alpha \in V$ such $\alpha \mapsto \beta\}$ ancestrors of β
- $A \subseteq V, \operatorname{an}(A)=\bigcup_{\beta \in A} \operatorname{an}(\beta)$ ancestral set of A.

Ancestrals

- $\operatorname{an}(\beta)=\{\alpha \in V$ such $\alpha \mapsto \beta\}$ ancestrors of β
- $A \subseteq V, \operatorname{an}(A)=\bigcup_{\beta \in A} a n(\beta)$ ancestral set of A.
> ancestralSet(c("b","e"),dag0)
[1] "a" "b" "e"
> ancestralGraph(c("b","e"),dag0)
A graphNEL graph with directed edges
Number of Nodes $=3$
Number of Edges $=2$
> plot(ancestralGraph(c("b","e"),dag0))

Ancestrals

Moralizing a DAG

Moralizing a DAG = Transforming it into an UG (arrows become non-directed) and adding an edge to all parents

Moralizing a DAG

Moralizing a DAG = Transforming it into an UG (arrows become non-directed) and adding an edge to all parents

Moralizing a DAG

Moralizing a DAG = Transforming it into an UG (arrows become non-directed) and adding an edge to all parents

$\overrightarrow{\mathcal{G}} \longleftrightarrow \mathcal{G}_{m}$

d-Separation

- Let $\alpha \mapsto \beta$ in the $\operatorname{DAG} \mathcal{G}=(V, E)$ and $S \subset V$.
- $\alpha \mapsto \beta$ is active according to S if two following conditions hold:
i. every node with converging edges $\left(\rightarrow \alpha_{i}\right)$ is either in S or has a descendant in S,
ii. every other node is not in S.
- $\alpha \mapsto \beta$ is blocked by S if it is not active according to \mathcal{G}
- (A, B, S) three disjoint subsets of $V, S d$-separate A from B if for any path from A to B is blocked by S.

d-Separation, Examples

$$
A=\{a\}, B=\{d\}, S=\{c, e\}
$$

$$
a \rightarrow c \rightarrow d \quad \text { blocked by } S
$$

$$
a \rightarrow e \rightarrow d \quad \text { blocked by } S
$$

Then $S d$-separates A and B.

d-Separation, Examples

$$
\begin{aligned}
& A=\{a\}, B=\{d\}, S=\{c, e\} \\
& a \rightarrow c \rightarrow d \text { blocked by } S \\
& a \rightarrow e \rightarrow d \text { blocked by } S
\end{aligned}
$$

Then Sd-separates A and B.

> library(ggm)
> dSep(amat = as(dag0, "matrix"),

+ first = "a", second = "d",cond = c("c","e"))
[1] TRUE

d-Separation, Examples

$A=\{b\}, B=\{e\}, S=\{c, d\}$

No paths btw A and B
can be blocked by S

Then S doesn't d-separate A and B.

d-Separation, Examples

$A=\{b\}, B=\{e\}, S=\{c, d\}$

No paths btw A and B
can be blocked by S

Then S doesn't d-separate A and B.

> dSep(amat = as(dag0, "matrix"),

+ first = "b", second = "e", cond = c("c","d"))
[1] FALSE

d-Separation and Moralization

Theorom
Let $\overrightarrow{\mathcal{G}}$ be a DAG and \mathcal{G}_{m} its moral UG associated to $\overrightarrow{\mathcal{G}}$.
$S d$-separates A and B if and only if S separates A and B in the sub-graph deduced from \mathcal{G}_{m}.

Moralization with R

> dag0m <- moralize(dag0)
> dag0m
A graphNEL graph with undirected edges
Number of Nodes $=7$
Number of Edges $=8$
> plot(dag0m)

Moralization with R

Moralization with R

Markov properties

Conditional Independence

- $X_{V}=\left(X_{V}, V \in V\right) \sim P$ a random vector $\left(\in \mathbb{R}^{|V|}\right)$
- For $A \subseteq V, X_{A}=\left(X_{V}, V \in A\right)$
- for all $A, B, S \subseteq V, A \Perp B \mid S$ means that $X_{A} \Perp X_{B} \mid X_{S}$.
- If $f($.$) is the generic density$

$$
\begin{aligned}
A \Perp B \mid S & \Longleftrightarrow f\left(x_{A}, x_{B} \mid x_{C}\right)=f\left(x_{A} \mid x_{S}\right) f\left(x_{B} \mid x_{S}\right) \\
& \Longleftrightarrow f\left(x_{A}, x_{B}, x_{S}\right)=h\left(x_{A}, x_{S}\right) g\left(x_{B}, x_{S}\right)
\end{aligned}
$$

