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Abstract. In this chapter, we review basic concepts from probability theory and com-
putational statistics that are fundamental to evolutionary genomics. We provide a very
basic introduction to statistical modeling and discuss general principles, including max-
imum likelihood and Bayesian inference. Markov chains, hidden Markov models, and
Bayesian network models are introduced in more detail as they occur frequently and in
many variations in genomics applications. In particular, we discuss efficient inference
algorithms and methods for learning these models from partially observed data. Several
simple examples are given throughout the text, some of which point to models that are
discussed in more detail in subsequent chapters.
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1. Statistical models

Evolutionary genomics can only be approached with the help of statistical modeling.
Stochastic fluctuations are inherent to many biological systems. Specifically, the evo-
lutionary process itself is stochastic, with random mutations and random mating being
major sources of variation. In general, stochastic effects play an increasingly important
role if the number of molecules, or cells, or individuals of a population is small. Stochastic
variation also arises from measurement errors. Biological data is often noisy due to ex-
perimental limitations, especially for high-throughput technologies, such as microarrays
or next-generation sequencing [6, 9].

Statistical modeling addresses the following questions: What can be generalized from
a finite sample obtained from an experiment to the population? What can be learned
about the underlying biological mechanisms? How certain can we be about our model
predictions?

In the frequentist view of statistics, the observed variability in the data is the result of a
fixed true value being perturbed by random variation, such as, for example, measurement
noise. Probabilities are, thus interpreted as long-run expected relative frequencies. By
contrast, from a Bayesian point of view, probabilities represent our uncertainty about the
state of nature. There is no true value, but only the data is real. Our prior belief about
an event is updated in light of the data.

Statistical models represent the observed variability or uncertainty by probability dis-
tributions [4, 22]. The observed data are regarded as realizations of random variables.
The parameters of a statistical model are usually the quantities of interest because they
describe the amount and nature of systematic variation in the data. Parameter esti-
mation and model selection are discussed in more detail in the next section. In this
section, we first consider discrete, and then continuous random variables and univariate
(1-dimensional) before multivariate (n-dimensional) ones. We start by formulating the
well-known Hardy-Weinberg principle [14, 26] as a statistical model.

∗ Book chapter, published in M. Anisimova, editor, Evolutionary Genomics: Statistical and Com-
putational Methods, Springer Verlag.
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Example 1 (Hardy-Weinberg model). The Hardy-Weinberg model is a statistical
model for the genotypes in a diploid population of infinite size. Let us assume that there
are two alleles, denoted A and a, and hence three genotypes, denoted AA, Aa = aA, and
aa. Let X be the random variable with state space X = {AA, Aa, aa} describing the
genotype. We parametrize the probability distribution of X by the allele frequency p of
A and the allele frequency q = 1− p of a. The Hardy-Weinberg model is defined by

P (X = AA) = p2, (1)

P (X = Aa) = 2p(1− p), (2)

P (X = aa) = (1− p)2. (3)

The parameter space of the model is Θ = {p ∈ R | 0 ≤ p ≤ 1} = [0, 1], the unit interval.
We denote the Hardy-Weinberg model by HW(p) and write X ∼ HW(p) if X follows the
distribution (1)-(3). �

The Hardy-Weinberg distribution P (X) is a discrete probability distribution (or prob-
ability mass function) with finite state space: We have 0 ≤ P (X = x) ≤ 1 for all x ∈ X
and

∑
x∈X P (X = x) = p2 + 2p(1 − p) + (1 − p)2 = [p + (1 − p)]2 = 1. In general,

any statistical model for a discrete random variable with n states defines a subset of the
(n− 1)-dimensional probability simplex

∆n−1 = {(p1, . . . , pn) ∈ [0, 1]n | p1 + · · ·+ pn = 1} . (4)

The probability simplex is the set of all possible probability distributions of X and sta-
tistical models can be understood as specific subsets of the simplex [? ].

The Hardy-Weinberg distribution is of interest because it arises under the assumption
of random mating. A population with major allele frequency p has genotype probabilities
given in(1)-(3) after one round of random mating. We find that the new allele frequency,

p′ = P (AA) + P (Aa)/2 = p2 + 2p(1− p)/2 = p, (5)

is equal to the one in the previous generation. Thus, genetic variation is preserved under
this simple model of sexual reproduction and the population is at equilibrium after one
generation. In other words, the equations (1)-(3) describe the set of all populations at
Hardy-Weinberg equilibrium. The parametric representation,{

(pAA, pAa, paa) ∈ ∆2 | pAA = p2, pAa = 2p(1− p), paa = (1− p)2
}
, (6)

of this set of distributions is equivalent to the implicit representation as the intersection
of the Hardy-Weinberg curve

4 pAA paa − p2
Aa = 0 (7)

with the probability simplex ∆2 (Figure 1).
The simplest discrete random variable is a binary (or Bernoulli) random variable X.

The textbook example of a Bernoulli trial is the flipping of a coin. The state space of
this random experiment is the set that contains all possible outcomes, namely, whether
the coin lands on heads (X = 0) or tails (X = 1). We write X = {0, 1} to denote
this state space. The parameter space is the set that contains all possible values of the
model parameters. In the coin tossing example, the only parameter is the probability of
observing tails, p, and this parameter can take any value between 0 and 1, so we write
Θ = {p | 0 ≤ p ≤ 1} for the parameter space. In general, the event X = 1 is often called
a ’success’, and p = P (X = 1) the probability of success.
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Figure 1. De Finetti diagram showing the Hardy-Weinberg curve
4 pAA paa − p2

Aa = 0 inside the probability simplex ∆2 = {(pAA, pAa, paa) |
pAA + pAa + paa = 1}. Each point in this space represents a population as
described by its genotype frequencies. Points on the curve correspond to
populations in Hardy-Weinberg equilibrium.

Example 2 (Binomial distribution). Consider n independent Bernoulli trials, each
with success probability p. Let X be the random variable counting the number of suc-
cesses k among the n trials. Then, X has state space X = {0, . . . , n} and

P (X = k) =

(
n

k

)
pk(1− p)n−k. (8)

This is the binomial distribution, denoted Binom(n, p). Its parameter space is Θ =
N× [0, 1]. Examples of binomially distributed random variables are the number of ’heads’
in n successive coin tosses or the number of mutated genes in a group of species. �

Important characteristics of a probability distribution are its expectation (or expected
value, or mean) and its variance. They are defined, respectively, as

E(X) =
∑
x∈X

xP (X = x), (9)

Var(X) =
∑
x∈X

[x− E(X)]2 P (X = x). (10)

The standard deviation is
√

Var(X). For the binomial distribution, X ∼ Binom(n, p),
we find E(X) = np and Var(X) = np(1− p).

Example 3 (Poisson distribution). The Poisson distribution Pois(λ) with parameter
λ ≥ 0 is defined as

P (X = k) =
λk e−λ

k!
, k ∈ N. (11)

It describes the number X of independent events occurring in a fixed period of time (or
space) at average rate λ and independently of the time since (or distance to) the last event.
The Poisson distribution has equal expectation and variance, E(X) = Var(X) = λ. �

The Poisson distribution is used frequently as a model for the number of DNA mu-
tations in a gene after a certain time period, where λ is the mutation rate. Both the
binomial and the Poisson distribution describe counts of random events. In the limit of
large n and fixed product np, the two distributions coincide, Binom(n, p)→ Pois(np), for
n→∞.
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Figure 2. Coverage distribution of a shotgun sequencing experiment with
n = 108 reads of length L = 100 of the human genome of length G =
3 · 109. The average coverage is c = np = 3.4, where p = L/G. Dots
show the binomial coverage distribution Binom(n, p) and the solid line its
approximation by the Poisson distribution Pois(np). Note that the Poisson
distribution is also discrete and just shown as a line to distinguish it from
the binomial distribution.

Example 4 (Shotgun sequencing). Let us consider a simplified model of the shotgun
approach to DNA sequencing. Suppose that n reads of length L have been obtained
from a genome of size G. We assume that all reads have the same probability of being
sequenced. Then, the probability of hitting a specific base with one read is p = L/G and
the average coverage of the sequencing run is c = np. Under this model, the number of
times X a single base is sequenced is distributed as Binom(n, p). For large n, we have

P (X = k) =

(
n

k

)
pk(1− p)n−k ≈ ck e−c

k!
. (12)

For example, using next-generation sequencing technology, one might obtain n = 108

reads of length L = 100 bases in a single run. For the human genome of length G =
3 · 109, we obtain a coverage of c = 3.4. The distribution of the number of reads per
base pair is shown in Figure 2. In particular, the fraction of unsequenced positions is
P (X = 0) = e−c = 3.57%. �

A continuous random variable X takes values in X = R and is defined by a nonnegative
function f(x) such that

P (X ∈ B) =

∫
B

f(x)dx, for all subsets B ⊆ R. (13)

The function f is called the probability density function of X. For an interval,

P (X ∈ [a, b]) = P (a ≤ X ≤ b) =

∫ b

a

f(x)dx. (14)

The cumulative distribution function is

F (b) = P (X ≤ b) =

∫ b

−∞
f(x)dx, b ∈ R. (15)
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Thus, the density is the derivative of the cumulative distribution function, d
dx
F (x) = f(x).

