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Preface

We are drowning in information,
but starved of knowledge.
– John Naisbitt, Megatrends

The turn of the millennium has been described as the dawn of a new scientific
revolution, which will have as great an impact on society as the industrial and
computer revolutions before. This revolution was heralded by a large-scale
DNA sequencing effort in July 1995, when the entire 1.8 million base pairs
of the genome of the bacterium Haemophilus influenzae was published – the
first of a free-living organism. Since then, the amount of DNA sequence data
in publicly accessible data bases has been growing exponentially, including a
working draft of the complete 3.3 billion base-pair DNA sequence of the entire
human genome, as pre-released by an international consortium of 16 institutes
on June 26, 2000.

Besides genomic sequences, new experimental technologies in molecu-
lar biology, like microarrays, have resulted in a rich abundance of further
data, related to the transcriptome, the spliceosome, the proteome, and the
metabolome. This explosion of the “omes” has led to a paradigm shift in
molecular biology. While pre-genomic biology followed a hypothesis-driven
reductionist approach, applying mainly qualitative methods to small, isolated
systems, modern post-genomic molecular biology takes a holistic, systems-
based approach, which is data-driven and increasingly relies on quantitative
methods. Consequently, in the last decade, the new scientific discipline of
bioinformatics has emerged in an attempt to interpret the increasing amount
of molecular biological data. The problems faced are essentially statistical,
due to the inherent complexity and stochasticity of biological systems, the
random processes intrinsic to evolution, and the unavoidable error-proneness
and variability of measurements in large-scale experimental procedures.
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Since we lack a comprehensive theory of life’s organization at the molecular
level, our task is to learn the theory by induction, that is, to extract patterns
from large amounts of noisy data through a process of statistical inference
based on model fitting and learning from examples.

Medical informatics is the study, development, and implementation of al-
gorithms and systems to improve communication, understanding, and man-
agement of medical knowledge and data. It is a multi-disciplinary science
at the junction of medicine, mathematics, logic, and information technology,
which exists to improve the quality of health care.

In the 1970s, only a few computer-based systems were integrated with hos-
pital information. Today, computerized medical-record systems are the norm
within the developed countries. These systems enable fast retrieval of patient
data; however, for many years, there has been interest in providing additional
decision support through the introduction of knowledge-based systems and
statistical systems.

A problem with most of the early clinically-oriented knowledge-based sys-
tems was the adoption of ad hoc rules of inference, such as the use of certainty
factors by MYCIN. Another problem was the so-called knowledge-acquisition
bottleneck, which referred to the time-consuming process of eliciting knowl-
edge from domain experts. The renaissance in neural computation in the
1980s provided a purely data-based approach to probabilistic decision sup-
port, which circumvented the need for knowledge acquisition and augmented
the repertoire of traditional statistical techniques for creating probabilistic
models.

The 1990s saw the maturity of Bayesian networks. These networks pro-
vide a sound probabilistic framework for the development of medical decision-
support systems from knowledge, from data, or from a combination of the two;
consequently, they have become the focal point for many research groups con-
cerned with medical informatics.

As far as the methodology is concerned, the focus in this book is on proba-
bilistic graphical models and Bayesian networks. Many of the earlier methods
of data analysis, both in bioinformatics and in medical informatics, were quite
ad hoc. In recent years, however, substantial progress has been made in our
understanding of and experience with probabilistic modelling. Inference, de-
cision making, and hypothesis testing can all be achieved if we have access to
conditional probabilities. In real-world scenarios, however, it may not be clear
what the conditional relationships are between variables that are connected in
some way. Bayesian networks are a mixture of graph theory and probability
theory and offer an elegant formalism in which problems can be portrayed
and conditional relationships evaluated. Graph theory provides a framework
to represent complex structures of highly-interacting sets of variables. Proba-
bility theory provides a method to infer these structures from observations or
measurements in the presence of noise and uncertainty. This method allows
a system of interacting quantities to be visualized as being composed of sim-
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pler subsystems, which improves model transparency and facilitates system
interpretation and comprehension.

Many problems in computational molecular biology, bioinformatics, and
medical informatics can be treated as particular instances of the general prob-
lem of learning Bayesian networks from data, including such diverse problems
as DNA sequence alignment, phylogenetic analysis, reverse engineering of ge-
netic networks, respiration analysis, Brain-Computer Interfacing and human
sleep-stage classification as well as drug discovery.

Organization of This Book

The first part of this book provides a brief yet self-contained introduction to
the methodology of Bayesian networks. The following parts demonstrate how
these methods are applied in bioinformatics and medical informatics.

This book is by no means comprehensive. All three fields – the methodol-
ogy of probabilistic modeling, bioinformatics, and medical informatics – are
evolving very quickly. The text should therefore be seen as an introduction,
offering both elementary tutorials as well as more advanced applications and
case studies.

The first part introduces the methodology of statistical inference and prob-
abilistic modelling. Chapter 1 compares the two principle paradigms of statis-
tical inference: the frequentist versus the Bayesian approach. Chapter 2 pro-
vides a brief introduction to learning Bayesian networks from data. Chapter 3
interprets the methodology of feed-forward neural networks in a probabilistic
framework.

The second part describes how probabilistic modelling is applied to bioin-
formatics. Chapter 4 provides a self-contained introduction to molecular phy-
logenetic analysis, based on DNA sequence alignments, and it discusses the
advantages of a probabilistic approach over earlier algorithmic methods. Chap-
ter 5 describes how the probabilistic phylogenetic methods of Chapter 4 can
be applied to detect interspecific recombination between bacteria and viruses
from DNA sequence alignments. Chapter 6 generalizes and extends the stan-
dard phylogenetic methods for DNA so as to apply them to RNA sequence
alignments. Chapter 7 introduces the reader to microarrays and gene expres-
sion data and provides an overview of standard statistical pre-processing pro-
cedures for image processing and data normalization. Chapters 8 and 9 address
the challenging task of reverse-engineering genetic networks from microarray
gene expression data using dynamical Bayesian networks and state-space mod-
els.

The third part provides examples of how probabilistic models are applied
in medical informatics.

Chapter 10 illustrates the wide range of techniques that can be used to
develop probabilistic models for medical informatics, which include logistic
regression, neural networks, Bayesian networks, and class-probability trees.
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The examples are supported with relevant theory, and the chapter emphasizes
the Bayesian approach to probabilistic modeling.

Chapter 11 discusses Bayesian models of groups of individuals who may
have taken several drug doses at various times throughout the course of a
clinical trial. The Bayesian approach helps the derivation of predictive distri-
butions that contribute to the optimization of treatments for different target
populations.

Variable selection is a common problem in regression, including neural-
network development. Chapter 12 demonstrates how Automatic Relevance
Determination, a Bayesian technique, successfully dealt with this problem for
the diagnosis of heart arrhythmia and the prognosis of lupus.

The development of a classifier is usually preceded by some form of data
preprocessing. In the Bayesian framework, the preprocessing stage and the
classifier-development stage are handled separately; however, Chapter 13 in-
troduces an approach that combines the two in a Bayesian setting. The ap-
proach is applied to the classification of electroencephalogram data.

There is growing interest in the application of the variational method to
model development, and Chapter 14 discusses the application of this emerging
technique to the development of hidden Markov models for biosignal analysis.

Chapter 15 describes the Treat decision-support system for the selection
of appropriate antibiotic therapy, a common problem in clinical microbiol-
ogy. Bayesian networks proved to be particularly effective at modelling this
problem task.

The medical-informatics part of the book ends with Chapter 16, a descrip-
tion of several software packages for model development. The chapter includes
example codes to illustrate how some of these packages can be used.

Finally, an appendix explains the conventions and notation used through-
out the book.

Intended Audience

The book has been written for researchers and students in statistics, machine
learning, and the biological sciences. While the chapters in Parts II and III
describe applications at the level of current cutting-edge research, the chapters
in Part I provide a more general introduction to the methodology for the
benefit of students and researchers from the biological sciences.

Chapters 1, 2, 4, 5, and 8 are based on a series of lectures given at the
Statistics Department of Dortmund University (Germany) between 2001 and
2003, at Indiana University School of Medicine (USA) in July 2002, and at
the “International School on Computational Biology”, in Le Havre (France)
in October 2002.
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Website

The website

http://robots.ox.ac.uk/∼parg/pmbmi.html

complements this book. The site contains links to relevant software, data,
discussion groups, and other useful sites. It also contains colored versions of
some of the figures within this book.
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Summary. Statistical inference is the basic toolkit used throughout the whole
book. This chapter is intended to offer a short, rather informal introduction to
this topic and to compare its two principled paradigms: the frequentist and the
Bayesian approach. Mathematical rigour is abandoned in favour of a verbal, more
illustrative exposition of this subject, and throughout this chapter the focus will be
on concepts rather than details, omitting all proofs and regularity conditions. The
main target audience is students and researchers in biology and computer science,
who aim to obtain a basic understanding of statistical inference without having to
digest rigorous mathematical theory.

1.1 Preliminaries

This section will briefly revise Bayes’ rule and the concept of conditional
probabilities. For a rigorous mathematical treatment, consult a textbook on
probability theory.

Consider the Venn diagram of Figure 1.1, where, for example, G represents
the event that a hypothetical oncogene (a gene implicated in the formation of
cancer) is over-expressed, while C represents the event that a person suffers
from a tumour.

The conditional probabilities are defined as

P (G|C) =
P (G,C)
P (C)

(1.1)

P (C|G) =
P (G,C)
P (G)

(1.2)

where P (G,C) is the joint probability that a person suffers from cancer and
shows an over-expression of the indicator gene, while P (G) and P (C) are the
marginal probabilities of contracting cancer or showing an over-expression of
the indicator gene, respectively.
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CG

Ω

C

G

Fig. 1.1. Illustration of Bayes’ rule. See text for details.

The first conditional probability, P (G|C), is the probability that the onco-
gene of interest is over-expressed given that its carrier suffers from cancer. The
estimation of this probability is, in principle, straightforward: just determine
the fraction of cancer patients whose indicator gene is over-expressed, and
approximate the probability by the relative frequency, by the law of large
numbers (see, for instance, [9]).

For diagnostic purposes more interesting is the second conditional prob-
ability, P (C|G), which predicts the probability that a person will contract
cancer given that their indicator oncogene is over-expressed. A direct deter-
mination of this probability might be difficult. However, solving for P (G,C)
in (1.1) and (1.2),

P (G,C) = P (G|C)P (C) = P (C|G)P (G) (1.3)

and then solving for P (C|G) gives:

P (C|G) =
P (G|C)P (C)

P (G)
(1.4)

Equation (1.4) is known as Bayes’ rule, which allows expressing a conditional
probability of interest in terms of the complementary conditional probability
and two marginal probabilities. Note that, in our example, the latter are eas-
ily available from global statistics. Consequently, the diagnostic conditional
probability P (C|G) can be computed without having to be determined ex-
plicitly.

Now, the objective of inference is to learn or infer these probabilities from
a set of training data, D, where the training data result from a series of
observations or measurements. Suppose you toss a coin or a thumbnail. There
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Heads Tails

Probability θ 1−θ

Data

N tosses, k observations of "heads" 0 0.5 1

Fig. 1.2. Thumbnail example. Left: To estimate the parameter θ, the probability
of a thumbnail showing heads, an experiment is carried out, which consists of a
series of thumbnail tosses. Right: The graph shows the likelihood for the thumbnail
problem, given by (1.5), as a function of θ, for a true value of θ = 0.5. Note that
the function has its maximum at the true value. Adapted from [6], by permission of
Cambridge University Press.

are two possible outcomes: heads (1) or tails (0). Let θ be the probability of
the coin or thumbnail to show heads. We would like to infer this parameter
from an experiment, which consists of a series of thumbnail (or coin) tosses,
as shown in Figure 1.2. We also would like to estimate the uncertainty of our
estimate. In what follows, I will use this example to briefly recapitulate the
two different paradigms of statistical inference.

1.2 The Classical or Frequentist Approach

Let D = {y1, . . . , yN} denote the training data, which is a set of observations
or measurements obtained from our experiment. In our example, yt ∈ {0, 1},
and D = {1, 1, 0, 1, 0, 0, 1}, where yt = 0 represents the outcome tails, yt =
1 represents the outcome heads, and t = 1, . . . , N = 7. The probability of
observing the data D in the experiment, P (D|θ), is called the likelihood and
is given by

P (D|θ) =
(
N

k

)
θk(1 − θ)N−k (1.5)

where k is the number of heads observed, and
(
N
k

)
= N !

(N−k)!k! . A plot of this
function is shown in Figure 1.2 for a true value of θ = 0.5. Since the true value
is usually unknown, we would like to infer θ from the experiment, that is, we
would like to find the “best” estimate θ̂(D) most supported by the data. A
standard approach is to choose the value of θ that maximizes the likelihood
(1.5). This so-called maximum likelihood (ML) estimate satisfies several op-
timality criteria: it is consistent and asymptotically unbiased with minimum
estimation uncertainty; see, for instance, [1] and [5]. Note, however, that the
unbiasedness of the ML estimate is an asymptotic result, which is occasionally
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θ̂θ Data

Data
1

θ̂

θ̂

θ̂

....
θ

Data
2

1

Data
M

2

M

Fig. 1.3. The frequentist paradigm. Left: Data are generated by some process
with true, but unknown parameters θ. The parameters are estimated from the data
with maximum likelihood, leading to the estimate θ̂. This estimate is a function of
the data, which themselves are subject to random variation. Right: When the data-
generating process is repeated M times, we obtain an ensemble of M identically and
independently distributed data sets. Repeating the estimation on each of these data
sets gives an ensemble of estimates θ̂1, . . . , θ̂M , from which the intrinsic estimation
uncertainty can be determined.

severely violated for small sample sizes. Figure 1.2, right, shows that for the
thumbnail problem, the likelihood has its maximum at the true value of θ.
To obtain the ML estimate analytically, we take a log transformation, which
simplifies the mathematical derivations considerably and does not, due to its
strict monotonicity, affect the location of the maximum. Define C = log

(
N
k

)
,

which is a constant independent of the parameter θ. Setting the derivative of
the log likelihood to zero gives:

logP (D|θ) = k log θ + (N − k) log(1 − θ) + C (1.6)
d

dθ
logP (D|θ) =

k

θ
− N − k

1 − θ
= 0 (1.7)

which results in the following intuitively plausible maximum likelihood esti-
mate:

θ̂ =
k

N
(1.8)

Hence the maximum likelihood estimate for θ, the probability of observing
heads, is given by the relative frequency of the occurrence of heads.

Now, the number of observed heads, k, is a random variable, which is
susceptible to statistical fluctuations. These fluctuations imply that the max-
imum likelihood estimate itself is subject to statistical fluctuations, and our
next objective is to estimate the ensuing estimation uncertainty. Figure 1.3
illustrates the philosophical concept on which the classical or frequentist ap-
proach to this problem is based. The data, D, are generated by some unknown
process of interest. From these data, we want to estimate the parameters θ of
a model for the data-generating process. Since the data D are usually subject
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0 0.5 1
N=2

0 0.5 1
N=10

0 0.5 1
N=100

0 0.5 1
N=1000

Fig. 1.4. Distribution of the parameter estimate. The figures show, for various
sample sizes N , the distribution of the parameter estimate θ̂. In all samples, the
numbers of heads and tails were the same. Consequently, all distributions have their
maximum at θ̂ = 0.5. Note, however, how the estimation uncertainty decreases with
increasing sample size.

to random fluctuations and intrinsic uncertainty, repeating the whole process
of data collection and parameter estimation under identical conditions will
most likely lead to slightly different results. Thus, if we are able to repeat
the data-generating processes several times, we will get a distribution of pa-
rameter estimates θ̂, from which we can infer the intrinsic uncertainty of the
estimation process.

Unfortunately, repeating the data-generating process is usually impossible.
For instance, the diversity of contemporary life on Earth is the consequence
of the intrinsically stochastic process of evolution. Methods of phylogenetic
inference, to be discussed later in Chapter 4, have to take this stochasticity
into account and estimate the intrinsic estimation uncertainty. Obviously, we
cannot set back the clock by 4.5 billion years and restart the course of evolu-
tion, starting from the first living cell in the primordial ocean. Consequently,
the frequentist approach of Figure 1.3 has to be interpreted in terms of hypo-
thetical parallel universes, and the estimation of the estimation uncertainty is
based on hypothetical data that could have been generated by the underlying
data-generating process, but, in fact, happened not to be.
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θ
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Fig. 1.5. Bootstrapping. From the observed data set of size N , B bootstrap
replicas are generated by drawing N data points with replacement from the original
data. The parameter estimation is repeated on each bootstrap replica, which leads to
an ensemble of bootstrap parameters θ̃i, i = {1, . . . , B}. If N and B are sufficiently
large, the distribution of the bootstrap parameters θ̃i is a good approximation to
the distribution that would result from the conceptual, but practically intractable
process of Figure 1.3.

Now, in a simple situation like the thumbnail example, this limitation does
not pose any problems. Here, we can easily compute the distribution of the
parameter estimate θ̂ without actually having to repeat the experiment (where
an experiment is a batch of N thumbnail tosses). To see this, note that the
probability of k observations of heads in a sample of size N is given by

P (k) = θk (1 − θ)N−k

(
N

k

)
(1.9)

Substituting k = Nθ̂, by equation (1.8), leads to

P (θ̂) = θNθ̂ (1 − θ)N(1−θ̂)
(
N

Nθ̂

)
C (1.10)

where the constant C results from the transformation of the discrete distri-
bution P (k) into the continuous distribution P (θ̂) (see [2], Section 8.4). The
distribution (1.10) is plotted, for various sample sizes N , in Figure 1.4, and
the graphs reflect the obvious fact that the intrinsic uncertainty decreases
with increasing sample size N .

In more complicated situations, analytic solutions, like (1.10), are usually
not available. In this case, one either has to make simplifying approximations,
which are often not particularly satisfactory, or resort to the computational
procedure of bootstrapping [3], which is illustrated in Figure 1.5. In fact, boot-
strapping tries to approximate the conceptual, but usually unrealizable sce-
nario of Figure 1.3 by drawing samples with replacement from the original



1 A Leisurely Look at Statistical Inference 9

0 0.5 1
True

0 0.5 1
100 Bootstrap samples

0 0.5 1
1000 Bootstrap samples

0 0.5 1
10,000 Bootstrap samples

Fig. 1.6. Bootstrap example: thumbnail. The figures show the true distribution
of the parameter estimate θ̂ (top, left), and three distributions obtained with boot-
strapping, using different bootstrap sample sizes. Top right: 100, bottom left: 1000,
bottom right: 10,000. The graphs were obtained with a Gaussian kernel estimator.

data. This procedure generates a synthetic set of replicated data sets, which
are used as surrogates for the data sets that would be obtained if the data-
generating process was repeated. An estimation of the parameters from each
bootstrap replica gives a distribution of parameter estimates, which for suffi-
ciently large data size N and bootstrap sample size B is a good approximation
to the true distribution, that is, the distribution one would obtain from the
hypothetical process of Figure 1.3. As an illustration, Figure 1.6 shows the
distribution P (θ̂) obtained for the thumbnail example, N = 100, for three
different bootstrap sample sizes: B = 100, 1000 and 10,000. Even for a rel-
atively small bootstrap sample size of B = 100 the resulting distribution is
qualitatively correct. Increasing the bootstrap sample size to B = 10,000, the
difference between the true and the bootstrap distribution becomes negligible.
More details and a good introduction to the bootstrap method can be found
in [4]. Applications of bootstrapping can be found in Section 4.4.6, and in
Chapter 9, especially Section 9.4.
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Fig. 1.7. Comparison between the frequentist and Bayesian paradigms.
Left: In the frequentist approach, the entity of interest, θ, is a parameter and not
a random variable. The estimation of the estimation uncertainty is based on the
concept of hypothetical parallel statistical universes, that is, on data sets that could
have been observed, but happened not to be. Right: In the Bayesian approach, the
entity of interest, θ, is treated as a random variable. This implies that the estimation
of the estimation uncertainty can be based on a single data set: the one observed in
the experiment.

1.3 The Bayesian Approach

In the frequentist approach, probabilities are interpreted in terms of repeat-
able experiments. More precisely, a probability is defined as the limiting case
of an experimentally observed frequency, which is justified by the law of large
numbers (see, for instance, [9]). This definition implies that the entities of
interest, like θ in the thumbnail example, are parameters rather than ran-
dom variables. For estimating the uncertainty of estimation, the frequentist
approach is based on hypothetical parallel statistical universes, as discussed
above. The Bayesian approach overcomes this rather cumbersome concept by
interpreting all entities of interest as random variables. This interpretation
is impossible within the frequentist framework. Assume that, in the previous
example, you were given an oddly deshaped thumbnail. Then θ is associated
with the physical properties of this particular thumbnail under investigation,
whose properties – given its odd shape – are fixed and unique. In phyloge-
netics, discussed in Chapter 4, θ is related to a sequence of mutation and
speciation events during evolution. Obviously, this process is also unique and
non-repeatable. In both examples, θ can not be treated as a random variable
within the frequentist paradigm because no probability can be obtained for
it. Consequently, the Bayesian approach needs to extend the frequentist prob-
ability concept and introduce a generalized definition that applies to unique
entities and non-repeatable events. This extended probability concept encom-
passes the notion of subjective uncertainty, which represents a person’s prior
belief about an event. Once this definition has been accepted, the mathe-
matical procedure is straightforward in that the uncertainty of the entity of
interest θ, given the data D, can immediately be obtained from Bayes’ rule:
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Fig. 1.8. Beta distribution. The conjugate prior for the parameter θ of a binomial
distribution is a beta distribution, which depends on two hyperparameters, α and
β. The mean of the distribution is µ = α

α+β
. The subfigures show plots of the

distribution for different values of µ, indicated at the top of each subfigure, when
β = 2 is fixed.

P (θ|D) ∝ P (D|θ)P (θ) (1.11)

where P (D|θ) is the likelihood, and P (θ) is the prior probability of θ before
any data have been observed. This latter term is related to the very notion
of subjective uncertainty, which is an immediate consequence of the extended
probability concept and inextricably entwined with the Bayesian framework.
Now, equation (1.11) has the advantage that the estimation of uncertainty is
solely based on the actually observed data D and no longer needs to resort to
any unobserved, hypothetical data. An illustration is given in Figure 1.7.

To demonstrate the Bayesian approach on an example, let us revisit the
thumbnail problem. We want to apply (1.11) to compute the posterior proba-
bility P (θ|D) from the likelihood P (D|θ), given by (1.5), and the prior proba-
bility, P (θ). It is mathematically convenient to choose a functional form that
is invariant with respect to the transformation implied by (1.11), that is, for
which the prior and the posterior probability are in the same function fam-
ily. Such a prior is called conjugate . The conjugate prior for the thumbnail
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example, that is, for the parameter θ ∈ [0, 1] of a binomial distribution, is a
beta distribution:

B(θ|α, β) =
Γ (α+ β)
Γ (α)Γ (β)

θα−1(1 − θ)β−1 if 0 ≤ θ ≤ 1 (1.12)

where

Γ (x) =

∞∫
0

exp(−t)tx−1dt (1.13)

and the term with the Γ (.) functions in (1.12) results from the normalization.
For θ �∈ [0, 1], B(θ|α, β) = 0. The conjugacy is easy to prove. Setting P (θ) =
B(θ|α, β) and inserting both this expression as well as the likelihood of (1.5)
into (1.11) gives:

P (θ|D) ∝ θk+α−1(1 − θ)N−k+β−1 (1.14)

which, on normalization, leads to

P (θ|D) = B(θ|k + α,N − k + β) (1.15)

The beta distribution (1.12) depends on the so-called hyperparameters α and
β. For α = β = 1, the beta distribution is equal to the uniform distribution
over the unit interval, that is, B(θ|1, 1) = 1 for θ ∈ [0, 1], and 0 otherwise.
Some other forms of the beta distribution, for different settings of the hyper-
parameters, are shown in Figure 1.8.

Figure 1.9 shows several plots of the posterior probability P (θ|D) for a
constant prior, P (θ) = B(θ|1, 1), and for data sets of different size N . As in
Figure 1.4, the uncertainty decreases with increasing sample size N , which
reflects the obvious fact that our trust in the estimation increases as more
training data become available. Since no prior information is used, the graphs
in Figures 1.4 and 1.9 are similar. Note that a uniform prior is appropriate
in the absence of any domain knowledge. If domain knowledge about the
system of interest is available, for instance, about the physical properties of
differently shaped thumbnails, it can and should be included in the inference
process by choosing a more informative prior. We discuss this in more detail
in the following section.

1.4 Comparison

An obvious difference between the frequentist and Bayesian approaches is the
fact that the latter includes subjective prior knowledge in the form of a prior
probability distribution on the parameters of interest. Recall from (1.11) that
the posterior probability is the product of the prior and the likelihood. While
the first term is independent of the sample size N , the second term increases
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N=100
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Fig. 1.9. Posterior probability of the thumbnail parameter. The subfigures
show, for various values of the sample size N , the posterior distribution P (θ|D),
assuming a constant prior on θ. In all data sets D, the numbers of heads and tails
are the same, which is reflected by the fact that the mode of the posterior distribution
is always at θ = 0.5. Note, however, how the uncertainty decreases with increasing
sample size. Compare with Figure 1.4.

with N . Consequently, for a sufficiently large data set D and a reasonable
prior (meaning a prior whose support covers the entire parameter domain),
the weight of the likelihood term is considerably higher than that of the prior,
and variations of the latter have only a marginal influence on the posterior
probability. This implies that for N → ∞, the maximum a posteriori (MAP)
estimate,

θMAP = argmaxθ{P (θ|D)} (1.16)

and the maximum likelihood (ML) estimate

θML = argmaxθ{P (D|θ)} (1.17)

become identical. For small data sets, on the other hand, the prior can make
a substantial difference. In this case, the weight of the likelihood term is rel-
atively small, which comes with a concomitant uncertainty in the inference
scheme, as illustrated in Figures 1.4 and 1.9. This inherent uncertainty sug-
gests that including prior domain knowledge is a reasonable approach, as it
may partially compensate for the lack of information in the data. Take, again,
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the thumbnail of the previous example, and suppose that you are only allowed
to toss it a few times. You may, however, consult a theoretical physicist who
can derive the torque acting on the falling thumbnail from its shape. Obvi-
ously, you would be foolish not to use this prior knowledge, since any inference
based on your data alone is inherently unreliable. If, on the other hand, you
are allowed to toss the thumbnail arbitrarily often, the data will “speak for
itself”, and including any prior knowledge no longer makes a difference to
the prediction. Similar approaches can be found in ridge regression and neu-
ral networks. Here, our prior knowledge is that most real-world functions are
relatively smooth. Expressing this mathematically in the form of a prior and
applying (1.11) leads to a penalty term, by which the MAP estimate (1.16)
differs from the ML estimate (1.17). For further details, see, for instance, [7].

The main difference between the frequentist and the Bayesian approach
is the different interpretation of θ. Recall from the previous discussion that
the frequentist statistician interprets θ as a parameter and aims to estimate
it with a point estimate, typically adopting the maximum likelihood (1.17)
approach. The Bayesian statistician, on the other hand, interprets θ as a
random variable and tries to infer its whole posterior distribution, P (θ|D). In
fact, computing the MAP estimate (1.16), although widely applied in machine
learning, is not in the Bayesian spirit in that it only aims to obtain a point
estimate rather than the entire posterior distribution. (As an aside, note that
the MAP estimate, as opposed to the ML estimate, is not invariant with
respect to non-linear coordinate transformations and therefore, in fact, not
particularly meaningful as a summary of the distribution.) Although an exact
derivation of P (θ|D) is usually impossible in complex inference problems,
powerful computational approximations, based on Markov chain Monte Carlo,
are available and will be discussed in Section 2.2.2.

Take, for instance, the problem of learning the weights in a neural network.
By applying the standard backpropagation algorithm, discussed in Chapter 3,
we get a point estimate in the high-dimensional space of weight vectors. This
point estimate is usually an approximation to the proper maximum likelihood
estimate or, more precisely, a local maximum of the likelihood surface. Now,
it is well known that, for sparse data, the method of maximum likelihood is
susceptible to over-fitting. This is because, for sparse data, there is substantial
information in the curvature and (possibly) multimodality of the likelihood
landscape, which is not captured by a point estimate of the parameters. The
Bayesian approach, on the other hand, samples the network weights from the
posterior probability distribution with MCMC and thereby captures much
more information about this landscape. As demonstrated in [8], this leads
to a considerable improvement in the generalization performance, and over-
fitting is avoided even for over-complex network architectures.

The previous comparison is not entirely fair in that the frequentist ap-
proach has only been applied partially. Recall from Figure 1.3 that the point
estimate of the parameters has to be followed up by an estimation of its dis-
tribution. Again, this estimation is usually analytically intractable, and the
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frequentist equivalent to MCMC is bootstrapping, illustrated in Figure 1.5.
This approach requires running the parameter learning algorithm on hun-
dreds of bootstrap replicas of the training data. Unfortunately, this procedure
is usually prohibitively computationally expensive – much more expensive
than MCMC – and it has therefore hardly been applied to complex inference
problems. The upshot is that the full-blown frequentist approach is practically
not viable in many machine-learning applications, whereas an incomplete fre-
quentist approach without the bootstrapping step is inherently inferior to the
Bayesian approach. We will revisit this important point later, in Section 4.4.7
and Figure 4.35.
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Summary. Bayesian networks are a combination of probability theory and graph
theory. Graph theory provides a framework to represent complex structures of
highly-interacting sets of variables. Probability theory provides a method to in-
fer these structures from observations or measurements in the presence of noise and
uncertainty. Many problems in computational molecular biology and bioinformatics,
like sequence alignment, molecular evolution, and genetic networks, can be treated
as particular instances of the general problem of learning Bayesian networks from
data. This chapter provides a brief introduction, in preparation for later chapters of
this book.

2.1 Introduction to Bayesian Networks

Bayesian networks (BNs) are interpretable and flexible models for represent-
ing probabilistic relationships between multiple interacting entities. At a qual-
itative level, the structure of a Bayesian network describes the relationships
between these entities in the form of conditional independence relations. At a
quantitative level, (local) relationships between the interacting entities are de-
scribed by (conditional) probability distributions. Formally, a BN is defined by
a graphical structure, M, a family of (conditional) probability distributions,
F , and their parameters, q, which together specify a joint distribution over a
set of random variables of interest. These three components are discussed in
the following two subsections.

2.1.1 The Structure of a Bayesian Network

The graphical structure M of a BN consists of a set of nodes or vertices,
V, and a set of directed edges or arcs, E : M = (V, E). The nodes represent
random variables, while the edges indicate conditional dependence relations.
If we have a directed edge from node A to node B, then A is called the parent
of B, and B is called the child of A. Take, as an example, Figure 2.1, where
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B C

A

D

E

Fig. 2.1. Example of a Bayesian network. Nodes represent
random variables, edges indicate conditional dependence relations.
The joint probability P (A, B, C, D, E) factorizes into the product
P (A)P (B|A)P (C|A)P (D|B, C)P (E|D). Reprinted from [23], by permission of
Cambridge University Press.

we have the set of vertices V = {A,B,C,D,E}, and the set of edges E =
{(A,B), (A,C), (B,D), (C,D), (D,E)}. Node A does not have any parents.
Nodes B and C are the children of node A, and the parents of node D. Node
D itself has one child: node E. The graphical structure has to take the form
of a directed acyclic graph or DAG, which is characterized by the absence of
directed cycles, that is, cycles where all the arcs point in the same direction.
A BN is characterized by a simple and unique rule for expanding the joint
probability in terms of simpler conditional probabilities. Let X1, X2, . . . , Xn

be a set of random variables represented by the nodes i ∈ {1, . . . , n} in the
graph, define pa[i] to be the parents of node i, and let Xpa[i] represent the set
of random variables associated with pa[i]. Then

P (X1, X2, . . . , Xn) =
n∏

i=1

P (Xi|Xpa[i]) (2.1)
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A
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B A

C

B A

C

B

Fig. 2.2. Three elementary BNs. The BNs on the left and in the middle have
equivalent structures: A and B are conditionally independent given C. The BN on
the right belongs to a different equivalence class in that conditioning on C causes,
in general, a dependence between A and B.

As an example, applying (2.1) to the BN of Figure 2.1, we obtain the factor-
ization

P (A,B,C,D,E) = P (A)P (B|A)P (C|A)P (D|B,C)P (E|D) (2.2)

An equivalent way of expressing these independence relations is based on
the concept of the Markov blanket, which is the set of children, parents, and
coparents (that is, other parents of the children) of a given node. This set
shields the selected node from the remaining nodes in the graph. So, if MB[i]
is the Markov blanket of node i, and XMB[i] is the set of random variables
associated with MB[i], then

P (Xk|X1, . . . , Xk−1, Xk+1, . . . , Xn) = P (Xk|XMB[i]) (2.3)

Applying (2.3) to Figure 2.1 gives:

P (A|B,C,D,E) = P (A|B,C) (2.4)
P (B|A,C,D,E) = P (B|A,C,D) (2.5)
P (C|A,B,D,E) = P (C|A,B,D) (2.6)
P (D|A,B,C,E) = P (D|B,C,E) (2.7)
P (E|A,B,C,D) = P (E|D) (2.8)

To illustrate the equivalence of the factorization rule (2.1) and the notion of
the Markov blanket (2.3), let us derive, for instance, (2.6) from (2.2):

P (C|A,B,D,E) =
P (A,B,C,D,E)
P (A,B,D,E)

=
P (A)P (B|A)P (C|A)P (D|B,C)P (E|D)∑
C P (A)P (B|A)P (C|A)P (D|B,C)P (E|D)

=
P (A)P (E|D)P (B|A)P (C|A)P (D|B,C)

P (A)P (E|D)P (B|A)
∑

C P (C|A)P (D|B,C)

=
P (C|A)P (D|B,C)∑
C P (C|A)P (D|B,C)
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StorksBabies

Environment

Fig. 2.3. Storks and babies. The numbers of stork sightings and new-born babies
depend on common environmental factors. Without the knowledge of these environ-
mental factors, the number of new-born babies seems to depend on the number
of stork sightings, but conditional on the environmental factors, both events are
independent.

where we have applied (2.2) for the factorization of the joint probability
P (A,B,C,D,E). Note that the last term does not depend on E, which proves
(2.6) true. For a general proof of the equivalence of (2.1) and (2.3), see [24]
and [34].

Consider the BN on the left of Figure 2.2. Expanding the joint probability
according to (2.1) gives

P (A,B,C) = P (A|C)P (B|C)P (C) (2.9)

For the conditional probability P (A,B|C) we thus obtain:

P (A,B|C) =
P (A,B,C)
P (C)

= P (A|C)P (B|C) (2.10)

Hence, A and B are conditionally independent given C. Note, however, that
this independence does not carry over to the marginal probabilities, and that
in general

P (A,B) �= P (A)P (B) (2.11)

As an example, consider the BN in Figure 2.3. The number of new-born ba-
bies has been found to depend on the number of stork sightings [39], which, in
former times, even led to the erroneous conclusion that storks deliver babies.
In fact, both events depend on several environmental factors. In an urban
environment, families tend to be smaller as a consequence of changed liv-
ing conditions, while storks are rarer due to the destruction of their natural
habitat. The introduction of contraceptives has led to a decrease of the num-
ber of new-born babies, but their release into the environment also adversely
affected the fecundity of storks. So while, without the knowledge of these en-
vironmental factors, the number of new-born babies depends on the number
of stork sightings, conditionally on the environmental factors both events are
independent.

The situation is similar for the BN in the middle of Figure 2.2. Expanding
the joint probability by application of the factorization rule (2.1) gives:
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Cloudy Grass wetRain

Fig. 2.4. Clouds and rain. When no information on the rain is available, the
wetness of the grass depends on the clouds: the more clouds are in the sky, the
more likely the grass is found to be wet. When information on the rain is available,
information on the clouds is no longer relevant for predicting the state of wetness
of the grass: conditional on the rain, the wetness of the grass is independent of the
clouds.

P (A,B,C) = P (B|C)P (C|A)P (A) (2.12)

For the conditional probability we thus obtain:

P (A,B|C) =
P (A,B,C)
P (C)

= P (B|C)
P (C|A)P (A)

P (C)
= P (B|C)P (A|C)

(2.13)
where we have used Bayes’ rule, (1.4). So again we find that A and B are
conditionally independent given C, while, in general, this does not hold for
the marginal probabilities; see (2.11).

An example is shown in Figure 2.4. Clouds may cause rain, and rain makes
grass wet. So if information on precipitation is unavailable, that is, if the node
“rain” in Figure 2.4 is hidden, the state of wetness of the grass depends on the
clouds: an increased cloudiness, obviously, increases the likelihood for the grass
to be wet. However, if information on precipitation is available, meaning that
the node “rain” in Figure 2.4 is observed, the wetness of the grass becomes
independent of the clouds. If it rains, the grass gets wet no matter how cloudy
it is. Conversely, if it does not rain, the grass stays dry irrespective of the
state of cloudiness.

The situation is different for the BN on the right of Figure 2.2. Expanding
the joint probability P (A,B,C) according to (2.1) gives:

P (A,B,C) = P (C|A,B)P (A)P (B) (2.14)

Marginalizing over C leads to

P (A,B) =
∑
C

P (A,B,C) = P (A)P (B) (2.15)

where we have used the fact that a probability function is normalized:∑
C P (C|A,B) = 1. We thus see that, as opposed to the previous two ex-

amples, A and B are marginally independent. However, it can not be shown,
in general, that the same holds for the conditional probabilities, that is, dif-
ferent from the previous examples we have

P (A,B|C) �= P (A|C)P (B|C) (2.16)
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Engine

FuelBattery

Fig. 2.5. Fuel and battery. Nationwide, the unfortunate events of having a flat
car battery and running out of fuel are independent. This independence no longer
holds when an engine failure is observed in a particular car, since establishing one
event as the cause of this failure explains away the other alternative.

An illustration is given in Figure 2.5. Suppose you cannot start your car
engine in the morning. Two possible reasons for this failure are: (1) a flat
battery, B, or (2) an empty fuel tank, F . Nationwide, these two unfortunate
events can be assumed to be independent: P (B,F ) = P (B)P (F ). However,
this independence no longer holds when you observe an engine failure, E, in
your particular car: P (B,F |E) �= P (B|E)P (F |E). Obviously, on finding the
fuel tank empty, there is little need to check the voltage of the battery: the
empty tank already accounts for the engine failure and thus explains away
any problems associated with the battery.

Figure 2.6 gives an overview of the independence relations we have en-
countered in the previous examples. The power of Bayesian networks is that
we can deduce, in much more complicated situations, these independence rela-
tions between random variables from the network structure without having to
resort to algebraic computations. This is based on the concept of d-separation,
which is formally defined as follows (see [34], and references in [23]):

• Let A and B be two nodes, and let Z be a set of nodes.
• A path from A to B is blocked with respect to Z

– if there is a node C ∈ Z without converging edges, that is, which is
head-to-tail or tail-to-tail with respect to the path, or

– if two edges on the path converge on a node C, that is, the configuration
of edges is head-to-head, and neither C nor any of its descendents are
in Z.

• A and B are d-separated by Z if and only if all possible paths between
them are blocked.

• If A and B are d-separated by Z, then A is conditionally independent of
B given Z, symbolically written as A⊥B|Z.

An illustration is given in Figure 2.7. As a first example, consider the
elementary BNs of Figure 2.8. Similar to the preceding examples, we want
to decide whether A is independent of B conditional on those other nodes
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BABABA

Fig. 2.6. Overview of elementary BN independence relations. A⊥B means
that A and B are marginally independent: P (A, B) = P (A)P (B). A⊥B|C means
that A and B are conditionally independent: P (A, B|C) = P (A|C)P (B|C). The
figure summarizes the independence relations of Figures 2.3–2.5, which can easily
be derived with the method of d-separation, illustrated in Figure 2.7. A tick indicates
that an independence relation holds true, whereas a cross indicates that it is violated.

Unobserved node Observed node

Blocked paths

Open paths

Fig. 2.7. Illustration of d-separation when the separating set Z is the set
of observed nodes. Filled circles represent observed nodes, empty circles indicate
hidden states (for which no data are available).
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A B

Fig. 2.8. Illustration of d-separation in elementary BN structures. Filled
circles represent observed nodes, empty circles represent hidden nodes (for which
no data are available). The column on the right of each subfigure indicates whether
A and B are independent given Z, where Z is the set of observed nodes. Compare
with Figure 2.6.

A B A B

No

A B A B

Yes

A B A B

No

Fig. 2.9. Illustration of d-separation in a Bayesian network. Filled circles
represent observed nodes, empty circles represent hidden nodes (for which no data
are available). The legend on the right of each network indicates whether nodes A
and B are independent given Z, where Z is the set of observed nodes. Adapted from
[23], by permission of Cambridge University Press.

in the graph that have been observed. It can easily be seen that testing for
d-separation leads to the same results as before, but without having to go
through the (albeit very simple) algebra of equations (2.10), (2.13), and (2.15).
This is useful in more complex networks, where the algebra is more involved.

Take, as a second example, Figure 2.9. Again, we are interested in whether
A is independent of B given the set of observed nodes, Z. There are two paths
connecting nodes A and B. If no other node is observed (Figure 2.9, left),
the upper path is not blocked, because the edges do not converge and the
separating node is not observed (that is, it is not in Z). Consequently, A and
B are not d-separated, and A and B are not conditionally independent given
Z, symbolically written as A �⊥B|Z. On observing the top node (Figure 2.9,
middle), the upper path gets blocked. The lower path is also blocked, because
the edges converge on the separating node, and neither the separating node
itself nor its descendant is observed. Consequently, A and B are d-separated,
and A⊥B|Z. This changes when the descendant of the separating node is
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observed (Figure 2.9, right), which opens the lower path and thus destroys
the d-separation between A and B, implying that A�⊥B|Z.

Here, we have used the observation of nodes as an obvious criterion for
membership in the separating set Z. However, other membership criteria can
also be employed. For instance, when trying to infer genetic networks from
microarray experiments, described in Chapters 8 and 9, we are particularly
interested in the up- and down-regulation of gene expression levels. So rather
than asking whether two genes A and B are independent given a set Z of
measured mediating genes, we could ask whether A and B are independent
conditional on a set Z ′ of up- or down-regulated genes. We will return to this
issue later, in Chapter 8.

2.1.2 The Parameters of a Bayesian Network

Recall that a BN is defined by a graphical structure, M, a family of (condi-
tional) probability distributions, F , and their parameters, q. The structure M
defines the independence relations between the interacting random variables,
as discussed in the previous subsection and expressed in the factorization rule
(2.1). The family F defines the functional form of the (conditional) probabili-
ties in the expansion (2.1) and defines, for instance, whether these probabilities
are Gaussian, multinomial, etc. To fully specify the conditional probabilities
associated with the edges we need certain parameters, for instance, the mean
and variance of a Gaussian, etc. In what follows, the function family F will be
assumed to be fixed and known, chosen according to some criteria discussed
in Section 8.2. Consequently, the probability distribution (2.1) is completely
defined by the network structure, M, henceforth also referred to as the model,
and the vector of network parameters, q. An illustration is given in Figure 2.10.
Note that a parameter vector q is associated with its respective network struc-
ture M, with structures of different degrees of connectivity having associated
parameter vectors of different dimension. Consequently, it would be more ac-
curate to write qM instead of q. For the sake of simplicity of the notation,
however, the subscript is dropped.

2.2 Learning Bayesian Networks from Complete Data

2.2.1 The Basic Learning Paradigm

Our next goal is to learn a Bayesian network from a set of training data,
D. These data are assumed to be complete, meaning that observations or
measurements are available on all nodes in the network. The case of incomplete
data will be treated later, in Section 2.3.

Recall from the discussion in Sections 1.2 and 1.3 that there are two prin-
cipled inference paradigms in machine learning and statistics. Bayesian net-
works are not necessarily related to the concept of Bayesian learning, and
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Fig. 2.10. Structure and parameters of a Bayesian network. Top left: A
set of random variables for which we want to learn the Bayesian network, which
is defined by its structure and its parameters. Top right: The structure M defines
the set of edges between the nodes, which indicate the interactions between the
entities of interest. Bottom left: The parameters q specify the functional form of
the conditional probabilities associated with the edges, that is, they determine the
nature of the interactions between the objects and indicate, for instance, whether an
influence is strong (thick arrow) or weak (thin arrow) and whether an interaction is of
an activating (solid line) or inhibitory (dashed line) nature. Note that the structure
of the graph must satisfy the acyclicity constraint. A network with feedback loops,
as shown in the bottom right, is not a Bayesian network.

learning Bayesian networks from data can, in fact, follow either of the two
approaches discussed in Chapter 1. However, as pointed out in Section 1.3,
and discussed in more detail in Section 4.4.7, a proper frequentist approach
is often prohibitively computationally expensive. This chapter will therefore
focus on the Bayesian approach.

Note from the discussion in the previous subsection that learning is a two-
stage process, as illustrated in Figure 2.10. Given the data, we first want to find
the posterior distribution of network structures M and, from this distribution,
the structure M∗ that is most supported by the data:

M∗ = argmaxM
{
P (M|D)

}
(2.17)

Then, given the best structure M∗ and the data, we want to find the posterior
distribution of the parameters q, and the best parameters:
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Posterior: P(q|D,M)

Prior:
P(q|M)

Fig. 2.11. Marginal likelihood and Occam factor. The figure shows a one-
dimensional illustration of equation (2.20) to demonstrate the regularization effect
of integrating out the network parameters. See text for details. Adapted from [3],
by permission of Oxford University Press.

q∗ = argmaxq

{
P (q|M∗,D)

}
(2.18)

Applying Bayes’ rule (1.4) to (2.17) gives:

P (M|D) ∝ P (D|M)P (M) (2.19)

where the marginal likelihood P (D|M) implies an integration over the whole
parameter space:

P (D|M) =
∫
P (D|q,M)P (q|M)dq (2.20)

Note that this marginal likelihood includes an inherent penalty for unnec-
essary complexity. To see this simply, consider the one-dimensional case of
Figure 2.11. Assume that the posterior probability P (q|D,M) is unimodal
and peaked around its mode, q̂, with width �qpost. Also, assume that the
prior can be approximated by a distribution that is uniform over some large
interval �qprior. With this approximation, (2.20) becomes:

P (D|M) = P (D|q̂,M)
�qpost

�qprior
(2.21)

The first term on the right-hand side, P (D|q̂,M), is the likelihood, evaluated
at the maximum likelihood parameters (note that for a uniform prior P (q|M),
the MAP estimate q̂ is equal to the maximum likelihood estimate). Obviously,
the likelihood is maximized for a complex structure with many edges, which
is bound to over-fit to the observed data D. The second term on the right-
hand side, �qpost/ � qprior, referred to as the Occam factor in [3] and [26],
measures the ratio of the posterior and prior accessible volumes in parameter
space. For an over-complex model, this ratio will be small. The structure
M with the largest marginal likelihood P (D|M) will be determined by the
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Number of nodes 2 4 6 8 10
Number of topologies 3 543 3.7 × 106 7.8 × 1011 4.2 × 1018

Table 2.1. Number of Bayesian network topologies as a function of the number of
nodes in the graph. From [32].

trade-off between having to fit the data well, so as to get a large likelihood
P (D|q̂,M), and the need to do so with a low model complexity, so as to get
a large Occam factor. Consequently, even for a flat prior P (M), the posterior
probability (2.19) includes a penalty for unnecessary complexity, which guards
against over-fitting.

This chapter will not discuss the choice of prior. It is just noted that under
certain regularity conditions, the parameter priors P (q|M) for all structures
M can be specified using a single prior network, together with a “virtual”
data count that describes the confidence in that prior [17].

Now, it can be shown that when certain regularity conditions for the prior
P (q|M) and the likelihood P (D|q,M) are satisfied and when the data are
complete, then the integral in (2.20) becomes analytically tractable [16]. Un-
fortunately, this closed-form solution to (2.20) does not imply a straightfor-
ward solution to (2.17): the number of network structures increases super-
exponentially with the number of nodes, as demonstrated in Table 2.1, and
the optimization problem is known to be NP-hard [6]. We therefore have to
resort to heuristic optimization methods, like hill-climbing or simulated an-
nealing [22]. A heuristic acceleration of these procedures, which restricts the
search in structure space to the most “relevant” regions, is discussed in [12].

2.2.2 Markov Chain Monte Carlo (MCMC)

In many situations, there is reason to question the appropriateness of the
learning paradigm based on (2.17) altogether. For example, when inferring
genetic network from microarray data, as discussed in Chapters 8 and 9, the
data D are usually sparse, which implies that the posterior distribution over
structures, P (M|D), is likely to be diffuse. Consequently, P (M|D) will not be
adequately represented by a single structure M∗, as illustrated in Figure 8.5
on page 245, and it is more appropriate to sample networks from the posterior
probability

P (M|D) =
P (D|M)P (M)

P (D)
=

P (D|M)P (M)∑
M′ P (D|M′)P (M′)

(2.22)

so as to obtain a representative sample of high-scoring network structures,
that is, structures that offer a good explanation of the data. Again, a direct
approach is impossible due to the denominator in (2.22), which in itself is a
sum over the whole model space and, consequently, intractable. A solution to
this problem, proposed by Metropolis et al. [30] and Hastings [15], reviewed,
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Fig. 2.12. Illustration of a Markov chain. Pn(θk) is the probability distribution
in the nth step of the algorithm, where θk, in general, can be a structure, Mk, a
parameter vector, qk, or a combination of both, (Mk,qk). In the current application,
we are only interested in the former, but applications of the other two cases will be
discussed in later chapters of this book. The probability Pn(θk) evolves in time
by application of the Markov transition matrix T, which, in a single application,
transforms Pn(θk) into Pn+1(θk). If the Markov chain is ergodic, Pn(θk) will converge
to the equilibrium distribution P∞(θk), which is unique and independent of the
initial conditions.

for instance, in [4], [13] and [28], and first applied to Bayesian networks by
Madigan and York [29], is to devise a Markov chain

Pn+1(Mi) =
∑

k

T (Mi|Mk)Pn(Mk) (2.23)

that converges in distribution to the posterior probability P (M|D) of (2.22):

Pn(M) n→∞−→ P (M|D) (2.24)

The Markov matrix T in (2.23) is a matrix of transition probabilities, with
T (Mi|Mk) denoting the probability of a transition from model Mk into
model Mi: Mk → Mi. An illustration of (2.23) is given in Figure 2.12.

The important feature of a Markov chain is that, under the fairly weak
condition of ergodicity,1 the distribution Pn(Mk) converges to a stationary
distribution P∞(Mk):

Pn(Mk) n→∞−→ P∞(Mk) (2.25)

This stationary distribution is independent of the initialization of the Markov
chain and uniquely determined by the Markov transition matrix T:
1 A Markov chain is called ergodic if it is aperiodic and irreducible. An irreducible

Markov chain is one in which all states are reachable from all other states. A
sufficient test for aperiodicity is that each state has a “self-loop,” meaning that
the probability that the next state is the same as the current state is non-zero. In
general it is difficult to prove that a Markov chain is ergodic. However, ergodicity
can be assumed to hold in most real-world applications.
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P∞(Mi) =
∑

k

T (Mi|Mk)P∞(Mk) (2.26)

The idea, therefore, is to construct the transition matrix T in such a way that
the resulting Markov chain has the desired posterior probability P (M|D) of
(2.22) as its stationary distribution: P (M|D) = P∞(M). A sufficient condi-
tion for this to hold is the equation of detailed balance:

T (Mk|Mi)
T (Mi|Mk)

=
P (Mk|D)
P (Mi|D)

=
P (D|Mk)P (Mk)
P (D|Mi)P (Mi)

(2.27)

To prove that this holds true, we have to show that for a transition matrix T
satisfying (2.27), the posterior probability P (M|D) of (2.22) is the stationary
distribution and therefore obeys (2.26):∑

k

T (Mi|Mk)P (Mk|D) = P (Mi|D) (2.28)

Now, from (2.27) we have

T (Mk|Mi)P (Mi|D) = T (Mi|Mk)P (Mk|D) (2.29)

and consequently∑
k

T (Mi|Mk)P (Mk|D) =
∑

k

T (Mk|Mi)P (Mi|D)

= P (Mi|D)
∑

k

T (Mk|Mi)

= P (Mi|D) (2.30)

which is identical to (2.28) and thus completes the proof. Note that the last
step in (2.30) follows from the fact that T (Mk|Mi) is a conditional probabil-
ity, which is normalized.

In practically setting up a Markov chain, note that a transition into an-
other structure, Mk → Mi, consists of two parts. First, given Mk, a new
structure is proposed with a proposal probability Q(Mi|Mk). In a second
step, this new structure is then accepted with an acceptance probability
A(Mi|Mk). A transition probability is therefore given by the product of a
proposal and an acceptance probability and can be written as

T (Mk|Mi) = Q(Mk|Mi)A(Mk|Mi) (2.31)

The proposal probabilities Q(Mk|Mi) are defined by the way we design our
moves in the model space (see, for instance, Figure 2.15). From (2.27) and
(2.31), we then obtain the following condition for the acceptance probabilities:

A(Mk|Mi)
A(Mi|Mk)

=
P (D|Mk)P (Mk)Q(Mi|Mk)
P (D|Mi)P (Mi)Q(Mk|Mi)

(2.32)
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for which a sufficient condition is

A(Mk|Mi) = min
{
P (D|Mk)P (Mk)Q(Mi|Mk)
P (D|Mi)P (Mi)Q(Mk|Mi)

, 1
}

(2.33)

To summarize: Accepting new configurations Mk with the probability (2.33)
is a sufficient condition for satisfying the equation of detailed balance (2.27)
which itself (assuming ergodicity) is a sufficient condition for the convergence
of the Markov chain to the desired posterior distribution (2.22). While a
direct computation of the posterior probability (2.22) is intractable due to
the sum in the denominator, the equation of detailed balance (2.27) and
the acceptance criterion (2.33) only depend on the ratio of the posterior
probabilities. Consequently, the intractable denominator cancels out. The
algorithm, thus, can be summarized as follows:

Metropolis–Hastings algorithm

• Start from an initial structure M(0)

• Iterate for n = 1 . . . N
1. Obtain a new structure M(n) from the proposal distribution

Q(M(n)|M(n−1))
2. Accept the new model with probability A(M(n)|M(n−1)), given by

(2.33), otherwise leave the model unchanged: M(n) = M(n−1)

• Discard an initial equilibration or burn-in period to allow the Markov chain
to reach stationarity. For example, discard M1, . . . ,MN/2

• Compute expectation values from the MCMC sample
{MN/2+1, . . . ,MN}:

〈f〉 =
∑
M

f(M)P (M|D) � 2
N

N∑
n=N/2+1

f(Mn)

An illustration is given in Figure 2.13. Note that this algorithm is not re-
stricted to discrete (cardinal) entities, like topologies M, but that it can
equally be applied to continuous entities, like network parameters q. In
this case expectation values are typically given by integrals of the form
〈f〉 =

∫
f(q)P (q|D)dq, which are approximated by discrete sums over the

parameters {q1, . . . ,qN} sampled along the MCMC trajectory:

〈f〉 =
∫
f(q)P (q|D)dq � 2

N

N∑
n=N/2+1

f(qn)

The MCMC approximation is exact in the limit of an infinitely long Markov
chain. In theory, the initialization of the Markov chain and the details of the
proposal distribution are unimportant: if the condition of detailed balance
(2.27) is satisfied, an ergodic Markov chain will converge to its stationary
distribution (2.28) irrespective of these details. In practice, however, extreme
starting values and unskillfully chosen proposal distributions may slow down
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Fig. 2.13. Illustration of MCMC. Starting from the initial network shown in the
top left, a new network is proposed (top middle) and accepted with a probability
given by (2.33). In this example, the proposed network is rejected (top right). A
new network is proposed (bottom left) and again accepted with a probability given
by (2.33), which in this example leads to an acceptance of the proposed structure
(bottom middle). This structure is now taken as the initial configuration, from which
a new network is proposed in the next move (bottom right).

Step size λ 0.5 2.0 10.0
Relative error 79% 17% 58%

Table 2.2. Dependence of the relative prediction error on the steps size of the
proposal scheme for the MCMC simulation of Figure 2.14.

the mixing and convergence of the chain and result in a very long burn-in, in
which case the MCMC sampler may fail to converge towards the main support
of the stationary distribution in the available simulation time. An example is
given in Figure 2.14, where we want to infer the mean of a univariate Normal
distribution from an MCMC sample of size 200, discarding a burn-in phase of
the first 100 MCMC steps. (This is just an illustration. In practice we would
not resort to an MCMC simulation to solve this simple problem.) Our entity
of interest, in this case, is a single continuous random variable q, and we
choose the proposal distribution Q(q(n+1)|q(n)) to be a uniform distribution
over an interval of length λ (the step size), centred on the current value in
the Markov chain, q(n). Figure 2.14 shows a trace plot of q(n) for three values
of the step size λ. In the left subfigure, λ has been chosen too small, and
the convergence of the Markov chain is slow. This is indicated by a high
acceptance ratio of about 80% of the moves, which suggests that the step
size should be increased. In the right subfigure, λ has been chosen too large,
leading to a Markov chain that is too sticky and has a very low acceptance
ratio of only 17%, wasting a lot of computer time by rejecting most of the
moves. The subfigure in the middle shows an appropriate choice of λ, where
the acceptance ratio is about 50%. This optimal choice results in the fastest
convergence of the Markov chain and is reflected by the smallest prediction
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Fig. 2.14. Dependence of the MCMC convergence on the proposal dis-
tribution. The figures show MCMC trace plots of a univariate continuous ran-
dom variable q with a (known) normal N(0, 1) distribution; hence the true mean is
〈q〉 = 0. The proposal distribution Q(q(n+1)|q(n)) was chosen to be a uniform dis-
tribution over an interval of length λ, centred on the current value q(n). The figures
were obtained for three different values of the step size λ. Left: λ = 0.5; middle:
λ = 2.0; right: λ = 10.0.

error, as seen from Table 2.2. In this particular example, the choice of the
proposal distribution (determined by λ) is not particularly critical because
one can easily continue the MCMC simulation over about 10,000 or 100,000
steps, in which case all three alternatives give practically identical results.
For more complex problems, however, where computer time is a critical issue,
the optimization of the proposal distribution can become most important.
The previous example suggests that, starting from a random choice of λ,
one should adjust this parameter until an acceptance ratio of about 50% is
reached. In general, the parameters of more complex proposal distributions
should be tuned in a similar way. Note, however, that this tuning has to be
restricted to the burn-in phase of the algorithm, and it must not be continued
in the sampling phase. The reason is that optimizing the parameters of the
proposal distribution on the basis of a history of past configurations violates
the condition of detailed balance (2.27) and may therefore lead to a biased
distribution that may not be representative of the true stationary distribution
(2.28).

When the proposal distribution is symmetric, Q(Mk|Mi) = Q(Mi|Mk),
it cancels out in (2.33), and the algorithm reduces to the Metropolis algo-
rithm [30]. For asymmetric proposal distributions, the scheme is called the
Metropolis–Hastings algorithm [15], and the ratio of the proposal probabilities
is usually referred to as the Hastings ratio. While in some cases the asymmetry
of the proposal distribution is introduced deliberately as a means of acceler-
ating the convergence of the Markov chain, it is often inherent in the nature
of the proposal mechanism and needs to be considered carefully by the user
in order to avoid biased results. Take, for example, the proposal mechanism
for generating new DAGs, as illustrated in Figure 2.15. One might, naively,
assume that the proposal distribution is symmetric. After all, there are only
three elementary operations – edge creation, edge reversal, and edge deletion
– all of which can be chosen with the same probability for the forward and the
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Fig. 2.15. Elementary MCMC moves for DAGs. The figure shows three
typical elementary proposal moves: (1) deletion of an edge (left), (2) reversal of
an edge (middle), and (3) creation of a new edge (right). Note that the last two
operations may lead to graphs that violate the acyclicity constraint and therefore
have to be discarded. An example is shown on the right.

backward move and, therefore, should cancel out when computing the Hast-
ings ratio. A more careful consideration, however, reveals that this assumption
is false. The reason for this fallacy is that, as a consequence of the acyclicity
constraint, certain proposal moves will lead to invalid DAGs that have to be
discarded (as illustrated in Figure 2.15). Figure 2.16 demonstrates how the
Hastings ratio is computed properly. The figure shows the neighbourhoods of
two DAGs, where the neighbourhood is the set of all valid DAGs that can be
reached from the given DAG with one of the elementary operations of Fig-
ure 2.15. As a consequence of the acyclicity constraint, the neighbourhoods
of two neighbouring DAGs are not necessarily of the same size. Consequently,
the proposal probability of an MCMC move, which is given by the inverse
of the neighborhood size, is not equal to that of the opposite move, leading
to a Hastings ratio that is different from 1. For complex networks with large
neighbourhoods, the computation of the Hastings ratio is therefore not trivial
and requires the determination of the number of all valid (acyclic) graphs in
the neighbourhoods of the two DAGs involved in the proposal move.

Recall that in theory an ergodic Markov chain converges to the true poste-
rior distribution irrespective of the choice of the proposal distribution and the
initialization. In practice, however, it is difficult to decide whether an MCMC
simulation has sufficiently converged. A simple heuristic convergence test is
shown in Figure 2.17. Note, however, that passing the indicated test is only
a necessary rather than a sufficient condition for convergence as it may not
distinguish between meta-stable disequilibrium and true equilibrium.
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Fig. 2.16. DAG neighbourhoods and Hastings ratio. The figure shows the
neighbourhoods of two DAGs, where the neighbourhood of a DAG is the set of all
valid DAGs that can be reached from the specified DAG with one of the elementary
operations of Figure 2.15. The neighbourhoods of two neighbouring DAGs are not
necessarily of the same size: while the DAG on the right has six neighbours, the DAG
on the left has only five because one of the graphs in its neighbourhood violates the
acyclicity constraint. The Hastings ratio is given by the ratio of the neighbourhood
sizes of the two networks involved in the proposal move. The Hastings ratio for an
MCMC proposal move from the left to the right DAG is thus given by 5/6, while
the Hastings ratio for the opposite move is 6/5.

2.2.3 Equivalence Classes

Figure 2.18 shows the four elementary Bayesian networks we have already en-
countered several times in this chapter. All networks have the same skeleton,
which is the configuration of edges without their direction, but they differ
with respect to the edge directions. However, expanding the joint probabil-
ity P (A,B,C) according to (2.1) gives the same factorization for three of
the networks irrespective of the edge directions. These networks are therefore
equivalent, that is, they show alternative ways of describing the same set of
independence relations. In general, it can be shown that networks are equiv-
alent if and only if they have the same skeleton and the same v-structure,
where the latter denotes a configuration of two directed edges converging on
the same node without an edge between the parents [5]. An equivalence class
can be represented by a partially directed acyclic graph (PDAG), which is a
graph that contains both directed and undirected edges. An example is given
in the bottom of Figure 2.18, and in Figure 2.19, where the subfigure on the
right shows the equivalence class that corresponds to the Bayesian network on
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Fig. 2.17. Convergence test for MCMC simulations. Top: MCMC simu-
lations are started from different initializations and/or different random number
generator seeds. Corresponding posterior probabilities of the edges, obtained from
different simulations, are plotted against each other. Bottom left: Infinite simula-
tion time T . For an infinitely long simulation time, all MCMC simulations give the
same results: the estimated posterior probabilities of the edges are equal to the true
posterior probabilities irrespective of the initialization of the Markov chain, and
the scatter plot has the form of a straight line. Bottom middle: Simulation time T
too short. Insufficient convergence or mixing of the Markov chain is indicated by a
scatter plot that strongly deviates from the straight line. This deviation indicates
a strong dependence of the results on the initialization, resulting from insufficient
convergence or mixing. Bottom right: Simulation time T long enough. A necessary
condition for sufficient convergence and mixing is a scatter plot that does not deviate
markedly from the diagonal line.
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Fig. 2.18. Equivalent Bayesian networks. The top subfigure shows four BNs
with their respective expansion of the joint probability distribution. The three BNs
on the left are equivalent and lead to the same expansion. These BNs thus belong
to the same equivalence class, which can be represented by the undirected graph at
the bottom.

the left. Note that an undirected edge indicates that its direction is not un-
equivocal among the DAGs in the equivalence class represented by the PDAG.
Conversely, a directed edge indicates that all DAGs in the equivalence class
concur about its direction.

Under fairly general conditions, equivalent BNs have the same likelihood
score [16].2 Unless this symmetry is broken by the prior,3 the posterior prob-
abilities are the same, that is, equivalent BNs can not be distinguished on
the basis of the data. This implies that, in general, we can only learn PDAGs
2 Heckerman [16] distinguishes between structure equivalence, identical to the no-

tion of equivalence used in the present chapter, and distribution equivalence. The
latter equivalence concept is defined with respect to a distribution family F and
implies invariance with respect to the likelihood.

3 Heckerman et al. [17] discuss the choice of priors that do not break the symmetry
of equivalence classes.
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Fig. 2.19. DAG and PDAG. The left figure shows a DAG. The right figure
shows the corresponding PDAG, which represents the equivalence class to which the
DAG on the left belongs. Note that the skeleton and the v-structure, that is, the
set of converging edge pairs, remain unchanged. Information about the directions of
the remaining edges, however, gets lost.

rather than DAGs from the data. The consequence is that for a given network
structure M learned from the data, or sampled from the posterior distribution
P (M|D), one has to identify the whole equivalence class C(M) to which M
belongs and then discard all those edge directions that are not unequivocal
among all M′ ∈ C(M). For further details and references, see [5] and [16].

2.2.4 Causality

A Bayesian network conveys information about conditional dependence re-
lations between interacting random variables: given its parents, a node is
independent of its nondescendants. Ultimately, we might be more interested
in the flow of causality and in finding a causal network as a model of the
causal processes of the system of interest. In fact, we can interpret a DAG as
a causal graph if we assign a stricter interpretation to the edges, whereby the
parents of a variable are its immediate causes. Take, as an example, the DAG
in Figure 2.4. Interpreting this DAG as a Bayesian network implies that given
information about the rain the probability of finding the grass to be wet is
independent of the clouds. Interpreted as a causal graph, the edges indicate
that clouds are the immediate cause for rain, and that rain is the immediate
cause for the wetness of the grass. Obviously, there is a relation between these
two interpretations. Given information on the rain, the state of the wetness of
the grass is completely determined and no longer depends on the clouds: if it
rains, the grass gets wet irrespective of the cloud formation. This causal graph
thus satisfies what is called the causal Markov assumption: given the values of
a variable’s immediate causes, this variable is independent of its earlier causes.
When the causal Markov assumption holds, the causal network satisfies the
Markov independence relations of the corresponding Bayesian network.

An important question is whether we can learn a causal network from the
data. Obviously, a first difficulty in trying to achieve this objective is the exis-
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Fig. 2.20. Effect of intervention. The two DAGs on the left are in the same
equivalence class, and the edge direction can not be inferred from observations alone.
To infer the causal direction, the value for A has to be set externally. If A is a causal
ancestor of B, this intervention is likely to lead to a changed value of B (top right).
If, however, B is a causal ancestor of A, this intervention will have no effect on B
(bottom right).

tence of equivalence classes. Recall from the discussion of the previous section
that we can only learn equivalence classes of DAGs (represented by PDAGs)
rather than DAGs themselves. This implies that effectively a lot of edge di-
rections get lost, obstructing the inference of causality. In what follows we
have to distinguish between observations and interventions. An observation is
a passive measurement of variables in the domain of interest, for instance, the
simultaneous measurement of gene expression levels in a standard microarray
experiment.4 In an intervention, the values of some variables are set from
outside the system, for instance, by knocking out or over-expressing a par-
ticular gene. An example is given in Figure 2.20. More formally, recall that
the likelihood scores of two BNs with equivalent DAGs, M and M′, are the
same, where the likelihood is computed from (2.1). When setting the value
of node k externally to some value x∗

k, then P (Xk = x∗
k|Xpa[k]) = 1. This

is because setting a value by external force means that the respective node
takes on this particular value with probability 1 irrespective of the values of
the other nodes in the network. Consequently, the contributions of all those
nodes that are subject to intervention effectively disappear from (2.1):

P (X1, X2, . . . , Xn) =
∏
i�∈I

P (Xi|Xpa[i]) (2.34)

where I is the set of intervened nodes. This modification can destroy the
symmetry within an equivalence class, that is, the likelihood scores for M
and M′ might no longer be the same, which may resolve the ambiguity about
certain edge directions.

A second and potentially more serious difficulty in trying to learn causal
structures from data is the possible presence of hidden, unobserved variables.
Figure 2.20, for instance, shows two possible DAG structures that explain
4 See Chapter 7 for an introduction to microarray experiments.
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Fig. 2.21. Equivalence of networks with hidden variables. The network on
the left without hidden variables is equivalent to the network on the right, which
contains two additional hidden variables. Filled circles represent observed, empty
circles represent hidden nodes.

a conditional dependence between two random variables. However, a third
possibility is that both observed random variables depend on a third, hidden
variable, as in Figure 2.3. Another example is given in Figure 2.21, where the
network on the left, which only includes observed nodes, is equivalent to the
network on the right, which contains two extra hidden nodes. This equivalence
can easily be shown. Applying the factorization rule (2.1) to the graph on the
right gives:

P (A,B,C,X, Y ) = P (A|X)P (X)P (C|X,Y )P (B|Y )P (Y )
= P (X|A)P (A)P (C|X,Y )P (Y |B)P (B)

where in the second step (1.3) has been used. Then, marginalizing over the
unobserved variables X and Y yields

P (A,B,C) =
∑
X

∑
Y

P (A,B,C,X, Y )

= P (A)P (B)
∑
X

∑
Y

P (C|X,Y )P (X|A)P (Y |B)

= P (A)P (B)P (C|A,B)

This result is identical to the factorization one obtains from the structure
on the left of Figure 2.21. Consequently, the two network structures in Fig-
ure 2.21 are equivalent, and we can not decide whether A and B are causal
ancestors of C, or whether all three variables are controlled by some hidden
causal ancestors. A more complex analysis [40] reveals that it is possible to
characterize all networks with latent variables that can result in the same
set of independence relations over the observed variables. However, it is not
clear how to score such an equivalence class, which consists of many models
with different numbers of latent variables, and this lack of a score defies any
inference procedure.
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2.3 Learning Bayesian Networks from Incomplete Data

2.3.1 Introduction

The previous section was based on the assumption that we can find a closed-
form solution to the integral in (2.20). This is only possible if we have complete
observation without any missing or hidden variables. In many applications this
cannot be assumed, since observations may be missing either systematically
or at random. Take, for example, a microarray experiment, where we measure
the expression levels of hundreds or thousands of genes simultaneously. As
described in Chapter 7, some genes get occasionally flagged, meaning that
the data quality is so poor that these measurements are at best ignored. It
is also known that certain interactions in genetic regulatory networks are
mediated by transcription factors, whose activation is often undetectable at
the level of gene expression. In phylogenetics, covered in Chapters 4–6, DNA
or RNA sequences are only available for contemporary or extant species, while
those for extinct species are systematically missing. Further examples will be
given in later chapters of this book. In all these applications, the assumption
of complete observation is violated, and the integration in (2.20) becomes
intractable.

2.3.2 Evidence Approximation and Bayesian Information Criterion

A simple approximation to (2.20) is as follows. First, consider a focused model
in which P (q|D,M) is assumed to be dominated by the likelihood, either
because of assuming a uniform prior on the parameters, or by increasing the
sample size. That is, we set (assuming prior parameter independence)

P (q|M) =
ν∏

i=1

P (qi|M) = cν (2.35)

where ν = dim(q) is the dimension of the parameter space, and c is a constant.
Next, define

E(q) = − logP (D|q,M) (2.36)
q̂ = argminqE(q) = argmaxqP (D|q,M) (2.37)

H =
[
∇q∇†

qE(q)
]
q=q̂

= −∇q∇†
q

[
logP (D|q,M)

]
q=q̂

(2.38)

where q̂ is the vector of maximum likelihood parameters, and H is the Hessian
or empirical Fisher information matrix. Inserting (2.36) and (2.35) into (2.20)
gives

P (D|M) =
∫
P (D|q,M)P (q|M)dq = cν

∫
exp

[
− E(q)

]
dq (2.39)
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Approximating the negative log-likelihood by a second-order Taylor series
expansion, the so-called Laplace approximation,

E(q) ≈ E(q̂) +
1
2
(q − q̂)†H(q − q̂) (2.40)

where the superscript † denotes matrix transposition, and inserting (2.40) into
(2.39), we get

P (D|M) ≈ cν exp
[

− E(q̂)
] ∫

exp
[

− 1
2
(q − q̂)†H(q − q̂)

]
dq (2.41)

= P (D|q̂,M)cν
√

(2π)ν

detH
(2.42)

Taking logs, this gives:

logP (D|M) = logP (D|q̂,M) − 1
2

log detH +
ν

2
log(2πc2) (2.43)

Equation (2.43), which in the neural network literature is referred to as the
evidence approximation [26], [27], decomposes logP (D|M) into two terms: the
maximum log likelihood score, logP (D|q̂,M), and a penalty or regularization
term that depends on the Hessian H. The integration (2.20) is thus reduced
to an optimization, to obtain logP (D|q̂,M), and the computation of the
Hessian. For complex models, this computation of the Hessian can be quite
involved [18], [19]. Therefore, a further approximation is often applied. Note
that the Hessian H is symmetric and positive semi-definite, as seen from
(2.38), and it thus has ν real nonnegative eigenvalues, {εi}, i = 1, . . . , ν. The
determinant of a matrix is given by the product of its eigenvalues, which allows
(2.43) to be rewritten as follows:

logP (D|M) = logP (D|q̂,M) − 1
2

ν∑
i=1

log
( εi

2πc2
)

(2.44)

The eigenvalues εi determine the curvature of the log-likelihood surface along
the eigendirections at the maximum likelihood parameters q̂. This curvature
increases with the sample size N , so the eigenvalues can be assumed to be
proportional to N : εi ∝ N . Now, introducing the further approximation of
isotropy, that is, assuming the same curvature along all eigendirections:

εi ≈ 2πc2N ∀i (2.45)

we get (recall that ν = dim(q)):

logP (D|M) ≈ logP (D|q̂,M) − ν

2
logN (2.46)

This simple formula, which is a variant of the minimum description length in
information theory [37], is known as the BIC (Bayesian information criterion)
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approximation, introduced by Schwarz [38]. The first term is the maximum
likelihood estimate for model M. The second term is a regularization term,
which penalizes model complexity and results from the integration; compare
with the discussion in Section 2.2.1. However, for sparse data D, neither the
Laplace approximation nor the assumption of isotropy, (2.45), are reasonable.
In particular, both approximations assume that the likelihood function is uni-
modal, which does not hold for many models. In fact, this deviation from
unimodality becomes particularly noticeable for small data sets, which may
render both the evidence and BIC approximations unreliable. A different,
simulation-based approach that overcomes this shortcoming will be discussed
in Section 2.3.7.

2.3.3 The EM Algorithm

The previous section has demonstrated that under certain approximations
the integration (2.20) reduces to an optimization problem, namely, to find the
maximum likelihood parameters q̂ for a given model M. This optimization,
however, may not be trivial due to the presence of hidden variables. Denote
by D the data corresponding to observed nodes in the graph. Denote by S =
{S1, . . . , SM} the set of hidden nodes and their associated random variables.
The log likelihood is given by

L(q,M) = logP (D|q,M) = log
∑
S
P (D,S|q,M) (2.47)

which involves a marginalization over all possible configurations of hidden
states. If each hidden state Si, i = 1, . . . ,M , has K discrete values, we have to
sum over KM different terms, which for large values ofM becomes intractable.
To proceed, let Q(S) denote some arbitrary distribution over the set of hidden
states, and define

F (q,M) =
∑
S
Q(S) log

P (D,S|q,M)
Q(S)

(2.48)

KL[Q,P ] =
∑
S
Q(S) log

Q(S)
P (S|D,q,M)

(2.49)

KL in (2.49) is the Kullback–Leibler divergence between the distributions Q
and P , which is always non-negative and zero if and only if Q = P . The proof
is based on the concavity of the log function and the normalization condition
for probabilities:

∑
S Q(S) = 1:

log x ≤ x− 1 =⇒ log
P (S)
Q(S)

≤ P (S)
Q(S)

− 1

=⇒ Q(S) log
P (S)
Q(S)

≤ P (S) −Q(S) =⇒
∑
S
Q(S) log

P (S)
Q(S)

≤ 0

=⇒ KL[Q,P ] ≥ 0
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Fig. 2.22. Illustration of the EM algorithm. L, F , and KL are defined in
equations (2.47)–(2.49). The algorithm is explained in the text.

From (2.47)–(2.49) we get:

L(q,M) = F (q,M) +KL[Q,P ] (2.50)

This is the fundamental equation of the Expectation Maximization (EM) al-
gorithm [8], [33]. An illustration is given in Figure 2.22. F is a lower bound
on the log-likelihood L, with a difference given by KL. The E-step holds the
parameters q fixed and sets Q(S) = P (S|D,q,M); hence KL(Q,P ) = 0 and
F = L. The M-step holds the distribution Q(S) fixed and computes the pa-
rameters q that maximize F . Since F = L at the beginning of the M-step,
and since the E-step does not affect the model parameters, each EM cycle is
guaranteed to increase the likelihood unless the system has already converged
to a (local) maximum (or, less likely, a saddle point). The power of the EM
algorithm results from the fact that F is usually considerably easier to maxi-
mize with respect to the model parameters q than L. An example is given in
Section 2.3.5.

2.3.4 Hidden Markov Models

A hidden Markov model (HMM) is a particular example of a Bayesian net-
work with hidden nodes. In fact, the structure of an HMM is comparatively
simple, which makes it an appropriate example for illustrating the concepts
of the preceding subsection. Also, HMMs have been extensively applied in
bioinformatics, and they will play an important role in later chapters of this
book; see Section 5.10, Section 10.11.4, and Chapter 14. An illustrative ex-
ample is given in Figure 2.23. Assume you are in a casino and take part in a
gambling game that involves a die. You are playing against two croupiers: a
fair croupier, who uses a fair die, and a corrupt croupier, who uses a loaded
die. Unfortunately, the croupiers are hidden behind a wall, and all you observe
is a sequence of die faces. The task is to predict which croupier is rolling the
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Fig. 2.23. The occasional corrupt casino. Left: Two croupiers are in a casino:
a fair croupier, who uses a fair die, and a corrupt croupier, who uses a biased die.
Right: The player only sees a sequence of die faces, but not the croupier, from whom
he is separated by a wall. The task is to infer, from the sequence of observed die
faces, which croupier has been rolling the die and to predict the breakpoint when
the corrupt croupier is taking over. The idea for this illustration is taken from [9].

A C G T T A T A
A G T C A T A −→ A C G T T A T A

A − G T C A T A

Fig. 2.24. Pairwise DNA sequence alignment. The figure shows two hypo-
thetical DNA sequences, each composed of the four nucleotides adenine (A), cytosine
(C), guanine (G), and thymine (T). The sequences on the left are unaligned and seem
to differ in all but one position. The sequences on the right have been aligned, and
they differ only in two positions. Note that this alignment makes use of an extra
symbol, the horizontal bar “−”, which indicates an indel (an insertion or a deletion,
depending on the reference sequence).

TGGAGACCAC CGTGAACGCC CATCA - - - GG TCC T GCCCAA
TGGAGACCAC CGTGAACGCC CACCA - - - AT TCT T GCCCAA
TGGAGACCAC CGTGAACGCC GCCCA TCT AT TCT T GCCCAA
TGGAGACCAC CGTGAACGCC CATCA - - A AG TCT - GCCCAA
TGGAGACCAC CGTGAACGCC CACCA - - - GG TCT T GCCCAA

Fig. 2.25. Multiple DNA sequence alignment. The figure shows a small
section of a DNA sequence alignment of five strains of Hepatitis-B virus. Rows
represent strains, and columns represent sequence positions. The letters represent
the four nucleotides adenine (A), cytosine (C), guanine (G), and thymine (T), while
the horizontal bars indicate gaps.

die at a given time and to predict the breakpoint where the corrupt croupier
is taking over (in order to nab him).

As a second example, consider the problem of aligning DNA sequences. Re-
call that DNA is composed of an alphabet of four nucleotides: adenine (A), cy-
tosine (C), guanine (G), and thymine (T). After obtaining the DNA sequences
of the taxa of interest, we would like to compare homologous nucleotides, that
is, nucleotides that have been acquired from the same common ancestor. The
problem is complicated due to the possibility of insertions and deletions of nu-
cleotides in the genome (referred to as indels). Take, for instance, Figure 2.24.
A direct comparison of the two sequences on the left gives the erroneously
small count of only a single site with identical nucleotides. This is due to the
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Fig. 2.26. Hidden states for pairwise DNA sequence alignment. The
hidden states are represented by ellipses, and edges between these ellipses indicate
possible transitions between the states. Active transitions are shown as thick lines.
There are three different hidden states. (1) A match state emits a pair of nucleotides.
(2) An insert state emits a nucleotide for the first sequence, and a gap for the second –
so it “inserts” a nucleotide in the first sequence. (3) A delete state emits a nucleotide
for the second sequence, and a gap for the first – hence it “deletes” a nucleotide in
the first sequence.

insertion of a C in the second position of the first strand, or, equivalently,
the deletion of a nucleotide at the second position of the second strand (the
insertion of a so-called gap). A correct comparison leads to the alignment on
the right of Figure 2.24, which suggests that the sequences differ in only two
positions. The process of correcting for insertions and deletions is called DNA
sequence alignment. Figure 2.25 shows a small subregion of a multiple DNA
sequence alignment of five strains of Hepatitis-B virus.

The two examples given here have three important features in common.
First, we can describe both processes in terms of a hidden state that has gen-
erated the observations. For the casino, this hidden state corresponds to the
unknown croupier who is rolling the die. For the DNA sequence alignment,
we can introduce conceptually a hidden state that indicates whether we have,
at a given position, a nucleotide match, an insertion, or a deletion. An il-
lustration is given in Figure 2.26. Second, the problem of finding the correct
hidden states corresponding to a given sequence of observations is intrinsi-
cally stochastic. Observing, say, that the die face six occurs three times in a
row gives some indication that the die may be biased. However, due to the
inherent stochasticity of rolling a die this observation can also be obtained
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s_1
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y_(t+1)

s_N
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Fig. 2.27. Hidden Markov model. Black nodes represent observed random
variables, white nodes represent hidden states, and arrows represent conditional de-
pendencies. The joint probability factorizes into a product of emission probabilities
(vertical arrows), transition probabilities (horizontal arrows), and the initial proba-
bility, that is, the probability of the initial state. The prediction task is to find the
most likely sequence of hidden states given the observations.

from a fair die. Similarly, several mismatches between the nucleotides in cor-
responding DNA sequence positions may indicate that the sequences are mis-
aligned. However, such mismatches can also occur in homologous sequences
as a result of mutations during evolution. Consequently, we need probabilistic
methods that allow robust inference in the presence of inherent stochasticity,
and Bayesian networks are the ideal tools for this task. Third, and possibly
most notably, both problems suffer from an explosion of the computational
complexity. Given a sequence of observations – a sequence of die faces in the
first example, or a sequence of nucleotide pairs in the second – we would
like to find the best sequence of hidden states describing the observations.
Given the intrinsic stochasticity mentioned above, “best” should be defined
probabilistically as the mode of the posterior probability P (S|D), where S
represents a sequence of hidden states, and D is the set of observations (the
“data”). However, given K different hidden states (K = 2 for the casino, and
K = 3 for the pairwise sequence alignment) and N sequence positions, there
are KN different hidden state sequences. Consequently, the number of hidden
state sequences increases exponentially with the sequence length, which, in
the most general scenario, prohibits an exhaustive search in sequence space.

To proceed, consider the Bayesian network in Figure 2.27, which contains
two types of nodes. Filled circles represent observed random variables, yt

(which, in general, can be vectors). Empty circles represent hidden states, St.
The index t can refer to time, as in the casino example, or to location, as in
the alignment problem. Applying the expansion rule for Bayesian networks
(2.1) to the network in Figure 2.27 gives:

P (y1, . . . ,yN , S1, . . . , SN ) =
N∏

t=1

P (yt|St)
N∏

t=2

P (St|St−1)P (S1) (2.51)
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We refer to the set of P (yt|St) as the emission probabilities (associated with
the vertical edges), to P (St|St−1) as the transition probabilities (which are
associated with the horizontal edges), and to P (S1) as the initial probability.

Since the dependence structure between the hidden states is obviously
Markovian, the Bayesian network in Figure 2.27 is called a hidden Markov
model. A consequence of this simplification is that the complexity of an ex-
haustive search in the space of hidden state sequences is no longer exponential
in the sequence length. From (2.51) we obtain the recursion:

γn(Sn) = max
S1,...,Sn−1

logP (y1, . . . ,yn, S1, . . . , Sn)

= max
S1,...,Sn−1

[ n∑
t=1

logP (yt|St) +
n∑

t=2

logP (St|St−1) + logP (S1)
]

= logP (yn|Sn) + max
Sn−1

[
logP (Sn|Sn−1) + max

S1,...,Sn−2

[ n−1∑
t=1

logP (yt|St)

+
n−1∑
t=2

logP (St|St−1) + logP (S1)
]]

= logP (yn|Sn) + max
Sn−1

[
logP (Sn|Sn−1) + γn−1(Sn−1)

]
(2.52)

Obviously:

max
S1,...,SN

P (S1, . . . , SN |y1, . . . ,yN ) = max
S1,...,SN

logP (y1, . . . ,yN , S1, . . . , SN )

= max
SN

γN (SN ) (2.53)

and the mode, P (Ŝ|D) = P (Ŝ1, . . . , ŜN |y1, . . . ,yN ), is obtained by recursive
backtracking, starting from the initialization ŜN = argmaxSN

γN (SN ), and
continuing with the following iteration:

Ŝn−1 = argmaxSn−1

[
logP (Ŝn|Sn−1) + γn−1(Sn−1)

]
(2.54)

This recursive iteration is called the Viterbi algorithm [36], which is a variant
of dynamic programming. The computational complexity of a single step of
the recursions (2.52) and (2.54) is O(K2), that is, it only depends on the num-
ber of different states K, but is independent of the sequence length N . The
total computational complexity of the algorithm is thus linear in N – rather
than exponential in N – which enables us to carry out an exhaustive search
even for long sequences. Note, again, that the hidden Markov assumption is
at the heart of this reduction in computational complexity. This approxima-
tion corresponds to a casino where the decision about changing croupiers is
made instantaneously, without considering earlier events in the past. In a pair-
wise DNA sequence alignment, the hidden Markov assumption restricts the
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explicit modelling of the dependence structure between nucleotides to inter-
actions between neighbouring sites. Finally, note that the log transformation
in the previous equations is not required for a derivation of the algorithm.
It is, however, important in practical implementations in order to prevent a
numerical underflow for long sequences.

2.3.5 Application of the EM Algorithm to HMMs

Recall from Section 2.1 that a Bayesian network is defined by a triplet
(M,F ,q). M represents the network structure, given by Figure 2.27. F rep-
resents the family of transition, emission, and initial probabilities, which are
assumed to be known and fixed. The probabilities are thus completely specified
by the parameter vector q = (w,ν,π), where w determines the emission prob-
abilities, P (yt|St,w), ν determines the transition probabilities, P (St|St−1,ν),
and π determines the initial probabilities, P (S1|π).5 For a sequence of obser-
vations D = (y1, . . .yN ) and a state sequence S = (S1, . . . , SN ) we have the
joint probability (from (2.51)):

P (D,S|q) = P (y1, . . . ,yN , S1, . . . , SN |q)

=
N∏

t=1

P (yt|St,w)
N∏

t=2

P (St|St−1,ν)P (S1|π) (2.55)

Assume we want to optimize the parameters in a maximum likelihood sense,
that is, we want to maximize

L(q) = logP (D|q) = log
∑
S
P (D,S|q) (2.56)

with respect to the parameter vector q. The computation of L requires a
summation over all hidden state sequences S = (S1, . . . , SN ), that is, over
KN terms. For all but very short sequence lengths N , this direct approach is
intractable. A viable alternative, however, is given by the expectation max-
imization (EM) algorithm, discussed in Section 2.3.3. Let Q(S) denote an
arbitrary probability distribution over the hidden state sequences, and F the
function defined in (2.48). Inserting (2.55) into (2.48) gives:

F (q) = A(w) +B(ν) + C(π) +H (2.57)

where H = −
∑

S Q(S) logQ(S) is a constant independent of the parameters
q, and
5 Recall the convention that for different arguments, P denotes different functions.

Also, note that the three probabilities stated here do not explicitly depend on t,
that is, the Markov chain is assumed to be homogeneous. For example, if St ∈
{a1, . . . , aK}, then P (St = ai|St−1 = ak) = P (St′ = ai|St′−1 = ak) ∀ t, t′.
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A(w) =
∑
S

N∑
t=1

Q(S) logP (yt|St,w) =
N∑

t=1

∑
St

Q(St) logP (yt|St,w) (2.58)

B(ν) =
∑
S

N∑
t=2

Q(S) logP (St|St−1,ν)

=
N∑

t=2

∑
St

∑
St−1

Q(St, St−1) logP (St|St−1,ν) (2.59)

C(π) =
∑
S
Q(S) logP (S1|π) =

∑
S1

Q(S1) logP (S1|π) (2.60)

Note that these expressions depend only on the marginal univariate and bi-
variate distributions Q(St) and Q(St, St−1), but no longer on the multivariate
joint distribution Q(S). This marginalization outside the argument of the log
function is at the heart of the reduction in computational complexity inher-
ent in the EM algorithm. Having derived an expression for the function F in
(2.48), we are set for the application of the EM algorithm, as described in
Section 2.3.3.

The probabilities Q(St) and Q(St, St−1) are updated in the E-step, where
we set:

Q(St) −→ P (St|D,w,ν,π) (2.61)
Q(St, St−1) −→ P (St, St−1|D,w,ν,π) (2.62)

These computations are carried out with the forward–backward algorithm for
HMMs [36], which is a dynamic programming method that reduces the com-
putational complexity from O(KN ) to O(NK2), that is, from exponential
to linear complexity in N . The underlying principle is similar to that of the
Viterbi algorithm, discussed after equation (2.54), and is based on the sparse-
ness of the connectivity in the HMM structure. Since the forward–backward
algorithm has been discussed several times in the literature before, it will not
be described in this chapter again. Details can be found in the tutorial article
by Rabiner [36], or textbooks like [1] and [9], which also discuss implementa-
tion issues.

Now, all that remains to be done is to derive update equations for the
parameters q = (w,ν,π) so as to maximize the function F in the M-step of the
algorithm. From (2.57) we see that this optimization problem breaks up into
three separate optimization problems for w, ν, and π. As an example, consider
the optimization of C(π) in (2.60) with respect to π. Assume the hidden state
St is taken from a discrete letter alphabet, St ∈ {a1, . . . , aK}. For the casino
example, we have K = 2 “letters”, corresponding to the two croupiers. For the
pairwise sequence alignment, we have K =

(6
2

)
−1 = 14 letters, corresponding

to all 2-element combinations from {A,C,G, T,−} except for the concurrence
of two gaps. Define π = (Π1, . . . , ΠK) and P (S1 = ak|π) = Πk for positive,
normalized scalars Πk ∈ [0, 1], that is, Πk can be interpreted as a probability
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distribution over the alphabet {a1, . . . , aK}. We can now rewrite (2.60) as
follows:

C(π) =
K∑

k=1

Q(k) logΠk =
K∑

k=1

Q(k) logQ(k) −
K∑

k=1

Q(k) log
Q(k)
Πk

The first term,
∑K

k=1Q(k) logQ(k), does not depend on the parameters. The
second term,

∑K
k=1Q(k) log Q(k)

Πk
, is the Kullback–Leibler divergence between

the distributions Q(k) and Πk. In order to maximize C(π), this term should
be as small as possible. Now, recall from the discussion after equation (2.49)
that the Kullback–Leibler divergence is always non-negative, and zero if and
only if the two distributions are the same. Consequently, C(π) is maximized
for Πk = Q(S1 = k).

The optimization of the other parameters, w and ν, is, in principle, similar.
For multinomial distributions, complete update equations have been derived
in [1], [9], and [36], and these derivations will not be repeated here. Instead,
let us consider the maximization of B(ν) in (2.59) for a special case that
will be needed later, in Section 5.10. Assume that we have only two different
transition probabilities between the hidden states. Let ν ∈ [0, 1] denote the
probability that a state will not change as we move from position t − 1 to
position t. The probability for a state transition is given by the complement,
1 − ν. If a state transition occurs, we assume that all the transitions into the
remaining K − 1 states are equally likely. An illustrative application is shown
in Figure 5.20. We can then write the transition probabilities in the following
form:

P (St|St−1, ν) = νδSt,St−1

(
1 − ν

K − 1

)1−δSt,St−1

(2.63)

where δSt,St−1 denotes the Kronecker delta symbol, which is 1 when St = St−1,
and 0 otherwise. It is easily checked that (2.63) satisfies the normalization
constraint

∑
St
P (St|St−1) = 1. Note that the vector of transition parameters,

ν, has been replaced by a scalar, ν. Now, define

Ψ =
N∑

t=2

∑
St

∑
St−1

Q(St, St−1)δSt,St−1 =
N∑

t=2

∑
St

Q(St, St−1 = St) (2.64)

and note that

N∑
t=2

∑
St

∑
St−1

Q(St, St−1)[1 − δSt,St−1 ] = N − 1 − Ψ (2.65)

Inserting (2.63) into (2.59) and making use of definitions (2.64) and (2.65)
gives
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B(ν) = Ψ log ν + (N − 1 − Ψ) log
(

1 − ν

K − 1

)
(2.66)

Setting the derivative of B(ν) with respect to ν to zero,

dB

dν
=

Ψ

ν
+
N − 1 − Ψ

ν − 1
= 0 (2.67)

we obtain for the optimal parameter ν:

ν =
Ψ

N − 1
(2.68)

This estimation is straightforward because, as seen from (2.64), Ψ depends
only onQ(St−1, St), which is obtained by application of the forward–backward
algorithm in the E-step (see above). An example for optimizing w in (2.58)
will be given in Section 5.10. Note that the three parameter optimizations for
w, π, and ν (or ν) constitute the M-step, which has to be applied repeatedly,
in each loop of the EM algorithm.

2.3.6 Applying the EM Algorithm to More Complex Bayesian
Networks with Hidden States

HMMs are a special class of Bayesian networks with hidden nodes. Their struc-
ture, M, is particularly simple and known. The general scenario of learning
arbitrary Bayesian networks with hidden states is more involved, but draws
on the principles discussed in the previous sections. This section will provide
a brief, not comprehensive, overview.

Let D denote the set of observations associated with the observable nodes,
and denote by S the set of hidden states with their associated random vari-
ables. To optimize the network parameters q in a maximum likelihood sense,
we would like to apply the EM algorithm of Section 2.3.3. The E-step requires
us to compute the posterior probability of the hidden states, P (S|D,q,M).
For HMMs, this computation is effected with the forward–backward algo-
rithm, as discussed in Section 2.3.5. The update equations in the M-step de-
pend only on the univariate and bivariate marginal posterior distributions,
P (St|D,q,M) and P (St, St−1|D,q,M), as seen from (2.57)–(2.62), which
leads to the considerable reduction in the computational complexity, from
O(KN ) to O(NK2).

Section 4.4.3 will describe the application of a similar algorithm, Pearl’s
message-passing algorithm [34], to tree-structured Bayesian networks. The
most general algorithm for computing the posterior probability of the hidden
states is the junction-tree algorithm [25], [7]. This algorithm is based on a
transformation of the DAG structure into a certain type of undirected graph,
the so-called junction tree. The computational complexity of the EM algo-
rithm is exponential in the size of the largest clique in this graph [21]. Here,
a clique denotes a maximal complete subgraph, where a complete graph is
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a graph with an edge between any pair of nodes, and a complete graph is
maximal if it is not itself a proper subgraph of another complete graph. For
HMMs, the size of the largest clique is two, hence we need to compute only
univariate and bivariate posterior probabilities; see (2.61)–(2.62). The compu-
tational complexity is thus O(K2N), as stated before. If the size of the largest
clique in the junction tree is m, the expressions in the M-step depend on m-
variate posterior probabilities, and the computational complexity increases to
O(KmN). For large values of m the computational costs thus become pro-
hibitively large, which has motivated the exploration of faster, approximate
techniques. Rather than set Q equal to the posterior probability P (S|D,q,M)
in the E-step, which corresponds to an unrestricted free-form minimization of
(2.49), one can defineQ to be a member of a sufficiently simple function family,
and then minimize (2.49) subject to this functional constraint. The simplest
approach is to set Q equal to the product of its marginals, Q(S) =

∏
k Q(Sk),

which corresponds to the mean field approximation in statistical physics (see,
for instance, [2], Chapter 4). An application to inference in Bayesian network-
like models can be found, for example, in [35]. An improved approach is to
use a mixture of mean field approximators [20]. For a more comprehensive
overview of these so-called variational methods, see [21]. Note, however, that
by minimizing the Kullback–Leibler divergence in (2.49) – rather than setting
it to zero – the likelihood is no longer guaranteed to increase after an EM
step. In fact, this variational variant of the EM algorithm can only be shown
to maximize a lower bound on the log-likelihood, rather than the log-likelihood
itself [21].

Recall from the discussion in Sections 2.2.1 and 2.2.2 that the objective of
inference is either to sample models from the posterior distribution P (M|D)
or, if there is reason to assume that this distribution is peaked, to find the
mode of P (M|D) ∝ P (D|M)P (M), the maximum a posteriori (MAP) model
(where due to the NP-hardness of the inference problem this mode, in prac-
tice, is usually a local maximum). Also, recall from Section 2.3.2 that un-
der the BIC approximation, logP (D|M) = logP (D|M,q) − R(q), where
R(q) = 1

2 dim(q) logN is a regularization term; see (2.46). Now, it is straight-
forward to modify the EM algorithm such that it (locally) maximizes, for a
given model M, the penalized log-likelihood logP (D|M,q) − R(q). Instead
of maximizing F , defined in (2.48), in the M-step, we have to maximize the
modified function F̃ = F −R(q). Then we repeat this procedure for different
models M, using heuristic hill-climbing techniques to find a high-scoring M.
However, each parameter optimization requires several EM cycles to be car-
ried out. As discussed above, the E-step can be computationally expensive,
and several E-steps are needed before a single change to the network struc-
ture M can be made. To overcome this shortcoming, Friedman suggested a
variant of the EM algorithm, the structural EM algorithm [10], where both
the parameters q and the model M are optimized simultaneously in the M-
step. This modification reduces the total number of E-steps that have to be
carried out, although at the price of increased computational costs for those
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E-steps that are carried out. Friedman also suggested combining the EM al-
gorithm with the integration (2.20) in what he called the Bayesian structural
EM algorithm (BSEM) [11]. Formally, BSEM is based on a modification of
equations (2.48)–(2.49), where the dependence on q is dropped so as to per-
form an optimization in model rather than parameter space. Recall that when
certain regularity conditions are satisfied, the integral in (2.20) can be solved
analytically. The idea in [11] is to carry out this integration within the E-step
after imputing the missing values with their expectation values, where expec-
tation values are taken with respect to the distribution obtained in the E-step.
This approach is based on approximating the expectation value of a nonlin-
ear function by the value of this function at the expectation value. Also, the
expectation value has to be taken with respect to the posterior distribution
P (S|D,M) – as a result of the aforementioned modification of (2.48)–(2.49).
Computing this expectation value is usually intractable. Hence, P (S|D,M)
is approximated by P (S|D,M, q̂), where q̂ is the MAP parameter estimate
for model M; see [11] for details.

2.3.7 Reversible Jump MCMC

The EM algorithm, discussed in the previous subsections, is an optimization
algorithm. Its application is motivated by the BIC score (2.46), according to
which an integration over the parameters q can be replaced by an optimiza-
tion. However, as discussed in Section 2.3.2, the BIC approximation becomes
unreliable for sparse data. Also, for sparse data, the posterior distribution over
structures, P (M|D), becomes diffuse and is not appropriately summarized by
its mode, M∗ = argmaxP (M|D). Consequently, the optimization approach
should be replaced by a sampling approach when the training data are sparse.