Markov properties for UG

$\mathcal{G}=(V, E)$ is an undirected graph.
(P) We say that P is pairwise Markov w.r.t \mathcal{G}, if

$$
\alpha \not \nsim \mathcal{G} \beta \Rightarrow \alpha \Perp \beta \mid V \backslash\{\alpha, \beta\}
$$

(G) We say that P is global Markov w.r.t. $\mathcal{G}=(V, E)$,

$$
S \text { separates } A \text { and } B \text { in } \mathcal{G} \Rightarrow X_{A} \Perp X_{B} \mid X_{S}
$$

(F) If P has a density f, \mathcal{C} is the set of cliques of \mathcal{G}, we say that P factorized Markov w.r.t \mathcal{G}, then

$$
f\left(x_{v}\right)=\prod_{c \in \mathcal{C}} g_{c}\left(x_{c}\right)
$$

Markov properties for UG

$\mathcal{G}=(V, E)$ is an undirected graph.
(P) We say that P is pairwise Markov w.r.t \mathcal{G}, if

$$
\alpha \not \chi_{\mathcal{G}} \beta \Rightarrow \alpha \Perp \beta \mid \bigvee \backslash\{\alpha, \beta\}
$$

(G) We say th Theorem
if P has a density f, then
(F) If P has a
$(F) \Longleftrightarrow(G) \Longleftrightarrow(P)$
say that P factorizeG mumuv vv.ıı у, йயи

$$
f\left(x_{v}\right)=\prod_{c \in \mathcal{C}} g_{c}\left(x_{c}\right)
$$

Examples

(e)

- $a \Perp c \mid b$

Examples

(e)

- $a \Perp c \mid b$
- $a \Perp e$

Examples

- $a \Perp c \mid b$
- $a \Perp e$
- $a \Perp d \mid b, c$.

Markov properties for DAGs

$\overrightarrow{\mathcal{G}}=(V, E)$ is a directed acyclic graph.
(Fd) We say that P admits a recusive factorisation according to $\overrightarrow{\mathcal{G}}$ if

$$
f\left(x_{V}\right)=\prod_{c \in \mathcal{C}} g_{c}\left(x_{c} \mid x_{\text {pa }(c)}\right)
$$

(Gd) P obeys to the directed global Markov property w.r.t $\overrightarrow{\mathcal{G}}$

$$
S d-\text { separates } A \text { and } B \text { in } \mathcal{G} \Rightarrow X_{A} \Perp X_{B} \mid X_{S}
$$

(Pd) P obeys to the directed pairwise Markov property w.r.t $\overrightarrow{\mathcal{G}}$ if

$$
\alpha \not \nsim \mathcal{G} \beta \Rightarrow \alpha \Perp \beta \mid \operatorname{nd}(\alpha) \backslash\{\beta\}
$$

$\operatorname{nd}(\alpha)=V \backslash \operatorname{desc}(\alpha)$ where

$$
\operatorname{desc}(\alpha)=\{\beta \in V, \alpha \mapsto \beta\}
$$

Markov properties for DAGs

$\vec{g}=(V, E)$ is a directed acyclic graph.
(Fd) We say that P admits a recusive factorisation according to $\overrightarrow{\mathcal{G}}$ if

$$
f\left(x_{v}\right)=\prod_{c \in \mathcal{C}} g_{c}\left(x_{c} \mid x_{\text {pa }(c)}\right)
$$

(Gd) P obeys t Theorem $t \vec{G}$
if P has a density f, then
(Pd) P obeys t
$(F d) \Longleftrightarrow(G d) \Longleftrightarrow(P d) \quad$ v.r. \vec{g} if
$\alpha \not \chi_{\mathcal{G}} \beta \Rightarrow \alpha \Perp \beta \mid \operatorname{nd}(\alpha) \backslash\{\beta\}$
$\operatorname{nd}(\alpha)=V \backslash \operatorname{desc}(\alpha)$ where

$$
\operatorname{desc}(\alpha)=\{\beta \in V, \alpha \mapsto \beta\}
$$

Examples

Examples

Examples

- $a \Perp d \mid\{b, c, e\}$

Examples

- $a \Perp d \mid\{b, c, e\}$
- $b \Perp d \mid\{a, c, e\}$

Markov equivalence

$$
b \Perp c \mid a
$$

Graphical Model

- $X_{V}=\left(X_{V}, v \in V\right) \sim P$ a random vector $\left(\in \mathbb{R}^{|V|}\right):$

$$
\mathcal{I}(P)=\{(A, B, S) \subset V \text { such that } A \Perp B \mid S\}
$$