In analogy to the discrete case, expectation and variance of a continuous random
variable are defined, respectively, as

E(X) =

∫ ∞
−∞

x f(x) dx, (16)

Var(X) =

∫ ∞
−∞

[x− E(X)]2 f(x) dx. (17)

Example 5 (Normal distribution). The normal (or Gaussian) distribution has the
density function

f(x) = (2πσ2)−1/2 exp

[
−(x− µ)2

2σ2

]
. (18)

The parameter space is Θ = {(µ, σ2) | µ ∈ R, σ2 ∈ R+}. A normal random variable
X ∼ Norm(µ, σ2) has mean E(X) = µ and variance Var(X) = σ2. Norm(0, 1) is called
the standard normal distribution. �

The normal distribution is frequently used as a model for measurement noise. For
example, X ∼ Norm(µ, σ2) might describe the hybridization intensity of a sample to a
probe on a microarray. Then, µ is the level of expression of the corresponding gene and
σ2 summarizes the experimental noise associated with the microarray experiment. The
parameters can be estimated from a finite sample {x(1), . . . , x(N)}, i.e., from N replicate
experiments, as the empirical mean and variance, respectively,

x̄ =
1

N

N∑
i=1

x(i), (19)

s2 =
1

N − 1

N∑
i=1

(x(i) − x̄)2. (20)

The normal distribution plays a special role in statistics due to the central limit the-
orem. It asserts that the average X̄N = (X(1) + · · · + X(N))/N of N independent (see
below) and identically distributed (i.i.d.) random variables X(i) with equal mean µ and
variance σ2 converges in distribution to the standard normal distribution,

√
N

(
X̄N − µ

σ

)
d→ Norm(0, 1), (21)

irrespective of the shape of their distribution. As a consequence, many test statistics and
estimators are asymptotically normally distributed. For example, the Poisson distribution
Pois(λ) is approximately normal Norm(λ, λ) for large values of λ.

We often measure multiple quantities at the same time, for example the expression of
several genes, and are interested in correlations among the variables. Let X and Y be two
random variables with expected values µX and µY and variances σ2

X and σ2
Y , respectively.

The covariance between X and Y is

Cov(X, Y ) = E[(X − µX)(Y − µY )] = E[XY ]− E[X] E[Y ] (22)

and the correlation between X and Y is ρX,Y = Cov(X, Y )/(σXσY ). For observations
(x(1), y(1)), . . . , (x(N), y(N)) the sample correlation coefficient is

rx,y =

∑N
i=1(x(i) − x̄)(y(i) − ȳ)

(N − 1)sXsY
, (23)

where sX and sY are the sample standard deviations of X and Y , respectively, defined
in (20).
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So far, we have worked with univariate distributions and we now turn to multivariate
distributions, i.e., we consider random vectors X = (X1, . . . , Xn) such that each Xi is
a random variable. For the case of discrete random variables Xi, we first generalize the
binomial distribution to random experiments with a finite number of outcomes.

Example 6 (Multinomial distribution). Let K be the number of possible outcomes
of a random experiment and θk the probability of outcome k. We consider the random
vector X = (X1, . . . , XK) with values in X = NK , where Xk counts the number of
outcomes of type k. The multinomial distribution Mult(n, θ1, . . . , θK) is defined as

P (X = x) =
n!

x1! · · ·xK !
θx11 · · · θ

xK
K (24)

if
∑K

k=1 xk = n, and 0 otherwise. The parameter space of the model is Θ = N×∆K−1. For
K = 2, we recover the binomial distribution (8). Each component Xk of a multinomial
vector has expected value E(Xk) = nθk and Var(Xk) = nθk(1 − θk). The covariance of
two components is Cov(Xk, Xl) = −nθkθl, for k 6= l. �

In general, the covariance matrix Σ of a random vector X is defined by

Σij = Cov(Xi, Xj) = E[(Xi − µi)(Xj − µj)], (25)

where µi is the expected value of Xi. The matrix Σ is also called the variance-covariance
matrix because the diagonal terms are the variances Σii = Cov(Xi, Xi) = Var(Xi).

A continuous multivariate random variable X takes values in X = Rn. It is defined by
its cumulative distribution function

F (x) = P (X ≤ x), x ∈ Rn (26)

or, equivalently, by the probability density function

f(x) =
∂n

∂x1 · · · ∂xn
F (x1, . . . , xn), x ∈ Rn. (27)

Example 7 (Multivariate normal distribution). For n ≥ 1 and x ∈ Rn, the multi-
variate normal (or Gaussian) distribution has density

f(x) = (2π)−n/2 det(Σ)−1/2 exp

[
−1

2
(x− µ)tΣ−1(x− µ)

]
, (28)

with parameter space Θ = {(µ,Σ) | µ = (µ1, . . . , µn) ∈ Rn and Σ =
(
σ2
ij

)
∈ Rn×n}, where

Σ is the symmetric, positive-definite covariance matrix and µ the expectation. We write
X = (X1, . . . , Xn) ∼ Norm(µ,Σ) for a random vector with such a distribution. �

We say that two random variables X and Y are independent if P (X, Y ) = P (X)P (Y )
or, equivalently, if the conditional probability P (X | Y ) = P (X, Y )/P (Y ) is equal to
the unconditional probability P (X). If X and Y are independent, denoted X ⊥ Y , then
E[XY ] = E[X] E[Y ] and Var(X + Y ) = Var(X) + Var(Y ). It follows that independent
random variables have covariance zero. However, the converse is only true in specific situ-
ations, for example if (X, Y ) is multivariate normal, but not in general because correlation
captures only linear dependencies.

This limitation can be addressed by using statistical models which allow for a richer
dependency structure. Section 7 is devoted to Bayesian networks, a family of probabilistic
graphical models based on conditional independences. Let X, Y , and Z be three random
vectors. Generalizing the notion of statistical independence, we say that X is condition-
ally independent of Y given Z and write X ⊥ Y | Z if P (X, Y | Z) = P (X | Z)P (Y | Z).
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Figure 3. Marginalization. Left: two-dimensional histogram of a discrete
bivariate distribution with the two marginal histograms. Right: contour
plot of a two-dimensional Gaussian density with the marginal distributions
of each component.

Bayes’ theorem states that

P (Y | X) =
P (X | Y )P (Y )

P (X)
, (29)

where P (Y ) is called the prior probability and P (Y | X) the posterior probability. In-
tuitively, the prior P (Y ) encodes our a priori knowledge about Y (i.e., before observing
X), and P (Y | X) is our updated knowledge about Y a posteriori (i.e., after observing
X).

We have P (X) =
∑

Y P (X, Y ) if Y is discrete, and similarly P (X) =
∫
Y
P (X, Y )dY

if Y is continuous. Here, P (X) is called the marginal and P (X, Y ) the joint probability.
This summation or integration is known as marginalization (Figure 3).

Since P (X) =
∑

Y P (X, Y ) =
∑

Y P (X | Y )P (Y ), Bayes’ theorem can also be rewrit-
ten as

P (Y | X) =
P (X | Y )P (Y )∑
y′∈Y P (X|y′)P (y′)

, (30)

where P (y′) = P (Y = y′) and Y is the state space of Y .