Now, recall from page 31 that the MCMC scheme is not restricted to a
space of cardinal entities (model structures), but can readily be extended to
continuous entities (model parameters). So rather than perform the sampling
in the structure space {M}, which is impossible due to the intractability of
(2.20), we can sample in the product space of structures and parameters,
{M,q}, and then marginalize over the parameters q. Examples for this will
be given in Chapters 4–6. However, care has to be taken when the dimen-
sion of the model M changes. In modelling genetic networks, for instance,
the model dimension may vary, changing every time we introduce or remove
a hypothetical hidden agent (like a transcription factor6). In this case the
probability distribution over the parameters q becomes singular when the
model dimension increases, and this has to be taken care of in the formula-
tion of the algorithm. A generalization of the classical Metropolis–Hastings
algorithm that allows for these dimension changes has been given by Green
[14] and is usually referred to as the reversible jump MCMC or Metropolis–
Hastings–Green algorithm. The details are beyond the scope of this chapter.
6 A transcription factor is a protein that initiates or modulates the transcription

of a gene; see Figure 8.14.
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2.4 Summary

This chapter has given a brief introduction to the problem of learning Bayesian
networks from complete and incomplete data. The methods described here will
reoccur several times in the remaining chapters of this book. For example,
methods of phylogenetic inference from DNA or RNA sequence alignments,
covered in Chapters 4 and 6, the detection of recombination between differ-
ent strains of bacteria and viruses, discussed in Chapter 5, as well as the
attempt to infer genetic regulatory interactions from microarray experiments,
described in Chapters 8 and 9, are all based on the concepts and ideas out-
lined in the present chapter. The detailed procedures and methods for the
particular applications will be discussed in the respective chapters.
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A Casual View of Multi-Layer Perceptrons as
Probability Models

Richard Dybowski

InferSpace, 143 Village Way, Pinner HA5 5AA, UK.
richard@inferspace.com

Summary. The purpose of this chapter is to introduce the reader to a type of
artificial neural network called a multi-layer perceptron. The intention is not to
present a detailed, comprehensive treatise on the subject; instead, we provide a
brief, informal, tutorial in the spirit of Chapter 1.

We start with the historical background and then introduce the concept of re-
gression. This concept holds for both continuous-valued and binary-valued response
variables; however, when applied to the latter, probabilistic classification models are
created.

In the context of medicine, probabilistic classification models are usually ob-
tained using logistic regression analysis, but if logistic functions are nested to pro-
duce multi-layer perceptrons, the high flexibility of the resulting models enables
them to handle complex classification tasks.

We discuss some important points that should be kept in mind when applying
multi-layer perceptrons to classification problems. Finally, we end the tutorial with
some recommended reading.

3.1 A Brief History

Artificial neural networks (ANNs) are a large class of mathematical models that
possess a capacity to learn from examples. Some of these models are loosely based
on the structures and functions of biological neural systems.

In this section, we summarize the historical development of the multi-layer per-
ceptron via the McCulloch-Pitts neuron and the single-layer perceptron.

3.1.1 The McCulloch-Pitts Neuron

The original motivation for designing ANNs was the desire to model the cognitive
processes of recognition and learning. In the 1920s, Nicolas Rashevsky began a re-
search programme to model mathematically Pavlovian conditioning in terms of bio-
logical neural networks [20]. Rashevsky was joined by Warren McCulloch and Walter
Pitts who, in 1943, published a simple model of the neuron called the McCulloch-
Pitts neuron [16].
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The McCulloch-Pitts neuron (Figure 3.1) consists of several “dendrites”, each
with an associated weight wi. When wi is positive, the associated “synapse” is
excitatory; when wi is negative, it is inhibitory. A set of values x1, . . . , xd received
by the artificial neurone at its “synapsis” is converted to a weighted sum w1x1 +
· · · + wnxd. If the sum exceeds a predefined threshold −w0, the signal ξ produced
by the artificial neurone equals 1; otherwise, it is 0. This process is analogous to the
triggering of an impulse by the hillock zone of a real neurone when a membrane-
potential threshold is exceeded.
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Fig. 3.1. A graphical representation of a McCulloch-Pitts neuron. A discontinuous
step function g(a) (Figure 3.2(a)) is applied to the weighted sum a = w0 + w1x1 +
· · · + wdxd to produce the output ξ, where −w0 is the threshold. (Reprinted with
permission, Richard Dybowski and Vanya Gant, Clinical Applications of Artificial
Neural Networks, 2001, Cambridge University Press.)

3.1.2 The Single-Layer Perceptron

In computing science, pattern recognition refers to the process where an algorithm
or mathematical function f assigns (or classifies) a set of values x (a feature vector)
to one of a finite number of classes κ. A classification can be represented by the
expression

κ̂ = f(x),

where κ̂ is the class predicted by classifier f when it is presented with a set of values
x. Examples of pattern recognition include the diagnosis of diseases (where x is a
set of symptoms and κ a possible disease), the recognition of characters written on
a Personal Digital Assistant, and the assessment of the credit risk of customers.

One approach to pattern recognition is to build the classifier f manually; alter-
natively, one can devise a method by which f is somehow “learnt” from a set of past
examples (x1, κ1), . . . , (xn, κn), where κi is the class associated with xi.

In 1958, Rosenblatt [22] proposed that the McCulloch-Pitts neuron could be the
basis of a pattern recognition system called a perceptron. A (single-layer) perceptron
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has the same structure as a McCulloch-Pitts neuron except that the discontinuous
step function at the output node (Figure 3.2(a)) is replaced by a continuous sig-
moidal logistic function (Figure 3.2(b)). Suppose that the classification made by a
perceptron from an example (xi, κi) is denoted by

κ̂i = f(xi,w),

where w is the set of weights in the perceptron. Here, the prediction made by the
perceptron is κ̂i, which, if correct, should equal κi. Rosenblatt’s perceptron learning
rule [23] was able to automatically adjust w iteratively based on a set of examples
until the mismatches between the predictions κ̂i and the correct target values κi were
minimized. This development by Rosenblatt was motivated by Hebb’s hypothesis
that learning is based on the reinforcement of active neuronal connections [10];
however, although the perceptron was able to learn from examples, it was limited
in the type of classification problems to which it could be applied successfully.
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Fig. 3.2. Two activation functions: (a) a step function and (b) a logistic function.

A feature vector of values x consisting of d values can be represented as a point x
in a d-dimensional space (feature space), and an example (xi, κi) can be represented
as the point xi labelled with its associated class κi. Consequently, a set of examples
(x1, κ1), . . . , (xn, κn) can be depicted as a set of class-labelled points distributed in
feature space.

A decision boundary partitions a feature space into a set of regions (decision
regions), each region being associated with one of the classes of interest. If a new
feature vector x∗ happens to appear in the region associated with a particular class
κ̃ then that vector is automatically assigned to κ̃.

The problem with the single-layer perceptron was that it could represent only
planar decision boundaries (Figure 3.3(a)); however, for many real-world classifica-
tion problems, such simple decision boundaries were inadequate. In many situations,
a planar decision boundary would fail to segregate the points labelled with one class
from the points associated with another class, possibly resulting in high rates of
misclassification (Figure 3.3(b)).
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(a) (b)

Fig. 3.3. Decision boundaries obtained from single-layer perceptrons. In (a), the
samples from classes α1 and α2 (distinguished by symbols ◦ and ×) can be separated
completely by a line; whereas in (b) they are not linearly separable. Each decision
boundary corresponds to the contour line where posterior probability p(α1|x) equals
0.5.

3.1.3 Enter the Multi-Layer Perceptron

Whereas a perceptron contains a single layer of weights, a multi-layer perceptron
(MLP) has two or more layers of weights, each layer being separated by a layer of
nodes called hidden nodes.

An MLP with two layers of weights is shown in Figure 3.4.1 The first layer of
nodes, which receives the inputs x1, . . . , xd, is called the input layer. The layer
of nodes producing the output values ξ1, . . . , ξc is called the output layer. Lay-
ers of nodes between the input and output layers are referred to as hidden lay-
ers. The weighted sum aj (j = 1, . . . , m) at the jth hidden node hj is given by
w(1→hj) +w(x1→hj)x1 + · · ·+w(xd→hj)xd, where w(1→hj) is a bias. The value output
by hj is a function g1 of aj , and the output ξk (k = 1, . . . , c) from the kth output node
is a function g2 of the weighted sum w(1→ξk)+w(h1→ξk)g1(a1)+· · ·+w(am→ξk)g1(hm),
where w(1→ξk) is a bias. Activation function g1 at the hidden nodes is typically sig-
moidal; for example, it could be the hyperbolic tangent (tanh). Activation function
g2 at the output nodes can be either linear for regression or sigmoidal for classifica-
tion. In the latter case, the logistic function is usually used (Figure 3.2 (b)).2

Although it was realized that the MLP architecture enabled the production of
nonlinear decision boundaries, Minsky and Papert [17] pointed out in 1969 that the
perceptron learning rule could not adjust the weights of an MLP. It was not until the

1 To avoid ambiguity, the number of layers in a perceptron should refer to the layers
of weights and not to the layers of nodes, as this avoids a single-layer perceptron
also being referred to as a two-layer perceptron.

2 An MLP can have more than one layer of hidden nodes, but one layer usually
suffices for most tasks. In fact, an MLP with one hidden layer can approximate
arbitrarily well any continuous function with inputs x1, . . . , xd, provided that the
number of hidden nodes is sufficiently large and that there are enough data to
estimate the network weights [11]; however, for some tasks, the use of additional
hidden weights can ease the representation of decision boundaries [7].
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mid-1980s that the research community became aware of an algorithm for training
MLPs: the back-propagation algorithm (Section 3.4).3 The existence of the back-
propagation algorithm meant that MLPs could be applied to real-world problems,
which resulted in an explosion of interest in ANNs.
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Fig. 3.4. A multi-layer perceptron with two layers of weights. In addition to the
weights shown in the diagram, each hidden node and output node © has an as-
sociated weight w called a bias: 1 w−→ © . See text in Section 3.1.3 for details.
(Reprinted with permission, Richard Dybowski and Vanya Gant, Clinical Applica-
tions of Artificial Neural Networks, 2001, Cambridge University Press.)

3.1.4 A Statistical Perspective

Initially, ANNs were regarded as constructs for computer scientists and cognitive
scientists interested in Artificial Intelligence [e.g., 1, 3], but a statistical interpreta-
tion of ANNs emerged by the mid-1990s [e.g., 5, 21]. This statistical view of ANNs
proved to be very powerful because it provided a sound theoretical framework for
neural computation.

The 1990s saw an increasing interest in the application of Bayesian statistics
to ANNs, initiated by the works of MacKay [14] and Neal [19], which brought the
benefits of Bayesian reasoning to neural computation (Chaps. 10 and 12).

Today, ANNs are firmly regarded as statistical tools by both computer scientists
and statisticians.

3.2 Regression

In order to understand how an ANN such as an MLP can act as a probability model,
we need to be clear about the statistical concept called regression.

Suppose that we are given a sheet of graph paper upon which a set of points have
been plotted. The points (x1, y1), . . . , (xn, yn) on the graph paper were obtained by

3 It was later found that the first description of the back-propagation algorithm
was contained in the 1974 doctorial dissertation by Werbos [26].
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observing the values y1, . . . , yn for variable Y found to be associated with a set
of values x1, . . . , xn for variable X. We are given a ruler and are asked to draw a
straight line through the points. If the points lie exactly along a line, we could fit the
straight line to the points accurately by eye. Even if the points were nearly in a line,
fitting a straight line to the points by eye could be done reasonably satisfactorily.
But, if the points were more scattered, fitting by eye would become too subjective
and inaccurate; a better, objective method is required.

Starting with the set of values x1, . . . , xn, we can imagine that the points
(x1, y1), . . . , (xn, yn) came into existence by the following generative process. For
each value xi of X, there exists a conditional probability distribution p(Y |xi) with
mean E [Y |xi], and the value yi was sampled randomly from this distribution.4

The mean E [Y |x] can be considered as a function of x, and the generative model
can be applied to any structure of this function; for example, E [Y |x] could be related
linearly to x (Figure 3.5(a)) or it could be a nonlinear polynomial of x (Figure
3.5(b)).

E [Y|x]

x

y

(a)

[Y|x]

x

y E 

(b)

Fig. 3.5. Examples of (a) linear regression and (b) polynomial regression. Each
point has been sampled from a Gaussian distribution (gray region) centered on a
mean defined by E [Y |x].

The aim of regression is to estimate E [Y |x] from the set D of points (x1, y1), . . . ,
(xn, yn) in the context of the above generative model. This is done by assuming a
general structure for a function f that relates E [Y |x] to x (the regression function).
The function has a set of parameters θ that modify the mapping of x to E [Y |x],

E [Y |x] = f(x, θ), (3.1)

and the parameters θ are adjusted until the regression function “fits” to the data.
For example, in the case of linear regression, E [Y |x] is assumed to be related linearly
to x (Figure 3.5(a)):

E [Y |x] = β0 + β1x,

4 The concept of a conditional probability, such as p(Y |xi), is explained in Chapter
1.
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where the regression coefficients β0 and β1 are the parameters of the linear function.

3.2.1 Maximum Likelihood Estimation

The conventional approach to adjusting the parameters θ of f(x, θ) with respect to
data D is to use maximum likelihood estimation. This is based on the intuitive idea
that the best estimate of θ is that set of parameters θ̂ for which the observed data
have the highest probability of arising. This probability is given by the likelihood
p(D|θ); therefore, the aim is to find the set of parameters θ̂ that maximize p(D|θ):

θ̂ ≡ arg max
θ

p(D|θ).

This expression can be rewritten as

θ̂ = arg max
θ

n∏
i=1

p(yi|xi, θ).

if the points in D are sampled independently of each other.
If θ̂ maximizes the likelihood p(D|θ), it will also maximize the log-likelihood

log p(D|θ). In other words,

θ̂ = arg max
θ

log L(θ),

where

log L(θ) ≡ log p(D|θ)

=
n∑

i=1

log p(yi|xi, θ) + const. (3.2)

3.3 From Regression to Probabilistic Classification

When Y is binary valued (i.e., equal only to 0 or 1),5 the traditional choice for the
regression function f in (3.1) is the sigmoidal logistic regression function

E [Y |x] =
1

1 + exp[−(β0 + β1x)]

(Figure 3.6(b)). Furthermore, because Y is binary valued, we have that6

5 Because Y is binary-valued, p(Y |xi) is a binomial distribution, not a Gaussian
distribution.

6 By definition
E [Y |x] ≡

∑
Y

Y p(Y |x)

when Y is discrete valued.
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E [Y |x] =
1∑

Y =0

Y p(Y |x)

= 0 · p(Y = 0|x) + 1 · p(Y = 1|x)

= p(Y = 1|x);

thus, the logistic regression function acts as a probability model for p(Y = 1|x, θ):

p(Y = 1|x, θ) =
1

1 + exp[−(β0 + β1x)]
, (3.3)

where θ = {β0, β1}. For brevity, we will abbreviate p(Y = κ|xi, θ) to π̃(κ),i, and
sometimes to π̃i when κ = 1.

When Y is binary valued, we can write

p(yi|xi, θ) = π̃yi
i (1 − π̃i)1−yi ;

therefore, from Equation (3.2), we have

log L(θ) =
n∑

i=1

{yi log π̃i + (1 − yi) log(1 − π̃i)} + const,

and the MLE θ̂ corresponds to

θ̂ = arg max
θ

n∑
i=1

{yi log π̃i + (1 − yi) log(1 − π̃i)} .

From probability model (3.3), we can compute decision regions. If we ignore
misclassification costs [e.g., 13],7 a previously unclassified feature x∗ is assigned to
the most probable class; therefore, if x∗ lies in the region R1 of x values where p(Y =
1|x, θ̂) > 0.5 we can assume that Y = 1 for x∗. Consequently, R1 is the decision
region for Y = 1. Similarly, the region R0 of x values where p(Y = 0|x, θ̂) > 0.5
is the decision region for Y = 0. The decision boundary between R0 and R1 is the
region where p(Y = 1|x, θ̂) = 0.5.

In sum, we assume that Y = 1 if x∗ is in R1 or Y = 0 if x∗ is in R0. This assign-
ment is a type of classification; furthermore, because it is based on the conditional
probability p(Y = 1|x, θ̂), it is a probabilistic classification.

The above discussion pertained to a univariate logistic function, but an analogous
discussion can be made for a multivariate logistic function, such as the bivariate
function shown in Figure 3.7. In this case, decision region R1 is the region of feature
vectors x where p(Y = 1|x, θ̂) > 0.5, and the decision boundary is the region where
p(Y = 1|x, θ̂) = 0.5.

7 In addition to allowing for misclassification costs and regions of low classification
confidence (“reject regions” or “doubt regions”), a classification system should
also allow for the possibility that a future case may not belong to any of the
predefined classes (an “outlier”) [e.g., 21].



3 Multi-Layer Perceptrons 67

1

x [Y|x]
w0

w1
E 

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y
[Y|x] = p(Y=1|x)E 

(b)

Fig. 3.6. (a) A graphical representation of a univariate logistic regression model
with regression coefficients w0 and w1. (b) The output E [Y |x] of the model when
fitted to nine binary-valued data points.
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Fig. 3.7. (a) A graphical representation of a bivariate logistic regression model with
regression coefficients w0, w1 and w2. (b) Output from the model.

3.3.1 Multi-Layer Perceptrons

The type of decision boundary that can be achieved with the bivariate logistic prob-
ability model is limited (e.g., Figure 3.3(b)); however, consider the case where the
outputs of two logistic functions are the inputs to a third logistic function (Figure
3.8(a)). From Figure 3.8(b), it can be seen that this arrangement, which is struc-
turally equivalent to an MLP (Figure 3.4), enables a much more complex output to
be achieved. This observation motivates the use of an MLP as a flexible regression
model f(x, ŵ) and, thus, as a probability model capable of making complex decision
boundaries (Figure 3.9):

p(Y = 1|x, ŵ) = E [Y |x] = f(x, ŵ).
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Fig. 3.8. (a) A multi-layer perceptron represented as nested logistic functions. The
outputs from the first two functions are the inputs to the third function. (b) Output
from the multi-layer perceptron.

Fig. 3.9. The decision boundary obtained from an MLP. The data points are the
same as those used in Figure 3.3(b). The MLP had six hidden nodes and was trained
with the quasi-Newton optimization algorithm. Overfitting was penalized by weight
decay with the weight-decay coefficient set at 0.2 (see Equation (3.11)).

The concept of maximum-likelihood estimation described earlier can also be used
to determine weights w for an MLP. In other words, the weights are adjusted to a
set of values ŵ that maximize the likelihood p(D|w),

ŵ = arg max
w

p(D|w),

and thus the log-likelihood

ŵ = arg max
w

log p(D|w).
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The standard practice within the neural-network community is to think in terms
of minimizing error functions rather than maximizing log-likelihoods, where an error
function E(w) is defined as

E(w) ≡ − log p(D|w), (3.4)

and maximization of a log-likelihood is equivalent to the minimization of the corre-
sponding error function:

ŵ = arg min
w

E(w).

If the points in D are sampled independently, Equation (3.4) can be simplified to

E(w) ≡ −
n∑

i=1

log p(yi|xi,w). (3.5)

Furthermore, analogous to our treatment of the log-likelihood for logistic regression,
we can replace (3.5) with

E(w) = −
n∑

i=1

{yi log π̃i + (1 − yi) log(1 − π̃i)} , (3.6)

which is the (two-class) cross-entropy error function.8

When there are only two classes of interest, there is no need to have an output
node for π̃(0) in addition to a node for π̃(1) since π̃(0) = 1 − π̃(1).

What if we have more than two classes, say, c classes? In this situation, we use
a network with an output ξκ to represent π̃(κ) for each class κ. We also replace each
target value yi with a set of binary dummy variables y(1),i, . . . , y(c),i, where y(κ),i = 1
if yi = κ and 0 otherwise. This is called 1-in-c coding. To ensure that

∑
κ π̃(κ) = 1,

the softmax activation function is used,

π̃(κ) =
exp(aκ)∑c

κ′=1 exp(aκ′)
,

where ak is the weighted sum to the κth output node, and the summation in the
denominator is over all the output nodes. For the error function, (3.6) is replaced
by its multi-class analogue:

E(w) = −
n∑

i=1

C∑
κ=1

y(κ),i log π̃(κ),i.

3.4 Training a Multi-Layer Perceptron

Training an MLP with the exemplars present in a data set (training set) D means
finding the set of weights ŵ that minimize the error E(w).

8 When Y is continuous-valued, the sum-of-squares error function is the standard
choice:

E(w) =
1
2

n∑
i=1

{f(xi,w) − yi}2.
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If we were able to observe a plot of E(w) over the set of all possible w, we
would see a landscape (the error surface) consisting typically of several maxima and
minima (Figure 3.10). The problem is to locate a weight vector ŵ such that E(ŵ)
is a global minimum, but how do we search for this global minimum across the
error surface? A simple approach is to use gradient descent. In gradient descent, we
start with some initial (usually random) guess for the weight vector, w(0). We then
iteratively alter the weight vector such that, if the current weight vector is w(τ), we
move a short distance 
w(τ) in the direction of the greatest rate of descent along
the error surface (Figure 3.11). In vector notation, this is written as


w(τ) = −η∇E(w)|w(τ) , (3.7)

where η is a constant (the learning rate), and ∇E(w)|w(τ) is the gradient

(∂E(w)/∂w1 · · · ∂E(w)/∂w|w|)
T

evaluated at w(τ). So, in order to implement (3.7), we have to calculate ∇E(w)|w(τ)

from an MLP with weights w(τ). This can be achieved with the error back-
propagation algorithm.

w
1

w
2

 E(w)

Fig. 3.10. Simulation of an error surface E(w) with local maxima and minima.
The error surface sits above weight space.

3.4.1 The Error Back-Propagation Algorithm

An error function E(w) on a data set D can be written as the sum of errors on each
pattern in D:9

9 For example, if E(w) is the cross-entropy error function (3.6) then

Ei(w) = −{yi log π̃i + (1 − yi) log(1 − π̃i)}.
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Fig. 3.11. (a) A step ∆w(τ) in weight space from weight vector w(τ) to w(τ+1)

during a search for the global minimum E(ŵ). (b) The corresponding changes on
the error function over weight space.

E(w) =
n∑

i=1

Ei(w);

therefore, for each ∂E(w)/∂w in ∇E(w), we have

∂E(w)
∂w

=
n∑

i=1

∂Ei(w)
∂w

. (3.8)

Each term within the sum in (3.8) can be determined as follows.
Suppose that we have the following three nodes within an MLP,

���
��

��
��

��

���
��

��
��

��

	
�����α
w(α→β)

−−−→
g(aα)

�� 	
�����β
w(β→γ)

−−−→
g(aβ)

��	
�����γ�����������

�����������

where w(α→β) is the weight on the link from node α to node β. For a given x,
node α receives the sum aα and outputs the value g(aα), where g is an activation
function. Note that these three nodes can be any three successive nodes within an
MLP containing one or more hidden layers. For example, if an MLP has only one
hidden layer then node α is an input node, node β is a hidden node, and node γ is
an output node. On the other hand, if an MLP has at least two hidden layers then
α could be in input node and β and γ two successive hidden nodes; alternatively, α
and β could be two successive hidden nodes and γ an output node.

For the element ∂Ei(w)/∂w(α→β) in (3.8), the chain rule of partial derivatives
gives the relationship
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∂Ei(w)
∂w(α→β)

= g(aα)
∂Ei(w)

∂aβ
, (3.9)

where g(aα) is one of the values resulting from the forward propagation of values
within the MLP from the input nodes to the output node(s); for example,

�����
���

���
�

�����������

g(aα) �� g(aβ) �� g(aγ)		����������

		���������

If node α is the input node that receives value xi then g(aα) = xi.
The back-propagation formula provides the relationship

∂Ei(w)
∂aβ

=
dg(aβ)
daβ

∑
γ′

w(β→γ′)
∂Ei(w)

∂aγ′
,

where the sum is over all the nodes linked from node β, which includes γ. Note
that this relationship enables ∂Ei(w)/∂aβ , which is associated with node β, to be
calculated from ∂Ei(w)/∂aγ , which is associated with a subsequent node γ; thus,
the back-propagation formula allows the computational sequence



����������



����������

∂Ei(w)
∂aα

∂Ei(w)
∂aβ

�� ∂Ei(w)
∂aγ

��
������������

������������

to take place, which starts at the output node(s) and finishes at the input nodes.
This sequence is often referred to as a backward propagation of errors. If node γ is
the output node that produces value ξκ then

∂Ei(w)
∂aγ

=
dg(aγ)
daγ

∂Ei(w)
∂ξκ

.

With forward propagation giving g(aα), and backward propagation of errors
producing ∂Ei(w)/∂aβ , both factors on the right-hand side of (3.9) are available;
consequently, ∂Ei(w)/∂w in (3.8) can be determined, and thus ∇E(w) for (3.7).

The computation of step ∆w(τ) using (3.7) requires a single pass through the
entire training set (an epoch). Because it involves the entire training set, it is called
batch learning. An alternative is to perform a step as each pattern is encountered in
the training set (pattern-based learning):


w(τ) = −η∇Ei(w)|w(τ) ,

where
∇Ei(w) = (∂Ei(w)/∂w1 · · · ∂Ei(w)/∂w|w|)

T.

In pattern-based learning, the exemplars are used either sequentially or randomly.
In practice, pattern-based learning is almost always used in preference to batch
learning.
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3.4.2 Alternative Training Strategies

The gradient descent rule (3.7) was one of the first training algorithms applied
to ANNs. In fact, when applied to single-layer perceptrons, it is equivalent to the
perceptron learning rule.

Unfortunately, the gradient descent algorithm is generally inefficient, resulting
in very lengthy search times through weight space. Numerous attempts have been
made to improve the basic gradient descent approach; for example, one approach is
to add a momentum term to dampen unnecessary oscillations in the search trajectory
within weight space,


w(τ) = −η∇E(w)|w(τ) + µ
w(τ−1), (3.10)

but the algorithm remains relatively inefficient, and arbitrary choices for parameters
η and µ have to be made.

A number of algorithms that are substantially more efficient than gradient de-
scent have been developed. These include the conjugate-gradients and quasi-Newton
methods. It is beyond the scope of this chapter to go into details about these alterna-
tive search strategies (see Bishop [5]), but an empirical comparison of the gradient-
descent and quasi-Newton methods is shown in Figure 3.12.
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Fig. 3.12. Simulation of the trajectory of a weight vector w over an error sur-
face E(w). The search begins at (−0.5,1), and the minimum is at (1,1). Two
types of optimization algorithms were used: (a) the quasi-Newton method; (b) the
gradient-descent method with learning rate η = 0.004 and momentum µ = 0.5
(Equation (3.10)). With the quasi-Newton method, the minimum was reached in
28 steps; whereas, with gradient descent, the minimum had not been reached by
100 steps. (Reprinted with permission, Ian T. Nabney, NETLAB: Algorithms for
Pattern Recognition, 2002, Springer Verlag, London.)

3.5 Some Practical Considerations

We conclude with some important points concerning the use of MLPs, which include
the potential of over-fitting, the problem of local minima, and the importance of data
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pre-processing. Software packages for neural computation are discussed in Section
16.4.

3.5.1 Over-Fitting

As stated earlier, the purpose of regression is to estimate the conditional expectation
E [Y |x] from a training set (generalization) rather than an exact representation of
the data; however, because of the intrinsic flexibility of MLPs, the output from an
MLP could fit the data too closely (referred to as over-fitting). Over-fitting (Figure
3.13(a)) will result in a high predictive performance with respect to the training set
but a poor performance with respect to an independent test set.

If an MLP is too flexible then, for a given xi, π̃i could vary too much from one
data set to the next (large variance). We can control the flexibility exhibited by
an MLP but, if we curtail the flexibility too much, the MLP may have insufficient
flexibility to model E [Y |x] adequately from a data set (Figure 3.13(b)). In other
words, π̃i will tend to be too far from E [Y |xi] (high bias).

The extremes of over-fitting (high variance but low bias) and insufficient flexi-
bility (low variance but high bias) are detrimental to network performance. What
we require is a compromise between the conflicting requirements of low bias and
low variance: the bias–variance trade-off. Both bias and variance can be reduced by
increasing the number of data points, but, in practice, the amount of data available
is often limited.

x

y

(a)

x

y

(b)

Fig. 3.13. An example of the effect of regularization on an MLP with a linear
activation function at the output node. (a) The regularization coefficient ν of Equa-
tion (3.11) was set to zero, and the MLP over-fitted the data points. This MLP is
expected to exhibit low bias but high variance. (b) The regularization coefficient
was set to 2, and the MLP had insufficient flexibility to generalize from the same
data points used in (a). This MLP is expected to exhibit low variance but high
bias. (Reprinted with permission, Christopher Bishop, Neural Networks for Pattern
Recognition, 1995, Clarendon Press, Oxford.)

The flexibility of an MLP can be controlled by a technique called regularization
(Figure 3.13). In this approach, an error function E(w) is augmented with a regu-
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larization term, which penalizes against high flexibility. The most commonly-used
regularization term is the weight-decay term:

E′(w) = E(w) +
ν

2

|w|∑
j=1

w2
j , (3.11)

where ν is the regularization coefficient. The weight-decay term exploits the fact that
large curvature (which can result in over-fitting) is associated with relatively large
weights. The presence of such weights increases the weight-decay term and thus the
penalized error function E′(w). The optimal value for ν can be determined either
by cross-validation or automatically through the evidence framework (see Section
10.7.2 and Chapter 12).

Another approach to controlling over-fitting is the procedure called early stop-
ping. Suppose we plot E(w) against the number of steps τ used to train an MLP. At
first, E(w) decreases as π̃ approaches E [Y |x], but E(w) continues to decrease whilst
the MLP increasingly over-fits to the training set. If we now plot E(w) against τ ,
but compute E(w) on a data set that is independent of the training set (the vali-
dation set), we expect to see E(w) first decrease as π̃ approaches E [Y |x] but then
increase as over-fitting takes place; therefore, we should stop the training of the
MLP when the minimum of this second plot is reached (early stopping). However, a
word of warning about early-stopping: Ripley [21] has observed cases when, after a
minimum has been reached, the plot with respect to the validation set increased but
then fell to a substantially lower minimum. This second minimum would be missed
if early stopping had been implemented.

Model assessment

When assessing the efficacy of a trained MLP, the assessment should be done with
respect to a data set that played no part whatsoever in the development of the
model; therefore, this test set should be independent of both the training set and
the validation set. Unfortunately, a number of authors have made the mistake of
using the validation set as the test set, an error than can make an MLP appear to
be more effective than it really is.10

When there is insufficient data for it to be permanently partitioned into a train-
ing set, a validation set, and a test set, ν-fold cross-validation can be used (Figure
3.14).

Hand [9] discusses in detail the various performance metrics that are available
for the assessment of classifiers such as MLPs.

3.5.2 Local Minima

As stated in Section 3.4, the training of an MLP involves a search across an error
surface that starts at some point w(0) in weight space and hopefully finishes at
the global minimum E(ŵ). The trajectory of this search in weight space involves

10 Amazingly, there have also been cases where the training set has been used as
the test set.
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. . . run ν

Fig. 3.14. Schematic illustration of ν-fold cross-validation. The entire data set D
is randomly partitioned into ν subsets D1, D2, . . . , Dν . Each subset Di(i = 1, . . . , ν)
takes its turn to act as a temporary test set (black region) whilst the remaining
ν − 1 subsets (white regions) are first combined and then randomly partitioned
into a training set and a validation set. The results from the ν test sets are aver-
aged (Reprinted with permission, Christopher Bishop, Neural Networks for Pattern
Recognition, 1995, Clarendon Press, Oxford.).

a succession of weight vectors w(0),w(1), . . . , ŵ, the direction taken from w(τ) to
w(τ+1) being dictated by an optimization algorithm.

Optimization algorithms such as gradient descent always decrease the error func-
tion, so that E(w(τ+1)) < E(w(τ)), but this creates a potential problem. Error
surfaces often consist of many minima, and the attempt by an algorithm to always
decrease the error function at each step can result in a weight vector reaching a min-
imum that is not the global minimum (a local minimum). Furthermore, because the
algorithm does not have a mechanism to increase the error function, the weight vec-
tor remains stuck at the local minimum. Consequently, the optimum weight vector
ŵ is not reached (Figure 3.15).

A

B

C

w

E(w)

w( )

E(w( ))

ŵ

Fig. 3.15. A is the current location of E(w) on an error surface during a search
for the global minimum C. During the search, weight vector w arrives at a local
minimum (B) from which it cannot escape.
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We can increase our chance of locating E(ŵ) by repeating our search from an
entirely different starting point. Of course, the new search may also finish at a local
minimum, but if we use many (at least ten) starting points, each chosen at random,
our chance of finding the global maximum increases. This strategy is known as the
method of random restarts.

Each random restart will result in an MLP. We could select the best-performing
network from the resulting set of MLPs and discard the rest; alternatively, we could
retain all the MLPs and average the outputs from each network. The set of MLPs
used in the latter approach is called a committee of networks, and the theoretical
justification for this approach is given in Section 10.7.3.

3.5.3 Number of Hidden Nodes

There is no theory that tells us what the optimal number of hidden nodes will be
for a given classification or regression problem, although some rough guidelines have
been proposed.11 The optimal number can be determined empirically by successively
increasing the number of hidden nodes in an MLP. The performance of each result-
ing MLP is assessed with respect to a validation set possibly via cross-validation.
Tarassenko [24] gives an example of this approach.

3.5.4 Preprocessing Techniques

With most MLP-based applications, the feature vectors x used as input are derived
from associated vectors of raw data. This conversion of a raw-data vector v to a
feature vector x is referred to as preprocessing, and, in many cases, it is crucial to
the success of a neural-computational task.

One reason for the importance of preprocessing is the so-called curse of dimen-
sionality [e.g., 5]. An MLP with fewer inputs requires fewer weights, which are more
likely to be properly constrained by a data set of limited size. A way of reducing
the size of v is to select a subset of the original variables (variable subset selection).
This can be achieved with a stepwise variable-selection procedure [12, 6].

Another approach to dimensionality reduction is to perform principal compo-
nent analysis (PCA) on the raw data set {(v1, κ1), . . . , (vn, κn)} [e.g., 13]. This
technique linearly maps v to a lower-dimensional space. However, because principal
components analysis ignores class labels, it may not provide any discrimination of
the classes.

The use of background knowledge to derive features from v is another type
of preprocessing. Tarassenko [24] gives a good example of this for the analysis of
sleep electroencephalograms, which focused on the selection of known dominant
frequencies.

Another important form of data preprocessing is the replacement of categorical
variables with binary dummy variables (i.e., 1-of-d encoding). In addition, if the
means and/or ranges of the continuous-valued input variables differ greatly, training
can be facilitated by normalizing these values to have zero mean and unit variance.

11 One guideline is to set the number of hidden nodes in a two-layer MLP equal to
the geometric mean of the number d of input nodes and the number c of output
nodes:

√
dc [e.g., 15].
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3.5.5 Training Sets

To ensure that each class is equally represented during the training of an MLP, a
balanced data set should be used. If the number of exemplars from each class is
not the same, and Nγ is the number of exemplars from the least represented class,
Tarassenko [24] recommends randomly selecting enough exemplars from the other
classes until a data set is produced with Nγ exemplars from each class.

If a balanced data set is produced by the above approach, π̃ must be adjusted to
take account of the fact that the relative frequencies of the classes in the balanced
training set differ from the true prior class probabilities. The adjusted value of π̃(κ),i

is given by

�(κ),i =
π̃(κ),ip(κ)/ψ(κ)∑

κ′ π̃(κ′),ip(κ′)/ψ(κ′)
, (3.12)

where p(κ) is the true prior probability of class κ, and ψ(κ) is the relative frequency
of class κ in the balanced data set. Tarassenko [24] points out that expression (3.12)
should not be used if the differences between the true prior probabilities are very
large; for example, p(κ1) = 0.001 and p(κ2) = 0.999. In such a situation, a novelty
detection method should be used instead [4, 25].

How many exemplars should we have in a training set? If we wish to correctly
classify 100(1 − ε)% of all future feature vectors x (where ε < 1/8), Baum and
Haussler [2] recommend that at least |w|/ε exemplars should be present in the
training set, where |w| is the number of weights (including biases) in a two-layer,
one-output-node MLP. For example, if we want to classify 90% of x correctly, we
need about 10 times as many training exemplars as there are weights in the MLP.

3.6 Further Reading

A variety of books have been written on artificial neural networks. One of the more
useful introductions is Introduction to Neural Networks by Gurney [8], which clearly
describes the basic principles.

To many who use neural networks, the definitive work is Neural Networks for
Pattern Recognition by Bishop [5]. This excellent text is one of the first to place
neural nets in a statistical framework. We strongly recommend NETLAB: Algo-
rithms for Pattern Recognition [18] as a source of algorithms (written in Matlab) to
accompany Bishop’s text.

A useful guide to the practicalities of neural-network development is Tarassenko’s
A Guide to Neural Computing Applications [24], which contains many helpful guide-
lines.
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Summary. The objective of molecular phylogenetics is to reconstruct the evolu-
tionary relationships among different species or strains from biological sequence
alignments and present them in an appropriate, usually tree-structured, graph.
Besides being of fundamental importance in itself – aiming to estimate, for
instance, the ancestry of the human race or to infer the whole tree of life –
phylogenetics has recently become of heightened interest in epidemiology, where it
promises to provide increased insight into the emergence and evolution of infectious
diseases, and in forensic science. Evolution is driven by stochastic forces that act
on genomes, and phylogenetics essentially tries to discern significant similarities
between diverged sequences amidst a chaos of random mutation and natural
selection. Faced with noisy data resulting from intrinsically stochastic processes,
the most powerful methods make use of probability theory. This chapter first
discusses the shortcomings of the older non-probabilistic methods of clustering and
parsimony and then describes the more recent probabilistic approach. Based on an
explicit mathematical model of nucleotide substitution in terms of a homogeneous
Markov chain, a phylogenetic tree can be interpreted as a Bayesian network.
This interpretation allows the application of the inference methods introduced
in Chapters 1 and 2. Two particular optimization algorithms that have been
implemented in widely used software packages will be described. The chapter then
discusses the question of statistical significance of the inference results, and it
contrasts the two methods of significance estimation: the frequentist approach of
bootstrapping versus the Bayesian method of Markov chain Monte Carlo.

Notation. The notation used in this chapter is described in the Notation
and Conventions section of the Appendix. The symbol t is used with two different
meanings: (1) physical time and (2) position in a DNA sequence alignment; see
Table 4.1 on page 111. It becomes clear from the respective context which of the
two interpretations applies. The notation does not distinguish between random
variables and their values. It does, however, distinguish between observed and
hidden nodes in a Bayesian network. The symbol yi represents the random variable
associated with an observed node i. On making an observation, yi becomes a value.
The symbol zi represents the random variable associated with a hidden node i, that
is, a node for which no data are available. For generic representation, xi is used.
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4.1 Motivation and Background on Phylogenetic Trees

In 1990 a young woman in Florida contracted AIDS without having previously
been exposed to the established risks of HIV infection. Scientists at the Centers
for Disease Control in Atlanta launched an extensive investigation to establish
the cause of the infection. Eventually they uncovered that a dentist suffering
from AIDS himself had infected several of his patients with HIV [26]. This
finding was the result of applying two recent scientific methodologies: the
experimental method of DNA sequencing, and the mathematical method of
phylogenetic analysis.

The objective of phylogenetics is to reconstruct the evolutionary relation-
ships among different species or strains (generic name taxa1) and to display
them in a binary or bifurcating tree-structured graphical model called a phy-
logenetic tree. An example is given in Figure 4.1. The leaves of a phylogenetic
tree represent contemporary species, like chicken, frog, mouse, etc. The inner
or hidden nodes represent hypothetical ancestors, where a splitting of lin-
eages occurs. These so-called speciation events lead to a diversification in the
course of evolution, separating, for instance, warm-blooded from cold-blooded
animals, birds from mammals, primates from rodents, and so on.

Figure 4.1 shows a so-called rooted tree. The node at the bottom of the tree
represents the most recent common ancestor, from which ultimately all other
nodes descended. The edges are directed, related to the direction of time: the
closer a node is to the root of the tree, the older it is in time. Inferring this
direction of evolutionary processes, however, is difficult and not amenable to
the modelling and inference methods discussed in this introductory tutorial.
Consequently, phylogenetic trees will be displayed as unrooted trees, shown in
Figure 4.2. As opposed to a rooted tree, the edges in an unrooted tree are
undirected, and no node is in the distinguished position of a root.2

A phylogenetic tree conveys two types of information. The topology defines
the branching order of the tree and the way the contemporary species are
distributed among the leaves. For example, from Figures 4.1 and 4.2 we learn
that the mammals – human, chicken, mouse, and opossum – are grouped
together and are separated from the group of animals that lay eggs – chicken
and frog. Within the former group, opossum is grouped out because it is a
1 In bacteria and viruses it is difficult to distinguish between species and strains.

This chapter is rather sloppy in the use of these terms, and occasionally uses both
terms synonymously.

2 We can regain a rooted from an unrooted tree by including an outgroup in the
analysis. An outgroup is a (set of) species that is known a priori to be less related
to any of the other taxa used in the study, and the root will therefore be located on
the branch between the other taxa and the outgroup. For example, in Figure 4.2,
frog is the outgroup, because it is the only cold-blooded animal among a set of
warm-blooded animals. By positioning the root on the branch leading to frog, we
regain the rooted tree of Figure 4.1 (although the exact position of the root on
this branch is not known).
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Human Rabbit Mouse Chicken Frog

Time

Opossum

Fig. 4.1. Rooted phylogenetic tree. Leaf nodes represent extant or contempo-
rary species. Hidden nodes represent hypothetical ancestors, where lineages bifurcate
(so-called speciation events).

marsupial and therefore less closely related to the other “proper” mammals.
Exchanging, for instance, the leaf positions of opossum and rabbit changes the
branching order and thus leads to a different tree topology. For n species there
are, in total, (2n− 3)!! different rooted, and (2n− 5)!! different unrooted tree
topologies, where !! denotes double factorial: (2n− 5)!! = (2n− 5)(2n− 7)...1.
A proof is given in the appendix at the end of this chapter. In what follows,
we will use the integer variable S ∈ {1, 2, . . . , (2n− 5)!!} to label the different
unrooted tree topologies.

The second type of information we obtain from a phylogenetic tree is given
by the branch lengths, which represent phylogenetic time,3 measured by the
average amount of mutational change. For example, Figure 4.2 shows a com-
paratively long branch leading to the leaf with frog. This long branch indicates
that a comparatively large number of mutations separates frog from the other
animals, and that a large amount of phylogenetic time has passed since the
lineage leading to frog separated from the remaining tree. This conjecture is
reasonable because frog is the only cold-blooded animal, whereas all the other
animals are warm-blooded. Note that the mutation rate is usually unknown,
and we can therefore not infer physical time from the branch lengths. This
distinction between physical time and phylogenetic time will be discussed in
more detail in Section 4.4.2.

An unrooted tree for n species has n − 2 inner nodes, and thus m =
n+ (n− 2) − 1 = 2n− 3 branches. In what follows, individual branch lengths

3 Throughout this chapter, phylogenetic time is (unconventionally) used with the
meaning evolutionary change, which is given by the product of physical time and
a nucleotide substitution rate. See Equation (4.21) for an exact definition.
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Opossum

Mouse

Human

Chicken

Frog

Rabbit

Fig. 4.2. Unrooted phylogenetic tree. Leaf nodes represent contemporary
species, hidden nodes represent hypothetical ancestors. The tree conveys two types
of information. The topology defines the branching order of the tree and the way the
contemporary species are distributed among the leaves. The branch lengths represent
phylogenetic time, measured by the average amount of mutational change.

will be denoted by wi, and the total vector of branch lengths will be denoted
by w = (w1, . . . , w2n−3).

Two further examples of phylogenetic trees are shown in Figures 4.3 and
4.4. Since the start of the AIDS epidemic in the early 1980s, there has been
an increased interest in the emergence and evolution of infectious diseases.
The reconstruction of the evolutionary relationships among extant strains of
a virus or bacterium may help us to understand the origin and spread of an
infection. Figure 4.3, for instance, shows a phylogenetic tree for various strains
of HIV-1, HIV-2, and SIV. SIV, which stands for simian immunodeficiency
virus, is an HIV-like virus that is commonly found in many African monkeys.
While the HIV-1 strains are grouped together in a clade that is well separated
from the rest of the tree, HIV-2 strains are closely related to SIV strains. This
finding suggests that the virus may have crossed species boundaries, and that
there may have been cross-infection between humans and monkeys. Figure 4.4
shows a phylogenetic tree that was reconstructed from the envelope gene of
various HIV-1 strains during the Florida dentist investigation, mentioned at
the beginning of this section. The tree reveals that several patients had been
infected with strains that are closely related to those of the dentist. Also, both
the strains of the dentist and those of his patients are grouped in a clade that
is clearly separated from a set of independent control strains. This finding
suggests that the patients had, in fact, been infected by their dentist [26].

The objective of the present chapter is to discuss methods for reconstruct-
ing phylogenetic trees. Since the driving forces of evolution are mutations,
that is, errors in the replication of DNA, it seems reasonable to base our infer-



4 Introduction to Statistical Phylogenetics 87

HIV-1 C
HIV-1 B
HIV-1 A

HIV-1 D
HIV-1 E
HIV-1 F

HIV-1 H

HIV-2 D
SIV
SIV

HIV-2 A
HIV-2 B
HIV-2 C
SIV
SIV

HIV-2 E

HIV-1 G

HIV-1 O

SIV

HIV-1

HIV-2

Fig. 4.3. Phylogenetic tree of HIV and SIV strains. HIV-1 strains are
grouped together, whereas HIV-2 strains are closely related to SIV strains (HIV-
like viruses found in many African monkeys), suggesting that there might have been
cross-infection between humans and monkeys. Adapted in a slightly simplified form
from [27], by permission of Blackwell Science.

ence on a comparison of DNA sequences4 obtained from the different species
or strains of interest. This approach has recently become viable by major
breakthroughs in DNA sequencing techniques. In July 1995, the first complete
genome of a free-living organism was published – the entire 1.8 million base
pairs of the bacterium Haemophilus influenzae [13]. In June 2000, a working
draft of the complete 3.3 billion base-pair DNA sequence of the entire human
genome was pre-released. Since then, the amount of DNA sequence data in
publicly accessible data bases has been growing exponentially.

DNA is composed of an alphabet of four nucleotides, which come in two
families: the purines adenine (A) and guanine (G), and the pyrimidines cyto-
sine (C) and thymine (T). DNA sequencing is the process of determining the

4 Earlier approaches to phylogenetics were based on the analysis of non-molecular
data, for instance, morphological characters. This chapter focuses on phyloge-
netic analysis based on molecular sequence data, mainly DNA sequences. The
advantages of this more recent approach of molecular phylogenetics over classical
non-molecular phylogenetics are discussed in [27].
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Patient C
Patient A

Patient G

Patient E

Patient A

Patient B

Control 1

Control 2

Control 3

Control 4

Control 5

Dentist

Dentist

Fig. 4.4. The case of the Florida dentist. The figure shows a phylogenetic tree
inferred from a sequence alignment of the envelope gene of various HIV-1 strains.
The strains of several patients are closely related to those of the dentist and well
separated from the strains of an independent control group. This finding suggests
that the dentist had infected several of his patients with AIDS. Note that because
HIV-1 is so variable, two different sequences are included for the dentist and for
patient A. Adapted in a slightly simplified form from [27], by permission of Blackwell
Science.

order of these nucleotides. After obtaining the DNA sequences of the taxa of
interest, we need to compare homologous subsequences, that is, correspond-
ing regions of the genome that code for the same protein. More precisely,
we have to compare homologous nucleotides, that is, nucleotides which have
been acquired directly from the common ancestor of the taxa of interest. The
process of establishing which regions of a set of DNA sequences are homolo-
gous and should be compared is called DNA sequence alignment. Throughout
this chapter we will assume that the sequence alignment is given. A brief in-
troduction to the alignment problem was given in Section 2.3.4. For a more
comprehensive review, see [4].

The top of Figure 4.5 shows a small section of the DNA sequence alignment
obtained from the β-globin encoding genes in six species (four mammals, one
bird, and one amphibian). Rows represent different species, columns represent
different sites or positions in the DNA sequence. At the majority of sites, all
nucleotides are identical, reflecting the fact that the sequences compared are
homologous. At certain positions, however, differences occur, resulting from
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Fig. 4.5. Phylogenetic inference from DNA sequence alignments. The top
figure shows a section of the DNA sequence alignment for the β-globin encoding
gene in six species. The total alignment has a length of 444 nucleotides. The bottom
figure shows a phylogenetic tree inferred from this alignment with DNAML, to be
discussed in Section 4.4.5.

mutational changes during evolution. In the fifth column, for instance, human,
rabbit, mouse, and opossum have a C, chicken has an A, and frog has a G.
This reflects the fact that the first four species are mammals and therefore
more closely related to each other than to the two remaining species. Obvi-
ously, however, nucleotide substitutions are not as deterministically related
to the phylogenetic tree as in this example. Evolution is driven by stochastic
forces that act on genomes, and our objective is to discern significant simi-
larities between diverged sequences amidst a chaos of random mutation and
natural selection. Faced with noisy data resulting from intrinsically stochas-
tic processes, the most powerful methods make use of probability theory. This
chapter will start with a brief summary of the older non-probabilistic methods
– genetic distance-based clustering, discussed in Section 4.2, and parsimony,
discussed in Section 4.3 – which will then be contrasted with the newer prob-
abilistic approach, discussed in Section 4.4. Based on a mathematical model
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of nucleotide substitution in terms of a homogeneous Markov chain, a phy-
logenetic tree can be interpreted as a probabilistic generative model, which
allows us to compute the likelihood of an observed DNA sequence alignment.
The practical computation draws on well-established inference algorithms for
Bayesian networks, discussed in Section 2.3.6. This result allows the applica-
tion of standard inference procedures from statistics and machine learning,
as reviewed in Chapter 1: maximum likelihood (Section 4.4.5), bootstrapping
(Section 4.4.6), and Bayesian MCMC (Section 4.4.7).

4.2 Distance and Clustering Methods

4.2.1 Evolutionary Distances

Figure 4.6 shows the small section of an alignment of β-globin encoding DNA
sequences from human, rabbit, and chicken. For the majority of sites the
nucleotides of the different species are identical, which reflects the homology
of the sequences. However, for a small proportion of sites, the nucleotides differ
as a consequence of past mutations. For example, the nucleotide at the fourth
site of the human sequence is an A, while the homologous sequence in rabbit
has a G in this position. A comparison of the sequence pairs human versus
chicken and rabbit versus chicken reveals three differences, respectively. A
naive approach to phylogenetics is to count all the pairwise differences between
the sequences, here shown in the table at the bottom left of Figure 4.6, and to
derive a tree from them, as explained shortly and displayed in the bottom of
Figure 4.6. Note that in this particular example, the tree we obtain in this way
is intuitively plausible in that it groups human with rabbit, which is another
mammal, rather than chicken, which is a bird.

A problem of this naive approach is that the pairwise difference between
two taxa, that is, the observed number of sites in which two sequences differ,
is not necessarily the same as the actual number of nucleotide substitutions
that have occurred during evolution. Figure 4.7 gives an illustration. In the
tree in the top left, the contemporary species have nucleotides A and G at
a given site in the alignment, and the most recent common ancestor had
an A at the corresponding position. This means that one nucleotide substi-
tution event has occurred during evolution, along the right branch of the
tree, and one nucleotide substitution is observed in the alignment of the ex-
tant sequences. Consequently, the estimated and actual numbers of nucleotide
substitutions are the same, and the naive approach outlined above provides
the right answer. However, in the tree in the middle of the top row of Fig-
ure 4.7, a separate nucleotide substitution event has occurred in each of the
two branches, and the total number of nucleotide substitutions on the path
connecting the two extant species is 2. The number of nucleotide substitutions
observed from the DNA sequence alignment, on the other hand, is 1 and thus
misses out one of the nucleotide substitution events. In fact, in all the other
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Human . . . T G T A T C G C T C . . .
Rabbit . . . T G T G T C G C T C . . .

Human . . . T G T A T C G C T C . . .
Chicken . . . A G T C T C G T T C . . .

Rabbit . . . T G T G T C G C T C . . .
Chicken . . . A G T C T C G T T C . . .

Human

Rabbit

Rabbit Chicken
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Fig. 4.6. Genetic distances. The top figure shows a small section of an align-
ment of homologous β-globin encoding DNA sequences from human, rabbit, and
chicken. Counting the number of nucleotide substitutions by which the sequences
differ leads to the table in the bottom left, from which the phylogenetic trees in the
bottom centre and right are obtained. The two trees are equivalent ways of display-
ing the same information. For the tree in the middle, information about pairwise
genetic distances is contained in the branch lengths, indicated by the numbers on
the branches. For the cladogram on the right, all the information is contained in the
horizontal branch lengths, whereas the vertical branch lengths are arbitrary and do
not convey any information. Note that the pairwise genetic distances, shown in the
table on the left, are recovered by summing over the lengths of all the branches sep-
arating two sequences. Also, note that this example is given for illustration purposes
only, and that real phylogenetic inference is based on much longer DNA sequences.

evolutionary scenarios depicted in Figure 4.7, we find that the observed num-
ber of nucleotide substitutions systematically underestimates the true number
of nucleotide substitutions that have occurred during evolution. Consequently,
the naive approach to measuring evolutionary distances by just counting the
number of differences between two sequences is flawed and does not properly
reflect the real amount of evolutionary change.

The failure of the naive approach to determining evolutionary distances
can be understood from the following consideration. Assume that two lineages
separated t time units ago, and that the nucleotide substitution rates for these
lineages are constant during evolution. Then, the actual number of nucleotide
substitutions along these lineages is proportional to time: the more time has
passed, the more nucleotide substitution events will have occurred. In the
limit of an infinite amount of time, t → ∞, an infinite number of nucleotide
substitutions will have occurred, which implies that the DNA sequences of
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Single substitution

1 change, 1 difference

Coincidental substitution Parallel substitution

2 changes, 1 difference 2 changes, no difference
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2 changes, 1 difference
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C

C
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G A

C

C

Fig. 4.7. Hidden and multiple nucleotide substitutions. The figure contains
several phylogenetic trees, which display different nucleotide substitution scenarios.
In each tree, the circles at the leaf level represent contemporary sequences from a
DNA sequence alignment, for which a pairwise distance is to be computed. The let-
ters inside these circles represent nucleotides at a given site in the alignment. Nodes
further down in the tree hierarchy (that is, below the leaf nodes) represent (usually
extinct) ancestors. The letters at these nodes show nucleotides at the corresponding
site in the ancestral DNA sequence. For the tree in the top left, the observed num-
ber of nucleotide substitutions is identical to the actual number of substitutions that
have occurred during evolution. However, in all the other cases, the actual number
of nucleotide substitutions is larger than the observed number, hence a naive ap-
proach to computing pairwise evolutionary distances systematically underestimates
their true values. Adapted from [27], by permission of Blackwell Science.

the corresponding extant species will be completely unrelated. However, since
DNA is composed of a four-nucleotide alphabet, two unrelated sequences will
still show, on average, an accidental nucleotide concurrence for 25% of the
sites. This means that the naive distance measure shows a saturation effect
and converges, for t → ∞, towards a limit value of 75% difference, as opposed
to the true evolutionary distance, which, for t → ∞, diverges to infinity.
Figure 4.8 illustrates this effect.

To correct for this effect, we need to apply a nonlinear transfer function
that maps the interval [0, 0.75] onto the positive real line, [0,∞). One such
function is given by

d = −3
4

log(1 − 4
3
do) (4.1)
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Sequence distance

Time

Observed distance

Expected distance

Fig. 4.8. Saturation of pairwise distance estimation. While the true evolu-
tionary distance between two sequences is proportional to time, the average fraction
of nucleotide differences observed in a DNA sequence alignment shows a saturation
effect and converges towards a limit value of 0.75. Adapted from [27], by permission
of Blackwell Science.

where do is the naive, observed evolutionary distance between two sequences,
and d is the corrected distance. For small phylogenetic times, t → 0, the
fraction of observed differences is small, do → 0, and a first-order Taylor
series expansion of the log, log(1 − 4

3do) = − 4
3do, shows that the observed

and corrected pairwise distances are identical: d = do. However, for large
times, t → ∞, which implies do → 3

4 , we have d → ∞. Consequently, as
opposed to the observed distances do, the corrected distances d of (4.1) avoid
the saturation. Note that the choice of transfer function is not unique, and
that there are several alternatives to equation (4.1). For more details, see, for
instance, Section 8.6 in [4], and Section 5.2 in [27].

4.2.2 A Naive Clustering Algorithm: UPGMA

Given corrected pairwise distances, dik, we can think of applying a standard
clustering algorithm. A simple approach is to use hierarchical average linkage
clustering, which in the phylogenetics literature is usually referred to as un-
weighted pair group method using arithmetic averages (UPGMA). The name
of the algorithm reflects the way the distance between two clusters is defined.
If dab is the distance between two sequences a and b, then the distance dAB

between two clusters, that is, groups of sequences A and B, is defined as
follows:

dAB =
1

|A||B|
∑
a∈A

∑
b∈B

dab (4.2)
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Fig. 4.9. Illustration of clustering with UPGMA. Sequences correspond to
the black dots in the plane and form the leaves of the tree, placed at height zero. Top
left: The sequences with the smallest distance dij are grouped together, and a new
node representing this cluster is introduced at height dij/2. Top right and bottom
left: The algorithm continues in this way, defining the distance between clusters by
(4.2). Bottom right: The algorithm terminates when only one cluster, corresponding
to the root of the tree, remains. Adapted from [4], by permission of Cambridge
University Press.
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Fig. 4.10. Failure of UPGMA. The tree in the middle satisfies the molecular
clock constraint: the distance between the root and a leaf node is the same for all
lineages, which implies that DNA sequences evolve at a constant rate throughout
the tree and that all lineages have experienced, on average, the same number of
nucleotide substitutions. This constraint on the branch lengths usually does not
hold, and a real tree tends to resemble more the example on the left. When the
molecular clock constraint is violated, the naive UPGMA clustering algorithm may
lead to systematically wrong results, as demonstrated on the right. The evolutionary
distance between two taxa is obtained by summing the lengths of all the branches
on the connecting path. Consequently, UPGMA will erroneously group taxa 1 and
2 together, since their distance is 0.1 + 0.1 + 0.1 = 0.3, which is smaller than that
of the true neighbouring pairs, taxa 1 and 3, and taxa 2 and 4, which both have
an evolutionary distance of 0.1 + 0.4 = 0.5. Adapted from [4], by permission of
Cambridge University Press.

where |A| and |B| are the numbers of sequences in clusters A and B, respec-
tively. Drawing on this definition, the clustering algorithm can be defined as
follows (adapted from [4], Chapter7):

Initialization
• Assign each sequence i to its own cluster Ci. Define one leaf for each

sequence, and place it at height zero.
Iteration

• Determine the two clusters Ci and Cj for which dij is minimal.
• Define a new cluster Ck = Ci ∪ Cj .
• Add Ck to the current clusters and remove Ci and Cj .
• Define a new node k with daughter nodes i and j and place it at height

dij/2.
Termination

• When only two clusters Ci, Cj remain, place the root at height dij/2.

Figure 4.9 illustrates this algorithm.
UPGMA is fast and easy to use. It has, however, serious drawbacks. Recall

from Section 4.1 that it is difficult to infer the root position of a phylogenetic
tree from a DNA sequence alignment. However, the tree we obtain with UP-
GMA, shown in Figure 4.9, does contain a well-defined root. This ability to
root the tree is a consequence of imposing a constraint on the branch lengths:
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as seen from Figure 4.9, the distances between the root and the leaf nodes
are the same for all lineages. This so-called molecular clock constraint im-
plies that DNA sequences evolve at a constant rate throughout the tree of
life and that the average number of nucleotide substitutions is the same for
all lineages. For many species, this assumption has been proved wrong (see,
for instance, [27], Chapter 7, and [40]). Figure 4.10 shows that UPGMA may
lead to systematically wrong results when the molecular clock constraint is
violated. Consequently, it should not be used in phylogenetic analysis.

4.2.3 An Improved Clustering Algorithm: Neighbour Joining

Figure 4.10 shows that UPGMA may give wrong results when two neighbour-
ing taxa have branches with very different lengths. To overcome this short-
coming, consider the following “distance-like” function introduced in [32] and
[39]:

Dij = dij − d̄i − d̄j ; d̄i =
1

|L| − 2

∑
l∈L

dil (4.3)

where the dij are the original5 corrected pairwise distances, L is the set of
leave nodes, and |L| is the number of leaves in the tree. The idea is to subtract,
from the original distances dij , the average distances to all other leaves. This
correction compensates for long edges. Note, however, that Dij may take
negative values and is therefore not a distance measure. Applying (4.3) to the
tree on the right of Figure 4.10, we obtain:

d̄1 =
1
2
(0.3 + 0.6 + 0.5) = 0.7 = d̄2

d̄3 =
1
2
(0.5 + 0.6 + 0.9) = 1.0 = d̄4

D12 = d12 − d̄1 − d̄2 = 0.3 − 0.7 − 0.7 = −1.1
D13 = d13 − d̄1 − d̄3 = 0.5 − 0.7 − 1.0 = −1.2 < D12

On selecting the taxa pair (i, j) for which Dij is minimal, we now obtain the
true pairs (1, 3) and (2, 4) and avoid the false pair (1, 2) that we would obtain
with UPGMA. A general proof is given in [39]. To proceed, recall the standard
axioms a set of numbers {dij} has to satisfy in order to form a metric:

1) Non-negativity: dij ≥ 0
2) Symmetry: dij = dji

3) Distinctness: dij = 0 if and only if i = j
4) Triangle inequality: dij ≤ dik + dkj

Obviously, a distance cannot be negative (axiom 1) and is independent of the
direction in which it is measured (axiom 2). Moreover, the distance between
5 “Original” means “not modified according to (4.3).” However, the raw distances

from the sequence alignment have to be corrected according to (4.1).
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n

Fig. 4.11. Illustration of the additivity of a tree metric. Nodes i, j, and
n are leaf nodes, while k is a hidden node. See text for details.

two points is zero if and only if these two points are the same (axiom 3).
Axiom 4 states that the distance between two points cannot exceed the sum of
the distances between each point and a third. This so-called triangle inequality
is illustrated in Figure 4.11. The sum of the distances dik and dkj is greater
than the distance dij , which expresses the trivial fact that by travelling from
i to j via k we make a detour and therefore have to cover a longer distance
than when following the direct path “as the crow flies.” However, for a tree,
such a shortcut does not exist, and a path from i to j has to pass through k.
Consequently, while being a metric is a necessary condition for being a valid
measure of evolutionary change, it is not a sufficient condition, and we need
a further axiom to define a tree. This so-called additivity constraint can be
formulated in different equivalent ways (see, for instance, [27], Chapter 2).
The simplest formulation is as follows [4]:

A set of distances {dij}, i, j ∈ L, is said to be additive if there is a
tree with a set of leaves L such that the distance dij between any pair
of leaves (i, j) ∈ L2 is the sum of the lengths of the edges on the path
connecting them.

Applied to Figure 4.11 this additivity constraint implies that axiom 4 has to
be replaced by a more stringent condition:

dij = dik + dkj (4.4)

For the edge configuration of Figure 4.11 we thus obtain:

din = dik + dkn

djn = djk + dkn

⇒ 2dkn = din + djn − dik − dkj

⇒ dkn =
1
2
(din + djn − dij) (4.5)

Note that in the third line we have made use of the symmetry condition, axiom
2, and in the last line, we have applied (4.4). The upshot of this calculation
is that we can compute the distance between the hidden node k and the leaf
node n from the distances between the leaf nodes i, j, and n. This property
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can be exploited to obtain an improved clustering algorithm, which is called
neighbour joining and was introduced in [32]. Start from a set L of leaf nodes,
one for each sequence, and then iterate:

• Find the pair of nodes (i, j) that minimizes Dij , defined by (4.3).
• Replace (i, j) by a new node k with new distances dkn = 1

2 (din+djn−dij),
for all remaining nodes n in L. Note that the expression for dkn follows
from (4.5).

• Remove the old leaves i and j from L, and add k as a new leaf to L.
• Add k to the tree, joining it to nodes i and j with edge lengths dik =

1
2 (dij + d̄i − d̄j) and djk = 1

2 (dij + d̄j − d̄i), respectively, where d̄i and d̄j

are defined by (4.3).

The algorithm terminates when only two nodes i, k remain, which are con-
nected by an edge of length dik. The expressions for the new distances dik

and djk in the last step of the iteration are obtained as follows. From (4.5) we
have (changing the indices i ↔ n and using the symmetry of a metric):

dik = dki =
1
2
(dni + dji − dnj) =

1
2
(dij + din − djn) (4.6)

If the additivity constraint is satisfied, then (4.6) holds for all the remaining
leaf nodes n ∈ L \ {i, j}, and we could compute dik from any n. To allow
for violations of the additivity constraint, Studier and Keppler [39] proposed
summing over all n. Dividing by |L| − 2 and applying definition (4.3) leads to
the expression stated in the iteration. The derivation for djk is analogous.

It can be shown that if the distances {dij}, i, j ∈ L, satisfy the tree met-
ric axioms, that is, the metric axioms and the additivity constraint, then the
true tree will be correctly reconstructed with neighbour joining [32], [39]. How-
ever, real evolutionary distances usually do not exactly satisfy the additivity
constraint, which compromises the reconstruction of the phylogenetic tree.
Figure 4.12 shows a simple application of the neighbour joining algorithm,
taken from [27]. The upper triangle of the table shows the pairwise distances
between five hominoids. These distances were obtained from an alignment of
mitochondrial DNA sequences, using a correction function similar to (4.1). Ap-
plying the neighbour joining algorithm to these pairwise distances, we obtain
the phylogenetic tree shown in the bottom of Figure 4.12. The lower triangle
of the table in Figure 4.12 shows the pairwise distances obtained from this
tree. Note that these distances deviate to a certain extent from the observed
distances. This deviation is a consequence of the fact that for evolutionary
distances obtained from real DNA sequences, the tree metric axioms are not
exactly satisfied, as mentioned above.

4.2.4 Shortcomings of Distance and Clustering Methods

Figure 4.13 illustrates the inherent shortcoming of distance methods: by map-
ping the high-dimensional space of sequences into the low-dimensional space
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Fig. 4.12. Phylogenetic analysis with distance methods. The upper trian-
gle of the table shows the pairwise evolutionary distances between five hominoids,
obtained from an alignment of mitochondrial DNA sequences. Applying the neigh-
bour joining algorithm to these distances gives the phylogenetic tree shown in the
bottom. The pairwise distances obtained from this tree are shown in the lower trian-
gle of the table. These estimated distances show some deviation from the distances
obtained from the alignment, which reflects the fact that the true evolutionary dis-
tances do not satisfy the additivity constraint of a tree metric. Adapted from [27],
by permission of Blackwell Science.

of pairwise distances, a considerable amount of information inevitably gets
lost. Another way of describing this shortcoming is that once converted into
pairwise distances, we can no longer reconstruct the original sequences. Now,
as discussed above, pairwise distances need to satisfy the additivity constraint
of a tree metric in order to define a tree. Sequences that satisfy this additivity
constraint live in a low-dimensional submanifold in sequence space. Due to
the intrinsic stochasticity of evolutionary processes, real DNA sequences are
not confined to this submanifold, that is, the pairwise distances computed
from the sequence alignment usually violate the additivity constraint. The
consequence is that the tree distances, dtree

ij , deviate systematically from the
observed distances, dij , as shown in Figure 4.12, and the neighbour joining
algorithm is no longer guaranteed to reconstruct the correct tree.

The attractive feature of clustering algorithms, like neighbour joining, is
their low computational cost. This comes with the deluding feature of pseudo-
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Fig. 4.13. Information loss of distance methods. By computing pairwise
evolutionary distances from a DNA sequence alignment, the high-dimensional space
of DNA sequences is mapped into the low-dimensional space of pairwise distances.
This drastic reduction of dimension results in an inevitable loss of information.

determinism: the algorithm has no parameters to be tuned, it avoids the need
to search through the space of all trees, and it is not troubled by the existence
of local optima known from many iterative optimization methods. The price
to pay for this computational convenience is the fact that neighbour joining
does not optimize any objective function. Consequently, there is no guarantee
that the algorithm finds the best tree, according to some optimality criterion.
In a critical application, like the Florida court case described in Section 4.1,
this shortcoming is obviously unacceptable. A better approach, therefore, is
to search for the tree that optimizes some optimality criterion, as proposed by
Fitch and Margoliash [12]. Such a procedure comes at higher computational
costs, but with the power and speed of modern computers continuously in-
creasing, this drawback becomes increasingly less important. Note, however,
that any optimality function based on pairwise distances still suffers from the
inherent information loss of the mapping from the sequence space into the
space of pairwise distances, as discussed above and depicted in Figure 4.13.
We will therefore, in the remainder of this chapter, look at methods that base
the inference on the DNA sequences themselves.

4.3 Parsimony

4.3.1 Introduction

The basic idea behind parsimony, introduced in [11], is that the optimal phy-
logenetic tree is the one requiring the smallest number of nucleotide substi-
tutions along its branches. Take, as an example, Figure 4.14, which shows
an alignment of four DNA sequences and a hypothetical phylogenetic tree, in
which strain 1 is grouped with strain 2, and strain 3 is grouped with strain 4.
We pick a column of the alignment and distribute the nucleotides across the
leaf nodes. Next, we try to reconstruct the evolutionary history by assigning
nucleotides to the hidden nodes, which correspond to ancestral, unobserved
sequences. For the first column of the alignment, strains 1 and 2 have an A,
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Fig. 4.14. Illustration of parsimony: single tree. For each column of nu-
cleotides in the alignment, the evolutionary history is to be reconstructed by assign-
ing nucleotides to the hidden nodes. An arbitrary assignment, shown on the right,
can give up to five nucleotide substitutions needed for a reconstruction of evolution.
A more skilful choice, shown at the bottom, reduces this number to a single sub-
stitution. Under the principle of parsimony this reconstruction is preferred over the
less parsimonious reconstruction that requires five substitutions.

while strains 3 and 4 have a C. If we assign nucleotides to the hidden nodes
arbitrarily, say a G to the first hidden node, and a T to the second, as shown
on the right of Figure 4.14, we can get up to five nucleotide substitution events
needed for a reconstruction of evolution. However, a more skilful choice, shown
at the bottom of Figure 4.14, can reduce this number to a single nucleotide
substitution. Under the principle of parsimony this reconstruction is preferred
over the less parsimonious reconstruction that requires five substitutions.

Next, we have to compare different trees. With four taxa, we have three
unrooted tree topologies: strain 1 can either be grouped with strain 2, with
strain 3, or with strain 4. For a given column of nucleotides from the alignment,
we repeat the previous process of assigning nucleotides to the hidden nodes
in the most parsimonious way. This is repeated for each of the possible tree
topologies in turn. We then count the number of nucleotide substitutions
needed. An example is given in Figure 4.15 where, for the first column in the
alignment, the tree that groups strains 1 and 2 against strains 3 and 4 requires
the smallest number of substitutions and is therefore preferred by parsimony.
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Fig. 4.15. Illustration of parsimony: tree selection. The figure shows the
three unrooted tree topologies that can be obtained with four taxa (where the taxa
are represented by numbers). For a given site in the DNA sequence alignment,
and for each of the possible tree topologies in turn, nucleotides are assigned to
the hidden nodes in the most parsimonious way; compare with Figure 4.14. The
tree in the top left, which invokes only a single substitution, is preferred over the
other, less parsimonious trees, which require at least two substitutions. The whole
process is repeated for all sites in the alignment, and the total number of nucleotide
substitutions is counted, for each tree in turn. Then, the tree that invokes the least
total number of nucleotide substitutions is selected as the best candidate for the
true evolutionary tree.

In fact, the whole process is repeated for all sites in the alignment. The total
number of nucleotide substitutions is determined for each tree, and the tree
that invokes the least total number of nucleotide substitutions is selected as
the best candidate for the true evolutionary tree.

Parsimony is not limited in the number of taxa, and the restriction to four
sequences in the previous example was chosen for illustration purposes only.
Note, however, that the number of tree topologies grows super-exponentially
with the number of taxa (see Table 4.2 on page 121), and that the optimization
problem is NP–hard [36]. Consequently, iterative and approximate methods
are needed for large sequence alignments of many taxa.
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Fig. 4.16. Failure of parsimony. The plot in the top left shows the true tree, in
which the branch lengths of related taxa differ significantly. When the ratio of the
long and short branch lengths exceeds a certain threshold, parsimony systematically
predicts the wrong tree, shown in the top right. For an explanation, consider the
tree in the middle left, which shows two nucleotide substitutions, one on either long
branch. When these nucleotide substitutions are different, both tree topologies give
the same score of 2 substitutions. Such nucleotide configurations are uninformative
in that they do not prefer one tree over the other. When the nucleotide substitutions
are identical, which happens, on average, in 25% of the cases, the tree on the right
has a parsimony score of 1. This score is lower than that of the true tree, which is
2. Hence, such so-called homoplasious substitutions support the wrong tree. When
the ratio of the external branch lengths exceeds a critical threshold, these “bad”
substitutions outweigh, on average, the “good” substitutions that support the true
tree. Consequently, parsimony will obtain the wrong tree.
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4.3.2 Objection to Parsimony

As opposed to the clustering methods discussed in the previous section, par-
simony is an optimality method that minimizes a well-defined objective func-
tion: the total number of nucleotide substitutions along the tree branches. This
approach shows a certain resemblance to minimum description length [31] in
information theory and allows, unlike clustering methods, an evaluation of the
quality of a reconstructed tree.

However, as opposed to the methods to be described in the next section,
parsimony is not based on a probabilistic generative model. Proponents of
parsimony used to consider this model-free inference an advantage [9], but it
has now become clear that it is, in fact, the limiting case of a model-based
approach – for the limit of a highly implausible evolutionary scenario. We will
revisit this aspect later, in Section 4.4.4.

The fundamental objection to parsimony is that it is not consistent. Con-
sistency is the desirable feature of a method to converge on the right answer
given enough data. In certain evolutionary scenarios, however, parsimony gives
the wrong tree even if we add more and more data [6], [8]. The classic sce-
nario where this might happen has been termed long branch attraction and is
illustrated in Figure 4.16.

4.4 Likelihood Methods

Likelihood methods are based on an explicit mathematical model of nucleotide
substitution, which allows the formulation of the inference process in terms of
a probabilistic generative model. This fact renders likelihood methods consid-
erably more powerful than clustering and parsimony, discussed in Sections 4.2
and 4.3. As opposed to clustering, inference is based on an optimality function,
which allows us to objectively compare different trees and to test hypotheses
about evolutionary scenarios. Inference is based on the whole DNA sequence
alignment, which avoids the information loss inherent in distance methods. By
basing our inference on an explicit mathematical model of nucleotide substi-
tution, the shortcomings of “model-free” inference are avoided. In particular,
likelihood methods subsume parsimony as a limiting case for a rather unreal-
istic evolutionary scenario.

4.4.1 A Mathematical Model of Nucleotide Substitution

The driving forces for evolution are nucleotide substitutions, which can be
modelled as transitions in a 4-element state space, shown in Figure 4.17.
P (y|x,w), where x, y ∈ {A,C,G, T}, denotes the probability of a transition
from nucleotide x into nucleotide y, conditional on the elapsed phylogenetic
time w. The latter is given by the product of an unknown mutation rate λ
with physical time t: w = λt. To rephrase this: P (y|x,w) is the probability
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Fig. 4.17. Mathematical model of nucleotide substitution. Left: Nucleotide
substitutions are modelled as transitions in a 4-element state space. The transition
probabilities depend on the phylogenetic time w = λt, where t is physical time, and
λ is an unknown nucleotide substitution rate. Right: Dependence of the transition
probabilities (vertical axis) on w (horizontal axis). The graphs were obtained from
the Kimura model (4.16) with a transition–transversion ratio of 2.

that nucleotide y is found at a given site in the DNA sequence given that w
phylogenetic time units before the same site was occupied by nucleotide x.

An intuitively plausible functional form for these probabilities is shown on
the right of Figure 4.17. For w = 0, there is no time for nucleotide substi-
tutions to occur. Consequently, P (A|A,w = 0) = 1, and P (C|A,w = 0) =
P (G|A,w = 0) = P (T |A,w = 0) = 0. As w increases, nucleotide substitu-
tions from A into the other states lead to an exponential decay of P (A|A,w)
and, concurrently, an increase of P (C|A,w), P (G|A,w), and P (T |A,w). The
rate of this decay or increase depends on the type of nucleotide substitution.
Nucleotides are grouped into two families: purines (A and G), and pyrim-
idines (C and T). Nucleotide substitutions within a nucleotide class (purine
→ purine, pyrimidine → pyrimidine), so-called transitions,6 are more likely
than substitutions between nucleotide classes (purine ↔ pyrimidine), so-called
transversions. For w → ∞, the system forgets its initial configuration as the
result of the mixing caused by an increasing number of nucleotide substitu-
tions (including backsubstitutions and multiple substitutions). Consequently,

6 Unfortunately this terminology, which is used in molecular biology, leads to a
certain ambiguity in the meaning of the word transition. When we talk about
transitions between states, where the states are associated with nucleotides, as
in Figure 4.17, a transition can be any nucleotide substitution event. When we
talk about transitions as opposed to transversions, a transition refers to a certain
type of nucleotide substitution.
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P (y|x,w) → Π(y) for w → ∞, where x, y ∈ {A,C,G, T}, and Π(y) is the
equilibrium distribution (here: Π(y) = 1/4 ∀ y).

4.4.2 Details of the Mathematical Model of Nucleotide
Substitution

This section provides the details of the mathematical model outlined in
the preceding section and may be skipped at a first reading. Let yi(t) ∈
{A,C,G, T} denote the nucleotide at site i and time t, that is, the subscript
refers to the position in the alignment, while the expression in brackets de-
notes physical or (later) phylogenetic time. (Note that this notation deviates
from that of the other sections in this chapter; see Table 4.1.) The total length
of the alignment is N , that is, i ∈ {1, . . . , N}. The derivation of the afore-
mentioned results is based on the theory of homogeneous Markov chains and
the following assumptions:

1. The process is Markov:
P
(
yi(t+∆t)|yi(t), yi(t−∆t), . . .

)
= P

(
yi(t+∆t)|yi(t)

)
2. The Markov process is homogeneous in time:

P
(
yi(s+ t)|yi(s)

)
= P

(
yi(t)|yi(0)

)
3. The Markov process is the same for all positions:

P
(
yi(t)|yi(0)

)
= P

(
yk(t)|yk(0)

)
∀ i, k ∈ {1, . . . , N}

4. Substitutions at different positions are independent of each other:

P
(
y1(t), . . . , yN (t)|y1(0), . . . , yN (0)

)
=

N∏
i=1

P
(
yi(t)|yi(0)

)
These assumptions imply that the probability of a nucleotide substitution
does not depend on earlier substitutions (1), is site-independent (3), unaf-
fected by substitutions at other sites (4), and does not change in the course of
evolution (2). We will discuss later, in Sections 4.4.9–4.4.11, the implications
of these approximations and how they can be relaxed. For now, note that as
a consequence of approximations 1–4, the nucleotide substitution process at
a given site is completely specified by the following 4-by-4 transition matrix:

P(t) =

⎛⎜⎜⎝
P (y(t) = A|y(0) = A) . . . P (y(t) = A|y(0) = T )
P (y(t) = G|y(0) = A) . . . P (y(t) = G|y(0) = T )
P (y(t) = C|y(0) = A) . . . P (y(t) = C|y(0) = T )
P (y(t) = T |y(0) = A) . . . P (y(t) = T |y(0) = T )

⎞⎟⎟⎠ (4.7)

Because of the site independence, the site label has been dropped to simplify
the notation. Equation (4.7) obviously implies that

P(0) = I (4.8)

where I is the unit matrix. For an infinitesimally small time interval dt we
make the ansatz
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P(dt) = P(0) + Rdt (4.9)

where R is a constant matrix, the so-called rate matrix. Now, a homogeneous
Markov chain satisfies the Chapman–Kolmogorov equation:

P(t1 + t2) = P(t1)P(t2) = P(t2)P(t1) (4.10)

for arbitrary t1, t2 ≥ 0; see, for instance, [19] or [28]. Setting t1 = t and t2 = dt,
we get:

P(t+ dt) = P(dt)P(t) (4.11)

Inserting equations (4.8) and (4.9) into (4.11) gives

P(t+ dt) = (I + Rdt)P(t) (4.12)

and, by a simple transformation,

dP(t)
dt

= RP(t) (4.13)

Equation (4.13) describes a system of linear differential equations with initial
condition (4.8). The solution is:

P(t) = eRt (4.14)

To ensure that P(t) is a proper transition matrix, that is, has columns that
sum to 1, the columns of the rate matrix R have to sum to 0. The proof
follows from (4.9):

1 =
∑

i

Pik(dt) = 1 + dt
∑

i

Rik ⇐⇒
∑

i

Rik = 0 (4.15)

A possible design for R, the so-called Kimura model [21], is of the form

R =

⎛⎜⎜⎝
−2β − α β α β

β −2β − α β α
α β −2β − α β
β α β −2β − α

⎞⎟⎟⎠ (4.16)

Here, the rows (from top to bottom) and columns (from left to right) corre-
spond to the nucleotides A, C, G, T (in the indicated order). The positive
parameters α and β denote the rates of transitions and transversions, respec-
tively. An illustration is given in Figure 4.18. Inserting (4.16) into (4.14) leads
to [21]:

P(t) = eRt =

⎛⎜⎜⎝
d̃(t) f̃(t) g̃(t) f̃(t)
f̃(t) d̃(t) f̃(t) g̃(t)
g̃(t) f̃(t) d̃(t) f̃(t)
f̃(t) g̃(t) f̃(t) d̃(t)

⎞⎟⎟⎠ (4.17)
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Fig. 4.18. Kimura model of nucleotide substitution. The figure presents
a graphical display of the Kimura rate matrix (4.16). The positive parameter α
denotes the transition rate, while the positive parameter β denotes the transversion
rate. The thickness of a line is related to the size of the respective rate parameter,
indicating that transitions are more likely than transversions: α > β.

where

f̃(t) =
1
4
(1 − e−4βt) (4.18)

g̃(t) =
1
4
(1 + e−4βt − 2e−2(α+β)t) (4.19)

d̃(t) = 1 − 2f̃(t) − g̃(t) (4.20)

Define
τ =

α

β
, λ = 4β, w = λt (4.21)

where w represents phylogenetic time – as opposed to physical time t – and
τ is called the transition–transversion ratio. With these definitions, equa-
tions (4.18)–(4.20) simplify:

f(w) =
1
4
(1 − e−w) (4.22)

g(w) =
1
4
(1 + e−w − 2e− τ+1

2 w) (4.23)

d(w) = 1 − 2f(w) − g(w) (4.24)

Denote by P (y|x,w) the probability that a given site in the DNA sequence
is occupied by nucleotide y conditional on the fact that w phylogenetic time
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units before, this site was occupied by nucleotide x. We can then rewrite P,
the transition matrix of (4.7), as follows:

P(w) =

⎛⎜⎜⎝
P (A|A,w) P (A|C,w) P (A|G,w) P (A|T,w)
P (G|A,w) P (G|C,w) P (G|G,w) P (G|T,w)
P (C|A,w) P (C|C,w) P (C|G,w) P (C|T,w)
P (T |A,w) P (T |C,w) P (T |G,w) P (T |T,w)

⎞⎟⎟⎠

=

⎛⎜⎜⎝
d(w) f(w) g(w) f(w)
f(w) d(w) f(w) g(w)
g(w) f(w) d(w) f(w)
f(w) g(w) f(w) d(w)

⎞⎟⎟⎠ (4.25)

where d(w), f(w), and g(w) are given by (4.22)–(4.24). Setting τ = 2 leads
to the graphs shown in Figure 4.17. Note that all these graphs converge to
the same value of 1/4. Hence in equilibrium, for w → ∞, all nucleotides occur
with equal probability P (A) = P (C) = P (G) = P (T ) = 1/4. We can prove
that this uniform distribution is an immediate consequence of the Kimura
model (4.16). Define the column vector u to represent the time-dependent
marginal distribution over the nucleotides,

u(w) =
(
P (y[w] = A), P (y[w] = C), P (y[w] = G), P (y[w] = T )

)†
(4.26)

which evolves in a homogeneous Markov chain determined by the transition
matrix P of (4.25):

u(w0 + w) = P(w)u(w0) (4.27)

Now, an ergodic Markov chain is known to converge to its stationary distri-
bution irrespective of its initial condition7 (see, for instance, [19], Chapter 6):

lim
w→∞ u(w) = π (4.28)

where the stationary distribution

π = (ΠA, ΠC , ΠG, ΠT )† (4.29)

is characterized by its invariance with respect to the Markov operator P:

P(w)π = π (4.30)

Recall that w = λt represents phylogenetic time. Equation (4.30) holds true
for all t > 0, which includes the limiting case t → 0. Replacing w by dt in
(4.30) and making use of (4.8) and (4.9) gives:

Rπ = 0 (4.31)
7 Compare with Section 2.2.2. The only difference is that the Markov process dis-

cussed in Section 2.2.2 was discrete in time, whereas the Markov chain we are
dealing with in the present chapter is continuous in time.
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For the Kimura model (4.16), the distribution π satisfying (4.31) can easily be
shown to be the uniform distribution, π = (1

4 ,
1
4 ,

1
4 ,

1
4 )†, which completes the

proof. To model a non-uniform stationary distribution over the nucleotides,
the rate matrix of (4.16) has to be extended:

R =

⎛⎜⎜⎝
. ΠAβ ΠAα ΠAβ

ΠCβ . ΠCβ ΠCα
ΠGα ΠGβ . ΠGβ
ΠTβ ΠTα ΠTβ .

⎞⎟⎟⎠ (4.32)

where the diagonal elements are given by the constraint that columns have to
sum to zero. It can easily be shown that this rate matrix satisfies (4.31) for
arbitrary distributions π = (ΠA, ΠC , ΠG, ΠT )†. The rate matrix of (4.32) was
proposed by Hasegawa, Kishino and Yano [20] and is called the HKY85 model
of nucleotide substitution. Obviously, it subsumes the Kimura model (4.16) as
a limiting case for ΠA = ΠC = ΠG = ΠT = 1

4 . A different parameterization
was proposed by Felsenstein and Churchill [10]. More general models have
been studied, as discussed in Section 6.3. Posada and Crandall [30] compared
different rate matrices and applied statistical hypothesis tests to decide which
model is most appropriate in a given evolutionary context. A similar compar-
ison, following a Bayesian approach, was carried out by Suchard et al. [40].
Given a nucleotide substitution model, its parameters can be inferred from the
sequence alignment by applying the methods to be discussed in the remainder
of this chapter. However, to keep both the notation and the exposition of the
methodology sufficiently simple, as appropriate for an introductory tutorial,
this inference will not be covered in the present chapter. For the remainder of
this chapter we will therefore assume that the rate matrix R and its parame-
ters are fixed and known. This assumption will be relaxed later, in Chapters 5
and 6.

Note that by the homogeneity hypothesis, the rate matrix R is assumed to
be constant over the whole phylogenetic tree. Consequently, DNA sequences
converge towards the same equilibrium distribution π in all lineages, where π
is given by (4.31). Furthermore, if the assumed distribution of nucleotides is
equal to the equilibrium distribution π over the whole tree, the Markov model
is called stationary. In what follows, we will assume that both the homogeneity
and stationarity assumptions are satisfied. A relaxation of these restrictions
will be discussed in Section 4.4.11.

Finally, note that Πx, x ∈ {A,C,G, T}, constitutes both a parameter of
the nucleotide substitution model, by (4.32), and a component of the station-
ary distribution over the nucleotides, by (4.29). In what follows, the notations
Πx and Π(x) will be used synonymously, with the former alternative em-
phasizing more the parameter aspect, and, conversely, the latter alternative
stressing more the distribution aspect.
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Section 4.4.2 xi(t): Nucleotide at site i and time t.
Other sections xi(t): Nucleotide associated with node i at site t.

Table 4.1. Conflicting notation. The table shows two different ways the symbols
xi(t), yi(t), and zi(t) are used in this chapter.

4.4.3 Likelihood of a Phylogenetic Tree

A phylogenetic tree is a particular example of a Bayesian network, and we
can therefore draw on the inference methods introduced in Chapters 1 and
2. In particular, we can expand the joint probability of the random variables
associated with the tree nodes in terms of a product of transition probabilities
(4.25) by applying the factorization rule (2.1). Denote by pa[i] the parent of
node i, which is the node with an arrow feeding into node i. Note that for a tree
there is only one such node, as opposed to the more general scenario discussed
in Section 2.1. Let xi denote the random variable or value8 associated with
node i, with xi ∈ {A,C,G, T}; see Table 4.1. Then

P (x1, . . . , xM ) = Π(xr)
∏

i∈N/{r}
P (xi|xpa[i], wi) (4.33)

by equation (2.1), where wi is the length of the branch or edge feeding into
node i, N is the set of all nodes, and r is the root node. Note that the
marginal distribution over nucleotides at the root node has been set to the
equilibrium distribution, Π(xr). This follows from the stationarity hypoth-
esis, which assumes that the base composition in the ancestral sequence is
equal to the equilibrium base composition and remains unchanged. Consider
Figure 4.19, left. Observed nodes, drawn as filled circles and labelled by
y1, y2, y3, and y4, represent contemporary species. Hidden nodes, drawn as
empty circles and labelled by z1 and z2, represent hypothetical ancestors.
We are interested in the joint probability P (y1, y2, y3, y4, z1, z2|w, S), where
y1, y2, . . . , z2 ∈ {A,C,G, T} represent nucleotides at the nodes, w is the vector
of all branch lengths, and S is a label defining the tree topology. To proceed,
we first transform the undirected graph of Figure 4.19, left, into the directed
graph of Figure 4.19, right, by setting, arbitrarily, the root of the tree to z1.
Then, application of (4.33) gives:

P (y1, y2, y3, y4, z1, z2|w, S) =
P (y1|z1, w1)P (y2|z1, w2)P (z2|z1, w5)P (y3|z2, w3)P (y4|z2, w4)Π(z1)

(4.34)

The equilibrium distribution over the four nucleotides, Π(z1), z1 ∈
{A,C,G, T}, is defined by (4.29) and (4.31) and is a parameter vector of the
nucleotide substitution model, as discussed in Section 4.4.2. For the Kimura
8 Recall that the notation does not distinguish between random variables and their

values.
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w2
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w3
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y4

y3

z1 z2w1

w2

w5 w4

w3

Fig. 4.19. Phylogenetic trees. Black nodes represent contemporary or extant
species. White nodes represent hypothetical ancestors, where lineages bifurcate (spe-
ciation). Left: Undirected graph. Right: Directed graph. Node z1 is the root of the
tree, and arrows are directed.

model, for instance, we have Π(A) = Π(C) = Π(G) = Π(T ) = 1
4 . The other

factors represent transition probabilities, which are given by (4.25). Note that
these transition probabilities depend on the branch lengths, wi, which are
defined in (4.21) and thus have an obvious and intuitively plausible interpre-
tation: they represent phylogenetic time.

In transforming the undirected graph into a DAG,9 we have arbitrarily
rooted the tree. This is possible for a reversible nucleotide substitution model.
Recall from Section 4.1 that we do not infer the direction of evolutionary
change from a DNA sequence alignment. Mathematically this fact is expressed
by the following reversibility condition:

P (y|x,w)Π(x) = P (x|y, w)Π(y) (4.35)

where x, y ∈ {A,C,G, T}. Obviously, (4.35) is satisfied for the Kimura model,
where Π(x) = Π(y) = 1

4 , and the symmetry of R, expressed in (4.16), implies
that P is also symmetric, by (4.14). For the HKY85 rate matrix, we see from
(4.32) that

RyxΠ(x) = RxyΠ(y) (4.36)

where Ryx is the element in the yth row and xth column10 of the rate matrix
R. This identity implies that11

[Rn]yxΠx = [Rn]xyΠy (4.37)

9 DAG stands for directed acyclic graph; see Section 2.1.1.
10 Recall that the rows and columns of the rate matrix R are associated with nu-

cleotides, that is, the first row corresponds to A, the second to C, the third to G,
and the fourth to T . The same applies to the columns. For example, for x = A
and y = C, Rxy represents the element in the first row and second column of R.

11 Recall that the notations Πx and Π(x) are used interchangeably.
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Fig. 4.20. Different root positions. The figure shows three directed graphs with
different root positions (shown in black).

where [Rn]yx is the element in the yth row and xth column of matrix Rn.
The proof is given by induction. Assume that (4.36) and (4.37) for fixed n are
true. Then

[Rn+1]yxΠx =
∑

z

Ryz[Rn]zxΠx =
∑

z

Ryz[Rn]xzΠz

=
∑

z

[Rn]xzRyzΠz =
∑

z

[Rn]xzRzyΠy = [Rn+1]xyΠy

where the second equation follows from (4.37), and the fourth equation has
applied (4.36). Consequently, starting from (4.36), (4.37) holds true for all
n, and (4.35) is proved true by Taylor series expansion of (4.14). From
(4.35), it can then be shown that the expansion of the joint probability
P (y1, y2, y3, y4, z1, z2|w, S) is independent of the root position. Compare, for
instance, the three directed graphs in Figure 4.20. We have already derived
the expansion for the tree on the left; see (4.34). Applying the expansion rule
(4.33) to the tree in the middle, we obtain:

P (y1, y2, y3, y4, z1, z2|w, S) =
P (y1|z1, w1)P (y2|z1, w2)P (z1|z2, w5)P (y3|z2, w3)P (y4|z2, w4)Π(z2)

(4.38)

Now, reversibility (4.35) implies that P (z1|z2, w5)Π(z2) = P (z2|z1, w5)Π(z1),
hence the expansions in (4.34) and (4.38) are equivalent. By the same token,
expanding the joint probability P (y1, y2, y3, y4, z1, z2|w, S) according to the
tree on the right of Figure 4.20 gives

P (y1, y2, y3, y4, z1, z2|w, S) =
P (y1|z1, w1)P (y2|z1, w2)P (z1|z2, w5)P (y4|z2, w4)P (z2|y3, w3)Π(y3)

(4.39)

By the reversibility condition (4.35), we have P (z2|y3, w3)Π(y3) =
P (y3|z2, w3)Π(z2). Consequently, the expansion in (4.39) is equivalent to
(4.38), and hence to (4.34). In the terminology of Bayesian networks, discussed
in Section 2.1, the three structures in Figure 4.20 are equivalent, that is, they
represent the same joint probability distribution. In fact, we can even add a
root node anywhere on the edge connecting two nodes and thereby transform
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y1

y2

w1 z

w2

y1

y2

w1

w2

z

y1

y2

w1+w2

Fig. 4.21. Equivalent tree structures. Filled circles represent observed nodes.
They correspond to extant species, for which DNA sequence data are available. The
empty circle represents an ancestral species, for which we do not have any data.
In the terminology of Bayesian networks, this node is hidden. The three Bayesian
network structures shown in the figure are equivalent, as proved in the text. Note
that the Bayesian network on the left is a rooted tree, with the ancestral node acting
as a root.

an unrooted tree with (n − 1) nodes into a rooted tree with n nodes. This
equivalence is illustrated in Figure 4.21. Recall that

P(w1 + w2) = P(w1)P(w2) (4.40)

by the Chapman–Kolmogorov equation (4.10). Rewriting this matrix equation
in scalar form for the matrix components gives:

P (y|x,w1 + w2) =
∑

z

P (y|z, w2)P (z|x,w1) (4.41)

where x, y, z ∈ {A,C,G, T}. Now, the three Bayesian networks of Figure 4.21
lead to the following factorizations, by (4.33):

Left : P (y1, y2, z) = P (y2|z, w2)P (y1|z, w1)Π(z) (4.42)
Middle : P (y1, y2, z) = P (y2|z, w2)P (z|y1, w1)Π(y1) (4.43)
Right : P (y1, y2) = P (y2|y1, w1 + w2)Π(y1) (4.44)

For the ancestral node, z, we do not have any DNA sequence data. Conse-
quently, this node is hidden and has to be marginalized over:

Left : P (y1, y2) =
∑

z

P (y2|z, w2)P (y1|z, w1)Π(z) (4.45)

Middle : P (y1, y2) =
∑

z

P (y2|z, w2)P (z|y1, w1)Π(y1) (4.46)
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Fig. 4.22. Marginalization over hidden nodes. Leaf nodes represent extant
taxa, which are observed, that is, for which DNA sequence data are available. In-
ner nodes represent hypothetical ancestors, which are hidden, that is, for which no
observations exist. To obtain the probability of an observation, that is, the prob-
ability of observing a given column of nucleotides at a given position in the DNA
sequence alignment, we have to sum over all possible configurations of hidden nodes.
Reprinted from [27], by permission of Blackwell Science.

By the reversibility condition (4.35), the expressions on the right of (4.45) and
(4.46) are equal. By the Chapman–Kolmogorov equation (4.41), the expres-
sions on the right of (4.44) and (4.46) are also equal. Consequently, all three
expressions are equal, and the three structures of Figure 4.21 are equivalent.
This equivalence proves the conjecture true that we may transform an un-
rooted tree into a rooted tree by adding an extra root node anywhere on any
arbitrary edge connecting two nodes. A more rigorous proof [7] generalizes
this to any phylogenetic tree: if the transition matrix is reversible, trees that
only differ with respect to the position of the root and the directions of the
edges are equivalent. Consequently, we can choose the position of the root
arbitrarily.

