Statistical Data Analysis 2

Ewa Szczurek

Lukasz Kozlowski

Exercises \# 1

Problem 1: Conditional independence

Let X, Y, Z be random variables. X and Y are said to be conditionally independent given Z (in symbols $X \perp Y \mid Z)$ if

$$
P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

This condition is equivalent to

$$
P(X \mid Y, Z)=P(X \mid Z)
$$

Using the laws of probability, show that this equivalence holds (show both directions of the proof).

Solution:

- If the defining property holds, then we have by the laws of probability:

$$
P(X \mid Y, Z)=\frac{P(X, Y, Z)}{P(Y, Z)}=\frac{P(X, Y \mid Z) P(Z)}{P(Y, Z)}=\frac{P(X \mid Z) P(Y \mid Z) P(Z)}{P(Y, Z)}=\frac{P(X \mid Z) P(Y, Z)}{P(Y, Z)}=P(X \mid Z)
$$

- The converse is shown as follows:

$$
P(X, Y \mid Z)=P(X \mid Y, Z) P(Y \mid Z)=P(X \mid Z) P(Y \mid Z)
$$

Problem 2: Markov blanket

Consider the following graphical structure of a Bayesian network:

Determine the Markov blanket $\mathrm{MB}(C)$ of the node C and show that the conditional probability $P(C \mid A, B, D, E)$ can be expressed as

$$
P(C \mid A, B, D, E)=P(C \mid \operatorname{MB}(C))
$$

Solution: By the law of total probability we have

$$
\begin{aligned}
P(C \mid A, B, D, E) & =\frac{P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid D)}{\sum_{C} P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid D)} \\
& =\frac{P(A) P(B \mid A) P(C \mid A) P(D \mid B, C) P(E \mid D)}{P(A) P(B \mid A) P(E \mid D) \sum_{C} P(C \mid A) P(D \mid B, C)} \\
& =\frac{P(C \mid A) P(D \mid B, C)}{\sum_{C} P(C \mid A) P(D \mid B, C)}
\end{aligned}
$$

Since this expression does not depend on E we have

$$
P(C \mid A, B, D, E)=P(C \mid A, B, D)
$$

Problem 3: Conditional independence and BNs

Consider the following graphical structures, corresponding to (different) Bayesian networks. For which network does the statement $A \perp B \mid C$ hold? For which does the statement $A \perp B$ hold? Prove your answers by the laws of probability.
a)

b)

Solution: $\quad A \perp B \mid C$ $A \perp B$

a)	b)
Yes	No
No	Yes

Explanation for the conditional independences:

- For a) we have $P(A, B, C)=P(B \mid C) P(C \mid A) P(A)$.

Inserting this and using Bayes' rule we get the conditional probability:

$$
\left.P(A, B \mid C)=\frac{P(A, B, C)}{P(C)}=P(B \mid C) \frac{P(C \mid A) P(A)}{P(C)}=P(B \mid C) P(A \mid C) \Leftrightarrow A \perp B \right\rvert\, C
$$

- For b) we have $P(A, B, C)=P(C \mid A, B) P(A) P(B)$.

Consequently, we have

$$
\begin{aligned}
& P(A, B \mid C)=\frac{P(A, B, C)}{P(C)}=\frac{P(C \mid A, B) P(A) P(B)}{P(C)} \\
& =\frac{P(C \mid A, B) P(A) P(B) P(C \mid A)}{P(C) P(C \mid A)}=\frac{P(A \mid C) P(C \mid A, B) P(B)}{P(C \mid A)} \\
& =\frac{P(A \mid C) P(C \mid A, B) P(B) P(C \mid B) P(C)}{P(C \mid A) P(C \mid B) P(C)}=P(A \mid C) P(B \mid C) \frac{P(C \mid A, B) P(C)}{P(C \mid A) P(C \mid B)}
\end{aligned}
$$

Since the last term will only equal 1 in special cases, in general $A \perp B \mid C$ does not hold.
Explanation for the marginal independences:

- For a) applying Bayes' rule, we get

$$
\begin{aligned}
& P(A, B)=\sum_{C} P(A, B, C)=\sum_{C} P(B \mid C) P(C \mid A) P(A) \\
& =\sum_{C} \frac{P(C \mid B) P(B) P(C \mid A) P(A)}{P(C)}=P(A) P(B) \sum_{C} \frac{P(C \mid B) P(C \mid A)}{P(C)} .
\end{aligned}
$$

Therefore, $A \perp B$ does not generally hold.

- For b) we have $P(A, B, C)=P(C \mid A, B) P(A) P(B)$. Marginalizing over C :

$$
\sum_{C} P(A, B, C)=\sum_{C} P(C \mid A, B) P(A) P(B) \text { yields } P(A, B)=P(A) P(B) \Leftrightarrow A \perp B
$$

Problem 4: Conjugate distributions

Let X be a binomially distributed random variable with parameters $N \in \mathbb{N}$ and $\theta \in[0,1]$. Further, assume that a prior $P(\theta)$ of the parameter θ is beta distributed with parameters α, β, i.e. its probability density function is given by

$$
\rho(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{\int_{0}^{1} t^{\alpha-1}(1-t)^{\beta-1} d t}
$$

Show that the prior $P(\theta)$ is conjugate to the binomial likelihood $L(\theta):=P(X \mid \theta)$. In other words, show that the posterior distribution $P(\theta \mid X)$, which is defined as

$$
P(\theta \mid X)=\frac{P(X \mid \theta) P(\theta)}{P(X)}
$$

also obeys a beta distribution with suitable parameters.

Solution: Given that

$$
\begin{aligned}
& P(\theta)=\frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha, \beta)} \text { where } B(\cdot, \cdot) \text { is the beta function, and } \\
& P(X \mid \theta)=\binom{N}{x} \theta^{x}(1-\theta)^{N-x}
\end{aligned}
$$

we obtain

$$
\begin{aligned}
P(\theta \mid X) & =\frac{P(X \mid \theta) P(\theta)}{P(X)}=\frac{P(X \mid \theta) P(\theta)}{\int_{0}^{1} P(X \mid \theta) P(\theta) d \theta} \\
& =\frac{\binom{N}{x} \theta^{\alpha+x-1}(1-\theta)^{\beta+N-(x+1)}(B(\alpha, \beta))^{-1}}{\int_{0}^{1}\binom{N}{x} \theta^{\alpha+x-1}(1-\theta)^{\beta+N-(x+1)}(B(\alpha, \beta))^{-1} d \theta} \\
& =\frac{\theta^{\alpha+x-1}(1-\theta)^{\beta+N-(x+1)}}{\int_{0}^{1} \theta^{\alpha+x-1}(1-\theta)^{\beta+N-x-1} d \theta}=\frac{\theta^{\alpha+x-1}(1-\theta)^{\beta+N-x-1}}{B(\alpha+x, \beta+N-x)}
\end{aligned}
$$

Therefore $P(\theta \mid X)$ is beta distributed with parameters $\alpha+x$ and $\beta+N-x$.