Example 8 (Diagnostic test). We want to evaluate a diagnostic test for a rare genetic
disease. The binary random variables D and T indicate disease status (D = 1, diseased)
and test result (T = 1, positive), respectively. Let us assume that the prevalence of the
disease is 0.5%, i.e., 0.5% of all people in the population are known to be affected. The
test has a false positive rate (probability that somebody is tested positive who does not
have the disease) of P (T = 1 | D = 0) = 5% and a true positive rate (probability that
somebody is tested positive who has the disease) of P (T = 1 | D = 1) = 90%. Then, the
posterior probability of a person having the disease given that he or she tested positive
is

P (D = 1 | T = 1) =
P (T = 1 | D = 1)P (D = 1)

P (T = 1 | D = 0)P (D = 0) + P (T = 1 | D = 1)P (D = 1)
= 0.083,

(31)



8 NIKO BEERENWINKEL AND JULIANE SIEBOURG

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

p

Li
ke

lih
oo

d

Figure 4. Likelihood function of the binomial model. The underlying
data set consists of k = 7 successes out of N = 10 Bernoulli trials. The
likelihood L(p) = pk (1−p)N−k is plotted as a function of the model param-
eter p, the probability of success (solid line). The MLE is the maximum of
this function, p̂ML = k/N = 7/10 (dashed line).

i.e., only 8.3% of the positively tested individuals actually have the disease. Thus, our
prior belief of the disease status, P (D), has been modified in light of the test result by
multiplication with P (T | D) to obtain the updated belief P (D | T ). �

2. Statistical inference

Statistical models have parameters and a common task is to estimate the model param-
eters from observed data. The goal is to find the set of parameters with the best model
fit. There are two major approaches to parameter estimation: maximum likelihood (ML)
and Bayes.

The maximum likelihood approach is based on the likelihood function. Let us consider
a fixed statistical model M with parameter space Θ and assume that we have observed
realizations D = {x(1), . . . , x(N)} of the discrete random variable X ∼ M(θ0) for some
unknown parameter θ0 ∈ Θ. For the fixed data set D, the likelihood function of the
model is

L(θ) = P (D | θ), (32)

where we write P (D | θ) to emphasize that, here, the probability of the data depends
on the model parameter θ. For continuous random variables, the likelihood function is
defined similarly in terms of the density function, L(θ) = f(D | θ). Maximum likelihood
estimation seeks the parameter θ ∈ Θ for which L(θ) is maximal. Rather than L(θ), it
is often more convenient to maximize `(θ) = logL(θ), the log-likelihood function. If the
data are i.i.d., then

`(θ) =
N∑
i=1

logP (X = x(i) | θ). (33)

Example 9 (Likelihood function of the binomial model). Suppose we have ob-
served k = 7 successes in a total of N = 10 Bernoulli trials. The likelihood function of
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the binomial model (8) is

L(p) = pk (1− p)N−k, (34)

where p is the success probability (Figure 4). To maximize L, we consider the log-
likelihood function

`(p) = logL(p) = k log(p) + (N − k) log(1− p) (35)

and the likelihood equation d`/dp = 0. The ML estimate (MLE) is the solution p̂ML =
k/N = 7/10. Thus, the MLE of the success probability is just the relative frequency of
successes—a reasonable estimate every frequentist would have proposed firsthand. �

Example 10 (Likelihood function of the Hardy-Weinberg model). If we genotype
a finite random sample of a population of diploid individuals at a single locus, then the
resulting data consists of the numbers of individuals nAA, nAa, and naa with the respective
genotypes. Assuming Hardy-Weinberg equilibrium (1)-(3), we want to estimate the allele
frequencies p and q = 1 − p of the population. The likelihood function of the Hardy-
Weinberg model is L(p) = P (AA)nAAP (Aa)nAaP (aa)naa and the log-likelihood is

`(p) = nAA log p2 + nAa log 2p(1− p) + naa log(1− p)2

∝ (2nAA + nAa) log p+ (nAa + 2naa) log(1− p),
(36)

where we have dropped the constant nAa log 2. The MLE of p ∈ [0, 1] can be found by
maximizing `. Solving the likelihood equation

∂`

∂p
=

2nAA + nAa

p
− nAa + 2naa

1− p
= 0 (37)

yields the MLE p̂ML = (2nAA + nAa)/(2N), where N = nAA + nAa + naa is the total
sample size. For example, if we sample N = 100 genotypes with nAA = 81, nAa = 18,
and naa = 1, then we find p̂ML = (2 · (81 + 18))/(2 · 100) = 0.9 for the frequency of the
major allele. �

MLEs have many desirable properties. Asymptotically, as the sample size N → ∞,
they are normally distributed, unbiased, and have minimal variance. The uncertainty
in parameter estimation associated with the sampling variance of the finite data set can
be quantified in confidence intervals. There are several ways to construct confidence
intervals and statistical tests for MLEs based on the asymptotic behavior of the log-
likelihood function `(θ) = logL(θ) and its derivatives. For example, the asymptotic
normal distribution of the MLE is

θ̂ML
a∼ Norm

(
θ, J(θ)−1

)
, (38)

where I(θ) = −∂2`/∂θ2 is the Fisher information and J(θ) = E[I(θ)] the expected Fisher
information. This result gives rise to the Wald confidence intervals[

θ̂ML ± z1−α/2 J(θ)−1
]
, (39)

where z1−α/2 = inf{x ∈ R | 1−α/2 ≤ F (x)} is the (1−α/2) quantile and F the cumulative
distribution function of the standard normal distribution. Equation (38) still holds after

replacing J(θ) with the standard error se(θ̂ML) = [I(θ̂ML)]−
1
2 or [J(θ̂ML)]−

1
2 , and it also

generalizes to higher dimensions. Other common constructions of confidence intervals
include those based on the asymptotic distribution of the score function S(θ) = ∂`/∂θ

and the log-likelihood ratio log(L(θ̂ML)/L(θ)) [3].
We now discuss another more generic approach to quantify parameter uncertainty, not

restricted to ML estimation, which is applied frequently in practice due to its simple
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Figure 5. Bootstrap analysis of the ML allele frequency. The bootstrap
distribution of the maximum likelihood estimator p̂ML = (2nAA+nAa)/(2N)
of the major allele frequency in the Hardy-Weinberg model is plotted for
B = 100 (left), B = 1, 000 (center), and B = 10, 000 (right) bootstrap
samples, for the data set (nAA, nAa, naa) = (81, 18, 1).

implementation. Bootstrapping [8] is a resampling method in which independent ob-
servations are resampled from the data with replacement. The resulting new data set
consists of (some of) the original observations and under i.i.d. assumptions, the bootstrap
replicates have asymptotically the same distribution as the data. Intuitively, by sampling
with replacement, one is pretending that the collection of replicates thus obtained is a
good proxy for the distribution of data sets that one would have obtained, had we been
able to actually replicate the experiment. In this way, the variability of an estimator (or
more generally the distribution of any test statistic) can be approximated by evaluat-
ing the estimator (or the statistic) on a collection of bootstrap replicates. For example,
the distribution of the ML estimator of a model parameter θ can be obtained from the
bootstrap samples.

Example 11 (Bootstrap confidence interval for the ML allele frequency). We
use bootstrapping to estimate the distribution of the ML estimator p̂ML of the Hardy-
Weinberg model for the data set (nAA, nAa, naa) = (81, 18, 1) of Example 10. For each
bootstrap sample, we draw N = 100 genotypes with replacement from the original data
to obtain random integer vectors of length three summing to 100. The ML estimate is
computed for each of a total of B bootstrap samples. The resulting distributions of p̂ML

are shown in Figure 5, for B = 100, 1000, and 10,000. The means of these distributions
are 0.899, 0.9004, and 0.9001, respectively, and 95% confidence intervals can be derived
from the 2.5 and 97.5% quantiles of the distributions. For B = 100, 1000, and 10,000,
we obtain, respectively, [0.8598, 0.9350], [0.860, 0.940], and [0.855, 0.940]. �

The Bayesian approach takes a different point of view and regards the model param-
eters as random variables [? ]. Inference is then concerned with estimating the joint
distribution of the parameters θ given the observed data D. By Bayes’ theorem (Eq. 30),
we have

P (θ | D) =
P (D | θ)P (θ)

P (D)
=

P (D | θ)P (θ)∫
θ∈Θ

P (D | θ)P (θ) dθ
, (40)

i.e., the posterior probability of the parameters is proportional to the likelihood of the
data times the prior probability of the parameters. It follows that, for a uniform prior,
the mode of the posterior is equal to the MLE.

From the posterior, credible intervals of parameter estimates can be derived such that
the parameter lies in the interval with a certain probability, say 95%. This is in contrast
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to a 95% confidence interval in the frequentist approach because, there, the parameter
is fixed and the interval boundaries are random variables. The meaning of a confidence
interval is that 95% of similar intervals would contain the true parameter, if intervals
were constructed independently from additional identically distributed data.

The prior P (θ) encodes our a priori belief in θ before observing the data. It can be
used to incorporate domain-specific knowledge into the model, but it may also be unin-
formative or objective, in which case all observations are equally likely, or nearly so, a
priori. However, it can sometimes be difficult to find noninformative priors. In practice,
conjugate priors are most often used. A conjugate prior is one that is invariant with re-
spect to the distribution family under multiplication with the likelihood, i.e., the posterior
belongs to the same family as the prior. Conjugate priors are mathematically convenient
and computationally efficient because the posterior can be calculated analytically for a
wide range of statistical models.

