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Problem 1: Conditional independence
Let X,Y, Z be random variables. X and Y are said to be conditionally independent given Z (in
symbols X ⊥ Y | Z) if

P (X,Y | Z) = P (X | Z)P (Y | Z).

This condition is equivalent to

P (X | Y,Z) = P (X | Z).

Using the laws of probability, show that this equivalence holds (show both directions of the proof).

Solution:

• If the defining property holds, then we have by the laws of probability:
P (X | Y,Z) = P (X,Y,Z)

P (Y,Z) = P (X,Y |Z)P (Z)
P (Y,Z) = P (X|Z)P (Y |Z)P (Z)

P (Y,Z) = P (X|Z)P (Y,Z)
P (Y,Z) = P (X | Z).

• The converse is shown as follows:
P (X,Y | Z) = P (X | Y,Z)P (Y | Z) = P (X | Z)P (Y | Z).

Problem 2: Markov blanket
Consider the following graphical structure of a Bayesian network:
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Determine the Markov blanket MB(C) of the
node C and show that the conditional prob-
ability P (C | A,B,D,E) can be expressed
as

P (C | A,B,D,E) = P (C | MB(C)).



Solution: By the law of total probability we have

P (C | A,B,D,E) =
P (A)P (B | A)P (C | A)P (D | B,C)P (E | D)∑
C

P (A)P (B | A)P (C | A)P (D | B,C)P (E | D)

=
P (A)P (B | A)P (C | A)P (D | B,C)P (E | D)

P (A)P (B | A)P (E | D)
∑
C

P (C | A)P (D | B,C)

=
P (C | A)P (D | B,C)∑
C

P (C | A)P (D | B,C)

Since this expression does not depend on E we have

P (C | A,B,D,E) = P (C | A,B,D)

Problem 3: Conditional independence and BNs
Consider the following graphical structures, corresponding to (different) Bayesian networks. For
which network does the statement A ⊥ B | C hold? For which does the statement A ⊥ B hold?
Prove your answers by the laws of probability.
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Solution:
a) b)

A ⊥ B | C Yes No
A ⊥ B No Yes

Explanation for the conditional independences:

• For a) we have P (A,B,C) = P (B | C)P (C | A)P (A).
Inserting this and using Bayes’ rule we get the conditional probability:
P (A,B | C) = P (A,B,C)

P (C) = P (B | C)P (C|A)P (A)
P (C) = P (B | C)P (A | C)⇔ A ⊥ B | C

• For b) we have P (A,B,C) = P (C | A,B)P (A)P (B).
Consequently, we have

P (A,B | C) = P (A,B,C)

P (C)
=
P (C | A,B)P (A)P (B)

P (C)

=
P (C | A,B)P (A)P (B)P (C | A)

P (C)P (C | A)
=
P (A | C)P (C | A,B)P (B)

P (C | A)

=
P (A | C)P (C | A,B)P (B)P (C | B)P (C)

P (C | A)P (C | B)P (C)
= P (A | C)P (B | C) P (C | A,B)P (C)

P (C | A)P (C | B)

Since the last term will only equal 1 in special cases, in general A ⊥ B | C does not hold.

Explanation for the marginal independences:

• For a) applying Bayes’ rule, we get

P (A,B) =
∑
C

P (A,B,C) =
∑
C

P (B | C)P (C | A)P (A)

=
∑
C

P (C | B)P (B)P (C | A)P (A)
P (C)

= P (A)P (B)
∑
C

P (C | B)P (C | A)
P (C)

.

Therefore, A ⊥ B does not generally hold.



• For b) we have P (A,B,C) = P (C | A,B)P (A)P (B). Marginalizing over C:∑
C P (A,B,C) =

∑
C P (C | A,B)P (A)P (B) yields P (A,B) = P (A)P (B)⇔ A ⊥ B

Problem 4: Conjugate distributions
Let X be a binomially distributed random variable with parameters N ∈ N and θ ∈ [0, 1]. Further,
assume that a prior P (θ) of the parameter θ is beta distributed with parameters α, β, i.e. its
probability density function is given by

ρ(θ) =
θα−1(1− θ)β−1∫ 1

0 t
α−1(1− t)β−1dt

Show that the prior P (θ) is conjugate to the binomial likelihood L(θ) := P (X | θ). In other words,
show that the posterior distribution P (θ | X), which is defined as

P (θ | X) =
P (X | θ)P (θ)

P (X)

also obeys a beta distribution with suitable parameters.

Solution: Given that

P (θ) =
θα−1(1− θ)β−1

B(α, β),
where B(·, ·) is the beta function, and

P (X | θ) =
(
N

x

)
θx(1− θ)N−x,

we obtain

P (θ | X) =
P (X | θ)P (θ)

P (X)
=

P (X | θ)P (θ)
1∫
0

P (X | θ)P (θ)dθ

=

(
N
x

)
θα+x−1(1− θ)β+N−(x+1)(B(α, β))−1

1∫
0

(
N
x

)
θα+x−1(1− θ)β+N−(x+1)(B(α, β))−1dθ

=
θα+x−1(1− θ)β+N−(x+1)

1∫
0

θα+x−1(1− θ)β+N−x−1dθ
=
θα+x−1(1− θ)β+N−x−1

B(α+ x, β +N − x)

Therefore P (θ | X) is beta distributed with parameters α+ x and β +N − x.