The factorization (4.34) allows us to compute the probability of a complete
configuration of nucleotides. However, while we obtain the nucleotides of the
extant species, yi, from the DNA sequence alignment, the nucleotides at the
inner nodes, zi, are never observed. This requires us to marginalize over them,
as illustrated in Figure 4.22:

P (y|w, S) = P (y1, y2, y3, y4|w, S) =
∑
z1

∑
z2

P (y1, y2, y3, y4, z1, z2|w, S)

(4.47)
This marginalization seems to be hampered by excessive computational com-
plexity. An unrooted tree with n leaves contains n−2 hidden nodes, and each
hidden node can be in four different states, corresponding to the nucleotides
A,C,G, T . Consequently, it seems that, for an alignment of n sequences, we
have to sum over 4(n−2) terms, which is obviously computationally intractable
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Fig. 4.23. Illustration of the peeling algorithm. The various peeling steps
correspond to the rearrangement of the sums in (4.49) so as to obtain the following
iterative steps. Top right: computing the evidence for z1 and z2, (4.50) and (4.51).
Bottom left: computing the evidence for z3, (4.52). Bottom right: computing the
evidence for z4, (4.53). In general, this procedure reduces the computational com-
plexity of the marginalization from 4H terms down to at most 43H +4 terms, where
H is the number of hidden nodes.

for large alignments. Fortunately, we can exploit the sparseness of the connec-
tivity of the tree-structured Bayesian network to reduce the computational
complexity from exponential to polynomial time. The underlying idea is simi-
lar to the dynamic programming procedure known from hidden Markov mod-
els, discussed in Section 2.3.4, and applies Pearl’s message passing algorithm
[29], which in the context of phylogenetics is referred to as the peeling algo-
rithm [7]. An illustration is given in Figure 4.23, which shows a rooted tree
with 5 leaves and 4 hidden nodes. By the factorization rule (4.33) we can
expand the joint probability as follows:

P (y1, y2, y3, y4, y5, z1, z2, z3, z4) = (4.48)
P (y1|z1)P (y2|z1)P (z1|z3)P (y3|z2)P (y4|z2)P (z2|z3)P (z3|z4)P (y5|z4)Π(z4)

where the dependence on the branch lengths has been dropped to simplify
the notation. When marginalizing over the hidden nodes, the sums can be
rearranged:
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z1

∑
z2

∑
z3

∑
z4

P (y1, y2, y3, y4, y5, z1, z2, z3, z4) =∑
z4

Π(z4)P (y5|z4)
∑
z3

P (z3|z4)
∑
z1

P (y1|z1)P (y2|z1)P (z1|z3)∑
z2

P (y3|z2)P (y4|z2)P (z2|z3) (4.49)

This rearrangement can be rewritten in the following recursive manner:

e(z1) = P (y1|z1)P (y2|z1) (4.50)
e(z2) = P (y3|z2)P (y4|z2) (4.51)

e(z3) =
∑
z1

∑
z2

e(z1)e(z2)P (z1|z3)P (z2|z3) (4.52)

e(z4) =
∑
z3

e(z3)P (z3|z4)P (y5|z4) (4.53)

P (y) =
∑
z4

e(z4)Π(z4) (4.54)

where y = (y1, y2, . . . , y5)†. In (4.50) and (4.51), we compute the “evidence”
for nodes z1 and z2, respectively, which corresponds to the first peeling step
in the top right of Figure 4.23. Since both z1 and z2 can take on four values,
z1, z2 ∈ {A,C,G, T}, we have to compute 2 × 4 terms. Next, in (4.52), we
compute the evidence for node z3, which corresponds to the bottom left of
Figure 4.23. For a fixed value of z3, this computation requires a summation
over 42 = 16 terms, which has to be repeated for each possible value of
z3 ∈ {A,C,G, T}. Hence overall, we have to compute 43 = 64 terms. We
continue with the evidence for node z4, (4.53) and Figure 4.23, bottom right,
which invokes 4 further sums over 4 terms each. Finally, in (4.54), we finish
off by summing over all four possible terms of e(z4), z4 ∈ {A,C,G, T}. In
total, this computation involves a summation over 4 terms from (4.50), 4
terms from (4.51), 64 terms from (4.52), 16 terms from (4.53), and 4 terms
from (4.54), that is 4 + 4 + 64 + 16 + 4 = 92 terms altogether, which is
considerably cheaper than the brute force summation over 44 = 256 terms.
To generalize this procedure to arbitrary trees, introduce a hidden random
variable zl ∈ {A,C,G, T} associated with leaf node l and define its evidence
as

e(zl) = δzl,yl
=

[
1 if zl = yl

0 if zl �= yl
(4.55)

where yl ∈ {A,C,G, T} is the nucleotide observed for leaf node l at the
corresponding position in the DNA sequence alignment. In generalization of
(4.50)–(4.53), the evidence for any hidden node i with associated random
variable zi ∈ {A,C,G, T} is

e(zi) =
∑
zc1

∑
zc2

e(zc1)e(zc2)P (zc1|zi)P (zc2|zi) (4.56)
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where c1 and c2 are the two children of node i, and their associated random
variables are zc1, zc2 ∈ {A,C,G, T}. Finally, in generalization of (4.54), we
have

P (y) =
∑
zr

e(zr)Π(zr) (4.57)

where r is the root node with associated random variable zr ∈ {A,C,G, T}.
Equation (4.56) shows that for each hidden node, we have to compute 4 sums
over at most 42 terms each, which is followed by another sum over 4 terms in
(4.57). The peeling algorithm thus reduces the computational complexity from
a summation over 4H terms by the brute-force method to at most 43H + 4
terms, where H = n− 1 is the number of hidden nodes in the corresponding
rooted tree, and n is the number of leaf nodes. Consequently, the computa-
tional complexity is reduced from an exponential to a linear dependence on
H. For further details, see [7] and [29].

The upshot of this procedure is that we can compute, for the tth column
yt in the sequence alignment (meaning a vector with the nucleotides in the
tth column), the probability P (yt|w, S). Note that this probability depends
on the tree topology, S, and the vector of branch lengths, w, as illustrated
in Figure 4.24. The respective computation can be repeated for every site,
1 ≤ t ≤ N . Under the assumption that mutations at different sites t are
independent of each other – see page 106 – the likelihood P (D|w, S) of the
whole DNA sequence alignment D = {y1, . . . ,yN} factorizes:

P (D|w, S) =
N∏

t=1

P (yt|w, S) (4.58)

Equation (4.58) gives us an objective score or optimality function that opens
the way to standard statistical inference and hypothesis tests. In what fol-
lows, we will apply the two alternative statistical inference methods out-
lined in Chapter 1: (1) the frequentist approach of maximum likelihood (Sec-
tion 4.4.5) and bootstrapping (Section 4.4.6), and (2) the Bayesian approach
(Section 4.4.7). First, however, let us make a brief comparison with the par-
simony method of Section 4.3.

4.4.4 A Comparison with Parsimony

Maximum parsimony, summarized in Section 4.3, aims to minimize the total
number of nucleotide substitutions, which is equivalent to minimizing the cost
function

C =
N∑

t=1

∑
i∈N/{r}

δ
(
xi(t), xpa[i](t)

)
(4.59)

where N is the length of the alignment, N is the set of all nodes in the
tree, including both extant species and their extinct ancestors, r is the root
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Fig. 4.24. Probabilistic approach to phylogenetics. For a given column yt

in the DNA sequence alignment, a probability P (yt|w, S) can be computed, which
depends on the tree topology, S, and the vector of branch lengths, w. This can
be done for every site, 1 ≤ t ≤ N , which allows the computation of the likelihood
P (D|w, S) of the whole DNA sequence alignment D = {y1, . . . ,yN}.

node, xi(t) ∈ {A,C,G, T} represents the nucleotide at node i in position t of
the alignment (see Table 4.1 on page 111), pa[i] is the parent of node i, and δ
denotes the Kronecker delta, which is 1 if the two arguments are identical, and
0 if they are different. Consider a hypothetical alignment of both the extant
species, D, and their ancestors, H. From (4.33), and under the assumption of
independent nucleotide substitution (see page 106), we have

logP (D,H) =
N∑

t=1

∑
i∈N/{r}

logP
(
xi(t)|xpa[i](t)

)
+

N∑
t=1

logΠ
(
xr(t)

)
(4.60)

A maximization of the log likelihood (4.60) with respect to the tree topology
is equivalent to a minimization of the parsimony cost function (4.59) if we
define

P
(
xi(t)|xpa[i](t)

)
= aδ

(
xi(t), xpa[i](t)

)
+ b
[
1 − δ

(
xi(t), xpa[i](t)

)]
(4.61)
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where a and b are two constants chosen such that P (D,H) is a proper proba-
bility ([1], Chapter 10). Equations (4.59)–(4.61) imply that parsimony can be
viewed as a special case of the likelihood method, where two approximations
have been made. First, a proper maximum likelihood approach, to be discussed
in the next section, is based on the likelihood P (D) =

∑
H P (D,H), which

implies a marginalization over the hidden variables H, as demonstrated in the
previous section. Parsimony replaces this marginalization,

∑
H P (D,H), by an

optimization, maxH P (D,H). This replacement is a fast, but suboptimal ap-
proximation to the true likelihood. Second, as opposed to the nucleotide sub-
stitution probabilities discussed in Section 4.4.1 and derived in Section 4.4.2,
the nucleotide substitution probabilities of equation (4.61) do not depend on
the branch lengths wi, that is, they are independent of phylogenetic time.
This assumption is obviously implausible, and it explains the failure of par-
simony in certain evolutionary scenarios, as discussed in Section 4.3.2. Note
that weighted parsimony [33], which replaces the Kronecker delta in (4.59) by
some more general nucleotide-dependent, but still branch length-independent
function, does not overcome these shortcomings.

4.4.5 Maximum Likelihood

Given a DNA sequence alignment D, we want to optimize the tree topology
S and the branch lengths w in a maximum likelihood sense:12

(Ŝ, ŵ) = argmaxS,w{P (D|w, S)} (4.62)

More accurately, we should also state the dependence of the likelihood on
the nucleotide substitution model and its parameters, which also need to be
estimated from the data. For the Kimura model (4.16) we have one parameter:
the transition–transversion ratio τ . The more general HKY85 model (4.32) has
three further parameters: the equilibrium probabilities for the nucleotides,
ΠA, ΠC , ΠG, ΠT (due to the constraint ΠA +ΠC +ΠG +ΠT = 1, there are
three rather than four free parameters). More complex nucleotide substitution
models are reviewed in [30]. In order to keep the amount of detail in this
introductory tutorial limited, we will assume that the nucleotide substitution
parameters are given and fixed, and they will not be made explicit in the
notation. The optimization procedure for the branch lengths, outlined below,
can readily be extended to include the nucleotide substitution parameters.

A practical difficulty of maximum likelihood applied to phylogenetics is
that (4.62) has no analytic solution, and the numerical optimization prob-
lem is NP–hard. For a given tree topology S, we can (locally) optimize the
branch lengths w in an iterative, greedy way by following some gradient ascent
scheme, w → w + �w with
12 Recall from Section 1.2 that the maximum likelihood estimator satisfies several

optimality criteria.
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Fig. 4.25. Illustration of greedy, iterative optimization. The graphs rep-
resent the likelihood over the space of tree topologies and branch lengths. Top: For
a given tree topology, the branch lengths are optimized by some gradient ascent
scheme (4.63), as illustrated by the dashed arrows. Middle and bottom: This opti-
mization has to be repeated for different tree topologies. Note that the true log likeli-
hood surface defined by (4.58) is spanned over the high-dimensional space of all tree
topologies and associated vectors of branch lengths, and that the one-dimensional
analogy shown in this figure is merely given as an illustration.

n 4 6 10 20
M 3 105 2 × 106 2 × 1020

Table 4.2. Number of different unrooted tree topologies, M , as a function of the
number of taxa, n. The general relation is M = (2n − 5)!!, that is, M increases
super-exponentially with n. A proof is given in the appendix to this chapter.

�w = A∇w logP (D|w, S) (4.63)

for some positive definite matrix A. This optimization of the branch lengths
has to be repeated for every possible tree topology S, as illustrated in Fig-
ure 4.25. For n taxa there are (2n−5)!! different (unrooted) tree topologies, as
shown in the appendix to this chapter. The number of different tree topologies
increases thus super-exponentially with the number of taxa, as demonstrated
in Table 4.2. Consequently, an exhaustive search is impossible for all but very
small sequence numbers n, and heuristic search procedures have to be adopted.
Two such procedures that have been implemented in widely applied software
packages will be described next.
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Fig. 4.26. Iterative insertion of new branches in DNAML. Starting from an
unrooted tree of three species (top left), a new branch, corresponding to the fourth
sequence in the alignment, is inserted at every possible position (top centre), and
the tree with the highest likelihood is kept (top right). Taking this tree as the new
starting position (bottom left), a new branch, corresponding to the fifth sequence in
the alignment, is inserted at every possible position (bottom centre), and the tree
with the highest likelihood is selected. This procedure is continued for all sequences
in the alignment. Note that whenever a branch has been inserted or repositioned,
the branch lengths are optimized with an iterative, gradient ascent procedure (4.63).

Fig. 4.27. Tree manipulation by branch regrafting in DNAML. If the
likelihood after branch regrafting increases, the new tree is accepted; otherwise, it
is rejected. Note that whenever a branch has been repositioned, the branch lengths
have to be reoptimized with an iterative, gradient ascent procedure (4.63).

DNAML

The idea of DNAML, proposed in [7] and [10], and implemented in Felsen-
stein’s software package PHYLIP [5], is to incrementally build a tree from a
DNA sequence alignment. The algorithm starts with the first three sequences
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AC
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Fig. 4.28. Unrooted tree topologies for an alignment of four sequences,
A, B, C, and D. The figure shows the three possible topologies. Note that the letters
refer to taxa, not nucleotides.

in the alignment, for which there is only one unrooted tree topology. It then
adds each new branch, corresponding to the next sequence in the alignment,
at the location where it maximizes the likelihood of the current tree. This
process is illustrated in Figure 4.26. Note that an unrooted tree with n leaves
contains (2n − 3) edges. Consequently, the total number of tree topologies
visited in this way is

∑n−1
i=3 (2i − 3) = (n − 3)(n − 1), which is considerably

smaller than the total number of tree topologies, (2n− 5)!!. The hope is that
this restricted search space contains the true phylogenetic tree, or at least a
very similar one, with a high probability. However, the result of the heuris-
tic procedure described depends on the rather arbitrary sequence order, and
this dependence usually makes the search method described above too re-
strictive. It is therefore advisable to repeat the whole process for different
sequence orders and then to select the tree with the highest likelihood. Also,
the neighbourhood of the final tree should be searched for a tree with a higher
likelihood score, as illustrated in Figure 4.27: the tree is manipulated by se-
lecting and regrafting a branch or a subtree at random, and the new tree is
accepted if the likelihood increases. Such tree manipulations are repeated a
few times. Note that whenever the tree topology has been changed by inserting
or repositioning a branch, all branch lengths w have to be reoptimized with
the iterative, gradient ascent procedure of equation (4.63). This optimization
is computationally expensive, which has called for a faster, alternative search
procedure.

Quartet puzzling

For a DNA sequence alignment of four sequences, say A, B, C, and D, there
are three distinct unrooted tree topologies: sequence A can either be grouped
with sequence B, ((A,B),(C,D)), or with sequence C, ((A,C),(B,D)), or with
sequence D, ((A,D),(B,C)). The possible tree topologies are shown in Fig-
ure 4.28. The idea of quartet puzzling, proposed by Strimmer and von Haeseler
[38], is to reconstruct all possible

(
n
4

)
quartet trees with maximum likelihood

(where n is the number of sequences) and then, in a subsequent puzzling step,
to combine these quartet trees to an overall tree. This puzzling step is based
on incrementally augmenting the penalty scores for the tree branches and is
illustrated in Figure 4.29. A more recent version of quartet puzzling, which re-
places the binary penalty scores by likelihood-dependent scores, is described
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Fig. 4.29. Quartet puzzling, illustrated for a hypothetical alignment of five
sequences A, B, C, D, and E. For each of the five possible quartets, the maximum
likelihood tree is determined (top left). Starting from the tree obtained for the first
four sequences A, B, C, and D (shaded), the other four trees are “puzzled in” as
follows. Top right: The topology ((A,E),(B,C)) suggests that E should not be po-
sitioned on the path from B to C, so the penalty scores of the edges on this path,
initialized to 0, are augmented by 1. Middle left: The topology ((A,E),(B,D)) sug-
gests that E should not be positioned on the path from B to D, so the penalty
scores of the edges on this path are augmented by 1. This procedure is continued.
Middle right: The topology ((A,C),(D,E)) augments the penalty scores of the edges
on the path from A to C. Bottom left: The topology ((B,D),(C,E)) augments the
penalty scores of the edges on the path from B to D. Bottom right: The edge cor-
responding to sequence E is inserted at the branch with the minimal penalty score.
A more recent version of this algorithm [37] replaces the binary penalty scores by
likelihood-dependent scores.
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in [37]. As for DNAML, the outcome of the algorithm may depend on the
order of sequences in the alignment, and the tree puzzling procedure should
therefore be repeated for different, reshuffled, sequence orders.

Following the initial branch length optimization in 3
(
n
4

)
< 3n4 quartet

trees, by application of (4.63), the puzzling steps do not require any fur-
ther branch length optimization. This renders quartet puzzling a much faster
algorithm than DNAML, where each tree manipulation requires a separate
optimization of w.

Strimmer et al. [38], [37] compared the accuracy of quartet puzzling with
DNAML and neighbour joining (described in Section 4.2.3). The results are
shown in Figure 4.30. DNAML tends to give better results than quartet
puzzling at the expense of increased computational costs. However, quartet
puzzling achieves a consistent improvement on neighbour joining, which sug-
gests that despite the required heuristic approximations, likelihood methods
systematically outperform the distance-based clustering approaches of Sec-
tion 4.2. For a software implementation of quartet puzzling, see [34].

The structural EM algorithm

Friedman et al. [14] applied the structural EM algorithm, which was briefly
described in Section 2.3.6, to the maximum likelihood optimization problem.
Assume we want to apply a local tree manipulation operation to the tree
of Figure 4.23 by exchanging the two upper branches that lead to the extant
species y1 and y3. If the hidden nodes z1, z2, z3 and z4 were observed, we would
only need to compute the conditional probabilities P (y1|z2) and P (y3|z1). By
computing these probabilities for all sequence positions and replacing

P (y1|z1) → P (y3|z1), P (y3|z2) → P (y1|z2) (4.64)

in (4.48), we could easily compute the likelihood of the new tree. The upshot
is that for complete observation, a local tree manipulation only requires us to
re-compute the conditional probabilities of those nodes that are immediately
affected by this local operation. Consequently, the computational costs are
comparatively low. However, for incomplete observation, where we do not ob-
serve any sequence data for the ancestral species corresponding to the hidden
nodes zi, the marginalization (4.49) causes global dependencies between all
the terms in the expansion (4.48). These dependencies destroy the modular-
ity of (4.48). The upshot is that for incomplete observation, even a local tree
manipulation requires us to re-compute the likelihood with a global compu-
tation that involves all the conditional probabilities p(yi|zk) and p(zi|zk) –
irrespective of whether or not these conditional probabilities correspond to
branches that have been affected by the local tree manipulation. Obviously,
this requirement increases the computational costs substantially.

In a nutshell, the idea of the structural EM algorithm is as follows (see
Section 2.3.3 for a revision of the standard EM algorithm). In the E-step,
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Fig. 4.30. Comparison between quartet puzzling, DNAML, and neigh-
bour joining. The figure visualizes the results of a simulation study reported in
[38] and [37]. The authors generated synthetic 8-taxa DNA sequence alignments of
different length (500 and 1000 nucleotides) and from different phylogenetic trees
(with and without molecular clock constraint, and with different branch lengths).
Three phylogenetic inference methods were compared: DNAML, quartet puzzling,
and neighbour joining. For each of these algorithms, the inference accuracy, that is,
the percentage recovery of the true phylogenetic tree topology, was determined from
repeated simulations. The figure plots the accuracy scores obtained with DNAML
(crosses) and neighbour joining (circles) against those obtained with quartet puz-
zling (using the version described in [37]). The dashed, diagonal line indicates equal
performance, entries above this line indicate a performance better than obtained
with quartet puzzling, for entries below this line the respective method is outper-
formed by quartet puzzling. The figure suggests that while quartet puzzling tends,
in general, to be outperformed by DNAML, it performs consistently better than
neighbour joining.

impute the hidden variables with their expectation values. In the M-step,
search for a tree with a higher score, where the score is given by the complete
likelihood (4.60) with the hidden variables replaced by their imputed values.13

13 More accurately, the score is given by (2.48), that is, the expectation value of
the complete log likelihood with respect to the distribution of the hidden nodes.
This distribution of the hidden nodes is computed in the E-step. The imputation
step is, in general, an approximation, where the expectation value of a nonlinear
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This search exploits the modular structure of the complete likelihood and is
therefore considerably faster than a search that requires a re-computation of
the true (or “incomplete”) likelihood, as in DNAML. Like the standard EM
algorithm, this procedure has to be iterated. However, if the computational
costs of the E-step can be kept sufficiently low, the increased speed of the
M-step may lead to a reduction of the computational costs of the overall tree
optimization. For further details, see [14].

The structural EM-algorithm [14] has not been widely applied in phy-
logenetics. This is partly due to the lack of a user-friendly software imple-
mentation,14 and partly due to the absence of a convincing benchmark study
comparing its performance with that of DNAML and quartet puzzling. This
tutorial will therefore not provide a more detailed introduction to this subject.

4.4.6 Bootstrapping

Recall from the discussion of the frequentist approach to statistical learning in
Section 1.2 that a parameter and/or model estimation with maximum likeli-
hood has to be substantiated with a separate hypothesis test. The objective of
this hypothesis test is to ensure that the structures we have learned from the
data reflect true features of the evolutionary speciation process rather than
chance fluctuations inherent in the intrinsically stochastic events of mutation
and selection. In an ideal scenario, depicted in Figure 1.3, we would be able
to repeatedly generate new data from the same data-generating process, and
then to estimate the intrinsic uncertainty of our inference procedure by re-
peating the estimation process on each of the replicated data sets. Obviously,
this approach is not applicable because we cannot set the clock back by 4.5
billion years to restart the process of evolution. We therefore resort to boot-
strapping as a computational approximation, discussed in Section 1.2, where
we mimic the intrinsic stochasticity of the data-generating processes – in our
case the processes of mutation and selection – by drawing new data with re-
placement from the true data, as illustrated in Figure 1.5. If we accept the
fourth approximation on page 106, namely that nucleotide substitutions at
different sites of the alignment are independent of each other, we can gener-
ate bootstrap replicas by repeatedly drawing new columns with replacement
from the original alignment such that each replicated alignment has the same
length as the original one. In Section 4.4.9, we will discuss how the assump-
tion of independent nucleotide substitutions can be relaxed, and the required
modifications have to be reflected in the bootstrap replication. For instance,

function is replaced by the function of the expectation value. As opposed to the
standard EM-algorithm, described in Section 2.3.3, the M-step of the structural
EM algorithm is with respect to structures (topologies) rather than parameters
(branch lengths).

14 It is indicative of contemporary computational molecular biology that the degree
of popularity of an algorithm seems to depend critically on the user–friendliness
of the software package in which it is implemented.
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Fig. 4.31. Bootstrapping phylogenetic trees. The figure shows the tree topolo-
gies obtained from 1000 bootstrap replicas of a mitochondrial DNA sequence align-
ment of five hominoids and demonstrates how to compute the bootstrap support
values for clade formations.

if we use a codon position specific approach, where we use different nucleotide
substitution parameters for the three codon positions, the label that indicates
the codon position of a nucleotide needs to be conserved in each bootstrap
replica.

Given a set of bootstrap replicated DNA sequence alignments, the tree
estimation procedure is repeated on each of these bootstrap replicas in the
same way as it was performed on the true sequence alignment. This repeated
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Fig. 4.32. Bootstrap support values for clade formations in a phyloge-
netic tree of five hominoids, obtained from 1000 bootstrap replicas, as illustrated in
Figure 4.31.

estimation results in a collection of bootstrap trees, from which we can esti-
mate the confidence we have in the clades, that is, subtrees. An illustration
is given in Figures 4.31 and 4.32. The tree itself can be chosen to be the
tree obtained with maximum likelihood from the original sequence alignment.
A more sophisticated approach is the consensus tree method, described in
Section 6.4.

An inherent shortcoming of bootstrapping is its inability to detect model
misspecifications. Take, for instance, the UPGMA clustering method, de-
scribed in Section 4.2.2, and recall from Figure 4.10 that UPGMA always
leads to a tree that satisfies the molecular clock constraint. Applying UPGMA
to bootstrap replicas of the original alignment will result in an ensemble of
trees that all satisfy the molecular clock constraint. Consequently, the validity
of this constraint will be backed by a bootstrap support value of 100%. Also,
recall from Figure 4.10 that UPGMA may lead to systematically wrong clade
formations. This flawed inference is an intrinsic weakness of UPGMA, and
it will therefore show up in most of the bootstrap replicas. Consequently, a
wrong clade formation, like the one described in the caption of Figure 4.10,
will obtain a large bootstrap support value, and the bootstrap procedure will
substantiate the prediction from an inherently flawed inference method.

A practical difficulty of bootstrapping is its large computational cost. Re-
call, from the discussion of the preceding section, that a maximum likelihood
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estimation of a phylogenetic tree is an NP–hard optimization problem, which,
in general, requires us to adopt an expensive iterative search procedure on
the high-dimensional, multimodal likelihood surface. This search has to be
repeated for each bootstrap replica. For five sequences, as in the example of
Figures 4.31 and 4.32, this approach is feasible. However, when increasing the
number of sequences in the alignment, bootstrapping soon becomes compu-
tationally intractable. Several heuristic simplifications have been proposed in
the literature. They will not be reported here, because they are either not par-
ticularly powerful [22], [35], or not supported by a mathematical theory [38].
Instead, we will turn to a principled alternative to the frequentist approach,
which is mathematically sound and computationally much more economical
than bootstrapping.

4.4.7 Bayesian Inference

Recall, from the discussion in Section 1.3, that Bayesian inference is entirely
based on the observed data D, which in our case is the given DNA sequence
alignment. Also, recall that the entities of interest, the tree topology S and
the branch lengths w, are treated as random variables. An illustration of the
Bayesian paradigm is given in Figure 1.7. The inference procedure is similar
to that of Sections 2.2.1 and 2.2.2. Given a DNA sequence alignment, we first
want to find the posterior distribution of tree topologies S and, from this
distribution, the topology Ŝ that is most supported by the data:

Ŝ = argmaxS

{
P (S|D)

}
(4.65)

Then, given the topology Ŝ and the data, we want to find the posterior prob-
ability of the branch lengths w, and the best branch lengths:

ŵ = argmaxw

{
P (w|Ŝ,D)

}
(4.66)

From the distribution P (w|S,D) we can estimate the credible intervals15 for
the branch lengths, and from P (S|D) we can compute the set of posterior
probabilities of the clade formations, which is the Bayesian equivalent to the
bootstrap support values discussed in the previous section.

Unfortunately, the implementation of this approach is not as straightfor-
ward as it might seem. Recall from Table 4.2 on page 121 that the number
of tree topologies increases super-exponentially with the number of sequences
in the alignment. Consequently, the naive approach – computing P (S|D) for
every possible tree topology S – is computationally intractable for all but very
small numbers of taxa. We therefore have to resort to Markov chain Monte
Carlo (MCMC), introduced in Section 2.2.2, and illustrated in Figure 4.33, so

15 A credible interval is the Bayesian equivalent to a confidence interval in classical
statistics.
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Fig. 4.33. Illustration of MCMC in phylogenetic analysis. Given a phy-
logenetic tree, a new tree is sampled from a proposal distribution. This new tree,
which is usually similar to the previous one, is then accepted with an acceptance
probability given by (4.71).

as to obtain a representative sample of topologies S from P (S|D). However,
as opposed to the inference problem of Sections 2.2.1 and 2.2.2, the integral
over the parameters w:

P (D|S) =
∫
P (D,w|S)dw (4.67)

is analytically intractable, which implies that we can not get a closed form
solution for P (S|D) ∝ P (D|S)P (S). Consequently, we have to sample both
the topologies S and the branch lengths w from the joint posterior probability
P (S,w|D), and then obtain P (S|D) by marginalization:

P (S|D) =
∫
P (S,w|D)dw (4.68)

Now, from the MCMC simulation we obtain a sample of topologies and param-
eter vectors, {Si,wi}M

i=1, which give us the following empirical distribution:

P (S,w|D) ≈ 1
M

M∑
i=1

δS,Siδ(w − wi) (4.69)

where δS,Si
denotes the Kronecker delta symbol, which is one if S = Si, and

zero otherwise, and δ(w − wi) is the delta function,16 which is normalized:∫
δ(w − wi)dw = 1. Inserting (4.69) into (4.68) thus gives:

P (S|D) =
1
M

M∑
i=1

δS,Si =
MS

M
(4.70)

16 Recall that δ(0) = ∞, δ(x) = 0 if x �= 0, and
∫ ∞

−∞ δ(x)dx = 1.



132 Dirk Husmeier

where MS denotes the number of trees in the MCMC sample that have topol-
ogy S.

Note that the dimension of the vector of branch lengths w does not change
when changing the tree topology.17 This invariance results from the fact that
the number of species remains unchanged, hence we do not need to consider
the dimension-changing reversible jumps of [18]. Consequently, we can apply
the standard Metropolis–Hastings algorithm, described in Section 2.2.2. Given
a tree with topology S and branch lengths w, we sample a new tree with topol-
ogy S′ and branch lengths w′ from the proposal distribution Q(S′,w′|S,w),
to be discussed shortly, and accept this new tree with the following acceptance
probability, in generalization of (2.33):

A(S′,w′|S,w) = min
{
P (S′,w′|D)
P (S,w|D)

Q(S,w|S′,w′)
Q(S′,w′|S,w)

, 1
}

= min
{
P (D|S′,w′)
P (D|S,w)

P (S′,w′)
P (S,w)

Q(S,w|S′,w′)
Q(S′,w′|S,w)

, 1
}

(4.71)

Here, P (D|S,w) is the likelihood of a tree with topology S and branch lengths
w, obtained from (4.58), and P (S,w) denotes the prior probability on tree
topologies and branch lengths. In the absence of true prior knowledge about
the nature of evolutionary processes, we just choose the uniform distribu-
tion,18 as in [23].

The Bayesian approach to phylogenetics, outlined above, was proposed
and tested in [23], [24], and [46]. The practical problem of implementation is
to design proposal probabilities Q of the moves in tree space efficiently so as
to ensure effective mixing and fast convergence of the Markov chain; compare
with the discussion in Section 2.2.2, especially Figure 2.14. Also, one has
to make sure that the Hastings ratios, Q(S′,w′|S,w)

Q(S,w|S′,w′) , are computed properly.
Take, for instance, one of the moves proposed in [23], which is illustrated in
Figure 4.34 and which can be described algorithmically as follows:

1. Select a backbone consisting of three consecutive branches at random.
Denote the length of this backbone, given by the sum of these three branch
lengths, by m.

2. Select a random variable U from a uniform distribution over the unit
interval [0, 1], and multiply the lengths of the three selected branches by
exp[λ(U − 0.5)]. Here, λ > 0 is a tuning parameter, corresponding to the

17 It would have been more accurate to make the association of the branch lengths
w with the tree topology S explicit in the notation and to write wS rather than
w. The stated invariance can then be written as follows: dim[wS ] = dim[wS′ ],
for different tree topologies S, S′. However, for the sake of reduced opacity of the
notation, the subscript S is suppressed in this chapter.

18 In order to have a proper prior, the branch lengths have to be restricted to a
finite interval, that is, the prior is uniform over some (large) interval, and zero
otherwise; compare with Section 5.10.3.
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Fig. 4.34. MCMC moves in tree space. The figure illustrates a possible move
in tree space, proposed in [23]. First, a backbone connecting four nodes is selected
(top left) and extended or shrunk randomly (top right). Second, one of the two centre
branches is randomly selected (bottom left) and then repositioned randomly on the
backbone (bottom right). The first step changes the branch lengths w. The second
step may or may not change the tree topology S; in the present example, it does
change the topology. Adapted from [23], by permission of Oxford University Press.

step size λ in the example of Figure 2.14. The length of the new backbone
is given by m′ = m exp[λ(U − 0.5)].

3. Select one of the two centre branches at random, with probability 1/2.
4. Regraft the selected branch on the backbone, choosing its new position

uniformly from the interval [0,m′], where 0 corresponds to the left end of
the backbone, and m′ to the right end.
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Fig. 4.35. A comparison between Bayesian MCMC and bootstrapping.
The objective of both Bayesian MCMC and bootstrapping is to explore the uncer-
tainty of inference, which is related to the curvature of the log likelihood surface.
This figure gives an illustration for a simple one-dimensional case. The Bayesian
MCMC approach, shown on the left, explores the log likelihood (or, in the case of
a non-uniform prior, the log posterior) surface with a Markov chain. New configu-
rations are first generated from a proposal distribution, and then accepted with a
certain acceptance probability. Each accepted configuration is stored, and it con-
tributes to the information about the curvature of the log likelihood surface. The
frequentist approach, shown on the right, aims to find the maximum of the log
likelihood surface. This maximum is a point estimate devoid of any information on
uncertainty; consequently, this optimization is repeated several times for different
bootstrap replicas. Information about estimation uncertainty is contained in the
spread of the bootstrap maxima, that is, in the average deviation of the peak in
response to resampling the data. Each optimization, however, is time-consuming,
and all the information gathered along the trajectory leading to the peak of the log
likelihood surface is eventually discarded. This waste of information renders boot-
strapping much more computationally expensive than the Bayesian approach, where
all the information along the MCMC trajectory is kept.

The second step changes the branch lengths w. The fourth step may or may
not change the tree topology S, depending on the new position to which the
selected centre branch is moved. To compute the Hastings ratio, think of the
selected backbone as a continuous line of length m, so the positions of the two
centre branches can be defined by random variables x ∈ [0,m] and y ∈ [0,m].
Let y be the position of the centre branch that gets regrafted. Since the new
position is chosen from the uniform distribution, the probability of the forward
move is Q(y′) = 1

m′ , where m′ is the new length of the backbone, resulting
from step 2 of the move. The probability of the backward move is Q(y) = 1

m .
The probability to find the other branch at its given position before the move
is Q(x). The relative position of this branch does not change, but the ex-
tension or shrinkage of the backbone, [0,m] → [0,m′], implies a coordinate
transformation, x → x′ = m′

m x, with a concomitant probability transforma-
tion, Q(x′) = Q(x) dx

dx′ = Q(x) m
m′ . The proposal probabilities of backbone

selection in step 1, selection of U in step 2, and centre branch selection in step
3 are symmetric and thus cancel out. Consequently, the Hastings ratio, that
is, the ratio of the probabilities of the forward and backward moves, is given
by Q(S′,w′|S,w)

Q(S,w|S′,w′) = Q(y′)Q(x′)
Q(y)Q(x) =

(
m
m′
)2.

The outcome of a Bayesian MCMC simulation is similar to maximum like-
lihood with bootstrapping. The clade support scores are computed from the
MCMC trajectory in the same way as they are computed from a collection of
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bootstrap replicas; see Figure 4.31 for a demonstration of this computation,
and Figure 4.32 for a representation of the resulting tree. Again, a consensus
tree can be obtained from the clade support scores, as described in Section 6.4.
The clade support scores are now to be interpreted as Bayesian posterior prob-
abilities, which in practice may differ little from the bootstrap support values
of the previous section; see, however, the discussion at the end of Section 6.5.
The main advantage of Bayesian MCMC over bootstrapping is the consider-
able reduction in the computational costs. Larget and Simon [23] applied the
Bayesian MCMC scheme outlined above to a DNA sequence alignment of 14
whales and 17 artiodactyles (sheep, goat, deer etc.). The computation took
about 7 hours (on a 300-MHz Pentium II PC), whereas the equivalent appli-
cation of maximum likelihood and bootstrapping would have taken about 175
days. An explanation for this reduction in the computational cost is given in
Figure 4.35.

In the previous exposition we have assumed, for the sake of notational
and conceptual simplicity, that the parameters of the nucleotide substitution
model are known and fixed. In practical applications they should be included
in the inference procedure. This extension of the MCMC scheme is straight-
forward; see Chapters 5 and 6, and references therein. Note, however, that
a change between different nucleotide substitution models, for instance, be-
tween the Kimura model (4.16) and the HKY85 model (4.32), incurs a change
of the dimension of the parameter space. This change of dimension calls for
the application of the reversible jump procedure of Section 2.3.7. A detailed
discussion is beyond the scope of this introductory tutorial, and the interested
reader is referred to [40].

4.4.8 Gaps

Given a sequence alignment, we have to decide how to deal with gaps. A
straightforward approach is to treat gaps as missing values, in the same way
as the intrinsically hidden ancestral nodes (see Figure 4.22), and marginalize
over them. Consequently, we have to replace the evidence for an observed leaf
node, (4.55), by the following modified evidence for an unobserved leaf node:

e(zl) = Π(zl) (4.72)

where l is a leaf node with associated random variable zl ∈ {A,C,G, T}, and
Π(zl) is the equilibrium distribution over nucleotides, given by (4.29)–(4.31);
note that this choice of Π(zl) follows from the stationarity hypothesis. This
method is not entirely satisfactory because it does not capture evolutionary
information that is potentially contained in the gaps. More recent approaches,
like [25], extend the nucleotide substitution model, described in Section 4.4.2,
by explicitly including gaps. Again, this active area of current research is
beyond the scope of the present chapter.
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Fig. 4.36. Discrete gamma distribution, introduced by Yang [45] to model
rate heterogeneity. The interval [0, ∞) is subdivided into K (here: K = 4) intervals
such that each interval contains an equal area of the gamma distribution.

4.4.9 Rate Heterogeneity

A critical weakness of the mathematical nucleotide substitution model as-
sumed so far is the third assumption on page 106, according to which the
Markov process is position independent. This assumption is strongly violated
in real DNA. First, DNA sequences contain coding and non-coding regions.
Nucleotide substitutions in the coding regions may lead to a changed amino
acid sequence, which may result in a disfunctional protein. Consequently, nu-
cleotide substitutions in the coding region may lead to organisms that are
not viable. This effectively reduces the nucleotide substitution rate: sequences
encoding disfunctional proteins are essentially discarded as organisms con-
taining these sequences do not contribute to the next generation. How much
the substitution rate is effectively reduced depends on the protein structure.
Mutations in loop regions are less likely to be fatal than mutations in helical or
functional regions, and the effective substitution rate varies accordingly. For
non-coding regions, which are not translated into proteins, nucleotide substi-
tutions are mostly unaffected by any selection pressure, unless the region is
involved in controlling gene expression. In this case mutations are often lethal
and the nucleotide substitution rate in the respective part of the sequence
is considerably reduced. Second, amino acids are encoded by triplets of nu-
cleotides. Mutations in the third codon position are usually less critical than
those in the first or second codon position in that the mutated triplet either
encodes the same amino acid – as a consequence of the redundancy of the
genetic code – or an amino acid with similar physiochemical properties.

To model the second cause of rate variation, we can use three different
nucleotide substitution rates, one for each codon position. To allow for rate
heterogeneity at the first level, we introduce a site-dependent variable rt with
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which the nucleotide substitution rates are multiplied. As seen from (4.21),19

rt effectively rescales the branch lengths at site t, and we can therefore replace
(4.58) by

P (D|w,R, S) =
N∏

t=1

P (yt|rtw, S) (4.73)

Since the site-dependent rate variations are unknown, R = {rt} is a set of
hidden variables that need to be integrated out:

P (D|w, S) =

∞∫
0

. . .

∞∫
0

N∏
t=1

P (yt|rtw, S)P (r1, . . . , rN )dr1 . . . drN (4.74)

where P (r1, . . . , rN ) is the joint prior distribution over the scaling variables.
To reduce (4.74) to a form that is analytically tractable, Yang [44] replaced
the joint distribution P (r1, . . . , rN ) by the product of its marginals

P (r1, . . . , rN ) =
N∏

t=1

q(rt|υ) (4.75)

where q(rt|υ) is a distribution that depends on the hyperparameter(s) υ. In-
serting (4.75) into (4.74) gives the simplified expression

P (D|w, υ, S) =
N∏

t=1

∞∫
0

P (yt|rtw, S)q(rt|υ)drt (4.76)

If we adopt the maximum likelihood approach of Section 4.4.5, we now have
to maximize, for a fixed tree topology S, the likelihood with respect to both
w and υ. When following the Bayesian approach of Section 4.4.7, we have
to sample both w and υ from the respective posterior distributions. Yang
[44] chose q(rt|υ) to be a gamma distribution with mean 1 and variance 1

υ ,
which renders the integral in (4.76) analytically tractable. However, the cost
for the computation of the likelihood grows exponentially with the number
of sequences, and the approach thus becomes inviable for large alignments.
Yang [45] therefore approximated the integral by a discrete sum as follows.
The interval [0,∞) is subdivided into K intervals such that each interval
contains an equal area of the gamma distribution q(rt|υ). Define rυ

k to be
the (υ-dependent) mean of the gamma distribution in the kth interval, as
illustrated in Figure 4.36. Then

P (D|w, υ, S) =
1
K

N∏
t=1

K∑
k=1

P (yt|rυ
kw, S) (4.77)

19 Note that the symbol t in (4.21) has a different meaning and represents physical
time rather than sites in a DNA sequence alignment; see Table 4.1 on page 111.



138 Dirk Husmeier

is a good approximation to (4.76) for values of K as small as 3 or 4. Note that
this approximation only requires K times as much computation as is required
for the non-varying site model.

A shortcoming of Yang’s approach is the assumption of independently
and identically distributed rate parameters rt, as expressed in (4.75). This
assumption is obviously flawed: when a site t lies in a coding region, for
example, then the adjacent sites t−1 and t+1 will, most likely, lie in the same
coding region, and the rate parameters rt−1, rt, and rt+1 will therefore not
be independent. To introduce spatial correlations at the lowest possible order,
Felsenstein and Churchill [10] chose discrete rates rt, as for Yang’s discrete
gamma distribution [45], but they replaced (4.75) by

P (r1, . . . , rN ) = q(r1)
N∏

t=2

q(rt|rt−1, υ) (4.78)

This approach is effectively a hidden Markov model (HMM), introduced in
Section 2.3.4, where the rates rt correspond to hidden states, and the transi-
tion probabilities are given by q(rt|rt−1, υ). We will discuss similar combina-
tions of HMMs with phylogenetic trees in Section 5.10.

4.4.10 Protein and RNA Sequences

So far we have entirely focused on DNA sequences. In principle the methods
described in the present chapter can equally be applied to protein sequences.
The difference is that the four-letter alphabet of nucleotides has to be ex-
panded into an alphabet of twenty amino acids. For the distance and parsi-
mony methods, described in Sections 4.2 and 4.3, this makes little difference
in terms of computational costs. However, for the probabilistic approach of
Section 4.4, the computational costs increase dramatically as a consequence
of the required marginalization, described in Section 4.4.3 and illustrated in
Figure 4.22, which now has to cover 20 rather than 4 possible values at every
hidden node. Moreover, the number of parameters of a reasonable amino acid
substitution matrix is considerably higher than for the nucleotide substitution
matrices of equations (4.16) and (4.32), rendering parameter inference a much
more formidable problem. The interested reader is referred to [42].

RNA sequences are similar to DNA sequences in that they also use a
four-letter alphabet, with the letter T for thymine replaced by U for uracil.
However, RNA sequences show characteristic single-strand secondary struc-
ture formations that are conserved by base-pairing interactions. The substi-
tution of a base involved in such an interaction is usually compensated for
by a corresponding change at the interacting site. This process of compen-
satory substitution or covariation maintains structural stability and biological
function. Since interacting base pairs may involve sites that are remote in the
sequence, the fourth assumption on page 106 is violated, and the standard ap-
proach outlined in this chapter will lead to suboptimal results. An improved
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Fig. 4.37. Non-homogeneous, non-stationary nucleotide substitution
model. Left: The homogeneity and stationarity assumptions imply that the equilib-
rium G+C content κ is the same for all lineages and equal to the ancestral G+C con-
tent. Right: In the non-homogeneous, non-stationary nucleotide substitution model
of Galtier and Gouy [16], the equilibrium G+C content κ may vary among lineages,
and it may deviate from the ancestral G+C content.

approach, which relaxes the assumption of independent nucleotide substitu-
tions and therefore becomes applicable to RNA sequences, will be discussed
in Chapter 6.

4.4.11 A Non-homogeneous and Non-stationary Markov Model of
Nucleotide Substitution

The Markov model of nucleotide substitution, discussed in Section 4.4.2, has
been assumed to be homogeneous; see page 106. This assumption implies that
in any lineage, DNA sequences converge towards a common equilibrium base
composition, π, given by (4.29)–(4.31). Furthermore, it has been assumed
that the actual base composition is equal to the equilibrium base composition
π over the whole tree. We have made use of this stationarity hypothesis in
the computation of the likelihood, by assuming that the base composition in
the ancestral sequence – Π(xr) in (4.33) – is equal to the equilibrium base
composition (ΠA, ΠC , ΠG, ΠT ) in the assumed rate matrix (4.32).

If the homogeneity and stationarity assumptions were true, equal nu-
cleotide frequencies would be expected in extant sequences. However, many
sequence alignments were found to deviate from this principle, and it seems
that compositional changes are a major feature of genome evolution [15].
Galtier and Gouy showed that a violation of the homogeneity and station-
arity assumptions may lead to biased results in phylogenetic analysis in that
sequences with similar base composition tend to be grouped together irrespec-
tive of their actual phylogenetic relationships [15].

An approach that relaxes the homogeneity and stationarity assumptions
was proposed by Galtier and Gouy [16]. The focus of their model is variation
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in the G+C content in time and between lineages. When the dinucleotide GC
occurs in a genome, cytosine (C) is typically chemically modified by methy-
lation with the consequence that it mutates, with a high probability, into a
T. For certain biological reasons the methylation process is occasionally sup-
pressed, which leads to an increased concentration of GC dinucleotides, and
in fact to more C and G nucleotides in general ([4], Chapt. 3). Clary and Wol-
stenholme [2] found that the G+C content at the third-codon position varies
across genomes, and that it is, for instance, significantly suppressed in mito-
chondrial DNA of Drosophila. The ribosomal G+C content has been found
to be highly correlated with physiological traits in bacteria, which provides
important clues about the origin of life on Earth, as discussed shortly.

Tamura [41] proposed a nucleotide substitution model that allows for
transition–transversion and G+C-content biases. Effectively, the Tamura rate
matrix is equal to the HKY85 rate matrix (4.32), with the constraints
ΠA = ΠT and ΠC = ΠG. The Tamura model can therefore be thought
of as a 2-parameter model, whose parameters are the transition–transversion
ratio τ , and the equilibrium G+C content κ. Based on this approach, Galtier
and Guoy [16] proposed a Markovian nucleotide substitution model where κ
is allowed to vary from branch to branch, and the ancestral G+C content is a
separate parameter of the nucleotide substitution model; see Figure 4.37 for
an illustration. This modification has two implications. First, the base com-
position in a given lineage is, in general, different from the equilibrium base
composition, hence the model is no longer stationary. Second, the rate matrix
varies among lineages (because κ varies among lineages), hence the model is
no longer homogeneous. This non-homogeneity implies that the application of
the Chapman–Kolmogorov equation (4.10) in (4.40) is no longer valid. Con-
sequently, (4.40) does not hold true, the three structures in Figure 4.21 are no
longer equivalent, and the symmetry between different rooted trees, discussed
in Section 4.4.3, is broken. The location of the root in its branch has therefore
to be specified as a separate parameter of the model, and an optimization
algorithm, as discussed in Section 4.4.5, will recover a rooted rather than an
unrooted tree.

Besides overcoming the bias in phylogenetic analysis incurred as a conse-
quence of compositional G+C changes, the method of Galtier and Gouy [16]
has led to new insight into the origin of life on Earth.

According to an earlier tree of life reconstructed from ribosomal RNA
(rRNA) sequence alignments by Carl Woese [43], hyperthermophiles – bacteria
that thrive in high temperatures – are found near or at the root of the tree.
This finding has led to the widely accepted hypothesis that life originated in
a hot environment, like in submarine volcanic vents, where the seawater can
reach temperatures well above the normal boiling point [3].

Galtier et al. [17] applied their non-homogeneous, non-stationary Markov
model of nucleotide substitution to an alignment of rRNA sequences from dif-
ferent species distributed throughout the universal tree of life. A maximum-
likelihood estimation, as described in Section 4.4.5, gave an ancestral G+C
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content of about 55%, with the upper limit of a 95% confidence interval ob-
tained with bootstrapping hardly exceeding the 60% mark. However, hyper-
thermophiles are characterized by a significantly higher G+C content of about
65%. The reason is that in prokaryotic rRNA, G-C pairs are more stable than
A-U pairs at high temperatures because of an additional hydrogen bond (see
Chapter 6). Consequently, the nucleotide makeup of rRNA in the earliest an-
cestral organisms is incompatible with life at high temperatures, in contrast
with standard conjectures about the origin of life on Earth.

4.5 Summary

This chapter has provided a brief introduction to statistical phylogenetics,
with a focus on the mathematical methodology. We have compared two older
non-probabilistic approaches – clustering and parsimony – with the more re-
cent probabilistic approach.

Besides incurring an inevitable loss of information by mapping the se-
quence alignment down to pairwise distances, clustering (Section 4.2) is an
algorithmic approach that does not aim to optimize an objective function.
Consequently, clustering is not guaranteed to find the best or even a good
tree according to a pre-specified evaluation criterion, and a discrimination
between competing phylogenetic hypotheses is impossible.

Parsimony (Section 4.3) is based on an objective function and thereby
overcomes the principal objection to clustering. An optimization algorithm
searches for the best tree with the lowest parsimony cost, and different trees
can be evaluated on the basis of this cost function. However, parsimony is
a “model-free” approach in that its cost function is not derived from any
explicit mathematical model. In principle, this lack of an explicit model ren-
ders the assessment of the merits and shortcomings of an inference method
difficult. Moreover, the model-free approach of parsimony can, in fact, be inter-
preted within the model-based likelihood framework, where it turns out to be
a special case obtained for an over-simplified and implausible nucleotide sub-
stitution model (Section 4.4.4). The fact that parsimony is implicitly based
on such a flawed model explains its inherent shortcoming of inconsistency
(Section 4.3.2), whereby in certain evolutionary scenarios the wrong tree is
inferred irrespective of the length of the sequence alignment.

Likelihood methods (Section 4.4) are based on an objective function derived
from an explicit probabilistic model of nucleotide substitution. This model-
based approach overcomes the shortcomings of the non-probabilistic methods
described above, and it is only due to the increased computational cost of
likelihood methods that the application of non-probabilistic methods to large
sequence alignments may still be justified. Obviously, any mathematical model
is an abstraction and simplification of reality. The fundamental advantage of
model-based over model-free inference is the fact that we are aware of these



142 Dirk Husmeier

limitations, as discussed at the beginning of Section 4.4.2, and we can there-
fore systematically work on improved, more general models that gradually
overcome known shortcomings – see Sections 4.4.9–4.4.11. Also, besides in-
ferring a phylogenetic tree from a sequence alignment, the use of an explicit
mathematical model of nucleotide substitution allows us to gain deeper in-
sight into the nature of evolution itself – and to test, for instance, hypotheses
about the origin of life on Earth (Section 4.4.11).

Appendix

For n species there are, in total, (2n − 3)!! different rooted, and (2n − 5)!!
different unrooted tree topologies. We can prove this proposition by induction.
For n = 3 taxa we have 1 unrooted and 3 different rooted tree topologies. Since
3!! = 3 and 1!! = 1, the proposition holds true for n = 3. Next, we have to
show that the truth of the proposition for n taxa implies that it also holds
true for n + 1 taxa. A rooted tree with n leaves has n − 1 hidden nodes,
that is, 2n − 1 nodes altogether, which implies that there are 2n − 2 edges.
For an unrooted tree, the number of inner nodes is reduced by 1, which also
reduces the number of edges by 1; so we have 2n− 3 edges. We assume that
the statement holds true for n taxa, so we have (2n− 5)!! different unrooted
tree topologies. We now add a further sequence to the alignment. The branch
leading to the new species can be added to any of the 2n−3 existing branches,
giving us (2n− 3)(2n− 5)!! = (2n− 3)!! = (2[n+ 1]− 5)!! new tree topologies.
Consequently, the proposition holds true for n + 1 taxa, which completes
the proof for the unrooted tree topologies. To obtain a rooted tree from an
unrooted tree, note that the root can be added to any of its 2n − 3 edges.
Consequently, we can get 2n− 3 different rooted tree topologies from a given
unrooted tree topology. Given that the number of unrooted tree topologies for
n taxa is (2n − 5)!!, as has just been proved, the number of different rooted
tree topologies is (2n− 3)(2n− 5)!! = (2n− 3)!!. This completes the proof.
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Summary. The underlying assumption of the phylogenetic inference methods dis-
cussed in the previous chapter is that we have one set of hierarchical relationships
among the taxa. While this approach is reasonable when applied to most DNA se-
quence alignments, it can be violated in certain bacteria and viruses due to sporadic
recombination, which is a process whereby different strains exchange or transfer
DNA subsequences. The present chapter discusses the implications of recombina-
tion for phylogenetic inference and describes various methods for detecting and
identifying recombinant regions in sequence alignments.

5.1 Introduction

The recent advent of multiple-resistant pathogens has led to an increased
interest in interspecific recombination as an important, and previously un-
derestimated, source of genetic diversification in bacteria and viruses. The
discovery of a surprisingly high frequency of mosaic RNA sequences in HIV-1
suggests that a substantial proportion of AIDS patients have been coinfected
with HIV-1 strains belonging to different subtypes, and that recombination
between these genomes can occur in vivo to generate new biologically ac-
tive viruses [24]. A phylogenetic analysis of the bacterial genera Neisseria
and Streptococcus has revealed that the introduction of blocks of DNA from
penicillin-resistant non-pathogenic strains into sensitive pathogenic strains has
led to new strains that are both pathogenic and resistant [17]. Thus interspe-
cific recombination, illustrated in Figure 5.1, raises the possibility that bacte-
ria and viruses can acquire biologically important traits through the exchange
and transfer of genetic material.

In the last few years, several methods for detecting interspecific recombi-
nation have been developed – following up on the seminal paper by Maynard
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Smith [17] – and it is beyond the scope of this chapter to provide a compre-
hensive overview. Instead, the focus will be on a few typical and representative
methods so as to illustrate the underlying principles and to highlight the mer-
its and shortcomings of each approach. For a broader overview of existing
methods, see [22].

5.2 Recombination in Bacteria and Viruses

The underlying assumption of most phylogenetic tree reconstruction methods
is that there is one set of hierarchical relationships among the taxa. While this
is a reasonable approach when applied to most DNA sequence alignments, it
can be violated in certain bacteria and viruses due to interspecific recombi-
nation. Recombination is a genetic process that results in the exchange or
transfer of DNA/RNA subsequences and constitutes an important source of
genetic diversification in certain bacteria and viruses. The resulting mixing
of genetic material can lead to a change of the branching order (topology)
of the phylogenetic tree in the affected region, which results in conflicting
phylogenetic information from different regions of the alignment. Figure 5.1
demonstrates for a simple hypothetical scenario involving four strains how the
transfer or exchange of genetic material between different strains may lead to
a change of the phylogenetic tree topology in the region affected by recombi-
nation, which results in conflicting phylogenetic information stemming from
different regions of the alignment. Figure 5.2 illustrates the effects of recom-
bination on the analysis of phylogenetic relationships among different HIV-1
strains. Both figures demonstrate that the presence of mosaic sequences re-
sulting from recombination can lead to systematic errors in phylogenetic tree
estimation. Their detection, therefore, is a crucial prerequisite for consistently
inferring the evolutionary history of a set of DNA/RNA sequences.

5.3 Phylogenetic Networks

An obvious approach to allow for recombination is to relax the constraint that
the process of evolution has to be represented by a bifurcating tree, as assumed
throughout Chapter 4. Figure 5.3 shows how the conflicting phylogenetic trees
resulting from the recombination scenario of Figure 5.1 can be reconciled with
a phylogenetic network. Figure 5.5, left, illustrates that recombination may
lead to a network-like structure. A non-probabilistic approach to inferring
phylogenetic networks from sequence alignments was introduced by Bandelt
and Dress [1]: the method of split decomposition. Strimmer et al. [26], [27] put
this method into a proper probabilistic framework. Their approach is based
on the same nucleotide substitution model as described in Sections 4.4.1 and
4.4.2. The authors then show how to compute the likelihood of a general di-
rected acyclic probabilistic network. In fact, this approach applies the method
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Fig. 5.1. Influence of recombination on phylogenetic inference. The figure
shows a hypothetical phylogenetic tree of four strains. Recombination is the transfer
or exchange of DNA subsequences between different strains (top diagram, middle),
which results in two so-called mosaic sequences (top diagram, margins). The affected
region in the multiple DNA sequence alignment, shown by the shaded area in the
middle diagram, seems to originate from a different tree topology, in which two
branches of the phylogenetic tree have been swapped (bottom diagram, where the
numbers at the leaves represent the four strains). A phylogenetic inference algorithm
that does not identify this region is likely to give suboptimal results, since the
estimation of the branch lengths of the predominant tree will be adversely affected
by the conflicting signal coming from the recombinant region. Reprinted from [12],
by permission of Mary Ann Liebert.

of Bayesian networks, described in Chapter 2, to phylogenetic analysis, which
subsumes the inference of tree-like structures as a limiting case. The structure
of a phylogenetic network is a directed acyclic graph (DAG), whose conditional
probabilities, parameterized by the edge lengths, are derived by modelling the
nucleotide substitution process along an edge by a homogeneous Markov pro-
cess, as discussed in Sections 4.4.1 and 4.4.2. The main difference is that in
a network, as opposed to a tree, a node can have several parents, which calls
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Fig. 5.2. Recombination in HIV-1. The left diagram shows a phylogenetic tree
of eight established subtypes of HIV-1. The right diagram represents the sequence
of a recombinant strain (RS). When the phylogenetic analysis is based on the env
gene, the RS strain is found to be most closely related to the A subtype. When the
phylogenetic analysis is repeated for the gag gene, the RS strain seems to be most
closely related to the G subtype. A conventional phylogenetic analysis treats the
RS sequence as a monolithic entity. This fails to resolve the conflicting phylogenetic
signals stemming from different regions of the alignment, and leads to a distorted
“average” tree that is in a “limbo” state between the two true trees mentioned
above. It is therefore vital to identify the mosaic structure of the RS strain, and
to infer different phylogenetic trees for the different regions. Adapted from [24], by
permission of Macmillan Magazines Limited.

for a generalization of the assignment of local node probabilities, given by
(4.25) for a tree, to the multi-parent case. Consider a node X with two par-
ents, Y1 and Y2, on two branches, 1 and 2, that have edge lengths w1 and w2,
respectively. An illustration is given in Figure 5.4. Strimmer et al. [26] define
the probability P (X|Y1, Y2) of observing state X ∈ {A,C,G, T} given states
Y1, Y2 ∈ {A,C,G, T} to be

P (X|Y1, Y2;w1, w2, Q1, Q2) = Q1P (X|Y1;w1) +Q2P (X|Y2;w2) (5.1)

where P (X|Y1;w1) and P (X|Y2;w2) are given by (4.25), as for a tree, and Qi,
i ∈ {1, 2}, denotes the prior probability that the child node X is influenced
by the parent in branch i, Yi. Obviously, these prior probabilities are easily
interpreted as recombination parameters: for a sequence of a given length,
they denote the proportion of sites stemming from the respective parent. For
a derivation of the complete likelihood of a phylogenetic network, see [26].
Note that when the likelihood is known, the inference and model selection
algorithms of Chapters 1 and 2 can be applied. This especially implies the
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Fig. 5.3. Phylogenetic network. The left part of the figure shows the two
phylogenetic trees of Figure 5.1. The right diagram shows a phylogenetic network
that resolves the conflicting tree topologies. Strain 1, for instance, is grouped with
both strain 2, as in the top tree on the left, and with strain 3, as in the bottom tree
on the left.
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Fig. 5.4. Elementary components of a phylogenetic network. In a phylo-
genetic tree, each node has at most one parent, while in a phylogenetic network, a
node can have more than one parent. The figure is an illustration for equation (5.1).
See text for details.

test of the hypothesis that a phylogenetic network offers a significantly better
description of the data than a bifurcating tree.

Shortcomings of phylogenetic networks

While a reticulated structure that strongly deviates from a tree indicates the
presence of recombination, it does not easily allow the location of the re-
combinant regions in the sequence alignment. The methods described in the
remainder of this chapter address this shortcoming and aim to detect the mo-
saic structure of a sequence alignment, that is, to locate the breakpoints and
determine the nature of the sequence blocks that result from recombination.
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Fig. 5.5. Illustration of the maximum chi-squared method. The tree on the
left depicts a hypothetical recombination scenario. Two contemporary taxa, strains
1 and 2, are derived from their respective ancestors without recombination. A third
sequence, strain 3, results from a recombination event in which subsequences are
transferred or exchanged between ancestors 1 and 2. The figure on the right shows
the resulting sequence alignment, where the different shades pertain to the different
lineages of the tree on the left. Strain 3 is a mosaic sequence, whose right subsequence
is derived from ancestor 1, and whose left subsequence is derived from ancestor 2.
When strains 2 and 3 are compared, the distribution of varying sites, symbolized by
zeros, is inhomogeneous, with a higher concentration of zeros in the right than in
the left block.

5.4 Maximum Chi-squared

One of the first methods to both detect the presence of recombination and
find the location of the recombinant regions was proposed by John Maynard
Smith [17]. His approach, the maximum chi-squared test, is illustrated in Fig-
ure 5.5. The tree on the left depicts a hypothetical recombination scenario.
Two contemporary taxa, strains 1 and 2, are derived from their respective
ancestors without recombination, that is, the difference between the ancestral
and contemporary sequences is solely due to nucleotide substitutions. A third
sequence, strain 3, results from a recombination event in which subsequences
are transferred or exchanged between ancestors 1 and 2. The figure on the
right shows a possible sequence alignment. Strain 3 is a mosaic. Its right sub-
sequence is derived from ancestor 1; hence it is more similar to sequence 1.
Its left subsequence is derived from ancestor 2; hence it is more similar to
sequence 2. Suppose we compare sequences 2 and 3. We will find identical
sites, represented by 1’s in Figure 5.5, and varying or polymorphic sites, rep-
resented by 0’s. Assume, for the moment, that nucleotide substitution rates do
not vary. In the absence of recombination, we would expect the 0’s and 1’s to
be homogeneously distributed across the alignment. However, when a recom-
bination event has occurred, we expect to find different blocks with different
distributions. For example, in Figure 5.5, we expect the average number of
0’s to be smaller in the left block than in the right. To formalize this notion,
suppose that on comparing two sequences of length N we find D polymor-
phic sites. We introduce an arbitrary breakpoint at position t, which leaves a
block of t sites on the left, of which x1(t) are found to be polymorphic, and a
block of N − t sites on the right, of which x2(t) are polymorphic. Obviously,
x1(t)+x2(t) = D. Define e1(t) and e2(t) to be the expectation values of x1(t)
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Fig. 5.6. Illustration of the maximum chi-squared method. The two subfig-
ures in the top show a sequence alignment of three taxa, of which two are selected
for comparison. The different shades of the circles represent different lineages; com-
pare with Figure 5.5, left. The top left subfigure shows a breakpoint for which the
chi-squared statistic is χ2(t) = 0. The top right subfigure shows the location of the
true breakpoint. The value of the chi-squared statistic is χ2(t) = 5/6. The subfigure
in the bottom shows a plot of χ2(t) against all possible breakpoint positions t. Note
that this statistic has its maximum at the true breakpoint: t∗ = 4.

and x2(t) under the null hypothesis of no recombination, that is, e1(t) = D
N t

and e2(t) = D
N (N − t). To measure the deviation of the observed from the

expected number of polymorphic sites, we compute the chi-squared statistic:

χ2(t) =

[
x1(t) − e1(t)

]2
e1(t)

+

[
x2(t) − e2(t)

]2
e2(t)

(5.2)

We then find the breakpoint t∗ for which the value of χ2(t) is maximal:

t∗ = argmax
{
χ2(t)

}
, χ2 = max

{
χ2(t)

}
= χ2(t∗) (5.3)
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Fig. 5.7. Randomization test. Top: The maximum chi-squared statistic, χ2, is
computed from the original data, and for M exemplars of randomized data. This
application to the randomized data leads to the sample {χ̃2

1, . . . , χ̃
2
M}. Bottom: The

distribution of χ̃2 obtained from the randomized data is the empirical distribution of
χ2 under the null hypothesis H0 that no recombination has occurred. The subfigure
in the bottom left shows a scenario where the probability of the event χ̃2 > χ2 is
rather large, suggesting that the observed value χ2 could have occurred by chance
and that the detected recombination event is not significant. Conversely, for the
subfigure in the bottom right, the probability of the event χ̃2 > χ2 is small, which
suggests that a maximum chi-squared value as large as χ2 is unlikely to have occurred
by chance. Consequently, the null hypothesis H0 is rejected, and the recombination
event is found to be significant.

This location is the best candidate for a recombinant breakpoint. An illustra-
tion is given in Figure 5.6. The top left subfigure shows an arbitrary break-
point, t = 6, for which we get: x1(t) = 3, x2(t) = 2, e1(t) = 3, e2(t) = 2,
and χ2(t) = (3−3)2

3 + (2−2)2

2 = 0. The top right subfigure shows the correct
breakpoint, t = 4, which gives: x1(t) = 1, x2(t) = 4, e1(t) = 2, e2(t) = 3, and
χ2(t) = (1−2)2

2 + (4−3)2

3 = 5
6 . The bottom figure shows a plot of χ2(t) for all

possible breakpoints t. Note that this statistic has its maximum at the true
breakpoint: t∗ = 4.
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Fig. 5.8. Shortcoming of the chi-squared method. The figure shows two
sequence alignments, where the colours of the circles pertain to different lineages
of the tree in Figure 5.5. Left: Alignment in the two-block structure, where the
application of the chi-squared method is straightforward. Right: A recombinant block
in the middle of the alignment requires the data to be split into smaller subsets and
each region to be analyzed separately.

Next, we have to test whether the deviation from the homogeneous distri-
bution is significant, that is, whether the maximum value of χ2(t) is greater
than what one would expect to obtain by chance. Under the null hypothesis
that no recombination event has occurred, χ2 is asymptotically chi-squared
distributed [9]. Unfortunately, however, most alignments are not sufficiently
long for this asymptotic result to hold, and a test based on the chi-squared
statistic would therefore be unreliable. To overcome the restrictions of asymp-
totic methods, a randomization test can be used, as illustrated in Figure 5.7.
The objective is to simulate the distribution of χ2 under the null hypothesis
that no recombination event has occurred. To this end, the columns in the
original sequence alignment, D, are permuted randomly so as to destroy any
order. For each of these randomized data sets, D̃1, . . . , D̃M , the maximum
chi-squared value χ̃2

i , i ∈ {1, . . . ,M}, is found. Define m =
∣∣∣{i|χ̃2

i > χ2}
∣∣∣ to

be the number of times we observe that χ̃2
i > χ2. The empirical probability

of this event, that is, the empirical p-value, is given by p = m
M . When this

p-value is small, say less than 0.05 or 0.01, a chi-squared value as large as the
observed one, χ2, is unlikely to have occurred by chance. We would therefore
reject the null hypothesis and accept the detected recombination as signifi-
cant. Otherwise, there is not enough evidence in the data to reject the null
hypothesis, and we would decide that the detected recombination event is not
significant.

Shortcomings of the maximum chi-squared method

The maximum chi-squared method has several limitations. First, the align-
ment must be in the two-block form of Figure 5.8, left. When a recombination
event occurs in the middle of a sequence alignment, as in Figure 5.8, right, then
the maximum chi-squared method may fail to find the recombination event.
It is possible to split the data up into smaller subsets, but this is tedious and
requires some prior knowledge about the locations of putative recombinant
regions.

The second limitation concerns rate heterogeneity, as discussed in Sec-
tion 4.4.9. Suppose we have a sequence alignment of two sequences, where
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the nucleotide substitution rate in the left region is considerably higher than
in the right region. Consequently, the distribution of polymorphic sites will
not be homogeneous across the alignment, but we will rather get two dif-
ferent distributions: a low concentration of polymorphic sites on the right
of the breakpoint, and a high concentration in the region to the left of the
breakpoint. The chi-squared method, as described above, will only look for a
breakpoint that separates two significantly different distributions, and it can
therefore not distinguish between recombination and rate heterogeneity.

To remedy this shortcoming, Maynard Smith [17] suggested the following
procedure. First, select an alignment of three sequences such that it contains
the putative mosaic strain and both parental sequences. Here, parental se-
quences denote sequences in the lineage of the strains that were involved in
the recombination event. An illustration is given in Figure 5.5. Next, keep
only the polymorphic sites, where a polymorphic site in this context is de-
fined as a site that varies within this set of three strains. Finally, select the
putative mosaic sequence and one of the two parental sequences, and apply
the chi-squared method as described above. This procedure ensures that the
proportion of polymorphic sites no longer varies. Consequently, blocks and
breakpoints that are caused by rate heterogeneity rather than recombination
will effectively be suppressed. This remedy, however, suffers from two new
problems. First, we need to know and have at our disposal both parental se-
quences of a given putative mosaic strain. Second, by discarding all but the
polymorphic sites, we do not make the most efficient use of the information
contained in the sequences. As a consequence, a recombinant breakpoint can
only be located within the set of nucleotides lying between two polymorphic
sites. At the heart of these problems is the fact that the maximum chi-squared
method does not make use of explicit phylogenetic information, that is, it does
not invoke a phylogenetic tree inferred from (subregions of) the sequence align-
ment. We will therefore look, in the forthcoming sections, at methods that do
take this information into account.

5.5 PLATO

PLATO, an acronym for Partial Likelihoods Assessed Through Optimization,
was introduced by Grassly and Holmes [6] and is illustrated in Figure 5.9.
Suppose we know the predominant phylogenetic tree, that is, the tree that
we would obtain if no recombination event had occurred. Also, recall from
Section 4.4.3 and Figure 4.24 that we can compute, for a given tree, the
probability for each column in the alignment. We can therefore systematically
look for subsets with a low likelihood under the given tree model by computing
the statistic

Q =
1

W+1

∑b+W/2
t=b−W/2 Lt

1
N−W−1

(∑b−W/2−1
t=1 Lt +

∑N
t=b+W/2+1 Lt

) (5.4)
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Fig. 5.9. Illustration of PLATO. A window of varying size is moved along the
DNA sequence alignment. The average log likelihood is computed for both the win-
dow and the remainder of the sequence, and the Q-statistic is defined as the ratio
of these values (top). If the reference model, from which the log likelihood scores
are computed, were the predominant tree (meaning the tree one would obtain if no
recombination event had occurred), large Q values would be a reliable indication for
recombinant regions. However, the predominant tree is not known, and is approx-
imated by a tree estimated from the whole sequence alignment. This includes the
recombinant regions, which perturb the parameter estimation for the reference tree
(bottom) and thus cause the test to lose power. Reprinted from [11], by permission
of Oxford University Press.
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Fig. 5.10. Parametric bootstrapping and PLATO. Top: A reference tree is
estimated from the original sequence alignment, Data. From this reference tree, the
maximum Q-statistic is obtained. Then, an ensemble of new alignments is generated
from the reference tree, that is, under the null hypothesis H0 that no recombination
has occurred. For each of these bootstrap replicas, {Data1, . . . , DataB}, the process
of finding the maximum Q-statistic is repeated. This gives an empirical distribu-
tion of the maximum Q-statistic under the null hypothesis of no recombination,
{Q̃1, . . . , Q̃B}. Based on a comparison of Q with this null distribution, the hypoth-
esis of recombination is either rejected or accepted. Compare with Figure 5.7.

where Lt denotes the log likelihood of the tth column vector in the align-
ment, W is the size of the subset, and N is the length of the alignment (see
Figure 5.9, top). This measure is calculated for all possible positions b along
the sequence alignment and for varying subset sizes, typically 5 ≤ W < N/2.
If the sequence alignment is homogeneous, the numerator and denominator
in (5.4) can be expected to be similar in size, and Q tends to be close to
1. However, when a recombination event has occurred, as illustrated in the
bottom of Figure 5.9, the average log likelihood for the recombinant region
can be expected to be considerably smaller than for the non-recombinant re-
gions. Since log likelihood scores are negative values, the respective value for
the Q statistic will therefore be large. Consequently, we can identify putative
recombinant regions by looking for regions with significantly increased Q val-
ues. To allow for rate heterogeneity, the likelihood scores are computed under
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a rate variation model, as described in Section 4.4.9. Parametric bootstrap-
ping, illustrated in Figure 5.10, is applied to generate the null distribution of
the maximized Q value under the null hypothesis of no recombination and
thereby to decide whether the maximum Q value obtained from the original
alignment is significantly larger than what could be obtained by chance.

Shortcomings of PLATO

If the reference model, from which the log likelihood scores are computed, were
the predominant tree (meaning the tree one would obtain if no recombination
event had happened), significantly large Q values would be a reliable indi-
cation for recombinant regions. However, the predominant tree is not known
and is approximated by a tree estimated from the whole sequence alignment.
This includes the recombinant regions, which perturb the parameter estima-
tion for the reference tree (see Figure 5.9, bottom). Consequently, the method
becomes increasingly unreliable as the recombinant regions grow in length.

5.6 TOPAL

TOPAL [19], [18], illustrated in Figure 5.11, replaces the global by a local refer-
ence tree. A window of typically 200–500 bases is slid along the DNA sequence
alignment. The reference tree is estimated from the left half of the window
and used to compute a goodness-of-fit score for both parts of the window. The
difference between these goodness-of-fit scores, the so-called DSS statistic, is
likely to be small within a homogeneous part of the alignment, but large as
the window is moved into a recombinant region. Parametric bootstrapping,
illustrated in Figure 5.10, is applied to compute a distribution of DSS peaks
under the null hypothesis of no recombination, and significantly large DSS
peaks are indicators of putative recombinant breakpoints.

The DSS statistic

Ideally, the reference tree would be obtained with maximum likelihood, as
discussed in Section 4.4. In order to reduce the computational costs, TOPAL
uses a distance method. From each of the two sub-alignments selected by the
two halves of the window, a distance matrix is calculated, as described in
Section 4.2. Denote by {di} the set of pairwise distances obtained from the
left half of the window, and by {d̃i} the set of pairwise distances obtained
from the right half. From the first set of pairwise distances, {di}, a phyloge-
netic reference tree is obtained, either with the neighbour joining algorithm,
described in Section 4.2, or with the Fitch–Margoliash optimization algorithm
[4]. Denote by {ei} the set of pairwise distances obtained from this reference
tree. The goodness of fit scores for the two window halves, SSl and SSr, are
given by
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Fig. 5.11. Illustration of TOPAL. A window is moved along the DNA sequence
alignment. A tree is estimated from the left part of the window, and a goodness-
of-fit score is computed for both parts of the window. The DSS statistic is defined
as the difference between these scores. When the window is centred on or near the
breakpoint of a recombinant region, the tree estimated from the left subwindow is
not an adequate description for the data on the right, which leads to a large DSS
value. Reprinted from [11], by permission of Oxford University Press.
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Fig. 5.12. Dependence of TOPAL on the window size. Top: Synthetic DNA
sequences are obtained by simulating their evolution down a known phylogenetic
tree, using the Kimura model of nucleotide substitution (4.16), as described in Sec-
tion 4.4. Two recombination events are simulated by exchanging the indicated lin-
eages. Bottom left: Application of TOPAL with a window size of 200 nucleotides. The
solid line shows the DSS statistic (5.6) plotted against the sites in the DNA sequence
alignment. The dashed line indicates the 95-percentile under the null hypothesis of
no recombination, obtained with parametric bootstrapping. All four breakpoints of
the recombinant regions are detected. The spatial resolution is of the order of the
window size. Bottom right: Application of TOPAL with a window size of 100 nu-
cleotides. The power of the detection method has significantly deteriorated, and only
one of the four breakpoints is properly detected. Reprinted from [10], by permission
of Oxford University Press.

SSl =
∑

i

(di − ei)2, SSr =
∑

i

(d̃i − ei)2 (5.5)

and the DSS statistic is given by the difference of these scores:

DSS = |SSr − SSl| (5.6)

For a homogeneous sequence alignment, SSr ≈ SSl, and DSS will be small.
When the tree topology in the right part of the window has changed as a
consequence of recombination, the tree estimated from the left subwindow is
not an adequate model for the data on the right. Consequently, SSr � SSl,
and DSS will be large. This is illustrated in Figure 5.11. However, when
the effective branch lengths vary as a consequence of rate variation – dis-
cussed in Section 4.4.9 – the ensuing mismatch of the trees will also cause
SSr � SSl, and thus DSS to become large. The method described above,
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therefore, cannot distinguish between recombination and rate variation. To
redeem this shortcoming, a revised version of TOPAL [18] normalizes the
pairwise distances prior to computing the DSS statistic. Denote by D the
average pairwise distance obtained from the whole sequence alignment, and
by d the average pairwise distance obtained from a given window. Then, all
pairwise distances obtained from this window are rescaled:

di → D

d
di (5.7)

This rescaling corrects for the effects of rate variation, and large DSS values
can therefore be assumed to be indicative of real recombination events.

Shortcomings of TOPAL

By using a local rather than a global reference tree, TOPAL overcomes the
inherent shortcoming of PLATO. However, the spatial resolution for the iden-
tification of the breakpoints is typically of the order of the window size and,
consequently, rather poor. Figure 5.12 demonstrates that the spatial resolu-
tion cannot be improved by just selecting a smaller window: this renders the
reference tree unreliable, and the detection method thus loses power and be-
comes unreliable. The problems associated with estimating a reference tree
from a small subset of the sequence alignment is aggravated by the fact that
TOPAL uses a distance-based rather than a likelihood-based estimation ap-
proach. As discussed in Section 4.2 and illustrated in Figure 4.13, this leads to
an inevitable loss of information. Also, when estimating a reference tree from
a short sequence alignment, this estimation is subject to intrinsic uncertainty,
which is not captured by TOPAL.

5.7 Probabilistic Divergence Method (PDM)

Husmeier and Wright [13] introduced a method that is akin to TOPAL, but
addresses some of its shortcomings. First, by using a likelihood score, the in-
trinsic information loss associated with a score based on pairwise distances is
prevented. Second, a single optimized reference tree is replaced by a distribu-
tion over trees, which captures the intrinsic uncertainty of tree estimation from
short sequence alignments. Third, the method focuses on topology changes,
thereby overcoming possible difficulties with the distance rescaling scheme de-
scribed above. An illustration of the concepts is given in Figures 5.13–5.15.
For a formal introduction, consider a given alignment of DNA sequences, D,
from which we select a consecutive subset Dt of predefined width W , centred
on the tth site of the alignment. Let S be an integer label for tree topologies,
and define

PS(t) := P (S|Dt) =
∫ ∫

P (S,w,θ|Dt)dwdθ (5.8)
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Fig. 5.13. Illustration of the probabilistic divergence method (PDM). The
top right subfigure shows a recombination scenario in a four-species tree similar to
Figure 5.1. The top left subfigure shows the resulting sequence alignment, where the
tree topology in the centre block is different from the topology in the flanking regions
as a consequence of recombination. The subfigure in the bottom right shows the three
possible tree topologies. The bottom left subfigure shows the posterior distribution
over tree topologies conditional on different subregions of the alignment, selected by a
moving window. Obviously, when moving the window into a region that corresponds
to a different tree topology, the posterior distribution usually changes markedly.

This is the marginal posterior probability of tree topologies S, conditional on
the “window” Dt, which includes a marginalization over the branch lengths w
and the parameters of the nucleotide substitution model, θ – see Section 4.4
for a revision of these concepts. In practice the integral in (5.8) is solved
numerically by means of a Markov chain Monte Carlo (MCMC) simulation,
as discussed in Section 4.4.7 and illustrated in Figures 4.33 and 4.34. This
MCMC simulation yields a sample of triples {Sti,wti,θti}M

i=1 simulated from
the joint posterior distribution P (S,w,θ|Dt). We then replace the true pos-
terior distribution by the empirical distribution

P (S,w,θ|Dt) ≈ 1
M

M∑
i=1

δS,Stiδ(w − wti)δ(θ − θti) (5.9)
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Fig. 5.14. Detecting recombination with PDM. The figure shows the posterior
probability P (S|Dt) of tree topologies S conditional on two subsets Dt and Dt′

selected by a moving window. When the window is moved into a recombinant region,
the posterior distribution P (S|Dt) can be expected to change significantly, and
therefore to lead to a high PDM score.

where δS,Sti
denotes the Kronecker delta symbol, and δ(.) is the delta func-

tion.3 Inserting (5.9) into (5.8) gives:

PS(t) =
1
M

M∑
i=1

δS,Sti
=

MS(t)
M

(5.10)

where MS(t) denotes the number of times a tree has been found to have
topology S.

The basic idea of the probabilistic divergence method (PDM) for detect-
ing recombinant regions is to move the window Dt along the alignment and
to monitor the distribution PS(t). We would then, obviously, expect a sub-
stantial change in the shape of this distribution as we move the window into
a recombinant region, as illustrated in Figures 5.13 and 5.14. The question,
then, is how to easily monitor such a change and how to estimate its signifi-
cance. To this end we consider the Kullback-Leibler divergence (2.49) as the
natural distance measure in probability space:
3 Recall that δ(0) = ∞, δ(x) = 0 if x �= 0, and

∫ ∞
−∞ δ(x)dx = 1.
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Fig. 5.15. Global and local PDM. The figure shows the posterior probability
P (S|Dt) of tree topologies S conditional on two subsets Dt and Dt′ selected by a
moving window. The local PDM compares two distributions conditional on adjacent
windows. This measure is a local divergence score. Alternatively, one can first obtain
a reference distribution 〈P (S|Dt)〉 by averaging P (S|Dt) over all window positions,
and then compute a global PDM between 〈P (S|Dt)〉 and each local distribution
P (S|Dt).

K(P,Q) =
∑
S

PS log
(
PS

QS

)
(5.11)

in which P and Q denote probability distributions. Recall from the discussion
after (2.49) thatK(P,Q) is always non-negative, and zero if and only if P = Q.
To estimate the divergence between the local and the global distribution,
define P as in (5.10) and Q as the average distribution:

d[P (t), P ] = K[P (t), P ]; PS =
1
Mw

Mw∑
t=1

PS(t) (5.12)

where Mw is the number of different window positions. This divergence score
is the global PDM. Since Support(P ) ⊆ Support(P ), where Support(P ) is the
set of all topologies S for which PS �= 0, the non-singularity of the expression
on the left-hand side of (5.12) is guaranteed. To determine the divergence
between two local distributions P (t) and P (t + ∆t) – conditional on two
adjacent windows with centre positions t and t + ∆t – a slightly modified
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divergence measure4 is used:

d[P (t), P (t+∆t)] = (5.13)
1
2

[
K

(
P (t),

P (t) + P (t+∆t)
2

)
+K

(
P (t+∆t),

P (t) + P (t+∆t)
2

)]
Note again that Support[P (t)],Support[P (t+∆t)] ⊆ Support

[
P (t)+P (t+∆t)

2

]
guarantees the non-singularity of d[P (t), P (t+∆t)]. To estimate whether the
observed divergence measures are significantly different from zero, note that
under the null hypothesis of no recombination, P = Q, the Kullback-Leibler
divergence is asymptotically chi-squared distributed [9]. Denote by M̃ the
number of independent samples from which P and Q are determined, and by
ν = |Support(P)| the cardinality of the support of P . Then, for P = Q and
M̃ � ν, we have:

2M̃ K(P,Q) ∼ Pχ2(ν − 1) (5.14)

where Pχ2(ν − 1) denotes the chi-squared distribution with ν − 1 degrees
of freedom [9]. Note that consecutive samples of an MCMC simulation are
usually not independent, so the observed sample size M has to be replaced by
the effective independent sample size M̃ . For example, if the autocorrelation
function is exponential with an autocorrelation time τ � 1, then M̃ = M

2τ , as
shown in the appendix of [14].

The local PDM (5.13) depends on the distance between two windows, ∆t.
It seems natural to choose two consecutive windows, as in TOPAL. However,
by allowing a certain overlap between the windows the spatial resolution of
the detection method can be improved. Husmeier and Wright [13] found that
the best results can be obtained by averaging over different degrees of window
overlap:

d =
1
A

A∑
a=1

d[P (t), P (t+ a∆t)] (5.15)

where d(.) is defined in (5.13), and the average is over all window overlaps
between 50% and 90%.

In summary, the method described above gives us two recombination de-
tection scores: PDM-global (5.12) as a global measure akin to PLATO, and
PDM-local (5.13), (5.15) as a local measure in the vein of TOPAL. An illus-
tration is given in Figure 5.15.

Shortcomings of PDM

Like TOPAL, PDM is a window method. While TOPAL needs a sufficiently
large subset to reliably estimate the reference tree, PDM needs a sufficiently
4 The divergence measure of (5.13) was introduced by Sibson; see, for instance,

[15], Chapter 14.
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large window to obtain a sufficiently informative posterior distribution over
tree topologies. For a small subset Dt, the posterior distribution P (S|Dt) will
be diffuse so that moving the window into a recombinant region, as illustrated
in Figure 5.15, will only give a small divergence score, whose deviation from
zero may not be significant. In [13], a window of 500 nucleotides was used, and
the method was tested on alignments of eight sequences. For larger alignments,
a larger window may have to be used, which will obviously compromise the
spatial resolution. The simulation study described in the next section demon-
strates that PDM clearly outperforms PLATO, and that it achieves a slightly
better detection accuracy than TOPAL. This improvement, however, comes at
a considerable increase in the computational costs because the fast optimiza-
tion routines of TOPAL and PLATO have to be replaced by computationally
expensive MCMC simulations.

5.8 Empirical Comparison I

Husmeier and Wright [13] carried out a simulation study to evaluate the detec-
tion accuracy of PLATO, TOPAL, and PDM. Synthetic DNA sequences were
obtained by simulating their evolution down known phylogenetic trees, shown
in Figure 5.16, using the Kimura model of nucleotide substitution (4.16), de-
scribed in Section 4.4. The transition-transversion ratio was set to τ = 2;
compare with (4.21). A variety of different recombination scenarios was sim-
ulated. In experiment series 1, partial sequences were evolved down different
topologies, as indicated in the left of Figure 5.16, and then spliced together.
This process reflects the swapping of branches, that is, the exchange of DNA
subsequences. In experiment series 2, the sequences were simulated along the
branches of the phylogenetic tree as far as a particular depth, half the length
of the indicated branch. At this point, a region from a sequence replaced the
corresponding region in another sequence, as indicated in the right of Fig-
ure 5.16. The sequences were then evolved along the remaining part of the
phylogeny. This process simulates the transfer of genetic material between
different strains. In both experiment series, two recombination events of dif-
ferent detection difficulty were simulated, and the process was repeated for
different branch lengths. In experiment series 2, a differently diverged region
was included, where the branch lengths had effectively been increased by a
factor of 3. This inclusion of a differently diverged region tests whether the
detection methods can distinguish between rate variation and recombination.
Details of the branch lengths and the location of the recombinant regions can
be found in the caption of Figure 5.16.

For both TOPAL and PDM, a window of 500 nucleotides was moved along
the alignment with a fixed step size of ∆t = 10 nucleotides. For PLATO, the
Q-statistic (5.4) was computed for all windows with a length between five
nucleotides and half the sequence length. Further details of the application of
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Fig. 5.16. Synthetic simulation study for comparing PLATO, TOPAL,
and PDM. The phylogenetic tree on the left (simulation 1) shows two recent recom-
bination events, between closely related taxa (A01 ↔ A10) and between distantly
related taxa (A00 ↔ B00), where the indicated lineages are swapped. The phyloge-
netic tree on the right (simulation 2) shows a recent (A00 ↔ B00) and an ancient
(A0 ↔ B0) recombination event between distantly related taxa, where DNA subse-
quences are transferred at a single point in time, half-way along the branches. The
subfigures in the bottom indicate the locations of the recombinant regions in the
sequence alignment. In simulation study 1, the total alignment is 5000 nucleotides
long, and each recombinant region has a length of 1000 nucleotides. In simulation
study 2, the total alignment is 5500 nucleotides long, and each recombinant region
has a length of 500 nucleotides. The alignment also contains a differently diverged
region of 500 nucleotides, where the effective branch lengths of the tree are increased
by a factor of 3. The simulation was carried out for two different settings of branch
lengths. Long branch lengths: The branch between ancestors A and B has the length
w = 0.2, and all other branches have the length w = 0.1. Short branch lengths: The
branch between ancestors A and B has the length w = 0.02, and all other branches
have the length w = 0.01.

the methods, including the parameter settings and the software used, can be
found in [13].

Figure 5.17 shows the results obtained with the various methods on the
first benchmark problem. PLATO detects the first recombinant region, but
fails to detect the second. TOPAL detects both recombinant regions when
the branch lengths of the phylogenetic tree are large (w = 0.1), but fails to
detect the second region when the branch lengths are small (w = 0.01). PDM
detects both recombinant regions for all branch lengths, although the accuracy
degrades as the branch lengths decrease. Note that the spatial resolution of
the detection with PDM is similar to that with TOPAL, and typically of the
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Fig. 5.17. Detection of recombination for the first synthetic problem,
experiment series 1, as illustrated on the left of Figure 5.16. Left column: Long branch
lengths. Right column: Small branch lengths. Top row: PDM-global (5.12). 2nd row:
PDM-local. The solid line shows the local PDM score (5.15), the dashed line indicates
the asymptotic 95-percentile under the null hypothesis of no recombination. 3rd row:
TOPAL. The solid line shows the DSS statistic (5.6), the dashed line indicates the
95-percentile under the null hypothesis of no recombination. Bottom row: PLATO.
The graph indicates critical regions in the alignment, for which the Q-statistic (5.4)
is significantly larger than expected under the null hypothesis of no recombination.
1: critical region. 0: uncritical region. The true recombinant regions are situated
between sites 1000 and 2000 (involving distantly related strains) and between sites
3000 and 4000 (involving closely related strains); compare with Figure 5.16, left.
In all figures, the horizontal axis represents sites in the DNA sequence alignment.
Reprinted from [13], by permission of Oxford University Press.

same size as the discrepancy between the prediction with PLATO and the
true location of the recombinant regions.

Figure 5.18 demonstrates the performance of the various methods on the
second synthetic problem. The level of difficulty is increased by a shortening
of the recombinant blocks and the existence of a confounding region, which
has evolved at a higher rate (“mutation hotzone”) without being subject to
recombination. PLATO, in fact, fails to detect the recombinant blocks and
gets confounded by this differently diverged region. TOPAL and PDM suc-
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Fig. 5.18. Detection of recombination for the second synthetic problem,
experiment series 2, as illustrated on the right of Figure 5.16. The recombinant
regions are located between sites 1000 and 1500 (ancient recombination event) and
between sites 2500 and 3000 (recent recombination event). The region between sites
4000 and 4500 has diverged at an increased evolution rate (factor 3) without being
subject to recombination. Compare with Figure 5.16, right. The graphs are explained
in the caption of Figure 5.17. Reprinted from [13], by permission of Oxford University
Press.

ceed in distinguishing between recombination and rate variation.5 However,
TOPAL does not properly detect the first (ancient, and therefore more hid-
den) recombination event when the branch lengths of the phylogenetic tree
are small. PDM, on the contrary, detects both recombination events irrespec-
tive of the branch lengths. The spatial resolution, however, deteriorates as the
branch lengths decrease.

5.9 RECPARS

As discussed in the previous sections, window methods are inherently limited
in the spatial resolution with which the breakpoints of recombinant regions
5 In [13], one exception is reported, where TOPAL mistakes a differently diverged

region for a recombinant region.
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can be detected. A different approach, which does not resort to the use of a
window, was proposed by Hein [8]. The idea is to introduce a hidden state
St that represents the tree topology at a given site t in the DNA sequence
alignment. A state transition from one topology into another corresponds to
a recombination event. To model correlations between adjacent sites, a site
graph is introduced, representing which nucleotides interact in determining
the tree topology. Thus, the standard phylogenetic model of a tree, discussed
in Chapter 4, is generalized by the combination of two graphical models: (1)
a taxon graph (phylogenetic tree) representing the relationships between the
taxa, and (2) a site graph representing interactions between the site-dependent
hidden states. To keep the mathematical model tractable and the computa-
tional costs limited, the latter are reduced to nearest-neighbour interactions;
compare with the discussion in Section 2.3.4. Breakpoints of mosaic segments
correspond to state transitions in the optimal hidden state sequence. Hein [8]
defined optimality in a parsimony sense. His algorithm, RECPARS, searches
for the most parsimonious state sequence6 S = (S1, . . . , SN ), that is, the
one that minimizes a given parsimony cost function E(S). Since the depen-
dence structure between sites is restricted to nearest-neighbour interactions,
as discussed above, the search can be carried out in polynomial time with
dynamic programming, which is akin to the Viterbi algorithm described in
Section 2.3.4.

Shortcomings of RECPARS

While RECPARS is faster than the HMM method described in the next sec-
tion, it suffers from the shortcomings inherent to parsimony, discussed in
Section 4.3. Moreover, E(S) depends only on the topology-defining sites; thus
the algorithm discards a substantial amount of information in the alignment.
The most serious disadvantage is that the cost function E(S) depends on cer-
tain parameters - the mutation cost Cmut, and the recombination cost Crec

- which can not be optimized within the framework of this method. Conse-
quently, these parameters have to be chosen by the user in advance, and the
predictions depend on this rather arbitrary prior selection.

5.10 Combining Phylogenetic Trees with HMMs

5.10.1 Introduction

To overcome the shortcomings of RECPARS, discussed in the previous section,
McGuire et al. [20] translated the concept of RECPARS into a probabilistic
framework. First, the parsimony approach to phylogenetics, discussed in Sec-
tion 4.3, is replaced by the likelihood method, described in Section 4.4 and
6 Note the difference in the notation: S denotes a state sequence, while S or St

denotes an individual state (associated with site t).
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Fig. 5.19. Probabilistic approach to phylogenetics and modelling re-
combination. For a given column yt in the sequence alignment, a probability
P (yt|St,w, θ) can be computed, which depends on the tree topology St, the vector
of branch lengths w, and the parameters of the nucleotide substitution model θ.
In the presence of recombination, the tree topology can change and thus becomes
a random variable that depends on the site label t. For four taxa, there are three
different tree topologies. The vectors w and θ are accumulated vectors, as defined in
the paragraph above equation (5.17). Reprinted from [11], by permission of Oxford
University Press.

illustrated in Figure 5.19. Second, the recombination cost in RECPARS is re-
placed by a recombination probability, illustrated in Figure 5.20, which turns
the hidden state graph of RECPARS into a hidden Markov model; see Sec-
tion 2.3.4. Figure 5.21, left, shows the corresponding Bayesian network. White
nodes represent hidden states, St, which have direct interactions only with the
states at adjacent sites, St−1 and St+1. Black nodes represent columns in the
DNA sequence alignment, yt. The squares represent the model parameters,
which are the branch lengths of the phylogenetic trees, w, the parameters of
the nucleotide substitution model, θ, and the recombination parameter, ν; see
Figures 5.19 and 5.20. The joint probability of the DNA sequence alignment,
D = (y1, . . . ,yN ), and the sequence of hidden states,7 S = (S1, . . . , SN ),
7 Note the difference between S (a state sequence) and S or St (an individual

hidden state), as explained in the previous footnote.
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Fig. 5.20. Transition probabilities. The hidden states of the HMM represent
different tree topologies, and state transitions correspond to recombination events.
The transition probability ν is the probability that on moving from a site in the DNA
sequence alignment to an adjacent site, no topology change occurs. If a topology
change occurs, we assume that, a priori, all transitions are equally likely. Reprinted
from [11], by permission of Oxford University Press.

factorizes, by the expansion rule for Bayesian networks (2.1):

P (D,S|w,θ, ν) = P (y1, . . . ,yN , S1, . . . , SN |w,θ, ν)

=
N∏

t=1

P (yt|St,w,θ)
N∏

t=2

P (St|St−1, ν)P (S1) (5.16)

Compare this equation with (2.51). P (S1) is the marginal distribution over
the hidden states, that is, the K possible tree topologies. The P (St|St−1, ν)
are the transition probabilities, which depend on the recombination param-
eter ν ∈ [0, 1], as illustrated in Figure 5.20. The functional form chosen in
[10, 11] is given by (2.63), discussed in Section 2.3.5. The parameter ν defines
the probability that on moving from a site in the DNA sequence alignment to
an adjacent site, no topology change occurs. If a topology change occurs – cor-
responding to a recombination event – all transitions into other topologies are
assumed to be equally likely. The P (yt|St,w,θ) are the emission probabilities,
which depend on the vector of branch lengths, w, and the parameters of the
nucleotide substitution model, θ. For example, for the Kimura model (4.16), θ
is given by the transition-transversion rate τ , defined in (4.21). For the HKY85
model, θ = (τ,π), where π was defined in (4.29). In fact, both w and θ are
dependent on the hidden state, so more precisely, the emission probabilities
should be written as P (yt|St,wSt ,θSt). To simplify the notation, this chap-
ter uses the accumulated vectors w = (w1, . . . ,wK) and θ = (θ1, . . . ,θK)
and defines: P (yt|St,wSt

,θSt
) = P (yt|St,w,θ). This means that St indicates
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Fig. 5.21. Modelling recombination with hidden Markov models. Positions
in the model, labelled by the subscript t, correspond to sites in the DNA sequence
alignment. Black nodes represent observed random variables; these are the columns
in the DNA sequence alignment. White nodes represent hidden states; these are the
different tree topologies, shown (for four sequences) in Figure 5.19. Arrows represent
conditional dependencies. Squares represent parameters of the model. The proba-
bility of observing a column vector yt at position t in the DNA sequence alignment
depends on the tree topology St, the vector of branch lengths w, and the parameters
of the nucleotide substitution model θ. The tree topology at position t depends on
the topologies at the adjacent sites, St−1 and St+1, and the recombination parameter
ν. Left: In the maximum likelihood approach, ν, w, and θ are parameters that have
to be estimated. Right: In the Bayesian approach, ν, w, and θ are random variables.
The prior distribution for ν is a beta distribution with hyperparameters α and β.
The prior distributions for the remaining parameters depend on some hyperparam-
eters Ω, as discussed in the text. The parameters ν, w, and θ are sampled from
the posterior distribution with Markov chain Monte Carlo. Reprinted from [11], by
permission of Oxford University Press.

which subvectors of w and θ apply. The computation of P (yt|St,w,θ) makes
use of the peeling algorithm, discussed in Section 4.4.3, and illustrated in Fig-
ure 4.23. Note that while the standard likelihood approach to phylogenetics,
expressed in (4.58), assumes that one tree topology S applies to the whole
sequence alignment, (5.16) allows for topology changes, corresponding to re-
combination events. The best prediction of the recombinant regions and their
breakpoints is given by

Ŝ = argmaxSP (S|D,w,θ, ν)
= argmaxS1,...,SN

P (S1, . . . , SN |y1, . . . ,yN ,w,θ, ν) (5.17)
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Fig. 5.22. Nucleotide weighting schemes. The bottom of each figure represents
a multiple DNA sequence alignment with a recombinant zone in the middle. Left:
The standard approach. The tree parameters are estimated from the whole sequence
alignment, which corresponds to a uniform weight of 1 for all sites. Right: The
EM algorithm. The solid line shows the site-dependent weights Q(St = TR) for
the recombinant topology TR, the dashed line represents the weights for the non-
recombinant topology T0 : Q(St = T0). Note that the weights Q(St) are updated
automatically in every iteration of the optimization procedure (in the E-step).

which is computed with the Viterbi algorithm, described in Section 2.3.4,
especially equations (2.52) and (2.54). The marginal probability P (S1) and
the parameters w, θ, and ν need to be estimated.

5.10.2 Maximum Likelihood

Husmeier and Wright [12] optimized the parameters in a maximum likelihood
sense with the EM algorithm (see Section 2.3.3.) This approach follows the
procedure discussed in Section 2.3.5. The M-step for the marginal probabilities
P (St) is described in the paragraphs above and below (2.63) on page 51. The
M-step for ν is given by (2.68). The M-step for w and θ requires us to maximize
the expression in (2.58):

A(w,θ) =
N∑

t=1

∑
St

Q(St) logP (yt|St,w,θ) (5.18)

where the distribution Q(St) is obtained in the E-step, as described in the
section after equation (2.62). Note that (5.18) does not have a closed form
solution. Consequently, the parameters have to be optimized in an iterative
procedure, as described in Section 4.4.5. Effectively, one can apply the opti-
mization routines discussed in Section 4.4.5. The only modification required
is a state-dependent weighting of the sites in the sequence alignment, as il-
lustrated in Figure 5.22. These weights come out of the E-step of the EM
algorithm, using the forward–backward algorithm, as described in the para-
graph following (2.62). The cycles of E and M steps have to be iterated; see
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Section 2.3.3. Note that as opposed to Section 4.4.3, the dependence of the
emission probabilities on θ has been made explicit in the notation, and in gen-
eral these parameters should be optimized together with the branch lengths
w. However, in [12], where the Kimura model (4.16) of nucleotide substitu-
tion was employed, the single parameter8 θ = τ (4.21) was estimated from
the whole sequence alignment in advance, and only the branch lengths w were
optimized with a gradient ascent scheme applied to (5.18).