Example 12 (Dirichlet prior). Let T = (T1, . . . , TK) be a continuous random variable
with state space ∆K−1. The Dirichlet distribution Dir(α) with parameters α ∈ RK

+ has
probability density function

f(θ1, . . . , θK) =
Γ
(∑K

i=1 αi

)
∏K

i=1 Γ(αi)

K∏
i=1

θαi−1
i , (41)

where Γ is the gamma function. The Dirichlet prior is conjugate to the multinomial
likelihood: If T ∼ Dir(α) and (X | T = θ) ∼ Mult(n, θ1, . . . , θK), then (θ | X = x) ∼
Dir(α + x). For K = 2, this distribution is called the beta distribution. Hence, the beta
distribution is the conjugate prior to the binomial likelihood. �

Example 13 (Posterior probability of genotype frequencies). Let us consider
the simple genetic system with two loci and two alleles each of Example 1, but with-
out assuming the Hardy-Weinberg model. We regard the observed genotype frequen-
cies (nAA, nAa, naa) = (81, 18, 1) as the result of a draw from a multinomial distribution
Mult(n, θAA, θAa, θaa). Assuming a Dirichlet prior Dir(αAA, αAa, αaa), the posterior geno-
type probabilities follow the Dirichlet distribution Dir(αAA + nAA, αAa + nAa, αaa + naa).
In Figure 6, the prior Dir(10, 10, 10) is shown on the left, the multinomial likelihood
P ((nAA, nAa, naa) = (81, 18, 1) | θAA, θAa, θaa) in the center, and the resulting posterior
Dir(10 + 81, 10 + 18, 10 + 1) on the right. Note that the MLE is different from the mode
of the posterior. As compared to the likelihood, the nonuniform prior has shifted the
maximum of the posterior toward the center of the probability simplex. �

3. Hidden data and the EM algorithm

We often cannot observe all relevant random variables due to, for example, experimental
limitations or study designs. In this case, a statistical model P (X,Z | θ ∈ Θ) consists of
the observed random variable X and the hidden (or latent) random variable Z, both of
which can be multivariate. In this section, we write X = (X(1), . . . , X(N)) for the random
variables describing the N observations and refer to X also as the observed data. The
hidden data for this model is Z = (Z(1), . . . , Z(N)) and the complete data is (X,Z). For
convenience, we assume the parameter space Θ to be continuous and the state spaces X
of X and Z of Z to be discrete.

In the Bayesian framework, one does not distinguish between unknown parameters
and hidden data and it is natural to assess the joint posterior P (θ, Z | X) ∝ P (X |
θ, Z)P (θ, Z), which is P (X,Z | θ)P (θ) if priors are independent, i.e., if P (θ, Z) =



12 NIKO BEERENWINKEL AND JULIANE SIEBOURG

AA

Aa

aa

×

●
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aa
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=

●

AA

Aa

aa

MLE

Figure 6. Dirichlet prior for multinomial likelihood. The Dirichlet
prior is conjugate to the multinomial likelihood. Shown are contour
lines of the prior Dir(10, 10, 10) on the left, the multinomial likelihood
P ((nAA, nAa, naa) = (81, 18, 1) | θAA, θAa, θaa) in the center, and the result-
ing posterior Dir(91, 28, 11) on the right. The posterior is the product of
prior and likelihood.

P (θ)P (Z). Alternatively, if the distribution of the hidden data Z is not of interest,
it can be marginalized out. Then, the posterior (40) becomes

P (θ | X) =

∑
Z P (X,Z | θ)P (θ)∫

θ∈Θ

∑
Z P (X,Z | θ)P (θ) dθ

. (42)

In the likelihood framework, it can be more efficient to estimate the hidden data, rather
than marginalizing over it. The hidden (or complete-data) log-likelihood is

`hid(θ) = logP (X,Z | θ) =
N∑
i=1

logP (X(i), Z(i) | θ). (43)

For ML parameter estimation, we need to consider the observed log-likelihood

`obs(θ) = logP (X | θ) = log
∑
Z

P (X,Z | θ) = log
∑

Z(1)∈Z

· · ·
∑

Z(N)∈Z

N∏
i=1

P (X(i), Z(i) | θ).

(44)
This likelihood function is usually very difficult to maximize and one has to resort to
numerical optimization techniques. Generic local methods, such as gradient descent or
Newton’s method, can be used, but there is also a more specific local optimization pro-
cedure, which avoids computing any derivatives of the likelihood function, called the
Expectation Maximization (EM) algorithm [5].

In order to maximize the likelihood function (44), we consider any distribution q(Z) of
the hidden data Z and write

`obs(θ) = log
∑
Z

q(Z)
P (X,Z | θ)

q(Z)
= log E [P (X,Z | θ)/q(Z)] , (45)

where the expected value is with respect to q(Z). Jensen’s inequality applied to the
concave log function asserts that log E[Y ] ≥ E[log Y ]. Hence, the observed log-likelihood
is bounded from below by E [log(P (X,Z | θ)/q(Z))], or

`obs(θ) ≥ E [`hid(θ)] +H(q), (46)

where H(q) = −E [log q(Z)] is the entropy. The idea of the EM algorithm is to maximize
this lower bound instead of `obs(θ) itself. Intuitively, this task is easier because the big
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sum over the hidden data in (44) disappears on the right-hand side of (46) upon taking
expectations.

The EM algorithm is an iterative procedure alternating between an E step and an M
step. In the E step, the lower bound (46) is maximized with respect to the distribution
q by setting q(Z) = P (Z | X, θ(t)), where θ(t) is the current estimate of θ, and computing
the expected value of the hidden log-likelihood

Q(θ | θ(t)) = EZ|X,θ(t) [`hid(θ)]. (47)

In the M step, Q is maximized with respect to θ to obtain an improved estimate

θ(t+1) = arg max
θ
Q(θ | θ(t)). (48)

The sequence θ(1), θ(2), θ(3), . . . converges to a local maximum of the likelihood surface
(44). The global maximum and, hence, the MLE is generally not guaranteed to be found
with this local optimization method. In practice, the EM algorithm is often run repeatedly
with many different starting solutions θ(1), or with few very reasonable starting solutions
obtained from other heuristics or educated guesses.

Example 14 (Naive Bayes). Let us assume that we observe realizations of a discrete
random variable (X1, . . . , XL) and we want to cluster observations into K distinct groups.
For this purpose, we introduce a hidden random variable Z with state space Z = [K] =
{1, . . . , K} indicating class membership. The joint probability of (X1, . . . , XL) and Z is

P (X1, . . . , XL, Z) = P (Z)P (X1, . . . , XL | Z) = P (Z)
L∏
n=1

P (Xn | Z). (49)

The marginalization of this model with respect to the hidden data Z is the unsupervised
naive Bayes model. The observed variables Xn are often called features and Z the latent
class variable (Figure 7).

The model parameters are the class prior P (Z), which we assume to be constant
and will ignore, and the conditional probabilities θn,kx = P (Xn = x | Z = k). The
complete-data likelihood of observed data X = (X(1), . . . , X(N)) and hidden data Z =
(Z(1), . . . , Z(N)) is

P (X,Z | θ) =
N∏
i=1

P (X(i), Z | θ) =
N∏
i=1

P (Z(i))
L∏
n=1

P (X(i)
n | Z(i)) (50)

∝
N∏
i=1

L∏
n=1

θ
n,Z(i)X

(i)
n

=
N∏
i=1

L∏
n=1

∏
k∈[K]

∏
x∈X

θ
In,kx(Z(i))

n,kx , (51)

where In,kx(Z
(i)) is equal to one if and only if Z(i) = k and X

(i)
n = x, and zero otherwise.