Graphical Model

- $X_{V}=\left(X_{V}, v \in V\right) \sim P$ a random vector $\left(\in \mathbb{R}^{|V|}\right)$:

$$
\mathcal{I}(P)=\{(A, B, S) \subset V \text { such that } A \Perp B \mid S\}
$$

- If $\mathrm{UG}, \mathcal{G}=(V, E)$:

$$
\mathcal{S}(G)=\{(A, B, S) \subset V \text { such that } S \text { separates } A \text { and } B \text { in } \mathcal{G}\}
$$

- (P, \mathcal{G}) is a Graphical Model then $\mathcal{S}(\mathcal{G}) \subseteq \mathcal{I}(P)$

Graphical Model

- $X_{V}=\left(X_{V}, v \in V\right) \sim P$ a random vector $\left(\in \mathbb{R}^{|V|}\right):$

$$
\mathcal{I}(P)=\{(A, B, S) \subset V \text { such that } A \Perp B \mid S\}
$$

- If $\operatorname{DAG}, \overrightarrow{\mathcal{G}}=(V, E)$:

$$
\mathcal{S}(\overrightarrow{\mathcal{G}})=\{(A, B, S) \subset V \text { such that } S d-\text { separates } A \text { and } B \text { in } \mathcal{G}\}
$$

- $(P, \overrightarrow{\mathcal{G}})$ is a Graphical Model then $\mathcal{S}(\overrightarrow{\mathcal{G}}) \subseteq \mathcal{I}(P)$
- Two DAG \mathcal{G}_{1} and \mathcal{G}_{2} are Markov Equivalence if

$$
\mathcal{S}\left(\overrightarrow{\mathcal{G}}_{1}\right)=\mathcal{S}\left(\overrightarrow{\mathcal{G}_{2}}\right)
$$

Example, Markov equivalence

Example, Markov equivalence

Example, Markov equivalence

Visualizing graphs with R

Example 1, Customizing the graph

> plot(dag0,

+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))

Example 1, Customizing the graph

Example 1, Transforming the graph en $\operatorname{WF}^{\mathrm{E}} \mathrm{X}$

> library(tikzDevice)
> tikz("g.tex",standAlone = T)
> plot(dag0,

+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
> dev.off()

Example 1, Transforming the graph en $\operatorname{KF}_{\mathrm{E}} \mathrm{X}$

```
> library(tikzDevice)
> tikz("g.tex",standAlone = T)
> plot(dag0,
+ attrs=list(node = list(fillcolor="lightgrey",
+ fontcolor="red")))
> dev.off()
% Created by tikzDevice version 0.10.1 on 2017-03-31 14:50:06
% !TEX encoding = UTF-8 Unicode
\documentclass[10pt]{article}
\usepackage{tikz}
\usepackage[active,tightpage,psfixbb]{preview}
\PreviewEnvironment{pgfpicture}
\setlength\PreviewBorder{0pt}
\begin{document}
\begin{tikzpicture}[x=1pt,y=1pt]
\definecolor{fillColor}{RGB}{255,255,255}
\path[use as bounding box,fill=fillColor,fill opacity=0.00] (0,0) rectangle (505.89,505.89);
\begin{scope}
```


Example 2, with Mixed edges,

Step 1: Construct the adjacency matrix
$>\mathrm{d} 1$ <- matrix $(0,11,11)$
$>d 1[1,2]<-d 1[2,1]<-d 1[1,3]<-d 1[3,1]<-d 1[2,4]<-d 1[4,2]<-$
$+d 1[5,6]<-d 1[6,5]<-1$
$>d 1[9,10]<-d 1[10,9]<-d 1[7,8]<-d 1[8,7]<-d 1[3,5]<-$
$+\mathrm{d} 1[5,10]<-\mathrm{d} 1[4,6]<-\mathrm{d} 1[4,7]<-1$
$>d 1[6,11]<-d 1[7,11]<-1$
$>$ rownames(d1) <- colnames(d1) <- letters[1:11]
$>\mathrm{d} 1$

	a	b	c	d	e	f	g	h	i	j	k
a	0	1	1	0	0	0	0	0	0	0	0
b	1	0	0	1	0	0	0	0	0	0	0
c	1	0	0	0	1	0	0	0	0	0	0
d	0	1	0	0	0	1	1	0	0	0	0
e	0	0	0	0	0	1	0	0	0	1	0
f	0	0	0	0	1	0	0	0	0	0	1
g	0	0	0	0	0	0	0	1	0	0	1
h	0	0	0	0	0	0	1	0	0	0	0
i	0	0	0	0	0	0	0	0	0	1	0
j	0	0	0	0	0	0	0	0	1	0	0
k	0	0	0	0	0	0	0	0	0	0	0