The maximum likelihood approach has the disadvantage that the optimal
sequence of hidden states, Ŝ, given by (5.17), depends on the parameters w, θ.
These parameters were estimated from the sequence alignment, which renders
the approach susceptible to over-fitting. Within the frequentist paradigm of
inference, discussed in Section 1.2, we have to test the null hypothesis of no
recombination against the alternative hypothesis that a recombination event
has occurred. For the practical implementation, we can use nonparametric
bootstrapping, described in Sections 1.2 and 4.4.6, and illustrated in Figure 1.5,
or parametric bootstrapping, illustrated in Figure 5.10. These approaches are
computationally expensive because they require us to repeat the iterative
optimization procedure of the EM algorithm on many (typically at least a
hundred) bootstrap replicas of the sequence alignment; see Figure 4.35. An
alternative would be to resort to asymptotic model selection scores, like the
likelihood ratio test [9], or the BIC score, discussed in Section 2.3.2. However,
for complex models and comparatively small data sets, these scores cannot be
assumed to be reliable, and their use is therefore not recommended. Motivated
by Figure 4.35, we will therefore look at a Bayesian approach, which is based
on the principle described in Section 2.3.7, and was proposed by Husmeier
and McGuire [10, 11].

5.10.3 Bayesian Approach

Within the Bayesian framework, summarized in Section 1.3, the prediction
of the optimal state sequence S should be based on the posterior probability
P (S|D), which requires the remaining parameters to be integrated out:

P (S|D) =
∫
P (S,w,θ, ν|D)dwdθdν (5.19)

In principle this avoids the over-fitting scenario mentioned above and removes
the need for a separate hypothesis test. The difficulty, however, is that the
integral in (5.19) is analytically intractable. This intractability calls for a
numerical approximation with Markov chain Monte Carlo (MCMC), as intro-
duced in Section 2.2.2, and extended in Section 2.3.7. The subsections below
will discuss (1) the choice of prior probabilities, (2) the implementation of the
MCMC method, (3) convergence issues, and (4) the prediction resulting from
this scheme. A test of the practical viability and a comparison with the other
approaches introduced in this chapter is the subject of Section 5.11.
8 The parameter τ was chosen to be the same for all states St.
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Prior probabilities

Inherent in the Bayesian framework is the choice of prior probabilities for
all model parameters, as illustrated in Figure 5.21, right. The approach in
[10, 11] makes the common assumption of parameter independence (e.g., [7]),
P (ν,w,θ) = P (ν)P (w)P (θ). Thus, with (5.16), we obtain for the joint dis-
tribution:

P (D,S,w,θ, ν)

=
N∏

t=1

P (yt|St,w,θ)
N∏

t=2

P (St|St−1, ν)P (S1)P (w)P (θ)P (ν) (5.20)

Due to the absence of specific biological knowledge about the nature of re-
combination processes, the prior distributions are chosen rather vague. Also,
prior probabilities are chosen either conjugate, where possible, or uniform,
but proper (that is, restricted to a finite interval). The conjugate prior for
the recombination parameter ν is a beta distribution (1.12), whose shape
is determined by two hyperparameters α and β; see Figure 1.8. In [10, 11],
these hyperparameters were chosen such that the resulting prior is sufficiently
vague, while incorporating the prior knowledge that recombination events are
fairly rare. A priori, the branch lengths w are assumed to be uniformly dis-
tributed in the interval [0, 1]. Fixing an upper bound on the branch lengths is
necessary to avoid the use of an improper prior, for which the MCMC scheme
might not converge. Since for real DNA sequence alignments branch lengths
are unlikely to approach values as large as 1, this restriction should not cause
any difficulties. The prior on S1 was chosen uniform in [10, 11].9 Finally, the
prior on θ depends on the nucleotide substitution model and is discussed in
[10, 11].

The MCMC scheme

Ultimately, we are interested in the marginal posterior probability of the state
sequences, P (S|D), which requires a marginalization over the model parame-
ters according to (5.19). The numerical approximation is to sample from the
joint posterior distribution

P (S,w,θ, ν|D) (5.21)

and then to discard the model parameters. Sampling from the joint poste-
rior probability follows the Gibbs sampling scheme [2], which is illustrated
in Figure 5.23. Applied to (5.21), this method samples each parameter group
separately conditional on the others. So if the superscript (i) denotes the ith
sample of the Markov chain, we obtain the (i+ 1)th sample as follows:
9 One can also treat P (S1) itself as a parameter vector – see the text around (2.63)

on page 51. The conjugate prior for these parameters is a Dirichlet distribution.
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Fig. 5.23. Gibbs sampling. The subfigure in the top left shows a bivariate joint
distribution P (x, y). It is assumed that it is impossible to sample from P (x, y)
directly, but that we can draw samples from its univariate marginal distributions.
Gibbs sampling then proceeds by iterating the following two steps: (1) Top right:
Sample x from the conditional probability P (x|y) for fixed y. (2) Bottom left: Sample
y from the conditional probability P (y|x) for fixed x. (3) Bottom right: Iterating
these steps produces a Markov chain, which under fairly general conditions converges
in distribution to the desired bivariate distribution P (x, y). Adapted from [16], by
permission of Kluwer Academic Publisher.

S(i+1) ∼ P (·|w(i),θ(i), ν(i),D)

w(i+1) ∼ P (·|S(i+1),θ(i), ν(i),D)

θ(i+1) ∼ P (·|S(i+1),w(i+1), ν(i),D) (5.22)

ν(i+1) ∼ P (·|S(i+1),w(i+1),θ(i+1),D)

The order of these sampling steps, which will be discussed in the remainder
of this subsection, is arbitrary.

Define Ψ =
∑N−1

t=1 δSt,St+1 . From (2.63) and the functional form of the
prior on ν, (1.12), it is seen that writing the joint probability (5.20) as a
function of ν gives:

P (D,S,w,θ, ν) ∝ νΨ+α−1(1 − ν)N−Ψ+β−2 (5.23)

On normalization this gives

P (ν|D,S,w,θ) = B(ν|Ψ + α,N − Ψ + β − 1) (5.24)
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where B is the beta distribution (1.12), from which sampling is straightforward
[25].

The sampling of the state sequences S can follow the approach suggested
in [23], where each state St is sampled separately conditional on the others,
that is, with a Gibbs-within-Gibbs scheme:

S
(i+1)
1 ∼ P (·|S(i)

2 , S
(i)
3 , . . . , S

(i)
N ,D,w(i),θ(i), ν(i))

S
(i+1)
2 ∼ P (·|S(i+1)

1 , S
(i)
3 , . . . , S

(i)
N ,D,w(i),θ(i), ν(i))

... (5.25)

S
(i+1)
N ∼ P (·|S(i+1)

1 , S
(i+1)
2 , . . . , S

(i+1)
N−1 ,D,w(i),θ(i), ν(i))

The computational complexity of this approach is reduced considerably by
the sparseness of the connectivity in the HMM. Recall from Section 2.1.1 that
a node in a Bayesian network is only dependent on its Markov blanket, that
is, the set of parents, children, and coparents. This fundamental feature of
Bayesian networks implies that

P (St|S1, . . . , St−1, St+1, . . . , SN ,D,w,θ, ν)
= P (St|St−1, St+1,yt,w,θ, ν)
∝ P (St+1|St, ν)P (St|St−1, ν)P (yt|St,w,θ) (5.26)

where P (St|St−1, ν) and P (St+1|St, ν) are given by (2.63). Note that the last
expression in (5.26) is easily normalized to give a proper probability, from
which sampling is straightforward (since St ∈ {1, . . . ,K} is discrete).

Finally, the remaining parameters, w and θ, are sampled with the
Metropolis–Hastings algorithm, described in Sections 2.2.2 and 4.4.7, es-
pecially equation (4.71). The overall algorithm is thus of the form of a
Metropolis–Hastings and Gibbs-within-Gibbs scheme.

Improving the convergence of the Markov chain

In theory, the MCMC algorithm converges to the posterior distribution (5.21)
irrespective of the choice of the proposal distribution (assuming ergodicity).
In practice, a “good” choice of the proposal probabilities is crucial to achieve
a convergence of the Markov chain within a reasonable amount of time. The
dependence of the convergence and mixing properties on the proposal proba-
bilities was demonstrated in Section 2.2.2, especially Figure 2.14. Tuning the
proposal probabilities for the present MCMC study follows the same princi-
ples, albeit at a higher level of complexity. The details are beyond the scope
of this chapter, and can be found in [11].

Prediction

Recall that the proposed Bayesian method samples topology sequences from
the joint posterior distribution P (S|D) = P (S1, . . . , SN |D), where St rep-
resents the topology at site t. To display the results graphically, we can
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marginalize, for each site in turn, over all the remaining sites so as to re-
turn the marginal posterior probabilities P (St|D). These probabilities can
then be plotted, for each topology St, along the sequence alignment. For in-
stance, if we have an alignment of four sequences, for which there are three
different (unrooted) tree topologies, we get three different plots: P (St = 1|D),
P (St = 2|D), and P (St = 3|D). Examples will be shown in the next section,
in Figures 5.27–5.29. Assigning each site t to the mode of the posterior distri-
bution P (St|D) gives a list of putative recombinant regions, identical to the
output of RECPARS. Note, however, that the posterior probabilities P (St|D)
contain further, additional information, as they also indicate the uncertainty
in the prediction.

5.10.4 Shortcomings of the HMM Approach

The method of combining a phylogenetic tree with an HMM – henceforth re-
ferred to as the HMM method – is restricted to DNA sequence alignments with
small numbers of taxa. This is because each possible tree topology constitutes
a separate state of the HMM, and the number of tree topologies increases
super-exponentially with the number of sequences, as shown in Table 4.2 on
page 121. In fact, in [10, 11], the HMM method was only applied to sequence
alignments of four taxa. In practical applications, the HMM method has there-
fore to be combined with a low-resolution preprocessing method, using, for
instance, RECPARS, Section 5.9, or the window methods, Sections 5.6 and
5.7. In a first, preliminary analysis, apply the preprocessing method to iden-
tify putative recombinant sequences and their approximate mosaic structures.
In a second, subsequent step, apply the HMM approach to the tentative sets
of four sequences that result from the preprocessing step. This will allow a
more accurate analysis of the mosaic structure than can be obtained from
the window methods with their inherently low resolution, and it will resolve
contradictions that are likely to arise from different (arbitrary) settings of the
parsimony cost parameters of RECPARS. In general, after identifying a small
set of putative recombinant sequences with any fast low-resolution method,
the exact nature of the recombination processes and the location of the break-
points can be further investigated with the high-resolution HMM method.

A second limitation is the fact that the states of the HMM represent only
different tree topologies, but do not allow for different rates of nucleotide
substitution. A way to redeem this deficiency is to employ a factorial hid-
den Markov model (FHMM), as discussed in [5], and to introduce two dif-
ferent types of hidden states: one representing different topologies, the other
representing different nucleotide substitution rates. This approach effectively
combines the method in [10, 11], described in the present section, with the
approach in [3], where the different states of the HMM correspond to differ-
ent rates of nucleotide substitution. Implementing this FHMM approach is a
project for future research.
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Fig. 5.24. Simulation of recombination. Four sequences are evolved along the
interior branch and the first quarter of the exterior branches of a phylogenetic tree
(top left). At this point, the subsequence between sites 201 and 400 in strain 3 is
replaced by the corresponding subsequence in strain 1 (top right). The sequences
then continue to evolve along the exterior branches until the branch length is 0.75
times the final exterior branch length (middle, left). This process is followed by
a second recombination event, where the subsequence between sites 601 and 800
in strain 2 replaces the corresponding subsequence in strain 3 (middle right). The
sequences then continue to evolve along the exterior branches for the remaining
length (bottom left). Note that this model simulates a realistic scenario where an
ancestor of strain 3 incorporates genetic material from ancestors of other extant
strains, and the transfer of DNA subsequences is followed by subsequent evolution.
The resulting mosaic structure is shown in the bottom right. Reprinted from [11],
by permission of Oxford University Press.

5.11 Empirical Comparison II

Husmeier and McGuire [11] compared the performance of the Bayesian HMM
method of Section 5.10.3 with PLATO, introduced in Section 5.5, TOPAL,
discussed in Section 5.6, and RECPARS, described in Section 5.9. The present
section gives a brief summary of their findings. For further details, see [11].

5.11.1 Simulated Recombination

DNA sequences, 1000 nucleotides long, were evolved along a 4-species tree,
using the Kimura model of nucleotide substitution (τ = 2), discussed in Sec-
tion 4.4.2, and illustrated in Figure 4.18. Two recombination events were sim-
ulated, as shown in Figure 5.24. In the main part of the alignment, strain 3
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Fig. 5.25. True mosaic structures for the synthetic data. The recombination
process was simulated according to Figure 5.24. The vertical axis represents the
three different tree topologies. The horizontal axis shows sites in the DNA sequence
alignment. Reprinted from [11], by permission of Oxford University Press.
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Fig. 5.26. Prediction with RECPARS on the synthetic sequence alignment,
for which the true mosaic structures are shown in Figure 5.25. The left figure cor-
responds to the left figure in Figure 5.25, and the right figure corresponds to the
right figure in Figure 5.25. Each figure contains three subfigures, which show the
results for different recombination–mutation cost ratios, Crecomb/Cmut. Top subfig-
ure: Crecomb/Cmut = 10.0; middle subfigure: Crecomb/Cmut = 3.0; bottom subfigure:
Crecomb/Cmut = 1.5. The horizontal axis in each subfigure represents sites in the
sequence alignment, while the vertical axis represents the three possible tree topolo-
gies. Reprinted from [11], by permission of Oxford University Press.

is most closely related to strain 4. However, in the first recombinant region,
it is most closely related to strain 1, and in the second recombinant region, it
is most closely related to strain 2. Thus, the first recombination event corre-
sponds to a transition from topology 1 into topology 2. The second recombi-
nation event corresponds to a transition from topology 1 into topology 3. The
simulation was repeated for different lengths of the recombinant regions. The
true mosaic structure of the alignment is shown in Figure 5.25. For further
details, see [11].
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Fig. 5.27. Prediction with the HMM method on the synthetic sequence
alignment, for which the true mosaic structures are shown in Figure 5.25. The left
figure corresponds to the left figure in Figure 5.25, and the right figure corresponds
to the right figure in Figure 5.25. Each figure contains three subfigures, which show
the posterior probabilities of the three topologies, P (St = 1|D) (top), P (St = 2|D)
(middle), P (St = 3|D) (bottom), plotted against the site t in the DNA sequence
alignment. Reprinted from [11], by permission of Oxford University Press.

The predictions with RECPARS are shown in Figure 5.26. The results
depend critically on the recombination–mutation cost ratio, Crecomb/Cmut,
which can not be optimized within the framework of this method, as discussed
in Section 5.9, but rather has to be chosen arbitrarily in advance. With a value
of Crecomb/Cmut = 10.0, no recombinant regions are found. As Crecomb/Cmut

is decreased, an increasing number of recombinant regions are detected. The
best results in the right subfigure of Figure 5.26 show a qualitative agreement
with the true locations, but note that selecting Crecomb/Cmut in this way is not
possible in real applications where the nature of the recombination processes
is not known beforehand.

The prediction with the Bayesian HMM method is shown in Figure 5.27.
The figure contains two subfigures, which correspond to the respective true
mosaic structures depicted in Figure 5.25. Each subfigure contains three
graphs, which show the posterior probabilities P (St|D) for the three possible
tree topologies, St ∈ {1, 2, 3}. These graphs show clear and pronounced tran-
sitions between the states, with a correct prediction of the topology change,
and an accurate location of the breakpoints. Note that as opposed to REC-
PARS, this prediction does not depend on any arbitrary parameters that
would have to be set in advance.10

The predictions with TOPAL were similar to Figure 5.12. With a short
window of only 100 nucleotides, TOPAL only detected two of the four break-
points. For a sufficiently large window size of 200 nucleotides, TOPAL de-
tected all four breakpoints. However, the spatial resolution was similar to
10 Recall from (5.19) that within the Bayesian paradigm, the parameters have ef-

fectively been integrated out.
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that of Figure 5.12, that is, of the order of the window size and, consequently,
rather poor.

PLATO failed to detect any recombinant region. This failure corroborates
the discussion at the end of Section 5.5, which suggested that PLATO becomes
unreliable when the recombinant regions are fairly long.

The next two subsections will describe two real-world applications. In
both cases, the performance of PLATO was poor, and the predictions with
RECPARS were found to depend critically on the arbitrary setting of the
recombination–mutation cost ratio, Crecomb/Cmut. Therefore, only the pre-
dictions with TOPAL and the HMM method will be presented here. For the
full results, see [11].

5.11.2 Gene Conversion in Maize

Gene conversion is a process equivalent to recombination, which occurs in
multigene families, where a DNA subsequence of one gene can be replaced
by the DNA subsequence from another. Indication of gene conversion be-
tween a pair of maize actin genes has been reported in [21] for the align-
ment of the sequences Maz56 (GenBank/EMBL accession number U60514),
Maz63 (U60513), Maz89 (U60508), and Maz95 (U60507). An illustration is
given in Figure 5.28, where the topologies are defined as follows. Topology 1:
(Maz56,Maz63),(Maz89,Maz95); topology 2: (Maz56,Maz89),(Maz63,Maz95);
topology 3: (Maz56,Maz95),(Maz63,Maz89). The total length of the alignment
is 1008 nucleotides.

The predictions with TOPAL (for a window size of 200 nucleotides) and
the HMM method are shown in the bottom of Figure 5.28. TOPAL gives a
qualitatively correct prediction of the mosaic structure, detecting one signifi-
cant breakpoint at about the correct position. However, an exact location of
this breakpoint is impossible due to the rather large intrinsic uncertainty in
the prediction. The HMM method achieves a considerable improvement on
TOPAL by predicting the location of the breakpoint much more accurately –
in agreement with the earlier findings reported in [21] – and by also giving a
correct prediction of the nature of the recombination event, that is, the ensu-
ing topology change of the phylogenetic tree. Recall, however, that as opposed
to TOPAL, the HMM method is restricted to alignments of small numbers of
sequences.

5.11.3 Recombination in Neisseria

One of the first indications for interspecific recombination was found
in the bacterial genus Neisseria [17]. Zhou and Spratt [28] investi-
gated the 787-nucleotide argF gene sequence alignment of the strains
(1) N.gonorrhoeae (X64860), (2) N.meningitidis (X64866), (3) N.cinerea
(X64869), and (4) N.mucosa (X64873); GenBank/EMBL accession num-
bers are given in brackets. There are three different tree topologies:



5 Detecting Recombination in DNA Sequence Alignments 185

1 4

32

Topo 1

Topo 1

1

4

2

3

875 bases 133 bases

Topo 3

1 4

32

250 500 750 1000
0

0.5

1
T

op
o 

1

250 500 750 1000
0

0.5

1

T
op

o 
2

250 500 750 1000
0

0.5

1

T
op

o 
3

Fig. 5.28. Gene conversion between two maize actin genes. Top: Indication
of gene conversion between a pair of maize actin genes, corresponding to a transition
from topology 1 into topology 3 after the first 875 nucleotides of their coding regions,
has been reported in [21]. Bottom left: Prediction with TOPAL. The DSS statistic
(5.6), represented by the vertical axis, is plotted against the site t in the sequence
alignment. The dashed horizontal line indicates the 95-percentile under the null-
hypothesis of no recombination. Peaks over this line indicate significant breakpoints.
Bottom right: Prediction with the Bayesian HMM method. The graphs are explained
in the caption of Figure 5.27. Reprinted from [11], by permission of Oxford University
Press.

Topology 1: (N.meningitidis,N.gonorrhoeae),(N.cinerea,N.mucosa); topol-
ogy 2: (N.meningitidis,N.mucosa),(N.gonorrhoeae,N.cinerea); and topology 3:
(N.meningitidis,N.cinerea),(N.gonorrhoeae,N.mucosa). In the main part of the
alignment, N.meningitidis is grouped with N.gonorrhoeae, corresponding to
topology St = 1. However, Zhou and Spratt [28] found two anomalous regions
in the DNA alignment, which occur at positions t = 1−202 and t = 507−538.
Between t = 1 and 202, N.meningitidis is grouped with N.cinerea, which cor-
responds to topology 3, that is, to a transition from state St = 3 into St = 1 at
position t = 202. Zhou and Spratt [28] suggested that the region t = 507−538
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Fig. 5.29. Recombination in Neisseria. Top: According to Zhou and Spratt
[28], a recombination event corresponding to a transition from topology 1 into topol-
ogy 3 has affected the first 202 nucleotides of the DNA sequence alignment of four
strains of Neisseria. A second more diverged region seems to be the result of rate
variation. Bottom: Prediction with the HMM method. The figure contains two sub-
figures, where each subfigure is composed of three graphs, which are explained in
the caption of Figure 5.27. Left: Prediction with the maximum likelihood method of
Section 5.10.2. Right: Prediction with the Bayesian MCMC scheme of Section 5.10.3.
Reprinted from [11], by permission of Oxford University Press.

seems to be the result of rate variation. The situation is illustrated in Fig-
ure 5.29.

Figure 5.29, bottom, shows the prediction of P (St|D), where the subfigure
in the bottom left was obtained with the maximum likelihood HMM method
of Section 5.10.2, henceforth called HMM-ML, and the subfigure in the bottom
right with the Bayesian HMM method of Section 5.10.3, henceforth referred
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to as HMM-Bayes. Both methods agree in predicting a sharp transition from
topology St = 3 to St = 1 at breakpoint t = 202, which is in agreement with
the findings in [28]. Both methods also agree in predicting a short recombinant
region of the same topology change at the end of the alignment. This region
was not reported in [28]. Since it is very short – only about 20 nucleotides
long – it may not be detectable by other, less accurate methods.

Differences between the predictions of HMM-ML and HMM-Bayes are
found in the middle of the alignment, where two further breakpoints occur
at sites t = 506 and t = 537. This is in agreement with [28]. However, while
[28] suggested that the region between t = 506 and t = 537 seems to be the
result of rate heterogeneity, HMM-ML predicts a recombination event with a
clear transition from topology St = 1 into St = 2. This seems to be the result
of over-fitting: since the distribution of the nucleotide column vectors yt in
the indicated region is significantly different from the rest of the alignment,
modelling this region with a different hidden state can increase the likelihood
although the hidden state itself (topology St = 2) might be ill-matched to
the data. This deficiency is redeemed with HMM-Bayes, whose prediction is
shown in Figure 5.29, bottom right. The critical region between sites t = 506
and t = 537 is again identified, indicated by a strong drop in the posterior
probability for the predominant topology, P (St = 1|D). However, the uncer-
tainty in the nature of this region is indicated by a distributed representation,
where both alternative hidden states, St = 2 and St = 3, are assigned a signif-
icant probability mass. With the prediction of this uncertainty, HMM-Bayes
also indicates a certain model misspecification inherent to the current scheme
– the absence of hidden states for representing different evolutionary rates –
and thus avoids the over-fitting incurred when applying HMM-ML.

5.12 Conclusion

The present chapter has reviewed various methods for detecting recombination
in DNA sequence alignments. The focus has been on methods that identify
the mosaic structure and the breakpoints of an alignment – different from
Section 5.3 – and that make use of phylogenetic information – as opposed
to Section 5.4. Note that each section in this chapter has a “shortcomings”
subsection. This is indicative of the current state of the art, where a universally
applicable and reliable off-the-shelf detection method does not yet exist. For
practical applications it is therefore important to understand the strengths
and weaknesses of the various approaches, and to possibly combine them in a
way determined by the nature of the particular problem under investigation.

Finally, note that most of the methods discussed in this chapter focus on
topology changes rather than recombination in general. If a recombination
event only changes the branch lengths of a tree without affecting its topol-
ogy, it will not be detected. However, the main motivation for the detection
methods discussed in the present chapter is a pre-screening of an alignment
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for topology changes as a crucial prerequisite for a consistent phylogenetic
analysis. Most standard phylogenetic methods, as discussed in Chapter 4, are
based on the implicit assumption that the given alignment results from a sin-
gle phylogenetic tree. In the presence of recombination they would therefore
infer some “average” tree. If a recombination event leads to different trees
with the same topology but different branch lengths, the wrong assumption
of having only one tree is not too dramatic: the topology will still be cor-
rect (as it has not been changed by the recombination event), and the branch
lengths will show some average value. This is still reasonable, since branch
lengths are continuous numbers, and the mean of continuous numbers is well
defined. If a recombination event, however, leads to a change of the topology,
inferring an average tree is no longer reasonable: tree topologies are cardinal
entities, for which an average value is not defined. In fact, it is well-known that
in this case the resulting “average” tree will be in a distorted “limbo” state
between the dominant and recombinant trees, which renders the whole infer-
ence scheme unreliable. Thus, by focusing on recombination-induced topology
changes we focus on those events that cause the main problems with standard
phylogenetic analysis methods.

5.13 Software

A free software package (TOPALi) that implements several of
the methods discussed in this chapter can be obtained from
http://www.bioss.sari.ac.uk/∼dirk/My software.html.
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Summary. RNA molecules are used extensively in phylogenetic studies. Their
strongly conserved secondary structure can be used to improve the alignment of
highly diverged sequences, and this in turn can improve phylogenetic accuracy. The
conservation of secondary structure in RNA molecules is a consequence of compen-
satory substitutions or covariation: when a base changes on one side of a helix this
will usually be compensated for by a similar change on the opposite side, in order
to maintain structural stability and biological function. The standard nucleotide
substitution models for DNA, introduced in Chapter 4, ignore this covariation of
base-paired sites, which leads to biased inference results and unreliable posterior
probabilities of subtrees (clades). In the present chapter we discuss how these short-
comings can be overcome with a generalised substitution model that treats base-
paired sites in the RNA helices, rather than single nucleotides, as a unit of evolu-
tion. We will present results from a study of mammalian evolution using Bayesian
inference methods and explain why it is particularly important to include structure
information when estimating Bayesian posterior probabilities.

6.1 Introduction

Ribonucleic Acid (RNA) is an important bio-molecule with a diverse set of
functional roles. RNA consists of a linear polymer with a backbone of ribose
sugar rings linked by phosphate groups. Each sugar has one of four bases,
Adenine, Cytosine, Guanine and Uracil (A,C,G and U), and the sequence of
bases determines the structure and function of the molecule. In this chapter we
will mainly be concerned with transfer RNA and ribosomal RNA molecules.
Transfer RNA (tRNA) is a relatively small RNA molecule that is involved
in protein synthesis. There are many different tRNA molecules each of which
corresponds to a specific amino acid in the protein being synthesised. Ribo-
somal RNA (rRNA) molecules exist in the ribosome which is a small intra-
cellular particle that exists in multiple copies per cell. Each ribosome contains
three RNA molecules which are called the small sub-unit rRNA (SSU or 16S
rRNA), large sub-unit rRNA (LSU or 23S rRNA) and the smaller 5S rRNA.
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The S numbers refer to the sedimentation coefficients of these molecules in
Bacteria. The corresponding molecules are larger in eukaryotes and smaller in
mitochondria, so that the same molecules can have different S numbers. We
therefore prefer to use the less ambiguous SSU/LSU nomenclature.

RNA molecules are used extensively in phylogenetic analysis. Of particular
importance is the SSU rRNA, which was used to establish the modern view of
the early history of cellular life. Until the early 1970s it was thought that cel-
lular organisms could be divided into two main categories: eukaryotes, which
possess a cell nucleus and prokaryotes, which do not. Molecular phylogenies
constructed using the SSU rRNA showed that the prokaryotes should actu-
ally be divided into two very different groups now referred to as Bacteria and
Archea [1]. Bacterial phylogeny is still controversial because different genes
can give rise to different trees. This could be due to errors in the methods or
because there has been horizontal transfer of genes between organisms [2], as
discussed in Chapter 5.

Nevertheless, the rRNA tree is still a standard to which most other phy-
logenetic hypotheses are compared [3]. The SSU rRNA is useful for obtain-
ing resolution over long evolutionary times because it is a sufficiently long
molecule to contain significant amounts of evolutionary information and be-
cause it evolves at a relatively slow rate, so that it still contains useful in-
formation about early evolutionary events. The SSU rRNA is also ubiquitous
and occurs in all forms of cellular life as well as in the mitochondria and
chloroplasts. RNA molecules have been used in a broad range of other im-
portant phylogenetic studies and provide resolution not only over very long
evolutionary times, but also down to the evolutionary time-scales which are
relevant for establishing intra-ordinal or intra-species relationships.

Although RNA molecules are used extensively in phylogenetic inference,
the phylogenetic inference programs used in these studies typically ignore im-
portant features of the molecular evolution which are related to the molecular
structure. The structure of RNA molecules is often highly conserved over
long evolutionary times and this is advantageous as it allows highly accu-
rate alignment of the sequences. Using RNA structure to improve alignments
has been shown to significantly improve the accuracy of phylogenetic meth-
ods [4]. However, the conserved structure strongly influences evolution at the
sequence level and this should be taken into account when developing phylo-
genetic methods.

In this chapter we will briefly introduce RNA secondary structure and
structure prediction methods. We will explain how the evolution process in
populations is affected by the conserved helical structures in RNA molecules
and we will describe a class of evolutionary models that are specifically de-
signed to model evolution in RNA helices. Finally, we will present results from
a study of mammalian evolution using Bayesian inference methods and ex-
plain why it is particularly important to include structure information when
estimating Bayesian posterior probabilities.
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6.2 RNA Structure

Like proteins, RNA molecules form complex three-dimensional (tertiary)
structures. The only way to obtain an accurate tertiary structure is through
experimental methods such as X-ray crystallography. The secondary structure
is a useful two-dimensional representation of certain key structural features.
RNA molecules form helices when two parts of the same sequence are com-
plementary, and the secondary structure shows which parts of the sequence
form the helical regions of the molecule. Computational methods exist that
provide an accurate secondary structure from sequence information, without
resorting to time-consuming and expensive experimental methods. The sec-
ondary structure is therefore a very useful abstraction and provides us with an
accurate representation of the structural features most relevant for improving
phylogenetic methods. A discussion of the relationship between secondary and
tertiary structures is given in [5].

The secondary structure

RNA molecules can form helical structures when two parts of the sequence are
complementary. Hydrogen bonds can occur between G-C (3 bonds), A-U (2
bonds) and G-U (1 bond) base-pairs. The first two are know as Watson–Crick
base-pairs since they are analogous to the pairings in DNA (with Thymine
having been replaced by Uracil). The G-U base-pair is less stable and although
it occurs at an appreciable frequency in the helices, it is less common than the
Watson–Crick pairs. The three common types of base-pair are often referred
to as canonical base-pairs. Some non-canonical or mismatch (MM) base-pairs
do appear within helices, but these occur relatively rarely, typically at about
3–4% of sites in the helices.

In Figure 6.1 we show an example of a secondary structure diagram show-
ing a small part of the SSU rRNA from E. coli. Examples of complete SSU and
LSU rRNA secondary structures can be found on the Comparative RNA Web-
site [6] (http://www.rna.icmb.utexas.edu). The secondary structure shows all
of the base-paired helical regions in the molecule. As well as base-paired helical
regions, there are also single stranded regions known as loops and bulges.

Secondary structure prediction

There has been a great deal of work on computational approaches to RNA
structure prediction. As with protein structure prediction the only way to
obtain a completely accurate tertiary structure is by experimental methods
such as X-ray crystallography. However, unlike protein structure prediction
we can make quite accurate secondary structure predictions using computa-
tional methods. The main approaches are the minimum free energy methods
and comparative methods, which we will describe below. More detailed recent
reviews of secondary structure prediction methods are provided in [5, 7].
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Fig. 6.1. Part of the secondary structure of the SSU rRNA from E. coli .

If a molecule exists in thermal equilibrium then it will spend most of
its time in the minimum free energy (MFE) configuration. MFE methods
use a simplified model of the free energy which can be determined from the
secondary structure. Energy and entropy changes due to helix formation can
be measured from experiments with short RNA sequences [8]. Much of the
stability of a helix comes from the stacking interactions between successive
base-pairs and the free energy is usually assumed to obey a nearest neighbour
model, i.e. there is a free energy contribution from each two successive base-
pairs. There are also free energy penalties associated with the loops due to
the loss of entropy when the loop ends are constrained. It is usually assumed
that the loop free energies depend only on the length of the loop and not on
details of the sequence, although there are some specific exceptions to this
rule.
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In principle we could compute the free energy of every possible secondary
structure in order to determine the MFE structure. However, the number of
possible secondary structures grows exponentially with the sequence length
and therefore this approach is not computationally feasible. Luckily there
exist polynomial time dynamic programming algorithms to obtain the MFE
structure [9, 10, 11]. These algorithms have O(N3) time complexity whereN is
the sequence length. Freely available software implementing the algorithms is
available (e.g. mfold, available from http://www.ibc.wustl.edu/∼zuker/rna).
Remarkably, it is also possible to compute the entire partition function for
these free energy models using a dynamic programming algorithm [12] and
this allows the calculation of the probability of particular base-pairs occurring
in the complete equilibrium ensemble of structures.

MFE methods work quite well for small molecules such as tRNAs where
about 85% of paired sites are correctly predicted [13]. For large RNAs the
performance can be quite variable, e.g. 10% to 81% accuracy in correctly
predicted paired sites with an average of 46% for SSU rRNAs [14] and similar
results for LSU rRNAs [15]. It is unclear exactly what the source of this
inaccuracy is. It could be that the free energy models used are inaccurate
but it has also been argued that molecules are not folding into the most
thermodynamically stable state. In this case the folding kinetics should be
considered. One hypothesis is that RNA folding happens in a hierarchical
manner, with smaller structural domains forming first, followed by larger scale
structures forming over progressively longer time-scales [16]. These folding
pathways may not end up at the MFE structure, because there may be large
energetic barriers which disallow large-scale rearrangement of the structure.
Computational methods for modelling the folding kinetics are reviewed in [5].

When sequences are available for the same molecule from many different
species then comparative methods are by far the most accurate [17]. This is
typically the case for the RNA molecules used in phylogenetic studies and the
structure predictions used in our analysis are therefore determined by the com-
parative method. The key observation used in the comparative method is that
the RNA structure evolves much more slowly than the sequence. Therefore,
when a base changes on one side of a helix this will usually be compensated for
by a similar change on the opposite side, in order to maintain structural sta-
bility and therefore biological function. This process is known as compensatory
substitution or covariation. The comparative method of structure prediction
uses the covariation of base-paired sites in a set of sequences in order to infer
the secondary structure.

The comparative method requires that sequences are sufficiently closely
related that they can be reliably aligned, but that there is sufficient divergence
for many sequence substitutions to have occurred in the helices [18]. This is
not a fully automated method but rather there are a number of stages and the
method requires a certain degree of hand-crafting to particular cases. The first
step is to align the sequences using standard multiple alignment algorithms,
usually refined by hand. Then one searches for sites which covary in such a way
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that the base-pairing is conserved. In order to match covarying sites it may
then be necessary to modify the alignment iteratively. Structures derived by
the comparative method have been found to predict base-pairs with close to
100% accuracy in comparison with high-resolution crystal structures [17] and
are currently much more accurate than methods based on thermodynamics or
kinetics [15].

Full probabilistic models of homologous RNA molecules have also been de-
veloped [19] which are analogous to profile hidden Markov models developed
for modelling protein families. These models can represent the conserved se-
quence motifs which exist in related molecules and include an explicit model
of the RNA secondary structure which allows them to take account of the
covariation process. This provides a principled probabilistic framework for
carrying out a comparative analysis. In practice these models are currently
not practical for large-scale structure prediction and have mainly been applied
to the detection of small RNA genes in genomic DNA.

6.3 Substitution Processes in RNA Helices

Sequence evolution and compensatory mutations

In phylogenetics we are usually interested in the properties of evolving popu-
lations of species, or of the genes carried by those species. The models used for
phylogenetic inference therefore describe evolution in terms of substitutions
at the population level, where substitutions are defined to be mutations that
have become common (or fixed3) within the population. The idea is that the
population is summarised by a consensus sequence that contains the most
common version of each gene’s DNA sequence (or of the sites within that
gene’s DNA). In practice we may only use the sequence of a single individual
within the population, but this is a reasonable approximation to the consen-
sus as long as the intra-species variation is much lower than the inter-species
variation.

Mutations occur at the level of individuals within a population. It is there-
fore important to appreciate how these mutations become fixed or lost in pop-
ulations and this is the subject of population genetics theory. Of particular
interest to us is the process of compensatory mutations whereby a mutation
on one side of an RNA helix is compensated by a mutation on the opposite
side, thereby maintaining the molecule’s stability [21, 22, 23]. Mutations are
intrinsically stochastic in nature and we can model the process of fixation or
loss as a diffusion process [24].

The specific case of compensatory mutations in the RNA helices was stud-
ied in [23]. A single base-pair in an RNA helix was considered in isolation, so
that the state-space was 16-dimensional with each variable representing a dif-
ferent ordered pair of bases. Simplifying approximations were used to reduce
3 A discussion of fixation in population genetics can be found in [20], Section 4.2.
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this to a three-dimensional diffusion equation which was amenable to analy-
sis. The model includes a parameter s determining the strength of selection
against a non–Watson–Crick base-pair and a parameter u determining the
mutation rate. In order to simplify the analysis the marginally stable GU/UG
pairs were considered unstable, so that pairs were either stable Watson–Crick
pairs or unstable mismatch pairs.

Of particular interest is the shape of the stationary distribution of base-
pair frequencies, since this determines how the consensus sequence of the
population will look. The behaviour of this distribution was found to be mainly
determined by a quantity ξ ∝ Nu2/s where N is the population size. When ξ
is large (weak selection) the probability of unstable pairs can be significant, so
that there is some probability of observing an unstable pair in the consensus
sequence corresponding to a helix. However, when ξ is low (strong selection)
then the stationary frequency distribution is peaked around the stable base
pairs and it is very unlikely that we will observe an unstable pair in the
consensus sequence. Also of interest is the dynamics of the stationary process
as this determines how the consensus sequence changes over time. For large ξ
the change from one Watson–Crick pair to another is most likely to occur via
an unstable intermediate pair in the consensus sequence (e.g. AU→ AG→ CG)
which we will call a two-step process. However, if ξ is small then the consensus
sequence is more likely to change directly from one Watson–Crick pair to
another directly (e.g. AU→ CG) and we will call this a one-step process. In
this latter case the unstable intermediate (AG) never obtains a high frequency
within the population and is never represented in the consensus sequence. This
can happen because the mutation (AG→ CG) can occur to one of the rare
AG mutants within the population. Being stable and selectively neutral, the
resulting CG mutant may then become fixed in the population by chance.

Models of the substitution process

Models of the substitution process used in molecular phylogenetics are at the
level of populations rather than individuals. However, results from the pop-
ulation genetics theory described above are important because they suggest
certain features which we would expect to observe in the base-pair substitution
process. The small ξ regime is probably of greatest relevance in practice, since
unstable base-pairs occur with relatively low (3–4%) frequency in the helices
of most RNA molecules. This means that the one-step process described above
should be included in population level models of the substitution process. A
number of existing models of the substitution process do not allow for substi-
tutions requiring simultaneous changes on both sides of the helix [25, 26, 27].
Such a restriction is reasonable at the level of individuals, where two simul-
taneous compensatory mutations are vanishingly unlikely to occur. However,
the population genetics theory demonstrates that such changes are quite likely
in the consensus sequence of the population. Savill et al. [28] compared a large
number of substitution models which either allowed or disallowed the one-step
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Fig. 6.2. We show the different types of substitution that can occur at paired
sites of the RNA helix. The MM (mismatch) state corresponds to the ten unstable
pairings that occur with low probability. Substitutions shown as solid lines occur
more frequently than the other substitutions since they do not require pairs to enter
an unstable configuration. Greek symbols denote different types of substitution: αs

for single transitions, αd for double transitions, β for double transversions and γ
for substitutions to and from mismatch states. These are the rate parameters in
the Tillier and Collins substitution model [29] (see (6.4) in the main text). Adapted
from [29], with permission.

process in RNA helices. Models which do allow the one-step process (e.g. [29])
appear to fit the data much better than those which do not.

As well as considering the one-step and two-step substitution processes
described above, we must also consider the role of the GU/UG stable inter-
mediate base-pairs which were not modelled in the population genetics theory.
These pairs exist with appreciable probability within the population and are
less selected against than the unstable non-canonical base-pairs. It is there-
fore much more likely to observe changes between Watson–Crick pairs that
can occur via a stable intermediate (e.g. AU→ GC via GU) than changes
which cannot (e.g. AU → UA). The former substitutions are double transi-
tions while the latter are double transversions4. Our results in Section 6.4
demonstrate that single or double transitions are indeed much faster than
double transversions for the data set considered there. Figure 6.2 shows the
different substitutions, with frequent substitutions shown as solid arrows and
infrequent substitutions shown as dashed arrows. We emphasise again that
substitutions that allow both sites to change simultaneously are quite com-
mon within a population and should be allowed in the particular substitution
model used.
4 Recall from Section 4.4.1 that DNA or RNA bases can be classified as purines

(A,G) or pyrimidines (C,U/T). Transitions are substitutions within these groups
(e.g. A→G) and transversions are substitutions between them (e.g. A→U).
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Standard models of DNA substitution, discussed in Chapter 4, especially
Section 4.4.2, assume a time-homogeneous and stationary Markov process.
We denote the probability of a substitution5 from base i to base j in time t
as Pij(t). The matrix of probabilities P can be obtained from the rate matrix
R according to (4.14):

P(t) = eRt . (6.1)

Some examples of particular rate matrices are introduced in Section 4.4.2. We
denote the frequency of each base as Πi and there is clearly a constraint that
these sum to one. Time-homogeneous, stationary Markov models satisfy the
time-reversibility condition (4.36),

ΠiRij = ΠjRji , (6.2)

where Rij are elements of the rate matrix R. We choose to define parameters
αij such that Rij = αijΠj for a symmetric choice of αij . There is typically
an additional constraint that the average rate of substitutions is one per unit
time and this determines the unit of time measurement,∑

i

∑
j �=i

ΠiRij = 1 . (6.3)

The most general time-reversible DNA substitution process (GTR4) has four
frequency parameters Πi and six rate parameters αij . With the constraint
that frequencies sum to one and an additional constraint on the number of
substitutions per unit time, the GTR4 model has eight free parameters. Sim-
pler models have been developed which constrain certain parameters to be
the same by appealing to symmetries (e.g. the Kimura and HKY85 models
defined in Section 4.4.2). These models are useful because they allow a closed
form solution of the rate equation (6.1). However, in practice these symmetries
often do not hold and the data sets we consider are usually sufficiently large
to provide support for the more general models. In this case the eigenvalues
and eigenvectors of R must be obtained in order to solve (6.1). This only has
to be done once for each particular choice of parameter values and is therefore
a minor computational cost to pay in our applications.

Models of base-pair substitution are similar to standard DNA substitution
models except that the states are now pairs of bases, rather than individual
bases. In principle, there are 16 possible ordered pairs that can be formed from
four bases and we would require a 16×16 substitution rate matrix to describe
the evolutionary process. In practice there are only six frequently occurring
pairs. Some models use only a 6×6 rate matrix and ignore mismatches com-
pletely, whereas other models group all the mismatches into a single MM state
5 In Chapter 4, the probability of a substitution from base i to base j in time t is

defined as Pji(t) rather than Pij(t), hence the matrices P and R in Chapter 4
are the transpositions of those used in this chapter.
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and hence use a 7×7 substitution matrix. A number of 6, 7 and 16 state sub-
stitution models were compared using likelihood ratio tests and other model
selection methods in [28]. It was confirmed there that models which included
the one-step substitution process were significantly better than those which
did not.

The most general time-reversible 7-state model (GTR7) has 7 frequency
parameters and 21 rate parameters. With the same constraints described
above for GTR4 the model has 26 free parameters. As with DNA substitution
models, one can appeal to symmetries in the substitution process in order
to reduce the number of free parameters and allow a closed form solution to
(6.1). One example of this is the 7-state model due to Tillier and Collins [29].
They include all state frequencies but restrict the rates according to certain
symmetries. They have four rate parameters: αs for single transitions, αd for
double transitions, β for double transversions and γ for substitutions to and
from mismatch states (see Figure 6.2). The rate matrix corresponding to this
model is then

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

AU GU GC UA UG CG MM

AU ∗ Π2αs Π3αd Π4β Π5β Π6β Π7γ
GU Π1αs ∗ Π3αs Π4β Π5β Π6β Π7γ
GC Π1αd Π2αs ∗ Π4β Π5β Π6β Π7γ
UA Π1β Π2β Π3β ∗ Π5αs Π6αd Π7γ
UG Π1β Π2β Π3β Π4αs ∗ Π6αs Π7γ
CG Π1β Π2β Π3β Π4αd Π5αs ∗ Π7γ
MM Π1γ Π2γ Π3γ Π4γ Π5γ Π6γ ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6.4)

where the diagonals can be determined by the convention that the rows sum
to zero. For this simplified rate matrix it is possible to solve the eigensystem
explicitly. However, it was found in [28] that relaxing the symmetries provides
a significant improvement in the likelihood and therefore GTR7 is usually
preferred in practice.

The PHASE package

The most useful 6, 7 and 16-state base-pair substitution models have been
implemented in the PHASE phylogenetic inference software (PHylogeny And
Sequence Evolution, available from www.bioinf.man.ac.uk/resources/). The
package includes methods for Bayesian and maximum likelihood inference of
tree topologies, branch lengths and model parameters. The Bayesian inference
is carried out by a Markov chain Monte Carlo (MCMC) algorithm. A discrete-
Gamma variable rate model is included in order to deal with the huge variation
in evolutionary rates at different sites in RNA molecules [30]. See Chapter 4 for
an introduction to maximum likelihood and Bayesian phylogenetic methods
(Sections 4.4.5 and 4.4.7), standard DNA substitution models (Section 4.4.2),
and variable rate models (Section 4.4.9). For details of our MCMC sampler
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see [31] and for details of the substitution models and other programs in the
package see the documentation available from the PHASE web-site.

The most recent version of PHASE allows for more than one substitution
model to be applied to a data set simultaneously [32]. This is very useful in the
context of RNA molecules, where the loops and helices should be described
by the most appropriate model in each case. For the results presented here
we use a standard DNA substitution model (GTR4) for the RNA loops and
a base-pair model (GTR7) for the helices. Each model has its own set of
variable rate categories with their own Gamma distribution parameter. The
constraint that the total number of substitutions per unit time should equal
one is applied to one of the models in order to calibrate the time-scale. The
rate of substitutions for the other model is measured relative to this. We do
not assume a molecular clock and therefore the trees inferred are unrooted
and an outgroup is required in order to place a root.6

6.4 An Application: Mammalian Phylogeny

Molecular phylogenetic methods have played an important role in recent im-
portant changes in our understanding of mammalian evolution. We now have
sequence data from large numbers of species, and the computational methods
for analysis of these data sets are improving. One important feature of the
mammal tree that is strongly supported by molecular data is that the placental
mammals can be divided into four principal groups. This has been shown con-
vincingly by recent studies of large concatenated sets of genes [33, 34, 35]. Us-
ing the numbering from [34] these groups are: (I) Afrotheria, containing mam-
mals thought to have originated from Africa, (II) Xenarthra, South American
mammals including e.g. armadillos, (III) containing primates, rodents and
others, (IV) containing all of the other placental mammals. This classification
has only emerged quite recently and includes some surprises. For example, the
Afrotherian clade contains many morphologically diverse species that were
previously assigned to very distant parts of the mammal tree. It is difficult to
find any superficial similarities between many of these species. Also, although
most of the mammalian orders have been well established for a long time from
morphological similarity and fossil evidence, the early branches in the mam-
mal tree are difficult to resolve using these methods. The evidence offered by
molecular data therefore provides useful resolution for the early branches.

The molecular picture described above was obtained using large data sets
mostly comprising genes whose DNA is contained in the cell nucleus. Cellu-
lar organisms also have a small proportion of their DNA contained in small
organelles which exist outside of the cell nucleus, known as mitochondria in
animals and chloroplasts in plants. Many taxa have had their entire mitochon-
drial genomes sequenced, and the mitochondrial DNA therefore provides an
6 The method of rooting a tree with an outgroup is briefly explained in Section 4.1
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important resource for phylogenetic investigations. Studies using mitochon-
drial DNA have repeatedly contradicted the picture emerging from the above
studies (e.g. [36, 37]) and it has been suggested that these results may be
artifacts due to the assumption of a homogeneous and stationary substitution
model [38]; see Section 4.4.11. In contrast to this, our own studies using large
sets of RNA genes from the mitochondrial genome find strong support for the
consensus picture emerging [31, 32]. This may be due in some part to our
particular choice of genes, as well as the methods used. For example, stability
constraints in the RNA helices may make them less susceptible to changes in
mutation patterns which can cause non-stationarity in the substitution pro-
cess. Nevertheless, we believe that our results demonstrate the importance of
RNA genes in resolving challenging phylogenetic issues. We show below that
using inappropriate substitution models for these genes may result in mislead-
ing posterior probabilities and will generally invalidate the statistical support
given to a particular phylogenetic hypothesis.

In our most recent study we used a data set comprising the entire com-
plement of RNA genes encoded by the mitochondrial genome of 69 mammals.
A small number of non-placental mammals (marsupials and monotremes) are
included as an outgroup in order to root the tree of placental mammals. The
genes used include the SSU and LSU rRNA as well as all 22 tRNAs. The data
set contains 3571 bases in total, consisting of 967 base-pairs and 1637 single
sites (full details of the methods and sequences used are provided in [32]).
This was a completely unselective set of sequences as it was made up of all
mitochondrial sequences publicly available at that time (August 2002). We
carried out four independent MCMC runs starting from a random initial tree
and each run provided us with 40,000 samples of tree topology, branch lengths
and substitution model parameters. The results are summarised in Figure 6.3
which shows a consensus tree from the combined MCMC output from all
four runs. This tree was constructed using the majority rule consensus tree
method provided by the PHYLIP package [39] which draws a tree containing
all sub-trees (clades) appearing in more than 50% of samples, as well as the
most supported remaining clades which are not contradictory. Although this
tree cannot completely capture the information from the MCMC sample, it
provides a useful visualisation of the most supported arrangements. Clades
supported with less than 100% of the posterior probability have the percent-
age of posterior probability shown (i.e. the percentage of times they appear
in the MCMC output). Mean posterior estimate (MPE) branch lengths are
shown on the tree conditional on this topology, i.e. these are the mean branch
lengths for every topology identical to the consensus in the MCMC samples.

The consensus tree shows that we find strong support for the four main
groups described above. In addition, the resolution appears to be good for later
evolutionary events. We find support for all of the established mammalian
orders, most of which are strongly supported. It appears that different parts
of the RNA molecule provide resolution on different time-scales. In an earlier
study [31] we used only data from the RNA helices with the GTR7 base-
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Fig. 6.3. Phylogeny of the mammals inferred from a data set containing all mi-
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pair model. In that study we had good resolution for the early branches in
the tree, but many of the later evolutionary events were not well resolved
and a number of mammalian orders were found to be paraphyletic (i.e. not
compatible with coming exclusively from the same clade). In contrast to this,
runs using only the single-stranded RNA loops have very poor resolution for
the early branches of the tree. When data from the loops and helices are
combined then there is good resolution for early and late evolutionary events.

It is well known that the substitution process in the loops is typically faster
than in the helices, since bases in the helices are under selective pressure to
maintain stability. However, in our study we found the mean substitution rate
to be almost identical in the loops and helices. The reason for this is that we
only used parts of loops that could be reliably aligned across all species. Thus
we excluded substantial parts of the RNA loops that were most highly vari-
able. The question then remains as to why the helices provide much more
information over long time-scales compared with the loops, given that the
loops contain almost twice the number of independent features. One answer
may be that the alphabet is larger for RNA (7 pairs in GTR7 versus 4 bases
in GTR4) and therefore the substitution process contains more memory. An-
other reason is suggested when we look at the estimated substitution model
parameters, shown in Table 6.1. Focusing first on the six canonical base-pairs
we see that substitutions requiring only transitions are fastest (i.e. between
{AU,GU,GC} or {UA,UG,CG}). This correlates well with the picture de-
scribed in Section 6.3 and Figure 6.2. We see in particular that double transi-
tions are fastest, suggesting that the one-step substitution process appears to
be occurring via a GU/UG intermediate which is never fixed in the popula-
tion. Substitutions to and from the MM states are not uncommon, although it
should be remembered that this is a composite state for all ten unstable pairs
and therefore the actual substitution to any particular unstable pair is roughly
one tenth of these values. The pattern of substitutions may provide an expla-
nation of why the RNA helices provide resolution over long evolutionary times.
We see that changes requiring a double transversion (directly or via a mis-
match) will typically be much slower than changes requiring only transitions.
It is also true that transitions are typically faster than transversions in the
loops, but the difference in the helices is much greater [32]. Therefore, double
transversions provide information on much longer time-scales than transitions
and will provide useful phylogenetic information over long time-scales.

The rate of substitutions to and from unstable pairs looks higher than
might be expected given our arguments about the one-step process dominating
under strong selective pressure against mismatches. This problem may in part
be due to an unforeseen relationship between the variable rate model and
the substitution model used in the helices. Sites with a high substitution
rate will tend to be those under weakest selective constraint on conserved
structure. Therefore, the proportion of unstable pairs will tend to correlate
with the substitution rate and sites with high rates will have more MM states
on average. We have observed exactly this pattern in the data set used here
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Rij AU GU GC UA UG CG MM
AU ∗ 0.2051 0.3682 0.0147 0.0021 0.0006 0.2809
GU 1.5060 ∗ 1.0638 0.0064 0.0029 0.0095 0.1647
GC 0.4954 0.1950 ∗ 0.0009 0.0009 0.0007 0.1463
UA 0.0153 0.0009 0.0007 ∗ 0.1613 0.2774 0.2498
UG 0.0164 0.0031 0.0052 1.2410 ∗ 0.6989 0.2336
CG 0.0009 0.0019 0.0007 0.3880 0.1271 ∗ 0.1793
MM 0.6177 0.0493 0.2391 0.5303 0.0645 0.2721 ∗

Table 6.1. Mean posterior transition rate estimates for the GTR7 model used for
paired sites in the RNA helices (reprinted from [32] with permission from Elsevier).

and this will tend to bias the parameter estimates. For example, the base-
pair frequency estimates will tend to be larger than the mean frequency of
MM pairs observed in the data [31]. This is because the fastest evolving sites
will contribute more information to the frequency estimates, as they provide
less correlated samples from the substitution process. As an example one can
compare an invariant site with an infinitely rapidly evolving site. The fast
site contributes as many samples from the stationary substitution process as
there are species in the tree, since there is no memory of the past in any of the
samples. By contrast, the invariant site only contributes a single sample for the
process. Therefore, the fast site will contribute much more information about
the base-pair frequencies and this will tend to increase the MM estimate.
The effect on substitution rates is harder to predict but we would expect
a similar inflation of the rate to and from these states. These observations
suggest that we need to further improve the substitution models in order
to fit the data better. We are currently investigating models which assign
different parameters to different rate classes in the variable rate model.

It is interesting to ask what happens when a standard 4-state DNA sub-
stitution model is applied to data from the RNA helices. Do base-pair models
provide us with any advantages over the standard models? We carried out a
comparison in [31] using only the helical regions of the mitochondrial RNA
and found that the consensus trees obtained by each method were signifi-
cantly different. It was not obvious which consensus tree was a more accurate
representation of the true evolutionary relationship but we did observe that
the tree obtained using a standard DNA substitution model tended to find
higher posterior probabilities, some of which were for rather dubious arrange-
ments. In Figure 6.4 we plot the number of occurrences of each distinct tree
topology (ranked according to posterior probability) for each model. The pos-
terior probability distribution is much more peaked for the DNA model, with
the top tree topology having about an order of magnitude greater posterior
probability.

We can understand these results by considering what happens if we apply
a DNA substitution model to a perfectly base-paired helix (i.e. where all pairs
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Fig. 6.4. The number of occurrences of each topology is plotted for two MCMC
runs using the GTR7 (solid line) and GTR4 (dashed line) substitution models. The
topologies are ranked according to the number of occurrences in each case (reprinted
from [31] with permission from Oxford University Press).

are Watson–Crick pairs). Let L1 and L2 be the likelihood of two different trees
given data from one side of the helix. Under a standard DNA substitution
model such as the Jukes–Cantor or HKY85 model introduced in Section 4.4.2,
the corresponding likelihoods given data from both sides (but treating sites as
independent) would be L2

1 and L2
2 for each tree respectively.7 Under a uniform

prior the likelihood ratio gives the ratio of posterior probabilities for the two
trees. The ratio is L1/L2 in the first case and L2

1/L
2
2 in the second case.

So, if one tree is 100 times more likely than another given information from
one side of the helix, it will be 10,000 times more likely given information
from both. This effect tends to make the posterior probability distribution
more peaked than it should be. A similar argument also applies to bootstrap
support values, discussed in Section 4.4.6, which will tend to be over-estimated
when sequence data are strongly correlated. This suggests that it is dangerous
to ignore correlations due to base-pairing and our results in Figure 6.4 show
that the effects in real data may be significant.
7 This assumes symmetries in the frequencies (e.g. ΠC = ΠG and ΠT = ΠA) that

hold if model parameters are estimated from perfectly base-paired data.
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6.5 Conclusion

RNA molecules are used extensively in phylogenetic studies. Their strongly
conserved secondary structure can be used to improve the alignment of highly
diverged sequences and this in turn can improve phylogenetic accuracy. Com-
putational methods can be used to determine the secondary structure from
sequence information alone and comparative methods in particular provide
an accurate method of structure prediction when a large number of related
sequences are available. However, the substitution models used in most phy-
logenetic studies ignore the strong covariation of base-paired sites. We have
implemented a number of substitution models that treat base-paired sites in
the RNA helices as a unit of evolution and these are included in the PHASE
phylogenetic inference software package. The most recent version allows for
an arbitrary number of substitution models to be used simultaneously. This
means that we can use models specific to the RNA helices along with standard
DNA substitution models applied to unpaired sites in the RNA loops.

Our results on a large data set of mammalian mitochondrial RNA are very
promising. This is the first study using mitochondrial DNA and a completely
unselective set of species to find support for monophyly of all mammalian
orders, and to find support for the same four early branching groups observed
in recent studies of much larger data sets mainly comprising nuclear genes.
We show that using inappropriate substitution models for the RNA helices
will artificially inflate posterior probabilities in a Bayesian analysis and it is
therefore important to correctly account for covariation in the helices.

The substitution models used in molecular phylogenetics need to be im-
proved further, as many of the simplifying assumptions used are violated in
real data sets. In this study we observed a non-trivial relationship between
the variable rate model and the substitution rate matrix in base-pair models,
suggesting that these cannot be treated as independent of one another. There
may also be differences between the substitution processes in different genes,
or different parts of the same gene. Most of the models currently used assume
a stationary and homogeneous Markov model of the substitution process, as
discussed in Section 4.4.2. These assumptions can be violated in real data
sets. Non-stationary and non-homogeneous substitution models have been in-
troduced [40, 41], and are discussed in Section 4.4.11, but these methods are
not widely available in phylogenetic inference software and are not appropriate
for all types of data. The length of sequences used in phylogenetics studies is
sometimes of the order of 10,000 bases and in this case there will be sufficient
data to accurately estimate the parameters of quite complex models.

The Bayesian inference methodology is attractive in phylogenetic inference
as there is often uncertainty about certain phylogenetic features. Posterior
probabilities allow us to quantify the degree of uncertainty in these features.
For example, in Figure 6.3 there is no resolution for the relative positioning of
the clades (I), (II) and (III,IV) despite the fact that these clades themselves are
strongly supported. Bootstrap support values provide an alternative method
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of determining the confidence in phylogenetic features, but the computational
cost of finding the maximum likelihood tree for many bootstrap samples is
considerable; see Figure 4.35 on page 134.

Recently there has been some debate about the relative merits of Bayesian
posterior probabilities and bootstrap support values (see e.g. [42, 43, 44]). It
appears that bootstrap support values are more conservative than posterior
probabilities and the relationship between the quantities is often nonlinear.
Some see this as evidence that bootstrap proportions are biased, while oth-
ers see it as a positive aspect of the bootstrap method. Bayesian posterior
probabilities use the likelihood ratio in order to score the relative posterior
probability of two competing hypotheses. This quantity has been shown to
have much higher variance between sites in real data sets than would be ex-
pected under the assumed parametric model of the substitution process [45]. It
has therefore been argued that this will lead to over-confidence in a hypothesis
with higher likelihood. This problem appears to stem from the fact that sub-
stitution models are much simpler than the actual evolutionary processes at
work. The interpretation of posterior probabilities is unclear when the actual
data is produced by a process very different from the class of models consid-
ered. It has therefore been argued that bootstrap support values are a better
measure of the actual variability observed in the data and provide a more
robust estimate of the confidence in the result. Some recent work attempts
to reconcile these two very different methods and to produce bootstrap-like
quantities from an MCMC algorithm [45]. However, the interpretation and
relative merits of both methods remain under debate. Our own work demon-
strates that both posterior probabilities and bootstrap support values can be
misleading when the substitution model ignores strong inter-site dependen-
cies. We believe that the best way to proceed is to develop increasingly realistic
models of the substitution process and that is the focus of our research.
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Summary. Microarrays allow the simultaneous measurement of the expression lev-
els of thousands of genes. This unique data structure has inspired a completely new
area of research in statistics and bioinformatics. The objective of the present chapter
is to review some of the main statistical tools used in this context. We will mainly
focus on low-level preprocessing steps: image analysis, data transformation, normal-
ization, and multiple testing for differential expression. The high-level inference of
genetic regulatory interactions from preprocessed microarray data will be covered
in Chapters 8 and 9.

7.1 Introduction

Microarrays have been a key element in the biotechnological revolution of
recent years. They have enabled life scientists to monitor the expression of
thousands of genes simultaneously and thus to obtain snapshots of the state
of a complete genome. This development has inspired many new research
projects, which promise to give us important information about the molecu-
lar biological processes that rule our lives. However, due to both the enormous
volume and the unique structure of microarray data, completely new problems
of data handling and statistical analysis have to be tackled. It is the second
problem, the statistical analysis, that we will be concerned with in this chap-
ter. We will cover some of the main statistical challenges and discuss relevant
contributions that have been made to the field so far.

7.1.1 Gene Expression in a Nutshell

To understand microarray measurements and their relevance we will first sum-
marize the relevant biology. In the nucleus of each cell we find strands of
DNA, consisting of long chains of the nucleotides C, T, G and A. The four
nucleotides are paired in the sense that A forms a weak bond with T, and
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Fig. 7.1. Steps in protein synthesis, and what microarrays measure.

C with G. This is reflected in the structure of DNA: strands are arranged in
pairs forming a double helix , where the second strand consists of the comple-
mentary nucleotides. Genes are certain subchains of the DNA that contain
important information. Each nucleotide triplet codes for an amino acid, with
the 64 possible triplets producing 20 different amino acids. The sequences of
these amino acids formed by a gene produce the corresponding protein.

Transcription is the first step in protein synthesis, i.e. the process by which
a gene produces a protein. An enzyme (RNA polymerase) uses DNA as a
template and makes a complementary strand of short-lived messenger RNA
(mRNA). The structure of RNA is similar to that of DNA, except that the
nucleotide U substitutes T. The second step is splicing , where regions that
are not coding for proteins are removed from the sequence. Translation is
the final step by which a protein is produced. Microarrays measure mRNA
abundance for each gene. As almost all biological processes are carried out
by proteins, a direct measurement of protein level in a cell might seem more
relevant. However, this is harder to measure than mRNA, and the amount
of mRNA transcribed should correlate with gene expression, i.e. the rate at
which a gene produces the corresponding protein. Figure 7.1 gives a summary.

7.1.2 Microarray Technologies

The main principle behind all methods for measuring gene expression is to
utilize the bonds between the base pairs A/(T or U) and C/G by hybridizing
samples to a pool of complementary sequences representing the genes of in-
terest. The number of molecules in the target that bind to the probe should
reflect gene expression. Although there is occasional confusion in the litera-
ture about these two terms, we will follow the recommended nomenclature and
refer to the samples as targets and the complementary sequences as probes.

For single genes such techniques have been available for some time (e.g.
Northern blotting). The breakthrough brought about by microarray technol-
ogy is, however, that it allows us to monitor the expression of thousands of
genes simultaneously.



7 Statistical Methods in Microarray Gene Expression Data Analysis 213

Several microarray technologies have been developed. A very popular one,
based on oligonucleotide chips, is produced by the company Affymetrix. On
these arrays each gene is represented by a set of 14 to 20 short sequences of
DNA, termed oligonucleotides. These oligonucleotides are referred to as the
perfect match (PM) and each of them is paired with a corresponding mis-
match (MM), which is identical to the PM-Probe except for one nucleotide
in the center of the sequence. The motivation for this approach is that any
hybridization that occurs just by chance should affect both probes equally,
whereas the correct gene will preferably hybridize to the PM-Probe. By mea-
suring the difference between these two intensities the chance of observing
false positives should be reduced.

Sets of pairs of oligonucleotides are synthesized directly onto a chip (in
situ synthesis) by a light-directed chemical process (photolithography). Then,
complementary RNA (cRNA) is obtained from the sample of interest (after
transcription of mRNA to cDNA, which is then back transcribed), fluores-
cently labelled and hybridized to the array. After scanning, for each gene the
set of PM- and MM-values is summarized in a single number. There has been
some debate in the literature as to how this should be done (see Irizarry et
al. [25] and the references therein).

The other widely used microarray technology is cDNA-arrays, in which
two samples are usually analyzed simultaneously in a comparative fashion.
In this technology, probes of purified DNA are spotted onto a glass slide by
a robot. These are usually longer sequences compared with oligonucleotides,
often consisting of complete genes. Also, in contrast to oligonucleotide arrays
which are usually bought ready-made, many research groups spot their own
cDNA-arrays. In this process the choice of the probes is an important problem.

In an experiment, mRNA is extracted from an experimental sample and a
reference sample, and both are transcribed into the more stable cDNA. One
sample is labelled by a fluorescent dye, usually Cy3 (green), and the other
by Cy5 (red). The samples are mixed and the mixture is then hybridized to
the array. According to the base pairing rules, the amount of cDNA that is
hybridized to a particular spot for each of the two samples should be propor-
tional to the level of expression of this gene in the samples. After hybridization
the array is scanned at the wavelength of the two dyes producing two images
as shown in Figure 7.2, which can be considered as the data in its rawest
form. These particular arrays were scanned at 10µm resolution, resulting in
digital images approximately 2000× 2000 pixels in size. For presentation pur-
poses these black and white images are usually overlaid and differently colored
(again green/red) resulting in the well-known microarray images.

The data for a single sample are often also referred to as a channel , so that
there are usually two channels in a cDNA microarray experiment, whereas
Affymetrix chips yield one-channel data. For each of the two channels the
next step is an analysis of the image with an appropriate piece of software
(see Section 7.2). The main results of this analysis are an intensity value for
each spot and its background, resulting in four values altogether. The standard
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Fig. 7.2. Two channels of an HCMV cDNA microarray, comparing two viral strains.

procedure is to subtract the background intensity from the spot intensity for
each of the channels and to then use the ratio of the two as a measure of
relative gene expression.

We will focus on those steps in the analysis which use statistical tools. Sec-
tion 7.2 will deal with the initial image analysis of scanned cDNA-microarray
slides, Section 7.3 discusses the transformation of data obtained from the im-
age analysis. In Section 7.4 we will discuss the extremely important problem
of normalization, whereas Section 7.5 studies statistical methods to filter out
genes which are differentially expressed between different experimental condi-
tions. There is no space here to discuss all the different methods that have been
proposed to analyze genes in a multivariate way and find classes or groups
of genes or experiments that behave similarly, but the last section gives some
references where the reader can find more information on this topic.

7.2 Image Analysis

Image analysis is the first stage in the analysis of microarray data, in order to
summarize the information in each spot and to estimate the level of expression
of each gene. Computer packages such as QuantArray [21], ScanAlyse [16],
GenePix [2], UCSF Spot [26] and NHGRI Image processing software tools [33]
implement a range of methods. Here we consider the basic steps involved
in image analysis: image enhancement, gridding and estimation of spot and
background intensities. For illustration we will use microarray images from an
experiment concerning Human Cytomegalovirus (HCMV). Details about this
experiment can be found in [18].
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(a) (b)

Fig. 7.3. Part of one of the HCMV channels before and after median filtering.

7.2.1 Image Enhancement

Noise can be a problem in scanned microarray images, including both small
random specks and trends in background values. Filters are a set of image
analysis methods that can be used to reduce noise in images (see, for example,
Glasbey and Horgan [19], ch. 3). One of the simplest non-linear filters is the
median filter . For a filter of size (2m+ 1) × (2m+ 1), the output is

zi1,i2 = median {yi1+j1,i2+j2 : j1, j2 = −m, . . . ,m} for all i1, i2,

where yi1,i2 (or, more succinctly, yi) denotes the original pixel value in row
i1, column i2. Figure 7.3 shows a small part of one of the HCMV channels
before and after the application of a 5 × 5 median filter, from which we see
that most of the contamination has been removed.

The background of a microarray image is often not uniform over the entire
array and needs to be removed or adjusted for. These changes of fluorescent
background are usually gradual and smooth across an array, and may be due to
many technical reasons. Yang et al. [47] proposed the top-hat filter as a way to
remove this trend. The trend can be estimated using a morphological opening
(see, for example, Glasbey and Horgan [19], ch. 5), obtained by first replacing
each pixel by the minimum local intensity in a region and then performing
a similar operation on the resulting image, using the local maximum. For a
region, we use a square of size (2m + 1) × (2m + 1) centered on each pixel,
where m is a non-negative integer used to specify the size of the top-hat filter.
Pixels, zi, in the opened image will be given by

zi = max
j

xi+j , where xk = min
j

yk+j , for |j1|, |j2| ≤ m,

with y again denoting the original pixel values. If the top-hat filter uses a
structuring element that is larger than the spots, then only the pixels in the



216 Claus-Dieter Mayer and Chris A. Glasbey

spots will be substantially changed from yi to zi. As there is little background
trend visible in Figure 7.3, the top-hat filter makes little difference in this
case.

7.2.2 Gridding

The next step is to superimpose a lattice on each microarray image, adjusted
for location shifts and small rotations. This is termed gridding , and can be
done either automatically or semi-automatically [26, 39, 47]. Since each ele-
ment of an array is printed automatically to a defined position, the final probe
signals form a regular array. Typically, in a semi-automatic system, a scientist
identifies the four corners of each block of spots on a computer display of an
array, possibly using orientation markers, termed landing lights. Then, the
computer interpolates a grid on the assumption that spots are positioned ap-
proximately equidistantly. Each software package has its own algorithm. For
example, the NHGRI procedure [33] is as follows: 1) detect strong targets,
2) find their centers (e.g., center of mass), 3) regress four-corner coordinates
of each subarray from these centers of strong signals. The final grid-overlay
precisely segments each target, which enables future processing tasks to con-
centrate on only one target. Figure 7.4 shows the result of gridding one of the
HCMV channels. In this case, each grid square is a 41 × 41 array of pixels
containing the spot approximately at its center, where 41 corresponds to the
inter-spot spacing.

7.2.3 Estimators of Intensities

To identify which pixels in each gridded square should be classified as spot
and which as background , computer packages have implemented a range of
methods: QuantArray [21] applies thresholds to the histogram of pixel values
in a target region around a spot, ScanAlyse [16] uses a circle of fixed radius,
GenePix [2] allows the circle radius to vary from spot to spot, and UCSF
Spot [26] uses histogram information within a circle. Alternatives are to fit a
scaled bivariate Gaussian density function to pixel values [39], possibly using
a robust fitting method [7], k-means clustering [6], edge detection [30] and
seeded region growing [47]. For a review of image segmentation including
many more methods, see, for example, Glasbey and Horgan [19], ch. 4. Here,
we consider two well-established estimators of spot intensities, those based on
discs and on proportions of histogram values, as illustrated in Figure 7.5.

We need to calculate ȳ(S), the mean spot intensity, separately for each
channel, and ȳ(B), the mean background intensity. If the spot center is at
pixel location ν, we can use the disc estimator

ȳ
(S)
DISC =

1
#

∑
‖i−ν‖<R(S)

yi and ȳ
(B)
DISC =

1
#

∑
‖i−ν‖>R(B)

yi, (7.1)
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Fig. 7.4. Image of one HCMV channel with grid overlaid.

where # denotes the number of terms in each sum, and we specify radii R(S)

and R(B). We may choose ν to maximize ȳ(S), using a systematic search. So,
ȳ
(S)
DISC is the average value of those pixels located inside a disc of radius R(S)

centred on ν (such as the disc in Figure 7.5(a)), and ȳ(B)
DISC is the average pixel

value for locations outside a disc of radius R(B) also centred on ν and inside
the grid square. We may use constant values for R(S) and R(B), or different
values in each grid square.

Alternatively, we can ignore the spatial information and use the proportion
estimator. We rank yi (i = 1, . . . , N) (N = 412 in our illustration), for each
channel independently, giving y(1) ≤ y(2) ≤ . . . ≤ y(N),and use

ȳ
(S)
PROP =

1
#

N∑
i=Np(S)

y(i) and ȳ
(B)
PROP =

1
#

Np(B)∑
i=1

y(i)
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(a) (b)

Fig. 7.5. A single spot in HCMV microarray with superimposed disc, and histogram
of pixel values on square-root scale.

for specified proportions p(S) and p(B). So, ȳ(S)
PROP is the average value of pixels

greater than p(S)% (such as data in the right mode in Figure 7.5(b)) and
ȳ
(B)
PROP is the average of those less than p(B)%. Again, we may fix p(S) and p(B)

or use different values in each grid square.
For either disc or proportion estimators, in a two-channel experiment, we

then estimate the rate of expression of channel 2 relative to channel 1, denoted
c, by either

ĉ =
ȳ
(S)
2

ȳ
(S)
1

or ĉ =
ȳ
(S)
2 − ȳ

(B)
2

ȳ
(S)
1 − ȳ

(B)
1

,

i.e. without or with background subtraction. However, background subtraction
can lead to negative estimates, which we have set to small positive values
before log-transforming [8]. Background correction will usually be unnecessary
if a top-hat filter has been used in the image enhancement step. Glasbey
and Ghazal [18] consider how to select optimal settings for image processing
parameters.

7.3 Transformation

A transformation of the intensities which result from the image analysis is
usually the next step in the data analysis. From a statistical point of view
the motivation for such a transformation is to find a scale on which the data
can be analyzed by classical methods, i.e. methods for linear models with
normally distributed errors (e.g. ANOVA, regression). For this reason the aim
of a suitable transformation is that the rescaled data satisfy a model with

1. additive effects
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2. normal (or at least symmetric) error distributions
3. homogeneous variances.

It might seem difficult to fulfil all these requirements simultaneously, but
fortunately these three properties are not independent of each other. For ex-
ample, measurement errors are usually the result of a combination of uncon-
trolled effects. In an additive model the central limit theorem thus implies
that these errors (approximately) follow a normal distribution.

Often the mechanism that produced the data can be modelled and the
corresponding transformation can be derived from this model (we will come
back to this point later). If this is not the case, one can use exploratory
methods to retrieve information about the right transformation from the data
themselves. Among these the so-called delta method can be applied to find
a variance-stabilizing transformation. Let X denote a univariate real-valued
variable measured in an experiment and assume that its variance σ2 is a
function of the mean µ, i.e. we have

Var(X) = σ2(µ). (7.2)

Let now g be a differentiable function on the real line. If we transform our
variable by g, a Taylor-expansion

g(X) = g(µ) + (X − µ)g′(µ) + o(|X − µ|) (7.3)

thus yields
Var(g(X)) ≈ σ2(µ)(g′(µ))2 (7.4)

as a first-order approximation of the variance of the transformed variable. A
variance-stabilizing transformation should result in constant right-hand side
in the last equation and solving the corresponding differential equation results
in

g(x) = c1

∫ x

0

1
σ(y)

dy + c2 (7.5)

for some constants c1 and c2.
The simplest and possibly most common application of this approach

arises if the standard deviation σ is a linear function of the mean. Here the
variance-stabilizing function turns out to be the logarithm. The ratio of the
standard deviation divided by the mean is also called the coefficient of vari-
ation, which in this case is constant for the untransformed data. Surprisingly
the pioneering paper of Chen et al. [9], which has to be regarded as the
starting point of microarray statistics, assumes such a constant coefficient
of variation (“a biochemical consequence of the mechanics of transcript pro-
duction”) but does not consider a log-transformation. Instead, these authors
formulate a model where the original intensities are normally distributed.
This leads to a fairly simple decision rule to determine whether a gene is dif-
ferentially expressed or not based on the red/green-ratio, cf. Section 7.5.1.
The skewness of the data and the fact that the intensities are restricted
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to be positive are further indicators for the need of a log-transformation.
For this reason many following papers preferred such a log-transformation
to the approach of Chen et al. [9]. Most prominently, several papers by
Speed and collaborators propose this transformation and his web page in-
cludes the dogma “Always log!” in his section of “Hints and Prejudices” (cf.
http://stat-www.berkeley.edu/users/terry/zarray/Html/log.html).

Hoyle et al. [22] discuss some other interesting related points. They show
that the log-normal distribution not only models the distribution of each spot-
intensity fairly well but that it also approximates the overall distribution of all
gene expressions measured in the genome of interest and that the correspond-
ing variance of the log-transformed distribution is a biological characteristic
of the particular genome. They also argue that the observed spot intensity
for the g-th gene Xg is a product of the true mRNA abundance tg multiplied
by a gene-specific error term εg, i.e. Xg = tgεg. In the same way in which an
additive model is linked to normal distributions by the central limit theorem,
a multiplicative model naturally corresponds to lognormal distributions.

Despite all the evidence supporting a log-transformation, there are also
some problems involved here. Usually the image analysis software gives a
spot intensity and a background intensity for each channel (dye) and the
standard method is to subtract the background intensity. For weak spots
this will occasionally lead to negative values, where a log-transformation is
not applicable. Even if the background-corrected values are positive but very
small this can lead to high variability for the log-transformed data.

An interesting paper in this context is the work by Newton et al. [32],
who model the untransformed data by Gamma distributions, i.e. a family of
densities of the form

fϑ,a(x) =
ϑaxa−1 exp(−ϑx)

Γ (a)
forx ≥ 0, (7.6)

where ϑ > 0 is a scale parameter, a > 0 models the shape of the distribution
and Γ denotes the Gamma function. The mean of such a distribution is µ =
a/ϑ, the standard deviation is given by

√
a/ϑ = µ/

√
a. This implies that

this model also assumes a constant coefficient of variation just like the log-
normal model and the approach of Chen et al. A log-transformation applied
to Gamma distributed data will achieve two of the aforementioned aims, i.e. it
will result in additive effects and homogeneous variances, but the assumption
of normality will not hold.

Newton et al. assume that the shape parameter is the same for both chan-
nels but allow for different scale parameters. They use a hierarchical model
in which the two shape parameters themselves are independent observations
from a Gamma distribution. Their model leads to an estimate of the form
R+ν
G+ν for the ratio of the two channels. Here R and G denote the intensities
of the red and green channel respectively, and ν is the scale parameter of
the prior Gamma distribution, which has to be estimated from the data. The
interesting point is that the problem of high variability for the ratio of weak
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spots can be reduced by adding ν and thus the effect of background correction
can be counterbalanced as well.

A more explicit way to deal with inhomogeneous variability across the
range of intensities is presented in two related papers by Durbin et al. [14] and
Huber et al. [23]. Both papers propose a variance-stabilizing transformation
motivated by a model introduced by Rocke and Durbin [35]. For the intensity
Xig of gene g measured on channel i (i = 1, 2) this model assumes the form

Xig = bi + tige
ηig + εig. (7.7)

Here bi denotes a background intensity level common to all spot intensities
on that channel, tig is the true gene expression of interest, and ηig and εig are
families of independent mean-zero normal distributions with variances σ2

iη and
σ2

iε. The distribution thus becomes a convolution of a log-normal distribution,
which is dominant for large gene expressions tig, and a normal distribution
that models lowly expressed genes. The mean and variance of this distribution
are given by

E(Xig) = bi + tige
σ2

iη/2 (7.8)

and
Var(Xig) = t2ige

σ2
iη (eσ2

iη − 1) + σ2
iε. (7.9)

As the gene expression effect tig is the only term here which changes with
the genes, we see that the variance depends on the mean via a polynomial of
degree 2. Using the delta-method and solving the integral in (7.5) Huber et
al. showed that the corresponding variance-stabilizing transformation is given
by the arsinh function

g(x) = γarsinh(a+ bx), (7.10)

which is related to the logarithm via

arsinh(x) = log(x+
√
x2 + 1). (7.11)

Durbin et al. derive a transformation, which is exactly of the same type up
to an unimportant shift. Note that this is a family of transformations, rather
than a single transformation, as in the case of the log-transformation. The
choice of the specific transformation is based on parameters a and b, which
depend on the relative magnitudes of the additive and multiplicative errors
and have to be estimated from the data. Having to estimate parameters and
lack of comparability of transformations between data sets are both drawbacks
of this approach.

In a very recent paper Cui et al. [11] have suggested a generalization of
the Rocke and Durbin model in (7.7) for a two-channel experiment, where a
second error term is added to both the multiplicative and the additive error,
which is gene-dependent but the same for both channels:
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Xig = bi + tige
ηg+ζig + εg + δig. (7.12)

This modelling approach takes into account the fact that measurements at
the same spot will be more correlated. The authors show that many typical
features of microarray data can be simulated from this model. As variance-
stabilizing transformation they propose the so-called linlog function

hd(x) =
{

log(d) + x/d x < d
log(x) + 1 x ≥ d

Here d is a parameter that can be chosen or estimated from the data,
separately for each channel. This transformation is very similar to the arsinh
transformation. It is linear for small intensities and logarithmic for large inten-
sities, but in contrast to the arsinh function these properties hold strictly and
not just approximately, which of course causes the function to be less smooth.
The authors also suggest the use of a shift of the same size but with a different
sign in both channels prior to the transformation, in order to remove possible
curvature from the MA plot.

To conclude, we would like to mention that choosing a variance-stabilizing
transformation is not the only way to handle heterogeneous variances. An
alternative way is to model and/or estimate the variance and incorporate this
estimate into the subsequent analysis. One example for this approach is the
work of Rudemo et al. [36], where the variability of the log-ratio of the two
channels is assumed to decay exponentially with the log-harmonic mean of
the two intensities.

7.4 Normalization

Normalisation/calibration has proven to be one of the main problems in the
analysis of microarray data. Results from studies ignoring this problem are
highly questionable. We will give an overview of how problems can be visu-
alized by explorative analysis. Subsequently, we will also present some of the
main remedies that have been proposed for this issue.

7.4.1 Explorative Analysis and Flagging of Data Points

One of the main characteristics of microarray experiments is the vast amount
of data they yield. A second feature is that, due to the complex mechanism
producing these data, artifacts and freak observations are quite common.
Therefore it is extremely important to use good visualization and exploration
tools that allow one to get a first overview of the data and to single out
observations of poor data quality.

Histograms of log-intensities and log-ratios, which show the empirical dis-
tribution of measurements across genes, and scatterplots of the log-intensities
of two channels from a cDNA-array or two different one-channel arrays, are
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Fig. 7.6. Scatterplot of two log-intensities.

Fig. 7.7. MA-plot of two log-intensities.

the most common visualization tools. Figure 7.6 shows such a plot, where non-
differentially expressed genes are expected to lie on the diagonal line with slope
1. Typically, the majority of genes can be expected not to change their expres-
sion, so deviations of the data cloud from this diagonal indicate experimental
artifacts, which are to be corrected for by the normalization step (see following
paragraphs). Terry Speed’s group has suggested replacing this plot by a very
similar one, which basically is a 45o degree rotation, cf. [46]. In the so-called
MA-plot the mean log-intensity of the two channels M is plotted against the
log-ratio of the two channels A. In Figure 7.7 we see the MA-version of the
previous plot. Here the reference line of “no differential expression” is now a
horizontal line, which makes it easier to spot deviations. There is also more
space in such a plot to display the residuals at all intensity levels, so that
a spurious impression of correlation is reduced. Apart from these more psy-
chological reasons there is also a mathematical/statistical argument to prefer
the MA-plot: some normalization methods use a regression approach and fit
a curve to the plot. In the original plot an arbitrary choice has to be made as
to which of the two channels is being treated as an explanatory variable and
which one is the response (which can make a substantial difference!), whereas
in the MA-plot both channels are treated equally.
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Fig. 7.8. Deviation of replicates from the median.

If there are technical replicates within an array, i.e. if genes have been
spotted more than once, it is advisable to explore the consistency of measure-
ments for the replicates of the same gene. In Figure 7.8 and Figure 7.9 we
show two such plots for an example where genes on a two-channel array were
spotted in triplicates (more than three spots per gene are neither common nor
necessary). For Figure 7.8 we took minimum, median and maximum of the
triplicates of each gene for one channel and displayed the ranks of the median
along the x-axis. The y-axis shows differences between the maximum (min-
imum) and median plotted on the positive (negative) part. It is quite easy
to single out questionable spots by eye in this plot. The plot in Figure 7.9 is
similar. Here, we plotted the sample mean of the three replicates versus the
sample standard deviation. Spots in the upper part of the plot correspond to
genes where at least one of the replicates does not coincide with the others.
This plot also indicates whether the log-transformation has stabilized the vari-
ance successfully. If so, mean and standard deviation should be uncorrelated,
whereas trends in this plot indicate that other transformations might be more
suitable (cf. the previous section).

Spots which are revealed as questionable by an exploratory analysis are
usually flagged , i.e. the data spreadsheet has a special column, where a flagging
symbol is entered for each spot of poor quality. Typically the image analysis
software already does some of this flagging. Some programs have options to
flag all genes where the spot-intensity falls below a certain threshold (for
example the background intensity for two-channel arrays or the MM-intensity
for Affymetrix-arrays). For data handling reasons, it is not advisable to remove
flagged genes completely from further analysis as, for example, genes with
low intensities are not necessarily artifacts, but might contain the valuable
information that the corresponding gene is simply not expressed on this array.
Where possible, the flagging status should be taken into account in the data
analysis or, at least, it should be checked for all those genes which have been
detected as playing an important role in the analysis.
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Fig. 7.9. Sample mean of tree replicates plotted against sample standard deviation.

7.4.2 Linear Models and Experimental Design

The exploratory plots introduced in the previous section indicate that the in-
tensities measured on microarrays are not equal to the original mRNA abun-
dance but are disturbed by a series of systematic experimental effects. These
include effects depending on the array, dye, spot location, print-tip, intensity
level, scanner settings and many more factors. Normalization and calibration
is needed to remove these effects from the data and to reveal the true gene
expression levels as clearly as possible. One strategy to deal with this prob-
lem is to include spots on the array which control for these effects. A typical
example of this are so-called housekeeping genes. These are positive controls,
i.e. genes which are known to be highly expressed at a constant level under
different experimental conditions. Negative controls, i.e. genes which are not
expected to be expressed at all, are also commonly used. Spiking is another
control technique. Here spots with synthetic cDNA are included on the ar-
ray and the samples are “spiked” with a known amount of the corresponding
DNA. This should result in a constant spot-intensity. These and other con-
trol strategies clearly depend very much on the specific experiment and will
not be discussed in detail here. A general problem is that the controls often
do not behave as expected and give highly variable results. Although control
spots can be a very helpful tool to monitor the experiment and its analysis, a
calibration based only on these spots is highly questionable.

The first set of normalization methods we will discuss try to jointly model
the treatment effects of interest and the experimental effects that we try to
eliminate. This approach has been introduced and described in a series of pa-
pers by Gary Churchill’s group at the Jackson Laboratory. A typical model
for the log-transformed gene expression measured in a cDNA microarray ex-
periment would be

Xijkg = µ+Ai +Dj + Tk +Gg + (AG)ig + (TG)kg + εijkg, (7.13)

cf. Kerr et al. [29]. Here Ai denotes the effect of array i, Dj the effect of dye j,
Tk corresponds to treatment k,Gg to gene g and combinations of letters denote
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interactions of the corresponding effects. The error terms εijkg are assumed to
be independent and identically distributed with mean 0. Normal distributions
are not assumed though. The authors use a bootstrapping technique instead
to calculate significances. The parameters of interest in this model are the
treatment-gene interactions (TG)kg, whereas all other parameters are included
for normalization purposes. Naturally factors or interactions can flexibly be
removed from or added to model, where the number of degrees of freedom
which can be used up is constrained by the number of observations.

Wolfinger et al. [44] and Wernisch et al. [42] proposed to replace fixed ef-
fects for the experimental effects in the Analysis of Variance (ANOVA) model
above by random effects, which leads to a mixed model . This means that, for
example, the array effects Ai are treated as random variables which are in-
dependently identically normally distributed with mean 0 and variance σ2

A

(similar assumptions are made for other effects in the model). Both papers
use the residual maximum likelihood (REML) approach to estimate these vari-
ance components, which can then be compared to find out which factors and
levels of the experiment account for the largest variability in the observations.

One of the nice features of these linear models is that they facilitate the
comparison of different experimental designs. For example in a dye swap ex-
periment, i.e. a cDNA-microarray experiment where the same two samples
are hybridized again on a second array but with interchanged dyes, averaging
the log-ratio measurements from the two arrays can eliminate the dye effect
from the model. Kerr and Churchill [28] consider more complicated designs,
so-called loop designs, which are also balanced with respect to the dyes. These
designs are proposed as an alternative to the classical reference design, where
all samples are compared with the same common reference. Figures 7.10 and
7.11 show the difference between a reference and a loop design in the sim-
plest non-trivial case of three samples. For more complicated situations there
are many fairly complex possible loop-designs and Kerr and Churchill com-
pare these in terms of A-optimality , a criterion which minimizes the average
variance of the parameter estimators.

Estimated variance components in a mixed model can be used to choose
the number of required replicates at different levels of the experiment as shown
by Wernisch et al. [42], who discuss how optimal choices can be made under
constraints given by a limit on the total cost of experiments.

Fig. 7.10. Reference design for three samples.
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Fig. 7.11. Loop design for three samples.

Fig. 7.12. MA-plot with fitted loess curve

7.4.3 Non-linear Methods

Parameter estimation and design optimization in the linear models discussed
in the previous section are only meaningful if the underlying model is appro-
priate. Unfortunately, there is strong evidence that some effects in microarray
experiments do not fit into this linear framework. In many two-channel exper-
iments so-called “banana-shapes” occur in the MA-plots indicating that the
dye effects can change with the gene-expression level.

Most normalization methods are based on the assumption that the major-
ity of genes will not change their expression across samples and experimental
conditions. For small targeted arrays this is a questionable assumption but for
larger or whole genome arrays it is certainly reasonable. Under this assump-
tion the majority of points in an MA-plot should scatter around the x-axis
once the data have been normalized. The most popular method to achieve this
seems to be the loess (or lowess) normalization, as discussed in the papers by
Yang et al., cf. [46] and [45]. Loess is a robust local regression method that fits
a curve to the MA-plot and then uses the residuals from this fit as normalized
log-ratio values. The loess regression, as implemented in R, the statistical pro-
gramming language most widely used for microarray analysis, has one main
parameter: the span, that defines the percentage of data, which are declared
to be in the neighborhood of a point x on the x-axis. Subsequently, a polyno-
mial is fitted to these points by minimizing a weighted sum of squares. The
weights are determined by a weight function and decrease for larger distances
from x. Figure 7.12 shows a loess fit to the MA-plot of Figure 7.7.

There are several variations of the loess normalization. As each sub-grid of
spots on a microarray is spotted by a different print-tip, different calibration
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might be necessary for each sub-grid. Yang et al. [46] propose to fit loess
curves to each of these sub-grids separately in such a case. This approach
removes spatial effects within the slide to some extent. A robust regression fit
of the M-values against the spatial coordinates is an alternative method for
the reduction of spatial effects.

7.4.4 Normalization of One-channel Data

For oligonucleotide arrays there is little variation in the amount of DNA spot-
ted and the same dye is used for all arrays, so that normalization should be
less important for this technology. Nevertheless exploratory analysis reveals
that there still is some need for calibration, cf. Bolstad et al. [5]. Schadt et al.
[37] proposed to find a rank invariant set of genes, i.e. a group of genes whose
ranked expression values do not differ between the current array and some
common baseline array by more than some threshold. The scatterplot of the
expression values for this invariant set is then smoothed by a spline function,
which represents the relationship between non-differentially expressed genes
and is used to normalize the data.

Bolstad et al. [5] study and compare several methods that do not require
the choice of a baseline array. One of these is the quantile normalization,
where the measurements on each array are replaced by their ranks and then
back-transformed by a common monotone transformation. According to the
comparative study by these authors the quantile normalization seems to be
slightly better than the method of Schadt et al. and two generalizations of the
loess normalization to more than two channels.

7.5 Differential Expression

A basic question in the analysis of gene expression data is whether a gene
changes its expression under different experimental conditions. Depending on
the experimental set-up this might mean comparison of the two channels on a
cDNA microarray with each other, comparison of the ratios against a common
reference across two-channel experiments or comparison of intensities of one-
channel experiments performed under different conditions.

7.5.1 One-slide Approaches

In the early days of microarrays, scientists chose an arbitrary fold-change
(e.g. 2) as a threshold and defined every gene showing an expression ratio
higher than this threshold as differentially expressed. Since the replication of
microarray experiments is expensive and was even more expensive some years
ago, early attempts to improve this ad hoc decision rule focused on comparing
expression values across genes within one array.
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The paper by Chen et al. [9] gives one example of this approach. Recall
that these authors modelled the original intensities by normal distributions
via

Xig = µigεig. (7.14)

Here i indicates the channels 1,2, g indicates the genes. The error terms εig

are independently normally distributed with mean 1 and variance c2, i.e. we
have

E(Xig) = µig, Var(Xig) = µ2
igc

2. (7.15)

Under the null-hypothesis

H0 : {µ1g = µ2g} (7.16)

of no differential expression the distribution of the ratio X1g/X2g thus only
depends on the unknown coefficient of variation c, which the authors propose
to estimate from a set of control genes that are known to be non-differentially
expressed. By using the null-distribution of the ratio, the significance of the
evidence for differential expression can be calculated for each gene.

Newton et al. [32] propose an alternative method to assess the evidence
for differential expression of each gene. As mentioned before, these authors
model expression intensities with the Gamma distribution as given in (7.6).
Their Bayesian approach leads to a modified ratio estimate of the form (X1g +
ν)/(X2g+ν), where ν is a hyper-parameter estimated from the data. This ratio
estimates a theoretical ratio of the scale parameters ϑ1 and ϑ2 of the Gamma
distributions. The authors’ hierarchical model assumes that the parameters
themselves are independently generated from another Gamma distribution for
differentially expressed genes, i.e. if ϑ1 �= ϑ2 holds. Under the null-hypothesis,
however, the two parameters are identical and it is thus assumed that the prior
distribution only yields one observation. This leads to a mixture model for
the prior distribution. By using the EM-algorithm and modelling the mixture
parameter by yet another level of prior distributions the authors derive a
probability of differential expression given the observed outcome.

Lee et al. [31] also use a mixture approach. They model data from a
two-channel experiment, where one channel was not used at all, leading to
a one-channel situation. Here the log-intensities are modelled by a mixture of
two normal distributions, where the component with lower mean represents
background noise measured for non-expressed genes and the other component
describes the distribution of “real” expression values across genes. This is
similar to the approach in Newton et al. [32]. Maximum-likelihood estimation
of the parameters yields an estimated posterior probability for a gene to be
differentially expressed.

7.5.2 Using Replicated Experiments

Although the methods mentioned so far can be helpful to summarize data
from a single microarray experiment, only a sufficient number of replications
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can help to decide whether the change in expression of a gene is really signifi-
cant or not. In the following, we focus on the situation where we have observed
transformed and normalized expression quantities xig, where the first m mea-
surements (for indices 1 ≤ i ≤ m) were taken under condition A and a second
group of n measurements (m+1 ≤ i ≤ m+n) were observed under condition
B. The measurements are assumed to be either log-ratios (or related measure-
ments of differential expressions) in series of two-channel experiments with a
common reference or expressions (on an appropriate scale) from one-channel
experiments.

Different versions of t-statistics

The most commonly used tool in this situation is the t-test-statistic

x̄gA − x̄gB

SEDg
, (7.17)

which relates the difference between the group averages for gene g to the
standard error of this difference (SEDg). The calculation of this SED has
been the topic of major discussions in this context. The classical approach (as
implemented in any standard statistical software package) is to base the SED
on the pooled sum of squares given by

SED2
gp=

m+ n

mn(m+ n− 2)

(
m∑

i=1

(xig − x̄gA)2 +
m+n∑

i=m+1

(xig − x̄gB)2
)

(7.18)

=
m+ n

m+ n− 2

(
m− 1
n

s2gA +
n− 1
m

s2gB

)
. (7.19)

Here sgA and sgB denote the standard error estimates for the group means.
This version of the t-statistic assumes that, under the null hypothesis, not
only the means of the variables but also the variances (or in general the whole
underlying distribution) are equal in both groups. In the case of variance
heterogeneity the Welch-statistic is an alternative method, which uses

SED2
gw = s2gA + s2gB (7.20)

as an estimate of the standard error of the difference.
It is interesting that most publications have focused on the Welch-version

of the t-statistic, cf. the seminal paper of Dudoit et al. [13] or Baldi and Long
[4]. If one was truly convinced of the variance stabilizing properties of the pre-
ceding transformation the classical t-statistic would seem more appropriate.
In this case a further improvement could be achieved by using the sums of
squares of all genes, i.e. choosing

SED2
p =

1
G

G∑
g=1

SED2
gp, (7.21)
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where G denotes the number of genes. Clearly this will give a much better
estimator of the SED, if the assumption of variance homogeneity holds. This
touches upon a general problem with all the SED estimators discussed above:
since the sample sizes are usually very small, they are highly variable. In
particular small SED estimates can appear by chance resulting in very high
t-values even when differences in expression are small.

As a result of their Bayesian approach, Baldi and Long [4] propose to use
a modified SED2 estimate that is given by a linear combination of Welch’s
SED2

gw and a hyperparameter σ2
0 , which reflects a prior assumption on the

expected variability. An obvious estimate for σ2
0 would be SED2

p, yielding
an estimator that combines the variability of this particular gene with the
average variability of all genes.

Several authors have suggested other modifications of the SED, for exam-
ple Tusher et al. [41], who add a constant s0 to SEDgp that is chosen such
that the correlation between nominator and denominator is minimized.

Resampling methods and non-parametric tests

Usually any test statistic is transformed to a number in the unit interval,
the p-value, which reflects the probability of obtaining a value at least as
extreme as the observed one under the null-hypothesis. For the calculation
of the p-value the distribution of the test statistic under the null-hypothesis
has to be known. In the case of independently normally distributed variables
with equal variances this distribution is a tm+n−2-distribution for the classical
t-statistic (using SEDgp as the denominator). Under variance heterogeneity
only approximations (t-distributions with non-integer degrees of freedom) are
available for the Welch-statistic.

For large sample sizes the central limit theorem ensures that the statistic is
approximately normally distributed. Thus it is less crucial that the assumption
of normally distributed data holds. Unfortunately, the sample size, i.e. the
number of slides, is typically very small in microarray experiments, so these
asymptotic laws cannot be applied.

If variables are independently identically distributed (i.i.d.) under the null
hypothesis, permutation tests are a solution for this problem. Based on the
fact that, under the null-hypothesis, every permutation of the data (resampled
data set) could have been observed with the same probability, the test-statistic
is recalculated for each of the

(
m+n

m

)
possibilities to split up the observed data

into the two groups. The p-value is then determined based on this permutation
distribution. For larger sample sizes the number of permutations gets very
high, so that usually only a subset of all possible permutations are generated
in a Monte Carlo simulation.

To control a false positive (type 1 error) rate of α ∈ (0, 1) a t-statistic
with a p-value below α is called significant. Under an i.i.d. hypothesis it can
be easily shown that permutation tests control this error rate exactly, inde-
pendent of the underlying distribution. This is no longer true if variables are
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not identically distributed under the null hypothesis, e.g. if they are allowed
to have different variances. Still it can be shown that, provided an appropriate
SED estimator is used, permutation versions of the Welch-test have the same
asymptotic behavior as the original version of the test using the t-distribution,
cf. Janssen [27]. Permutation methods have been widely applied to microarray
data, cf. Dudoit et al. [13] or Tusher et al. [41].