To apply the EM algorithm for estimating θ without observing Z, we consider the
hidden log-likelihood

`hid(θ) = logP (X,Z | θ) =
N∑
i=1

L∑
n=1

∑
k∈[K]

∑
x∈X

In,kx(Z
(i)) log θn,kx. (52)

In the E step, we compute the expected values of Z(i)

γ
(i)
n,kx = EZ|X=x,θ′

[
Z(i)
]

=
P (X(i) = x | Z(i) = k)∑

k′∈K P (X(i) = x | Z(i) = k′)
=

θ′n,kx∑
k′∈K θ

′
n,k′x

, (53)
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Z

X2X1
... XL

Figure 7. Graphical representation of the naive Bayes model. Observed
features Xn are conditionally independent given the latent class variable
Z.

where θ′ is the current estimate of θ. The expected value γ
(i)
n,kx is sometimes referred to as

the responsibility of class k for observation X
(i)
n = x. The expected hidden log-likelihood

can be written in terms of the expected counts Nn,kx =
∑N

i=1 γ
(i)
n,kx as

EZ|X,θ′ [`hid(θ)] =
L∑
n=1

∑
k∈[K]

∑
x∈X

Nn,kx log θn,kx. (54)

In the M step, maximization of this sum yields θ̂n,kx = Nn,kx/
∑

x′ Nn,kx′ . �

4. Markov chains

A stochastic process {Xt, t ∈ T } is a collection of random variables with common state
space X . The index set T is usually interpreted as time and Xt is the state of the process
at time t. A discrete-time stochastic process X = (X1, X2, X3, . . . ) is called a Markov
chain [20], if Xn+1 ⊥ Xn−1 | Xn for all n ≥ 2 or, equivalently, if each state depends only
on its immediate predecessor,

P (Xn | Xn−1, . . . , X1) = P (Xn | Xn−1), for all n ≥ 2. (55)

We consider here Markov chains with finite state space X = [K] = {1, . . . , K} that are
homogeneous, i.e., with transition probabilities independent of time,

Tkl = P (Xn+1 = l | Xn = k), for all k, l ∈ [K], n ≥ 2. (56)

The finite-state homogeneous Markov chain is a statistical model denoted MC(Π, T ) and
defined by the initial state distribution Π ∈ ∆K−1, where Πk = P (X1 = k), and the
stochastic K ×K transition matrix T = (Tkl).

We can generalize the one-step transition probabilities Tkl to

T nkl = P (Xn+j = l | Xj = k), (57)

the probability of jumping from state k to state l in n time steps. Any (n + m)-step
transition can be regarded as an n-step transition followed by an m-step transition.
Because the intermediate state i is unknown, summing over all possible values yields the
decomposition

T n+m
kl =

K∑
i=1

T nkiT
m
il , for all n,m ≥ 1, k, l ∈ [K], (58)

known as the Chapman-Kolmogorov equations. In matrix notation, they can be written
as T (n+m) = T (n)T (m). It follows that the n-step transition matrix is the n-th matrix
power of the one-step transition matrix, T (n) = T n.

A state l of a Markov chain is accessible from state k if T nkl > 0. We say that k and
l communicate with each other and write k ∼ l if they are accessible from one another.
State communication is reflexive (k ∼ k), symmetric (k ∼ l ⇒ l ∼ k), and, by the
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Chapman-Kolmogorov equations, transitive (j ∼ k ∼ l ⇒ j ∼ l). Hence, it defines an
equivalence relation on the state space. The Markov chain is irreducible if it has a single
communication class, i.e., if any state is accessible from any other state.

A state is recurrent if the Markov chain will reenter it with probability one. Otherwise,
the state is transient. In finite-state Markov chains, recurrent states are also positive
recurrent, i.e., the expected time to return to the state is finite. A state is aperiodic if
the process can return to it after any time n ≥ 1. Recurrence, positive recurrence, and
aperiodicity are class properties: if they hold for a state k, then they also hold for all
states communicating with k.

A Markov chain is ergodic if it is irreducible, aperiodic, and positive recurrent. An
ergodic Markov chain has a unique stationary distribution π given by

πl = lim
n→∞

T nkl =
K∑
k=1

πkTkl, l ∈ [K],
K∑
l=1

πl = 1 (59)

independent of the initial distribution Π. In matrix notation, π is the solution of πt = πtT .

Example 15 (Two-state Markov chain). Consider the Markov chain with state space
{1, 2} and transition probabilities T12 = α > 0 and T21 = β > 0. Clearly, the chain is
ergodic and its stationary distribution π is given by(

π1 π2

)
=
(
π1 π2

)( 1− α α
β 1− β

)
(60)

or, equivalently, απ1 = βπ2. With π1 + π2 = 1, we obtain πt = (α + β)−1(α, β). �

In Example 15, if α = 0, then state 1 is called an absorbing state because once entered
it is never left. In evolutionary biology and population genetics, Markov chains are
often used to model evolving populations, and the fixation probability of an allele can be
computed as the absorption probability in such models.

Example 16 (Wright-Fisher process). We consider two alleles, A and a, in a diploid
population of size N . The total number of A alleles in generation n is described by a
Markov chain Xn with state space {0, 1, 2, . . . , 2N}. We assume that individuals mate
randomly and that maternal and paternal alleles are chosen randomly such that (Xn+1 |
Xn) ∼ Binom(2N, k/(2N)), where k is the number of A alleles in generation n. The
Markov chain has transition probabilities

Tkl =

(
2N

l

)(
k

2N

)l(
2N − k

2N

)2N−l

. (61)

If the initial number of A alleles is X1 = k, then E(X1) = k. After binomial sampling,
E(X2) = 2N(k/(2N)) = k and hence E(Xn) = k for all n ≥ 0. The Markov chain has the
two absorbing states 0 and 2N , which correspond, respectively, to extinction and fixation
of the A allele. To compute the fixation probability hk of A given k initial copies of it,

hk = lim
n→∞

P (Xn = 2N | X1 = k), (62)

we consider the expected value, which is equal to k, in the limit as n→∞ to obtain

k = lim
n→∞

E(Xn) = 0 · (1− hk) + 2N · hk. (63)

Thus, the fixation probability is just hk = k/(2N), the initial relative frequency of the
allele. The Wright-Fisher process [12, 27] is a basic stochastic model for random genetic
drift, i.e., for the variation in allele frequencies only due to random sampling. �
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A T

C G

Figure 8. Nucleotide substitution model. The state space and transitions
of a general nucleotide substitution model are shown. For the Jukes-Cantor
model (Example 17), all transitions from any nucleotide to any other nu-
cleotide have the same probability 1

4
(1− e−4αt).

If we observe data X = (X(1), . . . , X(N)) from a finite Markov chain MC(Π, T ) of length
L, then the likelihood is

L(Π, T ) =
N∏
i=1

P (X(i)) =
N∏
i=1

P (X
(i)
1 )

L−1∏
n=1

P (X
(i)
n+1 | X(i)

n ) =
N∏
i=1

Π
X

(i)
1

L−1∏
n=1

T
X

(i)
n ,X

(i)
n+1
, (64)

which can be rewritten as

L(Π, T ) =
N∏
i=1

∏
k∈[K]

Π
Nk(X(i))
k

∏
k∈[K]

∏
l∈[K]

T
Nkl(X

(i))
kl =

∏
k∈[K]

ΠNk
k

∏
k∈[K]

∏
l∈[K]

TNkl
kl . (65)

with Nkl(X
(i)) the number of observed transitions from state k into state l in observation

X(i), and Nkl =
∑N

i=1Nkl(X
(i)) the total number of k-to-l transitions in the data, and

similarly Nk(X
(i)) and Nk the number of times the i-th chain, respectively all chains,

started in state k.

5. Continuous-time Markov chains

A continuous-time stochastic process {X(t), t ≥ 0} with finite state space [K] is a
continuous-time Markov chain if

P [X(t+ s) = l | X(s) = k, X(u) = x(u), 0 ≤ u < s] = P [X(t+ s) = l | X(s) = k] (66)

for all s, t ≥ 1, k, l, x(u) ∈ [K], 0 ≤ u < s. The chain is homogeneous if (66) is
independent of s. The transition probabilities are then denoted

Tkl(t) = P [X(t+ s) = l | X(s) = k]. (67)

It can be shown that the transition matrix T (t) is the matrix exponential of a constant
rate matrix R times t,

T (t) = exp(Rt) =
∞∑
j=0

1

j!
(Rt)j. (68)

Example 17 (Jukes-Cantor model). Consider a fixed position in a DNA sequence and
let Tkl(t) be the probability that, due to mutation, nucleotide k changes to nucleotide l
after time t at this position (Figure 8). The Jukes-Cantor model [17] is the simplest DNA
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substitution model. It assumes that the transition rates from any nucleotide to any other
are equal,

R =


−3α α α α
α −3α α α
α α −3α α
α α α −3α

 . (69)

The resulting transition matrix T (t) = exp(Rt) is

T (t) =
1

4


1 + 3e−4αt 1− e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1 + 3e−4αt 1− e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1 + 3e−4αt 1− e−4αt

1− e−4αt 1− e−4αt 1− e−4αt 1 + 3e−4αt

 (70)

and the stationary distribution as t→∞ is uniform, π = (1/4, 1/4, 1/4, 1/4)t. �

Example 18 (The Poisson process). A continuous-time Markov chain X(t) is a count-
ing process, if X(t) represents the total number of events that occur by time t. It is a
Poisson process, if in addition X(0) = 0, the increments are independent, and in any
interval of length t the number of events is Poisson distributed with rate λt,