Example 2, with Mixed edges,

Step 2: Transform the adjacency matrix into igraph object.
> cG1 <- as(d1, "igraph")
> plot(cG1)

Example 2, with Mixed edges,

Step 2: Transfi
> cG1 <- a:
> plot(cG1

Example 2, with Mixed edges,

Step 3: Changing the type of the edges (only directed and undirected edges
> $\mathrm{E}(\mathrm{cG1})$
$+18 / 18$ edges (vertex names):
[1] $a->b \quad a->c \quad b->a \quad b->d \quad c->a \quad c->e \quad d->b \quad d->f \quad d->g$ $e->f \quad e->j \quad f->e \quad f->k \quad g->h$
[15] g->k h->g i->j j->i
> is.mutual(cG1) \#\# checks the reciproc pair of the supplied edges
[1] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE
[12] TRUE FALSE TRUE FALSE TRUE TRUE TRUE
> \#\# Change the bidirected edges to undirected edges
> E(cG1)\$arrow.mode <- c(2,0)[1+is.mutual(cG1)]
> plot(cG1, layout=layout.spring)

Example 2, with Mixed edges,

Step 3: Chang edges
> $\mathrm{E}(\mathrm{cG1})$
$+18 / 18$ edges
[1] a->b a->c
[15] g->k h \rightarrow §
$>$ is.mutual(cc
[1] TRUE TF
[12] TRUE FAL
> \#\# Change tr
> E(cG1)\$arron
> plot(cG1, la

d undirected
->j f->e f->k g->h
oplied edges
_SE TRUE FALSE

Example 2, with Mixed edges,

Step 4: Renaming and reshaping nodes, Recoloring edges according to the type

```
> cG1a <- as(cG1, "graphNEL")
> nodes(cG1a)
    [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k"
> nodes(cG1a) <- c("alpha","theta","tau","beta","pi","upsilon","gamma",
                            "iota","phi","delta","kappa")
> edges <- buildEdgeList(cG1a)
> for (i in 1:length(edges)) {
+ if (edges[[i]]@attrs$dir=="both") {
+ edges[[i]]@attrs$dir <- "none"
+ edges[[i]]@attrs$color <- "blue"
+ }
+ if (edges[[i]]@attrs$dir=="forward") {
+ edges[[i]]@attrs$color <- "red"
+ }
+ }
> nodes <- buildNodeList(cG1a)
> for (i in 1:length(nodes)) {
+ nodes[[i]]@attrs$fontcolor <- "red"
+ nodes[[i]]@attrs$shape <- "ellipse"
+ nodes[[i]]@attrs$fillcolor <- "lightgrey"
+ if (i <= 4) {
+ nodes[[i]]@attrs$fillcolor <- "lightblue"
+ nodes[[i]]@attrs$shape <- "box"
+ }
+ }
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a",
+ layoutType="neato")
> plot(cG1al)
```


Example 2, with Mixed edges,

Step 4: Renaming and reshaping nodes, Recoloring edges according to the type
> cG1a <- as (cG1,
$>$ nodes $(c G 1 a)$
[1] "a" "b" "c"
$>\operatorname{nodes}(c G 1 a)<-$
> edges <- buildE
$>$ for (i in 1:len

+ if (edges[[i]] edges[[i]]@a edges[[i]]@a
\}
$+\quad$ if (edges[[i]

```
+ edges[[i]]@a
```

$+\quad\}$
$+\quad\}$
> nodes <- build
$>$ for (i in 1:le

+ nodes[[i]]@att
+ nodes[[i]]@att
+ nodes[[i]]@att
+ if (i<=4) \{
+ nodes[[i]]@att
+ nodes[[i]]@attrs\$shape <- "box"
$+\quad\}$
$+\quad\}$
> cG1al <- agopen(cG1a, edges=edges, nodes=nodes, name="cG1a" ,
+ layoutType="neato")
> plot(cG1al)
\square