A particular class of permutation tests are rank tests, which use only the
ranks of the observations within the pooled sample rather than the original
data. Rank test are also called nonparametric tests as they do not depend on
distributional assumptions. The most common rank statistic is the Wilcoxon-
statistic, which is based on the sum of the ranks in each group. The calculation
of p-values for rank tests is the same as for permutation tests and again p-
values are only accurate under an i.i.d. null-hypothesis.

7.5.3 Multiple Testing

All tests for differential expression discussed so far try to control the false
positive rate for one particular gene only. If we apply a test to each of 20,000
genes on an array and a significance level of 5% is chosen, we would thus
expect 1000 false positive discoveries even if none of the genes are differentially
expressed. This sort of multiple testing problem has some tradition in statistics
but it has hardly ever been as relevant as in this context. Finding a multiple
testing strategy for microarray data is further complicated by the fact that
the measurements for different genes will in general not be independent of
each other. The main contributions to this area have been made by Terry
Speed’s group in Berkeley (cf. [13], [17]) and the Stanford group (cf. [41], [15]
and [40]), each following one of two very different approaches to this problem.

The family wise error rate

The first and classical approach is to control the family wise error rate
(FWER), i.e. the probability that there are any false positives among the
thousands of statements. By definition, this is a rather conservative strategy,
which reduces the number of significant findings quite dramatically. The sim-
plest way to control the FWER is the Bonferroni method, where the adjusted
significance level is the original one divided by the numbers of observations (or,
alternatively, adjusted p-values are given by multiplication with this number).

Dudoit et al. [13] suggest controlling the FWER by using a permutation-
based procedure first introduced by Westfall and Young [43]. This is called the
step-down method because it looks sequentially at the set of ordered observed
p-values

pr1 ≤ pr2 ≤ . . . ≤ prn
, (7.22)

where rj gives the gene for which the j-th smallest p-value occurred. Starting
with the smallest, each of these p-values is then replaced by an adjusted p-
value, which has to be below the chosen FWER (typically 5%) to be called
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significant. Let P1, . . . , PG denote random variables describing the p-values of
genes 1, . . . , G. If H0 denotes the intersection of all null-hypotheses, i.e. no
genes are differentially expressed, the steps of this algorithm are:

Step 1: Choose the adjusted smallest p-value as

p̃r1 = P [min(Pr1 , . . . , PrG
) ≤ pr1 | H0].

This means that we compare the smallest observed p-value with the dis-
tribution this smallest value has, if there are no differential genes.

Step j: Choose

p̃rj = max
(
p̃rj−1 , P [min(Prj , . . . , PrG

) ≤ prj | H0]
)
.

Again the jth smallest p-value is studied under the distribution of the
smallest value among the G − j + 1 remaining genes. The maximum en-
sures that the sequence of adjusted p-values has the same ordering as the
original ones.

Although the marginal distribution of each single p-value is known to be
uniform under H0, we know little about the dependence structure, so that
the joint distribution of p-values needed above is unknown in general. Again
a permutation strategy can be used here, where a simultaneous permutation
for all gene allows to estimate the joint distribution (this is only true to
some extent: this approach assumes that the dependence structure is the same
under the different treatments!). Details of the exact algorithm can be found
in Dudoit et al. [13].

The false discovery rate

As mentioned before, FWER-methods tend to be fairly conservative, i.e. they
often result in very few significant findings. One reason for this is that try-
ing to avoid any false positives is a very cautious strategy. Many scientists
probably are happy to accept some false positives provided they have an es-
timate of how many errors there will be. The false discovery rate (FDR) and
related approaches address this point of view. The FDR is defined as the
expected ratio of rejected true null-hypotheses divided by the total number
of rejected hypotheses. (The positive false discovery rate (pFDR) is a closely
related rate, which is given by the same expected value, but conditional on
the null-hypothesis being rejected at least once.) If all hypotheses are true,
the FDR is identical to the FWER, but in general they will be different. We
refer to the PhD thesis of Storey [40] for a more detailed discussion of the
control and estimation of the (p)FDR in a microarray context.

One related application we would like to mention is the Significance
Analysis of Microarray (SAM) method described by Tusher et al. [41],
as this has been implemented in a widely used free software package (cf.
http://www-stat.stanford.edu/∼tibs/SAM/index.html). One feature of
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this software is that rather than controlling the FDR it gives estimates for
the FDR and the number of expected false positives for a user-defined thresh-
old. This is quite different from the classical approach of choosing a certain
acceptable rate (say 5%) and then calculating thresholds for test statistics
accordingly. In some way this addresses the fact that often microarrays are
not so much used to verify hypotheses as to generate them, i.e. to screen for
genes that might be differentially expressed.

As before, one of the main problems in estimating the FDR is the unknown
dependence structure between the genes and SAM uses a simulation approach
that is similar to the one in the Westfall and Young algorithm discussed above.

7.6 Further Reading

So far, we have only considered preprocessing methods, experimental design
and the detection of single differentially expressed genes. In some way, these
methods do not fully exploit microarray technology, which allows us to have
a look at all genes spotted on an array simultaneously. Thus, the true chal-
lenge is to correlate the complete observed gene expression pattern with the
experimental conditions under which it was observed. From a statistical point
of view we are facing a multivariate problem here, where we can either regard
each experiment/slide as a unit with G components (G = number of genes)
or each gene as a unit for which we observe a vector of K measurements
(K = number of slides). Multivariate statistics offer a sometimes confusingly
high number data analysis methods and most of these have been applied or
adapted to microarray analysis. For example, principal component analysis
(PCA) , as used in Alter et al. [1] is a classical tool which reduces the dimen-
sionality of the data. By singular value decomposition (SVD) of the (empirical)
variance-covariance or correlation matrix, PCA yields eigengenes (i.e. linear
combinations of genes) or eigenarrays (linear combinations of slides) that ac-
count for the largest variability in the data. Often, these principal components
are then used to find groups or clusters of arrays or genes in a second step. If
prior knowledge is available these groups or classes might already be known.
In this case the problem is to allocate observations to the appropriate group.
This is a classification problem, where typically the classes are modelled prob-
abilistically. Prominent examples are experiments for tumor classification as
in Golub et al. [20]. In other cases without any prior knowledge the data are
used to find such groupings and a wide range of such clustering methods has
been proposed for microarray analysis. For an excellent overview on classifi-
cation and clustering methods for microarrays we refer to the contributions of
Dudoit and Fridlyand [12] and Chipman et al. [10] in the recently published
book edited by Speed [38], which also covers many other aspects of microarray
statistics. A range of other books have been published lately or are about to
be published soon, cf. [3] or [34]. A shorter but very comprehensive overview
can be found in Huber et al. [24].
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Summary. Molecular pathways consisting of interacting proteins underlie the ma-
jor functions of living cells, and a central goal of molecular biology is to understand
the regulatory mechanisms of gene transcription and protein synthesis. Several ap-
proaches to the reverse engineering of genetic regulatory networks from gene expres-
sion data have been explored. At the most refined level of detail is a mathematical
description of the biophysical processes in terms of a system of coupled differential
equations that describe, for instance, the processes of transcription factor binding,
protein and RNA degradation, and diffusion. Besides facing inherent identifiability
problems, this approach is usually restricted to very small systems. At the other
extreme is the coarse-scale approach of clustering, which provides a computation-
ally cheap way to extract useful information from large-scale expression data sets.
However, while clustering indicates which genes are co-regulated and may there-
fore be involved in related biological processes, it does not lead to a fine resolution
of the interaction processes that would indicate, for instance, whether an interac-
tion between two genes is direct or mediated by other genes, or whether a gene
is a regulator or regulatee. A promising compromise between these two extremes
is the approach of Bayesian networks, which are interpretable and flexible mod-
els for representing conditional dependence relations between multiple interacting
quantities, and whose probabilistic nature is capable of handling noise inherent in
both the biological processes and the microarray experiments. This chapter will first
briefly recapitulate the Bayesian network paradigm and the work of Friedman et al.
[8], [23], who spearheaded the application of Bayesian networks to gene expression
data. Next, the chapter will discuss the shortcomings of static Bayesian networks
and show how these shortcomings can be overcome with dynamic Bayesian networks.
Finally, the chapter will address the important question of the reliability of the in-
ference procedure. This inference problem is particularly hard in that interactions
between hundreds of genes have to be learned from very sparse data sets, typically
containing only a few dozen time points during a cell cycle. The results of a simu-
lation study to test the viability of the Bayesian network paradigm are reported. In
this study, gene expression data are simulated from a realistic molecular biological
network involving DNAs, mRNAs and proteins, and then regulatory networks are
inferred from these data in a reverse engineering approach, using dynamic Bayesian
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networks and Bayesian learning with Markov chain Monte Carlo. The simulation
results are presented as receiver operator characteristics (ROC) curves. This allows
an estimation of the proportion of spurious gene interactions incurred for a specified
target proportion of recovered true interactions. The findings demonstrate how the
network inference performance varies with the training set size, the degree of inad-
equacy of prior assumptions, the experimental sampling strategy, and the inclusion
of further, sequence-based information.

8.1 Introduction

Molecular pathways consisting of interacting proteins underlie the major func-
tions of living cells. A central goal of molecular biology is therefore to under-
stand the regulatory mechanisms of gene transcription and protein synthe-
sis, and the invention of DNA microarrays, which measure the abundance of
thousands of mRNA targets simultaneously, has been hailed as an important
milestone in this endeavour. Several approaches to the reverse engineering of
genetic regulatory networks from gene expression data have been explored,
reviewed, for example, in [6] and [5].

At the most refined level of detail is a mathematical description of the bio-
physical processes in terms of a system of coupled differential equations that
describe, for example, the processes of transcription factor binding, diffusion,
and RNA degradation; see, for instance, [4]. While such low-level dynamics
are critical to a complete understanding of regulatory networks, they require
detailed specifications of both the relationship between the interacting enti-
ties as well as the parameters of the biochemical reaction, such as reaction
rates and diffusion constants. Obviously, this approach is therefore restricted
to very small systems. In a recent study, Zak et al. [30] found that a system of
ordinary differential equations describing a regulatory network of three genes
with their respective mRNA and protein products is not identifiable when
only gene expression data are observed, and that rich data, including detailed
information on protein–DNA interactions, are needed to ensure identifiability
of the parameters that determine the interaction structure.

At the other extreme of the spectrum is the coarse-scale approach of clus-
tering, illustrated in Figure 8.1. Following up on the seminal paper by Eisen et
al. [7], several clustering methods have been applied to gene expression data,
reviewed, for instance, in [6]. Clustering provides a computationally cheap
way to extract useful information out of large-scale expression data sets. The
underlying conjecture is that co-expression is indicative of co-regulation, thus
clustering may identify genes that have similar functions or are involved in re-
lated biological processes. The disadvantage, however, is that clustering only
indicates which genes are co-regulated; it does not lead to a fine resolution of
the interaction processes that indicates, for example, whether an interaction
between two genes is direct or mediated by other genes, whether a gene is a
regulator or regulatee, and so on. Clustering, in effect, only groups interacting
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Fig. 8.1. Hierarchical clustering of gene expression data. Rows represent
genes, columns represent experimental conditions, and grey levels show the amount
of up or down regulation with respect to a control. Genes with similar expression
levels across different conditions are grouped together. The algorithm is, in principle,
similar to the method of Figure 4.9.

genes together in a monolithic block, where the detailed form of the regulatory
interaction patterns is lost; see Figure 8.2 for an illustration.

A promising compromise between these two extremes is the approach of
Bayesian networks, introduced in Chapter 2, which were first applied to the
problem of reverse engineering genetic networks from microarray expression
data in [8], [23], and [12]. Bayesian networks are interpretable and flexible
models for representing probabilistic relationships between multiple interact-
ing entities. At a qualitative level, the structure of a Bayesian network de-
scribes the relationships between these entities in the form of conditional
independence relations. At a quantitative level, relationships between the in-
teracting entities are described by conditional probability distributions. The
probabilistic nature of this approach is capable of handling noise inherent in
both the biological processes and the microarray experiments. This makes
Bayesian networks superior to Boolean networks ([18], [19]), which are deter-
ministic in nature.

8.2 A Brief Revision of Bayesian Networks

Recall from Section 2.1 that a Bayesian network consists of a set of nodes
connected by directed edges. The nodes represent random variables, while
the edges represent conditional dependence relations between these random
variables. A Bayesian network defines a factorization of the joint probability
of all the nodes into a product of simpler conditional probabilities, by (2.1).
In applying this method to the inference of genetic networks, we associate
nodes with genes and their expression levels, while edges indicate interactions
between the genes. For instance, the network structure of Figure 2.1 suggests
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Fig. 8.2. Shortcomings of clustering. The left figure shows a hypothetical
gene regulatory network, where the transcription of the centre gene initiates the
transcription of four other genes. The right figure shows the outcome of a standard
clustering approach. All five genes are grouped together due to their correlated
expression, but the detailed form of their interaction remains unknown.

that gene A initiates the transcription cascade, that genes B and C co-regulate
gene D, and that gene D mediates the interaction between genes (B, C) and
E.

Recall from Section 2.1 that we distinguish between the model or network
structure M, which is the set of edges connecting the nodes, and the network
parameters q. Given a family F of (conditional) probability distributions,
the latter define the conditional probabilities associated with the edges and
determine, for example, whether the influence of one gene on another is of the
form of an excitation or inhibition. An illustration can be found in Figure 2.10.
Our objective is to learn the network from gene expression data D, resulting
from a microarray experiment and an appropriate normalization method, as
discussed in Chapter 7. In a nutshell, learning effectively means sampling
network structures M from the posterior probability

P (M|D) =
1
Z
P (D|M)P (M) (8.1)

where Z =
∑

M P (D|M)P (M) is a normalization factor, P (M) is the prior
probability on network structures, and

P (D|M) =
∫
P (D|q,M)P (q|M)dq (8.2)

is the marginal likelihood for network structures, which requires the parame-
ters q to be integrated out; see Section 2.2.1 for a more detailed discussion. If
certain regularity conditions, discussed in [14], are satisfied and the data are
complete (meaning that we do not have any missing values), the integral in
(8.2) is analytically tractable. Two function families F of conditional proba-
bility distributions for which this closed-form solution of (8.2) is possible are
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Fig. 8.3. Multinomial conditional probability distribution. A multinomial
conditional probability distribution is basically a table that lists the probabilities
of discrete events for each combination of the discrete settings of the parents. The
figure shows an example for a simple network with binary units that can take on the
values TRUE and FALSE (indicating, for example, whether or not the grass is wet,
or whether or not a sprinkler is used). In gene expression data, the discretization
usually contains three values: underexpressed (−1), not differently expressed (0),
and overexpressed (1), depending on whether the expression rate is significantly
lower than, similar to, or greater than control, respectively. Adapted from [20], by
permission of Cambridge University Press.

the linear Gaussian and the multinomial distribution. The multinomial distri-
bution is illustrated in Figure 8.3 and discussed at length in [14]. It allows us
to model a nonlinear regulation scheme, like the one illustrated in Figure 8.4.
However, the price to pay is a discretization of the data, as described in the
caption of Figure 8.3, and this inevitably incurs a certain information loss.
Also, the number of parameters increases exponentially with the number of
parents. The linear Gaussian model is given by

p(xi|xpa[i]) = N
(
w†xpa[i];σ

)
(8.3)

where pa[i] are the parents of node i, xpa[i] represents the (column) vector of
random variables associated with pa[i], N(µ;σ) denotes a Normal distribution
with mean µ and standard deviation σ, w is a parameter (column) vector, and
the superscript † denotes matrix transposition. The linear Gaussian model
does not suffer from the information loss caused by discretization, and the
number of parameters increases linearly rather than exponentially with the
number of parents. The disadvantage, however, is that nonlinear regulation
patterns, like the one illustrated in Figure 8.4, can not be modelled in this
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Fig. 8.4. Nonlinear interaction. Gene C is co-regulated by two genes, A and
B. The regulation is of an XOR type: gene C is up-regulated, symbolized by a grey
shading, if either gene A is up-regulated, but not gene B (top right), or if gene B is
up-regulated, but not gene A (bottom, left). Otherwise, gene C is down-regulated,
represented by a node without shading (top left, bottom right). This co-regulation
pattern is intrinsically nonlinear and can not be predicted with the linear Gaussian
model (8.3), as indicated in the figure. The positive correlation between genes A
and C (top, right) requires a positive weight parameter w1; the positive correlation
between genes B and C (bottom, left) requires a positive weight parameter w2. With
both parameters w1 and w2 positive, an upregulation of both genes A and B will
lead to a positive weighted sum, w1A + w2B > 0. Consequently, up-regulation is
predicted where, in reality, the gene is down-regulated (bottom, right).

way. For this reason the benchmark studies reported later in Sections 8.8 and
8.9 choose F to be the family of multinomial conditional probabilities. For a
more comprehensive discussion and further details, see [8].

Now, recall from Section 2.2.2 that direct sampling from (8.1) is impossible
due to the intractability of the denominator. We therefore have to resort to a
Markov chain Monte Carlo (MCMC) simulation, as discussed in Section 2.2.2.

8.3 Learning Local Structures and Subnetworks

Recall from Table 2.1 that the number of possible network structures M
increases super-exponentially with the number of nodes. For a large and in-
formative data set D, the posterior probability P (M|D) is usually dominated
by only a few network structures M, which allows us to reasonably infer the
global network structure from the data. However, microarray data are usually
sparse, meaning that hundreds of gene expression levels are measured for only
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Intrinsic uncertainty about M*

Fig. 8.5. Inference uncertainty. The vertical axis shows the posterior probability
P (M|D), the horizontal axis represents the model structure M. Left: When the data
set D is sufficiently large and informative, P (M|D) has a pronounced maximum at
the true network structure M∗. Right: For sparse data, the distribution P (M|D)
is diffuse and many different structures have similarly high posterior probability
scores.

A B A B A

C

B

C

Fig. 8.6. Markov neighbours. Markov neighbours are nodes that are not d-
separated by any other measured variable in the domain. This includes parent–child
relations (left), where one gene regulates another gene, and spouse relations (middle),
where two genes co-regulate a third gene. In the configuration on the right, nodes
A and B are d-separated by node C, hence they do not satisfy the Markov relation.
See Figures 2.7 and 2.8 for a revision of the concept of d-separation.

a few time points or under a small number of different experimental condi-
tions. Consequently, the posterior distribution of the network structure given
the data, P (M|D), is diffuse, and a huge number of different networks are
plausible given the data. An illustration is given in Figure 8.5.

Since the vagueness of P (M|D) does not allow a reasonable inference of
the global network structure, Friedman et al. [8] suggested focusing on low-
dimensional features of the high-scoring networks and then examining the
posterior probability of these features given the data. Formally, a feature is
a binary indicator variable, which is 1 if the feature is present in the given
network structure M, and 0 otherwise:
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f(M) =

{
1 if M satisfies the feature
0 otherwise (8.4)

Three features applied in [8] and [23] are Markov, order, and separator rela-
tions.

Markov relations are illustrated in Figure 8.6. The definition is based on
the concepts of d-separation and the Markov blanket, which were introduced
in Section 2.1. Two nodes A and B are Markov neighbours if they are in
each other’s Markov blanket, that is, if they are not d-separated by any other
node. If two variables are in a Markov relation, no other variable in the model
mediates the dependence between them. In the context of gene expression
analysis, a Markov relation indicates that the two genes are related in some
joint biological regulation process or interaction.

Separator relations identify (sets of) nodes that mediate the dependence
between other (sets of) nodes. For instance, in Figure 8.6, node C satisfies
the separator relation when nodes A and B are not in each other’s Markov
blanket, which holds for the subfigure on the right. In the context of gene
expression analysis, a gene that acts as a separator mediates the regulatory
interactions between the separated genes.

Order relations indicate that two nodes in the network are connected by a
directed path, that is, a path whose edges all have the same direction. Recall
from Section 2.2.4 that for complete observation and under the causal Markov
assumption, a directed path in a PDAG implies a causal relation. Since gene
expression data do not capture processes related to protein activities and
post-translational modifications (see Section 8.9, especially Figure 8.15), the
condition of complete observability is not satisfied. Consequently, an order
relation has to be interpreted as an indication rather than a proof that two
genes might be involved in a causal relation.

The posterior probability of a feature f is given by

P (f |D) =
∑
M

f(M)P (M|D) (8.5)

By mapping the high-dimensional space of network structures M into the
low-dimensional feature space, the posterior probabilities can be assumed to
become more informative and less diffuse. In practice, we cannot compute
(8.5) directly because the number of possible network structures M is far too
large (see Table 2.1 on page 28). Consequently, we resort again to MCMC,
and approximate (8.5) from the MCMC sample {M1, . . . ,MT }:

P (f |D) =
1
T

T∑
i=1

f(Mi) (8.6)
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Number of features with P(f|D) > ρ

Fig. 8.7. Confidence scores for local features in the yeast cell cycle. The
figure illustrates the results obtained in the study of Friedman et al. [8]. The plot
shows the number of local features whose posterior probability P (f |D) exceeds a
given threshold ρ ∈ [0, 1]. The approximation of P (f |D) in [8] is based on (8.6), but
uses a MAP/ bootstrapping approach rather than Bayesian MCMC (consequently,
the plotted score is not a proper posterior probability). The solid line shows the
results on the yeast data. The dash-dotted line shows the results on the randomized
data. The actual graphs in [8] show certain variations and deviations from the plot in
the present figure depending on which type of feature (Markov versus order relations)
was chosen, and depending on which model for the conditional probabilities was
selected (multinomial versus linear-Gaussian). However, the main characteristic of
the plots in [8] is captured by the present figure in that the distribution of confidence
estimates for the original data has a longer and heavier tail in the high-confidence
region.

8.4 Application to the Yeast Cell Cycle

Friedman et al. [8] applied Bayesian networks to the yeast microarray data
of Spellman et al. [27], which contain 76 gene expression measurements of
the mRNA levels of 6177 genes,1 taken during six time series under different
experimental conditions. Of these 6177 genes, 800 genes showed significant
variations over the different cell-cycle stages and were selected for further
analysis. In learning from these data, Friedman et al. [8] treated individual
gene expression measurements as independent samples. To model the tem-
poral nature of the cellular processes, an additional node was introduced to
denote the cell cycle phase, and this node was forced to be the root in all the
networks learned. A vague prior2 P (M) that did not incorporate any biologi-
cal domain knowledge was used. Instead of the Bayesian approach, expressed
1 More accurately: open reading frames.
2 For more details on the prior, see [8], page 605, and [14].



248 Dirk Husmeier

in (8.1) and discussed in Section 1.3, the authors applied a penalized maxi-
mum likelihood/ bootstrap procedure akin to the one described in Section 1.2,
but with the maximum likelihood estimate replaced by the MAP estimate of
(1.16) on page 13. Bootstrapping is computationally expensive,3 as discussed
in Section 1.4. To reduce the computational costs, Friedman et al. [8] applied
a heuristic simplification, which they called the sparse candidate algorithm.
This algorithm identifies a small number of best candidate parents – first
based on a local correlation measure, and later iteratively adapted during the
search. The search algorithm is restricted to networks in which the parents of
a node are chosen from the set of candidate parents of this node. This restric-
tion results in a much smaller search space and, consequently, a considerable
reduction in the computational costs.

The confidence for local features is computed from (8.6), where the set of
learned network structures, {Mi}, is obtained from a bootstrap rather than
an MCMC sample – hence the confidence scores obtained in [8] are not proper
posterior probabilities (although the actual difference may be small).

To estimate the credibility of the confidence assessment, the authors cre-
ated a random data set by permuting the order of the experiments indepen-
dently for each gene. In this randomized data set, genes are independent of
each other and one does not expect to find true features. Figure 8.7 illustrates
the results found in [8]. Local features in the random data tend to have no-
tably lower confidence scores than those in the true data, and the distribution
of confidence scores in the original data has a longer and heavier tail in the
high-confidence region than the distribution of confidence scores in the ran-
dom data. Friedman et al. [8] therefore suggest that local features with high
confidence scores are likely to reflect true features of the underlying genetic
regulatory network.

8.4.1 Biological Findings

A striking feature that emerged from the application of Bayesian networks
to the yeast data is the existence of a few dominant genes. To quantify this
notion, Friedman et al. [8] introduced a dominance score,4

Ψ(X) =
∑
Y

P (X → Y |D) (8.7)

3 Recall that in most other applications, the Bayesian MCMC approach is compu-
tationally less expensive than bootstrapping, as discussed, for example, in Sec-
tion 4.4.7, especially Figure 4.35. In the present situation, however, the computa-
tion of the Hastings ratio, discussed in Section 2.2.2 and illustrated in Figure 2.16,
is prohibitively expensive.

4 See [8], page 615, for the exact definition of this dominance score, which deviates
slightly from (8.7). Also, recall that the confidence scores in [8] are not proper
posterior probabilities, as discussed before.
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where X → Y represents the feature that gene X is an ancestor of gene Y in a
directed path from X to Y . A gene with a high dominance score is indicative
of a potential causal source of the cell-cycle process, and only a few genes were
found to have a high dominance score. These high-scoring genes are known to
be directly involved in initiating or controlling the cell cycle, to play key roles
in essential cell functions, or to be involved in DNA repair and transcription
initiation. These findings suggest that the analysis can discover true biological
features of the cell-cycle process.

When looking at Markov relations, the two conditional probability mod-
els employed – the multinomial and the linear-Gaussian distributions – were
found to lead to different results. A Markov pair A ↔ B with a high confi-
dence score P (A ↔ B|D) under one model did not necessarily have a high
confidence score under the other. This lack of agreement is not too surprising:
the multinomial model can capture nonlinear dependence relations, which the
linear-Gaussian model inevitably misses. On the other hand, the discretiza-
tion of the data required for the application of the multinomial model may
lose information that is available to the linear-Gaussian model. Friedman et
al. [8] found that for the multinomial distribution, the analysis discovered sev-
eral high-scoring Markov pairs that had a low correlation in their expression
and were therefore grouped into different clusters with a standard clustering
algorithm. These high-scoring Markov pairs included several pairs of genes
with similar biological functions,5 which suggests that Bayesian networks can
find biological features that are not amenable to standard clustering meth-
ods. However, supporting the inference results with biological findings from
the literature has certain intrinsic problems, as discussed later, in Section 8.9.

As demonstrated in Figure 8.2, Bayesian networks may overcome the limi-
tations of conventional clustering techniques by modelling the detailed form of
the interactions between the genes. Especially, the identification of separator
relations allows us to infer which genes mediate the dependence between other
genes. For instance, the clustering algorithm applied in [27] groups the five
genes CLN2, RNR3, SVS1, SRO4, and RAD51 together in the same cluster.
Figure 8.11 shows a high-confidence subnetwork inferred in [8], involving the
same genes. It is seen that RNR3, SVS1, SRO4, and RAD51 are separated by
their common parent CLN2 and do not have any links between each other.
This finding agrees with biological knowledge: CLN2 has a central and early
cell cycle control function, whereas there are no known biological relationships
between the other genes.

Figure 8.8 shows a subnetwork from a different analysis, reported in [23]. In
the inferred high confidence subnetwork, several low-osmolarity response genes
5 Examples are LAC1 ↔ YNL300W (LAC1 is a GPI transport protein, and

YNL300W is modified by GPI), FAR1 ↔ ASH1 (both proteins participate in
a mating-type switch), and SAG1 ↔ MF-ALPHA-1 (SAG1 induces the mating
process, and MF-ALPHA-1 is an essential protein that participates in the mating
process).
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Fig. 8.8. Separator relations. In the analysis of Pe’er et al. [23] gene SLT2 was
found to d-separate several low-osmolarity response genes. The top figure shows the
subnetwork with the highest posterior probability, which suggests that SLT2 initiates
the transcription of several low-osmolarity response genes. The bottom figure shows
a network suggested in the biological literature. SLT2 encodes the enzyme MAP
kinase, which activates two transcription factors by phosphorylation. The activated
transcription factors bind to the promoter regions of several low-osmolarity genes
and thereby initiate their transcription. Reprinted from [16], by permission of the
Biochemical Society.

are separated by their parent, SLT2. This concurs with biological findings:
SLT2 encodes the enzyme MAP kinase, which post-translationally activates
two transcription factors, which in turn activate the low-osmolarity response
genes.

In both cases, the inference with Bayesian networks has explained away
dependencies and has provided an enhanced insight into the underlying molec-
ular architecture of pathways. In Figure 8.8, all separated genes share similar
biological functions. This finding can be used to assign novel putative func-
tions to yet unannotated genes: when a previously uncharacterized gene is
found to be a child of a given parent node, it may have a function related to
that of the other children. Also, note that in both cases, Figures 8.8 and 8.11,
the Bayesian network has uncovered intra-cluster structures among correlated
genes that are not amenable to standard clustering methods.
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t=2 t=3 t=4t=1
Fig. 8.9. Modelling feedback with dynamic Bayesian networks. Left: Recur-
rent network comprising two genes with feedback that interact with each other. This
structure is not a Bayesian network. Right: Equivalent dynamic Bayesian network
obtained by unfolding the recurrent network in time. Note that similar unfolding
methods have been applied in the study of recurrent neural networks ([15], page
183). Reprinted from [17], by permission of Oxford University Press.

8.5 Shortcomings of Static Bayesian Networks

The approach outlined above has several limitations. The first obvious restric-
tion results from the problem of equivalence classes, discussed in Section 2.2.3.
Take, for example, Figure 2.18. All networks have the same skeleton, but
differ with respect to the edge directions. Expanding the joint probability
P (A,B,C) according to (2.1), however, gives the same factorization for three
of the networks irrespective of the edge directions. These networks are there-
fore equivalent and cannot be distinguished on the basis of the data. The
consequence is that for a given Bayesian network structure M sampled from
the posterior probability distribution (8.1), we have to identify the whole
equivalence class C(M) to which M belongs, and then discard all those edge
directions which are not unequivocal among all M′ ∈ C(M). An example
is given in Figure 2.19, where the subfigure on the right shows the equiva-
lence class that corresponds to the Bayesian network on the left. Note that
this equivalence loses substantial information about the edge directions and
thus about possible causal interactions between the genes.6 A second, possibly
more serious drawback, is given by the acyclicity constraint, which rules out
feedback loops like those in the bottom right of Figure 2.10. Since feedback is
an essential feature of biological systems, the usefulness of Bayesian networks
for modelling genetic regulatory interactions is questionable.
6 See Section 2.2.4 for a discussion of the relation between edge directions and

causal interactions.
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8.6 Dynamic Bayesian Networks

Consider Figure 8.9, left, which shows a simple network consisting of two
genes. Both genes have feedback loops and interact with each other, ruling
out the applicability of DAGs. However, interactions between genes are usually
such that the first gene is transcribed and translated into protein, which then
has some influence on the transcription of the second gene. This implies that
the interaction is not instantaneous, but that its effect happens with a time de-
lay after its cause. The same applies to the feedback loops of genes acting back
on themselves. We can therefore unfold the recurrent network of Figure 8.9,
left, in time to obtain the directed, acyclic network of Figure 8.9, right. The
latter is again a proper DAG and corresponds to a dynamic Bayesian net-
work. For details, see [9] and [21]. Note that similar unfolding methods have
been applied in the study of recurrent neural networks ([15], page 183). To
avoid an explosion of the model complexity, parameters are tied such that the
transition probabilities between time slices t− 1 and t are the same for all t.
The true dynamic process is thus approximated by a homogeneous Markov
model. Following [17], and as opposed to [9], intra-slice connections, that is,
edges within a time slice, are not allowed because this would correspond to in-
stantaneous interactions. Note that with this restriction, a dynamic Bayesian
network avoids the ambiguity of the edge directions, discussed in Section 8.5:
reversing an edge corresponds to an effect that precedes its cause, which is
impossible. The approach has the further advantage of overcoming one of the
computational bottlenecks of the MCMC simulations. Recall that the accep-
tance probabilities (2.33) of the Metropolis-Hastings sampler depend on the
Hastings ratio, that is, the ratio of the proposal probabilities. As illustrated
in Figure 2.16, the computation of the Hastings ratio implies an acyclicity
check for all networks in the neighbourhood of a given candidate network. For
networks with many nodes these neighbourhoods and, consequently, the com-
putational costs become prohibitively large. It is presumably for this reason
that a proper MCMC approach was not attempted in [8] and [23], as discussed
in Section 8.4. Since the unfolding process of Figure 8.9 automatically guar-
antees acyclicity, the computation of the Hastings ratio becomes trivial for
dynamical Bayesian networks, thereby overcoming this major computational
bottleneck.

8.7 Accuracy of Inference

The main challenge for the inference procedure is that interactions between
hundreds of genes have to be learned from short time series of typically only
about a dozen measurements. The inevitable consequence is that the poste-
rior distribution over network structures becomes diffuse, as discussed earlier
in Section 8.3, and illustrated in Figure 8.5, and it is therefore important
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Fig. 8.10. Synthetic simulation study. Synthetic data are generated from a
known Bayesian network. Then, new networks are sampled from the posterior dis-
tribution with MCMC and compared with the true network. Reprinted from [17],
by permission of Oxford University Press.

to somehow quantify how much can be learned from the data in this un-
favourable situation. Also, note that the sparseness of the data implies that
the prior P (M) has a non-negligible influence on the posterior P (M|D) (8.1)
and should therefore be devised so as to capture known features of biological
networks. A reasonable approach, adopted in most applications of Bayesian
networks to the reverse engineering of genetic networks, is to impose a limit
on the maximum number of edges converging on a node, FI(M), and to set
P (M) = 0 if FI(M) > α, for some a priori chosen value of α. This prior in-
corporates our current assumptions about the structure of genetic networks,
namely, that the expression of a gene is controlled by a comparatively small
number of active regulators, while, on the other hand, regulator genes them-
selves are unrestricted in the number of genes they may regulate. The practical
advantage of this restriction on the maximum “fan-in” is a considerable re-
duction of the computational complexity, which improves the convergence and
mixing properties of the Markov chain in the MCMC simulation. The follow-
ing two sections will report the results of the benchmark study [17], whose
objective was to empirically estimate how much can be learned about genetic
regulatory networks from sparse gene expression data. Recall from Section 8.2
that F is the family of multinomial conditional probabilities.

8.8 Evaluation on Synthetic Data

To evaluate the performance of the inference procedure on sparse data sets,
we can proceed as shown in Figure 8.10. Synthetic data, D, are generated
from a known Bayesian network, M0. Then, new networks Mi are sam-
pled from the posterior distribution P (M|D). From a comparison between
this sample, {Mi}, and the true network, M0, we can estimate the accu-
racy of the inference procedure. Denote by P (eik|D) the posterior probabil-
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Fig. 8.11. Synthetic genetic network. The structure of the true Bayesian net-
work used in this study is that of a subnetwork of the yeast cell cycle, taken from
[8]. 38 unconnected nodes were added, giving a total number of 50 nodes. Reprinted
from [17], by permission of Oxford University Press.

ity of an edge eik between nodes i and k, which is given by the propor-
tion of networks in the MCMC sample {Mi} that contain this edge. Let
E(ρ) =

{
eik|P (eik|D) > ρ

}
denote the set of all edges whose posterior proba-

bility exceeds a given threshold ρ ∈ [0, 1]. From this set we can compute (1)
the sensitivity, that is, the proportion of recovered true edges, and (2) the
complementary specificity, that is, the proportion of erroneously recovered
spurious edges. To rephrase this: For a given threshold ρ we count the num-
ber of true positive (TP ), false positive (FP ), true negative (TN), and false
negative (FN) edges. We then compute the sensitivity = TP/(TP + FN),
the specificity = TN/(TN + FP ), and the complementary specificity = 1-
specificity = FP/(TN + FP ). Rather than selecting an arbitrary value for
the threshold ρ, we repeat this scoring procedure for several different values
of ρ ∈ [0, 1] and plot the ensuing sensitivity scores against the corresponding
complementary specificity scores. This gives the receiver operator character-
istics (ROC) curves of Figures 8.13 and 8.18. The diagonal dashed line in-
dicates the expected ROC curve for a random predictor. The ROC curve of
Figure 8.13, top left, solid line indicates a perfect retrieval of all true edges
without a single spurious edge. In general, ROC curves are between these
two extremes, with a larger area under the ROC curve (AUROC) indicating
a better performance. The true network (or, more precisely, the true inter-
slice connectivity of the dynamic Bayesian network) is shown in Figure 8.11.
Two different conditional probability distributions were associated with the
edges. Simulation 1: Noisy regulation according to a binomial distribution
with the following parameters. Excitation: P (on|on) = 0.9, P (on|off ) = 0.1;
inhibition: P (on|on) = 0.1, P (on|off ) = 0.9; noisy XOR-style co-regulation:
P (on|on, on) = P (on|off , off ) = 0.1, P (on|on, off ) = P (on|off , on) = 0.9.
Simulation 2: Stochastic interaction, where all parameters were chosen at
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Fig. 8.12. Convergence test for MCMC. The figure shows an application of
the MCMC convergence test of Figure 2.17. Each MCMC simulation was repeated
three times, using the same training data D, but starting from different random
number generator seeds. The posterior probabilities of the edges P (eik|D) obtained
from different simulations are plotted against each other, leading to a 3-by-3 matrix
of subfigures, where subfigure (1,1) plots the posterior probability scores obtained
from simulation 1 against those of simulation 1 (so the scores obviously lie on a
straight line), subfigure (1,2) plots the scores from simulation 1 against those from
simulation 2, subfigure (2,1) plots the scores from simulation 2 against those from
simulation 1 (hence subfigure (2,1) is the mirror image of subfigure (1,2)), and so on.
Left: Burn-in = 10,000 steps, sampling phase = 10,000 steps. The agreement between
the posterior probabilities obtained from different simulations is poor, which indi-
cates insufficient convergence of the Markov chain. Right: Burn-in = 100,000 steps,
sampling phase = 100,000 steps. The agreement between the posterior probabilities
obtained from different simulations is satisfactory, hence the simulation passes the
(necessary) convergence test.

random. The latter simulations were repeated with both a binomial and a
trinomial distribution. Since the results were similar, only the results for the
trinomial case will be reported here. All simulations were repeated for three
different time series of length N = 100, N = 30, and N = 7. In a second
series of simulations, 38 redundant unconnected nodes we added to the true
network as confounders, giving a total of 50 nodes. For each setting, networks
were sampled from the posterior distribution P (M|D) with MCMC. Based on
an initial convergence test depicted in Figure 8.12, both the burn-in and sam-
pling phases were chosen to contain 100,000 Metropolis-Hastings steps. All
simulations were then repeated three times for different training data D, gen-
erated from different random number generators. The results are summarized
in Figure 8.13. The ROC curves show which price in terms of erroneously pre-
dicted spurious edges has to be paid for a target recovery rate of true edges.
For instance, for a training set size of N = 100 generated from the noisy
regulation network without redundant nodes, all true edges can be recovered
without incurring any false spurious edges (Figure 8.13, top left, solid line).
With redundant nodes, we can still recover 75% of the true edges at a zero false
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Fig. 8.13. ROC curves for the synthetic data, averaged over three MCMC
simulations. The columns correspond to different training set sizes. Left column:
100; middle column: 30; right column: 7. The rows represent different network sizes.
Top row: Networks without redundant nodes. Bottom row: Networks with 38 un-
connected nodes (50 nodes in total). In each subfigure the sensitivity (proportion
of recovered true edges) is plotted against the complementary specificity (propor-
tion of false edges). The thin, diagonal dashed line is the expected ROC curve of a
random predictor. The solid thick line shows the ROC curve for simulation 1 (noisy
regulation), the dashed thick line that of simulation 2 (stochastic interaction). The
maximum fan-in was set to α = 2. Reprinted from [17], by permission of Oxford
University Press.

positive rate, while a price of 25% false positives has to be paid if we want to
increase the true prediction rate to 90% (Figure 8.13, bottom left, solid line).
However, a time series of 100 gene expression measurements is much larger
than what is usually available in the laboratory practice, and a realistic exper-
imental situation corresponds much more to Figure 8.13, bottom right. Here,
the inference scheme hardly outperforms a random predictor when the true
network has stochastic interactions (thick dashed line). This scenario might
be over-pessimistic in that real gene interactions are not stochastic, but exist
for a reason. However, even for a true network with noisy regulation (solid
line), we have to pay a price of 25% spurious edges in order to recover 50% of
the true edges, or of 50% spurious edges for a true recovery rate of 75%.
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Fig. 8.14. Elementary molecular biological processes. Two transcription
factor dimers a2 and b2 bind to the cis regulatory site rC in the promoter region
upstream of a gene, influencing its rate of transcription. The transcribed mRNA C is
translated into protein c, which dimerizes into c2 to form a new active transcription
factor that can bind to other cis regulatory sites. Reprinted from [17], by permission
of Oxford University Press.

8.9 Evaluation on Realistic Data

Synthetic simulations, as discussed in the previous section, are an important
tool to obtain an upper bound on the performance of an inference scheme, that
is, they indicate how much can at most be learned about gene interactions
for a given training set size. A good performance, however, is no guarantee
that we will be able to infer this amount of information in practice. First, the
conditional probabilities resulting from the true, underlying biological process
are different from those associated with the edges of the Bayesian network,
which means, we have a mismatch between the real data-generating process
and the model used for inference. Second, the true continuous signals are
typically sampled at discrete time points, which loses information, especially
if the sampling intervals are not matched to the relaxation times of the true
biological processes. Third, gene expression ratios are typically discretized, as
discussed in Section 8.2, which inevitably adds noise and causes a further loss
of information; see Figure 8.16.

In an attempt to achieve a more realistic estimation, several authors have
tested their inference methods on real microarray data, testing if a priori
known gene interactions (reported in the biological literature) could be re-
covered with their learning algorithms. While this approach addresses the
shortcomings mentioned above, it has two inherent problems, resulting from
the absence of known gold standards. First, the estimation of the sensitiv-
ity is controversial. Having detected an interaction between two genes from
microarray expression data with Bayesian networks, authors tend to search
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Fig. 8.15. Realistic biological network composed of the elementary pro-
cesses of Figure 8.14, taken from [29] in a slightly modified form. Oscillating lines
represent cis regulatory sites in the gene upstream regions (promoters), mRNAs are
symbolized by upper case letters in circles, proteins are shown by lower case letters
in squares. Shaded squares indicate active transcription factors, where in all but two
cases this activation is effected by dimerization, and in one case by ligand binding.
The symbols + and − indicate whether a transcription factor acts as an activator
or inhibitor. The network contains several subnetworks reported in the biological
literature. The subnetwork involving mRNAs A and B is a hysteretic oscillator. A
is translated into protein a, which is an active transcription factor that activates
the transcription of B. B is translated into protein b, which forms a dimer ab. This
dimerization reduces the amount of free transcription factors a, and oscillations
result as a consequence of this negative feedback loop. The subnetwork involving
mRNAs C and D is a switch: each mRNA is translated into a transcription factor
that inhibits the transcription of the other mRNA, thereby switching the competing
path “off”. Finally, the subnetwork involving mRNA F is triggered by an external
ligand, which is needed to form an active transcription factor dimer. Reprinted from
[17], by permission of Oxford University Press.

for evidence for this interaction in the biological literature. Often this search
involves proteins whose sequences are similar to the ones encoded by genes
included in the performed experiment. Besides the fundamental problem that
sequence similarity does not necessarily imply similar functions, there is an in-
herent arbitrariness in deciding on a cut-off value for the similarity score,7 and
it is not clear how independent this selection is from the outcome of the pre-
diction. The second and more serious drawback is the difficulty in estimating
the false detection rate. This is because on predicting a gene interaction that
7 This similarity score is, for instance, given by the E-score of a BLAST [1] search.
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Fig. 8.16. Sampling and discretization. Information contained in the true time
dependent mRNA abundance levels is partially lost due to sampling and discretiza-
tion. Adapted from [26], by permission of Oxford University Press.
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Fig. 8.17. Realistic simulation study. Left: Genetic network corresponding to
the full molecular biological regulation network of Figure 8.15. Information on pro-
tein translation and dimerization is lost, and only mRNA abundance data, obtained
from the microarray experiment, are available. The dashed line indicates an interac-
tion that is triggered by the presence of an external ligand. Right: Genetic network
learned from the sampled and discretized data (see text). Solid arrows show true
edges, dashed arrows represent spurious edges. Reprinted from [17], by permission
of Oxford University Press.

is not supported by the literature, it is impossible to decide, without further
expensive interventions in the form of multiple gene knock-out experiments,
whether the algorithm has discovered a new, previously unknown interaction,
or whether it has flagged a false edge.

To proceed, the only satisfactory way is a compromise between the above
two extremes and to test the performance of an inference scheme on realistic
simulated data, for which the true network is known, and the data-generating
processes are similar to those found in real biological systems. The study in
[17] applied the model regulatory network proposed by Zak et al. [29], which
is shown in Figure 8.15 and which contains several structures similar to those
in the literature, like a hysteretic oscillator [3], a genetic switch [10], as well
as a ligand binding mechanism that influences transcription. The elementary
processes are shown in Figure 8.14 and are described by the following sys-
tem of differential equations, which describe the processes of transcription
factor binding, transcription, translation, dimerization, mRNA degradation,
and protein degradation:
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d

dt
[a2.rC] = λ+

a2.rC [a2][rC] − λ−
a2.rC [a2.rC]

d

dt
[C] = λrC [rC] + λa2.rC [a2.rC] + λb2.rC [b2.rC] − λC [C]

d

dt
[c] = λCc[C] − λc[c],

d

dt
[c2] = λ+

cc[c]
2 − λ−

cc[c2] (8.8)

Here, the λi are kinetic constants, available from the references in [29], t rep-
resents time, [.] means concentration, a2.rC and b2.rC represent transcription
factors a2 and b2 bound to the cis-regulatory site rC, and the remaining sym-
bols are explained in the caption of Figure 8.15. The system of differential
equations (8.8) is taken from chemical kinetics ([2], Chapter 28). Consider,
for instance, the formation and decay of a protein dimer: c + c ↔ c2. The
forward reaction (formation) is second order, involving two monomers. Conse-
quently, the time derivative of the dimer concentration, d

dt [c2], is proportional
to the square of the concentration of the monomer, [c]2. The reverse reaction
(decay) is first order, and d

dt [c2] is proportional to the concentration of the
dimer, [c2]. Both processes together are described by the second equation in
the last row of (8.8). The remaining equations can be explained similarly.
The system of differential equations for the whole regulatory network of Fig-
ure 8.15 is composed of these elementary equations, with three additional but
similar equations for ligand binding, ligand degradation, and heterodimeriza-
tion (a, b ↔ ab). The resulting set of differential equations is stiff and needs
to be integrated numerically with a high-order adaptable step-size method
(e.g. Runge–Kutta–Fehlberg). Note that except for a, all transcription factors
dimerize before they are active, that each gene has more than one rate of tran-
scription, depending on whether promoters are bound or unbound, and that
the presence of different time scales makes it representative of a real biological
system and a suitable challenge for the Bayesian network inference algorithm.
In contrast to [29], the system was augmented by adding 41 spurious, uncon-
nected genes (giving a total of 50 genes), which were up- and down-regulated
at random.

The first experiment followed closely the procedure in [29]. Ligand was
injected for 10 minutes at a rate of 105 molecules/minute at time 1000 min-
utes. Then, 12 data points were collected over 4000 minutes in equi-distant
intervals, which, as opposed to [29], also had to be discretized, as illustrated
in Figure 8.16; recall from Section 8.2 that the need for this discretization is a
consequence of using the function family F of trinomial conditional probabil-
ities. The discretization was based on the following simple procedure: y → 1
if y − ymin > 2(ymax−ymin)

3 , y → −1 if y − ymin < ymax−ymin

3 , and y → 0
otherwise. The learning algorithm for Bayesian networks was applied as de-
scribed in the previous sections. Three different structure priors were used,
with maximum fan-ins of 2, 3, and 4 edges. The resulting ROC curves are
shown in the top of Figure 8.18. The areas under the ROC curves are small,
and the low slope of the ROC curves at the left-hand side of the complemen-
tary specificity interval (the x-axis) implies that even the dominant true edges
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Fig. 8.18. ROC curves for the realistic simulated data, averaged over three
MCMC simulations. The rows represent different sampling periods. Top row: Sam-
pling over a long time interval of 4000 minutes, which mainly covers the system
in equilibrium. Bottom row: Restricting the sampling to a short 500-minute time
interval immediately after ligand injection, when the system is in a perturbed non-
equilibrium state. The columns correspond to different structure priors. Left column:
maximum fan-in = 2; middle column: maximum fan-in = 3; right column: maximum
fan-in = 4. In each subfigure the sensitivity (proportion of recovered true edges)
is plotted against the complementary specificity (proportion of false edges). The
thin, diagonal dashed line is the expected ROC curve of a random predictor. The
solid line shows the ROC curve obtained from gene expression data alone, while the
dash-dotted line shows the ROC curve obtained when including sequence informa-
tion. Reprinted from [17], by permission of Oxford University Press.

are obscured by a large proportion of spurious edges. This concurs with the
findings of Zak et al. [29], who concluded that inferring genetic networks from
gene expression data alone was impossible.

The second experiment adopted a sampling strategy different from [29]. An
analysis of the mRNA abundance levels reveals regular oscillations when the
system is in equilibrium. Such signals are known to have a low information
content; consequently, it seems to make better sense to focus on the time
immediately after external perturbation, when the system is in disequilibrium.
The sampler therefore collected 12 data points over a shorter interval of only
500 minutes immediately after ligand injection, between times 1100 and 1600
minutes. The resulting ROC curves are shown in the bottom of Figure 8.18.
The areas under the ROC curves have significantly increased, and the larger



262 Dirk Husmeier

slope of the curves in the low-sensitivity range implies that the dominant true
edges are obscured by far fewer spurious edges.

Recall that in order to obtain a network from the posterior probability
on edges, P (eik|D), we have to choose a threshold ρ and discard all edges
with P (eik|D) < ρ. Figure 8.17, right, shows, for the most restrictive prior
(maximum fan-in = 2), the resulting sub-network of non-spurious genes. The
threshold ρ was chosen so as to obtain the same number of edges (namely 11)
between non-spurious nodes as in the true network. Four true edges, shown as
thick arrows, have been recovered (which was consistent in all three MCMC
simulations). The probability of finding at least this number of true edges

by chance is given by p =
∑11

k=4

(11
k

) ( 11
502

)k ( 502−11
502

)(11−k)
≈ 10−7, which

indicates that the inference procedure has captured real structure in the data.
However, this structure is only local in nature. The global network inferred
in this way, shown in Figure 8.17, right, shows little resemblance with the
true network, depicted in Figure 8.17, left. The ROC curves of Figure 8.18
reveal that the complete set of true edges can only be recovered at a false
positive rate of about 75%. Consequently, it is only the most salient local
gene interactions that can be inferred from the mRNA abundance data, and
the price for this in terms of false positive edges can be obtained from the ROC
curves of Figure 8.18. While this number, in absolute terms, is still so large
that an experimental verification is indispensable, Figure 8.18 also suggests
that the search for new genetic interactions preceded and supported by a
Bayesian network analysis is significantly more effective than a search from
tabula rasa. The amount of improvement can, again, be quantified from the
ROC curves. Also, note that the most restrictive prior (maximum fan-in = 2)
gave consistently the best results, which is in agreement with the true network
structure (Figure 8.17, left). This underlines the obvious fact that, for small
data sets, the inclusion of available prior knowledge improves the performance
of the inference scheme, and the amount of improvement is quantifiable from
the ROC curves.

Given that mRNA abundance levels only convey partial information about
a biological regulatory network, it is natural to combine microarray data with
genomic and proteomic data. On the genomic side, the identification of cer-
tain regulatory sequence elements in the upstream region of a gene [28] can
be exploited to predict which transcription factors are most likely to bind to
a given promoter, and this sequence-based estimation can be further assisted
experimentally with localization assays [24]. When location data or known
binding motifs in the sequence indicate that a transcription factor, say a,
binds to the promoter of another gene, say rB, the respective edge, A → B
in this case, should be enforced. A straightforward way to incorporate this
additional information in the induction was proposed by Hartemink et al.
[13]: when genomic location data indicate that particular edges corresponding
to transcription factor binding reactions should be present, the model prior
is modified such that network structures lacking these suggested edges have
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probability zero. However, location data are usually noisy, and this intrinsic
uncertainty is not allowed for by such rigid constraints. An approach that
is more involved was proposed by Segal et al. [25], who modelled both the
outcome of localization experiments as well as the occurrence of certain bind-
ing motifs in the promoter region probabilistically. The method applied in
[17] is pitched between these two extremes. It modifies the model prior in a
way similar to [13], but allows for uncertainty in sequence motif identification
and location data. Let y → rX denote the event that transcription factor y
binds to the promoter r upstream of gene X, and let B[y] represent the set
of indicated binding regions for y. Then

P (y → rX|r ∈ B[y])
P (y → rX|r �∈ B[y])

= φ (8.9)

for some value φ > 1. In words: Equation (8.9) expresses the fact that on
identifying a binding region for transcription factor y in the promoter of gene
X, this transcription factor is φ times as likely to bind toX than in the absence
of such an indication. The value of φ can be related to the p-value of location
data [24] and/or the pattern score for binding motifs [28]. To quantify the
amount of improvement in the induction that can be achieved by combining
expression and location data, the previous simulations were repeated for a
value of φ = 2 under the assumption that complete location data indicating
all regulatory sequence elements are available. The resulting ROC curves are
shown as dash-dotted lines in Figure 8.18, which, as expected, give a consistent
improvement on the earlier results obtained from gene expression data alone.
Equation (8.9) is certainly over-simplified. However, the analysis described
here and the comparison of the respective ROC curves allows us to give a
rough quantitative estimation of the amount of improvement achievable by
merging microarray with sequence and location data.

For a comparison of the simulation results reported here with the related
simulation studies in [26] and [29], see the discussion in the final section of
[17].

8.10 Discussion

The simulation studies described in the previous two sections suggest that
in agreement with Section 8.3, local structures of genetic networks can, to
a certain extent, be recovered. The results depend on the prior used in the
Bayesian inference scheme, with a smaller mismatch between reality and prior
assumptions obviously leading to better predictions. The amount of this im-
provement can be quantified from the ROC curves. The results also depend
on the sampling scheme. Interestingly, collecting data of the perturbed sys-
tem in disequilibrium following ligand injection gives better results than when
the system is in equilibrium. This finding may suggest that gene expression
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measurements should, at best, be taken during the relaxation of a biological
system after external intervention.

Note, however, that the global network inferred from the data is meaning-
less. This shortcoming, illustrated in Figure 8.17, is a direct consequence of
the fact that for sparse data D, the posterior distribution of network struc-
tures, P (M|D), is diffuse. Consequently, as discussed earlier in Section 8.3, it
is essential to sample networks from P (M|D), rather than search for a single
high-scoring network. From such a sample of structures we can identify edges
with high posterior probability and use them to identify local features and
subnetworks with high posterior support. However, a high posterior probabil-
ity in itself is no guarantee that the respective edge represents a true genetic
interaction, partly as a consequence of the fact that the number of spurious
interactions, increasing with the square of the number of nodes, substantially
outweighs the number of true interactions. Consequently, detected true fea-
tures of a genetic network are inevitably obscured by a considerable amount
of spurious ones. This should be taken as a cautionary note for those trying to
back up detected interactions with circumstantial evidence from the biological
literature. In practical applications, one has to find a compromise between the
number of true edges one wants to detect, and the price in terms of spurious
edges one is prepared to pay. The ROC curves shown in the present work
do not offer a universal law from which a practical decision support system
for the biologist could easily be derived. They do, however, demonstrate em-
pirically how the sensitivity–specificity score ratios vary with the training set
size, the degree of inadequacy of prior assumptions, the experimental sampling
strategy, and the inclusion of further, sequence-based information.

As a final remark, note that gene expression data do not contain informa-
tion on post-transcriptional and post-translational processes. It would there-
fore be more appropriate to allow for incomplete observations by including
hidden nodes in the Bayesian network architecture. Ong et al. [22] described
a dynamic Bayesian network with hidden nodes, where the subnetworks per-
taining to the hidden nodes incorporated substantial prior knowledge about
operons. In general, we would like to learn such network structures from (in-
complete) data. The practical complication of this approach is that (8.2) has
no longer a closed-form solution. In principle we could sample from the joint
distribution of model structures and their associated parameters with trans-
dimensional reversible jump MCMC [11], as discussed in Section 2.3.7, but
convergence and mixing of the Markov chain may become prohibitively slow.
The next chapter discusses a linear state-space approach (Kalman smoother)
to model the influence of unobserved regulators on gene expression levels.
While the inherent linearity constraint excludes the modelling of nonlinear
gene interactions, like those in Figure 8.4, it allows a part of the inference
procedure to be solved analytically – equivalent to the analytic solution of
(8.2) – and this renders the overall inference scheme practically viable.
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Summary. We describe a Bayesian network approach to infer genetic regulatory
interactions from microarray gene expression data. This problem was introduced in
Chapter 7 and an alternative Bayesian network approach was presented in Chapter 8.
Our approach is based on a linear dynamical system, which renders the inference
problem tractable: the E-step of the EM algorithm draws on the well-established
Kalman smoothing algorithm. While the intrinsic linearity constraint makes our
approach less suitable for modeling non-linear genetic interactions than the approach
of Chapter 8, it has two important advantages over the method of Chapter 8. First,
our approach works with continuous expression levels, which avoids the information
loss inherent in a discretization of these signals. Second, we include hidden states
to allow for the effects that cannot be measured in a microarray experiment, for
example: the effects of genes that have not been included on the microarray, levels
of regulatory proteins, and the effects of mRNA and protein degradation.

9.1 Introduction

The application of high-density DNA microarray technology to gene tran-
scription analyses, introduced in Chapter 7, has been responsible for a real
paradigm shift in biology. The majority of research groups now have the abil-
ity to measure the expression of a significant proportion of an organism’s
genome in a single experiment, resulting in an unprecedented volume of data
being made available to the scientific community. This has in turn stimulated
the development of algorithms to classify and describe the complexity of the
transcriptional response of a biological system, but efforts towards developing
the analytical tools necessary to exploit this information for revealing interac-
tions between the components of a cellular system are still in their early stages.
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The availability of such tools would allow a large-scale systematic approach to
pathway reconstruction in organisms of clinical and pharmaceutical relevance
(i.e. mouse and human). With present technologies, such an approach is pos-
sible only in relatively simple model systems where genome coverage genetic
screenings are accessible (i.e. D. melanogaster, C. elegans). In more complex
organisms reconstructing pathways is often a demanding exercise that can in-
volve a large research group for a considerable period of time. The popular use
of clustering techniques, reviewed in [9], whilst allowing qualitative inferences
about the co-regulation of certain genes to be made, do not provide models of
the underlying transcriptional networks which lend themselves to statistical
hypothesis testing.

Many of the tools which have been applied in an exploratory way to the
problem of reverse engineering genetic regulatory networks from gene expres-
sion data have been reviewed in [30] and [27]. These include Boolean networks
[1, 15, 26], time-lagged cross-correlation functions [3], differential equation
models [14] and linear and non-linear autoregression models [8, 28, 7, 29]. Al-
though these techniques have produced models which appear biologically plau-
sible, based on circumstantial evidence from the biological literature, many
have been derived from public domain data with insufficient replication given
that these papers attempt to reconstruct the interactions of large numbers
(sometimes thousands) of genes from small data sets, with the consequent
likelihood of model overfitting. Smith et al. [24], Yeung et al. [31] and Zak et
al. [33] have attempted to evaluate reverse engineering techniques by the use
of simulated data from in silico networks. Zak et al. considered linear, log-
linear and non-linear (squashing function) regressive models and concluded
that these methods were unable to identify the generating network from sim-
ulated gene expression data alone, and constituted little more than curve
fitting.

Murphy and Mian [18] have shown that many of these published models
can be considered special cases of a general class of graphical models known as
Dynamic Bayesian Networks (DBNs), discussed in Section 8.6. Bayesian net-
works, introduced in Chapter 2, have a number of features which make them
attractive candidates for modeling gene expression data, such as their ability
to handle noisy or missing data, to handle hidden variables such as protein
levels which may have an effect on mRNA expression levels, to describe lo-
cally interacting processes and the possibility of making causal inferences from
the derived models. The application of Bayesian networks to microarray data
analysis was first explored experimentally in the pioneering work of Friedman
et al. [10], who described a technique known as the sparse candidate algorithm
for learning the network structure directly from fully-observed data; see Sec-
tion 8.3 for further details. Friedman et al. applied this method to the gene
expression time series data of Spellman et al. [25], as discussed in Section 8.4,
and produced networks which again appeared biologically plausible. This work
has, nonetheless, some limitations. The time series measurements were con-
sidered to be independent and identically distributed (iid), which is clearly
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not the case (the authors acknowledge this and introduce a root variable to
model dependency of expression level on the cell cycle phase). Gene expression
measurements were also discretized into a multinomial distribution, with con-
sequent loss of information. However, in an attempt to robustly evaluate the
model networks derived, Friedman et al. proposed the use of a bootstrapping
procedure, based on identifying which model structures where repeatedly in-
ferred with a high probability from repeated random resamplings of the data.
Recently, a number of other authors have described Bayesian network mod-
els of gene expression data. Although microarray technologies have made it
possible to measure time series of the expression level of many genes simulta-
neously, we cannot hope to measure all possible factors contributing to genetic
regulatory interactions, and the ability of Bayesian networks to handle such
hidden variables would appear to be one of their main advantages as a mod-
eling tool. However, most published work to date has only considered either
static Bayesian networks with fully observed data [20] or static Bayesian net-
works which model discretized data but incorporate hidden variables [6, 32].
Following Friedman et al., Ong et al. [19] have described a dynamic Bayesian
network model for E. coli which explicitly includes operons as hidden vari-
ables, but again uses discretized gene expression measurements. There would,
therefore, appear to be a need for a dynamic modeling approach which can
both accommodate gene expression measurements as continuous, rather than
discrete, variables and which can model unknown factors as hidden variables.

We have applied linear dynamical systems modeling to reverse engineer
transcriptional networks from expression profiling data [21, 22]. In order to
test the validity of our approach we have applied it both to synthetic (in sil-
ico) data and real experimental data obtained from a well-established model
of T-cell activation in which we have monitored a set of relevant genes across a
time series [21, 22]. Linear-Gaussian state-space models (SSM), also known as
linear dynamical systems [23] or Kalman filter models [5, 17], are a subclass of
dynamic Bayesian networks used for modeling time series data and have been
used extensively in many areas of control and signal processing. SSM mod-
els have a number of features which make them attractive for modeling gene
expression time series data. They assume the existence of a hidden state vari-
able, from which we can make noisy continuous measurements, which evolves
with Markovian dynamics. In our application, the noisy measurements are the
observed gene expression levels at each time point, and we assume that the
hidden variables are modeling effects which cannot be measured in a gene ex-
pression profiling experiment, for example: the effects of genes which have not
been included on the microarray, levels of regulatory proteins, the effects of
mRNA and protein degradation, etc. Our SSM models have produced testable
hypotheses, which have the potential for rapid experimental validation.



272 Claudia Rangel et al.

9.2 State-Space Models (Linear Dynamical Systems)

In linear state-space models, a sequence of p−dimensional observation vectors
{y1, ...,yT }, is modeled by assuming that at each time step yt was generated
from a K−dimensional hidden state variable xt, and that the sequence {xt}
defines a first-order Markov process. The most basic linear state space model
can be described by the following two equations:

xt+1 = Axt + wt (9.1)
yt = Cxt + vt (9.2)

where A is the state dynamics matrix, C is the state to observation matrix
and {wt} and {vt} are uncorrelated Gaussian white noise sequences, with
covariance matrices Q and R, respectively.

9.2.1 State-Space Model with Inputs

Often, the observations can be divided into a set of input (or exogenous)
variables and a set of output (or response) variables. Allowing inputs to both
the state and observation equation, the equations describing the linear state
space model then become:

xt+1 = Axt + Bht + wt (9.3)
yt = Cxt + Dut + vt (9.4)

where ht,ut are the inputs to the state and observation vectors, A is the
state dynamics matrix, B is the input to state matrix, C is the state to
observation matrix, and D is the input to observation matrix. A Bayesian
network representation of this model is shown in Figure 9.1.

The state and observation noise sequences, {wt} and {vt} respectively, are
generally taken to be white noise sequences, with {wt} and {vt} orthogonal
to one another. Here, we make the additional assumption that these noise
sequences are Gaussian distributed, and independent of the initial values of x
and y. Note that noise vectors may also be considered hidden variables. The
conditional distributions of the states and the observables are given by:

P (xt+1|xt,ht) ∼ N(Axt + Bht,Q), P (yt|xt,ut) ∼ N(Cxt + Dut,R)

where Q and R are the state and observation noise covariances respectively,
both assumed to be non-singular, and the notation N(m,S) signifies a multi-
variate normal distribution with mean m and covariance matrix S. Hence we
have that

P (yt|xt,ut) =
exp{− 1

2 (yt − Cxt − Dut)†R−1(yt − Cxt − Dut)}
(2π)p/2|R|1/2 (9.5)

where the superscript † denotes matrix transposition, and
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Fig. 9.1. SSM model with inputs.

P (xt+1|xt,ht) =
exp{− 1

2 (xt+1 − Axt − Bht)†Q−1(xt+1 − Axt − Bht)}
(2π)K/2|Q|1/2

(9.6)
Applying the factorization rule for Bayesian networks (2.1) to the graph of
Figure 9.1 gives:

P ({xt}, {yt}|{ht}, {ut}) = P (x1)
T−1∏
t=1

P (xt+1|xt,ht)
T∏

t=1

P (yt|xt,ut) (9.7)

Note the similarity of this equation with the corresponding expansion (2.51)
for hidden Markov models (HMMs), discussed in Section 2.3.4 and depicted in
Figure 2.27. The main difference between HMMs and SSMs is that the hidden
states of the former – {St} in (2.51) – are discrete, whereas the hidden states
of the latter – {xt} in (9.7) – are continuous. We will henceforth simplify
the notation by dropping the exogenous input variables ht and ut from the
conditional distributions; it should be understood that these are always given
and therefore all distributions over xt and yt are conditioned on them.

The unknown parameters θ of the SSM model may be learned from the
training data in a maximum likelihood sense by applying the Expectation-
Maximization (EM) algorithm, introduced in Section 2.3.3. All we have to do
is adapt equations (2.48) and (2.49), which were defined for discrete hidden
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states, to continuous hidden states:4

F (θ) =
∫
Q(S) log

P (D,S|θ)
Q(S)

dS (9.8)

KL[Q,P ] =
∫
Q(S) log

Q(S)
P (S|D,θ)

dS (9.9)

where D = {yt} are the observations, S = {xt} are the hidden states, and
Q(S) is an arbitrary distribution on the hidden states. We can now decompose
the log-likelihood L(θ) = logP (D|θ) according to (2.50):

L(θ) = F (θ) +KL[Q,P ] (9.10)

9.2.2 EM Applied to SSM with Inputs

E-step:

The maximization in the EM algorithm depends on expectations of the log
complete likelihood logP (D,S|θ) = logP ({xt}, {yt}|θ), by (9.8). From (9.5)–
(9.7), and assuming P (x1) is N(µ1,Q1), this is given by (modulo a factor of
−2)

−2 logP ({xt}, {yt}|θ) = (9.11)
T−1∑
t=1

(xt+1 − Axt − Bht)†Q−1(xt+1 − Axt − Bht)

+
T∑

t=1

(yt − Cxt − Dut)†R−1(yt − Cxt − Dut)

+ (x1 − µ1)
†Q−1

1 (x1 − µ1) + (T − 1) log |Q|
+ T log |R| + T (p+K) log(2π) + log |Q1|

Using the identity v†Σv = tr (Σvv†) and expanding the quadratic terms
above, we see that taking the necessary conditional expectation of (9.11) in
the E-step requires computation (for the current values of the parameters) of
all terms of the form

x̂t = E [xt|y1,y2, ...,yT ] (9.12)

Ut = E
[
xtx

†
t |y1,y2, ...,yT

]
(9.13)

Ut+1,t = E
[
xtx

†
t+1|y1,y2, ...,yT

]
(9.14)

These terms can be computed from the Kalman filter and smoother algorithm,
which will be discussed below.
4 Note that in (2.48) and (2.49), q is used instead of θ.
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M-step:

Here, we solve for the parameters θ = {A,B,C,D,Q,R,Q1,µ1} that maxi-
mize the conditional expectation from the E-step, which is equivalent to max-
imizing F in (9.8):

M step : θk+1 ← argθ max
∫
P (S|D,θk) logP (S,D|θ)dS (9.15)

where D = {yt}, and S = {xt}. Recall from Section 2.3.3 that since F is equal
to the log likelihood at the beginning of each M-step, as seen from (9.10), and
since the E-step does not change θ, we are guaranteed not to decrease the
likelihood after each combined EM-step.

It is clear from (9.11) and (9.15) that the M-step is accomplished by tak-
ing the partial derivative of the expected log likelihood with respect to each
parameter, setting it to zero, and solving. That is, the parameters from the
M-step are found by minimizing the conditional expectation of (9.11), utiliz-
ing (9.12)–(9.14). It turns out to be admissible for this problem to find partial
derivatives of (9.11) first, set them to 0, and then take the conditional expec-
tation of the resulting equations before solving for the parameter estimates.
For instance, if we want to solve for the matrix C in the M-step, we set the
partial derivative of (9.11) equal to zero and solve. Since only the third term
in (9.11) depends on C, we only need to compute:

∂ [−2 logP ({xt}, {yt})]
∂C

=
∂
[∑T

t=1(yt − Cxt − Dut)†R−1(yt − Cxt − Dut)
]

∂C
= 0

=⇒
T∑

t=1

ytx
†
t − C

T∑
t=1

xtx
†
t − D

T∑
t=1

utx
†
t = 0 (9.16)

Taking conditional expectations of the terms involving the hidden states, and
using the notation (9.12)–(9.14), and then solving for C, the M-step equation
for C becomes:

C =

(
T∑

t=1

ytx̂t
† − D

T∑
t=1

utx̂t
†
)(

T∑
t=1

Ut

)−1

(9.17)

Repeating this recipe for D yields another equation, and these two equations
can be solved simultaneously for C and D in closed form. Similarly, these
same procedures lead to the computations for the other parameters needed to
complete the M-step.

9.2.3 Kalman Smoothing

The Kalman smoother solves the problem of estimating the expectation values
(9.12)–(9.14) for a linear-Gaussian state-space model. It consists of two parts:
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a forward recursion which uses the observations from y1 to yt, known as the
Kalman filter, and a backward recursion which uses the observations from yT

to yt+1. The forward and backward recursions together are also known as the
Rauch–Tung–Streibel (RTS) smoother. Treatments of Kalman filtering and
smoothing can be found in [5, 17].

To describe the filter-smoother recursions, it is useful to define the quan-
tities xr

t and Vr
t , the conditional expectation of the state vector and its error

covariance matrix, respectively, given observations {y1, ...,yr}:

xr
t = E [xt|y1, . . . ,yr] (9.18)

Vr
t = Var[xt|y1, . . . ,yr] (9.19)

The Kalman filter consists of the following forward recursions:

xt
t+1 = Axt

t + Bht (9.20)

Vt
t+1 = AVt

tA
† + Q (9.21)

Kt = Vt−1
t C†(CVt−1

t C† + R)−1 (9.22)
xt

t = xt−1
t + Kt(yt − Cxt−1

t − Dut) (9.23)
Vt

t = (I − KtC)Vt−1
t (9.24)

where x0
1 = µ1 and V0

1 = Q1 are the prior mean and covariance of the
state, which are model parameters. Equations (9.20) and (9.21) describe the
forward propagation of the state mean and variance before having accounted
for the observation at time t + 1. The mean evolves according to the known
dynamics A which also affects the variance. In addition the variance also
increases by Q, the state noise covariance matrix. The observation yt has the
effect of shifting the mean by an amount proportional to the prediction error
yt−Cxt−1

t −Dut, where the proportionality term Kt is known as the Kalman
gain matrix. Observing yt also has the effect of reducing the variance of the
state estimator.

At the end of the forward recursions we have the values for xT
T and VT

T .
We now need to proceed backwards and evaluate the influence of future ob-
servations on our estimate of states in the past:

Kt−1 = Vt−1
t−1A(Vt−1

t )−1 (9.25)

xT
t−1 = xt−1

t−1 + Kt−1(xT
t − Axt−1

t−1 − Bht−1) (9.26)

VT
t−1 = Vt−1

t−1 + Kt−1(VT
t − Vt−1

t )K†
t−1 (9.27)

where Kt is a gain matrix with a similar role to the Kalman gain matrix.
Again, equation (9.26) shifts the mean by an amount proportional to the
prediction error xT

t − Axt−1
t−1 − Bht−1. We can also recursively compute the

covariance across two time steps

VT
t,t−1 = Vt

tK
†
t−1 + Kt(VT

t+1,t − AVt
t)K

†
t−1 (9.28)
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which is initialized with

VT
T,T−1 = (I − KT C)AVT−1

T−1 (9.29)

The expectations (9.12)–(9.14) required for EM can now be readily computed.

9.3 The SSM Model for Gene Expression

To model the effects of the influence of the expression of one gene at a previous
time point on another gene and its associated hidden variables, we modified
the SSM model with inputs described in the previous section as follows. We
let the observations yt = gt, where gt is the vector of suitably transformed
and normalized5 gene expression levels at time t, and the inputs ht = gt,ut

= gt−1 to give the model shown in Figure 9.2. This model is described by the
following equations:

xt+1 = Axt + Bgt + wt (9.30)
gt = Cxt + Dgt−1 + vt (9.31)

Here, matrix D captures direct gene–gene expression level influences at con-
secutive time points, matrix C captures the influence of the hidden variables
on gene expression levels at each time point, whilst CB + D represents all
possible gene-gene interactions at consecutive time points, including those
mediated via a hidden state variable.

9.3.1 Structural Properties of the Model

There are basically three important properties to look at in the state-space
representation of time series: stability, controllability, and observability. Con-
ditions for stability, observability and controllability of the general model (9.3)
and (9.4) can be formulated, but as we will show later, our gene expression
model (9.30) and (9.31) can be cast in the framework of the simpler model
(9.1) and (9.2), so it is sufficient to address these structural properties for the
model (9.1) and (9.2).

For stability of the model (9.1) and (9.2), what is required is that the
matrix A have spectral radius less than one. In other words we will require
that the eigenvalues of A be less than one in magnitude (see [2] or [4]). This
is denoted ρ(A) < 1.

The model (9.1) and (9.2) is controllable if the state vector can be “con-
trolled” to evolve from a given, arbitrary initial state x0 to a given, arbitrary
final state xt at a future time by a judicious choice of the inputs {wt}. With
the state noise covariance non-singular, it can be shown [4] that the model is
5 The transformation and normalization of microarray gene expression data is dis-

cussed in Sections 7.3 and 7.4.
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Fig. 9.2. The SSM model for gene expression.

controllable if and only if [I,A,A2, ...,AK−1] is full rank where K = dim(xt).
On the other hand observability is associated with the outputs. The state space
model is observable if, when the noise vectors are all taken to be 0 vectors,
the initial state vector can be reconstructed from a sequence of output ob-
servations yt. From [4], it follows that the state space model (9.1) and (9.2)
will be observable if and only if

[
C†,A†C†, (A2)†C†, ..., (AK−1)†C†] has full

rank for K = dim (xt).
A state space model that is both controllable and observable is minimal in

the sense that its state vector has the smallest possible dimension. This min-
imality condition turns out to be important in determining what parameters
in the model (9.30) and (9.31) can be estimated unambiguously. This leads to
the concept of identifiability.

9.3.2 Identifiability and Stability Issues

Consider an observable random vector or matrix Y defined having probability
distribution Pθ ∈ {Pφ : φ ∈ Θ} where the parameter space Θ is an open subset
of the n-dimensional Euclidean space. We say that this model is identifiable
if the family {Pφ : φ ∈ Θ} has the property that Pθ ≡ Pφ if and only if
θ = φ ∈ Θ. It is conventional in this parametric setting to say that in this
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case, the parameter vector θ is identifiable. It is easy to see why this property
is important, for without it, it would be possible for different values of the
parameters θ to give rise to identically distributed observables, making the
statistical problem of estimating θ ill-posed.

The identifiability problem has been studied extensively for the simple
linear dynamic system model (9.1) and (9.2). Taking the model to be stable,
and defining the unknown parameters to be the composite of A,C,Q,R, it
is known that without any restrictions on the parameters, this model is not
identifiable (see, for example [13]). In fact, it is easily seen that by a coordinate
transformation of the state variable x̃t = Txt with T a nonsingular matrix,
the model

x̃t+1 = TAT−1x̃t + Twt (9.32)

yt = CT−1x̃t + vt (9.33)

gives rise to a sequence of observations {yt, t = 1, 2, ..., T} that has the same
joint distribution as the sequence of observables from the model (9.1) and
(9.2). Therefore, in the model (9.1) and (9.2), if we write the parameter in
the form

θ = [A,C,Q,R] (9.34)

it follows that for a fixed value of θ, each parameter in the set{
θT : θT =

[
TAT−1,CT−1,TQT†,R

]
,det(T) �= 0

}
(9.35)

gives rise to an observation sequence {yt, t = 1, 2, ..., T} having the same joint
distribution as the one generated by θ. When the model (9.1) and (9.2) is
both controllable and observable, (9.35) in fact defines the only variations on
a given parameter θ that can lead to observation sequences {yt} all having
the same joint distribution as the one emanating from θ [13].

It turns out that by restricting the structure of the matrices A,C, the
model (9.1) and (9.2) can be rendered identifiable. See, for example, [13] and
[16]. However, restricting to one of these identifiable forms is unnecessary if
interest is focused on certain subparameters, or functions of subparameters of
θ.

This motivates a concept of extended identifiability. We shall say that ϑ
is a subparameter of θ if ϑ is a function of θ, and we will write ϑ ≡ ϑ(θ) to
denote this. For example, defining the parameter θ as in (9.34), ϑ = A is a
subparameter. We shall say that the subparameter ϑ(θ) is identifiable in the
extended sense if Pθ ≡ Pφ implies that ϑ(θ) = ϑ(φ) for any θ ∈ Θ, φ ∈ Θ.

In the gene expression model (9.30) and (9.31), the use of lagged observ-
ables as inputs presents no theoretical or practical problems for estimating
the state xt based on the observations {y1,y2, ...,yt}, when A,B,C,D,Q,R
are known, as the Kalman filter theory allows having the inputs ut and ht be
measurable functions of {y1,y2, ...,yt}. However, this approach does alter the
treatment of both identifiability and stability. To study this model in these
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regards, it is helpful to transform it to the more conventional state-space form
(9.1) and (9.2) for which these properties have been well studied.

Define a new state vector to be x̃†
t =

(
x†

t ,g
†
t

)†
. Then the gene expression

model (9.30) and (9.31) can be rewritten in a new state space form with a
noiseless observation equation as

x̃t+1 = A0x̃t + w̃t (9.36)

gt = Hx̃t (9.37)

where the matrices A0 and H are given by

A0 =
(

A B
CA CB + D

)
, H =

(
0 I
)

(9.38)

and the white noise term in the state equation and its variance matrix become

w̃t =
(

wt

Cwt + vt+1

)
, Q̃ =

(
Q QC†

CQ CQC† + R

)
(9.39)

Notice here that the variance matrix Q̃ above remains non-singular (since
both Q and R are assumed non-singular). It is now easy to resolve the issue
of stability for (9.30) and (9.31) in terms of this model. The model (9.30),
(9.31) will be stable if and only if the matrix A0 in (9.38) has spectral radius
less than 1. Moreover, we will have controllability and observability if and
only if the matrices

[I,A0,A2
0, ...,A

K0−1
0 ] (9.40)[

H†,A†
0H

†, (A2
0)

†H†, ..., (AK0−1
0 )†H†

]
(9.41)

have full rank, where now K0 is the row dimension of A0.
Now, in terms of identifiability, it is easy to see that not all coordinate

transformations of the state vector in this model (9.36), (9.37) will lead to
identically distributed observations. This is because of the constraint on the
form of H which fixes the coordinate system for gt. However, arbitrary trans-
formations of the portion of the state vector corresponding to xt will lead to
indistinguishable observations. In fact, let the modified state vector

xt =
(

T O
O I

)
x̃t (9.42)

be defined with T a non-singular square matrix conforming with xt. Then for
fixed values of A,B,C,D,Q,R, the state space model

xt+1 = A0,T xt + wt, A0,T =
(

TAT−1 TB
CAT−1 CB + D

)
(9.43)
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gt = Hxt (9.44)

with white noise (and its corresponding variance matrix) given by

wt =
(

T O
O I

)
w̃t, Q =

(
TQT† TQC†

CQT† CQC† + R

)
will generate observations that are identically distributed with those of (9.36),
(9.37). Here it is easily seen that, when the model (9.36), (9.37) is both control-
lable and observable, then we have that, for example, CB + D, is identifiable
in the extended sense. Also, when A is non singular, CB is invariant to the
choice of the arbitrary non-singular matrix T in (9.42), since it can be com-
puted from elements of A0,T in (9.43) by CB = CAT−1(TAT−1)−1TB, and
therefore D is also identifiable in the extended sense.

Thus, we define the admissible set for the parameters A,B,C,D,Q,R to
be such that ρ(A0) < 1, and that both (9.40) and (9.41) are full rank.

9.4 Model Selection by Bootstrapping

9.4.1 Objectives

The size of the search space (i.e. the space of all gene–gene interaction net-
works) increases super-exponentially with the number of parameters of the
model. Following Friedman et al. [10] we have developed a bootstrap proce-
dure to identify “high probability” gene-gene interaction networks which are
shared by a significant number of sub-models built from randomly resampled
data sets. In our procedure we use bootstrap methods to find confidence in-
tervals for the parameters defining the gene-gene interaction networks (i.e.
the elements of CB + D) so we can eliminate those that are not significantly
different from zero. Thresholding the elements of the matrix CB + D using
these confidence levels we can obtain a connectivity matrix which describes
all gene-gene interactions over successive time points.

9.4.2 The Bootstrap Procedure

Recall the SSM model defined by the two equations (9.30) and (9.31). Es-
timated parameters for this model [Â, B̂, Ĉ, D̂], as well as estimates of the
covariances Q̂, R̂, are computed using the EM algorithm (with straightfor-
ward modifications for more than one replicate) as described above.

The key idea in the bootstrap procedure, introduced in Chapter 1, espe-
cially Section 1.2 and Figure 1.5, is to resample with replacement the replicates
within the original data. By resampling from the replicates NB times (where
the value NB is a large number, say 200 or 300) we can estimate, among other
things, the sampling distributions of the estimators of the elements of CB+D,
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which is the identifiable gene-gene interaction matrix in the gene-expression
model (9.30) and (9.31). In general once we have estimates of these distribu-
tions, we can make statistical inferences about those underlying parameters
(in particular, confidence intervals and hypothesis tests).

Each “technical” replicate represents a reproduction of the same exper-
iment under the same circumstances and assumptions. Hence replicates are
assumed to be independent and identically distributed with unknown (multi-
variate) cumulative probability distribution F0. That is, the ith replicate con-
sists of a time series Yi =

(
yi

1,y
i
2, ...,y

i
T

)
with each yi

t a p-dimensional vector
(one component for each gene). Thus, the collection D = {Y1,Y2, ...,YN} can
be viewed as a sequence of N iid random matrices, each with cumulative distri-
bution F0. Under this assumption, a bootstrap sample D∗ = {Y∗

1 ,Y
∗
2 , ...,Y

∗
N}

is obtained by selecting at random with replacement, N elements from D =
{Y1,Y2, ...,YN}.

Following is the bootstrap procedure for the model (9.30) and (9.31) with
data collected as described above. Let us denote a generic element of the
matrix CB + D by θ. The following steps lead to a bootstrap confidence
interval for θ using the percentile method.

1. Calculate estimates for the unknown matrices A,B,C,D from the full
data set with replicates using the EM algorithm. From the estimates
B̂, Ĉ, D̂, compute θ̂, the estimate of the given element of CB + D.

2. Generate NB independent bootstrap samples D∗
1 ,D∗

2 , ...,D∗
NB

from the
original data.

3. For each bootstrap sample compute bootstrap replicates of the param-
eters. This is done using the EM algorithm on each bootstrap sample
D∗

i , i = 1, 2, ..., NB . This yields bootstrap estimates of the parameters

{Â∗
1, B̂

∗
1, Ĉ

∗
1, D̂

∗
1}, {Â∗

2, B̂
∗
2, Ĉ

∗
2, D̂

∗
2}, ..., {Â∗

NB
, B̂∗

NB
, Ĉ∗

NB
, D̂∗

NB
}.

4. From {B̂∗
1, Ĉ

∗
1, D̂

∗
1}, {B̂∗

2, Ĉ
∗
2, D̂

∗
2}, ..., {B̂∗

NB
, Ĉ∗

NB
, D̂∗

NB
}, compute the

corresponding bootstrap estimates of the parameter of interest, leading
to θ̂

∗
1, θ̂

∗
2, ..., θ̂

∗
NB

. For the given parameter θ, estimate the distribution of
θ̂ − θ by the empirical distribution of the values{

θ̂
∗
j − θ̂ : j = 1, 2, ..., NB

}
.

Using quantiles of this latter empirical distribution to approximate cor-
responding quantiles of the distribution of θ̂ − θ, compute an estimated
confidence interval on the parameter θ.

5. Test the null hypothesis that the selected parameter is 0 by rejecting the
null hypothesis if the confidence interval computed in step 4 does not
contain the value 0.

6. Repeat steps 4 and 5 for each element of CB + D.
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9.5 Experiments with Simulated Data

To evaluate our method to reverse engineer gene regulatory networks using
data collected from cDNA microarray experiments, we simulate a microarray
experiment in silico, generating a synthetic data set using our gene expression
model. Synthetic data are generated from an initial network defined by the
connectivity matrix in the matrix CB + D. The idea is to determine if we
are able to recover the same network using the SSM model and bootstrap
procedure described earlier and also to estimate the size of the data set needed
by the method to reconstruct the underlying network.

9.5.1 Model Definition

We generate simulated data from the model (9.30) and (9.31). The covariance
matrices Q,R add some Gaussian noise to the simulated data and are defined
to be diagonal with Q taken to be the identity matrix. Simulated data are
generated from a model that is stable, controllable and observable.

9.5.2 Reconstructing the Original Network

An SSM model is trained on the simulated data to estimate the model param-
eters. Then a bootstrap analysis as described in Section 9.4.2 is performed to
estimate the distributions of the parameter estimates and compute confidence
intervals on elements of CB + D. Based on those confidence bounds some el-
ements in this matrix are set to zero. We formulate this as a simple decision
problem with two hypotheses as described in step 5 in Section 9.4.2:

H0 : (CB + D)i,j = 0 (no connection)
vs

H1 : (CB + D)i,j �= 0 (connection)

whereH0 is rejected when 0 is not within the confidence interval. Thresholding
the ĈB̂ + D̂ matrix using this criterion produces a connectivity matrix or
directed graph where the diagonal elements represent self–self interactions
at consecutive time steps. A number of experiments were performed using
different numbers of nodes and the results are described in the next section.

9.5.3 Results

The following are the results for 3 and 39 nodes (genes). Whilst 3 nodes were
selected for simplicity, the 39-node network was taken from results obtained
using the real experimental data described in Section 9.6. We are interested in
determining what would be the appropriate sample size in terms of replicates
as well as time points to correctly reconstruct the underlying network. How-
ever, we will emphasize the case with 40 or 50 replicates and 10 time points
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Table 9.1. True and estimated parameter values for different numbers of replicates.

Rep.
True 10 20 30 40 50 60
-0.35 -0.3634 -0.4342 -0.4212 -0.3921 -0.3818 -0.3548
0.51 0.6571 0.3647 0.7463 0.6010 0.8022 0.7706
0.51 0.2491 0.4503 0.4662 0.4437 0.4109 0.3751

0 -0.0087 -0.0051 -0.0056 -0.0048 -0.0049 -0.0028
0.25 0.1422 0.1929 0.2254 0.2461 0.2506 0.2461

0 0.0028 0.0014 0.0006 0.0014 0.0031 0.0002
0.14 0.1450 0.2215 0.2269 0.1882 0.1723 0.1348
0.35 0.2412 0.5519 0.1609 0.2855 0.0192 0.0419

0.635 0.9647 0.7168 0.6927 0.7227 0.7573 0.8004

since this is approximately the size of the real experimental data set described
in Section 9.6. Due to dimensional complexity, results will be presented dif-
ferently as the number of nodes increases.

Network evaluation – 3 × 3 matrix example

Table 9.1 shows the parameter estimates for 6 different sample (“technical
replicate”) sizes from the initial fit of the SSM model. In all cases the number
of time points is 10.

The first column represents the vectorized form of the 3 × 3 matrix CB +
D. The columns following are the parameter estimates for sample sizes of
10, 20, ..., 60. We can see that 40 samples are certainly enough for a “good”
estimate of the model parameters in terms of magnitude and sign. Hence, we
can choose that sample size and run the bootstrap experiment on this example
with 10 time points and 40 replicates.

The results after thresholding based on the confidence bounds are pre-
sented in the form of a connectivity matrix. For this example with 3 nodes all
connections except for (3,2) (the 8th element of the matrix) were recovered at
a 90% confidence level on each connection. Figure 9.3 shows the upper and
lower bounds calculated based on the 5th and 95th quantiles from 100 boot-
strap samples (top plot) and the 20th and 80th quantiles (bottom plot). Note
that with a 60% confidence level the original structure is finally recovered.
This can been seen in the plot: based on the test that rejects H0 whenever
zero is not between the upper and lower confidence bounds, those elements
that were not originally zero all result in a rejection of H0, while elements
that were originally zero result in tests where H0 could not be rejected.

It is important to point out that the 8th element corresponding to connection
(3, 2) shows a high standard error compared with others (a standard error of
about 0.4949 as opposed to others of the order of magnitude of 0.0038).
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Fig. 9.3. Bootstrap results with 90% and 60% confidence levels.
Note that the first 3 points are the elements in the first row and the next 3 are the
elements in the second row and so on.

Network evaluation – 39 × 39 sparse matrix example

The results for the 39 × 39 node simulation are presented using ROC
(Receiver Operating Characteristics) plots. These curves are obtained
by computing the hit and false alarm rates for different thresholds (i.e.
the confidence level placed on testing individual connections). The hit
rate or sensitivity is the true positive fraction, TP/(TP + FN), and the
false alarm rate or complimentary specificity is the false positive fraction,
FP/(FP+TN), from the number of true/false positives and negatives, where:

TP = number of actual connections that are declared connections
FP = number of non-connections that are declared connected
FN = number of actual connections that are declared not connected
TN = number of non-connections that are declared not connected.

The problem can be stated based on a hypothesis testing problem where the
ROC is a plot (for varying thresholds) of P (reject H0|H1) = TP/(TP +FN)
versus P (reject H0|H0) = FP/(FP +TN) where H0 and H1 are defined as in
Section 9.5.2. The plot runs as P (reject H0|H0) varies between 0 and 1. These
are all computed based on a comparison of the estimated graph with the true
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Fig. 9.4. ROC plot for 39 × 39 graph with 50 replicates and different time series
lengths.

or actual graph. So, for a given number of time points T and a given number
of replicates N , the process for generating the graph is simulated for many dif-
ferent values of 2α (where 1− 2α is the nominal confidence level used on each
connection for testing H0) ranging between 0 and 1 giving us one ROC curve.
This process is repeated for different combinations of T and N , each combi-
nation generating another ROC curve. In the ROC plots shown here points in
each curve represent the rate values computed based on different thresholds
(nominal confidence levels). A total of 15 points are plotted for confidence
levels in the sequence {99, 98, 96, 94, 90, 85, 80, 75, 70, 60, 50, 40, 30, 20, 10}%.
On the ROC curve, the “hit” axis represents the fraction of the total actual
connections in the network that are correctly identified. The “false alarm”
axis represents one minus the fraction of non-connections that are correctly
identified.

We generated a sparse 39×39 matrix which had c = 35 actual connections
and n− c = 1486 non-connections. Simulations were performed with different
sample sizes N and different numbers of time points T to generate three ROC
plots. Figure 9.4 shows the case for 50 replicates and different time series
lengths. We see that longer sequences are advantageous, especially once T
reaches 50. We can also compare the results we obtain for different time series
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lengths whilst fixing the confidence level threshold on individual connections
to some value, say 80%. For this threshold, with sequences of length 20 we
get that 20% of the true connections are recovered correctly while 76% of the
non-connections are recovered correctly. With sequences of length 50 these
numbers go up to 60% and 80% respectively.

We also examined the effect of increasing the number of replicates to 100.
This is shown in Figure 9.5. As would be expected results are generally better.
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Fig. 9.5. ROC plot for 100 replicates and different time series lengths.

For N = 100 and T = 100, thresholding again at a confidence level of 80%
results in 86% true connections and 82% non-connections recovered, a clear
improvement on the results for N = 50 and T = 50. A more conservative
confidence threshold of 99% results in the first point on the ROC curve corre-
sponding to T = 100, i.e. (0.05, 0.6). This indicates that one can recover 60%
of true connections along with 95% of non-connections.

The last simulation experiment fixes the time series length to T = 10
(corresponding to our experimental data) and varies the number of replicates.
This is shown in Figure 9.6.

This last set of simulations shows that an increase in performance can be
obtained by increasing the number of replicates. The size of the experimental
gene expression data described below is approximately N = 50 and T = 10.
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Fig. 9.6. 39-node ROC plot for different number of replicates and T = 10.

9.6 Results from Experimental Data

Care must be taken in extrapolating these simulation results to experiments
with actual gene expression data. First of all, while the simulations were ideal-
ized in that the data were actually generated from a linear dynamical system,
in real gene expression data one would expect to see nonlinearities, more or
less noise, and possibly many hidden variables. Finally, the confidence thresh-
old chosen should depend on the relative costs one would associate with falsely
positive connections versus missed connections, and on the assumed sparsity of
the graph. Clearly, if it is desired to have a high percentage of overall correct-
ness in the graph that is identified, then it is advisable to set the confidence
level high on testing individual connections in a large, sparsely connected
graph. However, in the limit of claiming that nothing is connected we would
get a high percentage correct score but an uninteresting hypothesis.

Figure 9.7 shows results obtained from an experimental data set obtained
from a well-established model of T-cell activation in which we have monitored
a set of relevant genes across a time series. Details of this work are published
elsewhere [21]. The data set comprises 58 genes, 44 replicates (comprising
two independent experiments of 34 and 10 “technical” replicates respectively)
and 10 time points. Following the bootstrap procedure described above, the
confidence level on individual connections was set to 99.66%. At this confi-
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Fig. 9.7. Directed graph representing the elements of the CB + D ma-
trix. The main functional categories involved in T lymphocyte response (cytokines,
proliferation and apoptosis) are marked in different shades. Numbers refer to genes
in Table 9.2. Positive coefficients of the CB + D matrix are represented by solid
arrows; negative coefficients are represented by dotted arrows. Reprinted from [21],
by permission of Oxford University Press.

dence level we obtain a directed graph comprising 39 connected nodes with 76
connections. From a strictly topological point of view FYN-binding protein
(FYB, gene 1) occupies a crucial position in the graph since it has the highest
number of outward connections. Interestingly, the majority of the genes that
are directly related to inflammation response are directly connected to or lo-
cated in close proximity of FYB. The topology of the graph and the functional
grouping fit well with the fact that this gene is an important adaptor molecule
in the T-cell receptor signalling machinery and is, therefore, very high in the
hierarchy of events downstream of cell activation. This model has yielded
plausible biological hypotheses concerning the role of FYB and Interleukin-2
in T-cell activation, which have the potential for experimental validation [21].

9.7 Conclusions

Despite the linear assumptions inherent in state-space models, the results pre-
sented above indicate that they are a useful tool for investigating gene tran-
scriptional networks. The bootstrap procedure we have described provides a
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Table 9.2. Gene numbers and descriptions for the graph shown in Figure 9.7.

Number Gene description

1 FYN-binding protein (FYB-120/130)
2 interleukin 3 receptor, alpha (low affinity)
3 CD69 antigen (p60, early T-cell activation antigen)
4 TNF receptor-associated factor 5
5 interleukin 4 receptor
6 GATA-binding protein 3
7 interleukin 2 receptor, γ (severe combined immunodeficiency)
8 interferon (alpha, beta and omega) receptor 1
9 chemokine (C-X3-C) receptor 1
10 zinc finger protein, subfamily 1A, 1 (Ikaros)
11 interleukin 16 (lymphocyte chemoattractant factor)
12 nuclear factor of kappa light polypeptide gene enhancer in B-cell
13 jun B proto-oncogene
14 caspase 8, apoptosis-related cysteine protease
15 clusterin (complement lysis inhibitor, SP-40,40, sulfated glycoprotein 2
16 apoptosis inhibitor 2
17 caspase 4, apoptosis-related cysteine protease
18 caspase 7, apoptosis-related cysteine protease
19 survival of motor neuron 1, telomeric
20 cyclin A2
21 cell division cycle 2 (cdc2)
22 proliferating cell nuclear antigen
23 cyclin-dependent kinase 4
24 retinoblastoma-like 2 (p130)
25 catenin (cadherin-associated protein), beta 1 (88kD)
26 integrin, alpha M (complement component receptor 3 α)
27 phosphodiesterase 4B, cAMP-specific
28 SKI-interacting protein
29 inhibitor of DNA binding 3, dominant negative
30 myeloperoxidase
31 myeloid cell leukemia sequence 1 (BCL2-related)
32 colony stimulating factor 2 receptor, α
33 CBF1 interacting corepressor
34 cytqochrome P450, subfamily XIX (aromatization of androgens)
35 mitogen-activated protein kinase 9
36 early growth response 1
37 jun D proto-oncogene
38 quinone oxidoreductase homolog
39 Ribosomal protein S6 Kinase
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robust statistical approach to identifying “high probability” sub-models with a
given level of statistical confidence. Application of the method to experimental
microarray gene expression data has yielded plausible biological hypotheses
which have the potential for rapid experimental validation.

Future work will include investigating Bayesian approaches to model se-
lection using Markov chain Monte Carlo (MCMC) methods, as introduced in
Section 2.2.2, and applied in Chapter 8. Recall from the discussion in Sec-
tion 4.4.7 and Figure 4.35, that this may lead to a considerable reduction in
the computational costs. This approach will also allow us to examine the ro-
bustness of the inferences with respect to choices in the prior distribution over
parameters, and to study different choices for the hierarchical prior over pa-
rameters. One attraction of this approach is that it is possible to incorporate
priors in the form of known connections supported by the literature, including
constraints with regard to the sign of the interaction (i.e. negative–repression
or positive–promotion). An alternative approach will explore the use of vari-
ational Bayesian methods, which were briefly discussed in Section 2.3.6. The
theory of variational Bayesian learning has been successfully applied to learn-
ing non-trivial SSM model structures in other application domains [11, 12],
which suggests that it will provide good solutions in the case of modeling gene
expression data. Our initial experiments with linear dynamics also pave the
way for future work on models with realistic nonlinear dynamics.
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Summary. We present a collection of examples that illustrate how probabilistic
models can be applied within medical informatics, along with the relevant statistical
theory.

We begin by listing the desirable features of a clinical probability model and
then proceed to look at a wide range of techniques that can be used for model
development. These include logistic regression, neural networks, Bayesian networks,
class probability trees, and hidden Markov models.

Because of the growing interest in applying Bayesian techniques to probabilistic
models, we have emphasized the Bayesian approach throughout the chapter.

10.1 Probabilities in Medicine

Two fundamental activities of medicine are diagnosis (disease identification)
and prognosis (forecasting patient outcome). It is possible to express both
diagnosis and prognosis probabilistically; for example, statement ξ in condi-
tional probability p(ξ|clinical observations) can refer to the presence of a
particular disease or to a patient’s survival whilst in hospital. In this chapter,
we will illustrate various approaches that have been used in practice to esti-
mate this type of probability. The use of probabilistic models for detection in
biomedical data is discussed in the final section.