P [X(t+ s)−X(s) = k] = P [X(t) = k] = e−λt
(λt)k

k!
. (71)

The Poisson process is used, for example, to count mutations in a gene. �

Example 19 (Exponential distribution). The exponential distribution Exp(λ) with
parameter λ > 0 is a common distribution for waiting times. It is defined by the density
function

f(x) = λe−λx, for x ≥ 0. (72)

If X ∼ Exp(λ), then X has expectation E(X) = λ−1 and variance Var(X) = λ−2. The
exponential distribution is memoryless, which means that P (X > s + t | X > t) =
P (X > s), for all s, t > 0. An important consequence of the memoryless property is that
the waiting times between successive events are i.i.d. For example, the waiting times τn
(n ≥ 1) between the events of a Poisson process, the sequence of interarrival times, are
exponentially distributed, τn ∼ Exp(λ), for all n ≥ 1. �

6. Hidden Markov models

A hidden Markov model (HMM) is a statistical model for hidden random variables Z =
(Z1, . . . , ZL), which form a homogeneous Markov chain, and observed random variables
X = (X1, . . . , XL). Each observed symbol Xn depends on the hidden state Zn. The HMM
is illustrated in Figure 9. It encodes the following conditional independence statements:

Zn+1 ⊥ Zn−1 | Zn, 2 ≤ n ≤ L− 1 (Markov property) (73)

Xn ⊥ Xm | Zn, 1 ≤ m,n ≤ L, m 6= n (74)

The parameters of the HMM consist of the initial state probabilities Π = P (Z1), the
transition probabilities Tkl = P (Zn = l | Zn−1 = k) of the Markov chain, and the
emission probabilities Ekx = P (Xn = x | Zn = k) of symbols x ∈ X . The HMM is
denoted HMM(Π, T, E). For simplicity, we restrict ourselves here to finite state spaces
Z = [K] of Z and X of X. The joint probability of (Z,X) factorizes as

P (X,Z) = P (Z1)
L−1∏
n=1

P (Xn | Zn)P (Zn+1 | Zn) = ΠZ1

L−1∏
n=1

EZn,XnTZn,Zn+1 . (75)
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Z1
... Zn−1

...

Zn Zn+1

X1 Xn−1 Xn Xn+1

...

...

ZL

XL

Figure 9. Hidden Markov model. Shaded nodes represent observed ran-
dom variables (or symbols) Xn, clear nodes represent hidden states (or the
annotation). Directed edges indicate statistical dependencies which are
given, respectively, by transition and emission probabilities among hidden
states and between hidden states and observed symbols.

The HMM is typically used to model sequence data x = (x1, x2, . . . , xL) generated by
different mechanisms zn which can not be observed. Each observation x can be a time
series or any other object with a linear dependency structure [21]. In computational
biology, the HMM is frequently applied to DNA and protein sequence data, where it
accounts for first-order spatial dependencies of nucleotides or amino acids [7].

Example 20 (CpG islands). CpG islands are CG-enriched regions in a DNA sequence.
They are typically a few hundreds to thousands of base pairs long. We want to use a
simple HMM to detect CpG islands in genomic DNA. The hidden states Zn ∈ Z = {−,+}
indicate whether sequence position n belongs to a CpG island (+) or not (−). The
observed sequence is given by the nucleotide at each position, Xn ∈ X = {A, C, G, T}.

Suppose we observe the sequence x = (C, A, C, G). Then, we can calculate the joint
probability of x and any state path z by (75). For example, if z = (+,−,−,+), then
P (X = x, Z = z) = Π+ · E+,CT+,− · E−,AT−,− · E−,CT−,+ · E+,G. �

Typically, one is interested in the hidden state path z = (z1, z2, . . . , zL) that gave
rise to the observation x. For biological sequences, z is often called the annotation of
x. In Example 20, the genomic sequence is annotated with CpG islands. For generic
parameters, any state path can give rise to a given observed sequence, but with different
probabilities. The decoding problem is to find the annotation z∗ that maximizes the joint
probability,

z∗ = argmax
z∈Z

P (X = x, Z = z). (76)

There are KL possible state paths such that, for sequences of only moderate length, the
optimization problem (76) cannot be solved in the naive way by enumerating all paths.

However, there is a an efficient algorithm solving (76) based on the following factoriza-
tion along the Markov chain:

max
Z

P (X,Z) = max
Z1,...,ZL

P (Z1)
L−1∏
n=1

P (Xn | Zn)P (Zn+1 | Zn)

= max
ZL

P (ZL | ZL−1)P (XL | ZL)
[
. . .
[

max
Z2

P (Z3 | Z2)P (X2 | Z2)
[

max
Z1

P (Z2 | Z1)P (X1 | Z1) · P (Z1)
]]
. . .
]
. (77)

Thus, the maximum can be obtained by recursively computing the terms inside paren-
theses, which amounts to computing partial solutions z∗1 , . . . , z

∗
n for n = 1, . . . , L. Each
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term occurs K times and involves of order K steps, and there are L such terms to com-
pute. Hence, the time complexity of the algorithm is O(LK2), despite the fact that the
maximum is over KL paths. This scheme is known as dynamic programming and it is the
workhorse of biological sequence analysis. The argument z∗ of the maximum is obtained
from the successive maximizing arguments z∗1 , z∗2 , . . . , z∗L. For HMMs, this procedure is
known as the Viterbi algorithm [25].

In order to compute the marginal likelihood P (X = x) of an observed sequence x, we
need to sum the joint probability P (Z = z,X = x) over all hidden states z ∈ Z. The
length of this sum is exponential in L, but it can be computed efficiently by the same
dynamic programming principle used for the Viterbi algorithm:

∑
Z

P (X,Z) =
∑

Z1,...,ZL

P (Z1)
L−1∏
n=1

P (Xn | Zn)P (Zn+1 | Zn)

=
∑
ZL

P (ZL | ZL−1)P (XL | ZL)
[
. . .
[∑

Z2

P (Z3 | Z2)P (X2 | Z2)
[

∑
Z1

P (Z2 | Z1)P (X1 | Z1) · P (Z1)
]]
. . .
]
. (78)

Indeed, this factorization is the same as in (77) with maxima replaced by sums. The
recursive algorithm implementing (78) is known as the forward algorithm. It computes
the partial solutions f(n, Zn) = P (X1, . . . , Xn, Zn).

The factorization along the Markov chain can also be done in the other direction
starting the recursion from ZL down to Z1. The resulting backward algorithm generates
the partial solutions b(n, Zn) = P (Xn+1, . . . , XL | Zn). From the forward and backward
quantities, one can also compute the position-wise posterior state probabilities

P (Zn | X) =
P (X,Zn)

P (X)
=
P (X1, . . . , Xn, Zn)P (Xn+1, . . . , XL | Zn)

P (X)
=
f(n, Zn)b(n, Zn)

P (X)
.

(79)
For example, in the CpG island HMM (Example 20), we can compute, for each nu-
cleotide, the probability that it belongs to a CpG island given the entire observed DNA
sequence. Selecting the state that maximizes this probability independently at each se-
quence position is known as posterior decoding. In general, the result will be different
from Viterbi decoding.

Example 21 (Pairwise sequence alignment). The pair HMM is a statistical model
for pairwise alignment of two observed sequences over a fixed alphabet A. For protein
sequences, A is the set of 20 natural amino acids and for DNA sequences, A consists
of the four nucleotides, plus the gap symbol (’-’). At each position of the alignment,
a hidden variable Zn ∈ Z = {M, X, Y} indicates whether there is a (mis-)match (M), an
insertion (X), or a deletion (Y) in sequence y relative to sequence x. For example,

z = MMMMMMMMMMMMMXXMMMMMMMMMMMMYMMMMYMMMMM

x = CTRPNNNTRKSIRPQIGPGQAFYATGD-IGDI-RQAHC

y = CGRPNNHRIKGLR--IGPGRAFFAMGAIRGGEIRQAHC

The emitted symbols are pairs (Xn, Yn) of aligned sequence characters with state space
(A×A) \ {(−,−)}. Thus, a pairwise alignment is a probabilistically generated sequence
of pairs of symbols.

The choice of transition and emission probabilities corresponds to fixing a scoring
scheme in nonprobabilistic formulations of sequence alignment. For example, the emission
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B Mn E

In

Dn

Figure 10. Profile hidden Markov model. The hidden state space and its
transitions are shown for the profile HMM of length L = 3. Match states
are denoted Mn, insert states In, and delete states Dn. B and E denote
silent begin and end states, respectively. With match and insert states
probability tables for the emissions of symbols (amino acids or nucleotides,
and gaps) are associated.

probabilities P [(a, b) | M] from a match state encode pairwise amino acid preferences and
can be modeled by substitution matrices, such as PAM and BLOSUM [7].

In the pair HMM, computing an optimal alignment between x and y means to find
the most probable state path z∗ = argmaxz P (X = x, Y = y, Z = z), which can be
solved using the Viterbi algorithm. Using the forward algorithm, we can also compute
efficiently the marginal probability of two sequences being related independent of their
alignment, P (X, Y ) =

∑
Z P (X, Y, Z). In general, this probability is more informative

than the posterior P (Z | X, Y ) of an optimal alignment z∗ because many alignments tend
to have the same or nearly the same probability such that P (Z = z∗ | X, Y ) can be very
small. Finally, we can also compute the probability of two characters xn and ym being
aligned by means of posterior decoding. �

Example 22 (Profile HMM). Profile hidden Markov models represent groups of related
sequences, such as protein families. They are used for searching homologous sequences
and for building multiple sequence alignments. They can be regarded as unrolled versions
of the pair HMM. A profile HMM is a statistical model for observed sequences, which
are regarded as i.i.d. realizations. It has site-specific emission probabilities En(a) =
P (Xn = a). In its simplest form allowing only gap-free alignments, the probability of an
observation x is just

P (X = x) =
L∏
n=1

En(xi). (80)

The matrix (En(a))1≤n≤L, a∈A is called a position-specific scoring matrix (PSSM).
Profile HMMs can also model indels. Figure 10 shows the hidden state space of such

a model. It has match states Mn, which can emit symbols according to the probability
tables En, insert states In, which usually emit symbols in an unspecific manner, and
delete states Dn, which do not emit any symbols. The possible transitions between those
states allow for modeling alignment gaps of any length.

A given profile HMM for a protein family can be used to detect new sequences that
belong to the same family. For a query sequence x, we can either consider the most
probable alignment of the sequence to the HMM, P (X = x, Z = z∗), or the marginal
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probability independent of the alignment, P (X = x) =
∑

Z P (X = x, Z), to decide about
family membership. �

Parameter estimation in HMMs is complicated by the presence of hidden variables. In
Section 2, the EM algorithm has been introduced for finding a local maximum of the
likelihood surface. For HMMs, the EM algorithm is known as the Baum-Welch algorithm
[1]. For simplicity, let us ignore the initial state probabilities Π and summarize the
parameters of the HMM by θ = (T,E). For ML estimation, we need to maximize the
observed log-likelihood

`obs(θ) = logP (X | θ) = log
∑
Z

P (X,Z | θ) = log
∑

Z(1),...,Z(N)

N∏
i=1

P (X(i), Z(i) | θ), (81)

where X(1), . . . , X(N) are the i.i.d. observations. For each observation, we can rewrite the
joint probability as

P (X(i), Z(i) | θ) =
∏
k∈[K]

∏
x∈X

E
Nkx(Z(i))
kx ·

∏
k∈[K]

∏
l∈[K]

T
Nkl(Z

(i))
kl , (82)

where Nkx(Z
(i)) is the number of x emissions when in state k and Nkl(Z

(i)) the number
of k-to-l transitions in state path Z(i) (cf. (64)).

In the E step, the expectation of (81) is computed with respect to P (Z | X, θ′), where
θ′ is the current best estimate of θ. We use (82) and denote by Nkx and Nkl the expected
value of

∑
iNkx(Z

(i)) and
∑

iNkl(Z
(i)), respectively, to obtain

E[`hid(θ)] =
∑
Z

P (Z | X, θ′) logP (X,Z | θ)

=
∑

Z(1),...,Z(N)

P (Z | X, θ′)

[∑
k, x

Nkx(Z
(i)) logEkx +

∑
k, l

Nkl(Z
(i)) log Tkl

]
=
∑
k, x

Nkx logEkx +
∑
k, l

Nkl log Tkl. (83)

The expected counts Nkx and Nkl are the sufficient statistics [2] of the HMM, i.e., with
respect to the model, they contain all information about the parameters available from the
data. The expected counts can be computed using the forward and backward algorithms.
In the M step, this expression is maximized with respect to θ = (T,E). We find the

MLEs T̂kl = Nkl/
∑

mNkm and Êkx = Nkx/
∑

yNky.

7. Bayesian networks

Bayesian networks are a class of probabilistic graphical models which generalize Markov
chains and HMMs. The basic idea is to use a graph for encoding conditional indepen-
dences among random variables (Figure 11). The graph representation provides not only
an intuitive and simple visualization of the model structure, but it is also the basis for
designing efficient algorithms for inference and learning in graphical models [16, 18? ].

A Bayesian network (BN) for a set of random variables X = (X1, . . . , XL) consists of
a directed acyclic graph (DAG) and local probability distributions (LPDs). The DAG
G = (V,E) has vertex set V = [L] and edge set E ⊆ V × V . Each vertex n ∈ V is
identified with the random variable Xn. If there is an edge Xm → Xn in G, then Xm

is a parent of Xn and Xn is a child of Xm. For each vertex n ∈ V , there is an LPD
P (Xn | Xpa(n)), where pa(n) is the set of parents of Xn in G. The Bayesian network
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V
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Figure 11. Example of a Bayesian network. Vertices correspond to ran-
dom variables and edges represent conditional probabilities. The graph
encodes conditional independence statements about the random variables
U , V , W , X, Y , and Z. Their joint probability factors according to the
graph as P (U, V,W,X, Y ) = P (U)P (Y )P (V | U, Y )P (W | V )P (X | U).

model is defined as the family of distributions for which the joint probability of X factors
into conditional probabilities as

P (X1, . . . , XL) =
L∏
n=1

P (Xn | Xpa(n)). (84)

In this case, we write X ∼ BN(G, θ), where θ = (θ1, . . . , θL) denotes the parameters of
the LPDs.

For the Bayesian network shown in Figure 11, we find P (U, V,W,X, Y ) =
P (U)P (Y )P (V | U, Y )P (W | V )P (X | U). The graph encodes several conditional inde-
pendence statements about (U, V,W,X, Y ), including, for example, W ⊥ {U,X} | V .

Example 23 (Markov chain). A finite Markov chain is a Bayesian network with the
DAG X1 → X2 → · · · → XL, denoted C, and joint distribution

P (X1, . . . , Xn) = P (X1)P (X2 | X1)P (X3 | X2) · · ·P (XL | XL−1). (85)

If X ∼ MC(Π, T ) is homogeneous, then the LPDs are θ1 = P (X1) = Π and θn+1 =
P (Xn+1 | Xn) = T for all n ∈ [L− 1] such that MC(Π, T ) = BN(C, θ). Similarly, HMMs
are Bayesian networks with hidden variables Z and factorized joint distribution given in
(75). �

The meaning of the parameters θ of a Bayesian network depends on the family of
distributions that has been chosen for the LPDs. In the general case of a discrete random
variable with finite state space, θn is a conditional probability table. If each vertex Xn

has K possible states, then

θn =
(
P (Xn = a | Xpa(n) = b)

)
b∈[K]pa(n),a∈[K]

(86)

has Kpa(n) × (K − 1) free parameters. If Xn depends on all other variables, then θn
has the maximal number of KL − 1 parameters, which is exponential in the number of
vertices. If, on the other hand, Xn is independent of all other variables, pa(n) = ∅,
then θn has (K − 1) parameters, which is independent of L. For the chain (Example 23)
where each vertex has exactly one outgoing and one incoming edge, we find a total of
(K − 1) + (L− 1)K(K − 1) free parameters which is of order O(LK2).



PROBABILITY, STATISTICS, AND COMPUTATIONAL SCIENCE∗ 23

A popular model for continuous random variables Xn is the linear Gaussian model.
Here, the LPDs are Gaussian distributions with mean a linear function of the parents,

P (Xn | Xpa(n)) = Norm(vn + wtn ·Xpa(n), σ
2
n), (87)

with parameters vn ∈ R and wi ∈ Rpa(n) specifying the mean, and variance σ2
n. The

number of parameters increases linearly with the number of parents, but only linear
relationships can be modeled.

Learning a Bayesian network BN(G, θ) from data D can be done in different ways
following either the Bayesian or the maximum likelihood approach as introduced in Sec-
tion 2. In general, it involves first finding the optimal network structure

G∗ = argmax
G

P (G | D), (88)

a task known as model selection, and then estimating the parameters

θ∗ = argmax
θ

P (θ | G∗, D) (89)

for the given optimal structure G∗.
Model selection is a particularly hard problem because the number of DAGs increases

super-exponentially with the number of vertices rendering exhaustive searches imprac-
tical, and the objective function in (88) is often difficult to compute. The posterior
P (G | D) is proportional to the product P (D | G)P (G) of marginal likelihood and net-
work prior, and the marginal likelihood

P (D | G) =

∫
P (D | θ, G)P (θ | G) dθ (90)

is often analytically intractable. Here, P (θ | G) is the prior distribution of parameters
given the network topology.