We have not attempted an exhaustive review of the literature. Instead, we
have compiled an “anthology” that illustrates a number of examples, which
we have combined with relevant theory.

10.2 Desiderata for Probability Models

There are several features that we would like to see in a probability model:
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• High accuracy. Clearly, we would like the estimate of a class conditional
probability provided by a model to be as close as possible to the correct
value for that conditional probability.

• High discrimination. The misclassification rate (or, better still, the mis-
classification cost) exhibited by a probability model should be as low as
possible.

• Accessible interpretation. Instead of existing as a “black box”, the model
should provide a set of input-output relationships that are comprehensi-
ble to the intended user. There are several advantages to having an inter-
pretable model. One advantage is that the model may provide a previously
unknown but useful input-output summary: an educational role. Another
advantage is that an input-output summary can be compared with known
facts. This may disclose an error in the model: a diagnostic role.

• Short construction time. The time taken to construct a model should be
as short as possible. This is advantageous if the model has to be updated
with new data on a regular basis.

• Short running time. Once a probability model is built, the time taken to
compute a result from the model should be as short as possible, particularly
for real-time applications.

• Robust to missing data. Missing data are a reality for many clinical data
sets; therefore, it should be possible to build a probability model from an
incomplete data set, and it should also be possible to apply the probability
model to a new but incomplete feature vector.

• Ability to incorporate pre-existing knowledge. Inclusion of background
knowledge can aid model development and make the interpretation of a
model more accessible.

In the following sections, where appropriate, we will highlight the extent
to which the above desiderata are fulfilled by the techniques under discussion.

10.3 Bayesian Statistics

The two ideologies of statistics are the Bayesian approach and the classical or
frequentist approach [e.g., 7].

The aim of both Bayesian and classical statistics is to estimate the param-
eters φ of a joint probability distribution p(x|φ) from which a set of observed
data D were sampled. In classical statistics, this is usually done by estimat-
ing the parameters φ̂ that maximize the likelihood p(D|φ): the maximum
likelihood approach [e.g., 5]. Once obtained, the maximum likelihood estimate
(MLE) φ̂ provides the estimated distribution p(x|φ̂) from which inferences
can be made.

In the classical approach, which is discussed in more detail in Chapter 1,
Section 1.2, uncertainty in the estimate φ̂ is traditionally quantified using a
95% confidence interval; however, this is not to be interpreted as a 95% chance
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of φ residing within the interval; the correct interpretation of the classical con-
fidence interval is given in Section 1.2. Furthermore, the classical confidence
interval is either based on an asymptotic behaviour of maximum likelihood
estimates, which does not hold for small-sized samples, or else bootstrapping
is used. The latter approach, which is described in Section 1.2, and illustrated
in Figure 1.5, usually suffers from exorbitant computational costs (see the
caption of Figure 4.35 on for a discussion).

Bayesian statistics, introduced in more detail in Section 1.3, provides an
alternative framework with which to consider parameter uncertainty. Instead
of striving for a point estimate of φ (the classical approach), a Bayesian con-
siders a probability distribution for φ, with p(φ|D) expressing the uncertainty
in φ given D. If p(φ) is the assumed distribution of φ prior to observing D,
Bayes’ theorem

p(φ|D) ∝ p(φ)p(D|φ) (10.1)

represents how a Bayesian’s belief in φ has changed on observing D (Bayesian
updating). Relationship (10.1) holds irrespective of the sample size, and a
natural interpretation can be given to the 95% confidence interval based on
p(φ|D) (the credible interval). If a single estimate of φ is required, the mode
of p(φ|D), the maximum a posteriori (MAP), can be quoted.

Although the MAP for φ is expected to differ from its MLE because of
the influence of the prior p(φ) in (10.1), this influence decreases as the size of
D increases, which causes the MAP to converge toward the MLE. Increasing
the size of D also decreases the variance of p(φ|D) and, thus, the uncertainty
in φ. If there is no preferred shape for the prior distribution p(φ), a flat
(uninformative) prior can be used, which makes all possible values of φ equally
likely.3 In this case, the MAP and MLE will coincide, even when sample sizes
are small; Section 1.4 for a more comprehensive discussion.

10.3.1 Parameter Averaging and Model Averaging

Suppose that we have a model M that enables us to determine the probability
that y = 1 when a vector of features x is given.4 We can write this probability
as p(y = 1|x,θ), where θ is a vector of model parameters. Suppose also that
D is a set of exemplars sampled from the same distribution that provided x.
The classical approach to using p(y = 1|x,θ,M) is to first obtain the MLE
θ̂ from D and then use θ̂ for the parameters of the model; in other words,
predictions are based on p(y = 1|x, θ̂,M). The Bayesian approach, on the
other hand, is to regard all the possible values of θ, and to average over these
possibilities according to their posterior distribution p(θ|D,M):

p(y = 1|x,M,D) =
∫

θ

p(y = 1|x,θ,M)p(θ|D,M)dθ. (10.2)

3 There are challenges with using priors. Kass and Wasserman [80] and Irony and
Singpurwalla [65] provide discussions on this topic. See also Section 11.3.2

4 y denotes a class label.
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Equation (10.2) fully accounts for parameter uncertainty.
Of course, in addition to being uncertain about θ for a given M, we can

also be uncertain about M; however, in the Bayesian framework, we can deal
with model uncertainty in an analogous way to how parameter uncertainty
was handled. In other words, if p(M|D) is the posterior distribution over the
set of all possible models, we can take account of the model uncertainty by
averaging over these models:

p(y = 1|x,D) =
∑
M

p(y = 1|x,M,D)p(M|D). (10.3)

Thus, both model and parameter uncertainty can be accounted for by using
Equation (10.3) in combination with (10.2).5

Because of the advantages of the Bayesian paradigm, we will emphasize
its use throughout this chapter.

10.3.2 Computations

With maximum-likelihood estimation, most of the computational effort is con-
cerned with the optimization of likelihood p(D|θ) as a function of θ. In con-
trast, Bayesian inference requires integration over multidimensional spaces,
such as the integration required for Equation (10.2).

A practical problem with Bayesian inference is determining an integration
such as (10.2) for realistically complex posterior distributions p(θ|D). For
most practical problems, a solution will not be available analytically. In some
cases, the required integration can be achieved satisfactorily through the use
of simplifying assumptions or approximations; if not, computational tools are
required.

A computational tool that simplifies the Bayesian analysis of even the
most complex data is Markov chain Monte Carlo (MCMC) [e.g., 50]. This
technique was introduced by physicists in 1953 [103, 57], and its adoption by
the statistical community has been supported by the advances in computing
technology that have taken place since the early 1980s. Basically, MCMC
provides a mechanism for generating observations from an arbitrarily complex
probability distribution, such as the posterior distribution associated with a
Bayesian analysis.

To illustrate the use of MCMC, consider Equation (10.2). This equation
can be approximated as

p(y = 1|x,M,D) ≈ 1
L

L∑
i=1

p(y = 1|x,θi,M),

where {θ1, . . . ,θL} represents a random sample from the posterior distribu-
tion p(θ|D). MCMC can generate this sample, as discussed in Section 2.2.2.
5 The computation of the marginal likelihood p(D|M), on which the posterior

p(M|D) depends via p(D|M) ∝ p(D|M)p(M), is discussed in Section 2.2.1.
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10.4 Logistic Regression

In a regression analysis of y regressed on x, we design a function (regression
function) f(x,θ) such that

Ê(Y |x;θ) = f(x,θ), (10.4)

where θ is a vector of model parameters. In the classic approach, this is done
by estimating the parameter vector θ̂ that maximizes the likelihood function
p(D|θ) with respect to a given data set D.

If Y is binary-valued for a two-class classification problem, (10.4) can be
replaced by

p̂(y = 1|x;θ) = f(x,θ), (10.5)

in which case the regression function provides a probability model.
In medical informatics, the most common approach to deriving (10.5) is to

use logistic regression [63, 26, 81, 55]. A main-effects logistic regression model
with regression coefficients β has the form

p̂(y = 1|x;β) = �

(
β0 +

∑
i

βixi

)
, (10.6)

where � is the logistic function: �(ξ) = exp(ξ)/(1 + exp(ξ)). Because of the
exponential nature of �, the MLE of β cannot be determined analytically;
instead it is obtained iteratively, typically using an iterative weighted least-
squares procedure [35].

Example 1. The primary role of intensive care units (ICUs) is to monitor and
stabilize the vital functions of patients with life-threatening conditions. To
aid ICU nurses and intensivists with this work, scoring systems have been
developed to express the overall state of an ICU patient as a numerical value.

At first, the scoring systems were additive models
∑M

i=1 αi(xi), where
function αi(·) gave the number of points associated with attribute value xi

[85, 82, 48]. The selection of attributes and functions were determined sub-
jectively through panels of experts. Lemeshow et al. [92] replaced the use of
subjective additive models with logistic regression, where the response vari-
able is a defined outcome (e.g., alive whilst in hospital). This approach is
used in the probabilistic scoring systems APACHE III [84], SAPS II [47], and
MPM II [91]. A comparison of scoring systems has shown that those derived
by logistic regression perform similarly to each other but are better than those
obtained subjectively [22].

Prognostic logistic regression models have been used in various ways for
intensive-care medicine. These include the stratification of patients for thera-
peutic drug trials [83] and the comparison of ICUs [67]. �
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Sometimes, the linear functional form of a main-effects logistic regression
model does not provide an adequate model, and multiplicative interaction
terms have to be included; for example,

p̂(y = 1|x;β) = �

⎛⎝β0 +
∑

i

βixi +
∑
i<j

βijxixj +
∑

i<j<k

βijkxixjxk

⎞⎠ . (10.7)

Example 2. Hosmer and Lemeshow [63] describe a logistic regression analy-
sis of low birth-weight data, birth weight less than 2500 g being the binary
response variable Y . The candidate explanatory variables included mother’s
age (X1), weight at last menstrual period less than 110 lb (X2), black skinned
(X3), neither white or black skinned (X4), smoked during pregnancy (X5),
history of premature labour (X6), history of hypertension (X7), and uterine
irritability present (X8). The main-effects model with the sum

−1.217 − 0.046X1 + 0.842X2 + 1.073X3 + 0.815X4

+ 0.807X5 + 1.282X6 + 1.435X7 + 0.658X8

had a log-likelihood of −98.78; however, the addition of two multiplicative
interaction terms

−0.512 − 0.084X1 − 1.730X2 + 1.083X3 + 0.760X4

+ 1.153X5 + 1.232X6 + 1.359X7 + 0.728X8

+ 0.147X1X2 − 1.407X5X2

improved the fit, the log-likelihood increasing to −96.01. �

In addition to including interaction terms, it may also be necessary to
transform some of the variables in order to improve the fit of a logistic regres-
sion model to data. A classic approach is the Box–Cox method [15]. Other
possible problems that need to be considered are the presence of collinearity
and overly influential observations [e.g., 63, 26, 55].

10.5 Bayesian Logistic Regression

There are two problems with the classic approach to logistic regression given
above. Firstly, there is the assumption that variables Y and X are related
by a single model with a pre-specified structure M, but this does not take
account of the fact that we are uncertain about M. Secondly, for a given
choice of M, we are, in truth, uncertain about the vector β of parameter
values associated with M, yet the maximum-likelihood approach imposes a
single set of parameter values on M. In principle, these two criticisms can be
addressed by regarding logistic regression within the framework of Bayesian
statistics.
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In the Bayesian framework, we express the uncertainty in parameter vector
β for a given model M by the posterior probability distribution p(β|M,D),
where D is the observed data; therefore, we have

p(y = 1|x,M,D) =
∫

β

p(y = 1|x,β,M)p(β|M,D)dβ. (10.8)

where
p(y = 1|x,β,M) =

{
1 + exp

[
−βTx

]}−1
. (10.9)

A common Bayesian assumption is that the posterior distribution
p(β|M,D) is Gaussian, but, with p(y = 1|x,β,M) defined by (10.8), the re-
sulting integral in (10.8) cannot be solved analytically. However, Spiegelhalter
and Lauritzen [149] derived the approximation∫

θ

(1 + exp[−θ])−1p(θ|ν, σ2)dθ ≈ (1 + exp[−cν])−1, (10.10)

where θ ∼ Normal(ν, σ2) and c is equal to (1 + ξ2σ2)−1/2 for an appropriate
value of ξ. This was done via the approximation

(1 + exp[−θ])−1 ≈ Φ(ξθ), (10.11)

where Φ is the probit function [31].
If ξ2 is set equal to π/8, as suggested by MacKay [99], then, from (10.9) and

(10.10), we obtain the Spiegelhalter–Lauritzen–MacKay (SLM) approximation

p(y = 1|x,M,D)

≈
{

1 + exp

[
−βT

MPx

/√
1 +

πVar(βTx|x,M,D)
8

]}−1

, (10.12)

where βMP is the mode of p(β|M,D), and Var(βTx|x,M,D) is the variance
of the posterior distribution p(βTx|x,M,D). Bishop [13] discusses the error
in ignoring the square root in (10.12).

There is, however, still the uncertainty in the choice for model M. This
uncertainty can be dealt with by averaging over all possible models:

p(y = 1|x,D) =
∑
M

p(y = 1|x,M,D)p(M|D), (10.13)

where p(M|D) is the posterior probability for model M. On substituting
(10.8) into (10.13), we have the general expression for Bayesian model-
averaged logistic regression:

p(y = 1|x,D) =
∑
M

∫
β

p(y = 1|x,β,M)p(β|M,D)dβp(M|D). (10.14)
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The SLM approximation provides an estimate of p(y = 1|x,M,D) for
(10.13), but, in order to perform model-averaging, we also need the posterior
model probability p(M|D). In Section ??, we discuss the GLIB S-Plus function
for estimating this probability, but first we consider the evaluation of the mode
and variance required for (10.12).

10.5.1 Gibbs Sampling and GLIB

One route to estimating the mode and variance for (10.12) is to use the ev-
idence framework scheme proposed by MacKay [100] and recommended by
Bishop [13]; however, the approximations required to satisfy this scheme some-
times make it unreliable. Section 2.3.2 discusses the evidence framework and
its disadvantages. An alternative approach is to obtained estimates of the
regression coefficients via Gibbs sampling.

Gibbs sampling, illustrated in Figure 5.23, provides a Markov chain sim-
ulation of a random walk in the space of β, which converges to a stationary
distribution that equals the joint distribution p(β|M,D) [50]; however, in
practice, the convergence is only approximate. In addition to providing an
estimate of the mode βMP for (10.12), the stationary distribution also pro-
vides an estimate of the variance of βTx via the estimated covariance for β.
The freeware BUGS package provides a convenient environment in which to
conduct Gibbs sampling (Chapter 2).

GLIB

Bayesian model averaging can be performed using the freeware GLIB pack-
age [124], which is designed for use within S-Plus. For a given set of models
M0,M1, . . . MK (where M0 is the null (intercept-only) model), GLIB can
estimate the model posterior probabilities p(Mk|D) for each model in (10.13)
through the use of Bayes factors. The Bayes factor Bi,j associated with models
Mi and Mj is defined as

Bi,j = p(D|Mi)/p(D|Mj). (10.15)

Raftery [122] showed that application of the Laplace approximation to the
integral in the expression

p(D|Mk) =
∫

β

p(D|β,Mk)p(β|Mk)dβ (10.16)

gives an approximation for lnBk,0 that can be calculated using quantities
readily provided by regression packages such as GLIM. This enables p(Mk|D)
to be determined through the relationship

p(Mk|D) = αkBk,0

/
K∑

r=0

αrBr,0 , (10.17)
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where αk = p(Mk)/p(M0). The prior distribution p(β|Mk) in (10.16) is
defined by three hyperparameters: ν1, ψ, and φ [78]. GLIB fixes ν1 and ψ to
1, and φ is set to 1.65 by default, because Raftery [122] found these values to
be reasonable.

If the number of candidate models is very large, the total time taken by
GLIB to compute p(Mk|D) for each model can be lengthy. In such a situ-
ation, a pragmatic approach is to use the bic.logit S-Plus function [125].
This uses an approximation for lnBk,0 [123] based on the Bayesian Informa-
tion Criterion described in Section 2.3.2. Although this approximation is less
accurate than that used by GLIB for lnBk,0, bic.logit can filter out a large
number of candidate models by implementing the following model-selection
criteria [121]:

• First criterion for model selection
If a model is far less likely a posteriori than the most likely model, it should
be excluded. Therefore, exclude Mk if

p(Mk|D) < 0.05p(M�|D), (10.18)

where M� is the model with maximum p(M|D). This inequality is equiv-
alent to

2 lnBk,0 < 2 lnB�,0 − 5.99 (10.19)

if p(Mk) = p(M�) for all k.
• Second criterion for model selection (Occam’s Window)

Exclude any model that receives less support from the data than a simpler
model that is nested within it. Therefore, exclude Mk if there exists Mj

nested within it for which

p(Mj |D) > p(Mk|D). (10.20)

This inequality is equivalent to

2 lnBj,0 > 2 lnBk,0. (10.21)

Example 3. Raftery and Richardson [124] illustrate the use of GLIB for model
selection. They used data from a case–control study (379 cases; 475 controls)
of risk factors associated with breast cancer. There were 16 possible logistic
regression models resulting from the dichotomous inclusion of the following
four variables: alc, the number of alcoholic drinks per week; alc0, whether a
person was a drinker or nondrinker; tfat, total number of grams of fat con-
sumed per week; and tsat, total number of grams of saturated fat consumed
per week. In addition, all the models included the classical risk factors asso-
ciated with breast cancer; namely, age, menopausal status, age at menarche,
parity, familial breast cancer, history of benign breast disease, age at end of
schooling, and Quetelet’s index.

Application of the two model-selection criteria described above resulted in
five models (Table 10.1). Model selection was robust to changes in the value
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of φ, the prior variance of the regression parameters. In this example, the
regression coefficients estimated under the different models do not vary much;
however, Raftery and Richardson point out that this lack of variation across
models is not a general occurrence, and inclusion of interaction terms could
substantially vary the regression coefficients. �

Table 10.1. The models selected by Raftery and Richardson [124] using GLIB.
The table includes the posterior model probabilities obtained with three values for
φ. Reprinted from [124] pp. 343 and 345, by courtesy of Marcel Dekker Inc.

Posterior model probabilities Regression coefficients

Model ID φ = 1.00 φ = 1.65 φ = 5.00 alc0 alc tfat tsat

3 0.08 0.13 0.31 0.734 – – –

7 0.04 0.04 0.03 – 0.038 0.0017 –

8 0.06 0.06 0.05 – 0.039 – 0.0052

9 0.33 0.31 0.25 0.691 – 0.0017 –

10 0.49 0.46 0.37 0.704 – – 0.0051

10.5.2 Hierarchical Models

A criticism of the Bayesian paradigm is that prior information is rarely rich
enough to exactly define a prior distribution, and the uncertainty of priors
should be included in a Bayesian model. A hierarchical Bayesian model does
this by decomposing the prior distribution of the parameters of a model into
several conditional levels of distributions. Uncertainty at any level is incorpo-
rated into additional prior distributions, thereby creating a hierarchy.

Example 4. An example of hierarchical logistic regression is provided by Clyde
et al. [24]. We have created a simplified version for instructional purposes.

For our hierarchical model, we assume that each of the N patients (yi,xi)
(i = 1, . . . , N) in a data set D has a separate logistic model. The parameters
for each model, (βi0, . . . , βi|x|)T = βi, are assumed to come from a normal
distribution defined by the hyperparameters mean µ and variance τ−1, which
represents the distribution of the population of the patients. Finally, we use
noninformative hyperpriors for µ and τ−1. Thus, we have the following hier-
archical model:
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yi ∼ Bernoulli(p(yi = 1|xi,βi))

logit[p(yi = 1|xi,βi)] = βT
i xi

βij ∼ Normal(µ, τ−1)

µ ∼ Normal(0, 106)

τ ∼ Gamma(10−3, 10−3)

Gibbs sampling under this model will generate an approximate sample from
the posterior distribution p(β1, . . . ,βN , µ, τ |D). �

10.6 Neural Networks

10.6.1 Multi-Layer Perceptrons

Multi-layer perceptrons (MLPs) are the neural networks most commonly en-
countered in medical research [e.g., 39, 32].6 A one-hidden-layer MLP with
logistic activation functions and a single output node o can be represented by

p̂(y = 1|x;w) = �

(
w(1→o) +

∑
h

w(h→o)�

(
w(1→h) +

∑
x

w(x→h)x

))
,

(10.22)
where � is the logistic function (i.e., �(ξ) = exp(ξ)/(1 + exp(ξ))), Σh sums
over all the hidden nodes, Σx sums over all the input nodes, and w(i→j) ∈ w
is the weight on the connection from node i to node j. Weights w(1→o) and
w(1→h) are biases. From (10.6), it is seen that (10.22) can be regarded as a
nonlinear extension of logistic regression consisting of nested logistic models
(Chapter 3).

In the standard approach to training an MLP, the MLE of the parameters
(weights) w is found with respect to the negative log likelihood − log p(D|w)
using an optimization procedure. This is often done using the conjugate-
gradient or BFGS quasi-Newton algorithm [13, pp. 247–290]. The conven-
tion in the neural-network community is to refer to − log p(D|w) as an error
function E(w). For probabilistic classification MLPs, the cross-entropy error
function Ece(w) should be used, which has p(D|w) identical to that used
in logistic regression. Furthermore, in order to prevent overfitting, the error
function is augmented with a regularization term, which penalizes the cre-
ation of large curvatures by the MLP (Section 3.5.1). The most commonly
used regularization term is the weight decay term:

E(w) = Ece(w) +
ν

2

∑
wi∈w

w2
i , (10.23)

6 Chapter 3 provides a short tutorial on MLPs.
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where ν is the regularization constant. The optimal value for ν has to be
determined by trial and error; however, in the Bayesian approach to neural
networks (Section 10.7), it can be obtained in a principled manner.

Given the potential of MLPs to model arbitrarily complex functions, and
the potentially complex nature of clinical data, interest in the application of
MLPs to medical problems increased during the 1990s.

Example 5. The PAPNET computer system [14, 87] was developed to aid the
screening of cervico-vaginal smears, a task normally performed manually by
technicians. The motivation for developing PAPNET was to reduce misclas-
sification rates [157] and increase sample throughput.

The input to PAPNET is a digitized image of a smear consisting of about
50,000 to 250,000 cells; the output is an abnormality score for each cell and
cluster in the smear. Two MLPs are used: one identifies abnormal cells; the
other locates abnormal clusters. PAPNET does not provide a final diagnosis;
instead, the 64 highest scoring cells and the 64 highest scoring clusters are
recorded for the attention of a cytologist.

The published results on the efficacy of PAPNET are varied. For example,
Jenny et al. [71] reported that a false negative rate of 5.7% in conventional
screening was reduced to 0.4% by PAPNET. In contrast, the PRISMATIC
project [119] found the true positive rate for PAPNET-assisted screening
(82%) to be similar to that found for conventional screening (83%). How-
ever, the same study showed a significantly better true negative rate (77%)
for PAPNET-assisted screening than for conventional screening (42%). The
total mean time for screening and reporting for conventional screening was
104 min per smear, and for PAPNET-assisted screening it was 39 min.

As a result of a study by Koss et al. [88], the Food and Drug Administra-
tion of the United States approved PAPNET as a quality control instrument
[87]. �

10.6.2 Radial-Basis-Function Neural Networks

Equation (10.22) for an MLP can be rewritten as

p̂(y = 1|x;w) = �

(
w(1→o) +

∑
h

w(h→o)gh(x)

)
; (10.24)

thus, the associated MLP can be regarded as a two-stage structure. In the first
stage, there is a projection of x to an H-dimensional vector [g1(x) · · · gH(x)]T,
where H is the number of hidden nodes in (10.22). The logistic function � is
then applied to this vector in the second stage.

A radial-basis-function network (RBFNN) for probabilistic classification
has a similar form to (10.24),

p̂(y = 1|x;w) = �

(
w0 +

M∑
m=1

wmφh(x)

)
, (10.25)
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but radial basis functions (RBFs) have replaced the hidden nodes of the MLP.
Unlike an MLP, an RBFNN is constructed in two distinctive steps. First,

RBFs φ1, . . . , φM are defined, and, once defined, the parameters of the RBFs
are fixed. In the second step, φ1(x) . . . φM (x) are treated as covariates, and
logistic regression is used to estimate the regression coefficients (weights)
w0, w1, . . . , wM . When a single output node is used (i.e., the two-class case),
the coefficients can be obtained using the usual iterated weighted least squares
algorithm of logistic regression [106], which will converge to a single maximum
likelihood [4]. The situation for softmax regression (i.e., the multi-class case) is
more complicated. Here, Nabney [106] suggests several approaches, including
exact determination of a Hessian matrix.

Example 6. Goodacre et al. [52] developed a RBFNN with 2283 inputs (wave
numbers from high-dimensional Raman spectra) to discriminate between com-
mon infectious agents associated with urinary tract infection. Although the
performance of the RBFNN was similar to that of an MLP built with the
same inputs, the time required to train the RBFNN was only 2 min, far less
than the 30-hour training time required for the MLP. �

10.6.3 “Probabilistic Neural Networks”

Kernel density estimation is a nonparametric method for estimating probabil-
ity distributions [145]. Suppose we have a data set D consisting of n exemplars,
nk of which are associated with class k. Let D{k} be the subset of D contain-
ing these nk exemplars. A symmetric kernel function K(x − xi) is centered
on each xi in D{k}, and the average of these kernel functions provides an
estimate of the class-conditional probability distribution p(x|k):7

p̂(x|k) =
1
nk

∑
xi∈D{k}

K(x − xi) .

Consequently, from Bayes’ theorem and the estimate p̂(k) = nk/n, we have

p̂(k|x) =
p̂(k)p̂(x|k)∑
k′ p̂(k′)p̂(x|k′)

=

∑
xi∈D{k} K(x − xi)∑

k′
∑

xi∈D{k′} K(x − xi)
. (10.26)

Confusingly, expression (10.26) has been called a probabilistic neural network
even though there is no apparent biological motivation for doing this.
7 If K(x − xi) integrates to one then the same is true for p̂(x|k).
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10.6.4 Missing Data

General responses to the occurrence of missing data are to exclude incomplete
exemplars or fill in missing parts with estimates (imputation). Unfortunately,
imputation is often done in an ad hoc manner; for example, using the uncondi-
tional mean or median of the observed values of a variable. When unjustified,
these methods can give rise to biased models [49].

There are theoretically sound approaches to the problem of missing data,
but the choice of method depends on the type of inference to be made and the
assumed missing-data mechanism. A common situation is when a Bayesian-
or likelihood-based estimate is required, and the missing-data mechanism is
assumed to be ignorable. According to Schafer [142], a mechanism is ignor-
able8 when (a) the probability that an observation is missing may depend
on the observed values Dobs but not on the missing values Dmis (missing at
random [139]), and (b) the parameters of the missing-data mechanism are
distinct from the parameters of the data model θ (distinction of parameters).
When ignorability holds, and a data model p(xobs,xmis|θ) is assumed, the
EM algorithm can be used to impute the missing values by switching itera-
tively between a current estimate of the parameter θ̂ and a current estimate
of the complete data set (Dobs, D̂mis). The completed data set obtained on
convergence can be used to fit a regression model.

A problem with fitting a regression model to a completed data set
(Dobs, D̂mis) is that the resulting model does not convey the uncertainty of
the imputations D̂imp. This can be overcome by assigning a number of impu-
tations D̂[1]

imp, . . . , D̂
[ς]
imp to an incomplete data set, fitting a model to each com-

pleted data set (Dobs, D̂[1]
imp), . . . , (Dobs, D̂[ς]

imp), and averaging over the models
(multiple imputation) [140, 95]. The spread of the outputs from the models
indicates the extent of the uncertainty in the imputations. A standard method
for producing multiply-imputed data sets is data augmentation [153].

Of course, the existence of a missing-data mechanism implies that a new
feature vector could be incomplete. For real-time applications, imputing the
new feature vector by a time-consuming iterative technique would be unac-
ceptable; however, there are alternatives:

• Where appropriate, domain heuristics (cold-deck imputation) can be adopt-
ed, such as the assumption of clinical normality [e.g., 85]

• Sometimes nearest-neighbour hot-deck imputation is effective, in which
those attribute values contained in the nearest complete case are used
[e.g., 94].

• If only a small number η of explanatory variables are prone to incom-
pleteness, 2η regression models could be developed to cover each possible
eventuality [e.g., 143].

8 Note that some authors equate “ignorability” to “missing at random” whereas
others equate it to “distinction of parameters”.
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In the context of missing data, there is a virtue in using RBFNNs with
Gaussian basis functions if the explanatory variables are continuous. Suppose
that

p̂(Ck|x) =

∑M
j=1 wkjG(x|µ(j),Σ(j))p(j)∑M

j=1G(x|µ(j),Σ(j))p(j)
,

is a trained RBFNN with M Gaussian basis functions G(x|µ(j),Σ(j)), where
wkj is the weight from the jth basis function to the node outputting p̂(Ck|x).
Because of a property of multivariate Gaussian distributions, p̂(Ck|xobs) can
be determined for any xobs ⊆ x using the existing set of RBFNN parameters
wkj , µ(j), Σ(j), and p(j) [156, 49, 38].

10.7 Bayesian Neural Techniques

Adoption of the Bayesian framework by the neural-network community has
extended the statistical interpretation of neural networks [e.g., 13, 129] with
consequent benefits [e.g., 13, 117]. In fact, Penny et al. [117] have described
this development as “second-generation neural computing”.

There are several benefits to be had from applying the Bayesian approach
to neural networks. These include principled methods for implementing reg-
ularization [e.g., 13], variable subset selection (e.g., Chapter 12), and the cal-
culation of error bars [e.g., 41].

When an MLP is trained using the conventional MLE approach, the pos-
terior class-conditional probability p(y = 1|x,D) is given by

p(y = 1|x,D) = p(y = 1|x, ŵ), (10.27)

where ŵ is the MLE of weight vector w. A weakness with (10.27) is that it
does not take into account the uncertainty associated with ŵ; instead, ŵ is
treated as if it was the “true” version of w. But, in reality, an infinite number
of w are consistent with D; therefore, a more sensible approach is to take into
account all possible w by integrating over w space:

p(y = 1|x,D) =
∫
w
p(y = 1|x,w)p(w|D)dw. (10.28)

Integrating out unknown parameters in this manner is a characteristic strategy
of the Bayesian framework (Section 10.3.1).

10.7.1 Moderated Output

The single output of a probabilistic MLP can be written as �(r(x,w)), where
� is the sigmoidal function of the output node, and r(x,w) is the input to this
node.

An alternative to (10.28) is obtained by using r(x,w) in place of w:
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p(y = 1|x,D) =
∫

r

p(y = 1|r)p(r|x,D)dr (10.29)

=
∫

r

�(r)p(r|x,D)dr

≈ �

[(
1 +

πσ2
r(x)
8

)−1/2

r(x,wMP)

]
by (10.12), (10.30)

where σ2
r(x) is the variance of r. This is given by

σ2
r(x) = hT(x)A−1h(x),

where element hi(x) of h(x) is the partial derivative ∂r(x,w)/∂wi at wMP,
and A is a Hessian matrix, with matrix element Ai,j equal to ∂2E(w)/∂wi∂wj

at wMP.
The right-hand side of (10.30) is sometimes referred to as the moderated

output to distinguish it from the unmoderated output �[r(x,wMP)].

10.7.2 Hyperparameters

The integral of (10.28) contains the posterior probability distribution p(w|D).
This distribution is related to the prior distribution p(w) by Bayes’ theorem,

p(w|D) = p(D|w)p(w)/p(D). (10.31)

If we assume that the prior is Gaussian,

wi ∼ Normal(0, α−1), (10.32)

where α is the hyperparameter, it follows that p(w|D) and p(r|x,D) are Gaus-
sian and influenced by α [13]. To take account of the uncertainty in this hy-
perparameter, we take the Bayesian step of integrating over α as well as r (cf.
(10.29)):

p(y = 1|x,D) =
∫

r

p(y = 1|r)
∫

α

p(r|x, α,D)p(α|D)dαdr (10.33)

≈
∫

r

p(y = 1|r)p(r|x, αMP,D)dr (10.34)

if p(α|D) is sharply peaked at its mode αMP. Comparison of (10.29) with
(10.34) suggests that we can replace r(x,wMP) in the moderated output
(10.30) with r(x, αMP,wMP). But how do we estimate αMP and wMP?

Both αMP and wMP can be determined through the so-called evidence
framework [e.g., 13].9 10 This is done by iterating between the following two
steps until convergence is reached:
9 The likelihood p(D|ξ), where ξ is a statement, is sometimes called the evidence

for ξ.
10 Strictly speaking, the evidence-framework approach is not a full Bayesian ap-

proach because it does not integrate out the hyperparameters. It is, in fact, a
type-II maximum-likelihood method.
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1. optimize w for a given α using a standard MLE procedure;
2. re-estimate α using

α :=
|w|∑
i=1

λi

λi + α

/ |w|∑
i=1

w2
i ,

where λi is an eigenvalue of the Hessian matrix A − αI.

If log p(w|D) is regarded as the total (i.e., regularized) error E(w) [e.g.,
117] then from (10.31) and (10.32) (and ignoring the constant term) we have

E(w) = − log p(D|w) − log p(w)

= Ece(w) +
α

2

∑
wi∈w

w2
i ,

thus hyperparameter α is acting as the regularization constant ν in (10.23).
But the fact that we can determine αMP means that the Bayesian framework
has provided us with a principled approach to regularization.

10.7.3 Committees

Suppose that we make the assumption that most of the density of the pos-
terior p(w|D) is concentrated in non-overlapping regions of w-space that are
associated with the maxima of p(w|D). If Q1, . . . ,QT are the regions then

p(w|D) ≈
T∑

i=1

p(w|Qi,D)p(Qi|D); (10.35)

consequently, from (10.28), we can write

p(y = 1|x,D) ≈
T∑

i=1

p(Qi|D)
∫
w∈Qi

p(y = 1|x,w)p(w|Qi,D)dw

=
T∑

i=1

p(Qi|D)p(y = 1|x,Qi,D). (10.36)

The collection of T models in (10.36) are said to constitute a committee of
networks.11

11 Regions Q1, . . . , QT are expected to be associated with the minima of an error
function E(w). This leads to the maximum-likelihood version of a committee-
based prediction,

p̂(y = 1|x) =
1
T

T∑
i=1

p(y = 1|x, ŵi),

where ŵi is the ith local maximum encountered whilst training using random
restarts.
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An analogous approach can be made using r(x,w) in place of w. This uses
the assumption that, for the posterior p(r|x,D),

p(r|x,D) ≈
T∑

i=1

p(r|x,Ri,D)p(Ri|D), (10.37)

where Ri is the region for r corresponding to Qi (i.e., Ri = {r(x,w)|w ∈ Qi}).
Substituting (10.37) in (10.29) gives

p(y = 1|x,D) ≈
T∑

i=1

p(Ri|D)
∫

r∈Ri

p(y = 1|r)p(r|x,Ri,D)dr

=
T∑

i=1

p(Ri|D)
∫

r∈Ri

�(r)p(r|x,Ri,D)dr

≈
T∑

i=1

p(Ri|D)�

[(
1 +

πσ2
r(x;Ri)

8

)−1/2

r(x,wMP; Ri)

]
.

(10.38)

Expression (10.38) provides a moderated output from a committee of net-
works.

Example 7. Penny et al. [117] used a committee of 10 MLPs, with a moderated
output, trained according to the evidence framework. The data consisted of
two input features, x1 and x2, related to arm tremor. The class labels indicated
whether the features were measured from patients with Parkinson’s disease
and multiple sclerosis or from normal subjects.

Figure 10.1(a) is a plot of max p(y|x,D) as a function of x1 and x2 obtained
from the moderated committee. Dark grey corresponds to max p(y|x,D) =
0.5 and white corresponds to max p(y|x,D) = 1. Figure 10.1(b) is the plot
obtained when one of the MLPs of the committee was trained on the same
data using an unmoderated output. It is seen that the single MLP incorrectly
gave a high probability in the lower-right region of the input space where data
density is relatively low. In contrast, the moderated committee decreased the
probability to reflect the greater uncertainty in this region. �

10.7.4 Full Bayesian Models

Marginal integrals, which appear throughout this discussion of Bayesian neu-
ral techniques, may be solved approximately in a variety of ways. Sections
10.7.2 and 10.7.3 detail approaches referred to as the evidence method [99] in
which the joint integration over both parameters w and hyperparameters α
is achieved by making a Gaussian approximation to p(D|w, α) and assuming
that the distribution over α is very sharply peaked at its most probable value
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(a) (b)

Fig. 10.1. Plots of max p(y|x, D) versus features x1 and x2 from arm-tremor data
when (a) p(y|x, D) is derived from a moderated committee and (b) p(y|x, D) is
derived from a single unmoderated MLP. Value of max p(y|x, D) varies from 0.5
(dark grey) to 1 (white). Data consists of patients (×) and normal subjects (◦).
Reprinted from [117] by courtesy of Springer-Verlag.

p(α|D) ≈ δ(α − αMP). These simplifications, as we have seen, allow for an
analytic evaluation of the marginal integral of interest, namely

p(y|x,D) =
∫
w

∫
α

p(y|x,w)p(w|α,D)p(α|D)dwdα. (10.39)

Such approximations are only forced upon us by the general non-analytic
nature of the above equation if we require closed-form solutions. If, how-
ever, we may work with a (arbitrarily large) number of samples drawn from
p(y|x,D) then we may avoid such approximations and use a sampling strategy.

Sampling approaches are very well known in statistical inference, and a
variety of efficient methods have been developed. By far the commonest ap-
proaches are the Markov chain Monte Carlo (MCMC) methods. Equation
(10.39) may be re-written as

p(y|x,D) =
∫
w

∫
α

p(y|x,w)p(w, α|D)dwdα. (10.40)

Hence we may re-formulate our problem of inference as one of sampling from
the distribution of p(w, α|D). The simplest approach is arguably the Metropo-
lis method in which samples w′, α′ are drawn from proposal distributions
based on the current w, α and accepted with a probability

Pr(accept) = min
(

1,
p(w′, α′|D)
p(w, α|D)

)
. (10.41)

Neal [108] considers much more efficient approaches to such sampling;
namely, hybrid. Sampling from the joint distribution p(w, α|D) is an inefficient
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scheme, and most sample-based approaches to neural network inference [108,
64] make use of Gibbs sampling . In the first step, the hyperparameters α
are held fixed and w is sampled from p(w|α,D); in the second step, the
hyperparameters are sampled from p(α|w,D). The latter may be re-written
as [64]

p(α|w,D) =
p(w|α)p(α)

p(w)
(10.42)

in which p(w) and p(α) are the prior distributions over parameters and hy-
perparameters, respectively. This sampling stage can be made very efficient if
these priors are chosen to be of conjugate form to the posteriors.

Husmeier et al. [64] consider such MCMC approaches to neural network
evaluation and detail the performance of the method compared with the evi-
dence scheme. They show that, in a biomedical problem of tremor assessment,
comparable or superior results are obtained. One key feature of the neural
networks discussed by Husmeier et al. [64] and Neal [108] is in the use of
hyperparameters that govern the scale of distributions over different groups
of parameters. This naturally leads to the concept of Automatic Relevance
Determination (ARD), which may be used to “prune” away components of a
neural network that do not significantly contribute to the desired inference.
This has the desirable effect of automatically regulating the complexity of the
neural network.

10.8 The Näıve Bayes Model

From Bayes’ theorem, the conditional class probability p(y = i|x) is related
to the likelihood p(x|y = i) by

p(y = i|x) =
p(y = i)p(x|y = i)∑
k p(y = k)p(x|y = k)

. (10.43)

If we make the strong assumption that the elements of x are independent of
each other when y is given then (10.43) simplifies to the so-called näıve Bayes
model [155]:

p(y = i|x) =
p(y = i)

∏
x∈x p(x|y = i)∑

k p(y = k)
∏

x∈x p(x|y = k)
. (10.44)

In spite of the strong assumption employed by this model, it can be surpris-
ingly effective even when the assumption does not hold [36, 43, 96].

When deciding which of two classes is more likely, (10.44) can be further
simplified to the log-odds version

log
[
p(y = i|x)
p(y = j|x)

]
= log

[
p(y = i)
p(y = j)

]
+
∑
x∈x

log
[
p(x|y = i)
p(x|y = j)

]
. (10.45)
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Example 8. de Dombal et al. [33] developed a decision support system for the
analysis of acute abdominal pain, which was based on the log-odds form of
the the näıve Bayes model.

The efficacy of the system was tested using a multi-centre study [1]. Ac-
cording to this study, initial diagnostic accuracy rose from 45.6% to 65.3%.
In addition, negative laparotomies fell from 313 cases to 174 cases a year, and
perforation rates among appendicitis patient fell from 23% to 11%. �

10.9 Bayesian Networks

Probabilistic graphical models are a subset of probabilistic models that provide
a parsimonious representation of a joint probability distribution p(X1, . . . , Xn).
This is done using a graphical representation in which the nodes of a graph rep-
resent random variables X1, . . . , Xn, and the edges represent direct probabilis-
tic dependencies. Graphical models are partitioned into two types: directed
graphs called Bayesian networks12 and undirected graphs called Markov nets
or Markov random fields. When Bayesian networks are applied to dynamic
problems, such as the modelling of signals, they are often referred to as dy-
namic probabilistic networks or dynamic Bayesian networks (see Section 8.6
and Figure 8.9. A number of probabilistic models can be represented as graph-
ical models, including näive Bayes models, Gaussian mixtures, hidden Markov
models, and Kalman filters. The Bayesian network corresponding to the näive
Bayes model of Section 10.8 is shown in Figure 10.2.

Y
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�� ���������������

X1 X2 X3 • • • • • Xn

Fig. 10.2. The graphical representation of a näive Bayes model.

Despite the name, Bayesian networks do not necessarily imply a commit-
ment to the Bayesian paradigm. Rather, they are so called because they use
Bayes’ theorem for probabilistic inference.

A Bayesian network (BN) [30, 74, 72] B for a set of variables X =
{Xv1 , . . . , X|V|} is a pair of mathematical constructs (G,θ). The first con-
struct, the qualitative component G = (V,E), is a directed acyclic graph
(DAG) consisting of (i) nodes (vertices) V in one-to-one correspondence with

12 The term “Bayesian network” has a number of synonyms, which include Bayes
net, Bayesian belief network, belief network, causal network, and probabilistic net-
work .
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the variables X (with Xu denoting the variable associated with node, or set
of nodes, u) and (ii) directed links (edges) E that connect the nodes. The
second construct, the quantitative component θ = {θv1 , . . . ,θv|V|}, is a set of
parameter values that specify all the conditional probability distributions for
the nodes of B, where θv defines the conditional probability p(Xv|Xpa(v)) of
node v given its parents pa(v) in G.13 For a parentless node v, p(Xv|Xpa(v))
is equal to p(Xv). Conditional probability p(Xv|Xpa(v)) can be defined by
various means, including tables, MLPs (Section 10.6.1), and class probability
trees (Section 10.10).

Bayesian network B models a joint probability distribution p(X) over
X, the model depicting the probabilistic dependencies and independencies
amongst the variables concerned (Figure 10.3).

The Markov properties of DAGs [111, 158] enable the joint probability
distribution p(XV ) to be factorized as follows:

p(XV ) = p(Xv1 , . . . , Xvn
) =

n∏
i=1

p(Xvi
|Xpa(vi)), (10.46)

thus the global probability p(XV ) can be decomposed into a collection of local
probabilities. The form of each factor p(Xvi

|Xpa(vi)) in (10.46) is specified by
G, and the values for p(Xvi

|Xpa(vi)) are specified by θ. The advantages of this
decomposition are (i) complex systems can be visualized as being composed of
simpler models (subgraphs), which facilitates system construction and com-
prehension, and (ii) because fewer parameters are required for simpler models,
parameters can be learnt from less data.

Bayesian networks are pictorial, and clinicians find this computational for-
malism intuitive and appealing [61, 62, 97, 98]. These networks can provide
insight into the way various factors and mechanisms interact to influence the
outcome of a disease in a patient. The applicability of BNs to medicine has
been investigated in a number of areas, including bone-marrow transplanta-
tion [150], intensive care [9], electromyography [2], clinical microbiology [90],
and oncology [46].

10.9.1 Probabilistic Inference over BNs

The main use of a BN is to infer probability distributions for the associated
variables given a set of observations. More formally, suppose we have the above
BN B, and we observe values w (the evidence) for variables W ⊂ X. Various
techniques have been developed to determine p(Xi|w) for each Xi ∈ X\W.14

13 It is more precise to state that the quantitative component consists of (a) a family
of (conditional) probability distributions and (b) their parameters θ. Since (a) is
usually given and fixed, one usually, in practice, only thinks in terms of G and θ.

14 If no observations are made (i.e., w = ∅), the estimates are the prior probability
distributions p(Xi) for each Xi ∈ X.
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Fig. 10.3. The DAG for a hypothetical BN. The dependencies and independen-
cies can be determined from the graphical structure through application of the
d-separation rules [112]. For example, from this DAG, we have that the probability
of X4 is independent of the value of X1 if the value of X2 is given. The rules also
imply that X4 is independent of X5 if X3 is given. The notion of d-separation is
extensively discussed in Section 2.1.1 and illustrated in Figures 2.7, 2.8, and 2.9.

In theory, this enables diagnoses and prognoses to be performed when w is a
set of observations such as symptoms, test results, and patient demographics.

The algorithm most commonly used for this purpose is the message-passing
(evidence-propagation) algorithm developed by Jensen et al. [73], in which
a multiply-connected DAG is replaced by a singly-connected junction tree.15

However, some exact inference algorithms have been designed for specific types
of BNs. For example, the Quick Medical Reference (QMR) model consists of
an upper layer of disease nodes and a lower layer of symptom nodes [144]. If it
is assumed that each disease has an independent chance of causing symptoms,
noisy-OR nodes can be used for the symptoms. A problem with the QMR-
type network is that the cliques obtained after triangulation can be too large
for the junction-tree algorithm to be used for real-time applications; on the
other hand, the quickscore algorithm [59] is more efficient because it exploits
special properties of the noisy-OR node. The variational approach has also
been applied to the QMR model [66].

The most commonly-used version of the junction-tree algorithm requires
that xv is discrete for each v ∈ V (i.e., probabilities p(xv|xpa(v)) are stored

15 In order to implement the junction-tree algorithm, a junction tree is formed from
a DAG as follows. First, the DAG is moralized by adding undirected edges be-
tween parents not already joined (married). Second, all the directed edges of the
moralized graph are made undirected (the moral graph). Third, sufficient undi-
rected edges are added to the moral graph to ensure that there are no cycles
greater than 3 (triangulation). Finally, a tree (the junction tree) is formed from
the triangulated graph. The nodes of the junction tree correspond to the cliques
of the triangulated graph, and the edges of the tree correspond to the boundaries
between the cliques.
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as conditional probability tables for each v). But what if some v in V take
on continuous values? The usual response to this situation is to discretize the
variables in some manner, but this results in an approximation to the contin-
uous case. It is possible to create BNs with continuous-valued nodes, the most
common distribution for such variables being the Gaussian. Versions of the
junction-tree algorithm can be used when all the nodes are Gaussian (Gaus-
sian networks) or when Gaussian nodes have discrete-valued parent nodes but
not vice versa (conditional Gaussian networks) [141, 89, 29, 93]. When there
are discrete nodes with Gaussian parents, approximate inference has to be
used. A variety of techniques have been proposed for approximate inference.
These can be either stochastic, such as Gibbs sampling, or deterministic, such
as variational methods (Section 2.3.6) and loopy belief propagation [105].

Another reason for using approximate methods, even when all the nodes
are discrete-valued, is that the time taken for the junction-tree algorithm
increases with (a) the number of nodes, (b) the number of possible values
for the nodes, and (c) the size of the largest clique; consequently, for some
BNs, the time required for exact inference is impractical. In this situation,
approximate methods must be used instead. An example is the application of
a variational technique to the Promedas BN [77], which attempts to model
the many sub-domains associated with anaemia.

Example 9. In 1989, Beinlich et al. [9] developed a BN (the ALARM system)
to diagnose problems with anesthetic-ventilator management in intensive-care
units. The BN consisted of 37 nodes associated with such events as hypov-
olemia and pulmonary embolism. It is one of the demonstration networks
available with the Hugin and Hugin Lite packages. �

Example 10. The 20-node CHILD BN [148] was developed in conjunction with
the Great Ormond Street Hospital for Sick Children, London. The hospital is
a major referral centre for neonates with congenital heart disease in South-
East England, and the intention was to use the BN to support the diagnosis
of cyanosis (the “blue-baby” syndrome).

The structure and all the probabilities required for the network were ob-
tained from domain experts. This was done through the use of Heckerman’s
similarity-networks technique [58]. This involves asking the expert to provide
a network that will differentiate between a pair of diseases that are regarded
as being difficult to distinguish. This process is repeated for each such disease
pair, and the resulting sub-networks are combined (Section 10.9.4). �

Example 11. MammoNet is a BN for the interpretation of mammograms [76].
It consists of five patient-history features (e.g., age at menarch), two phys-
ical findings (e.g., presence of pain), and 15 mammographic features (e.g.,
calcification-cluster shape).

The design of the BN (structure and probabilities) was developed from
peer-reviewed articles and expert opinion. When tested with a test set consist-
ing of 77 cases, the network had an ROC-curve area of 0.881. At a probability
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threshold of 0.15, the BN exhibited a true positive rate of 0.92 and a true
negative rate of 0.885. �

10.9.2 Sigmoidal Belief Networks

Neural networks can be treated as probabilistic graphical models by regarding
the activation functions as providing probabilities at the hidden nodes. For
example, for the hth hidden node of the MLP defined by (10.22), we can write

p̂(h = 1|x;w) = �

(
w(1→h) +

∑
x

w(x→h)x

)
.

Treating an MLP as a BN produces the concept of a sigmoidal belief network
[107]. The advantages of this interpretation include a principled approach to
handling missing data for neural-type models. Unfortunately, because of the
high fan-ins to the hidden nodes, exact inference is generally not feasible.
Because of this problem, Jordan et al. [75] advocated the use of variational
approximation for sigmoidal belief networks.

10.9.3 Construction of BNs: Probabilities

One can attempt to elicit the required probabilities θ of a BN from a domain
expert; however, obtaining consistent and accurate values from experts is gen-
erally difficult. Conversion of qualitative probabilistic terms into point-valued
probabilities is prone to variation [11], and although several aids for assessing
probabilities from people (such as the probability wheel) are available [147],
the assessment of subjective probabilities is nevertheless a time-consuming
task (though recent work has suggested some ingenious techniques for re-
ducing the burden [37, 126]). An alternative approach is to adjust approxi-
mate subjective probabilities with complete or incomplete data by means of
Bayesian updating (10.1).

Let {ϕ1, . . . , ϕr} be the set of possible values for Xv, and let ρ be a possible
value for pa(v). When data D are complete, and certain assumptions are
adopted [149], vector θv,ρ, equal to(

p(Xv = ϕ1|Xpa(v) = ρ) · · · p(Xv = ϕr|Xpa(v) = ρ)
)
,

can be updated,
p(θv,ρ|D) ∝ p(θv,ρ)p(D|θv,ρ), (10.47)

using a Dirichlet distribution for the prior p(θv,ρ). After updating θv,ρ, a
point-valued probability from p(Xv|Xpa(v) = ρ) can be based on the mode of
p(θv,ρ|D).

Relationship (10.47) can be extended to accommodate incomplete data
by means of the EM algorithm (Section 2.3.3 and Figure 2.22.); however, a
Gaussian approximation is used for this purpose [79] since the exact Bayesian
approach is not tractable in practice [149].
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10.9.4 Construction of BNs: Structures

BNs can be built entirely from background knowledge, or induced entirely
from data, or constructed from a combination of knowledge and data.

The standard approach to constructing BNs has been to elicit knowledge
about G (and possibly θ) from a domain expert [102]. In the Pathfinder ap-
proach to knowledge acquisition [58], a domain expert is presented with pairs
of diseases, d1 and d2, and he is asked to state which manifestations are rele-
vant to the discrimination of d1 and d2. The idea is to select disease pairs that
are often difficult for non-experts to distinguish. A virtue of this approach is
that it enables the construction of a Bayesian network to be decomposed into
a set of simpler networks representing subproblems familiar to the expert.
This results in a set of local DAGs, and the graph-theoretic union of these
DAGs produces a single global DAG.

Given the problems that can occur with knowledge acquisition, there has
been a growing interest in constructing Bayesian networks from available data
[20, 60]. This alternative approach can lead to improved efficiency in network
construction and model accuracy.

The number of directed acyclic graphs (DAGs) that can be constructed
from a set of nodes V grows super-exponentially with |V| (see Table 2.1);
thus, an exhaustive comparison of all possible structures is generally infeasible.
Consequently, various search heuristics have been proposed that are able to
induce DAGs from data [60], such as the K2 algorithm [27].

A simple heuristic search algorithm is greedy search, in which the search
space is the set of all possible DAGs having V as the node set. If the current
position in this search space is Gcur, the set ∆E(Gcur) of all possible DAGs
that are obtainable from Gcur by adding, deleting or reversing a directed
edge is constructed. Let G∗ be the element of ∆E(Gcur) ∪ {Gcur} for which
score(G) is maximal with respect to a given scoring function such as the
Bayesian information criterion (see Section 2.3.2). If G∗ = Gcur then the search
terminates; otherwise, G∗ becomes the next position in search space.

If data are incomplete, one can combine greedy search with the EM algo-
rithm by performing the EM algorithm for each candidate DAG in ∆E(Gcur),
but this is computationally expensive, particularly when random restarts are
used to reduce the chance of an EM run converging to a local optimum. A
less expensive approach is the structural EM algorithm [42] (see also Section
2.3.6 and Section 4.4.5.) in which the search for the best structure takes place
within the EM procedure.

10.9.5 Missing Data

As remarked in Sections 10.9.3 and 10.9.4, the EM algorithm can be used
to induce probabilities and structures from incomplete training sets, but the
assumptions underlying use of the EM algorithm (Section 10.6.4) must be
borne in mind.
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Because a BN can update the probabilities of its variables with respect
to whichever nodes are instantiated, it is able to handle incomplete evidence
intrinsically.

10.10 Class-Probability Trees

Tree-structured classifiers (classification trees) provide a hierarchical approach
to modelling the distribution of a set of class-labelled exemplars D in the
feature space Ω[X] of X. Each node ν of a classification tree T is associated
with a region R(ν, T ) ⊆ Ω[X] that results from a recursive partitioning of
Ω[X] according to the distribution of D within Ω[X].

Starting at the root node of a classification tree, a new case x /∈ D is passed
down the tree until a leaf node is reached. The decision rule associated with
each non-leaf node selects the branch down which x is passed. If x reaches leaf
node νi, and k is the most frequent class in region R(νi, T ), then x is assigned
to class k. If p̂νi,k is the relative frequency nνi,k/nνi

of k in R(νi, T ) then p̂νi,k

provides an estimate of the conditional class probability p(k|x), whereupon T
becomes a class-probability tree.

A tree is grown by recursively partitioning feature space Ω[X] with respect
to D. At each step of the recursive process, there exists a tree T1, and, for each
leaf νi of the tree, there is the possibility of selecting a variable X from X,
and partitioning (or splitting) R(νi, T1) with respect to X. When a particular
partition has been selected, say, R(νi, T1) into regionsR1 andR2, two branches
are grown from νi. The leaf of one branch corresponds to R1, and the leaf of
the other to R2. These two leaves become leaf nodes νj and νk for a larger
tree T2, with R1 = R(νj , T2) and R2 = R(νk, T2).

The most common approach to tree construction is to define a measure
of class heterogeneity associated with a node, and choose the split that most
reduces the average heterogeneity across the child nodes resulting from the
split. A common measure of class heterogeneity at a node is the Gini index∑K

k=1 p̂ν,k(1 − p̂ν,k). This is used by the CART tree-induction algorithm [17].
An alternative approach to tree construction is to choose the split that

gives the maximum reduction in deviance. The deviance of a tree is defined
as

D =
∑

ν

Dν ,

where Dν is the contribution by leaf node ν to the deviance:

Dν = −2
K∑

k=1

nν,k log p̂ν,k.

It follows that, if node s is split into nodes t and u, the reduction in deviance
is given by
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Ds −Dt −Dy = 2
K∑

k=1

[
nt,k log

nt,kns

ns,knt
+ nu,k log

nu,kns

ns,knu

]
Once a tree is grown, it is pruned to prevent overfitting to the training set.

The standard method is to use cost-complexity pruning [17]. In the context of
deviance, the cost-complexity measure for rooted subtree T is

Dα(T ) = D(T ) + α|T |,

where |T | is the number of leaf nodes in T . Parameter α governs the tradeoff
between tree size |T | and the goodness of fitD(T ) to the data. For any specified
α, cost-complexity pruning determines the subtree Tα that minimizes Dα(T ).
The optimal α, and thus Tα, over a range of α values can be found by using
a validation set or cross-validation.

Example 12. Tree induction using deviance-based splits was applied to the
low birth-weight data analyzed in Example 2. Optimal pruning was estimated
by 10-fold cross-validation with respect to deviance. The attributes selected
by the induction were the number of premature labours experienced by the
mother (ptl), the weight of the mother in pounds at the last menstrual period
(lwt), and the age of the mother in years (age) (Figure 10.4). �

ptl < 0.5

lwt < 106

age < 22.5

0.2778 0.8000

0.2137

0.6000

falsetrue

false

falsetrue

true

Fig. 10.4. Tree induced from low birth-weight data. The numbers at the leaf nodes
are estimates of the conditional probabilities p(low birth weight|ptl, lwt, age) based
on the relative frequencies at the leaf nodes.

10.10.1 Missing Data

One of the attractions of using tree-based models is the ease with which
missing values can be handled.

Several approaches to incomplete data have been proposed [17, 129, 56]:

• If the predictors are categorical, create a new category called “missing”.
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• Use surrogate splits [17]. A surrogate split s̃i for node t is the split on
variable Xi that most accurately predicts the action of the best split s�

at node t. If a training set is incomplete, the best split s� on variable Xj

is computed using all the cases that contain a value for Xj . If a new case
has a missing value so that s� is not defined for that case then, among all
the non-missing variables in that case, find the one, Xk, for which s̃k has
the highest measure of predictive accuracy associated with s�, and use s̃k

in place of s�.
• Estimate the probability of a case at node t going down the left and right

branches of t, the probability being conditioned on the attributes used in
the earlier splits encountered in the tree.

10.10.2 Bayesian Tree Induction

In the previous section, a single optimal tree Tα was used for the estimation of
conditional class probabilities, p(y = 1|x, Tα,ΦTα

); where ΦT is a matrix of
the class probabilities at the leaf nodes; however, this does not take account
of the fact that there is uncertainty in selecting Tα rather than some other
tree. The Bayesian response to this uncertainty is to average over all possible
trees.16

For each possible recursive partitioning of feature space Ω[X] with respect
to a data set D, there is a corresponding tree (T,ΦT ). If T is the set of all
possible trees obtained by each possible recursive partitioning, the Bayesian
approach to tree uncertainty is to use

p(y = 1|x,D) =
∑

(T,ΦT )∈T

p(y = 1|x, T,ΦT )p(T,ΦT |D). (10.48)

A problem with implementing (10.48) is that, for real-world problems, the
size of T is vast. Because of this, Buntine [18, 19] replaced T in (10.48) with
a small set of trees having high posterior probabilities.

Buntine [18] suggested a variety of prior distributions p(T ) for trees. These
include the following:

• a uniform distribution for all trees (i.e., p(T ) is constant);
• a slight preference for simpler trees,

p(T ) ∝ ω|nodes(T )|, where ω < 1;

• a prior based on an information-theoretic coding of the complexity of trees
[130, 159].

For the posterior

p(T,ΦT |D) = p(T |D)p(ΦT |T,D),
16 Although theoretically different, the application of “bagging” [16] to tree induc-

tion is stylistically related, and it can perform very well as a non-Bayesian variant.
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Buntine [18] used

p(T |D) ∝ p(T )
∏

l∈leaves(T )

BetaK(n1,l + α1, . . . , n1,K + αK)
BetaK(α1, . . . , αK)

, (10.49)

p(ΦT |T,D) ∝
∏

l∈leaves(T )

1
BetaK(α1, . . . , αK)

K∏
k=1

p(y = k|x, T,ΦT )nk,l+α−1,

where

BetaK(α1, . . . , αK) =
∏K

i=1 Γ (αi)

Γ (
∑K

i=1 αi)
,

and he used a version of (10.49) to probabilistically select candidate splits
during tree growth.

The simplest approach to pruning is to use the tree with the maximum
posterior probability, but this approach is sensitive to the choice of prior.
Instead, Buntine [18] used Bayesian tree smoothing within the determination
of p(y = 1|x,D). In the standard approach, an example is dropped down a
tree until it reaches a leaf node, and the class probabilities associated with
that leaf node are returned. The smoothing approach also averages the class-
probability vectors encountered along the way from the root node to the leaf
node [6].

Another refinement implemented by Buntine [18] was the concept of option
trees. Option trees are a compact way of storing and growing many thousands
of trees together by making note of shared subtrees. In the standard approach
to trees, each interior node is associated with a single test, with subtrees
rooted at the outcomes of the test. In place of a single test, an option tree has
several optional tests, each with their respective subtrees. Only one optional
test is chosen from each set of options.

Example 13. Buntine [19] compared three approaches to inducing class-probab-
ility trees from a data set of 145 hepatitis patients (n = 75 for the training
set and n = 70 for the test set): CART, Bayesian smoothing, and option trees
grown with two-level lookahead. The data set consisted of 20 attributes, in-
cluding the class label, which recorded whether a patient lived or died. The
results are shown in Table 10.2. �

10.11 Probabilistic Models for Detection

Analysis of biomedical data has a long history, and it is only relatively re-
cently that probabilistic models per se have been used. In the main, such
data analysis problems fall into one of three categories. Firstly, given data D,
the goal is in the detection of some component of interest, secondly the use
of the data in a decision making process, and finally the conditioning of the
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Table 10.2. Comparison of CART, Bayesian smoothing, and option trees for the
induction of tree-type models from a hepatitis data set [19] (reprinted with permis-
sion).

Time taken (s)

Method Training Testing Error rate (± std. dev.) Brier score

CART 4.2 0.1 19.8 ± 3.7 0.35

Bayesian smoothing 1.5 0.1 23.1 ± 4.9 0.32

Option trees 131.0 23.1 18.8 ± 3.6 0.26

data, such as filtering or noise removal. If we consider the act of detection of
some component within a data stream as tantamount to making the decision
“is the component present” then we can see that the first and last of the cat-
egories above are in fact fundamentally the same process. In this section, we
briefly review the traditional approaches to these problems and consider the
impact probabilistic modelling has had.

10.11.1 Data Conditioning

We consider as a suitable starting point the use of simple data conditioning
approaches, and take classical linear filtering as a good example. The basis of
such filtering is well covered in standard texts (for a biomedical perspective,
see [e.g., 25]) and will not be covered in detail here. Suffice to say, any digital
linear filter can be represented parametrically via a set of coefficients, a say,
which code the filter kernel. These coefficients may be defined by a desired
spatial or temporal spectral response, for example, or they may be obtained
and adapted based upon the data. The latter, as it requires estimation and
inference, is the area in which probabilistic models have had their major im-
pact (see [109] for a comprehensive review of probabilistic methods in signal
processing). We consider, as case studies, applications to signal autoregressive
filtering.

The autoregressive (AR) filter is, in fact, a generative model for the ob-
served data. We consider a time-indexed stream of data D = {x1, . . . , xt, . . . ,
xT }. The AR process models the observed data as a linear combination of
other (observed) data, normally from the same sequence and from “past” ob-
servations and an additive (white) noise process, η. Hence, for a qth order AR
model,

xt =
q∑

i=1

aixt−i + ηt. (10.50)

This is equivalent to modelling the spectral properties of the data as the
result of passing a white noise process (flat spectrum) through a resonance
filter. This basic model has found much favour in the biomedical community
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especially for electroencephalogram (EEG) analysis [25, 68, 110]. Traditional
methods for estimation of the parameters rely on least-squares optimization.
The major problem with such non-probabilistic approaches lies in the fact
that no measure of uncertainty over the parameters is inferred and hence any
further processing (such as the use of the parameters for decision making or
classification purposes, e.g. as in [69]) is conditioned on the parameters assum-
ing they are known with absolute precision. If the target variable of interest
(i.e. to be inferred) is denoted y, the data D and the parameters of the AR
model w (i.e. the set of coefficients, ai, along with the parameters governing
the statistics of the noise η) then traditional approaches evaluate the most-
probable w∗|D, followed by y|w∗. This is in sharp contrast to probabilistic
approaches in which we wish to infer p(y|D). In a probabilistic setting we
achieve this by marginalization, i.e.

p(y|D) =
∫
w
p(y|w)p(w|D)dw. (10.51)

This means that the intrinsic uncertainty in the parameters, described by
p(w|D), is taken into account during subsequent computation. This is depicted
in the graphical model of Figure 10.5. In [51] the AR model is put into a fully

y w D

Fig. 10.5. Graphical model for simple AR model. The joint density is given as
p(y, w, D) = p(D|w)p(w|y)p(y). After some simple manipulation this leads to the
marginal of interest in Equation (10.51).

probabilistic framework and applied to speech analysis. A similar model was
developed in [115] and applied to EEG analysis. In [114] a Bayesian approach
is taken to the multi-dimensional AR (MAR) model with application to EEG
data once more. In [151] a fully probabilistic MAR approach is applied to
EEG data.

Allowing the set of parameters to become time-varying (i.e., an adap-
tive AR model) gives rise naturally to the Kalman–Bucy filter. This is often
discussed as a recursive least squares adaptive filter, but it is more clearly un-
derstood in fully probabilistic terms. Early discussions in this vein include the
key work of [70] with applications to EEG detailed in [146] and more recently
in a Bayesian setting in [118]. Consider a time evolving extension of Equation
(10.50),

xt =
q∑

i=1

ai,t xt−i + ηt. (10.52)

As data becomes available in a causal fashion, the inference problem is to form
p(at|Dt), where Dt

def= {x1, x2, ..., xt−1, xt} and a def= {a1, ..., aq}. By noting that
Dt = {Dt−1, xt} we may write via Bayes’ theorem
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p(at|Dt) =
p(xt|at,Dt−1)p(at|Dt−1)

p(xt|Dt−1)
(10.53)

This has the form of a sequential update equation, which may be implemented
in a computationally efficient manner. In [21], a Bayesian approach is taken to
multi-variate adaptive AR (MAR) models and applied to a variety of biomed-
ical data to great effect.

Few applications of full probabilistic data conditioning (or feature extrac-
tion) are found in medical image processing, mainly due to the computational
costs involved. Typical solution procedures in this field involve the traditional
approach of inferring features from the image, followed by conditioning on
those features [e.g., 160] in which parameters from a Markov Random Field
are evaluated to perform magnetic resonance image (MRI) analysis. Excep-
tions to this are discussed in [45, 44, 53]. The blossoming field of magnetic
resonance imaging and functional MRI (fMRI) has produced most recent work
in the area of applied probabilistic models [e.g., 116].

Recent work in the area of independent component anaylsis (ICA) [133]
has been applied in biomedical data analysis and pitched in the framework
of probabilistic models. ICA has been applied to problems of both biomedical
signal and image processing. The basis of ICA lies in the generative model (see
Figure 10.6) for the observed data x as a linear combination (mixture) of a
set of unknown canonical sources, s, and some additive (white) noise process,
η,

x = As + η (10.54)

in which A is the mixing process matrix. ICA may be regarded as a model

A

s

η

x

Fig. 10.6. Simple graphical model for ICA in which the observed data, x is condi-
tionally generated via an unknown mixing matrix, A, a set of unknown sources, s
and a noise process with unknown statistics, η.

of mixing of a set of unknown (and desired) data streams (typical of signal
processing applications), or as a method of breaking an observed data set into
feature or basis functions (more typical for image processing). Probabilistic
models for ICA have come to the fore recently [86, 104, 23] as, although
computationally demanding, they offer considerable flexibility. In the blind
source separation problem, only the observations, x, are available, and the
inference of A, s and the statistics of η is ill-posed. ICA makes the tacit
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assumption that the desired sources are maximally independent; that is to
say, their mutual information is minimal. This is a sufficient condition to
make solutions to Equation (10.54) well-posed. With a generative model for
the ICA process and, importantly, an explicit density model for the sources,
p(s), the goal of ICA is succinctly re-cast as the minimization, under the
model, of the mutual information between the sources. This may be achieved
by minimizing the Kullback-Leibler (KL) divergence [28] between the joint
density and the product of the source marginal densities, i.e.

KL[p(s)||
∏

i

pi(si)] =
∫
s
p(s) log

(
p(s)∏
i pi(si)

)
ds. (10.55)

This minimization is shown to be equivalent to the maximization of the proba-
bility of the data under the model [133]. Several probabilistic approaches have
been taken in the literature, from approximate Bayes techniques [136, 86] to
sampling methods [133] and variational learning approaches [104, 23].

Example 14. As a simple example of ICA operation in a biomedical context we
consider the multiple-channel recording of EEG in Figure 10.7. Note the pres-
ence of similar signal components in all channels. As we may look at ICA as
a fully probabilistic model so we may consider the changes in model evidence
as we allow for different priors. In particular, in the context of biomedical sig-
nals such as EEG, we may consider positivity priors on the mixing process –
justified by the arguments of electrical current addition. Figure 10.8(a) shows
the inferred sources with no positivity priors (i.e., the elements of both A and
s lie in R). Model evidence supports three reconstructed sources. In the case
of a positivity prior A ∈ R+, on the other hand, the model evidence is higher
than the previous case but only supports two sources, as shown in plot (b) of
the same figure. �

Although fully probabilistic approaches to the ICA inference problem are
available, computational pragmatism has meant that the majority of biomedi-
cal applications of ICA utilize non-probabilistic approaches with probabilistic
methods being used, for example, to infer the number of proposed sources (see,
Beckmann et al. [e.g., 8], which exploits probabilistic dimensionality inference
methods using PCA to apply to an ICA decomposition of fMRI data).

10.11.2 Detection, Segmentation and Decisions

The basis of probabilistic decision theory lies in the inference of posterior prob-
abilities over the items of interest, be they signal waveforms, image objects,
diagnostic outcomes or class decisions. The inference of such probabilities has
been undertaken using a variety of approaches in the literature, with neural
networks being very popular [40](see Chapter 3 and Section 10.6). The use of
classification methods assumes, in general, the availability of a labelled train-
ing data set; that is to say, the analysis is performed in a supervised manner.
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Fig. 10.7. Three recorded channels of EEG. This fragment represents 10 s of data
at 128 Hz.

(a) (b)

Fig. 10.8. EEG records decomposed into (a) three sources and (b) only two when
positivity priors are put over the elements of A. The model evidence supports case
(b).

In many situations, however, such labels may not exist, and the goal of the
analysis is to perform unsupervised segmentation or clustering of the data.
The breaking of data into regions or sets that are self-similar in some sense
has been extensively applied to biomedical data [25].

We now turn our attention to three areas: cluster analysis, hidden Markov
models, and novelty detection.

10.11.3 Cluster Analysis

We consider a generative model based such that x is generated from one of
a simple set of models, indexed by k = 1, . . . ,K, one of which is chosen at
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any instant via an indicator variable, I. The simple graphical model for this
is shown in Figure 10.9.

I

x

w

w(K)

w(1)

Fig. 10.9. Simple mixture model. Data x is generated by one of a set of K (para-
metric) models, with internal parameters w(k) chosen from the mixture set via the
indicator variable I.

The generative likelihood of datum x under the model is hence,

p(x) =
K∑

k=1

p(I = k)p(x|w(k)). (10.56)

For computational and mathematical convenience most work on such mixture
models takes each parametric model in the set to be a Gaussian (normal).
Indeed this Mixture of Gaussians (MoG) model has been extensively used
in biomedical data analysis. The model parameters (the set of w(k) and the
set of priors p(I = k)) may be simplest inferred using a maximum likelihood
(ML) framework. This gives rise to the well-known Expectation-Maximization
(EM) algorithm [34]. This has the typical problems of overfitting associated
with all ML approaches and the inherent lack of a principled mechanism for
model-order selection; that is, the inference of an appropriate K. Full Bayes
implementations of the MoG are analytically cumbersome, but recent approx-
imations based on variational Bayes learning and reversible jump Markov
chain Monte Carlo (MCMC) have proved valuable [3, 134, 128]. The use of
such fully probabilistic models has not made a profound impact as yet in the
biomedical field. In [134] a reversible-jump MCMC approach was used to seg-
ment epileptic signals and detect tumours in MRI images. In [138] quadratic
approximations (see, for example, [10]) were used to provide model selection
in the unsupervised segmentation of physiological signals.

As case examples of such partitioning approaches, we consider the use
of probabilistic Mixture of Gaussians models in biomedical image and signal
segmentation.

Example 15. The first example result we show is that of an 8-channel EEG
recording from an epileptic subject. A total of 8 hours of data was recorded
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at 128 Hz. A third-order AR model (see Section 10.11.1) was applied and a
Gaussian mixture model fitted. Figure 10.10 shows the resultant log model
evidence and model posteriors for varying numbers of clusters, K. Note that a
K = 2 model is preferred. Figure 10.11 shows 4 s segments of EEG that have
highest probability of class membership. We note that one of these (right-
hand plot) clearly shows the characteristic 3-Hz “spike and wave” activity of
an epileptic seizure. �
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Fig. 10.10. Log evidence (left) and model posteriors for epileptic EEG data.

Fig. 10.11. Sections of EEG (4 s each) with maximal class posteriors. The right-
hand plot is seizure activity.

The same mixture model approach may be easily applied to medical image
segmentation, as the following example shows.

Example 16. Figure 10.12 shows right T2 (left) and proton density (right)
magnetic resonance brain images. The grey levels of these two images form a
simple two-dimensional space that we can model as generated by a mixture
of Gaussians with unknown number. It is found (see [138]) that a K = 5
model is optimal. Figure 10.13 shows the posteriors over each of these five
clusters (white corresponds to p = 1, black to p = 0) along with a grey-level
coding of the resultant cluster indicator labels. We see that, even without the
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benefit of spatial models, or any explicit models of brain structure, a simple
mixture model segments the image into a set of physiologically meaningful
components, including tumours present in the image (bottom left component
in the figure). �

Fig. 10.12. T2 (left) and proton density (right) MR images.

Class  label

Fig. 10.13. Posterior probabilities of cluster membership. Bottom right shows the
resultant class labelling of the MR image. Note the detection of tumours in the 4th
cluster posterior (bottom left).
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10.11.4 Hidden Markov Models

Hidden Markov models (HHMs) are well-established models with a wide range
of applications. The two main components of the HMM are its hidden state
sequence, St, which encodes state changes in the data, and a set of observation
models, which model the within-state dynamics (spatial or temporal) of the
data. Each state is associated with an observation model, which generates
(from the model’s perspective) the observed data, Yt [120]. The graphical
model for a standard HMM is shown in Figure 10.14.

St+1St t+2S St+3

Yt Yt+1 Yt+2 Yt+3

Fig. 10.14. A graphical model representation for the standard Hidden Markov
Model. The set of hidden (latent) states St form a sequence which evolves under a
first-order Markov process. Each state generates an observation, Yt, according to its
observation model.

The HMM has K discrete hidden states, Si, i ∈ [1,K], with the state at a
given time t being qt. From each Si, there is a probability aij of making the
transition to Sj in the next time step:

aij = p(qt+1 = Sj |qt = Si). (10.57)

These probabilities form the transition matrix A.
Observations are taken at time t, and are denoted Yt. These follow some

observation model bj(Yt), defined as:

bj(Yt) = p(Yt|qt = Sj). (10.58)

Due to the Markov property of the graph, the joint density over all states and
observations is reduced into a product over neighbouring pairs, i.e.

p(S,Y) =
T∏

t=1

p(Yt|St)p(St|St−1)p(S0), (10.59)

where the p(S0) term is a prior on the starting state of the chain. Compu-
tationally efficient message-passing approaches may be developed for solu-
tions to inference in HMMs [120, 112], and, in the fully probabilistic frame-
work, variational learning or sampling may be utilized [131, 101]. These fully
Bayesian approaches have been shown to significantly improve performance
in a biomedical setting [152].
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Example 17. As an example of the use of the HMM in biomedical signal pro-
cessing, we look at state changes in sections of EEG, recorded over the pri-
mary motor cortex, corresponding to imagined finger movements [118]; EEG
is known to synchronize and desynchronize with such imagined movements.
Figure 10.15 shows a section of EEG along with state paths from a HMM with
an autoregressive (AR) observation model (upper path of each block) and a
simple two-component Gaussian mixture model operating on the AR coeffi-
cients (lower path). We see that the HMM provides a considerably improved
detection of areas of synchronized, rhythmic, EEG. As the AR observations
model allows for the subsequent projection of the states into the spectral do-
main, we may look at the prototypical spectra associated with each state. This
is shown in Figure 10.16. Note the clear 10 Hz activity associated with the
second state, corresponding to the motor cortex “mu” rhythm. The vertical
dashed lines indicate the time stamp of computer cues and is not used in the
analysis. �

30 32 34 36 38 40

40 42 44 46 48 50

50 52 54 56 58 60

60 62 64 66 68 70 t (seconds)

Fig. 10.15. EEG from an imagined movement experiment (top trace in each block).
An AR observation model HMM gives an excellent state transition sequence (middle
trace) compared with that of a Gaussian mixture model (lower trace).

The fact that HMMs may be cast in the framework of generic graphical
(probabilistic) models also means that the observation model may be of ar-
bitrary complexity. Indeed, it is an elegant quality of such an approach that
the observed variables, within a Markov state, may be rigorously modelled as
generated via another, nested, probabilistic model. Such nested “hierarchies”
of probabilistic models enable the formation, for example, of hidden-Markov
ICA models [113]. These were shown to be useful in the evaluation of state
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Fig. 10.16. Prototypical power spectra associated with each HMM state. Note
that state 2 (right) shows clear association with 10 Hz “mu” activity over the motor
cortex.

changes in biomedical signals in which the observed data were linearly mixed
(a good model for many electro-physiological signals).

The generic framework of HMMs may be extended to include multiple-
state chains that interact in their state-spaces. Such models are usually re-
ferred to as Coupled Hidden Markov Models (CHMMs), and they have found
use in the development of interaction models for different biomedical signals
[127]. The advantage of such models lies in the fact that interactions between
different sources of information (for example, respiration and EEG or ECG
and fMRI responses) may be modelled as interactions between state sequences
rather than requiring explicit observation interaction models. Figure 10.17
shows the graphical model for CHMM with two state chains and first-order
Markov interactions between all states.

St+1St t+2S St+3

Yt Yt+1 Yt+2 Yt+3

Rt Rt+1 Rt+2 Rt+3

Xt Xt+1 t+2X Xt+3

Fig. 10.17. A graphical model representation for a Coupled Hidden Markov Model
(CHMM). The set of hidden (latent) states Rt and St form sequences which co-
evolve under a first-order Markov process. Each state generates an observation, Xt

and Yt, according to its observation model.
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10.11.5 Novelty Detection

One of the key problems in biomedical data processing lies in the fact that,
whilst copious data from the non-patient population may be acquired, the
amount of equivalent patient data may be small. This gives rise to unbalanced
data sets which, without care, can lead to erroneous or biased results. The key
concept of novelty or abnormality detection lies in exploiting the large quan-
tities of non-patient data to build a rich model of “normality” against which
abnormal results may be screened [135, 12]. Novelty detection approaches
have taken two main strands. The first lies in the inference of a model for
the normal-data probability density function, pN (x) say. When an unseen da-
tum, u, is screened it is deemed novel if pN (u) < θ, where θ is a pre-defined
threshold. The latter may be assessed using cross-validation arguments or by
balancing the false positive detection rate and the resultant threshold used to
screen, for example, EEG abnormalities and breast cancers in X-ray mammo-
grams [135, 12, 154]. The second approach utilizes extreme value theory [54] in
which the (limit-form) distribution for the extremal (tail) points in any distri-
bution may be inferred. If the model for “normal” data is of Gaussian mixture
form (which it may always be chosen to be) then the extreme value distribu-
tions are analytic and may be used with ease to detect outlying data. This
approach was used for abnormal EEG detection and tumour determination in
MRI images [137, 132].
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Summary. This chapter discusses Bayesian models of groups of individuals who
may have taken several drug doses at various times throughout the course of a
clinical trial. The Bayesian approach helps the derivation of predictive distributions
that contribute to the optimisation of treatments for different target populations.

11.1 Introduction

Pharmacokinetics (PK) can be defined as the study of the time course of drugs
and their metabolites within the body. In contrast, pharmacodynamics (PD) is con-
cerned with relating drug effect to either dosage regimen or some relevant drug
concentration in the body. While PD is by far the more clinically relevant, PK is
generally easier to measure and better understood, and is thus seen as an important
intermediate.

Put very simply, when we take/receive a single dose of any drug, the amount
(or concentration) of that drug within our bloodstream and bodily tissues begins to
increase as the drug is “absorbed” into and distributed throughout our bodies. As
the drug is transported around the body, typically via the blood, it will come across
various “eliminating” organs, such as the liver, where the drug may be broken down
into other compounds (metabolites), and the kidneys, which may filter unchanged
drug and/or its metabolites into our urine for excretion. Since the administered
dose is finite, absorption (or, more generally, “input”) must eventually either cease
completely or drop to a level such that the amount of drug leaving the body per
unit time is greater than that entering it, at which point the total amount of drug
within the body begins a steady decline back towards zero.

Pharmacokinetic models, whether empirical or based on real physiology, aim
to accurately characterize the three fundamental processes mentioned above: ab-
sorption (or input), distribution, and elimination. They are typically constructed by
considering the body as a collection of “compartments” between which drug transfer
may or may not occur. This leads to a system of ordinary differential equations pa-
rameterized by compartmental volumes and drug transfer rates. Often this system
of equations can be solved analytically but the solution is usually non-linear (as a
function of model parameters) and potentially very complex.



352 David J. Lunn

Regarding pharmacodynamics, different drugs work in different ways, clearly, but
all drugs need to “bind” to specific “receptors” within the body in order to produce
their desired “effect”. Although the mechanism by which this effect is brought about
may be quite complex, it is natural to think that the magnitude of the effect will
be closely related to the extent of binding, i.e., the number of “occupied” receptors,
which will largely be determined by the amount of drug in the vicinity of those
receptors. PK models that can predict the time course of drug within this specific
vicinity are thus invaluable tools for scientifically linking PK and PD observations
together.

Population PK/PD models are concerned with groups of individuals who may
have each taken not one but many single doses at various times throughout the
course of a clinical trial. The general aim is to determine the central tendency
of the concentration–time profile and/or the effect–concentration relationship and
quantify the variability in system parameters remaining after controlling for relevant
covariates. Use of the Bayesian approach greatly facilitates the subsequent derivation
of predictive distributions for clinically relevant (but arbitrarily complex) quantities,
which when combined with a suitable “utility” or “loss” function provide a formal
and coherent means of optimizing treatments for different target populations [23],
for example.

The stochastic elements of population PK/PD models are typically quite straight-
forward and easily handled by existing general purpose software. However, the com-
plexity of patients’ dosing histories coupled with the fact that each dose itself typ-
ically requires a complex and non-linear model means that the deterministic com-
ponent presents some special challenges, regarding mainly model specification but
also MCMC sampling and efficiency. This chapter, as well as providing details of the
various types of model available, discusses these problems in detail and describes ef-
forts that have been made to alleviate them. Parameterization issues, such as model
identifiability and interpretability, are a central theme.

11.2 Deterministic Models

11.2.1 Pharmacokinetics

Empirical models

Perhaps the simplest scenario is when a single dose of drug is administered as an
intravenous (IV) bolus and the data comprise measurements of drug concentration in
the blood. Since the entire dose is injected as quickly as possible into venous blood,
we do not have to worry about modelling the input process; we simply make use of
the fact that we know exactly how much drug is in the system just after time zero
(0+, say) and that only disposition (distribution + elimination) occurs thereafter.
Figure 11.1 shows genuine measured blood concentrations plotted on a logarithmic
scale against time following an IV bolus of some anonymous drug. The logarithmic
scale reveals two distinct (approximately) linear portions, which suggests that a
bi-exponential model on the natural scale will provide a good fit to the data:

C(t) = L1e−λ1t + L2e−λ2t (11.1)
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Fig. 11.1. Observed pharmacokinetic profile on logarithmic scale: • measured drug
concentration; — fitted bi-exponential (see (11.1)).

where C(.) denotes concentration, t denotes time, and L1, L2, λ1 and λ2 are unknown
parameters. Since C(0+) = Dose/V , where V is the apparent volume into which the
dose is initially distributed (unknown), it is natural to reparameterize via L1 =
q × Dose/V and L2 = (1 − q) × Dose/V , where now q and V replace L1 and L2 as
unknown parameters and Dose is, of course, known. Generally speaking, empirical
models for IV boluses all have a similar form, i.e., a sum of exponentials:

C(t) =
Dose

V

d∑
i=1

qi × exp(−λit),
d∑

i=1

qi = 1 (11.2)

where d is chosen according to the apparent number of linear phases on a logarithmic
plot of the data.

Often it is reasonable to assume that the underlying system is “linear”, in the
sense that concentrations/amounts of drug within the body, at any time, are directly
proportional to the dose received. This provides us with a straightforward way of
extending the above model to handle situations where the input process is more
complex. We may perceive any input process as comprising a sequence of infinitesi-
mal bolus doses. Let s be a dummy variable representing time and let R(s) denote
the rate of absorption/input at time s. Then, within each time interval (s, s + ds)
an amount R(s)ds enters the system. If that system is linear then the overall re-
sponse to this sequence of boluses can be obtained by summing the responses to
each individual bolus:

C(t) =

t∫
s=0

Cδ(t − s)R(s)ds (11.3)

where Cδ(.) is known as the unit impulse dose response and is given by (11.2) with
Dose = 1. The two most common choices of input process are zero-order and first-
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order. Zero-order input is where the whole dose is “absorbed” at a constant rate
until there is none remaining, at which point the rate of input drops, suddenly, to
zero:

R(t) =
{

Dose
TI

0 < t ≤ TI
0 otherwise

where TI is the duration of input and may either be known, such as in the case of an
IV infusion, or unknown. With first-order input, R(t) is assumed to be proportional
to A0(t), the amount of unabsorbed drug remaining at time t: R(t) = kaA0(t),
where ka is referred to as the (first-order) absorption rate constant and is typically
an unknown parameter. From this assumption we have that dA0

dt
= −kaA0 and so

R(t) = ka × Dose × e−kat. Both of these forms for R(.) are “compatible” with the
general form for bolus responses given in (11.2), in terms of enabling the integration
in (11.3), and so closed forms for zero- and first-order models are readily available.

It is worth noting at this point that typically we are modelling drug concen-
trations in blood, but not all drug necessarily enters the systemic circulation. For
example, if a drug is taken orally then a significant proportion of each dose may pass
straight through the gut, unabsorbed, and be excreted faecally. Further, that which
is absorbed will (typically) be absorbed into the hepatic portal vein and must con-
sequently pass through the liver, an eliminating organ, before entering the general
circulation. We thus introduce the concept of bioavailability, which is the proportion,
denoted by F , of the total dose that actually enters the site where measurements are
to be made. The impact of this on our modelling equations is that, where appropri-
ate, we must simply replace Dose by F × Dose. However, note that we cannot then
estimate both V and F as they generally only appear in the F×Dose

V
term at the be-

ginning of the model – only their ratio is identifiable. Another notable consequence
of a drug being taken orally, say, is that it may take an appreciable amount of time
before any of the drug appears in the blood, because, for example, if the drug is
administered in solid form then before any absorption can take place it must first
disintegrate and dissolve, as only drug in solution is available for absorption. For
this reason, it is sometimes desirable to incorporate an initial “lag-time” (TLAG,
say) into the input process, e.g.,

R(t) =
{

0 0 < t ≤ TLAG
ka.Dose. exp{−ka(t − TLAG)} t > TLAG

Although still an empirical approach it is possible to re-cast the above mod-
els in a setting with some, albeit tenuous, physiologic interpretability. For a drug
exhibiting d exponential phases of disposition according to a plot of the PK pro-
file, a d-compartment model can equivalently be constructed. (Although the human
body comprises hundreds of separate organs and tissues, we can group together into
“compartments” those that have similar levels of perfusion: blood flow divided by the
product of the tissue volume and a measure of the drug’s solubility in that tissue.)
For example, the bi-exponential given in (11.1) can be obtained from the system
depicted in Figure 11.2. Here every tissue and organ within the body is assumed
to exhibit one of two distinct types of PK behaviour (with respect to the drug in
question). Tissues that are so well perfused by the blood that the concentration of
drug within them is the same as (or similar to) that in the blood itself are “lumped”
together, along with the blood, into a single homogeneous compartment known as
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Fig. 11.2. Two-compartment pharmacokinetic model with standard input and dis-
position.

“the central compartment” or “Compartment 1”. Less well-perfused tissues, such as
fat, say, collectively comprise “Compartment 2” or “the peripheral compartment”.
In the figure, V1 and V2 denote the apparent volumes (in litres) of Compartments 1
and 2 respectively, and the Q.. parameters each represent the “flow-rate” (in litres
per hour) of whatever transport mechanism carries the drug in the indicated di-
rection. We assume that the transport mechanism between Compartments 1 and 2
is such that drug flows through the peripheral compartment rather than into and
out of it separately, and so Q12 = Q21 = Q, say. Q10 represents the “flow” of the
elimination process and is generally referred to as clearance (CL): it is the volume
of blood that is cleared of drug per unit time. Since the eliminating organs are typ-
ically very well perfused, we usually assume that elimination takes place only from
the central compartment. Similarly, since we typically take our PK measurements
from the blood and that is where the drug usually first appears, it is normal to
assume that the input process R(.) inputs drug directly into Compartment 1.

By mass balance, the rate of change of drug in any compartment is given by
“rate in” minus “rate out”. Intuitively, the rate of drug transfer from one place
to another is given by the flow-rate of the transporting medium multiplied by the
concentration of drug within that medium, which here we assume is given by the
concentration of drug in the compartment from whence it originated:

dA1

dt
= R(t) − CL.C1 − Q.C1 + Q.C2 (11.4)

dA2

dt
= Q.C1 − Q.C2 (11.5)

where A1(t), C1(t), A2(t) and C2(t) denote amounts and concentrations of drug
within Compartments 1 and 2 respectively (A1 = C1V1, A2 = C2V2). (Note that
re-expressing the right-hand sides of (11.4) and (11.5) in terms of amounts rather
than concentrations reveals all disposition processes to be first-order.) Excepting
the input process, (11.4) and (11.5) are linear and can be solved easily using the
method of Laplace transforms [17]. Arguably the simplest way of obtaining a full
model in closed form is thus to solve (11.4) and (11.5) for a unit impulse dose,
i.e., R(t) = 0, A1(0+) = 1, A2(0) = 0, and subsequently evaluate the convolution
in (11.3), assuming R(.) is of a suitable form. Solving for a unit impulse dose gives
(11.1) with
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It is worth noting at this point that the model is far from linear in its parameters,
CL, Q, V1 and V2. Indeed, only the most trivial of all PK models can be fully
linearized, and so special considerations are required when it comes to analysis
(see Section 11.3.4). It is straightforward to see how we can expand on the above
ideas to construct, and analyze, more (or even less) complex systems. However, the
parameters of such systems, e.g., flow-rates and volumes, do not generally have a
directly meaningful physiological interpretation. This is partly because there are no
explicit assumptions regarding which tissues/organs constitute each compartment,
but is also due to an overly simplistic view of the way in which drug moves around
the body. Having said that, it stands to reason that (for some drugs at least) we
should expect, and can indeed observe, intuitive correlations between compartmental
parameters and measured covariates, such as between clearance (CL) and indicators
of hepatic or renal function, or between volume parameters and body weight, say.
Thus, such models provide an excellent basis for prediction, in terms of informing
about the design of future clinical trials and/or allowing dosage regimens to be
tailored to suit individual patients, for instance. In the following subsection we look
at a more mechanistic, and thus more directly interpretable, class of models where
each compartment comprises a specific set of tissues and the systemic circulation
is modelled explicitly. The complexity of such models is such that we have only
recently, with today’s computational possibilities, been able to entertain the idea of
their use within a Bayesian context.1

Physiologically-based models

The choice of structure of physiologically-based pharmacokinetic (PBPK) models
[3] is not data driven; instead, it is based on biological information regarding the
route and nature of drug entry, the various processes of elimination, and the phys-
ical/chemical characteristics of the compound under investigation. The key differ-
ences between such models and their empirical counterparts, however, are that the
actual way in which the drug moves around the body, via the blood, is modelled
directly, and that the assumed constituents of each compartment can be stated ex-
plicitly; the physical connections between compartments are thus understood. Thus,
all system parameters are theoretically measurable; that is, they represent real phys-
iological quantities, such as tissue volumes and rates of blood-flow through particular
organs.

PBPK models are often seen in a toxicological context [1, 2] where they are
used with a view to better understanding the relationship between environmental
exposure to “toxic” substances and the onset of adverse health effects (caused, pre-
sumably, by high concentrations of toxin in target tissues). Here, (human) data are

1 See Chapter 1.
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typically quite scarce; therefore, models whose parameters can be measured to some
extent are particularly useful. From a pharmaceutical perspective, one important
role of PBPK models might be to facilitate prediction of the “first dose into man”
for a new drug. From pre-clinical animal data and knowledge of how human phys-
iology compares with that of other mammals, we can guess the values of relevant
human parameters and thus predict concentrations throughout the body for a given
dose. An understanding of the difference between “safe” and toxic concentrations of
the drug will then lead us to a (conservative) first dose. Figure 11.3 shows an ex-
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Fig. 11.3. Physiologically based pharmacokinetic model. Abbreviated compartment
names are elucidated as follows: “ht, ki, br” – heart, kidneys and brain; “gu, st, pa,
sp” – gut, stomach, pancreas and spleen; and “mu, bo, sk, te” – muscle, bone,
skin and testes. Note that orally administered drug is generally absorbed across the
gut wall into the hepatic portal vein. In order to separate any drug that is being
absorbed thus from that which is recirculating into the hepatic portal vein, via the
tissues of the gut, we tend to assume that, as far as the model is concerned, oral
absorption processes input drug directly into the “LIVER” compartment, as shown,
rather than the “gu, st, pa, sp” compartment.

ample of a PBPK model that is intended to be largely self-explanatory. The system
can be described mathematically via:
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dALU

dt
= QLU × (CV EN − CLU/KpLU ) (11.6)

dAhkb

dt
= Qhkb × (CART − Chkb/Kphkb) − RE(t) (11.7)

dAgsps

dt
= Qgsps × (CART − Cgsps/Kpgsps) (11.8)

dALI

dt
= QH .CART + Qgsps.Cgsps/Kpgsps + RA(t)

− QLI .CLI/KpLI − RM(t) (11.9)
dAmbst

dt
= Qmbst × (CART − Cmbst/Kpmbst) (11.10)

dAAD

dt
= QAD × (CART − CAD/KpAD) (11.11)

dAART

dt
= QLU .CLU/KpLU − CO.CART (11.12)

dAV EN

dt
= Qhkb.Chkb/Kphkb + QLI .CLI/KpLI + Qmbst.Cmbst/Kpmbst

+ QAD.CAD/KpAD + RI(t) − QLU .CV EN (11.13)

Here, A. and C. again represent amounts and concentrations of drug in the indi-
cated compartments, and Q. and Kp. denote rates of blood flow and tissue-to-blood
partition coefficients, respectively, the latter being equal, by definition, to the ratio
of drug concentration in the relevant tissue to that in the blood at equilibrium.
The subscripts used for each compartment are defined as follows: LU – lung; hkb –
heart, kidneys and brain; gsps – gut, stomach, pancreas and spleen; LI – liver; mbst
– muscle, bone, skin and testes; AD – adipose; ART – arterial blood; and V EN –
venous blood. (Note that CO is the total cardiac output and that QLU = CO since
all blood must flow through the lungs to be oxygenated; we must also have, for mass
balance, that CO = Qhkb + Qgsps + QH + Qmbst + QAD, where QH represents the
liver’s arterial blood supply and is given by QLI −Qgsps.) Again, the rate of change
of drug in each compartment is given by “rate in” minus “rate out”. Except for
the rate of oral absorption RA(t), the rate of intravenous infusion RI(t), the rate
of renal extraction RE(t), and the rate of metabolism in the liver RM(t), all rates
are given by blood flows multiplied by the concentrations within those flows. Exit
concentrations, however, are typically specified as the relevant tissue concentration
divided by the tissue-to-blood partition coefficient – CV EN cannot be used as this
corresponds to combined (and mixed) venous blood from all compartments (except
the lungs).

Standard sub-models for renal extraction and metabolism are given by the first-
order equations:

RE(t) = CLR × Chkb; RM(t) = CLH × CLI

where CLH and CLR denote hepatic and renal clearances, respectively (CLR rep-
resents the combined effects of glomerular filtration and active secretion). In cases
where doses are high enough that the liver may, at times, be saturated with drug, in
the sense that it has to work at its maximum rate regardless of the concentration,
this can be acknowledged by the specification of a non-linear, Michaelis–Menten
process ([8], pp. 271–277):
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RM(t) =
Vmax × CLI

km + CLI
(11.14)

where Vmax and km are the maximum rate of metabolism and the concentration
of drug at which exactly half the maximum rate occurs, respectively. If the drug is
broken down via multiple metabolic pathways then a corresponding number of such
processes can be added together. In many cases, particularly in toxicological settings,
it is the metabolites themselves that are of primary interest, and so RM(t) forms
the basis for modelling their kinetics, since it represents their “rate of appearance”
within the body.

In general, in all but the simplest of cases, it is not practicable to attempt to
solve systems of PBPK equations, such as (11.6)–(11.13), analytically. Instead we
need to make use of an appropriate numerical integration routine, which, although
increasing analysis time, will, if implemented robustly within a suitable environment,
afford the analyst great modelling flexibility, since extremely complex systems can
be specified straightforwardly at the differential level. (Note that the fact that the
saturable metabolic process in (11.14) is non-linear is then of little consequence.)
We may also use such an approach in order to deal with more basic (or empirical)
systems that are non-linear, in the PK sense, because their parameters are time-
varying.

11.2.2 Pharmacodynamics

The nature of pharmacodynamic measurements depends very much on the drug in
question. The goal is to measure efficacy but this is often only observable as the relief
of various symptoms, the number and measurability of which vary depending on the
condition to be treated. For example, the efficacy of a drug designed to lower a pa-
tient’s heart-rate can be measured easily and directly on a continuous scale, whereas
hayfever (allergic rhinitis) relief, for instance, might best be measured by the patient
subjectively rating, on a categorical scale, the severity of each of his/her symptoms,
e.g., sneezing, runny nose, itchy eyes [15]. In short, PD data types, and hence PD
model types, are diverse, and so it is difficult to discuss them in any generality.
Instead, here we present a few examples that, hopefully, will reflect the essence of
PD modelling. We first note, however, that with a good understanding of the drug’s
mode of action and access to techniques for measuring relevant biomarkers (bio-
logical variables related to efficacy), very powerful (but usually very drug-specific)
multi-compartment mechanistic models relating concentrations to clinical effects can
be constructed – such models will typically best be expressed as a system of ordinary
differential equations, to be solved numerically.