To address this limitation, the marginal likelihood (90) is often approximated by a
function that is easier to evaluate. A popular choice is the Bayesian information criterion
(BIC) [23],

logP (D | G) ≈ logP (D | θ̂ML, G)− 1

2
ν logN, (91)

where ν is the number of free parameters of the model and N the size of the data.
The BIC approximation can be derived under certain assumptions, including a unimodal
likelihood. It replaces computation of the integral (90) by evaluating the integrand at
the MLE and adding the correction term −(ν logN)/2, which penalizes models of high
complexity.

The model selection problem remains hard even with a tractable scoring function, such
as BIC, because of the enormous search space. Local search methods, such as greedy hill
climbing or simulated annealing, are often used in practice. They return a local maximum
as a point estimate for the best network structure. Results can be improved by running
several local searches from different starting topologies.

Often, data are sparse and we will find diffuse posterior distributions of network struc-
tures, which might not be represented very well by a single point estimate. In the fully
Bayesian approach, we aim at estimating the full posterior P (G | D) ∝ P (D | G)P (G).
One way to approximate this distribution is to draw a finite number of samples from it.
Markov chain Monte Carlo (MCMC) methods generate such a sample by constructing a
Markov chain that converges to the target distribution [19].

In the Metropolis-Hastings algorithm [15], we start with a random DAG G(0) and then
iteratively generate a new DAG G(n) from the previous one G(n−1) by drawing it from a
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proposal distribution Q,

G(n) ∼ Q(G(n) | G(n−1)). (92)

The new DAG is accepted with acceptance probability

min

{
P (D | G(n))P (G(n))Q(G(n−1) | G(n))

P (D | G(n−1))P (G(n−1))Q(G(n) | G(n−1))
, 1

}
(93)

Otherwise, the model is left unchanged and the next sample is drawn. With this ac-
ceptance probability, it is guaranteed that the Markov chain converges to the desired
distribution. After an initial burn-in phase, samples from the stationary phase of the
chain are collected, say G(m), . . . , G(N). Any feature f of the network (e.g., the presence
of an edge or a subgraph) can be estimated as the expected value

E(f) =
∑
G

f(G)P (G | D) ≈ 1

N

N∑
n=m

f(G(n)). (94)

A critical point of the Metropolis-Hastings algorithm is the choice of the proposal distri-
bution Q, which encodes the way the network space is explored. Because not all graphs,
but only DAGs, are allowed, computing the transition probabilities Q(G(n) | G(n−1)) is
usually the main computational bottleneck.

Parameter estimation, i.e., solving (89), can be done along the lines described in Sec-
tion 2 following either the ML or the Bayesian approach. If the model contains hidden
random variables, then the EM algorithm (Section 3) can be used. However, this ap-
proach is feasible only if efficient inference algorithms are available. For hidden Markov
models (Section 6), the forward and backward algorithms provided an efficient way to
compute marginal probabilities and the expected hidden log-likelihood. These algorithms
can be generalized to the sum-product algorithm for tree-like graphs and the junction
tree algorithm for general DAGs. The computational complexity of the junction tree
algorithm is exponential in the size of the largest clique of the graph [2].

Alternatively, if exact inference is computationally too expensive, then approximate
inference can be used. For example, Gibbs sampling [13] is an MCMC technique
for generating a sample from the joint distribution P (X1, . . . , XL). The idea is to
iteratively sample from the conditional probabilities of P (X1, . . . , XL), starting with

X
(n+1)
1 ∼ P (X1 | X(n)

2 , . . . , X
(n)
L ) and cycling through all variables in turns,

X
(n+1)
j ∼ P (Xj | X(n+1)

1 , . . . , X
(n+1)
j−1 , X

(n)
j+1, . . . , X

(n)
L ) for all j = 2, . . . , L. (95)

Gibbs sampling can be regarded as a special case of the Metropolis-Hastings algorithm.
It is particularly useful, if it is much easier to sample from the conditionals P (Xk | X\k)
than from the joint distribution P (X1, . . . , XL), where X\k denotes all variables Xn except
Xk. For graphical models, the conditional probability of each vertex Xk depends only
on its Markov blanket XMB(k), defined as the set of its parents, children, and co-parents
(vertices with the same children), P (Xk | X\k) = P (Xk | XMB(k)).

Example 24 (Phylogenetic tree models). A phylogenetic tree model [11] for a set
of aligned DNA sequences from different species is a Bayesian network model, where
the graph is a tree in which the leaves represent the observed contemporary species and
the interior vertices correspond to common extinct ancestors (Figure 12). The topology
(graph structure) S defines the branching order and the branch lengths correspond to
(phylogenetic) time. The LPDs are defined by a nucleotide substitution model (Section 5).

Let X(i) ∈ {A, C, G, T, -}L denote the i-th column of a multiple sequence alignment of
L observed species. We regard the alignment columns as independent observations of the
evolutionary process. The character states of the hidden (extinct) ancestors are denoted
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Figure 12. Phylogenetic tree model. The observed random variables Xi

represent contemporary species and the hidden random variables Zi their
unknown common ancestors.

Z(i). The likelihood of the observed sequence data X = (X(1), . . . , X(N)) given the tree
topology S and the branch lengths t is

P (X | S, t) =
∑
Z

N∏
i=1

P (X(i), Z(i) | S, t), (96)

where P (X(i), Z(i) | S, t) factors into conditional probabilities according to the tree struc-
ture. This marginal probability can be computed efficiently with an instance of the
sum-product algorithm known as the peeling algorithm (or Felsenstein algorithm) [10].

For example, in the tree displayed in Figure 12, each observation X has probability

P (X) =
∑
Z

P (X,Z) (97)

=
∑
Z

P (X1 | Z4)P (X2 | Z1)P (X3 | Z1)P (X4 | Z2)P (X5 | Z2)P (Z1 | Z3) ·

· P (Z2 | Z3)P (Z3 | Z4)P (Z4) (98)

=
∑
Z4

P (Z4)P (X1 | Z4)

[∑
Z3

P (Z3 | Z4)

[∑
Z2

P (Z2 | Z3)P (X4 | Z2)P (X5 | Z2)

]
·

·

[∑
Z1

P (Z1 | Z3)P (X2 | Z1)P (X3 | Z1)

]]
, (99)

where we have omitted the dependency on the branch length t. Several software packages
implement ML or Bayesian learning of phylogenetic tree models. �

In the simplest case we suppose that the observed alignment columns are independent.
However, it is more realistic to assume that nucleotide substitution rates vary across sites
because of varying selective pressures. For example, there could be differences between
coding and noncoding regions, among different regions of a protein (loops, catalytic sites),
or among the three bases of a triplet coding for an amino acid. More sophisticated models
can account for this rate heterogeneity. Let us assume site-specific substitution rates ri
such that the local probabilities become P (X(i) | ri, t, S). To model the distribution of
the rates, often a gamma distribution is used.

Example 25 (Gamma distribution). The gamma distribution Gamma(α, β) is
parametrized by a shape parameter α and a rate parameter β. It is defined by the
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Figure 13. Phylo-HMM. Shown are the first four positions of a Phylo-
HMM. The hidden Markov chain has random variables Z. In the trees, Y
denote the hidden common ancestors and X the observed species. Note
that the tree topology changes between position 2 and 3.

density function

f(x) =
βα

Γ(α)
xα−1e−βx, for x ≥ 0. (100)

Its expectation is E(X) = α/β and its variance Var(X) = α/β2. The gamma distribution
generalizes several other distributions, for example Gamma(1, λ) = Exp(λ) (Example 19).

�

Another approach to account for varying mutation rates are phylogenetic hidden
Markov models (phylo-HMMs).

Example 26 (Phylo-HMM). Phylo-HMMs [24] combine HMMs and phylogenetic trees
into a single Bayesian network model. The idea is to use an HMM along the linear chain
of the genomic sequence and, at each position, to condition a phylogenetic tree model on
the hidden state (Figure 13). This architecture allows for modeling different evolutionary
histories at different sites of the genome. In particular, the model can account for het-
erogeneity in the rate of evolution, for example, due to functionally conserved elements,
but it also allows for a change in tree topology along the sequence, a situation that can
result from recombination [? ]. Phylo-HMMs are also used for gene finding. �
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