Arguably the commonest choice of PD model, for responses on a continuous
scale at least, is the “E-max” model. Here it is assumed that a quantum of effect
is produced for each molecule of drug that binds to a receptor. Since the number
of receptors is finite the “effect site” can become saturated with drug, at which
point a maximal effect, Emax, is produced. This process is essentially the same as
the Michaelis-Menten process mentioned above (see (11.14)), where receptors now
play the role previously played by molecules of metabolic enzyme, and so we obtain
essentially the same equation:

E =
Emax × Ce

C50 + Ce
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where E denotes drug effect,2 Ce is the concentration of drug at the effect site, and
C50 is the concentration at which 50% of the maximum effect (Emax/2) is produced.
In order that such a model may be “linked” directly to the pharmacokinetics, the
PK model must be able to predict concentrations within the vicinity of the effect
site, that is, Ce(.). For this reason, a separate “effect compartment” may be re-
quired. There exists a simple extension of the E-max model in which C50 and both
occurrences of Ce are raised to the power γ, an unknown “slope” parameter; this is
referred to either as the “Hill equation” or as the “sigmoid E-max model”.

In cases where efficacy measures are binary, such as in anaesthesiology (the
patient is either asleep or not), we would typically want to assume observations
to be distributed according to a Bernoulli distribution with probability parameter
π, and then construct a deterministic model to relate π to concentrations at the
effect site. One possibility here would be to use the Hill equation with Emax = 1,
i.e., π (or1 − π) = Cγ

e /(Cγ
50 + Cγ

e ). Another approach, commonly used throughout
statistics, would be to specify a linear form for the logistic transform of π (or 1−π),
e.g., logit(π) = z0 + z1Ce, where z0 and z1 are unknown parameters. The advantage
of the second type of model, although it is entirely empirical, is that it is easily
extended to accommodate explanatory variables other than Ce (via coefficients z2,
z3, etc.). Also, the logistic approach can be adapted straightforwardly to provide
a model for the cumulative probabilities associated with ordered categorical data,
such as pain scores from analgesic trials or the hayfever symptom ratings alluded to
above [15].

Our final example is of an “indirect response” model. Such a model can be useful
for modelling the dynamics of drugs that are designed to inhibit natural physiologi-
cal processes. As an example, we consider the drug warfarin, which is used to treat
thrombophlebitis and pulmonary embolism as it inhibits blood clotting-factor ac-
tivity (measured via the clotting time of appropriately treated blood samples). Here
we let E denote clotting factor activity, and we assume the normal rates of clotting
factor synthesis and degradation to be zero-order (with rate constant ksyn) and first-
order (with rate constant kdeg), respectively (such a combination of processes leads
to constant levels of clotting factor at steady-state). Warfarin inhibits synthesis and
so the following model is appropriate:

dE

dt
= ksyn

(
1 − Cγ

e

Cγ
50 + Cγ

e

)
− kdegE

where Ce, in this example, is the concentration of warfarin in the blood. (Note that
the above model cannot be expressed in closed form.)

11.3 Stochastic Model

11.3.1 Structure

Here we describe a typical Bayesian population PK/PD model. We begin with the
PK aspects and subsequently link these to the pharmacodynamics. Suppose we have
a number (ni) of PK measurements made on each of K individuals, who are indexed

2 Throughout this chapter, E will denote drug effect and not an error function.



11 Population PK/PD Models 361

by i. Denote the jth measurement for individual i by yij and the associated time
by tij . Further, denote the p-dimensional vector of (unknown) PK parameters for
individual i by θi and the variance of the residual errors (e.g., observed minus
modelled concentrations) by σ2. At the first of three stages in our statistical model
we typically assume

p(yij |θi, σ
2) ∝ N(C(θi; tij ;Di), σ2)I(yij ∈ (lij , uij)), i = 1, ..., K, j = 1, ..., ni

(11.15)
where, throughout, p(A|B) denotes the conditional probability distribution of A
given B. Here the yij are either concentrations or log-concentrations depending on
whether normality or log-normality is the more appropriate assumption for the data.
The deterministic PK model for the relevant compartment C(.), which is a function
of individual-specific parameters θi, time tij , and individual i’s dosing history Di, is
defined on the same scale. The I(.) term in (11.15) above is an indicator function that
equals one if yij ∈ (lij , uij) and zero otherwise. This is used for handling censored
data; that is to say, measured concentrations that fall below a critical value known as
the “limit of detection” (LOD). Such measurements are deemed insufficiently accu-
rate and are thus not reported. The missing data are treated as unknown parameters
and assigned distributions that give no support to values outside the known lower
and upper bounds lij and uij , e.g., lij = 0, uij = LOD. For non-censored data,
i.e., observed values, lij and uij are given by −∞ and +∞ respectively.

At the second stage of the model we make distributional assumptions regarding
the individual-specific PK parameter vectors θi:

p(θi|µ,Ω) = MVNp(Ziµ,Ω), i = 1, ..., K (11.16)

where MVNp(., .) denotes a p-dimensional multivariate normal distribution, Zi is
a p × q covariate-effect design matrix for individual i, µ is a vector of q fixed ef-
fect parameters, i.e., intercepts and gradients, which represent the population mean
pharmacokinetics, and Ω is a p × p variance-covariance matrix that represents the
inter-individual variability of PK parameters. In order to make this assumption ro-
bust, we first need to ensure that the PK model C(.) is parameterized in terms of
quantities for which any value on the whole real line is physically feasible (so that a
normality assumption for each θi makes sense); for example, the natural logarithm
of clearance (CL). We also need to ensure that the model is identifiable by choosing
a parameterization such that all vectors in R

p give rise to distinct PK profiles. These
issues are discussed fully in Section 11.3.3. (Note that it is not necessary to restrict
the covariate model to a linear form, i.e., E [θi|µ,Ω] = Ziµ. We do so here for ease
of exposition and because it leads to a closed-form full conditional distribution for
µ; however, any functional form is generally permissible.)

The third stage of our statistical model comprises the prior specification, in
which prior distributions are assigned to σ2, µ and Ω:

p(σ2) = IG(a, b); p(µ) = MVNq(η,H); p(Ω) = IW(S, �) (11.17)

where IG(., .) and IW(., .) denote inverse-gamma and inverse-Wishart distributions
respectively. As this is the final stage of the model, the values of a, b, η, H, S and �
must be stated explicitly. A discussion of appropriate values for these hyperparam-
eters is given in the following subsection (11.3.2).

In cases where there are no PD data, interest is focused on inference about σ2,
µ and Ω. However, when drug effect has been measured, the pharmacokinetics are
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more of an intermediate interest, and it is the PK model’s ability to predict con-
centrations in some (hypothetical) “effect compartment” that becomes important.
The main objective is then to use these concentrations (as a primary predictor) to
construct a realistic model for drug effect that will allow the relationship between
efficacy and various covariates, including dosage regimen, to be explored.

Suppose we have n′
i effect measurements for individual i, indexed by j′ (i.e., j′ =

1, ..., n′
i). Denote these by eij′ and the times at which they were taken by τij′ . At the

first stage of the statistical model, we assume that each eij′ is a realization from some
appropriate distribution D(.), which is parameterized in terms of a deterministic
PD model and some additional distributional parameters ζ (e.g., variance). The PD
model, E(.), is a function of an individual-specific r × 1 vector of PD parameters φi

and the pharmacokinetics at time τij′ ,3 which are determined by θi, τij′ and Di:

p(eij′ |φi, θi, ζ) = D(E(φi; θi; τij′ ;Di), ζ), i = 1, ..., K, j′ = 1, ..., n′
i (11.18)

Typically the PK model is compartmental and can predict concentrations in the
vicinity of where the drug’s effect takes place. In such cases, we usually assume that
the dynamics depend upon the kinetics only through these “effect compartment”
concentrations, Ce(.):

E(φi; θi; τij′ ;Di) = h(φi; Ce(θi; τij′ ;Di))

which simplifies the model expression. A simple example of a PK-PD “link model”
is, for an efficacy measure on a continuous scale:

p(eij′ |φi, θi, ζ) = N(h(φi; Ce), σ2
e)

where σ2
e denotes the residual error variance for the PD data, and h(.) is given by

the classic E-max formula:

h =
Emax × Ce

C50 + Ce
=

eφi1Ce

eφi2 + Ce
, say.

If the deterministic PD model is parameterized appropriately, bearing in mind
the same issues regarding robustness as were raised for the PK model, then second-
and third-stage assumptions analogous to those made for the pharmacokinetics may
be specified:

p(φi|ψ,Σ) = MVNr(Wiψ,Σ), i = 1, ..., K (11.19)

p(ζ) = Dζ(ξ); p(ψ) = MVNs(χ,X); p(Σ) = IW(U, υ) (11.20)

Here Wi is an r × s covariate-effect design matrix, ψ is a vector of s fixed-effect
parameters, and Σ is the r × r inter-individual variance-covariance matrix for PD
parameters. In addition, Dζ(.) denotes an appropriate prior for the distributional
parameters contained in ζ, e.g., inverse-gamma for the case where ζ represents a
residual variance term, and ξ, χ, X, U and υ are hyperparameters that should be
assigned fixed values (see below).

3 Actually, in general, the dynamics may depend on the entire (recent) history of
the PK system, but, for the sake of simplicity, such models are not discussed here.



11 Population PK/PD Models 363

11.3.2 Priors

The distributional forms of priors have traditionally been chosen for mathematical
convenience, that is, so that closed form posteriors/full conditionals may be derived
analytically. For example, an inverse-gamma prior is typically specified for σ2 since
that is the form of the normal density assumed for each yij when it is considered as a
function of σ2 (thus all terms involving σ2 have an inverse-gamma form, which leads
to an inverse-gamma full conditional). With the availability nowadays of several re-
liable methods for sampling from non-standard distributions, however [18, 10, 9, 20],
it is worthwhile giving a little more thought towards one’s choice of priors. Here,
for the sake of simplicity, and also because our model is somewhat generic, we have
adopted the traditional approach, but, for specific problems, prior uncertainty re-
garding σ2, say, might be better expressed via, for example, a log-normal or uniform
distribution [19]. The choice of a = b = 0.001 in (11.17) has become somewhat
of a standard throughout (applied) Bayesian statistics for “objective” (minimally
informative) analyses. While this specification gives rise to a diffuse prior, with a
variance for 1/σ2 of 1000, the location (E[1/σ2] = 1) is quite arbitrary – alternative
combinations of a and b can provide equally vague specifications but with more ap-
propriate means. Regarding the specification of more informative priors, we need to
match our choice of a and b with whatever expression of prior beliefs seems most
natural. In many cases this will be in terms of quantiles for the standard deviation
σ (rather than for σ2 or 1/σ2) and so experimentation with different values of a and
b within a suitable simulation package may be required.

The multivariate normal prior given for µ in (11.17) is a natural choice and
is much easier to specify. Most applied scientists are comfortable with normal dis-
tributions and can therefore translate their prior uncertainties into appropriately
sized variance terms. For a minimally informative specification, we typically write
H = ε−1Iq, where Iq is the q × q identity matrix and ε−1 � 0, e.g., 1002. Generally
speaking, the value of η is set equal to some prior point estimate for µ. Elements of
η that correspond to gradient parameters are typically set equal to zero, to reflect an
indifferent prior opinion as to the existence of covariate effects, and elements corre-
sponding to intercepts are consequently set equal to prior guesses for the population
mean values of each PK parameter.

Our prior for Ω in (11.17) constitutes a rare example of when compatibility be-
tween prior and likelihood is (almost) a practical necessity. If we wish to formulate
the model in terms of an entire inter-individual variance-covariance matrix, rather
than just the variance terms along with an assumption of independence, then the
Wishart/inverse-Wishart is the only closed form distribution that naturally imposes
the appropriate constraints: symmetric positive-definiteness. If an informative prior
is required then, since the distribution is multidimensional and quite complex, exper-
imentation with different values of � and S within a software package that is capable
of simulating from Wisharts, such as WinBUGS [21, 14], is advisable. However, we
rarely wish to be informative about covariance matrices; therefore, we typically set �
equal to p (the dimension of the matrix) to obtain the vaguest possible proper prior.
The prior mean for Ω−1 is �S−1; therefore, a sensible choice for S is �Ω0 where Ω0

is some prior point estimate for Ω.
The above discussion of priors for the population model’s PK component is

clearly also applicable to the PD component and so the hyperparameters in (11.20)
may be chosen in a similar way.
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11.3.3 Parameterization Issues

In order for our assumption of multivariate normality in (11.16) to always make
sense, we should ensure that the deterministic PK model is parameterized in terms
of quantities for which any real value is physically feasible. Most “natural” PK pa-
rameters, such as flow rates and compartmental volumes, are defined on the positive
real line; therefore, a logarithmic transform is usually appropriate. However, we
cannot just choose any set of such parameters. For example, a multi-compartment
model parameterized in terms of (logarithms of) the rate constants associated with
each exponential phase of disposition (e.g., λ1, λ2, etc., in (11.2)) would not be
identifiable. This is because, without an ordering constraint on those rate constant
parameters, each parameter would be free to represent any one of the various phases
of disposition, and may thus represent different phases during different iterations of
our MCMC sampler, which might lead to invalid inferences being drawn from the
posterior samples. This type of unidentifiability is referred to as “flip-flop”. The ba-
sic problem here is that there exist separate areas of parameter space that give rise
to exactly the same model. The solution is to always choose parameterizations such
that every single vector in R

p gives rise to a distinct PK profile.
When choosing a parameterization, it is worth bearing in mind that, ideally, we

would like to relate various covariates (linearly) to our selected parameters. Thus,
parameterizations with some physiologic interpretability, however tenuous, may be
advantageous. (Note that the above issues also apply to the parameterization of the
PD model.)

Because of the diversity of PD models and data types, there is little value here
in discussing parameterizations for specific models. Since E-max models are quite
widely used, however, we simply note that φ′

. = {ln Emax, ln C50, ln γ} is an appropri-
ate parameterization for incorporating the Hill equation, E = EmaxCγ

e /(Cγ
50 + Cγ

e ),
into the stochastic model described in (11.15)–(11.20) above.

Returning to pharmacokinetics, the following parameterization is usually appro-
priate for empirical compartmental systems:

θ′
i = {�(βi), ln δi, ln αi} (11.21)

where βi, δi and αi are individual-specific row-vectors of relative bioavailabilities,
disposition parameters, and absorption/input parameters, respectively. The βi vec-
tor is empty unless more than one formulation of the drug is to be modelled, in which
case a “reference” formulation must be chosen, the bioavailability of which (Fref ,
say) cannot be estimated (because only its ratio with the initial volume of distribu-
tion can be identified). The elements of βi then represent the bioavailabilities of the
remaining formulations relative to the reference formulation. In cases where dosing
histories involve IV doses, IV is normally chosen as the reference formulation and
then an appropriate choice for �(.) is the logistic function, i.e., �(x) = ln(x/(1 − x)),
as any relative bioavailabilities must consequently lie in (0, 1); otherwise �(.) = ln(.).

The δi vector comprises the drug’s clearance, any “distributional clearances”
(e.g., Q12 = Q21 = Q from Figure 11.2), and the volume of each compartment (ex-
cept for when some compartments are ostensibly the same and ordering constraints
on their volumes are required to make the model identifiable – we then parameterize
in terms of volume differences). All of these disposition parameters are intrinsically
scaled by the bioavailability of the reference formulation, e.g., CL/Fref , Q/Fref ,
since they all generally enter the system equations via flow-rate/volume ratios and
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V1 cannot be separated from Fref . Some typical elements of αi are as follows: initial
lag-times; absorption durations for zero-order models; and, for first-order models,
the absorption rate constant ka minus the rate constant associated with the first
exponential phase of disposition, to avoid “flip-flop”.

It is worth noting that the PK parameter vector should have the same meaning,
and length, for all individuals, to avoid nonsense population assumptions in (11.16).
It is therefore convenient if each individual’s dosing history comprises the same set of
absorption/input processes (and hence formulations). If this is not actually the case,
however, because not all individuals received all formulations of the drug, then those
individuals with incomplete data may be thought of as having received a number
of “virtual” or “dummy” doses (with no associated data). The resulting samples for
the corresponding “dummy” input parameters constitute predictive distributions for
those individuals.

The parameterization of PBPK models depends very much on what information
about the system/drug has already been measured and, also, what might realistically
be learnt from the observed data. We first examine the situation where we simply
wish to fit a single PBPK profile to whatever data are available. Normally we will
have fairly accurate measurements regarding the values of each blood flow Q. and of
each compartmental volume V.; therefore, these may either be fixed (and assumed
known) or assigned informative priors. Note, however, that all volumes should sum
to the assumed body weight (assuming the body’s density to be around 1), and all
arterial blood flows should sum to the total cardiac output CO. One way of imposing
such constraints is to parameterize in terms of fractions of the relevant total and
then apply the type of sub-model normally used for constraining probability vectors;
for example, [15]. In general, we may wish to be considerably less informative about
other system parameters, e.g., Kp., Vmax, km, ka, and since these are typically
defined on the positive real line, it seems appropriate, again, to parameterize in
terms of their (natural) logarithms. Note that, with PBPK models, we have no
control over “flip-flop” between any exponential absorption and disposition terms
that might appear in the analytic solution since we do not actually know what
that solution is. Aside from this, identifiability is rarely an issue when fitting single
profiles as the level of information supplied about each Q. and V. identifies the
associated compartment. In contrast, if we have population data and wish to allow
inter-individual variability for each Q., V. and Kp. (which is unlikely) then it may be
necessary to impose ordering constraints to distinguish between some compartments
(e.g., “ADIPOSE” and “mu, bo, sk, te” in Figure 11.3).

11.3.4 Analysis

We typically analyze Bayesian population PK/PD models using a Gibbs-Metropolis
hybrid sampler [7, 18, 10], as detailed below. At each iteration, random samples from
the full conditional distributions of the following quantities are sought: ζ, σ2, Ω, Σ,
µ, ψ, each θi, each φi, and each censored yij . The full conditional distribution of ζ
cannot be derived until a model for the PD data and a corresponding prior for ζ have
been specified, but the remaining population parameters (σ2, Ω, Σ, µ and ψ) all have
closed-form full conditionals from the same distributional families as their priors.
Due to the non-linearity of the deterministic PK model, and the likely non-linearity
of the PD model, closed form full conditionals for the random effects vectors θi

and φi are not available. In order to draw samples for them during the analysis, we



366 David J. Lunn

make use of a series of (univariate) adaptive “current-point” Metropolis-Hastings
[18, 10] algorithms4, which converge within the convergence of the encapsulating
Gibbs sampler [22]. Let l index individual elements of θi and φi. Candidate samples
at iteration m for θil and φil, respectively, are drawn from the following proposal
distributions:

N(θ(m−1)
il , vil); N(φ(m−1)

il , wil)

where θ
(m−1)
il and φ

(m−1)
il denote the (m − 1)th samples for θil and φil respec-

tively. The proposal variances vil and wil are initially set equal to very small values,
e.g., 10−6, to ensure rapid initial “drift” towards the target distribution’s mode.
They are then periodically adjusted based on each algorithm’s recent acceptance
rate with a view to eventually obtaining an acceptance rate of between 20 and 40
per cent for each variable (an intuitively reasonable compromise between frequency
and size of movement). It is important to note that adaption must not be allowed
to continue indefinitely, to ensure convergence of the underlying Markov chains.

The full conditional distribution of each censored yij is given by the right-hand
side of (11.15), since that is the only distribution in the model involving the relevant
quantity. Hence, at each iteration we are essentially imputing values for the miss-
ing data that directly inform about the values of individual-specific PK parameter
vectors (and σ2) through the fact that they always lie in the interval (lij , uij).

11.3.5 Prediction

The joint predictive distribution for new individuals’ PK and PD parameters, θ∗

and φ∗ respectively, say, is given by

p(θ∗, φ∗|y, e) =
∫

· · ·
∫

p(θ∗, φ∗|µ,Ω, ψ,Σ)p(µ,Ω, ψ,Σ|y, e)dµdΩdψdΣ

(11.22)
where y and e denote all observed PK and PD data respectively. The right-
hand side of (11.22) is the expectation under the posterior p(µ,Ω, ψ,Σ|y, e) of
p(θ∗, φ∗|µ,Ω, ψ,Σ) and can thus be approximated by the mixture distribution

M−1
M∑

m=1

p(θ∗, φ∗|µ(m),Ω(m), ψ(m),Σ(m))

where µ(m), Ω(m), ψ(m) and Σ(m) denote the mth posterior samples for µ, Ω, ψ
and Σ, respectively, and M is the total number of such samples. According to the
stochastic model defined in (11.15)–(11.20) above, we have that

p(θ∗, φ∗|µ(m),Ω(m), ψ(m),Σ(m)) = p(θ∗|µ(m),Ω(m)) × p(φ∗|ψ(m),Σ(m))

= N(Z∗µ(m),Ω(m)) × N(W∗ψ(m),Σ(m))

where Z∗ and W∗ are covariate design matrices that define the population of inter-
est. Hence we can obtain samples from p(θ∗, φ∗|y, e) during the analysis via:

4 Clearly other methods could be used instead. A multivariate Metropolis algorithm
might improve mixing but is much harder to “tune” in practice.
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θ∗
(m) ∼ N(Z∗µ(m),Ω(m)), φ∗

(m) ∼ N(W∗ψ(m),Σ(m)), m = 1, . . . , M

Appropriate Bayesian utility/loss functions for enabling formal decision making will
typically be specified in terms of “true” concentrations C(.) or effects E(.) [23].
Predictive distributions for these quantities can be derived simply by evaluating the
relevant deterministic model component for each sample from p(θ∗, φ∗|y, e), i.e.,

C∗
(m) = C(θ∗

(m)), E∗
(m) = E(φ∗

(m); θ
∗
(m)), m = 1, . . . , M

(where the dependence of C(.) and E(.) on both time and dosing history has been
suppressed for notational convenience).

11.4 Implementation

As we have seen, the deterministic components of (Bayesian) population PK/PD
models can be quite complex – indeed, in many cases, they cannot be expressed in
closed form; in contrast, the stochastic components are fairly standard. Not only does
each single dose require a potentially complex PK model but also each individual
may receive many such doses, perhaps of different formulations of the drug, during
the course of a clinical trial. All this complexity renders the model specification
process, within any general purpose software package, both tedious and error-prone,
to the point where, for many applications, a specialized interface for describing the
problem at hand is considered a practical necessity.

We conclude this chapter with a brief discussion of two such interfaces, which
both extend the WinBUGS framework [21, 14]. One other package that has been
designed with (PB)PK/PD models in mind is MCSim [6].

11.4.1 PKBugs

The main purpose of the PKBugs interface [16, 13] is to simplify the specification
of population PK/PD models by providing a means of translating what is a simple
and intuitive shorthand format for describing complex dosing/event histories into a
language that WinBUGS can understand. This format is the same as that conceived
by the authors of NONMEM [4], that is, a rectangular data file with each row
(or record) corresponding to an event (e.g., dose, observation) and each column,
referred to as a data item, having a specific meaning (e.g., event time, amount of
dose received). In order to describe how the software works, it is useful to first
define a “standard” class of models. A “standard” model, in the context of PKBugs,
is any model with the stochastic structure defined by (11.15)–(11.17), where the
deterministic PK component C(.) satisfies the following conditions. Only empirical
models describing standard one-, two-, or three-compartment disposition kinetics
(with input into and elimination from the central compartment) are permitted, but
any number of doses with the following input characteristics may be combined: (i)
intravenous; (ii) first-order; (iii) zero-order; (iv) first-order with initial lag; and (v)
zero-order with initial lag. (The parameterization of C(.) is that given by (11.21).)
Standard models are specified in PKBugs via two simple steps: (i) data entry, where
the entire event history for all individuals is loaded into the system so that it can be
parsed; and (ii) basic user input through simple dialogue boxes and menu commands,



368 David J. Lunn

during which the model structure, the hyperparameters, and suitable initial values
for each stochastic variable are all defined. The model may then be analyzed directly
using WinBUGS in the normal way. For more complex problems, the model should
be specified as if it were standard and then the system can be instructed to generate
equivalent WinBUGS code, which may be modified accordingly. An important design
feature of such code is that it is virtually identical for all problems/data sets, because
the vast majority of problem-specific detail is “hidden” within the block of data that
is generated immediately beneath the model code. Thus, the code itself is concise
and easy to follow.

In the context of this chapter, the most obvious use for this code generation
facility is to enable linking of the specified population PK model to arbitrary PD
models and data types. Indeed, the user now has the full generality of WinBUGS
to hand and can exploit this in any way they choose. For example, it is straightfor-
ward to incorporate extra levels into the hierarchical model for modelling additional
layers of variability [11, 12], or to replace normality assumptions with Student-t as-
sumptions to provide robustness against outliers [24]. Alternatively, we may require
a more sophisticated model for the residual error structure, or we might wish to
acknowledge measurement error in some of our covariates [5], for instance.

11.4.2 WinBUGS Differential Interface

Here, we describe work in progress, which is towards implementing a differential
equation solving interface within WinBUGS. Although the interface is being de-
signed primarily for handling PBPK/PD models, there is clearly a much broader
application area; therefore, this is a significant step forward for the software as a
whole. Various integration routines and new BUGS-language constructs have al-
ready been implemented in a prototype version of the interface. For example, the
system of ODEs required to describe the two-compartment model in Figure 11.2,
with first-order input, say, is specified as follows:

D(C[1], t) <- (R - CL * C[1] - Q * C[1] + Q * C[2]) / V[1]
D(C[2], t) <- Q * (C[1] - C[2])/ V[2]
R <- F * Dose * ka * exp(-ka * t)

The numerical solution to the equations is accessed via syntax of the type:

model[1:n, 1:2] <- ode(C0[1:2], time[1:n], D(C[1:2], t),
origin, tol)

where C0[.] contains the initial conditions (C0[1] <- 0; C0[2] <- 0 in this case),
which pertain to the time given by origin (usually zero); time[.] is the grid of time
points at which the numerical solution is required; D(C[.], t) specifies the system
of ODEs to be solved (as above); and tol is the required level of accuracy. The next
phase of development will entail the design of language constructs for representing
arbitrarily complex input/absorption processes. A key design feature will be that the
constructs facilitate automatic selection (by WinBUGS) of an appropriate method
of integration for each specific problem.
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Summary. A practical Bayesian approach for inference in neural network models
has been available for ten years, and yet it is not used frequently in medical ap-
plications. In this chapter we show how both regularization and feature selection
can bring significant benefits in diagnostic tasks through two case studies: heart
arrhythmia classification based on ECG data and the prognosis of lupus. In the
first of these, the number of variables was reduced by two thirds without signif-
icantly affecting performance, while in the second, only the Bayesian models had
an acceptable accuracy. In both tasks, neural networks outperformed other pattern
recognition approaches.

12.1 Introduction

There are many strong theoretical reasons why the Bayesian framework for statis-
tical inference is attractive. But for the hard-pressed practitioner, the question is
whether Bayesian techniques outperform conventional maximum likelihood meth-
ods sufficiently to justify the extra effort they require for implementation and the
additional training time required.

The purpose of this chapter is to examine this question through two medical case
studies which use Automatic Relevance Determination (ARD), a Bayesian method
for variable selection, to reduce the number of inputs to a non-linear model. Feature
selection is an important tool in the medical domain, because causal links between
symptoms or clinical measurements and disease are hard to establish, so it is often
difficult to reason a priori about the relevance of particular inputs. Instead, it is
common to take a large number of measurements to avoid missing out anything
that might have a bearing on a diagnosis. Of course, a large number of inputs makes
training a model more difficult, and can also affect the model’s accuracy.

The second section of this chapter contains a description of the Bayesian tech-
niques that we used. The third and fourth sections describe applications to arrhyth-
mia classification based on ECG data and the diagnosis of lupus (an autoimmune
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disease) respectively. The final section summarises the main conclusions from these
studies.

12.2 Bayesian Feature Selection

The Bayesian approach to statistical inference was introduced for neural networks
in [14, 16, 15]. In this section we first give a brief overview of the Bayesian view of
parameter estimation,3 and then show how it can be used to select relevant input
variables.

12.2.1 Bayesian Techniques for Neural Networks

Bayesian statistics is very simple in principle. Bayes’ theorem tells us that the pos-
terior density of a model’s parameters w, given a dataset D, is given by

p(w|D) =
p(D|w)p(w)

p(D)
, (12.1)

where p(w) is the prior, p(D|w) is the dataset likelihood (known as the evidence
for w), and p(D) is a normalisation factor that ensures that the posterior density
function integrates to 1. It is given by an integral over the parameter space:

p(D) =
∫

p(D|w′)p(w′) dw′. (12.2)

Once the posterior has been calculated, every type of inference is made by integrating
over this distribution. For example, to make a prediction at a new input x∗, we
calculate the prediction distribution p(y|x∗, D) by the integral

p(y|x∗, D) =
∫

p(y|x∗, w)p(w|D) dw. (12.3)

A point prediction uses the mean of this distribution, given by

E(y|x∗, D) =
∫

y p(y|x∗, D) dy, (12.4)

while the variance of the prediction distribution (given by a similar integral) can
be used to generate error bars. The problem is that evaluating integrals such as
(12.2) and (12.4) is very difficult because they are only analytically tractable for
a small class of prior and likelihood distributions. The dimensionality of the inte-
grals is given by the number of model parameters, so simple numerical integration
algorithms break down. This is why the use of approximations to the posterior (the
evidence procedure [14]) and numerical methods for evaluating integrals (Monte
Carlo methods combined with Markov Chain sampling [18]) play such a large role
in the use of Bayesian methods with neural networks.

The prior probability distribution for the weights of a neural network4 should
embody our prior knowledge of the sort of network mappings that are “reasonable”.

3 See also Chapter 1
4 A tutorial on multi-layer perceptrons in given in Chapter 3.
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In general, we expect the underlying generator of our datasets to be smooth, and the
network mapping should reflect this belief. A neural network with large weights will
usually give rise to a mapping with large curvature, and so we favour small values
for the network weights.

The requirement for small weights suggests a Gaussian prior distribution with
zero mean of the form

p(w) =
1

ZW (α)
exp

(
−α

2
‖w‖2

)
, (12.5)

where α represents the inverse variance of the distribution and the normalisation
constant is given by

ZW (α) =
(

2π

α

)W/2

. (12.6)

Because α is a parameter for the distribution of other parameters (weights and
biases), it is known as a hyperparameter. One of the strengths of the Bayesian for-
malism is that we can reason probabilistically with hyperparameters in a natural
extension of inference for parameters.

The overall cost function for fitting a model is found by taking the negative
log of (12.1). Ignoring the normalisation constant, which does not depend on the
weights, the prior is equivalent to a weight error term (after taking the negative log)
of the form

αEW =
α

2
‖w‖2 =

α

2

W∑
i=1

w2
i . (12.7)

The log likelihood term is − log p(D|w) and is given by the entropy or cross-entropy
data error ED for classification tasks, and by a scaled sum-of-squares error

βED =
β

2

N∑
n=1

{y(xn; w) − tn}2 (12.8)

for regression tasks, where β represents the inverse variance of a Gaussian output
noise model. Putting together (12.7) and (12.8), we derive the overall error (or misfit)
function

E = S(w) = βED + αEW . (12.9)

In the case of a classification model, the coefficient β is omitted.
The evidence procedure is an iterative algorithm for determining optimal weights

and hyperparameters. It is not a fully Bayesian approach because it searches for
optimal hyperparameters instead of integrating them out; it is equivalent to the
type II maximum likelihood method [1]. Nevertheless, it has given good results on
many applications [21], and is considerably less computationally costly than fully
Bayesian procedures such as Monte Carlo integration.

The aim of the evidence procedure is to find the most probable weights wMP ,
which involves optimising S(w) for fixed α and β, and the most probable values of
the hyperparameters αMP , βMP , which involves optimising the log evidence

ln p(D|α, β) = − αEMP
W − βEMP

D − 1
2

ln |A|

+
W

2
ln α +

N

2
ln β − N

2
ln(2π), (12.10)
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as a function of α and β. This equation is derived by approximating the weight
posterior distribution p(w|α) by a Gaussian centered at wMP with variance given
by the inverse of A, the Hessian of S(w). The constants W and N represent the
number of weights and data points respectively.

We can summarise the process as follows:

1. Choose initial values for the hyperparameters α and β. Initialise the weights in
the network.

2. Train the network with a suitable optimisation algorithm to minimise the misfit
function S(w).

3. When the network training has reached a local minimum, the hyperparameters
can be re-estimated with the following formulae:

αnew =
γ

2EW
(12.11)

βnew =
N − γ

2ED
, (12.12)

where γ is defined as

γ =
W∑

i=1

λi

λi + α
. (12.13)

In this equation, λi + α are the eigenvalues of A. These re-estimation formulae
can be iterated if desired. Note that although these formulae only apply when
S(w) is at a local minimum, it is possible to re-estimate the hyperparameters
more frequently. However, the formulae use the eigenvalues of the Hessian matrix
A, so are computationally costly.

4. Repeat steps 2 and 3 until convergence of α and β.

The additional computational cost of the evidence procedure over standard maxi-
mum likelihood training can be significant. Standard error backpropagation to calcu-
late network derivatives is O(NW ). The computation of the Hessian is O(NW 2), and
calculation of the eigenvalues (needed for the hyperparameter updates) is O(W 3).

12.2.2 Automatic Relevance Determination

Selecting relevant input variables from a large set of possibilities is a common prob-
lem in applications of pattern analysis. Principal component analysis gives a reduced
set of variables, but in an unsupervised way (i.e. it doesn’t take account of the input-
output mapping) while canonical variates is only applicable to linear classification
and has an upper bound of c − 1 for the number of variables created [6]. Selecting
variables based on the magnitude of their correlation with the target variable is based
only on linear relationships; frequently the importance of inputs is only revealed in
a non-linear mapping. What is required is a way to determine the importance of
each input to the outputs of a trained model.

The crudest method for doing this is to consider the magnitude of the weights
fanning out from a particular input. However, this performs poorly in practice since if
an input has no effect on the output, the weights leading from it can have arbitrary
values. More well-founded are methods for measuring weight saliency, based on
analysis of the Hessian matrix, that are used in weight pruning algorithms such
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as “optimal brain damage” [13] and “optimal brain surgery” [8]. However, these
techniques can be difficult to interpret in a quantitative way.

In the Automatic Relevance Determination (ARD) framework, we associate a
separate hyperparameter αi with each input variable; this represents the inverse
variance of the prior distribution of the weights fanning out from that input. During
Bayesian learning it is possible to modify the hyperparameters; for example, using
the evidence procedure, we find their optimal value, subject to some simplifying
assumptions, using a modified form of the update rule (12.11). Because hyperpa-
rameters represent the inverse variance of the weights, a small hyperparameter value
means that large weights are allowed, and we can conclude that the corresponding
input is important. A large hyperparameter value means that the weights are con-
strained near zero, and hence the corresponding input is less important.

This still leaves open the question of deciding what a “large” hyperparameter
value is (and this will depend on the measurement scale of the corresponding input;
normalising inputs to zero mean and unit variance makes it easier to compare ARD
hyperparameters), but it is certainly easy to decide on the relative importance of
inputs.

12.3 ARD in Arrhythmia Classification

12.3.1 Clinical Context

The electrocardiogram (ECG) is an important non-invasive diagnostic tool for assess-
ing the condition of the heart. Each beat is made up of a series of waves: P-wave, QRS
complex, T-wave and occasionally a U-wave (see Figure 12.1). The signal morphol-
ogy and timing are indicative of different clinical conditions: for example, changes
in the ST segment suggest ischaemia (poor blood supply to heart muscle), while
atrial fibrillation (multiple P-waves) indicates low cardiac output and often causes
clots in the atria. In this study we analysed disturbances to the natural rhythm
of the heart (arrhythmias), which may be caused by drugs or disease. Our interest
is in separating normal sinus (or supraventricular) beats, which originate from the
sino-atrial node or atria, from ventricular ectopic beats [4], which originate from the
lower chambers, or ventricles.

Our goal was to evaluate the suitability of a range of pattern analysis algorithms
for use in a device worn for 24 hours by the patient (such as the C.Net 2000 developed
by Cardionetics Ltd. [7]). Such a device must be capable of analysing each heart beat
(that is about 100,000 beats in a 24-hour test) for a large number of different patients
without adaptation of the model parameters. In addition, since the device is worn
during normal activities, it must be light and use small batteries [19]. This means
that the computational demands of both feature extraction and classification must
be scrutinised to minimise power consumption.

The ECG measures changes in the electric potential of different areas of the
heart due to the ionic flux as charged chemicals move across cell walls. A muscle
cell at rest is in a polarised state, so that the contents are negative relative to
the cell membrane [4]. When the membrane receives enough negative charge, the
cell depolarises and the muscle contracts about 0.02 to 0.04 seconds later. After
depolarisation, the cell repolarises spontaneously over a rather longer time interval.
The ECG records the passage of the depolarisation and repolarisation wave front
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Fig. 12.1. Typical ECG with main features marked.

across the chambers of the heart. In our application, a single channel is measured
using three electrodes (one for the earth) attached to the chest in the V4 position
[4].

The ECG is conventionally divided into a sequence of waves:

P-wave: depolarisation of the atria (upper chambers), normally lasting at most 0.11
seconds.

QRS complex: depolarisation of the ventricles (lower chambers), normally lasting
0.05 to 0.1 seconds. The repolarisation of the atria happens at the same time,
but this signal is swamped by that coming from the much larger ventricles. An
initial negative wave is the Q-wave. The first positive deflection is the R-wave;
this is usually the largest “spike” in the ECG and is used to determine the
location of each beat. A following negative wave is the S-wave. If the signs of
each part of the complex are reversed, this is called an inverted complex.

T-wave: repolarisation of the ventricles. This lasts less than 0.15 seconds.
U-wave: a much smaller wave may follow the T-wave; its function is not well un-

derstood and it is not relevant for this application.

This is the normal sequence of waves for a supraventricular beat. However, if the
origin of a beat is in the ventricles, then there is usually no P-wave, and the QRS
complex is much broader; these are the arrhythmia of interest for this application.
There are two main morphologies of ventricular beat, which we have called Vel and
Ver : examples of each are shown in Figure 12.2. The task is to separate supraven-
tricular beats from ventricular ectopic beats using features extracted from their
morphology.5

12.3.2 Benchmarking Classification Models

Single channel ECG was collected from 131 subjects using a digital data collection
device at 100 Hz with the same frequency response characteristics as a C.Net 2000

5 The differences between the two classes of ventricular beats have no clinical sig-
nificance.
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Sinus beat

(a)

Ventricular Ectopic (L) beat

(b)

Ventricular Ectopic (R) beat

(c)

Fig. 12.2. Typical beats from (a) sinus, (b) Vel and (c) Ver classes.

ambulatory monitor. This was divided on a per-subject basis into training (35,403
beats), validation (11,800) and test (23,606) sets so that each dataset contains beats
from separate subjects. The three classes of beat, supraventricular (including sinus)
and two varieties of ventricular ectopic beats, had approximate prior probabilities
0.85, 0.05 and 0.10 respectively. Twenty-four time-domain features were extracted
automatically from the data and normalised on a per-beat basis to reduce their
subject specificity. These were chosen in consultation with experienced clinical car-
diologists.

The problem was represented as a three-way classification since earlier experi-
ments showed that this gives more accurate results than multiple two-way classifi-
cation models. Early stopping was adequate to avoid overfitting, owing to the large
quantity of training data. The classification models used were logistic regression
(Generalised Linear Model, GLM), MLP and RBF neural networks [2]. The den-
sity models used were Gaussian Mixture Models (GMMs), Generative Topographic
Mapping (GTM) [3], and Kohonen SOM [12], with one model per class. All model
selection (e.g. number of hidden units) was performed using only the validation
dataset. All the selected models were finally evaluated on the test set. Each model
was trained five times with randomly initialised weights; in the case of the SOM and
GTM this was a random perturbation of the weights following a PCA initialisation.
The Netlab toolbox6 was used for all the experiments [17].

The classifiers were trained to model the Bayesian posterior distribution of the
probability of a data point x belonging to class Ck, formally written as P (Ck|x), the
probability of Ck given an input vector, x. The GLM, MLP and RBF models used a
softmax output activation function to ensure that the outputs lay in the range [0, 1]
and summed to one.

For the density models we compute P (Ck|x) by modelling the class conditional
density P (x|Ck) (i.e. we train a model for each class) and then applying Bayes’
theorem to compute the posterior distribution, P (Ck|x):

P (Ck|x) =
P (x|Ck)P (Ck)∑K
i=1 P (x|Ci)P (Ci)

. (12.14)

Tables 12.1 and 12.2 contain the confusion matrices for the trained models.
Confusion between the two ventricular classes is not important. Misclassifications
of sinus beats as ventricular ectopics may lead to over-reporting of symptoms, but

6 http://www.ncrg.aston.ac.uk/netlab
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Table 12.1. Performance statistics for the classifiers. Confusion matrix entries are
given as: median (min/max) over 5 seeds. Rows represent true classes sinus, Vel ,
Ver .

GLM: Mean err: 0.1593%; std err: 0.0110%
19984 (19982/19985) 3 (2/5) 0 (0/0)

4 (3/4) 1159 (1159/1160) 25 (25/25)
0 (0/0) 5 (4/8) 2426 (2423/2427)

MLP: Mean err: 0.0153%; std err: 0.0038%
19985 (19984/19985) 2 (2/3) 0 (0/0)

0 (0/0) 1187 (1187/1188) 1 (0/1)
0 (0/0) 0 (0/1) 2431 (2430/2431)

RBF Mean err: 0.1288%; std err: 0.0057%
19981 (19981/19982) 5 (5/6) 0 (0/1)

1 (0/1) 1175 (1174/1176) 12 (12/13)
0 (0/0) 11 (11/13) 2420 (2418/2420)

misclassifications of ventricular beats as sinus (recorded in the first column below
the first entry) are the most costly errors. These tables show that the most accurate
model is the MLP, while the most accurate density model is the GTM.

Table 12.2. Performance statistics for the density models. Confusion matrix entries
are given as: median (min/max) over 5 seeds. Rows represent true classes sinus, Vel ,
Ver .

SOM Mean err: 0.6219%; std err: 0.0746%
19931 (19903/19945) 55 (40/84) 0 (0/2)

17 (4/48) 1132 (1096/1156) 28 (28/44)
0 (0/0) 42 (7/52) 2389 (2379/2424)

GTM Mean err: 0.1432%; std err: 0.0436%
19971 (19970/19975) 15 (11/16) 1 (1/1)

4 (2/6) 1174 (1160/1184) 11 (0/22)
1 (1/1) 4 (2/7) 2426 (2423/2428)

GMM Mean err: 0.1805%; std err: 0.0311%
19966 (19954/19971) 21 (16/33) 0 (0/1)

1 (0/4) 1179 (1164/1180) 8 (7/20)
1 (1/1) 4 (2/9) 2426 (2421/2428)
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One of the two beats misclassified by the best MLP is shown in Figure 12.3; it
can be seen that although it is a sinus beat (since there is a P-wave present and the
timing is regular), the QRS complex is unusually broad and the T-wave (which is
inverted) is relatively small; this morphology is probably that of a fusion beat, which
is caused by concurrent sinus and ventricular excitation.

0 50 100 150
400

450

500

550

600

650

700

Fig. 12.3. Sinus beat misclassified by the MLP.

12.3.3 Variable Selection

Although the accuracy of the MLP classifier is excellent, it would be preferable if
similar results could be achieved with fewer input variables. This is because ECG
devices are powered by small batteries, and minimising power consumption is an
important design goal.

We used two methods to select a smaller set of variables:

• feature extraction from raw input data;
• Automatic Relevance Determination.

The feature extraction process consisted of three steps. First, each beat was ex-
tracted from a raw ECG file by taking 75 samples around each R-wave peak. Then
Principal Component Analysis (PCA) was applied to the beats from the training
data. Finally, all the data was projected onto the first 5 principal components; this
value was selected by visual inspection (see Figure 12.4(a)). Because we were using
raw data, rather than preprocessed, the division into training, validation and test
files was slightly different from the earlier experiments. However, it maintained the
principle that all the data for each subject was contained in just one of the three
subsets. We trained an MLP with 60 hidden units using the evidence procedure with
separate priors for biases, first and second layer weights. Training runs were made
with five different seeds for weight initialisation.

In the ARD experiments, we used an MLP with 40 hidden units7 that was trained
using the evidence procedure. Eighteen iterations were needed to achieve hyperpa-
rameter convergence; each consisted of 200 iterations of scaled conjugate gradient
7 This number was constrained by memory limitations and the need to store the

Hessian matrix of the network.
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Fig. 12.4. (a) Principal values of ECG data. (b) Evolution of hyperparameter values
during ARD training. 200 < α < 400 (dotted line), 100 < α ≤ 200 (dash-dotted line),
α ≤ 100 (solid line). All other hyperparameters diverged.

to optimise the network weights followed by ten iterations of the hyperparameter
update equations [17].

Figure 12.4(b) shows the evolution of the hyperparameters during a typical train-
ing run. Five such runs were made with different seeds for weight initialisation. We
then selected two subsets of input variables: those where the median hyperparam-
eter value was less than 1000 (16 inputs) and those where the value was less than
100 (9 inputs). Two further sets of training runs (with five seeds in each case) were
carried out for these networks. In the latter case, one hyperparameter diverged and
there were effectively eight inputs.

The confusion matrices for both PCA and ARD networks are given in Table 12.3.
Note that apart from misclassifications between the two ventricular ectopic classes,
there are just one false positive and six false negatives for the ARD-MLP with nine
inputs. All but one of the nine variables is a timing measure (i.e. measures the time
between two events) with the exception being a peak height.

12.3.4 Conclusions

These results demonstrate that non-linear classification models offer significant ad-
vantages in ECG beat classification and that with a principled approach to feature
selection, pre-processing, and model development, it is possible to get robust inter-
subject generalisation even on ambulatory data. The MLP makes two false negative
misclassifications. The dataset was sufficiently large that Bayesian regularisation
was not needed to prevent over-fitting.

ARD has been applied successfully to reduce the number of inputs by two thirds
without affecting significantly the model’s accuracy; there were six false negatives
and one false positive in a test set of 23,606 patterns. The experiment has also
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Table 12.3. Performance statistics for MLP with reduced number of inputs. Con-
fusion matrix entries are given as: median (min/max) over 5 seeds. Rows represent
true classes sinus, Vel , Ver . PCA datasets are different from those used in other
experiments.

ARD-MLP 16 inputs: Mean err: 0.0491%; std err: 0.0038%
19983 (19983/19983) 4 (4/4) 0 (0/0)

0 (0/0) 1187 (1187/1187) 1 (1/1)
0 (0/0) 6 (6/8) 2425 (2423/2425)

ARD-MLP 9 inputs: Mean err: 0.0474%; std err: 0.0019%
19981 (19981/19981) 6 (6/6) 0 (0/0)

1 (1/1) 1186 (1185/1186) 1 (1/2)
0 (0/0) 3 (3/3) 2428 (2428/2428)

PCA-MLP: 0.2119%; std err: 0.0215%
13715 (13713/13718) 6 (6/7) 16 (12/17)

4 (4/11) 513 (506/513) 5 (5/5)
0 (0/0) 0 (0/0) 1033 (1033/1033)

highlighted that it may be necessary to apply ARD in an iterative way; a hyperpa-
rameter that had converged to a reasonable value in the experiment with 16 inputs
diverged in the experiment with 9 inputs. The divergence was masked in the first
experiment by the presence of other, even less important, inputs. Applying PCA
to the original set of variables would not have been appropriate in this application,
where the aim was to reduce the amount of computation required for the inputs.
This is because applying the results of PCA requires all the original variables to be
calculated followed by a linear transformation (which would therefore have needed
more, rather than less, computation). The application of PCA to raw beat data gave
less accurate results, showing that the cardiologist-selected features were effective.

12.4 ARD in Lupus Diagnosis

12.4.1 Clinical Context

Lupus is an autoimmune disease in which the patient’s immune system creates anti-
bodies which, instead of protecting the body from bacteria, viruses or other foreign
matter, attack the person’s own body tissues. This causes symptoms of fatigue,
joint pain, muscle aches, anaemia, and possibly destruction of vital organs. Lupus is
neither infectious nor contagious, and the cause is not known, though research has
provided evidence implicating heredity, hormones, and infections. The disease lies
dormant in the body until triggered by environmental factors.

Lupus mainly attacks women during their child-bearing years: in the UK, 1 in
750 women suffer from lupus, with the ratio of women to men being 9:1. There is
no cure for lupus, but careful monitoring of the disease and a treatment program



382 Ian T. Nabney et al.

with medication adjusted to take account of symptoms enables the condition to be
controlled, so most patients are able to live a normal life span.

The Birmingham lupus disease clinic was set up in 1989. Data is collected at
every in-patient and out-patient visit according to a standard protocol, including
clinical data, disease activity (the BILAG index [9]), and laboratory and medication
data. This data is stored in a specially designed database called BLIPS: British
Lupus Integrated Prospective System [10]. Assessments on 430 patients obtained
during more than 7000 visits were available for analysis. This dataset shows that
in Birmingham 1 in 2000 women suffer from the disease and the ratio of women to
men is 14 to 1 [11]. The time between successive visits varies between three weeks
and several years, with a mode of three months. The reason for this variation is
that the doctor takes into account the severity of the disease in determining when
the patient should be reassessed and how long the patient should continue with a
certain treatment plan.

The key clinical variable is the doctor’s evaluation of the level of disease activity
in each body system. The British Isles Lupus Assessment Group (BILAG) have de-
vised a scoring system based on patient history, examination and laboratory results
[9, 10]. As well as general nonspecific features, seven systems are considered: muco-
cutaneous, neurological, musculoskeletal, cardiovascular and respiratory, vasculitis,
renal, and haematological.

The BILAG index allocates a categorical score to each system: these are based
on a sequence of structured questions to make the value more reproducible. This
was later converted to a numerical system suitable for statistical analysis [20]. The
scale is given in Table 12.4. The overall score for a patient is found by summing

Table 12.4. Scoring of the BILAG index

Score Interpretation

A 9 Requires disease-modifying treatment
B 3 Mild reversible problems requiring only

symptomatic treatment
C 1 Stable mild disease
D or E 0 System previously affected but currently

inactive or never involved

all the system scores. Of course, the validity of this is open to question, since the
mapping from the ordinal scale of disease severity to the score numbers is arbitrary.
The values were chosen to accord with clinical experience, some statistical analysis
was carried out to validate the scheme, but this is unpublished.

The variables of most interest are the laboratory tests performed on each patient.
Many of these tests are not measured routinely at every visit included in the study, so
there was a significant fraction of missing data. Those that are reasonably prevalent
include anti-double-stranded DNA antibody tests (F103E), C3 and C4 complement
tests (F111, F112, F113), C-reactive protein (F119C), serum creatinine (F75), which
is related to renal function, and ESR (F87). The most important treatment variable
is F141, which represents the change in steroid dosage (coded as 1 for reduction,
2 for the same, 3 for increase, and 4 for starting). This is an important input for
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predictive models, since it is the main clinical intervention, and thus clearly has an
impact on the subsequent progress of the disease. We also used two other therapeutic
variables: F121 (the steroid dosage) and F133 (pulse cyclophosphamide).

The main clinical objective is to predict whether a particular patient will become
ill with increased disease activity (known as a “flare”). Thus our goal was to develop
a model that used laboratory tests to predict the disease activity at the following
visit.

12.4.2 Linear Methods for Variable Selection

Our initial task was to determine objectively a good set of input variables for the
task of predicting the BILAG score for a visit given the laboratory variables for the
previous visit.

We first analysed the correlation matrix, and looked in particular at the corre-
lation of the indicators Fxxx with the target variable. Other than two very specific
renal indicators (F71 and F72), no variable had a correlation greater than 0.29 with
the target variable. This strongly suggested that a linear model would not be very
effective on this problem.

We then considered the possibility that there was a time lag between the indica-
tors and target variable. To detect this, we considered the cross-correlation of each
input with the target, using successive visits to construct a time series. Again, there
were no correlations of significant magnitude.

In our final attempt to find informative input variables using linear methods, we
applied Principal Component Analysis (PCA). In an experiment with all 31 input
variables, the first 15 principal components were needed to explain just 80% of the
variance. When restricted to just the 8 most important variables, as selected by
clinical experts, the graph of variance explained against number of components is
nearly a straight line. These results suggest that PCA is not extracting features that
are significantly better than the original set of variables. Given that we are interested
in explaining our results in terms of clinical indicators, there was no advantage in
using these linear combinations.

12.4.3 Prognosis with Non-linear Models

The task was initially formulated as a regression problem: we set up the models
to predict the value of the BILAG score (total or for a single system) at the next
visit. As well as predicting the BILAG score yi+1 from the input variables xi, we also
used a “difference” encoding to predict yi+1 −yi from xi −xi−1. The latter encoding
was designed to test the hypothesis that differences in clinical measurements were
related to differences in outcome.

We trained three different non-linear models: MLP (4, 8, 16, 32, and 64 hidden
units), MLP with weight decay (same architecture as the MLP and weight decay
α ∈ {10−6, 10−3, 1, 103, 106}), and RBF with spherical Gaussian basis functions (4,
8, 16, 32, and 64 hidden units). We also trained a linear regression model as a
benchmark. The dataset was divided into three subsets (training, validation and
test) with all the visits for each patient confined to one subset. All data with a gap
of six months between the tests and the next visit was removed, as it was felt that
a predictive model would not be appropriate in such cases.
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The results for all these models were very poor. Figure 12.5 shows typical results
on test data, which show that there is virtually no correlation between the predic-
tions and the target values. The fact that this performance was also repeated on
the training and validation datasets shows that it is not a matter of a flaw in the
training process, but that there is no underlying mapping from the input to output
variables.

(a) (b)

Fig. 12.5. Predicting the renal BILAG score: predicted value (y-axis) against true
value (x-axis). The ideal model would give points along the line y = x. (a) Linear
regression. (b) RBF with 16 hidden units.

One plausible explanation for these poor results is that the numeric BILAG
scores are not reliable enough to use as targets. Therefore, we decided to recast the
problem as a classification task. Although there are four different BILAG scores we
decided to reduce the problem to just two categories: a significant flare-up of the
disease (scores 3 and 9), and all other outcomes (scores 0, 1). For the total BILAG
score we first used a score of 10 or above as a threshold to discriminate between the
classes. However, again this can be problematic due to the influence of low system
scores on the total, so instead we required at least three systems to have a score of
three or greater.

This representation gave rise to difficulties because of the relatively small number
of visits with a flare of the disease. The fraction of visits with a flare varied from 0.02
(neurological) to 0.19 (musculo-skeletal). A model trained on a dataset with such a
small fraction of examples from one class is unlikely to generate reliable estimates
of the conditional class probabilities P (Ck|x). To circumvent this, we trained on a
balanced dataset (i.e. one with approximately equal numbers of examples from both
classes) and then rescaled the model outputs using the following formula, derived
from Bayes’ theorem (see [2] Section 6.5):

P (Ck|x) ∝ P (Cb
k|x)P (Ck)
P (Cb

k)
, (12.15)
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where P (Cb
k|x) is the output of the model trained on the balanced dataset, P (Ck)

is the true prior probability of class Ck (estimated by the true fraction of examples
belonging to Ck) and P (Cb

k) is the prior probability of class Ck in the balanced
training set. After the values P (Ck|x) have been computed for each class Ck, they
are normalised to sum to 1.

We trained a similar set of models as in the regression problem, except we
replaced linear regression by logistic regression and the MLP output units used a
logistic function rather than equality. The error function was changed from sum-of-
squares to cross-entropy, so that it still represented the negative log likelihood of
the data.

If a prognostic model were used clinically, it would be used in an advisory way.
For this reason, it is possible to leave doubtful cases to be classified by a medical
expert. Such cases arise where the posterior class probability P (Ck|x) is close to
0.5. Therefore we used a rejection threshold :

if max
k

P (Ck|x)

{
≥ θ classify x

< θ reject x
(12.16)

where 0.5 < θ < 1. The larger the value of θ, the smaller the number of patterns
that are classified.

When assessing the performance of the models on the validation data, the thresh-
old was moved from 0.5 to 1.0 in steps of 0.1. For each model we selected the thresh-
old that represented the best compromise between obtaining the lowest false positive
rate and reject fraction, and the highest true positive rate.

Table 12.5 shows the results on the test data for the best model (selected using
the validation data) for each body system. The cardiorespiratory and neurological
systems had too few examples of flares to be valid. Clearly these results are still
a long way from providing us with a model that would be useable in a clinical
situation.

Table 12.5. Results of the best classification model. TP is the true positive rate
just on the classified (i.e. unrejected) examples, TPt, is the true positive rate over
all the examples, FP is the false positive rate.

TP TPt FP Rejected

General 0.86 0.60 0.33 0.28
Renal 0.73 0.73 0.39 0.00
Haema 0.82 0.73 0.37 0.20
Muco 0.44 0.28 0.43 0.46
Muscu 0.62 0.35 0.54 0.36
Vasc 0.54 0.43 0.45 0.16

12.4.4 Bayesian Variable Selection

At this point in the project we decided that to improve the performance of our
prognostic models we would have to revisit the variable selection question. As linear



386 Ian T. Nabney et al.

methods had failed to provide any useful information, we decided to apply ARD
to ensure that the variables selected were relevant both to the task and the model.
We used an MLP trained with the evidence procedure to perform variable selection
for the total BILAG score. The variables that were included in the study were the
eight selected by our domain expert, and an additional two variables (F133 and
F75) which we thought were of limited relevance. These were included to give us a
benchmark for the threshold hyperparameter value and also to assess whether the
results of ARD are sensible.

We ran the ARD process for both regression and classification models: the results
are contained in Table 12.6. The results on the regression problem are disappointing;

Table 12.6. Hyperparameter values after ARD. Regression (row 1), classification
(row 2) and classification on reduced set (row 3). See Section 12.4.1 for a description
of variables. F121, F141 and F133 are related to drug therapy, and all the others
are laboratory tests.

F103E F111 F112 F113 F119C F87 F121 F141 F133 F75

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1800 133 35 55 39 99 18 6 26 222

– – 5.58 3.12 10.08 – 27.84 4.65 99.79 –

the hyperparameters for all the variables are small, and so it is impossible to select
a useful subset of variables.

However, the results on the classification problem (row 2) are more interesting. A
subset of six variables (F112, F113, F119C, F121, F141, and F133) have significantly
smaller hyperparameter values than the rest. We therefore carried out a second ARD
experiment with the inputs restricted to just this set (row 3). This enabled us to
distinguish an even smaller subset of four variables (F112, F113, F119C, and F141)
that were the most relevant for this task. We note that none of the additional
variables are included in this set, which is reassuring. It is also interesting that F141
(representing the change in steroid dosage) is more useful than F121 (representing
the level of steroid dosage).

To assess the value of this result, we trained all four model types with just
these four variables as inputs. The graphical results can be seen in Figure 12.6. The
rejection rate was between 0.1 and 0.15 for the RBF, and around 0.02 for the other
models. The graphs show that the MLP is the model which performs best, achieving
a true positive rate of 0.98 and a false positive rate of 0.075. This is similar to the
MLP with weight decay, but superior to logistic regression (true positive 0.82, false
positive 0.08) and much better than the RBF. More details on these results can be
found in [5].

12.4.5 Conclusions

This application has shown that ARD can be a vital tool in the data analyst’s
toolbox, as simpler methods of variable selection gave no useful information, and
it was only after the smaller set of most relevant variables had been found that we
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Fig. 12.6. Results of classifiers trained on reduced set of input variables. x-axis rep-
resents numbers of hidden units. Logistic regression (dotted line), MLP (solid line),
MLP with weight decay (dashed line), RBF (dash-dotted line). (a) True positive
rate. (b) False positive rate.

were able to develop models with some potential for real application. The variables
that were selected can be justified from clinical knowledge, but the real strength
of the technique is that it enabled us to reject variables that might be disease-
related, but that were poor predictors of the clinical outcome. If the approach were
extended to each system, then it would probably be possible to reduce the number
of clinical tests (thus reducing costs) while also providing the clinicians with a useful
support tool for guiding their diagnosis. The therapeutic inputs were included to see
if they were confounding variables, and to assess the reliability and effectiveness of
the laboratory tests under realistic conditions. The fact that one of these variables
was selected by ARD is strong evidence that it is an important factor in reliable
predictions.

The poor performance of the regression models (both with the full set of in-
puts, and when applying ARD) suggests that the numerical BILAG scores (which
are based on clinical judgements) are not very reliable, and that a two-class dis-
crimination may be all that can be reproducibly measured across a large number of
clinics.

12.5 Conclusions

The two case studies have demonstrated that Bayesian methods for feature selection
are a practical proposition and can give genuinely useful results that could not
be obtained by other means. In the ECG study, very high accuracy levels were
maintained while the number of input variables was reduced by two thirds. In the
lupus study, it was only by using ARD that we were able to train a model which
had an acceptable level of accuracy.

In both studies, a multi-stage application of ARD gave the best results. This
seems to be because the presence of very large hyperparameters masks the differences
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between smaller ones. A second run of ARD, excluding the inputs corresponding to
large hyperparameters, identifies the irrelevant variables from the smaller subset.

The computational effort for the ARD training runs was about 40 times as large
as standard maximum likelihood training (in the ECG study, an MLP training run
of 4 hours became about 7 days using ARD8); the ratio of training times depends on
the number of iterations needed for the hyperparameters to converge, the number
of weights, and linearly on the number of training set patterns. This is a significant
drawback, but the procedure is feasible on modern PCs.
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Summary. This chapter proposes a generative model and a Bayesian learning
scheme for a classifier that takes uncertainty at all levels of inference into account.
Classifier inputs will be uncertain if they are estimated, for example using a prepro-
cessing method. Classical approaches would neglect the uncertainties associated with
these variables. However, the decisions thus found are not consistent with Bayesian
theory. In order to conform with the axioms underlying the Bayesian framework, we
must incorporate all uncertainties into the decisions. The model we use for classi-
fication treats input variables resulting from preprocessing as latent variables. The
proposed algorithms for learning and prediction fuse information from different sen-
sors spatially and across time according to its certainty. In order to get a computa-
tionally tractable method, both feature and model uncertainty of the preprocessing
stage are obtained in closed form. Classification requires integration over this latent
feature space, which in this chapter is done approximately by a Markov chain Monte
Carlo (MCMC) method. Our approach is applied to classifying cognitive states from
EEG segments and to classification of sleep spindles.

13.1 Introduction

Once we opt for decision analysis within a Bayesian framework, we must do
this throughout the entire process. The approach studied in this chapter as-
sumes that we are given some segments of time series, each labelled as being
in one of K possible states. Such a setting is typically found in biomedical di-
agnosis, where successive segments of biosignals have to be classified. Usually,
the number of samples within the segments is large. However, the information
contained in a segment is often represented by a much smaller number of fea-
tures. Such problems are typically solved by splitting the whole problem into
two parts: a preprocessing method that extracts some features and a classifier.

Using Bayesian inference for each part is common practice. For prepro-
cessing it has been considered among many others by [1] and [2]. A review
of recent developments is provided by [3]. The situation in post-processing
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is similar: see e.g. [4], [5] or [6] for a summary. We could follow these lines
and apply Bayesian techniques to both stages of the decision process sepa-
rately. However this would mean establishing a non-probabilistic link between
preprocessing and classification. Such a link does not allow feature or model
uncertainty, as found by Bayesian preprocessing, to have an influence on the
beliefs reported by the classifier. In a Bayesian sense this is equivalent to
approximating the a-posteriori probability density over feature variables by
a delta peak and ignoring the uncertainty in the stochastic model used for
preprocessing.

ρ

X

t

Fig. 13.1. A directed acyclic graph for the hierarchical model. We used t to denote
the unknown state variable of interest, ρ is a latent (unobserved) variable represent-
ing features from preprocessing and X denotes a segment of a time series. Circles
indicate latent variables, whereas the square indicates that X is an observed quan-
tity.

A model that allows for a probabilistic link between preprocessing and
post-processing has to have a structure similar to the directed acyclic graph
(DAG) shown in Figure 13.1. The key idea is to treat the features obtained
by preprocessing as latent variables. The link between ρ and X represents
preprocessing, which has to be carried out in a Bayesian setting. The model
used in this chapter for preprocessing is a lattice filter representation of an
auto regressive (AR) model. The coefficients of this model are the well-known
reflection coefficients as commonly used in speech processing [7]. We give a
short summary of our derivation of “Bayesian reflection coefficients” in section
13.2. So far approaches using a probabilistic structure, similar to the DAG in
Figure 13.1, have focused on marginalising out input uncertainties. The main
emphasis in [8] and [9] is to derive a predictive distribution for regression
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models where input uncertainty is taken into account. In a Bayesian sense this
approach is the only way of consistent reasoning if perfect knowledge of inputs
is not available. We provide a similar analysis for classification problems.
However our approach goes further:

• We allow for different uncertainties at different inputs. This leads to pre-
dictions that are dominated by inputs that are more certain. Using gen-
erative models to link t and ρ, the model provides information about the
true input values of less certain sensors. Using several sensors will lead
to “Bayesian sensor fusion”. The use of a generative model gives us the
additional benefit that we can use unlabelled data for parameter inference
as well.

• Another extension of the work reported in [8] and [9] is that we take the
model uncertainty, inherent to all preprocessing methods, into account.
Model uncertainty is represented by the a-posteriori probability of the
model conditional on the corresponding data segment, X .

In the following sections of the chapter, we derive a Bayesian solution for
lattice filter AR-models that captures both feature and model uncertainty.
We show that marginalising out latent variables in a static DAG indeed per-
forms sensor fusion such that predictions depend more on certain informa-
tion. Equipped with this theoretical insight, we propose a DAG and inference
scheme that is well suited for time series classification. We assume a first
order Markov dependency among class labels of interest and derive MCMC
updates that sample from the joint probability distribution over latent vari-
ables and model coefficients. The experimental section of this chapter provides
a synthetic experiment to illustrate the idea and provides then a quantitative
evaluation using the proposed method for sleep spindle classification and as a
classifier in a brain–computer interface experiment.

13.2 Bayesian Lattice Filter

The lattice filter is a representation of an auto regressive (AR) model [7].
Its parameters are the so-called refection coefficients, below denoted as rm.
Equation (13.1) shows an AR model, where x[t] is the sample of a time series
at time t, aµ is the µ-th AR coefficient of the m-th order AR model and e[t]
the forward prediction error, which we assume to be independently identically
distributed (i.i.d.) Gaussian with zero mean and precision (inverse variance)
β.

x[t] = −
m∑

µ=1

x[t− µ]aµ + e[t] (13.1)

The autocovariance function, which is the sufficient statistic of a stationary
Gaussian noise AR model, is invariant to the direction of time [7]. The corre-
sponding backward prediction model thus shares the same parameters.
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x[t−m] = −
m∑

µ=1

x[t+ 1 − µ]aµ + b[t] (13.2)

To derive Bayesian reflection coefficients, we assume that N data points, X =
{x[1], . . . , x[N ]}, are available to estimate the model. We denote the m-th
order AR coefficients as ϕm, summarise the forward prediction errors e[t] as
εm and all backward prediction errors b[t] as bm. Applying the backward time
shift operator q−1 on bm, linear regression onto the forward prediction errors,
εm, defines the likelihood of the m-th order AR coefficients and the m+ 1-th
reflection coefficient rm+1.

p(X|rm+1, β,ϕm) = (2π)−0.5Nβ0.5N (13.3)

× exp
(
−0.5

(
εm + rm+1q

−1bm

)T (
εm + rm+1q

−1bm

))
Since we use this model to represent segments of biological time series, we

know with certainty that the underlying AR-process must be stable. As the
reflection coefficients of a stable model have to be within the interval [−1, 1],
we may use a flat prior within this range. Thus the uninformative proper prior
over reflection coefficients is p(rm+1) = 0.5. Another parameter which appears
in the likelihood expression of the lattice filter model is the noise level β. The
noise level is a scale parameter and following [10] we use the Jeffreys’ prior,
p(β) = 1/β.

In order to obtain the posterior distribution over the m + 1-th reflection
coefficient rm+1, the Bayesian paradigm requires us to treat both the m-th
order AR coefficients, ϕm, and the noise level, β, as nuisance parameters and
integrate them out. We may simplify calculations considerably by assuming a
sharply peaked posterior over ϕm. This results in an order recursive estima-
tion, where we condition on the forward and backward prediction errors that
result from the most probable coefficients.

p(rm+1|X ) =
1√
2πs

exp
(

− 1
2s2

(rm+1 − r̂m+1)2
)

(13.4)

as the posterior distribution of the m + 1-th order reflection coefficient, in
which

r̂m+1 = −εT
mq

−1bm

bT
mbm

(13.5)

represents the most probable value of the reflection coefficient and,

s2 =
1 − (r̂m+1)2

(N − 1)
, (13.6)

the corresponding variance. We finally need to update the forward and back-
ward prediction errors, to account for the m+ 1-th reflection coefficient.

εm+1 = εm + r̂m+1q
−1rm (13.7)

rm+1 = q−1rm + r̂m+1εm
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Our analysis will also consider the uncertainty about the lattice filter model,
by allowing for two explanations of the data X . We assume that the data is
either modelled by an M -th order lattice filter or that it is white noise. This
uncertainty is captured by the posterior probability P (IM |X ), where IM ≡ 1
denotes the lattice filter explanation and IM ≡ 0 denotes the white noise case.
The Bayesian model evidence (marginal likelihood) of the M -th order lattice
filter model, IM ≡ 1, is then

p(X|IM ≡ 1) = 0.5π− N
2 Γ (

N

2
)
√

2πs (13.8)

×
(
(εM−1 + r̂MbM−1)T(εM−1 + r̂MbM−1)

)− N
2 .

Comparing the M -stage lattice filter model with the Bayesian evidence of
explaining the data as white noise gives a measure of model uncertainty if we
allow for these two explanations only. We obtain the evidence of a white noise
explanation by integrating out the noise level β. We indicate the corresponding
model by I0 and get

p(X|IM ≡ 0) = π− N
2 Γ (

N

2
)
(
εT
0 ε0
)− N

2 , (13.9)

where ε0 refers to the 0-order model residuals (the original time series). Using
equal priors for both models, the a-posteriori probability of them-th reflection
coefficient compared with a white noise explanation is

P (IM ≡ 1|X ) =
p(X|IM ≡ 1)

p(X|IM ≡ 1) + p(X|IM ≡ 0)
. (13.10)

We use P (IM |X ) to measure the uncertainty of modelling the data by an
M -th order lattice filter, when we allow for a white noise explanation as the
other possibility. Our motivation for this two-model hypothesis is our intent
to model electroencephalography (EEG) data. EEG is often contaminated by
muscle artefacts, which result in measurements that are very similar to white
noise.

Equations (13.4), (13.5) and (13.6) imply that the underlying processes
are dynamically stable systems since they do not allow reflection coefficients
to be outside the interval [−1, 1]. Since we intend to model the distributions
in the latent feature space by a mixture of Gaussian distributions, we have
to resolve a mismatch between the domain of the posterior over M -th order
lattice filter coefficients, r ∈ [−1, 1]M and the domain of the Gaussian mixture
model, which requires ρ ∈ R

M . To resolve the problem, we follow [11] and
map using Fisher’s z-transform

ρ = arctanh(r), (13.11)

which we use henceforth as representation of the feature space. Using error
analysis [12], we can approximate the posterior distribution over the trans-
formed reflection coefficients ρm by
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Fig. 13.2. A directed acyclic graph that captures both parameter uncertainty as
well as model uncertainty in preprocessing. We used t to denote the unknown state
variable of interest, ρa and ρb are two latent variables representing the true values
of features estimated by preprocessing. Both Xa and Xb are the corresponding seg-
ments of a time series. The latent binary indicator variables Ia and Ib control the
dependency of the data segments on the latent variables.

p(ρm|X ) =
1√
2π

√
λ exp

(
−1

2
λ(ρm − ρ̂m)2

)
(13.12)

where ρ̂m = arctanh(r̂m) and λ = (N − 1)(1 − r̂2m).

13.3 Spatial Fusion

In our case the input uncertainty is a result of the limited accuracy of feature
estimates as obtained by preprocessing. If we know that the model used in
preprocessing is the true model that generated the time series X , the approach
taken by [8] and [9] would be sufficient. However, as argued in Section 13.2,
we do not know whether the model used during preprocessing is the true one
and we have to consider feature as well as model uncertainty. Thus inference
has to be carried out with a DAG that allows for both feature and model
uncertainty. Sensor fusion will only take place if different sensors are condi-
tionally dependent on the state of interest. In order to take this into account,
we have to extend the DAG structure as shown in Figure 13.2. We introduce
binary indicator variables Ia and Ib that control the conditional dependency
of the observed data segments Xa and Xb on the latent variables ρa and ρb

respectively.
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The DAG in Figure 13.2 illustrates the dependency between a state vari-
able t, latent variables ρa and ρb and the corresponding segments of a time
series Xa and Xb. The dependency is controlled by two model indicator vari-
ables, Ia and Ib, one for each sensor. Both models, Ia and Ib, representing par-
ticular stages of a lattice filter, are probable explanations of the corresponding
time series Xa and Xb.

During preprocessing we allow for two possible explanations of each seg-
ment of the time series. With probability P (Ia|Xa), the latent variable ρa is
conditional on both the time series Xa and the state variable t. However, with
probability 1 − P (Ia|Xa), Xa is pure white noise and does not require ρa. In
this case, we have to condition on t only. Loosely speaking, we deal with a
problem of “probably missing values”. However this interpretation of Figure
13.2 tells us that we need to use the following definition of the conditional
probability density of Xa

p(Xa|ρa, Ia) =

{
p(Xa|ρa, Ia ≡ 1)
p(Xa|Ia ≡ 0).

(13.13)

Depending on the value of Ia, we introduce a conditional independence be-
tween the data, Xa and the true feature value ρa which is not seen in the
DAG in Figure 13.2. When changing indices, we get the same statements for
the latent variable ρb.

As previously mentioned, we want to predict the belief of state t condi-
tional on all available information. This is the observed time series Xa and
Xb as well as all training data D observed so far. Although we will not state
this explicitly, all beliefs are also conditional on training data D. This is a
requirement that humans apply intuitively: whenever a clinical expert wants
to monitor a new recording of some biological time series they have prior
expectations about the range they should use.

In order to provide deeper insight into the model illustrated in Figure
13.2, we will infer both the a-posteriori probability P (t|Xa,Xb) and the a-
posteriori probability density p(ρa|Xa,Xb). Using Bayes’ theorem, we express
P (t)p(ρa|t) as p(ρa)P (t|ρa) and P (t)p(ρb|t) as p(ρb)P (t|ρb). Conditioning on
Xa and Xb, the DAG in Figure 13.2 implies that

p(t, ρa, Ia, ρb, Ib|Xa,Xb) = (13.14)
P (t|ρa, Ia)P (t|ρb, Ib)p(ρa|Ia,Xa)p(Ia|Xa)p(ρb|Ib,Xb)p(Ib|Xb)p(Xa)p(Xb)

P (t)p(Xa,Xb)
.

As none of the variables on the left side of the conditioning bar in (13.14)
are observed, we use marginal inference. We obtain P (t|Xa,Xb) by plugging
(13.13) into (13.14) and integrating out ρa, Ia, ρb and Ib:
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P (t|Xa,Xb) =
p(Xa)p(Xb)
p(Xa,Xb)P (t)

(13.15)

×
∑
Ia

∫
ρa

P (t|ρa, Ia)p(ρa|Ia,Xa)P (Ia|Xa)dρa

×
∑
Ib

∫
ρb

P (t|ρb, Ib)p(ρb|Ib,Xb)P (Ib|Xb)dρb.

The näıve Bayes structure of the DAG in Figure 13.2 allows us to expand
P (t|ρa, Ia) = P (t|ρa)P (t|Ia)

P (t) , which equivalently holds for sensor b. The influence
of feature uncertainty on the probability of the state t is most easily seen if
we assume perfect knowledge of the preprocessing model:

P (t|Xa,Xb) ∝ 1
P (t)

∫
ρa

P (t|ρa)p(ρa|Xa)dρa

∫
ρb

P (t|ρb)p(ρb|Xb)dρb.

This expression shows that the probability P (t|Xa,Xb) is dominated by Xa, if
ρa is, under its posterior, more informative about class t.1 At a first glance we
might expect that higher accuracy should dominate and this seems counter-
intuitive. However, perfect knowledge does not help if the extracted feature is
equally likely for different classes. Thus although known with less precision, a
variable might dominate if it allows on average for better discrimination. The
other extreme is that we know that Xa and Xb are white noise. In this case
we get P (Ia ≡ 0|Xa) = 1 and P (Ib ≡ 0|Xb) = 1 and thus

P (t|Xa,Xb) ∝ P (t|Ia)P (t|Ib)
P (t)

.

This is a very intuitive result, as without parameters ρa and ρb the model
indicators Ia and Ib are the only information about class t.

If we are interested in the a-posteriori distribution over one of the latent
spaces, say (Ia, ρa), we have to apply similar manipulations. Assuming that
the continuous parameter ρa is a point in R

M , (Ia, ρa) lies in Ia ≡ 1 × ρa ∈
R

M
⋃
Ia ≡ 0 × ρa ∈ R

0, where the dimension of ρa in the second case is zero.
The posterior is then

p(ρa, Ia|Xa,Xb) =
p(Xa)p(Xb)
p(Xa,Xb)

(13.16)

×
∑

t

[
P (t|ρa, Ia)p(ρa|Ia,Xa)P (Ia|Xa)

P (t)

×
∑
Ib

∫
ρa

P (t|ρb, Ib)p(ρb|Ib,Xb)P (Ib|Xb)dρb

]
.

1 The same argument holds for the other sensor Xb.
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By exchanging marginalisation over (Ib, ρb) with marginalisation over (Ia, ρa),
we obtain the corresponding a-posteriori density over the feature space (Ib, ρb)
.

We should now point out that we did not follow an exact Bayesian scheme,
since this requires us to use all available information. The derivations pre-
sented so far deviate slightly, since the probabilistic dependency between t
and the latent variables ρa and ρb allows, via the conditional distributions
p(ρa|t) and p(ρb|t), for information flow between the two sensors. Hence irre-
spective of whether we know t or not, we will have information about ρa and
ρb that goes beyond the “stability prior” adopted in the last section. However,
the problem is that using this information, we can not derive any expressions
analytically as was done there. Instead we have to resort to MCMC techniques
for the entire analysis including preprocessing [11]. Even with modern com-
puters, this is still a very time consuming procedure. A qualitative argument
shows that this approximation will in practical situations not effect the re-
sults dramatically. The usual settings in preprocessing will lead to a-posteriori
densities over coefficients that, compared with the priors, are sharply peaked
around the most probable value.2 In this case using either a uniform prior in
the range [−1, 1], or the more informative prior provided via t does not make
a big difference.

As a last step it remains to provide an abstract formulation of an infer-
ence procedure of model coefficients for the DAG shown in Figure 13.2. In
order to make life easier, we assume for now that we are given only labelled
samples. A generalisation to include also unlabelled samples is provided in
the next section. Assuming to know the true values of features and states,
conventional model inference would condition on training data, A = {ρa,i∀i},
B = {ρb,i∀i} and T = {ti∀i}. Denoting all model coefficients jointly by w,
inference would lead to p(w|A,B, T ). In our setting the Ia,i, Ib,i, ρa,i and ρb,i

are latent variables and we can not condition on them. Instead we would like
to condition on the corresponding Xa,i and Xb,i. Such conditioning can not
be done directly. Assuming independence of observations, the DAG in Figure
13.2 implies the likelihood to be

p(T ,A, IA,XA,B, IB ,XB |w) = (13.17)

=
∏

i

p(ti, ρa,i, Ia,i,Xa,i, ρb,i, Ib,iXb,i|w)

=
∏

i

[
P (ti|ρa,i, Ia,i,w)P (ti|ρb,i, Ib,i,w)

P (ti|w)

×p(ρa,i|Ia,i,Xa,i)p(Ia,i|Xa,i)p(ρb,i|Ib,i,Xb,i)p(Ib,i|Xb,i)

]
,

2 As can be seen from Equation (13.6), this is just a matter of the number of
samples used to estimate the feature values.
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where we use IA = {Ia,i∀i}, XA = {Xa,i∀i}, IB = {Ib,i∀i} and XB = {Xb,i∀i}
and make the dependency on model parameters w explicit. We finally get the
posterior over model coefficients w by multiplication with a prior p(w) and
marginalising out all ρa,i, Ia,i, ρb,i and Ib,i.

p(w|T ,XA,XB) ∝ p(w)
∏

i

[
1

P (ti)
(13.18)

×
∑
Ia,i

∫
ρa,i

P (ti|ρa,i, Ia,i,w)P (Ia,i|Xa,i)p(ρa,i|Ia,i,Xa,i)dρa,i

×
∑
Ib,i

∫
ρb,i

P (ti|ρb,i, Ib,i,w)P (Ib,i|Xb,i)p(ρb,i|Ib,i,Xb,i)dρb,i

]

Expression (13.18) is just proportional to the posterior since we still need to
normalize. In general neither the integrals nor the normalisation constants
in (13.15), (13.16) or (13.18) will be analytically tractable. In all practical
problems we will have to apply MCMC methods.

The model in this section illustrates that marginalising out variables and
model uncertainty leads to predictions that are dominated by information that
allows for reliable discrimination. However the DAG is not optimally suited
for classification of biomedical time series. As our interest is classification of
adjacent segments of a time series, we can improve on the DAG in Figure 13.2
by allowing for additional temporal dependencies. In the following section we
propose a model which allows for a first order Markov dependency among
additional discrete latent variables, di, and thus for information flow across
time. We propose Bayesian inference by sampling from the joint probability
density over latent variables and model coefficients.

13.4 Spatio-temporal Fusion

A DAG structure that allows spatio-temporal sensor fusion is obtained by
imposing a conditional dependency among adjacent state variables and to
spatially different sensors. Sensor fusion is then achieved very naturally by
treating this DAG within the Bayesian framework. Bayesian preprocessing
will assess both model and coefficient uncertainties. Marginalising out these
uncertainties will lead to beliefs about states that are less affected by less
reliable information. Such an approach can go even further: it allows one
to infer the expected feature values which for unreliable segments will differ
from the values obtained from preprocessing alone. This requires that the
architecture contains a generative model. Thus, as a by-product, we will be
able to use labelled as well as unlabelled data during model inference.
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13.4.1 A Simple DAG Structure

This subsection proposes a DAG structure that allows spatio-temporal sensor
fusion. Measured in terms of model complexity (number of free parameters),
we aim at a simple solution. Assuming that we want to solve a classification
task, we regard the class labels as the state of interest. In order to exploit
temporal correlations among successive classifications we propose a model
that has the latent indicator variables di and the class labels ti connected
to form a first order Markov chain. The idea behind linking the class labels
ti is that in cases where one of the state values of di corresponds to a high
uncertainty state (i.e. with similar probabilities P (ti|di) for all ti) this gives
us additional information about the class label. Furthermore, we assume con-
ditional independence between all latent variables depending on each state
variable. Figure 13.3 shows a DAG structure imposed by these assumptions.
Training data consists of labelled as well as unlabelled segments of a time se-
ries. Unobserved states are represented by circles and the observed states by
squares. We have already decided about the latent variables ρi,j and indicator

i+1,j
ρ

i,j
I
i,j

X
i,j

i

d
i

t
i+1

t

i+1
d

X
i+1,j

I
i+1,j

ρ

Fig. 13.3. A directed acyclic graph for spatio-temporal sensor fusion: the DAG
assumes a first order Markov dependency among states di and conditional on these,
independence of the latent variables ρi,j . We used ti to denote the unknown state
variables of interest (i.e. the class labels of the segments under consideration), which
are linked with a second Markov chain. The idea behind this second chain is that it
allows us to resolve ambiguity which might be caused by a high uncertainty state.
Both ρi,j and Ii,j are latent variables, representing feature and model uncertainty
from preprocessing. Finally Xi,j denote the corresponding segments of a time series.
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variables Ii,j : they are stages in an AR-lattice filter and Xi,j are the corre-
sponding segments of a time series. It remains to decide about the generative
model between the state variables di and the latent variables ρi,j and Ii,j . In
our case the ρi,j are continuous variables and the generative model will be
implemented as diagonal Gaussian distributions,

p(ρi,j |di) = N (ρi,j |µj,d,λj,d), (13.19)

with mean µj,d and precision λj,d. The model indicator Ii,j is given a
multinomial-1 distribution

p(Ii,j |di) = Mn(Ii,j |Πj,d), (13.20)

where Πj,d are the binary probabilities observing either one of the two pre-
processing models given state di. Model inference will be based on a Markov
chain Monte Carlo (MCMC) method. We thus need to consider the likelihood
function, design a DAG that shows the relations during inference, specify
convenient priors and, as a final step, formulate the MCMC updates.

13.4.2 A Likelihood Function for Sequence Models

As already mentioned, we are interested in a fully Bayesian treatment of the
model. This can be done as soon as we are able to formulate a normalized
likelihood function and priors. We are dealing with a sequence model, where
the likelihood is usually (see [13], pp. 150) formulated via paths that are
possible sequences of latent states:

P (D, Πd, Πt|w) = P (d1)
∏
j

p(ρ1,j , I1,j |d1)P (t1|d1) (13.21)

×
N∏

i=2

⎛⎝P (di|di−1)P (ti|di, ti−1)
∏
j

p(ρi,j , Ii,j |ti)

⎞⎠ .

In (13.21) we used D to denote a realisation of all latent variables ρi,j and
model indicators Ii,j . A sequence of latent variables di is denoted as Πd and
a sequence of labels is denoted by Πt. Note that for the second sequence not
all paths are possible since we have to visit all given labels. We thus obtain
the likelihood

P (D, T |w) =
∑

Πd,Πt

P (D, Πd, Πt|w), (13.22)

where T denotes the observed class labels. If several independent sequences are
used to infer model coefficients, the overall likelihood is the product of several
expressions like (13.22). In order to obtain a final expression of the likelihood
of model coefficients we have to plug Equations (13.19) and (13.20) into Equa-
tion (13.22). It is evident that the resulting likelihood is highly nonlinear and
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parameter inference had to be done by carrying out Metropolis–Hastings up-
dates. The conventional way to maximize such likelihood functions is to apply
the expectation maximisation (EM) algorithm [14] which was introduced for
HMMs in [15]. The sampling algorithm proposed in the next subsection uses
similar ideas. We use both Gibbs updates and Metropolis–Hastings updates
to draw samples from the a-posteriori distribution over model coefficients and
latent variables.

13.4.3 An Augmented DAG for MCMC Sampling

The likelihood function associated with the probabilistic model in Figure 13.3
is highly non-linear in the model coefficients and we have to use MCMC
methods to infer them. As already indicated, we want to use Gibbs updates
wherever possible. Only such variables that do not allow Gibbs moves will be
updated with Metropolis–Hastings steps. Following the ideas of the EM pro-
cedure, we introduce latent indicator variables, di, which indicate the kernel
number of the Gaussian prior over the latent variables ρi,j .

Figure 13.4 shows a DAG that results from the DAG in Figure 13.3 when
augmented with all coefficients of the probabilistic model and the hyper-
parameters of the corresponding priors. In order to keep the graph simple,
Figure 13.4 displays only those variables that we need to derive the MCMC
updates for inference. In particular we illustrate only one observation model.
Other sensors are indicated by dots.

The state variable di is conditionally dependent on its predecessor and
on the transition probability T . Class labels, ti, depend on the state vari-
able and on the preceding label ti−1. The state conditional transition prob-
abilities are summarized by W . For both the transition probabilities, T =
P (di|di−1) ∀ di, di−1, and prior allocation probabilities, W = P (ti|di, ti−1)
∀ di, ti, ti−1, we use a Dirichlet prior. Conditional on the latent state di, we
have the observation model for the latent variables ρi,j and the correspond-
ing model indicator Ii,j . The observation model for Ii,j is a multinomial-one
distribution with observation probabilities Πj = P (Ii,j |di) ∀ Ii,j , di. These
probabilities are given a Dirichlet prior using δΠ as prior counts. Except that
we do not infer the number of kernels, the model for ρi,j is largely identi-
cal to the model used by [16] for their one-dimensional mixture of Gaussians
analysis with varying number of kernels. The means µj are given a normal
prior with mean ξj and precision κj . Each component has its own precision
(inverse variance) λj . In order to avoid problems with singular solutions the
variances are coupled with hyper-parameters α and βj . The latter, βj , has
itself a Gamma prior. This hierarchical prior specification allows for infor-
mative priors without introducing large dependencies on the values of the
hyper-parameters. The difference between our observation model and the one
used in [16] is that ρi,j are latent variables, with the time series Xi,j being
conditionally dependent on ρi,j and Ii,j .
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Fig. 13.4. A DAG for parameter inference. In order to keep it simple, the DAG
shows only one of the observation models for ρi,j , Ii,j one pair of latent variables
di−1, di, and one pair of class labels, ti−1, ti. We use three dots to indicate that
there could be more sensors. The DAG shows transition probabilities for the states,
T = P (di|di−1) ∀ di, di−1 and for the class labels W = P (ti|di, ti−1) ∀ di, ti, ti−1.
The multinomial observation model for the model indicator is specified by Πj =
P (Ii,j |di) ∀ Ii,j , di. Finally we have a hierarchical model for specifying the observa-
tion model for the lattice filter coefficients specified by µj and λj . As before, square
nodes denote observed quantities and circles are latent variables. However there is
an exception since during model inference some of the ti are observed.

13.4.4 Specifying Priors

In order to be able to derive an MCMC scheme to sample from the a-posteriori
distributions of model coefficients and latent variables, we need to specify
the functional form as well as the parameters of all priors from the DAG in
Figure 13.4. Gibbs sampling requires full conditional distributions from which
we can draw efficiently. The full conditional distributions are the distributions
of model coefficients when conditioning on all other model coefficients, latent
variables and data. Apart from the EM-like idea to introduce latent variables,
tractable distributions will be obtained by using so-called conjugate priors, as
discussed in [17].
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In order to allow Gibbs updates for most of the parameters, we use the
following prior specification:

• Each component mean, µj,d, is given a Gaussian prior: µj,d ∼ N1(ξj , κ−1
j ).

• The precision is given a Gamma prior: λj,d ∼ Γ (α, βj).
• The hyper-parameter, βj , gets a Gamma hyper-prior: βj ∼ Γ (g, h).
• The transition probabilities for the latent kernel indicators, T d, get a

Dirichlet prior: T d ∼ D(δ1T , . . . , δ
D
T ), with D denoting the number of ker-

nels.
• The transition probabilities for the class labels, W k,d, get a Dirichlet prior:

W k,d ∼ D(δ1W , . . . , δK
W ), with K denoting the number of class labels.

• The observation probabilities of the model indicators, Πd get a Dirichlet
prior: Πd ∼ D(δ1Π , . . . , δ

D
Π), with D denoting the number of kernels.

The quantitative settings are similar to those used in [16]: values for α are
between 1 and 2, g is usually between 0.2 and 1 and h is typically between
1/R2

max and 10/R2
max, with Rmax denoting the largest input range. The mean,

µj , gets a Gaussian prior centred at the midpoint, ξj , with inverse variance
κj = 1/R2

j , where Rj is the range of the j-th input. The multinomial priors
of the prior allocation counts and the prior transition counts are set up with
equal probabilities for all counters. We set all prior counts, i.e. for δT , δW and
δΠ to 1, which gives the most uninformative proper prior.

13.4.5 MCMC Updates of Coefficients and Latent Variables

The prior specification proposed in the last subsection enables us to use mainly
Gibbs updates. The latent variables ρi,j however need to be sampled via more
general Metropolis–Hastings updates. The main difficulty is that we regard
“input” variables as being latent. In other words: conventional approaches
condition on the ρi,j , whereas our approach regards them as random variables
which have to be updated as well.

We will first summarise the Gibbs updates for the model coefficients. The
expressions condition on hyperparameters, other model coefficients, hidden
states, class labels and the latent representation of preprocessing (i.e. ρi,j

and Ii,j). During model inference we need to update all unobserved variables
of the DAG, whereas for predictions we update only the variables shown in
the DAG in Figure 13.3. The updates for the model coefficients are done
using full conditional distributions, which have the same functional forms as
the corresponding priors. These full conditionals follow previous publications
[11], with some modifications required by the additional Markov dependency
between successive class labels.

Update of the transition probabilities, T

The full conditional of the transition probabilities T di [di+1] = P (di+1|di) is
a Dirichlet distribution. The expression depends on the prior counts, δT , and
on all hidden states, di.
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T d ∼ D(δT + nd
d,1, . . . , δT + nd

d,D), (13.23)

with nd
d,1, . . . , n

d
d,D denoting the number of transitions from state di = d

to di+1 = {1, . . . , D}. The prior probability of the hidden states P T is the
normalised eigenvector of T that corresponds to the eigenvalue 1.

Update of the transition probabilities for class labels, W

The full conditional of the transition probabilities, W di,ti−1 [ti] = P (ti|di, ti−1)
is a Dirichlet distribution. These transition probabilities are conditional on
both the previous class label and the current state. We thus obtain the pos-
terior counts, nτ

d,t, by counting transitions from class label τ to class label t,
given the current latent state is d. The transition probability is a Dirichlet
distribution.

W τ
d ∼ D(δW + nτ

d,1, . . . , δT + nτ
d,K). (13.24)

Conditional on d, the prior probability of the class labels P W,d is the nor-
malised eigenvector of W d that corresponds to the eigenvalue 1.

Update of the observation probability of model orders, Πj

The full conditional of the observation probabilities of model order Πj [di, Ii,j ]
= P (Ii,j |di, j) is a Dirichlet distribution. The expression depends on the prior
counts, δΠ , on the model indicators Ii,j and on the state di. Each sensor j
has its own set of probabilities P j .

Πj,d ∼ D(δP + n
Ij

d,0, . . . , δP + n
Ij

d,Imax
), (13.25)

where nIj

d,I denotes the number of cases in which Ii,j ≡ I and di ≡ d.

Updating the Gaussian observation model

We use a separate Gaussian observation model for the latent features ρi,j of
each sensor j. Each observation model needs three updates.

The full conditional of the kernel mean, µj , is a Normal distribution. The
expression depends on the hyperparameters κj and ξj , on the hidden states
di, on the model indicators Ii,j , on the covariance matrix λj and on the latent
coefficients ρi,j .

µj,d[k] ∼ N (µ̂j,d[k], σ
µ
j,d[k]) (13.26)

with

µ̂j,d[k] = (nµ
j,d[k]λj,d[k, k] + βj [k])

−1(nµ
j,d[k]λj,d[k, k]ρ̄d,j [k] + κj [k]ξj [k])

σµ
j,d[k] = (nµ

j,d[k]λj,d[k, k] + βj [k])
−1,
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where we use index k to denote the k-th dimension of the latent vector ρi,j .
The dependency of Equation (??) on Ii,j is implicit in

nµ
j,d[k] =

∑
i|Ii,j≡1

δ(di ≡ d)

and in
ρ̄d,j [k] =

1
nµ

j,d[k]

∑
i|Ii,j≡1

δ(di ≡ d)ρi,j [k].

The full conditional of the kernel covariance, λj,d[k], is a Gamma distribu-
tion. The expression depends on the hyperparameter αj and βj , on the hid-
den states, di, on the corresponding kernel mean µj,d[k] and on the model
indicators Ii,j .

λj,d[k] ∼ Γ (α̂, β̂) (13.27)

with

α̂ = αj +
nµ

j,d[k]
2

β̂ = βj [k] +
1
2

∑
i|Ii,j≡1

δ(di ≡ d)(ρi,j [k] − µj,d[k])
2

The full conditional of the hyperparameter βj depends on the hyper-hyper-
parameters gj and hj , on αj and on λj,d.

wβj [k] ∼ Γ (gj +Dαj ,hj [k] +
∑

d

λj,d[k]) (13.28)

13.4.6 Gibbs Updates for Hidden States and Class Labels

Updating di

The full conditionals for di are multinomial-one distributions. The first state
has no preceding state d0. We thus use the unconditional prior probability of
the state, PT (d1) instead of Td0 [d1].

di ∼ Mn(1, {P (di| . . .) ∀ di = 1 . . . D}) (13.29)

with

P (d1| . . .) =
PT [d1]Td1 [d2]PW,d1 [t1]

∏
j p(ρ1,j , I1,j |d1)∑

d1
PT [d1]Td1 [d2]PW,d1 [t1]

∏
j p(ρ1,j , I1,j |d1)

P (di�=1| . . .) =
Tdi−1 [di]Tdi [di+1]Wdi,ti−1 [ti]

∏
j p(ρi,j , Ii,j |di)∑

di
Tdi−1 [di]Tdi [di+1]Wdi,ti−1 [ti]

∏
j p(ρi,j , Ii,j |di)

For the last state of the Markov chain, the successor di+1 does not exist
and the expression of the probability, P (di�=1| . . .), does not include the term
Tdi

[di+1].
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Updating ti

Unknown class labels, ti, are updated by multinomial-one distributions.

Ti ∼ Mn(1, {P (ti| . . .) ∀ ti = 1..K}) (13.30)

with

P (t1| . . .) =
PW,d1 [t1]Wd2,t1 [t2]∑
t1
PW,d1 [t1]Wd2,t1 [t2]

P (ti �= 1| . . .) =
Wdi,ti−1 [ti]Wdi+1,ti

[ti+1]∑
ti
Wdi,ti−1 [ti]Wdi+1,ti [ti+1]

Since class label ti+1 does not exist for the last segment, we have to remove the
term Wdi+1,ti

[ti+1] when expressing the corresponding probability P (ti| . . .).

13.4.7 Approximate Updates of the Latent Feature Space

We finally have to formulate updates for the latent feature space, i.e. for the
variables ρi,j and Ii,j . These updates involve the posteriors formulated in
Equations (13.10) and (13.12) and are drawn from the “joint conditional”
distribution p(Ii,j ,ρi,j | . . .) ∝ p(Ii,j ,ρi,j |Xi,j)p(di|Ii,j ,ρi,j). We draw from
p(Ii,j ,ρi,j | . . .) by first proposing from (I ′

i,j ,ρ
′
i,j) ∼ p(Ii,j ,ρi,j |Xi,j) and then

accepting (I ′
i,j ,ρ

′
i,j) by a Metropolis–Hastings acceptance probability. We

draw model indicator I ′
i,j from p(Ii,j |Xi,j) which is a multinomial-one dis-

tribution.
I ′
i,j ∼ Mn(1, {P (Ii,j |Xi,j)), (13.31)

with P (Ii,j |Xi,j) defined in Equation (13.10). Using the indicator variable we
then propose ρ′

i,j .

ρ′
i,j ∼

{
∀I ′

i,j ≡ 1 : ρ′
i,j ∼ p(ρi,j |Xi,j)

∀I ′
i,j ≡ 0 : ρ′

i,j = [ ],
(13.32)

where p(ρi,j |Xi,j) is a product of the distributions in Equation (13.12) and
the second case denotes the white noise case, in which the latent parameter
ρ′

i,j has dimension zero. In order to get a sample from the full conditional
distribution, we have to calculate the acceptance probability

Pa = min
(

1,
P (di|ρ′

i,j , I
′
i,j)

P (di|ρi,j , Ii,j)

)
notag (13.33)

where

P (di|ρ′
i,j , I

′
i,j) =

⎧⎪⎨⎪⎩
∀I ′

i,j ≡ 1 :
p(ρ′

i,j |µj,di
,λj,di

)Πdi,j [I′
i,j ]

∑
di

p(ρ′
i,j |µj,di

,λj,di
)Πdi,j [I′

i,j ]

∀I ′
i,j ≡ 0 : Πdi,j [I′

i,j ]∑
di

Πdi,j [I′
i,j ]
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and accept the new values of the latent features (I ′
i,j ,ρ

′
i,j) according to this

probability. We would like to point out that this scheme is an approximation
to the exact updates of the latent space since the proposal distributions in
Equations (13.10) and (13.12) do not consider the correct prior which would
be the mixture distribution P (di)p(ρi,j |di)p(Ii,j |di). Instead we use the priors
specified in Section 13.2. However, we argue that the difference is not large
if the number of samples is sufficient since in this case the likelihood by far
outweighs the prior.

13.4.8 Algorithms

Model inference

Algorithm 1 Pseudo-code for sweeps during model inference.
0000000000000000000000000000000000000
∀ d initialise(W d, T d)
∀ j initialise(βj)
∀ j, d initialise(µj,d, λj,d, Πj,d)
∀ i initialise(di, ti) % only missing ti are initialised
∀ i, j initialise(Ii,j , ρi,j)
sweepcounter=0
REPEAT

∀ d update(T d) % according to Equation (13.23)
∀ d update(W d) % according to Equation (13.24)
∀ j, d update(Πj,d) % according to Equation (13.25)
∀ j, d update(µj,d) % according to Equation (??)
∀ j, d update(λj,d) % according to Equation (13.27)
∀ j update(βj) % according to Equation (13.28)
∀ i, j (ρ′

i,j , I
′
i,j) ∼ p(Ii,j , ρi,j |Xi,j) % according to Eqns. (13.10) and (13.12)

accept(ρ′
i,j , I

′
i,j) with Pa % according to Equation (13.33)

∀ i update(di) % according to Equation (13.29)
∀ i if ti missing

update(ti) % according to Equation (13.30)
inc(sweepcounter)
sample[sweepcounter]={T d, W d, Πj,d, µj,d, λj,d ∀j, d}

UNTIL (sweepcounter > maxcount)

For model inference we start the MCMC scheme by drawing initial model
parameters from their priors. We initialize all (Ii,j ,ρi,j) ∼ p(Ii,j ,ρi,j |Xi,j)
with samples drawn from the posteriors in Equations (13.10) and (13.12) and
all unobserved states di are drawn from the prior probabilities P (di). The class
labels of unlabelled segments are drawn from their prior P (ti|di) as well. After
this initialisation we update according to the full conditionals and in the case
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of feature updates according to the single component Metropolis–Hastings
step. Pseudo-code of these updates is shown in Algorithm 1.

Predictions

Algorithm 2 Pseudo-code for sweeps during predictions.
0000000000000000000000000000000000000
∀ i initialise(di, ti)
∀ i, j initialise(Ii,j , ϕi,j)
sweepcounter=0
expcounter=0
REPEAT

inc(sweepcounter)
{T d, W d, Πj,d, µj,d, λj,d ∀j, d} = sample[sweepcounter]
∀ i, j (ρ′

i,j , I
′
i,j) ∼ p(Ii,j , ρi,j |Xi,j) % according to Eqns. (13.10) and (13.12)

accept(ρ′
i,j , I

′
i,j) with Pa % according to Equation (13.33)

∀ i update(di) % according to Equation (13.29)
∀ i update(ti) % according to Equation (13.30)
if sweepcounter > burnincounter

P (ti) = P (ti) + 1
expcounter = expcounter + 1

UNTIL (sweepcounter > maxcount)
∀ ti P (ti) = P (ti)/expcounter

In order to get consistent estimates of the beliefs of the states, predictions
have to be marginalized over ρi,j and Ii,j . The integrals need to be solved
numerically. We use all samples drawn from the posterior in order to allow
the ρi,j of the test data to converge. All sample expectations are then taken
after allowing for a burn-in period. Apart from beliefs about states, we can
also obtain expectations from all latent variables - most interestingly from the
Ii,j and ρi,j .

Predictions are based on an approximation of the a-posteriori distribution
of class labels, ti, latent allocations, di and latent variables, ρi,j . We initial-
ize the latent variables di and the class labels ti by drawing according to
the respective prior probabilities. The initial (I ′

i,j ,ρ
′
i,j) ∼ p(Ii,j ,ρi,j |Xi,j) are

drawn from the posteriors in Equations (13.10) and (13.12). The coefficients
are then updated using full conditional distributions for ti and di and the sin-
gle component Metropolis–Hastings step for (Ii,j , ρi,j). During each round of
Algorithm 2, we use the next sample from the Markov chain obtained during
parameter inference. We are interested in obtaining the probabilities of class
labels ti and expected values of the latent variables (Ii,j , ρi,j). We estimate
these quantities by averaging after having allowed for a burn-in period.
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Assessing convergence

Although in theory MCMC algorithms can approximate arbitrary distribu-
tions, the difficulty is that there is a random error inherent to the approach.
This means that we need to estimate how many samples from the posterior we
need in order to be able to approximate the desired value with sufficient accu-
racy. Different approaches to obtain such estimates are discussed at length in
the MCMC literature (e.g. [18] and [19]). Although all suggested approaches
can diagnose non-convergence, there is no way that allows to assess conver-
gence with certainty. We thus need to treat quoted numbers with caution.
Despite this difficulty, it is important to have at least a rough idea about how
many samples to draw. The suggested methods follow two different strategies.

• Along the lines of [20], we can compare the samples obtained from multiple
runs.

• As is suggested in [21], we can use one run and apply Markov chain theory
to assess how many samples we need to discard at the beginning to get
estimates that are independent of the starting value and how many samples
we need to converge to a sufficiently accurate result.

Although there are cases where the second case might fail to diagnose slow
convergence, [19] points out that the multiple chain approach is less efficient
since we have to wait more than once until the Markov chain visits a high
probability region. The model proposed in this work has definitely a very
complicated structure, such that initial convergence might be slow. We thus
apply the method suggested in [21] to the likelihood of the class labels we
calculate from the Markov chain. We should point out that we cannot use the
model coefficients directly since the mixture model is not identified and label
switching might give a wrong sense of the actual mixing. Calculations suggest
that we should draw around 15, 000 samples which is confirmed by observing
virtually no difference in probabilities obtained from repeated runs.

13.5 Experiments

This section evaluates the proposed method on two biomedical classification
problems. The first experiment classifies in segments of sleep EEG, whether
sleep spindles are present or not. We use this data because it reflects a problem
of very unbalanced class labels. For the second experiment we apply the pro-
posed method to classification of cognitive states of segments of EEG record-
ings. In this case the cognitive experiments have been designed to obtain data
with balanced class labels.
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13.5.1 Data

Classification of sleep spindles

Sleep spindles are an important phenomenon in sleep EEG. This experiment
uses data recorded from the standard 10–20 electrodes F4, C4 and P4 [22, 23]
that were recorded against averaged ear potential. The sampling frequency
used here was 102.4 Hz. This data is segmented into segments of 0.625 seconds
duration such that we get 16 segments for a 10 second recording. A segment is
labelled as containing a spindle if more than half of the segment shows spindle
activity. This setup results in a prior probability for “spindle” to be roughly
Pspindle = 0.15. We use data from two different subjects, each containing 7
minutes of sleep EEG that was marked for sleep spindles by a human expert.
Figure 13.5 shows the second reflection coefficient and a 1 standard deviation
error bar for 30 seconds of data calculated according to Equation (13.12).
The classification experiment uses two datasets from different subjects. For
every electrode we extract three reflection coefficients, including the standard
deviation and the probability of the model compared against a white noise
explanation. We report within subject results, evaluated on 672 data points
using 6-fold cross-validation.
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Fig. 13.5. The transformed reflection coefficient and corresponding 1 standard
deviation error bar for 30 seconds of sleep EEG recorded from electrode C4. Positive
peaks in the plot correspond to spindle activity.

Classification of cognitive tasks

The data used in these experiments is EEG recorded from 10 young, healthy
and untrained subjects while they perform different cognitive tasks. We clas-
sify two task pairings: auditory–navigation and left motor–right motor imag-
ination. The recordings were taken from 3 electrode sites: T4, P4 (right
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Fig. 13.6. Transformed reflection coefficient plus minus one standard deviation for
140 seconds of cognitive EEG recorded in the right tempero-parietal region from
electrodes T4 and P4. The rhythmicity in the second half of the experiment corre-
sponds to alternating cognitive states.

tempero-parietal for spatial and auditory tasks), C3’ , C3” (left motor area
for right motor imagination) and C4’ , C4” (right motor area for left motor
imagination). Note that these electrodes are 3 cm anterior and posterior to
the electrode positions C3 and C4, as defined in the classical 10–20 electrode
setup [22, 23]. The ground electrode was placed just lateral to the left mastoid
process. The data were recorded using amplification gain of 104 and fourth
order band pass filter with pass band between 0.1 Hz and 100 Hz. These
signals were sampled with 384 Hz and 12-bit resolution. Each cognitive ex-
periment was performed 10 times for 7 seconds. Figure 13.6 shows the second
reflection coefficient and a 1 standard deviation error bar for 140 seconds of
data from the right tempero-parietal region calculated according to Equation
(13.12). We extract for both electrodes three reflection coefficients, the stan-
dard deviation and the probability of the model compared against a white
noise explanation. We report within subject results, evaluated on 140 data
points using 5-fold cross-validation.

13.5.2 Classification Results

The classification results reported in this section have been obtained by draw-
ing 15, 000 samples from the posterior distribution of the class labels ti in
the test data. This allows us to estimate the posterior probability over class
labels and hence predict the Bayes optimal class label. Figure 13.7 shows the
posterior probabilities for spindle events for the data used above to illustrate
preprocessing results. Figure 13.8 shows the probability for cognitive state
“auditory” for the data used above to illustrate the preprocessing result. To
quantify the results, we obtain independent predictions for all data and cal-
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Fig. 13.7. Probabilities of “spindle” for the parameters shown in Figure 13.5.
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Fig. 13.8. Probability for cognitive state “auditory” for the parameters shown in
Figure 13.6.

culate the expected generalisation accuracies. For the cognitive experiments
this is an average across 10 subjects. The predictions are done on a one second
basis to get a situation similar to reality in brain–computer interface experi-
ments, where predictions have to be done in real time. The results on spindle
classification are averaged over two subjects. The overall generalisation accu-
racies are shown in Table 13.1. We can also obtain a more general picture by
looking at the receiver operator characteristics (ROC) curves shown in Figure
13.9.
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Table 13.1. Generalisation accuracies for sleep spindle data and two cognitive
experiments.

Data Accuracy

Spindle 93%
left/right 66%
aud./navig. 80%
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Fig. 13.9. Receiver operator characteristics (ROC) curve for the three different
problems used in this chapter. Plot “spindle” shows the ROC curve for classification
of sleep spindles. Plot “left/right” shows the ROC curve for classifying left/right
movement imagination. The last plot, “aud./navig.” shows the ROC curve when
classifying the auditory versus navigation task.

13.6 Conclusion

Applications of machine learning to biomedical problems often separate fea-
ture extraction from modelling the quantity of interest. In a probabilistic
sense this must be regarded as an approximation to the exact approach, which
should model the quantities of interest as one joint distribution similar to the
DAG in Figure 13.1. To further illustrate this idea, we consider the problem
of time series classification which is often found in medical monitoring and
diagnosis applications. By time-series classification, we mean the problem of
classifying subsequent segments of time-series data. Examples of that kind are:
sleep staging which is usually based on recordings of brain activity (EEG),
muscle activity (EMG) and eye movements (EOG); scoring of vigilance, which
is again based on EEG; or classifying heart diseases from ECG. The exam-
ples used in this chapter to illustrate the proposed approach are classifying
of sleep spindles and classifying cognitive activity. The latter is used as part
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of a brain–computer interface. The spatio-temporal nature of these problems
is very likely to introduce both spatial and temporal correlations. We thus
propose a probabilistic model with dependencies across space and time. For
model inference and to obtain probabilities of class labels, we have to solve
marginalisation integrals. In this chapter this is done by Markov chain Monte
Carlo methods. Algorithms 1 and 2 are approximations of [11], where we use
exact inference and allow for different model orders of the latent feature space.
The advantage of the approximation proposed here is a significantly reduced
computational cost without losing much accuracy.
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Summary. Hidden Markov Models (HMM) have proven to be very useful in a va-
riety of biomedical applications. The most established method for estimating HMM
parameters is the maximum likelihood method which has shortcomings, such as
repeated estimation and penalisation of the likelihood score, that are well known.
This paper describes a variational learning approach to try and improve on the
maximum-likelihood estimators. Emphasis lies on the fact that for HMMs with ob-
servation models that are from the exponential family of distributions, all HMM
parameters and hidden state variables can be derived from a single loss function,
namely the Kullback-Leibler divergence. Practical issues, such as model initialisa-
tion and choice of model order, are described. The paper concludes with application
of three types of observation model HMMs to a variety of biomedical data, such as
EEG and ECG, from different physiological experiments and conditions.

14.1 Introduction

Hidden Markov models (HMMs), introduced in Section 2.3.4 and Section
10.11.4, are well-established tools with widespread use in biomedical appli-
cations. They have been applied to sleep staging [3], non-stationary biomed-
ical signal segmentation [16], brain–computer interfacing [13], and of course
speech [24]. Their strength lies in the fact that they are capable of modelling
sudden changes in the dynamics of the data, a situation frequently observed
in physiological data. Another crucial factor is their ability to segment the
data into informative states in a completely unsupervised fashion. When very
little about the underlying physiological state is known a priori, unsupervised
methods are a useful way forward.

The most established method of training the parameters of a HMM
uses the maximum-likelihood framework [17, 24]. The methods leads to sim-
ple parameter update equations. There are, however, some problems with
the maximum-likelihood approach. Leaving the Bayesian argument aside,
maximum-likelihood estimators are comparatively slow in their convergence.
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From our experience, maximum a posteriori estimators are considerably
faster, presumably because the priors somewhat smooth the likelihood sur-
face and thus optimisation homes in quicker on a local maximum. Also, in
maximum-likelihood estimation, special care must be taken not to over-fit the
data. To avoid this, models of different complexity must be repeatedly esti-
mated and the residuals computed and penalised for complexity of the model
until an optimal model is found. While some heuristics may well be available to
overcome such a computationally expensive approach they nonetheless remain
expensive [23] and the finiteness of training data means that larger models
cannot be computed without running into computational problems, such as
near-singular covariance matrices.

These drawbacks of maximum-likelihood base estimation of HMM parame-
ters have lead us to investigate Bayesian approaches to learning model param-
eters and structures. Unlike maximum likelihood estimators, which estimate
a single value for the parameters, a Bayesian estimator results in a distribu-
tion for the HMM parameters and thus confidence measure for the model. In
computing this distribution, which is known as the posterior, the Bayesian
estimator requires the likelihood of the data under the model and the prior
distributions of the model parameters. The priors in Bayesian approaches play
a role similar to information gathered from previously collected data [7] and
thus allow us to overcome the problems of singularities in the presence of
limited actual training data. In addition, if new data does not support the hy-
pothesized model complexity, posterior densities of the model parameters will
be no different from their prior densities, which in effect results in an auto-
matic pruning process. The main difficulty of Bayesian methods tends to be of
a mathematical nature. Complex models can quickly become mathematically
intractable, i.e. integrating out nuisance parameters becomes impossible. This
is often resolved by the use of sampling approaches to estimate the posterior
densities [20]. Analytic approximations also exist. They might lead to slightly
inferior solutions when compared with sampling, as they often seek only local
maxima. Being analytic, however, we expect them to converge must faster
than sampling estimators.

In this chapter we describe the use of an analytical approximation to the
exact Bayesian posterior densities by means of the variational framework. This
framework provides a unified view of estimating all unknown HMM variables
- parameters and hidden states [12]. We will describe how update equations
can be obtained for a wide range of HMMs with various observation densities.
We finally apply the HMMs to biomedical data, such as electrocardiogram
derived R-wave interval series, respiration recordings and electroencephalo-
graphic signals (EEG).
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14.2 Principles of Variational Learning

Chapters on variational calculus can be found in many mathematics text-
books, yet their use in statistics, briefly mentioned in Section 2.3.6, is rela-
tively recent (see [8] and [10] for excellent tutorials). In essence, the aim is
to minimise a cost function which, in this case, is the Kullback-Leibler (KL)
divergence [2]. The KL divergence measures a distance between two distribu-
tions, say Q and P , by the integral1

F = D(Q(H)||P (H,V )) =
∫
Q(H) log

Q(H)
P (H|V )

dS + logP (V ) . (14.1)

Here, the distributionsQ(H) and P (H|V ) are defined over the set of all hidden
variables H, such as parameters or hidden states, conditioned on the observed
data V .

The choice of cost function, like that of the squared error, is primarily
influenced by its practicability, i.e. it often results in simple solutions. One
way of achieving this, in the case of the KL divergence, is to stay within the
group of the exponential family and to approximate the full but intractable
posterior probability density P (H|V ), which parameterises the true model,
by a simpler but tractable distribution, Q(H). Minimising or differentiating
the KL divergence with respect to the approximate posterior distribution,
Q(H), results in simple equations, which are often coupled and thus need to
be re-estimated in an iterative fashion.

By approximating the full posterior, one can enjoy some of the benefits
of Bayesian analysis, such as full Bayesian model estimation and automatic
penalties for over-complex models to avoid over-fitting. Note, the first term
on the right-hand side in equation (14.1) is always non-negative, and thus the
divergence is a bound to the true log-probability of the data P (V ). This means
that optimal model selection takes place within the class of approximated and
thus suboptimal models.

The simplest of all approximations to the true posterior distribution,
P (H|V ), can be obtained by assuming that, if one is given a set of hidden
variables H = {H1, . . . , HN}, the Q-distribution factorises

Q(H) =
T∏

i=1

Q(Hi) , (14.2)

with the additional obvious constraint that the distributions integrate to unity,
that is

∫
Q(Hi) dHi = 1. This assumption is known as the as the “mean-field”

assumption. Under the mean-field assumption, the distributions Q(Hi) which
maximise the KL divergence (14.1) can be shown [6] to have the general form

1 Physicists have noted that the same function occurs in statistical mechanics and
therefore often refer to it as minimising the so-called variational free energy [9].
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Q(Hi) =
1
Z

exp
∫
Q(H̄i) logP (Hi|H̄i)dH̄i , (14.3)

where H̄i = H \Hi is the set of all hidden variables H excluding Hi and Z is
just a normalisation constant. For completeness, we repeat the derivation of
the model-free form (14.3) of [6] in Appendix A.

There is, in principle no reason to restrict oneself to the independence
assumption of the Hi. One can easily define Hi to be actually a subset of
variables forming a partition of H. In this chapter for instance, we form such
a partition by grouping all HMM variables into the set of hidden state variables
and the set of HMM model parameters (governing the probability of observing
the datum at a particular time instance and the probability of transit to
the next time step). The actual set of model parameters we denote by θ =
{θ1, . . . , θM} and the set of hidden state variables by S = {S0, . . . , ST }. The
hidden state variables, S form one partition within the overall set of variables
and are updated jointly. In contrast the members of the set of HMM model
parameters, θ, are assumed to be independent from one another. With these
assumptions, the approximating distribution Q(H) may be expressed as

Q(H) � Q(S)Q(θ) = Q(S0)
T∏

t=1

Q(St|St−1)
M∏

j=1

Q(θj). (14.4)

This is useful because the distribution Q(S) has the structure of a simple
chain. This makes it tractable and an exact updating scheme can be found
jointly for all Q(St).

Finally, we make one further assumption. Models of different structures
or sizes, e.g. state space dimensions or observation model order, are taken to
be independent from one another. The set of all model sizes is denoted by A
and a particular model size is indexed with a. We can then write the posterior
probability of all model sizes A and unknown variables in the following form

P (S, θ,A) =
A∏

a=1

P (S|a)P (θ|a)P (a) , (14.5)

where each factor, P (S|a)P (θ|a)P (a), corresponds to a different model size.
Assuming that all model structures in A are equally likely, the posterior model
probability can be computed as

Q(a) ∝ exp{−Fa} , (14.6)

where Fa is the KL divergence of the entire model for a fixed model size, i.e.

Fa =
∫∫

Q(S|a)Q(θ|a) log
Q(S|a)Q(θ|a)
P (S, V, θ, a)

dSdθ . (14.7)

The assumption is primarily chosen to make it easier to select a particular
model, which will be the model with the smallest KL divergence between
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the true and approximate model distribution. In general, such an assumption
should be used with caution as models are very likely to overlap significantly.
However, this assumption is used widely though in a different form. It is
identical to the assumption of uniform priors over model structures.

14.3 Variational Learning of Hidden Markov Models

Consider a set of T random variables, S = {S1, . . . , St, . . . , ST }. Each random
variable can take on one of, say M , discrete values, St = {s1, . . . , sM}. If we
impose, for t > 0 a probability on observing the variable St that is conditioned
on the value of the variable St−1 and denote this probability by P (St|St−1),
one obtains a Markov Chain since P (St|St−1) is known as the Markov prop-
erty. A Hidden Markov process supposes further that what is actually observed
are not the individual St, but a corrupted version of them. The variables St

are thus hidden from the observer and the observations, say Xt are dependent
on the variable St. This probability distribution over the entire sequence of
observations X = {X1, . . . , Xt, . . . , XT } and states S = {S1, . . . , St, . . . , ST }
then takes the mathematical form of

P (S,X) = P (S0)
T∏

t=1

P (St|St−1)P (Xt|St) . (14.8)

The state transition probability, P (St|St−1) is a multinomial (i.e. discrete)
distribution, encoded in an M ×M matrix since there are M possible values
St can take for every value St−1 has taken. These probabilities are denoted
by πtt−1 and are assumed to be independent of the time t, i.e. we assume
the Markov chain is homogeneous. The initial state probability S0 is parame-
terised by π0 and is also a multinomial with M probability values. The value
M is called the state space dimension. The probability P (Xt|St) is called the
observation probability and is parameterised by θObs. Its form depends on
the assumed observation model, which in the case of a Gaussian corrupted
Markov chain is simply a set of M Gaussian densities, one for each value of
St.

The speech community represents a HMM graphically, shown in Fig-
ure 14.1(a) for a HMM with M = 2, by representing each state a variable
St can take by a vertex. The transitions from one state into the next are
depicted by arcs and labelled with the probability of making the transition.
Unlike the state space representation of the HMM, the graphical model rep-
resentation, shown in Figure 14.1(b), depicts the HMM using vertices for the
state variables S and observations X. This has its origin in interpreting the
HMM as a Bayesian network in which all random variables are assigned a
vertex. Observed (a.k.a. instantiated) random variables have shaded vertices.
Arrows between vertices represent statistical relationships between the ran-
dom variables. The functional form of the relationship is often left out and
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results in ambiguities. A factor graph makes the functional form of variable
dependencies clearer. Such a graph is shown in Figure 14.1(c).

1−qq

p1−p

1s0s

(a) State space representation of
a HMM

1 S2 S3

X0 X X2 X

S

1

0S
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(b) Graphical model representa-
tion of a HMM
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X1 X20X X3
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(c) Factor graph representation of a HMM

Fig. 14.1. A HMM represented graphically. Subfigures (b) and (c) represent the
HMM with four unrolled time slices. Shaded nodes denote observed random vari-
ables.

The concepts of variational learning described in the previous section can
be readily applied to a first order hidden Markov model. We assume a HMM of
length T , state space dimension M , hidden state variables, S = {S1, . . . , ST },
and observations X = {X1, . . . , XT }, transition model and the observation
model. The HMM parameters θ, consist of πtt−1 which determine the state
transition probability P (St|St−1), π0 which parameterise the initial state prob-
ability P (S0) and θObs which describe the observation probabilities P (Xt|St).
The full true posterior probability of the model is then given by

P (S,X, θ) = P (S,X|θ)P (θ) (14.9)
� P (S,X|πtt−1 , π0, θObs)P (πtt−1 , π0, θObs) (14.10)

= P (S0|π0)
T∏

t=1

P (St|St−1, πtt−1)P (Xt|St, θObs)

P (πtt−1)P (π0)P (θObs) . (14.11)

What remains to apply the cost function (14.1) is the distribution which
approximates the full posterior probability P (S,X, θ). First, we assume that
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all the HMM model parameters, θ (i.e. all variables but the state space vari-
ables) are independent (mean field assumption). Second, all the hidden state
variables are grouped together and are governed by one distribution Q(S).
With these assumptions, the resulting KL divergence (14.1) then becomes

F =
∫
. . .

∫
Q(S) Q(πtt−1)Q(π0)Q(θObs)

log
Q(S)Q(πtt−1)Q(π0)Q(θObs)
P (S,X, πtt−1 , π0, θObs)

dSdθ . (14.12)

This KL divergence can now be minimised individually with respect to the
distributions,Q(S), Q(πtt−1), Q(π0) andQ(θObs). In the two following sections
we first update divergence (14.12) with respect to the distribution of the
hidden states, Q(S), to show that it leads to the well-known Baum-Welch
or forward-backward recursions. Then the cost function (14.12) is minimised
with respect to Q(θObs). The minimisation depends on the functional form of
the observation model, Q(θObs), and is shown for different types of observation
models, such as Gaussian and linear observation models.

14.3.1 Learning the HMM Hidden State Sequence

We begin by optimising the KL divergence (14.12) with respect to the distribu-
tion over all hidden states, Q(S). Using the mean-field update equation (14.3),
the optimal posterior distribution over all hidden states, Q(S), can be com-
puted by replacing all HMM parameters θ for H̄i in equation (14.3), to give

Q(S) ∝ exp
∫
Q(θ) logP (S,X, θ)dθ (14.13)

Of interest, however, is not so much the global distribution, Q(S), but
the marginal distributions, Q(St), and the joint hidden state probabilities,
Q(St, St+1). They can be calculated using the well-known Baum-Welch or
forward-backward recursions.

The justification for using the forward-backward recursions comes from
the fact that they are the result of minimising equation (14.12) with respect
to the individual hidden state probabilities, Q(St), and the joint hidden state
probabilities, Q(St, St+1). To see this, assume all other Q-distributions are
held constant and parameterised by θ̃ which are the values calculated during
previous iterations. Then, the KL divergence (14.12) simplifies to

F =
∫
Q(S) log

Q(S)
P̃ (S,X)

dS + const , (14.14)

where

P̃ (S,X) =
∫
Q(θ) logP (S,X, θ) dθ , (14.15)
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and the constant includes all terms not involving S. To further minimise the
divergence (14.14), additional consistency and normalisation constraints are
needed. One set of constraints simply ensures that all Q-distributions nor-
malise to 1. In addition, consistency (or holonomic) constraints are required
which ensure that marginalising Q(St, St−1) with respect to Q(St) gives the
same result as marginalising Q(St, St+1). These additional constraints are
added to the KL divergence (14.14) with the usual Lagrangian multipliers.
The simple structure of the hidden state chain permits an analytic solution to
equation (14.14) in form of iterative computations of the Lagrangian multi-
pliers. The detailed steps starting from optimising the KL divergence (14.14)
leading up to the Baum-Welch recursions are given in Appendix B.

For simplicity, in the following we assume the Baum-Welch recursions
have been applied and yield the marginal and joint distributions Q(St) and
Q(St, St−1), respectively. We make use of the notation introduced in [17],
specifically we denote the probability of the state variable St taking one of
the M values m = 1, 2, . . . ,M , by

γt(m) = Q(St = m|X) . (14.16)

Further, we denote the joint probability of variable St taking value n and St−1
taking value m, by

ξt(m,n) = Q(St = n, St−1 = m|X) . (14.17)

14.3.2 Learning HMM Parameters

The updated probabilities of the hidden state variables result in values of
γt(m) and ξt(m,n) (see previous section) for each time instance t. In order to
obtain an analytic solution for the HMM parameters after substituting into
equation (14.3), we need to choose appropriate prior distributions, P (θ), for
the HMM parameters, θ. To obtain analytic solutions, the prior distributions,
P (θ), are required to be conjugate distributions. The approximate posterior
distributions Q(θ) will then be functionally identical to the prior distributions
(i.e. a Gaussian prior density is mapped to a Gaussian posterior density).
Apart from the parameters of the observation model, which will be discussed
later, for the HMM these conjugate prior distributions are as given in [1]. For
the initial state probability π0, we use an M -dimensional Dirichlet density

Dir(π0) =
Γ (
∑

l κl)∏
l Γ (κl)

M∏
m=1

πκm−1
0m

, (14.18)

and, for the transition probabilities, πm, M ×M -dimensional Dirichlet densi-
ties

Dir(πtt−1) =
M∏

m=1

Γ (
∑

l λml
)∏

l Γ (λml
)

M∏
n=1

π
λmn −1
mn . (14.19)
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Based on these assumptions, minimisation of the KL divergence with respect
to the posterior distributions Q(πtt−1) and Q(π0) leads to posterior initial
state and transition probabilities that are again Dirichlet distributed and have
parameters, respectively,

κ̃m = γt=0 = m+ κm; (14.20)

λ̃mn =
∑

t

ξt(m,n) + λmn . (14.21)

The hyperparameters κ and λ are fixed and typically set to integer values
just greater than 1, reflecting the fact that little is known a priori about the
initial state and state transition probabilities.

14.3.3 HMM Observation Models

What remains to specify is the probability of the observation given the state
at time t, P (Xt|St). Determining it will also force our hands in determining
the prior distributions of the parameters governing the observation model,
P (Xt|St). The choice of P (Xt|St) is also very much dependent on the appli-
cation. The two classic and simplest of all cases assume the Markov chain is
corrupted by additive Gaussian noise or that the observations are discrete. In
the latter case, the observation model is simply a multinomial while in the
former the observation model is (multivariate) Gaussian. Many others have,
of course, been suggested in the HMM’s long history. Among them are Poisson
densities for count processes [11], and linear models (spectral or autoregres-
sive) for use in, say EEG modelling [16], along with more complex models
such as “independent component” models [15].

The Gaussian observation model

For observations which, conditional on the state, are Gaussian distributed,

P (Xt|St = m) = P (Xt|µm, Cm) (14.22)

where µ = {µ1, . . . , µM} and C = {C1, . . . , CM} are the normal distribution
mean vectors and precision matrices, respectively. The conjugate densities [1]
for the means µm, are K-dimensional Normal densities (m = 1, . . . ,M)

P (µm) ∝ e− 1
2 (µ−µm0 )TCm0 (µ−µm0 ), (14.23)

and for the precisions Cm, K-dimensional Wishart densities (m = 1, . . . ,M)

P (Cm) ∝ |Cm|αm− K+1
2 e−tr(BmCm) (14.24)

Inserting these densities into (14.12) and subsequent minimisation leads
to update equations for the parameters of the posterior densities of the
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means and precisions. The posterior means follow normal densities q(µm) ∼
N (µ̃m0, C̃m0), with parameters

µ̃m0 = (γ̄mα̃mB̃
−1
m + Cm0)−1(ᾱmB̃

−1
m x̄m + Cm0µm0); (14.25)

C̃m0 = (γ̃mα̃mB̃
−1
m + Cm0) (14.26)

where x̄m =
∑T

t=1 γt(m)xt and γ̄m =
∑T

t=1 γt(m).
Similarly, the posterior precisions follow a Wishart density, q(Cm|α̃m, B̃m) ∼

W(α̃m, B̃m), with parameters

α̃m =
1
2
γ̄m + αm; (14.27)

B̃m =
1
2

T∑
t

γt(m)(xt − µ̃m0)(xt − µ̃m0)T +
1
2
γ̄mC̃

−1
m0 +Bm (14.28)

The Poisson observation model

The choice of Gaussian observation model depends on the data and, hence,
might not be appropriate. Particularly, when dealing with count data, such as
the RR interval series obtained from the ECG signal, Gaussian observation
models are only applicable after some preprocessing of the data, such as in-
terpolation [21]. To avoid this we demonstrate the variational estimation of a
Poisson observation model for HMMs. In this case, the observation density is

P (Xt|St = m,µ) = e−xtµm(xnµm)yt
1
yt!

(14.29)

where, each of theM states has a Poisson distribution with parameter µm. The
data points y1, . . . , yT are counts while the values xt are called the exposure of
the t-th unit, i.e. a fraction of the unknown parameter of interest µm [4]. The
prior for the parameter of the Poisson distribution is chosen to be conjugate,
which is a Gamma density (m = 1, . . . ,M)

P (µm) ∝ µα0−1
m exp{β0µm}. (14.30)

The optimised Q-distribution for the Poisson rate of state m are also Gamma,
with parameters

Q(µm) ∼ G(α̃0, β̃0)

α̃0 =
∑

t

γtmyt + α0 (14.31)

β̃0 =
∑

t

γtmxt + β0 (14.32)
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The multivariate linear observation model

The final model described here is the multivariate linear observation model.
It is particularly useful when, for instance, auto-regressive features are to be
extracted from EEG signals and later segmented using a HMM with Gaussian
observation models. It is clear that if the process of feature extraction and
segmentation can be combined the results are much improved [22]. Further,
if the linear model has sinusoids as basis functions, one can use the HMM to
segment the signal based on its spectral content. Without any major math-
ematical complications, we can also assume that a short data segment can
be described with the same linear model. The model then becomes a matrix
variate linear model, in which a segment of multivariate data forms an obser-
vation matrix that is modelled by a linear model. The model is best described
as a graphical model shown in Figure 14.2.

λmn nπm

Φ

Ω
Σ

t=1...T

α
Σ BΣ

H

Xt

St−1 St

Yt

BΦ αΦ

Fig. 14.2. Directed graph of a HMM with a matrix-variate linear observation model
for observations Y and basis functions X.

For observation Yt and basis functions Xt, the linear observation model is
given as

P (Yt −HmXt|St = m) = Nd,u(0, Σm, Iu) (14.33)

where Nd,u is a d × u-matrix variate normal density function [5], H =
{Hm} ∀m = {1, . . . ,M} and Iu is a u × u identity matrix. For example,
assume a multivariate autoregressive (AR) model of order p which models
a d-variate observation yt. The past samples can be concatenated in a ma-
trix, xt

def=
[
y T

t−1, . . . ,y
T
t−p

]
T. Thus yt ∈ R

d is a d-variate response vector
at time t, xt ∈ R

dp is a dp-variate basis vector at time t. H̄p ∈ R
d×d is the

matrix of model coefficients, H ∈ R
d×dp is a partitioned matrix composed
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of the coefficient matrices at lag p. If, furthermore, the samples are grouped
into segments, indexed by n, each of which contains u samples of yt, one can
construct a matrix with u response- and u basis-vectors, i.e.

Yn =
[
y(n−1)u, . . . ,ynu

]
(14.34)

Xn =
[
x(n−1)u, . . . ,xnu

]
. (14.35)

The final form of the linear model takes the form Yn = HXn the residuals
of which are Gaussian distributed, thus giving equation (14.33), with index t
replaced by n.

The prior densities for the coefficient matrices Hm are assumed to be a
d× dp-matrix variate normal densities, Nd,dp(Ω,Σm, Φm), with mean Ω and
precisions Σm and Φm. The prior for residual precisions Σm and the coefficient
precisions Φm are Wishart densities [1], Wd(αΣ , BΣ) and Wdp(αΦ, BΦ), with
shape/scale parameters αΣ/BΣ and αΦ/BΦ, respectively.

The posterior density of the model coefficients, Hm, is a d × dp matrix
variate Normal density with mean Ω̃ and precision matrices Σ̃m, Φ̃m computed
by

Ω̃T
m = Φ̃−1

m

(∑
n

γnmXnY
T
n + α̃ΦmB̃

−1
ΦmΩ

T

)
(14.36)

Σ̃m = α̃ΣmB̃
−1
Σm (14.37)

Φ̃m =
∑

n

γnmXnX
T
n + α̃ΦmB̃

−1
Φm (14.38)

The posterior of the residual variances, Σm, is a Wishart density with
shape and scale parameters computed by

α̃Σm =
1
2

(∑
n

uγnm + dp+ 2αΣ

)

B̃Σm =
1
2

∑
n

γnm

[
(Yn − Ω̃mXn)(Yn − Ω̃mXn)T + tr

(
XnX

T
n Φ̃

−1
m

)
Σ̃−1

m

]
+

1
2

(
Ω̃m −Ωm

)
α̃ΦmB̃

−1
Φm

(
Ω̃m −Ωm

)T
+

1
2
tr
(
α̃ΦmB̃

−T
ΦmΦ̃

−1
m

)
Σ̃−1

m +BΣ

(14.39)

The posterior model coefficient variances, Φm, also follow a Wishart den-
sity with parameters

α̃Φm =
d

2
+ αΦ

B̃Φm =
1
2
(Ω̃m −Ω)Tα̃ΣmB̃

−1
Σm(Ω̃m −Ω) +

1
2
tr(α̃ΣmB̃

−1
ΣmΣ̃

−1
m )Φ̃−1

m +BΦ

(14.40)
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14.3.4 Estimation

Having obtained the update equations for the observation models and the
state transition probabilities, estimation then follows the familiar fashion of
iteratively computing the HMM hidden state sequence (equivalent to the E-
step in the Maximum Likelihood EM framework) and the HMM parameter
posterior distributions (equivalent to M-step). This is repeated until conver-
gence is reached. Convergence is measured by the actual value of the KL
divergence (14.12) and the estimation is terminated when (14.12) no longer
changes significantly. The mathematical form of the KL divergence (14.12)
will obviously depend on the type of model, which here means the type of
observation model. The complete formulae, for each of the three observation
model HMMs, are listed in Appendix C.

Choice of model size

The iterations are run for a fixed HMM state space dimension and observation
model order (number of basis function coefficients in the linear observation
model). Estimation is then repeated for different settings and the value of the
KL divergence (14.12) recorded. The smallest achievable value of (14.12), ac-
cording to equation (14.6), results in the highest probability for the particular
choice of model.

As an example, data was generated from two bi-variate AR processes, with
AR-coefficient matrices of the first model set to Alag=1 = [0.4, 1.2; 0.3, 0.7]
and Alag=2 = [0.35,−0.3;−0.4,−0.5]. The second model coefficient matrices
were set to Alag=1 = [0.4, 0; 0, 0.7] and Alag=2 = [0.35,−0.3;−0.4,−0.5]. The
intercept vector was set to a zero vector and the noise variance matrix to
C = [1.00, 0.50; 0.50, 1.50]. Figure 14.3(a) shows the KL divergence values for
different settings of linear model order and hidden state space dimension. The
most probable model size is shown in Figure 14.3(b) and peaks at the expected
model size.

Under certain conditions, the state space dimension need not be estimated
as above. If the observation model is correct, for example the dimensions of
the Gaussian observation model match those of the clusters in the data or the
linear model order is the true order, one can exploit the fact that the state
transition probabilities factorise, i.e. P (St|St−1) =

∏M
m=1 P (St|St−1 = m).

The state space dimension, M , can now be set to an arbitrarily large value
and the HMM is estimated just once. States that are not visited by the model
will automatically collapse to be equal to their prior distributions. One can
thus read out most likely hidden state dimensions from the number of distinct
state values in the hidden state sequence.

This effect is shown in Figure 14.4. The HMM was started with M = 6
and the number of distinct states monitored at each step of the iteration.

Observation model parameter distributions can also be automatically set
to their prior distributions, provided the mathematical formulation of model
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is in a factorised form. For instance, if the linear model description was in
terms of reflection rather than autoregressive coefficients, the mean field as-
sumptions leads to an estimator which automatically prunes out all states and
model coefficients (and thus model orders) not supported by the data. This
is not always possible; however,some engineering short-cuts can be used to
quickly home in on the true observation model size. For example, in the lin-
ear observation model’s current form one can investigate the eigen-spectrum
of the linear model parameters’ scale matrix B̃Φm . The number of non-zero
eigenvalues are an indication of the model order. Also, looking at the distance
between the model coefficient matrices of each state, ‖Hi −Hj‖ for different
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i �= j and i, j = 1, . . . ,M , might give some indication as to the preferred num-
ber of hidden states. An example of the use of the eigen-spectrum is shown in
Figure 14.5. As the model order is increased, the eigenvalues clearly shallow
off at the correct model order. The coefficients themselves are relatively close
to zero - below 10% of the largest coefficient. Ignoring numerical stability,
the Bayesian treatment avoids again the singularities of maximum likelihood
methods.
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Fig. 14.5. Eigen-spectrum of the coefficient precision posterior density scale pa-
rameter BΦ for a univariate AR model.

Model initialisation

Evidently, there are various ways of initialising the HMM and all depend on
the observation model. The simplest initialisation is the random initialisation
of the hidden state probabilities. The estimation then begins by estimating
the HMM model parameters, thus avoiding to a large extent manual setting
of HMM parameters. In practice, however, there is often the desire to keep the
number of iterations, till convergence is reached, to a minimum. To achieve
that, more educated “guesses” have to be made as far as the model parameters
are concerned. This can be done in some cases by making use of the data to set
the parameters and begin with the estimation of the hidden state probabilities.
We illustrate this below for the Gaussian and linear autoregressive observation
models.

The Gaussian observation model can be initialised by running a few itera-
tions of the (much faster) K-means algorithm or Gaussian mixture EM on the
training data. The obtained cluster centres can be assigned to the posterior
means, µ̃m, of the HMM observation model means. The means’ posterior pre-
cision matrices, C̃m0 , are set all equal to the covariance of the total training
data. The parameters of the posterior Wishart density for the observation
model precision matrices consist of the shape parameter α̃m and the scale
parameter B̃m. The value of α̃m is set to the half the dimensionality of the
training data, while B̃m is set to the total training data covariance matrix
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scaled up by α̃m. Practice has shown this to be the most robust initialisa-
tion procedure; robust, that is, in the sense that it is least sensitive to cluster
shapes and data range.

The observation model priors are generally set to be as flat as possible.
The observation model means have an associated Gaussian prior with mean
and covariance parameters set to the median and squared range of the training
data, respectively.

The Poisson observation model is initialised at random. Conditioned on
each state, we randomly select a sample from the data. The sample size itself
is also drawn randomly. The shape, α̃0, and scale parameters, β̃0, of the pos-
terior Gamma distribution are then set to the sum of the sample counts and
exposure, respectively.

For the experiment described below, the observation model prior shape and
scale parameters are set to a minimum of 1 count per interval, i.e. α0 = 1,
and and an average rate of 60 beats per minute, respectively.

The linear autoregressive observation model is initialised in three steps.
First, an initial data segment is used to calculate the values of the AR-
coefficient variances and the residual noise variance. Second, with the use
of the variances obtained in the first step, a multivariate Kalman filter is ap-
plied to the entire training data.2 Finally, the so obtained AR-coefficients are
segmented using a few iterations of K-means, say.

The posterior density of the model coefficients, Hm, is a matrix variate
Gaussian. Its mean, Ω̃m is set the the K-means cluster centres. The covariance
matrices, Σ̃m and Φ̃m are set, respectively, to the estimates of the residual
noise variance and AR-coefficient variances of step one above. The posterior
of the residual noise variances, Σm, is a Wishart density. Its scale parameter is
set to 1

2d+1, i.e. half the residual noise dimensionality incremented by 1. The
shape parameter is set to the residual noise variance multiplied by the Wishart
density’s scale parameter. Similarly, the posterior of the model coefficients,
Φm, also follow a Wishart density. Its scale parameter is set to 1

2dp+ 1, that
is half the product of the linear model order and training data dimension and
incremented by 1. The shape parameter is set to the AR coefficient variances
of step one above, multiplied by the Wishart density’s scale parameter.

The priors for the linear observation model assumes a standardised training
data set, i.e. the data is detrended and its variance normalised to unity. The
prior for the linear model coefficients, Hm, is thus set to have a mean of zero.
The scale coefficient, BΣ , of the prior for the noise precision Σm, is set to unity
and the shape coefficient αΣ to the dimension of the noise precision. The prior
of the linear model coefficient precisions is assumed to be more accurate than
the noise precision. The scale, BΦ, is set to one order of magnitude larger than
2 If the training data is very large, experience has shown that a simple segmentation

of the data and estimation of the AR coefficient matrices is faster than the Kalman
filter approach, yet equally useful.
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BΣ , while the shape is set to the dimension of the coefficient space (model
order × data dimensionality).

14.4 Experiments

14.4.1 Sleep EEG with Arousal

The first application to medical time series analysis demonstrates the use
of the variational HMM to features extracted from a section of electroen-
cephalogram data. The recordings were taken from a subject during a sleep
experiment. The study looked at changes of cortical activity during sleep in
response to external stimuli (e.g. from a vibrating pillow under the subject’s
head). The fractional spectral radius (FSR) measure and spectral entropy [19]
were computed for consecutive non-overlapping windows of one second length.
In Figure 14.6, the model clearly shows a preference for a 3-dimensional state
space. Figure 14.7 shows a 10-minute section of data with the correspond-
ing Viterbi state sequence. The data is segmented into the following regimes:
wake (state 2, first 90 s of the recording), deeper sleep (state 1) and light sleep
(state 3) which is clearly visible at sleep onset (t ≈ 90 s) and at the arousal
(t ≈ 200 s).
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Fig. 14.6. State space dimension selection

14.4.2 Whole-Night Sleep EEG

In the following example we study the use of the HMM in segmenting EEG
recordings for sleep staging. The data was recorded from one female subject
exhibiting poor sleep quality during an 8-hour session in a sleep laboratory.
The data was manually scored by three different sleep experts based on the
standard Rechtschaffen and Kales (R&K) system [18]. The majority vote was
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Fig. 14.7. HMM sleep EEG segmentation

then taken, to overcome disagreements between manual labels, resulting in a
consensus score.

The data used here was recorded at the electrode sites C4 [14] using a 200
Hz sampling rate. The state space dimension was set to 7, corresponding to
the number of states according to R&K. The confusion matrix (Table 14.1)
based on the consensus score shows, however, that only 4 states are used by
the HMM. One such state corresponds clearly to deep sleep, i.e. sleep stage
4. Corresponding somewhat less strongly, are state 2 of the HMM with the
lighter sleep stages 2 and 3. Class 3 of the HMM is predominantly visited
when the subject resides in REM sleep, according to the experts. It is inter-
esting to note that the HMM exhibits the same difficulty humans face when
trying to distinguish REM sleep from light sleep (stages 1 and 2). Finally, the
weakest association between the HMM and human labels is observed in HMM
class 4. Seemingly mostly connected with the Wake state, much overlap also
exists between it and sleep stage 2, hence the significance of this last class is
uncertain.

The table is best summarised by the estimated HMM state sequence. Fig-
ure 14.8 shows the hypnogram with a filtered Viterbi state sequence (using
an 11-th order median filter). The filtering is justified by noting that human
labels are over a 30 s long data segment and are based on the occurrence of
a particular distinctive feature within that time period. The algorithm, on
the other hand, calculates the label based on the most frequent class for that
segment, on a one-second resolution.

14.4.3 Periodic Respiration

We also applied the HMM to features extracted from a section of Cheyne
Stokes (CS) Data, 3 consisting of one EEG recording and a simultaneous

3 A breathing disorder in which bursts of fast respiration are interspersed with
breathing absence.
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Table 14.1. HMM Gaussian observation confusion matrix

Manual sleep score
HMM Class S4 S3 S2 S1 REM Movement Wake

Class 1 0.9086 0.0600 0.0092 0 0 0.0222 0
Class 2 0.1014 0.1978 0.6889 0.0060 0 0.0060 0
Class 3 0 0 0.2191 0.1561 0.6027 0.0118 0.0103
Class 4 0 0.1250 0.2159 0.1477 0 0 0.5114

S4

S3

S2

S1

REM

Move

Wake
(Manual) Hypnogramm

~ S4

~ S2 & S3

~ REM

Move/Wake
HMM Classification (11pt Median Filtered)

Fig. 14.8. Manual and estimated sleep segmentation of 1 night sleep EEG.

respiration recording, both sampled at 128 Hz. The fractional spectral ra-
dius (FSR) [19], was computed from consecutive non-overlapping windows of
two seconds length for the EEG and respiration signals separately. The fea-
tures thus extracted jointly formed a 2-dimensional feature space to which
the HMM was then applied. As seen in Figure 14.9, the model clearly shows a
preference for a 4-dimensional state space. Figure 14.10 shows a data section
with the corresponding Viterbi state sequence. The data is segmented pre-
dominantly into the following regimes: segments of arousal from sleep, wake
state with rapid respiration, and two sleep states different only in the EEG
micro-structure.

14.4.4 Heartbeat Intervals

In order the apply the Poisson model of the HMM, we took a sequence of
RR-intervals, obtained from the RR-Data base at UPC, Barcelona. A subject
(Identifier RPP1, Male, Age: 25 years, Height: 178cm, Weight: 70kg) under-
went a controlled respiration experiment. While sitting, the subject took six
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Fig. 14.9. Model order for CS-data: variational free energy and model probability.
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Fig. 14.10. CS-data: respiration and EEG signals with their respective segmenta-
tion.
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deep breaths between 30 and 90 seconds after recording onset (ECG signal
sampling rate is 1 kHz). The optimal segmentation was found to be three
states and is shown in Figure 14.11. The top plot depicts the original RR-
interval time series and the middle plot the state labels resulting from the
Viterbi path. The segmentation based on the Viterbi path is shown in the
bottom plot. A change in state dynamics is clearly visible in the state se-
quence between 30 and 90 seconds, i.e. the period during with the subject
took deep breaths. The state dynamics parallel those observed in the heart-
rate signal, obtained from the RR-intervals by interpolation. The difference,
however, is that the state sequence is essentially a smoothed version of the
heart-rate signal as several heart-rate levels will fall into one state. In addi-
tion, no interpolation as such is done, i.e. the HMM derives the heart rate
statistically, which is in deep contrast to traditional heart-rate analysis.
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Fig. 14.11. HMM 3-stage Viterbi segmentation for subject RPP1 during controlled
respiration experiments.

14.4.5 Segmentation of Cognitive Tasks

The idea of the brain–computer interface (BCI) experiment is that we infer the
unknown cognitive state of a subject from his brain signals which we record
via surface EEG. The data in this study were obtained with an ISO-DAM
system using a gain of 104 and a fourth order band pass filter with pass band
between 0.1 Hz and 100 Hz and sampled at 384 Hz with 12-bit resolution.
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The BCI experiments were done by several young, healthy and untrained
subjects who performed auditory imagination and imagined spatial navigation
tasks. Each task was done for 7 seconds with an experiment consisting of 10
repetitions of alternating these tasks. The recordings were taken from two
electrode sites: T4, P4. The ground electrode was placed just lateral to the
left mastoid process.

We train the HMM with a linear observation model on the EEG of one
subject. We used the first five repetitions for the auditory imagination and
imagined spatial navigation task and computed the Viterbi path for two fur-
ther repetitions of each task. Thus 70 s of data constituted the training data,
while the test data was 28 s long. The Viterbi path for the (optimal) three-
state model is shown in Figure 14.12. The experiment shows that there is a
clear change in state dynamics between the different cognitive tasks. We ob-
tain one model almost entirely allocated to the auditory task and two models
that are almost exclusively used in the navigation task.
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Fig. 14.12. HMM 3-stage Viterbi segmentation for two cognitive tasks, correspond-
ing to the first and second half of the recoding, respectively (total duration 28 s).

14.5 Conclusion

The goal of the variational approach applied to learning HMMs was, first, to
improve in some aspect of the traditional maximum likelihood method and,
second, to find a unifying view of for deriving all variables, hidden states and
parameters. In most cases, the existence of priors densities over the parameters
resulted in an improved stability of the model. In some cases the automatic
pruning effects of the estimators, which being completely consistent with the
theory, is a nice added feature. By deriving all update equations from one
single cost function, it has also become clear that the maximum likelihood
method is a point estimate in the model parameters, while actually Bayesian
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in the hidden state space. The variational approach, on the other hand, is con-
sistent from a theoretical point of view and it casts light on the mathematical
origin of the Baum-Welch recursions.

While the variational estimators have so far proved to be much more robust
than the maximum likelihood based estimators, they also come with a price,
i.e. the number of parameters increased considerably. It is no longer enough
to estimate single parameter values, but also their distributions. In practice
this means that estimator initialisation is considerably more involved.

The examples presented in this chapter do not permit any conclusions as
to the quality of the estimator, for example with regards to stability of the
solutions found or sensitivity to initial conditions and priors. Much is left
to understand the estimators better, however, the initial results seem quite
promising.
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A Model Free Update Equations

Following [6] we re-derive the model free variational learning functionals for
continuous distributions.

In general we aim to estimate the following KL divergence

D(q‖p) � F =
∫
Q(S) log

Q(S)
P (S|X)

dS

=
∫
Q(S) log

Q(S)
P (S,X)

dS − logP (X),

where logP (X) is the data log-likelihood. The second form makes clear that
D(q‖p) is bounded from below by logP (X) and attains logP (X) only if

D(Q(S)‖P (S|X)) = 0 ,

i.e. Q(S) = P (S|X)). Given a set of variables S = {S1, . . . , ST }, in the mean
field scenario we assume that

Q(S) =
T∏
i

Q(Si).

The set S incorporates all possible variables, hidden variables and “hidden”
parameters alike. Without loss, we split the set S in the form S = {Si, S̄i},
where S̄i = {S1, . . . , Si−1, Si+1, . . . , ST }, so that Q(S) = Q(Si)Q(S̄i) and
P (S,X) = P (Si, X|S̄i)P (S̄i). In all cases we have the additional constraint
that

∫
Q(Si) dSi = 1. Thus, we are seeking to minimise

F(S) =
∫
Q(S) log

Q(S)
P (S,X)

dS +
T∑

i=1

λi

(∫
Q(Si) dSi − 1

)
.

Under the mean field assumption this can be expanded and simplified to

F(S) �
∫
Q(S̄i) logQ(S̄i) dS̄i −

∫
Q(S̄i) logP (S̄i) dS̄i +∫

Q(Si) logQ(Si) dSi −
∫
Q(S̄i) logP (Si, X|S̄i) dS̄i +

T∑
i=1

λi

(∫
Q(Si) dSi − 1

)
.

Thus,

dF(S)
dQ(Si)

= log(Q(Si)) + 1 −
∫
Q(S̄i) logP (S̄i, X|S̄i) dS̄i + λi = 0.

Integrating the above expression within symmetric integration bounds we ob-
tain a solution for λi,
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exp(−1 − λi)−1 =
∫

exp
(∫

Q(S̄i) logP (Si, X|S̄i) dS̄i

)
dSi,

which can be inserted into the partial the solution for the functional Q(Si) to
obtain

Q(Si) =

1∫
exp

(∫
Q(S̄i) logP (Si, X|S̄i) dS̄i

)
dSi

exp
(∫

Q(S̄i) logP (Si, X|S̄i) dS̄i

)
or, in short,

Q(Si) ∝ exp
∫
Q(S̄i) logP (Si, X|S̄i) dS̄i.

In deriving these equations we found the derivative of F (S) using the total dif-
ferential and thus partial derivatives. Therefore, in optimising one distribution
Q(Si), all others are held constant.

B Derivation of the Baum-Welch Recursions

We start with the KL divergence (14.41), again denoting the entire set of
hidden state variables by S = {S1, . . . , ST } and all the observations by X =
{X1, . . . , XT }:

F =
∫
Q(S) log

Q(S)
P (S)

dS (14.41)

=
∫
Q(S) logQ(S)dS −

∫
Q(S) logP (S)dS (14.42)

where the first integral in equation (14.42) is just the entropy, denoted by
H(S). For a HMM,

P (S,X) = P (S0)
T∏

t=1

P (St|St−1)P (Xt|St) =
T∏

t=1

P (Xt, St, St−1)
P (St−1)

For ease of notation, it is sufficient for the moment to assume that each node
St has an associated datum Xt, and we omit the extra variable Xt in the
notation of the joint distribution. Thus

P (S) = P (S0)
T∏

t=1

P (St, St−1)
P (St−1)

,

and identically for the Q joint distribution:
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Q(S) = Q(S0)
T∏

t=1

Q(St, St−1)
Q(St−1)

.

Substituting into equation (14.42), and abbreviating l(S) = logP (S), we
have

F = H(S) −
T∑

t=1

∫
Q(St, St−1)l(St, St−1)dSt

t−1 +
T−1∑
t=1

∫
Q(St)l(St)dSt

where the entropy term is

H(S) =
T∑

t=1

∫
Q(St, St−1) logQ(St, St−1)dSt

t−1 −
T−1∑
t=1

∫
Q(St) logQ(St)dSt.

Before minimising F there are some additional constraints required to
obtain a consistent solution. These relate to the fact that it must be possible
to integrate out over one of the variables in the all of the joint distributions
and be left with an identical marginal distribution:∫

Q(St, St−1)dSt−1 = Q(St) =
∫
Q(St, St+1)dSt+1

Introducing Lagrange multipliers for each of these constraints, the full expres-
sion for F becomes

F =
T∑

t=1

∫
Q(St, St−1) logQ(St, St−1)dSt

t−1 −
T−1∑
t=1

∫
Q(St) logQ(St)dSt −

T∑
t=1

∫
Q(St, St−1)l(St, St−1)dSt

t−1 +
T−1∑
t=1

∫
Q(St)l(St)dSt +

λt,t−1(St)
(
Q(St) −

∑
St−1

Q(St, St−1)
)

+

µt,t−1(St−1)
(
Q(St−1) −

∑
St

Q(St, St−1)
)
.

Differentiating with respect to Q(St, St−1)

Q(St, St−1) =
1

zt,t−1
el(St,St−1)eλt,t−1(St)eµt,t−1(St−1) (14.43)

where the constants of integration have been re-written in the form of a scaling
factor 1

z . Likewise, differentiating with respect to the marginals, Q(St),

Q(St) =
1
zt
el(St)eλt,t−1(St)eµt+1,t(St) (14.44)
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There are two joint distributions defined over Q(St), namely Q(St, St−1)
and Q(St, St+1) . By marginalising out St−1 and St+1 in (14.43),

Q(St) =
∑
St−1

1
zt,t−1

el(St,St−1)eλt,t−1(St)eµt,t−1(St−1) (14.45)

and

Q(St) =
∑
St+1

1
zt+1,t

el(St+1,St)eλt+1,t(St+1)eµt+1,t(St) (14.46)

Equating the expressions for Q(St) from (14.44) and (14.46) one can solve for
the first Lagrange multiplier,

eλt,t−1(St) = zte
−l(St)

∑
St+1

1
zt+1,t

el(St+1,St)eλt+1,t(St+1) (14.47)

and, similarly, equating the expressions for Q(St) from (14.44) and (14.45):

eµt+1,t(St) = zte
−l(St)

∑
St−1

1
zt,t−1

el(St,St−1)eµt,t−1(St−1) (14.48)

Substituting β(t) for eλt,t−1(St) in (14.47) gives

β(t) =
1
zt

∑
St+1

P (St+1|St)β(t+ 1),

and substitution of α(t) = eµt+1,t(St)P (St) in (14.48) gives

α(t) = zt

∑
St−1

P (St|St−1)α(t− 1)

Finally, restating (14.43) using α(t) and β(t) leads to the well-known equation
of the joint distributions

Q(St, St−1) =
1

zt,t−1
el(St,St−1)eλt,t−1(St)eµt,t−1(St−1)

=
1

zt,t−1
P (St, St−1)β(t)

(
α(t− 1)
P (St−1)

)
=

1
zt,t−1

P (St|St−1)β(t)α(t− 1)

C Complete KL Divergences

To monitor the convergence of the variational algorithm and to test for the
best model order/size, requires the calculation of the complete KL diver-
gence (14.12), given the data. The general overall KL divergence (14.12) can
be split into the following three terms,
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F = −
∫
q(S)q(θ) logP (X,S|θ) dS dθ︸ ︷︷ ︸
average log-likelihood

+

∫
q(S) log q(S) dS︸ ︷︷ ︸

negative entropy

+
∫
q(θ) log

q(θ)
P (θ)

dθ︸ ︷︷ ︸
KL divergence

(14.49)

All terms vary depending on the observation model, with the exception of the
negative entropy term, which only changes if the HMM topology changes. The
KL divergence measures the divergence between the prior and approximate
posterior distributions. Since all the models here are within the exponential
family, the mathematical form of many KL divergence terms occurs repeat-
edly. Hence we list these forms separately and refer back to them when needed.

C.1 Negative Entropy

The neg-entropy term for HMMs is

H
HMM

= H(St=0) +
T∑

t=1

H(St|St−1) (14.50)

=
T∑

t=1

H(St, St−1) −H(St) (14.51)

C.2 KL Divergences

The KL divergence in equation (14.49) measures the divergence between the
prior and approximate posterior distributions. Many of them occur repeatedly.
Given two densities, Q and P , which have parameters indexed by q and p, and
using the notation of [1] and [5], the KL divergences between two Dirichlet,
Wishart and multi-variate Normal densities are given as follows:

• Between two Dirichlet densities

DDir(q‖p) = log

(
Γ (
∑k

l=1 αql)

Γ (
∑k

l=1 αpl)

)
+

k∑
l=1

log
Γ (αpl)
Γ (αql)

(14.52)

+
k∑

l=1

(αql − αpl)

(
Ψ(αql) − Ψ

(
k∑

l=1

αql

))

• Between two Gamma densities

DG(q‖p) = log
Γ (αp)
Γ (αq)

+ (αq − αp)Ψ (αq) + αq log
βq

βp
+ αq

(
βpβ

−1
q − 1

)
(14.53)
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• Between two Wishart densities

DW(q‖p) =
k∑

l=1

log
Γ ( 1

2 (2αp + 1 − l))
Γ ( 1

2 (2αq + 1 − l))
+ (αq − αp)

k∑
l=1

Ψ

(
2αq + 1 − l

2

)
+αq log

|Bq|
|Bp|

+ αq

(
tr
(
BpB

−1
q

)
− k
)

(14.54)

• Between two multivariate Normal densities

DMvN (q‖p) =
1
2

(
log

λq

λp
− 1 + λpλ

−1
q + (µq − µp)Tλp(µq − µp)

)
(14.55)

• Between two m× n matrix variate Normal densities

DMaVN (q‖p) =
1
2

{
n log

|Σq|
|Σp|

+m log
|Φq|
|Φp|

+ tr
(
ΦpΦ

−1
q

)
tr
(
ΣpΣ

−1
q

)
+tr

(
Σp (Mq −Mp)Φp (Mq −Mp)

T
)

− nm
}

(14.56)

C.3 Gaussian Observation HMM

The average log-likelihood term in (14.49) for Gaussian observation models is
given as

Lavg =
∑
m

γt0Ψ(λ̃0m) − γ̄0Ψ(
∑

l

λ̃0l
) +∑

m,n

ξ̄(m,n)Ψ(λ̃mn) −
∑

n

¯̄ξ(n)Ψ(
∑

l

λ̃ln) +

T log(2π)
K
2 +

1
2
γ̄mΨ̄α̃m

− 1
2
γ̄m log |B̃m| −

1
2

∑
t

γtm(xt − µ̃m0)
Tα̃mB̃m(xt − µ̃m0) − 1

2
γ̄mtr

(
α̃mB̃mC̃m0

)
(14.57)

where

γ̄0 =
∑
m

γ0m
,

γ̄m =
∑

t

γtm
,

ξ̄(m,n) =
∑

t

ξt(m,n) ,

¯̄ξ(n) =
∑

t

∑
m

ξt(m,n) ,

(14.58)
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and

Ψ̄α̃m
=
∑

k

Ψ

(
1
2
(2α̃m + 1 − k)

)
. (14.59)

C.4 Poisson Observation HMM

The average log-likelihood term for a Poisson observation HMM can be shown
to be

Lavg =
∑
m,n

γnm

[
−xnα̃mβ̃m + yn log(xn) + yi

(
Ψ(α̃m) − log(β̃m)

)
− log(yn!)

]
(14.60)

The KL divergence between the approximate posterior density Q(µm),
with parameters α̃0, β̃0, and the prior P (µm), with parameters α0, β0, is
a standard Gamma density divergence DG(Q(µm)‖P (µm)), given by equa-
tion (14.53).

C.5 Linear Observation Model HMM

The average log-likelihood term for the HMMs with linear observation models
is given as

Lavg = −N
du

2
log(2π) − u

2

∑
m

γ̄m log |B̃Σm|

+
∑
m

γ̄m

(
Ψ(ρ̃m) − Ψ(

M∑
m=1

ρ̃m) +
u

2

d∑
l=1

Ψ

(
1
2
(2α̃Σm + 1 − l)

))

−
∑
n,m

{
γnm

1
2
tr
(
α̃ΣmB̃

−1
Σm(Yn − Ω̃mXn)(Yn − Ω̃mXn)T

)}
− 1

2

∑
m

α̃Σm tr
(
B̃−1
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The KL divergences are given as

D(Q(θ)‖P (θ)) =
∑
m

〈
DMaVN (Q(Hm)‖P (Hm|Σm, Φm))

〉
Q(Σm,Φm)

(14.62)

+
∑
m

DW(Q(Σm)‖P (Σm)) (14.63)

+
∑
m

DW(Q(Φm)‖P (Φm)) (14.64)

+DDir(Q(κ)‖P (κ)) (14.65)

where divergences (14.63), (14.64) and (14.65) are given by (14.54), (14.54)
and (14.52), respectively, and divergence (14.62) is given by
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Summary. A problem in clinical microbiology is that of inappropriate antibiotic
therapy. Various decision-support systems have been proposed to aid physicians
in this domain, and we discuss the a priori advantages of using a probabilistic
network over other approaches. The Treat project uses a probabilistic network to
combine clinical signs, symptoms and laboratory results, and we discuss the problem
of obtaining probabilities for the network. Finally, we consider how such a system
can be tested in clinical practice and outline the results of our tests.

15.1 Introduction

Decision-support systems that provide advice on selection of antibiotics for
bacterial infections have a long history going back to the Mycin system [17].
This long-standing interest in antibiotic therapy is not without reason: infec-
tions are a frequent cause of death, but the risk of death can be substantially
reduced by appropriate antibiotic therapy [13]. In current clinical practice,
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about a third of patients with moderate to severe infections receive inappro-
priate antibiotic therapy resulting in increased morbidity, extended hospital
stay, and increased mortality [11]. Of more importance for the role of decision-
support systems, it can be noted that testing of decision-support systems indi-
cates that antibiotic therapy can be improved beyond current clinical practice.
Based on this assumption, partners in four countries – Denmark, Germany,
Italy, and Israel – have embarked on the Treat project, with the aim of produc-
ing and testing a system that can improve antibiotic therapy beyond current
clinical practice.

In this chapter we will first outline the considerations surrounding the
institution of antibiotic therapy in clinical practice. We will then describe
how we have translated these considerations into a decision-support system,
called Treat, for selection of antibiotic therapy. The decision-support system
is implemented using causal probabilistic networks (CPNs)7 to calculate the
probabilities of a range of events relevant to the selection of antibiotic ther-
apy. Decision theory is then used to perform a cost-benefit analysis based on
these probabilities, which results in advice on antibiotic therapy. The steps in
the decision process will be illustrated through an example; namely, a patient
with a urinary tract infection. As the example unfolds, it will provide an infor-
mal opportunity to describe the fusion of data of different types; for example,
results of the physical examination of the patient, results of laboratory tests,
and the results from cultures of the pathogens found in the blood stream.
In this context, we have reserved the word “data” for information about a
specific patient. The example will also provide an opportunity to discuss the
fusion of knowledge. In this context, the word “knowledge” is reserved for
information that can be applied across a population of patients. The knowl-
edge used in CPNs is causal: it may be structural (e.g., that pathogens cause
infection or that antibiotics may cure an infection), or it may be quantitative,
typically represented in the form of a conditional probability. It will become
apparent that the causal representation of knowledge allows a clear separa-
tion between the many types of knowledge required to build the system. This
separation between different types of knowledge also makes it possible to di-
vide the knowledge into two different types: knowledge that is assumed to be
universally applicable, and knowledge that is specific for a given hospital and
that may even change over time.

Some consideration on the testing of medical decision-support systems will
be given and the results obtained so far from testing of the decision-support
system will be described. The results are promising, and this provides some
room for speculations on the reasons for this apparent success.

The structured approach that is possible with CPNs provides a high degree
of modularity to the system. This makes it easier to construct the system
and, perhaps more importantly, it makes the system robust to changes in the
7 “Causal probabilistic network” is one of the synonyms for “Bayesian network”

(see Section 10.9).



15 Probabilistic Network in Clinical Microbiology 453

medical environment and increases maintainability. Changes in the prevalence
of pathogens, the resistance to certain antibiotics, or the cost and availability
of certain antibiotics are readily accommodated.

15.2 Institution of Antibiotic Therapy

The purpose of Treat is to assist in the selection of antibiotic therapy for
moderate to severe infections, with either bacteria or fungi as the pathogen.
This section will outline the process that in clinical practice leads to the
decision on antibiotic therapy.

The relevant groups of patients are either patients with community-
acquired infections, which are admitted to hospital with symptoms compat-
ible with an infection, or patients with hospital-acquired infections, which
are already hospitalized but, in the course of their hospitalization, develop
symptoms of infection. In the following, we shall say that these patients with
systemic symptoms of infection have varying degrees of sepsis. Some of them
only have mild infections and, accordingly, only have some of the symptoms
of sepsis (e.g., fever), some have all the symptoms associated with generally
accepted definitions of sepsis [5], and the most severely affected patients are
in a state of septic shock.

The attending clinician will usually draw a blood sample for culture from
these patients in the hope that the pathogen(s) can be isolated from the
blood sample. Per year, the number of blood samples drawn from “septic”
patients is about 1800 per 100,000 inhabitants. This can be compared with
the yearly incidence in the USA of 375 per 100,000 inhabitants that fulfil
the clinical definition of sepsis [3]. In 10%–20% of the blood samples, which
corresponds to about 200 cases per 100,000 inhabitants, bacteria are isolated.
In these bacteraemic patients, the identity and the resistance of the pathogens
to antibiotics can be determined, typically 2–3 days after the blood sample is
drawn. Meanwhile, the clinician will institute the so-called empirical antibiotic
treatment based on the data available at the time the blood sample was drawn.

The Treat system is designed to help in the later stages of treatment as the
microbiological information becomes available. We shall limit our attention
to the empirical treatment and the so-called semi-empirical treatment, which
typically is instituted within two days of the onset of the infectious episode
when microbiological results become available.

The components of the process leading to the decision on empirical treat-
ment are [14]:

1. Assessment of sepsis
2. Determining the most likely site of infection
3. Identifying the most probable pathogen(s)
4. Choosing the antibiotic therapy with the best balance between cost (in-

cluding purchase, side effects and ecological impact on future resistance)
and gain (including increase in life expectancy and reduction of bed-days).
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15.3 Calculation of Probabilities for Severity of Sepsis,
Site of Infection, and Pathogens

This section will use a typical case of urinary tract infection to illustrate
how the CPN can be used to calculate the probabilities for severity of sepsis,
site of infection, and pathogens. This requires the fusion of many different
types of data about the patient, some derived from the anamnesis, some from
the physical examination, and some from the results of laboratory tests. The
case example will also make it clear that many types of knowledge about
infectious diseases are required to construct the CPN. The knowledge may be
derived from textbooks or from a general understanding of the causal relations
between the variables in the CPN, or it may be derived from case databases.

15.3.1 Patient Example (Part 1)

A 28-year-old female with fever and chills was referred to the Rabin Medical
Center in Israel by her general practitioner. At the time of arrival at the
hospital, no further details were available. In the outpatient clinic, she was
questioned about her underlying conditions, the presence of implanted devices,
and the presence of other current conditions. The answers are given in Figure
15.1 in the field labelled “Background conditions”. Blood pressure and heart
rate were measured, and a blood sample was taken. Apart from the fever
and chills, all findings were normal with the exception of elevated values for
leucocytes, neutrophils and creatinine, as shown in Figure 15.1 in the field
labelled “Sepsis presentation”.8

Fig. 15.1. Background conditions and sepsis presentation for the patient at the
time of admission to the hospital.

8 Coloured versions of the figures in this chapter are available from
http://robots.ox.ac.uk/∼parg/pmbmi.html
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Fig. 15.2. The probability of infection and its distribution on the 11 possible sites
of infection, given background conditions and sepsis presentation for the patient at
the time of admission.

With this information entered, Treat can provide a preliminary opinion on
the probability of an infection and the probability of the infection originating
from each of the 11 sites of infection being considered by Treat. It can be
seen from Figure 15.2 that the evidence in favour of an infection has not
completely convinced Treat about the presence of an infection. The probability
of infection is 64%, and this probability mass is distributed over seven out of
the 11 potential sites of infection. The distribution on sites of infection mainly
reflects the a priori probability of the different sites, except that the blood-
sample results show that the patient is not neutropenic, and the absence of
peripheral or central intravenous lines eliminates these as possible sites of
infection. The absence of a visible bar for endocarditis does not reflect that
this probability is zero: it merely reflects the low a priori probability of that
condition.

The highest likelihood seen is for gastroenteritis and abdominal infections;
therefore, an anamnesis and a physical examination were performed focusing
on these sites. The findings were all negative, as indicated in Figure 15.3.
With these findings entered, Treat almost excludes abdominal infection and
gastroenteritis, as given in Figure 15.4.

The remaining part of the physical examination is now complete. All find-
ings were negative, except for the urinary tract where the patient had dysuria
and increased frequency of micturition and complained about flank tenderness
(Figure 15.5(a)). With these findings, Treat ascribed close to 100% probability
of a urinary tract infection and probabilities close to 0% for the other sites
of infection (Figure 15.5(b)). The probabilities over the sites may add up to
more than 100% because of the possibility of two simultaneous infections. In
the present case there is, however, only evidence for a single site; namely, the
urinary tract.

At this time, a blood sample was taken and sent to the microbiology labo-
ratory for culture. A urine sample was also taken and analysed, and it showed
microscopic hematuria and the presence of leucocytes in the urine (Figure
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Fig. 15.3. Anamnesis and results of the physical examination for abdominal infec-
tion and gastroenteritis.

Fig. 15.4. The distribution of probability of infection over the sites when it is known
that all findings related to the abdomen are negative.

15.6(a)). This reinforced the belief of a urinary tract infection, but since this
already had a probability very close to 100% it made no difference. The ab-
sence of nitrites in the urine was puzzling because the pathogens listed in
Figure 15.6(b) produce nitrite, except for “Enterococcus sp.” and “Staphylo-
coccus saprophyticus”; however, the sensitivity of the nitrite test was quite
low (corresponding to a high rate of false negative findings) and the absence
of nitrites was, therefore, only quite weak evidence against the majority of the
pathogens. It was, however, enough to reduce the probability of most of the
pathogens slightly and to allow the probability of the non-nitrite-producing
pathogens, Enterococcus sp. and Staphylococcus saprophyticus, to increase, as
shown in Figure 15.6(b).

15.3.2 Fusion of Data and Knowledge for Calculation of
Probabilities for Sepsis and Pathogens

The calculation of all the probabilities mentioned above is performed by a
CPN. In its present form, the CPN contains about 8500 nodes, each node
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(a)

(b)

Fig. 15.5. (a) Findings related to the urinary tract excluding the urinalysis. (b)
Upper panel: The distribution of probability of infection over the sites when the
physical examination has been completed. Middle panel: The distribution of prob-
ability over four diagnoses related to urinary tract infection, cystitis, moderate and
severe pyelonephritis, and urosepsis. Lower panel: The distribution of probabilities
over the nine groups of pathogens considered for the urinary tract.

representing a discrete stochastic variable. The nodes are connected by di-
rected links. The topology of the graph consisting of the nodes and links
reflects the constructors’ opinion about the causal relations within the CPN.
A node that receives a link from another node is called a child, and a node
from which the link originates is called a parent. Each node has an associ-
ated table of conditional probabilities: the probability of the states in the
node given its parents. These tables form the quantitative substance of the
CPN. The topology of the CPN encodes a set of independence properties, the
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(a)

(b)

Fig. 15.6. (a) Findings from the urinalysis. (b) The distribution of probabilities
over the nine groups of pathogens considered for the urinary tract.

so-called d-separation properties [16] and, in combination with the tables of
conditional probabilities and the axioms of probability theory, it is possible to
calculate the marginal probabilities of all nodes in the CPN when the states
of some of the nodes in the CPN are known [10] (see Chapter 2 for more
details). In Treat, the commercially-available inference machine Hugin [4]9 is
used to construct the CPN and calculate the marginal probabilities of the
individual nodes (see Section 16.5.1). In general, Hugin handles CPNs with
discrete stochastic variables, although continuous variables can be handled in
some special cases. We have chosen only to use discrete stochastic variables,
and the variables that are naturally continuous (e.g., body temperature) must,
therefore, be converted to discrete variables. This is done by dividing the do-
mains of the variables into intervals; for example, in the case of temperature,
into five intervals (Figure 15.7).

In principle, this solves all problem of data fusion, or rather, it becomes
equivalent to finding an appropriate topology and conditional probability ta-
bles for the CPN. Thereafter, axioms of probability theory, embodied in the
inference machine provided by Hugin, provide the data fusion. This observa-
tion changes the focus from fusion of data to fusion of knowledge, where we use
knowledge to designate the combination of topology and conditional probabil-
ity tables. We shall now illustrate the fusion of data and knowledge through
a small example. The example chosen is the calculation of the distribution of
probability over the states of sepsis.

The structure of the CPN in Figure 15.8 contains several postulates about
the causes of the 11 signs and symptoms at the bottom of the figure. It con-
9 http://www.hugin.com/
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Fig. 15.7. The continuous stochastic variable “fever” is converted into a discrete
variable by dividing its domain into five intervals. The bars indicate the current
distribution of probabilities over the states of the node. The state “>36.8” has been
observed, giving it a 100% probability. The state is said to be instantiated to the
value “>36.8”.

tains the postulate that there is an unobservable stochastic variable sepsis,
and that the sepsis may be caused by infection in a number of different sites
in the body; for example, gastrointestinal infections, urinary tract infections,
or lung infections. In turn, sepsis may cause the signs and symptoms, such as
fever and chills, but this is mediated through four factors labelled “Fact fever”,
“Fact alb ESR”, “Fact leuco creat” and “Shock”. The word “Sepsis” refers to
the fact that, in this condition, sites in the body that are normally sterile may
contain pathogens. In the CPN, the concept of sepsis is used to designate a
collection of signs and symptoms that represent a state of increased activ-
ity of the immune system. This use of the concept was not invented by the
constructors of the CPN but is a clinically well-established concept. The four
factors mediating the immune response to the 11 signs and symptoms were,
however, invented by the constructors. The 11 signs and symptoms could have
been direct children of sepsis, but this would have been equivalent to a “naive
Bayes” assumption. A naive Bayes assumption contains the proposition that
the children are conditionally independent, given the parent (see Figure 10.2).
Since there will usually be some dependence between the children, it is well
known that this assumption leads to overconfidence in the conclusions that
are drawn [6], essentially because the effect of correlated variables is exagger-
ated. This can be avoided by introducing an intermediate layer of variables.
The four intermediate factors were found by factor analysis, and, together,
they explain more than 80% of the variance in the dependent variables [11].
The data required for this exercise were obtained from the Rabin bacteraemia
database and normal values from the literature. It is also very interesting
that although the four intermediate factors are statistical constructs, they
probably have a high degree of physical reality. For example, the fever factor
“Fact fever” can essentially be mapped onto the plasma level of interleukin-
6 [11], one of the factors that are known to mediate the immune system’s
inflammatory systemic response.

The probabilities shown in Figure 15.8 correspond to the situation in the
CPN when the data on background conditions and sepsis presentation are
instantiated in the CPN. It can be seen from the probabilities that the fever
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Fig. 15.8. The calculation of the distribution of probabilities over the states of
sepsis. The eight nodes at the top are shown with the monitors open, i.e. such that
the state probabilities can be seen. For the 12 nodes at the bottom only their name
and the state to which they are instantiated are shown.

factor is allowed to reach a quite high probability of “moderate” or “severe”
without this being reflected in a similarly high probability of the states dif-
ferent from “no” in the sepsis node. This is an example of the intermediate
factors serving to eliminate the errors that would have been produced by the
naive Bayes assumption.

In conclusion, this example has shown how data from several sources (e.g.,
background condition and sepsis presentation) can be integrated. Missing data
is not a problem in the CPN methodology, and this eliminates the need for
schemes for filling in missing data items. The example deals with data that are
bound to concepts of physiology. We will assume that the clinical expression
of an infection is independent of geography, and the structure and conditional
probabilities will thus be applied by all partners in the Treat project.
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15.4 Calculation of Coverage and Treatment Advice

15.4.1 Patient Example (Part 2)

The information about the patient that can reasonably be collected within
a few hours has now been collected and it is time to initiate treatment. At
this time there is no microbiological information about the patient’s infec-
tion, and the uncertainty about which pathogen(s) caused the infection is
correspondingly large. For this reason, the treatment initiated at this time is
usually referred to as the empirical treatment. Figure 15.9 ranks a number
of treatments, with chloramphenicol as the top-ranking treatment. The num-
bers given in the left-most column are the coverages. The coverage provided
by a treatment is defined as the probability that the treatment can eliminate
the activity of the pathogen(s) causing the infection. It can be seen that the
treatment preferred by Treat is not the treatment giving the highest probabil-
ity of coverage. The coverage provided by chloramphenicol is 62%, while, for
example, the treatment ranked second by Treat, a combination of ofloxacin
and chloramphenicol, provides a coverage of 89%.

To choose a treatment, it is necessary to consider both the cost of the
treatment and the benefit of the treatment. In Treat, the balance between cost
and benefit of a treatment is done by a decision-theoretic approach. It can
be seen from Figure 15.9 that the costs of chloramphenicol are much smaller
than the costs of the combination therapy of ofloxacin plus chloramphenicol.

Table 15.1 gives the three components of cost. The first component is price,
which is the cost of purchasing the drug, with an addition of the cost of dis-
posables and the labour costs. The second component is the cost of side-effects
causing acute and chronic morbidity. Among the adverse effects included were
nephrotoxicity and Clostridium difficile-related diarrhoea. This cost is based
on a meta-analysis of the costs of toxic side-effects elicited by gentamycin
and imipenem [20], supplemented by numbers from a similar meta-analysis
for ampicillin, cefuroxime, cefotaxime, and ceftazidime (Leibovici, personal
communication). For the remaining antibiotics, the cost of side-effects was
extrapolated from these numbers.

The third component of cost is ecological cost, which was calculated from
a simple model that contains a number of assumptions; primarily, that the
rate of rise of resistance to a drug is proportional to the consumption of the
drug, to the present level of resistance, and to a proportionality constant
that is characteristic for the drug. This proportionality constant was derived
from resistance data from the Rabin database combined with data on drug
consumption at Rabin. Combined with an assumption of unchanged antibiotic
policy over the next two years, this can be translated into an increased risk of
non-covering treatment of future patients, which, in turn, can be translated
into an associated increase in mortality. This calculation provides an estimate
of the risk for the population as a whole, but to this risk must be added the
increased risk for the patient currently being treated in case of a recurring
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infection in that patient. This risk was estimated using a similarly simple
model. The risks for the population and for the individual patient were added,
and the result of the calculation is represented in Table 15.1 as the ecological
risk.

Table 15.1. The components of cost and treatment benefit, calculated for an em-
pirical treatment with an average duration of two days. The treatments are (N) “no
treatment”, (C) “chloramphenicol”, and (O+C) “ofloxacin plus chloramphenicol”.
The abbreviated column names have the following meanings: “Eff”, side-effect cost;
“Eco”, ecological cost; “Cvg”, percentage coverage; “Mort”, percentage mortality;
“BD”, BedDayBenefit ; “Surv”, SurvivalBenefit.

Treatment Costs Benefits
Cost-
Benefit

Price Eff Eco Total Cvg Mort BD Surv Total

N 0 0 0 0 0 1.21 0 0 0 0

C 29 44 43 116 62.3 1.01 654 501 1155 1039

O+C 42 62 585 689 88.7 0.93 931 712 1643 954

The benefits of the treatment are divided into the bed-day benefit and the
survival benefit.

The bed-day benefit is calculated from the equation

BedDayBenefit =
(InfectionNoTreat − InfectionTreat) × SavedBedDays×BedDayCost.

In this equation, SavedBedDays is an estimate of the number of bed-days
saved by covering antibiotic treatment of a patient with moderate to severe
infection, and BedDayCost is the average cost per bed-day of a patient resid-
ing outside the intensive care unit. SavedBedDays was estimated as 3 days
from the Rabin bacteraemia database (Leibovici, personal communication),
and BedDayCost was estimated as 350 Euro for a patient at Rabin Med-
ical Center. InfectionNoTreat represents the probability of infection, which
corresponds to the total length of the bar labelled “Probability of infection
(All sites)” in Figure 15.9(c), including the hatched area. InfectionTreat rep-
resents the probability that a given treatment will not cover the infection,
corresponding to the blue part of the bar labelled “Probability of infection
(All sites)”. In Figure 15.9(a), the black square next to the treatment “Chlo-
ramphenicol” indicates that the coverage given in Figure 15.9(c) relates to the
treatment “Chloramphenicol”. Note that the coverages given in the left-most
column in Figure 15.9(a) are calculated for each treatment as the ratio

CoverageTreat = InfectionTreat/InfectionNoTreat.

We can now calculate BedDayBenefit for chloramphenicol,
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BedDayBenefit = (100% − 37.7%) × 3 × 350 Euro = 654 Euro,

as given in Table 1.
The survival benefit is calculated from the equation:

SurvivalBenefit = (MortalityNoTreat −MortalityTreat) ×ALE × CLY.

ALE is the average life-year expectancy for this group of patients and is
assumed to be 5 years [13]. CLY is the value used to express the intrinsic
value of a life-year, and it is assumed to be 50,000 Euro per life-year, ap-
proximately the cost of maintaining a patient for one year on haemodialysis
[15]. MortalityNoTreat is the probability of the patient dying within 30 days
provided he is given no treatment or non-covering treatment. MortalityTreat

is the probability of the patient dying, provided he is given a certain treat-
ment. For each treatment, including no treatment, the CPN calculates the
probability of dying. If desired, the probabilities can be displayed by selecting
“Mortality” instead of “Coverage”, as illustrated in Figure 15.9(b). We can
now calculate the survival benefit from the equation given above; for example,
for chloramphenicol, we have

SurvivalBenefit = (1.21% − 1.01%) × 5 × 50000 Euro = 501 Euro.

The total benefit, calculated as the sum of the BedDayBenefit and the
SurvivalBenefit, is 1155 Euro for chloramphenicol. To finish the cost-benefit
analysis, we subtract the total costs from the total benefit:

CostBenefit = 1155 Euro − 116 Euro = 1039 Euro.

For the combination of ofloxacin plus chloramphenicol, the treatment
ranked second by Treat, the CostBenefit is 954 Euro. Because this is less than
that for chloramphenicol, Treat prefers chloramphenicol. The ofloxacin-plus-
chloramphenicol treatment has a substantially higher benefit (1643 Euro), but
this is more than compensated for by its higher cost (689 Euro).

The treatment recommended by Treat is not necessarily the treatment that
will be given to the patient. The attending clinician may consult Treat, but
this, of course, does not oblige him to follow the advice given by Treat. In this
particular case study, the clinician preferred to give the patient ofloxacin plus
chloramphenicol, presumably aiming at the higher coverage provided by this
treatment.

Thirty-six hours later, a notification for positive blood cultures was re-
ceived, with growth of streptococci in four blood culture bottles. Streptococci
fall in the group of pathogens labelled “Enterococci sp.” in Figure 15.10, and
this, therefore, provides strong support for an enterococcal infection. This
gives a major change in the pathogen probabilities, and the advice provided
by Treat for the so-called semi-empirical treatment instantiated at this time
is, therefore, also different from the advice for the empirical treatment. Ampi-
cillin is the recommended treatment, and it provides a coverage of 85% at a
fairly low cost. This completes the patient example.



464 Steen Andreassen et al.

(a) (b)

(c)

Fig. 15.9. (a) Advice on empirical treatment provided by Treat. From left to right,
the columns contain the probability of coverage provided by each treatment, the
ranking given by Treat (numbers in small boxes), and an abbreviated name for
the treatment. The orange bars give the total cost of each treatment, the distance
from the bottom of the orange bar to the fat line gives the benefit provided by the
treatment, and the green bar thus gives the cost minus benefit, if this is positive.
Costs and benefits are given in life-years (LY). (b) Thirty-day mortalities calculated
for each treatment. (c) Probability of infection, distributed over sites. The total
length of the bars (blue + hatched) gives the probability of infection prior to the
treatment, the blue part of the bar indicating the probability of leaving the infection
uncovered, and the hatched part indicating the probability of covering the infection.
The coverages are given for the treatment chloramphenicol.
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(a)

(b)

Fig. 15.10. (a) A complete view of the main data-entry screen in the Treat system
at the time where the semi-empirical treatment is instantiated. (b) The analysis
provided by Treat.
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15.4.2 Fusion of Data and Knowledge for Calculation of Coverage
and Treatment Advice

A number of assumptions have been embedded in the topology of the CPN.
These assumptions include the assumption that infections are caused by
pathogens (bacteria, fungi, or viruses), and that infections may cause symp-
toms, both local to the site of infection and systemic responses, as already
discussed. It is also assumed that antibiotics exert their effects on infections
by reducing the activity of the pathogens, and that this, in turn, makes the in-
fection and its symptoms subside. These assumptions are hardly controversial,
but they dictate the basic topology of the CPN. How this translation from
the assumption to the topology is performed has been described in previous
publications [1, 2, 11].

The starting point for the calculation of coverage is the distribution of
probabilities over the different pathogens that may cause the infection at
each site. Here, we shall briefly consider an example of knowledge required to
calculate the coverage for a given treatment. In turn, the coverage forms the
basis for the decision-theoretic calculation of advice by Treat, as illustrated in
the patient example discussed above.

The knowledge required takes the form of a matrix that contains the sus-
ceptibilities for each of the 40 groups of pathogens considered in Treat. The
susceptibility of a pathogen to an antibiotic is the probability that the activity
of a pathogen can be eliminated by the given antibiotic. This susceptibility
also depends on the place of acquisition of the infection. Hospital-acquired
infections tend to be less susceptible to antibiotics than infections acquired
in the community; therefore, the place of acquisition is also an entry in the
matrix of susceptibilities.

The susceptibilities differ between countries and even between hospitals in
the same country. It is believed that it is the consumption of antibiotics that
drives the reduction in susceptibilities that can be observed in many places,
and it is this assumption that provided the model for the calculation of the
ecological cost; however, at a given hospital, at a given point in time, we
need to provide estimates of susceptibilities to allow the CPN to calculate the
probability that a given treatment will cover. This is in striking contrast to
the conditional probabilities that must be provided to calculate the probabil-
ity of sepsis. These conditional probabilities were assumed to be universally
applicable, independent of time and place.

The hospitals included in the clinical trial of the Treat system have com-
piled databases with susceptibilities of most of the relevant pathogens for
a number of antibiotics. Even though these databases may contain several
thousand cases, complications still arise. Some of the groups of pathogens are
not frequently occurring, and some pathogens may only be tested for their
susceptibility to a small number of antibiotics. As a consequence, a matrix of
susceptibilities can contain a minority of entries with high counts; for example,
several hundred cases where the pathogen Escherichia coli had its susceptibil-
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ity tested to the antibiotic ampicillin. Most of the entries are in a poor state,
and the susceptibility must be decided on the basis of a few, or even zero,
observed cases. We have chosen a Bayesian approach, where a prior distribu-
tion is specified for the susceptibility. It is practical to use beta distributions
as the priors and to update the posterior distributions using Dirichlet learn-
ing [18] (Chapter 1). These prior distributions may be based on observations
from the literature, on databases from other clinical sites, or on the knowledge
that, for example, some antibiotics will always be ineffective against certain
pathogens. As more local data become available, the probability distributions
are updated using Bayes’ theorem, and the impact of the prior distributions
decreases.

15.5 Calibration Databases

The discussion of the conditional probability tables has revealed that they can
be divided into two groups. The first group, which is by far the largest, consists
of conditional probabilities that we assume to be independent of time and
place. Typically, these conditional probabilities are hard-wired into the CPN.
A single example has been discussed: the conditional probabilities required
for the assessment of the state of sepsis.

Conditional probabilities in the other group are assumed to be specific
for each participating hospital, and they may change over time. These condi-
tional probabilities are placed in calibration databases that can be compiled
into the CPN. The most important of the calibration databases is the cali-
bration database for susceptibilities, which has already been discussed. Other
calibration databases are those that describe the prevalence of pathogens, the
mortalities associated with the infections, the treatments available at the hos-
pital, and their cost components. The constants in the cost-benefit analysis
(e.g., the cost of a bed-day) must also be specified by each hospital.

In addition to these calibration databases that influence the basic reason-
ing of the system, there are also a number of more trivial calibration databases.
These contain information about the names of the hospital departments, the
antibiotics available at the hospital pharmacy, the antibiotics used for test-
ing of susceptibilities, and text strings and other information that at least
partially allow the texts available in the system to be made specific for the
hospital or adapted to the local language and that allow measurements to be
converted between different unit systems. In the clinical example of a patient
with a urinary tract infection, the calibration databases were calibrated to
Rabin Medical Center. This implies that if the Treat system is applied with a
different set of calibration databases, then the advice will be different. In par-
ticular, differences across Europe in susceptibilities will lead to substantially
different advice.
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15.6 Clinical Testing of Decision-support Systems

A decision-support system must be tested under realistic clinical conditions.
At this point in time, three different evaluations of the Treat system have
been planned. The first type of evaluation involves the retrospective testing
of the system on case databases. The second type of evaluation is a non-
interventional test, where the data are collected prospectively, but where the
advice from the Treat system is not made available to the attending clinician.
The third type of evaluation is a randomized clinical trial, where the advice
from Treat is made available to the attending clinician before he decides on
the antibiotic therapy. These three types of evaluation will provide answers
to a range of different questions.

The retrospective testing allows the quality of the advice provided by Treat
to be evaluated against current clinical practice and against the recommen-
dations of the local guidelines for antibiotic use. The results can, if positive,
provide some assurance that the system can provide sound advice.

The non-interventional evaluation can be used to test aspects of the clin-
ical acceptability of Treat. The provision of sound advice is an important
consideration, and the non-interventional testing provides an opportunity to
assess the soundness of the advice when the system is used under conditions
that approximate routine clinical conditions; however, the system may also
fail if the user interface is inappropriate, if computing time is too long, or if
the required data collection does not fit into the work flow of the departments
involved.

The randomized clinical trial can be initiated provided the results from
the preceding two types of evaluation are positive. The design of a trial of a
decision-support system is not straightforward and is fraught with a number
of methodological pitfalls [7]. Some of the methodological problems stem from
the fact that, for the testing of a decision-support system like Treat, it is not
practical to perform a blinded study. Other problems are derived from prob-
lems with the randomization. The behaviour of the participating clinicians is
likely to be modified through the use of Treat, and, therefore, a randomization
of patients is not possible. Instead, we have chosen to randomize the partici-
pating departments. This requires that a reasonable number of departments
are participating, and currently the trial is planned with 12 departments in
Israel, Germany and Italy.

15.7 Test Results

In the Treat project, a non-interventional trial of Treat has been completed.
Preliminary results show promising results with significant improvements in
coverage and substantial reductions of costs [19]. A randomised controlled clin-
ical trial will be concluded in late 2004. The retrospective testing has been
done using a unique access to databases compiled by the partners. A database
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of bacteraemia for the years 1992–1996 was available for the County of North-
ern Jutland. Data from 1992–1994 were used to calibrate the decision-support
system to local patterns of susceptibility of the pathogens to antibiotics and
to local prevalences of the pathogens. Data from 1995–1996 (1597 cases) were
used to test the system.

Results of the retrospective testing [8, 9] were as follows. The treatment
given in clinical practice provided coverage in 60.8% of the cases. Had the
clinicians followed the guidelines in the List of Pharmaceuticals provided by
the Danish Medical Association, an average coverage of 92.7% would have
been achieved, and had the advice of Treat been followed, the coverage would
have been even higher: 94.6%.

The costs that would have been incurred by following the guidelines were
45% higher than the cost of the current clinical practice. According to the
cost-benefit analysis, this increase in cost would have been more than paid for
since the benefit would have increased by 47%, and the cost-benefit by 48%.

The costs that would have been incurred by following the Treat advice were
35% higher than the costs of the current clinical practice, but actually lower
than the cost of following the guidelines. The benefit was 52% of clinical
practice and the cost-benefit was 54% of clinical practice, both somewhat
better than the guidelines.

The main observation is thus that a 48% improvement can be obtained
simply by following the guidelines, which were actually only adhered to in
17% of the cases. A further modest but statistically significant 6% increase in
cost-benefit can be obtained by following the advice of Treat. We have found
these results promising enough to proceed with the planning of the next two
phases, the non-interventional testing and the controlled clinical trial.

15.8 Discussion

The aim of the Treat project is to develop a medical decision-support system
based on a probabilistic model of infectious diseases. As part of the project,
the system will be tested in four European countries. It is too early to specu-
late on the ultimate success of the system. A retrospective trial in Denmark
has indicated that the advice from the system may be a useful improvement
over current clinical practice [9]. This result cannot necessarily be extrapo-
lated to other countries, since the problems in antibiotic therapy are quite
different in the participating countries. In Denmark, the level of susceptibility
to antibiotics is higher than in most other countries. Should it turn out that
the Treat system is capable of providing useful advice in all the participating
countries, this must be seen as an indication of the flexibility of the method
chosen to construct the system. Some encouragement can be derived from the
fact that a system developed by one of the partners for use in Israel prior
to the Treat project was capable of providing advice that also represented a
substantial improvement over clinical practice [12].
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The previously developed system only performed well in the hospital where
it was designed. This provided part of the motivation for the Treat project,
including the separation of knowledge into universal knowledge and knowl-
edge that changes with time and place. The development of the concept of
calibration databases for the Treat system represents an attempt to isolate
the knowledge that needs to be calibrated to each hospital.

Should the system prove to be successful, we believe the success can be
ascribed to several factors:

1. It is difficult for a clinician to know about all the factors that may influence
the prevalence of pathogens; for example, in a urinary tract infection, does
the presence of a catheter increase or decrease the probability of an E.
coli infection?

2. Even if the clinician can keep track of these factors, and thus produce
realistic estimates of pathogen probabilities, the calculation of coverage
of a treatment not only requires an updated knowledge of susceptibilities,
but it also requires that the fairly complicated multiplication of pathogen
probabilities with susceptibilities is performed correctly. This is certainly
done much better by a computer.

3. Finally, the choice of antibiotic therapy depends on a balancing of costs
against benefits. The clinician may disagree with the weighting performed
by the system, but it will give him information that he can use in forming
his own decision.

The comparison of clinical practice with the recommendations by the Dan-
ish guidelines and with the Treat advice revealed that Treat was quite close to
the guidelines. Perhaps the Treat system can also, in the future, be seen as a
system that can assist verification of antibiotic policies and guidelines.
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Summary. The purpose of this chapter is to make the reader aware of some of
the software packages available that can implement probability models connected
with medical informatics. The modelling techniques considered are logistic regres-
sion, neural networks, Bayesian networks, class-probability trees, and hidden Markov
models.

16.1 Introduction

Several developments over the past 10 years have impacted significantly on software
for probabilistic models. Three of these are the substantial advances made in com-
puting technology, the explosive growth of the Internet, and the rise of open-source
software.

The 45-fold increase in CPU speed witnessed during the 1990s1 has enabled a
number of computationally-intensive techniques to be readily available to the data
analyst. These techniques include optimizations (such as parameter estimation and
evolutionary computation [19, 16]), Monte Carlo simulations (particularly bootstrap
methods [18, 15] and MCMC sampling [23]), and advanced computer graphics for
data visualization [34, 9].

The Internet has enabled those with common interests to communicate with
each other via discussion groups. The existence of these virtual forums for software
packages allows the users of those packages to readily provide technical support and
offer new developments. Furthermore, through the existence of the World Wide Web,
a number of free, peer-reviewed, online journals have appeared, such as Journal of
Statistical Software and Journal of Machine Learning Research. Furthermore, several
conferences, such as Uncertainty in Artificial Intelligence and Neural Information
Processing Systems, have made their proceedings available online at no charge.

The Internet has also been crucial to the creation and evolution of the open-
source movement, which we now describe.

1 Moore’s Law states that the computer industry doubles the power of micropro-
cessors every 18 months.
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16.2 Open-source Software

The usual economics of software development is that a business organization pro-
duces an item of computer software and sells it to those wishing to have it, with
the buyers of the product having no control over its development. However, during
the 1990s, an alternative economic model for software development emerged called
Open Source [37, 2].

The basic principle of open-source software development is that the human-
readable computer program underlying the software (the source code) is available
to everyone. This is in stark contrast to the situation with proprietary software,
in which only the company producing the software can modify it. Because of the
availability of the source code, a large syndicate of interested users can make the im-
provements they wish to see in the software. The proposed improvements are vetted
by a hierarchically coordinated group of volunteer programmers and incorporated
in the next release of the software [36, 20]. Thus, a subset of users sort out known
problems and eventually get the functionality they require. The most famous exam-
ple of this approach to software development is the success of the Linux operating
system [52].

An important device in maintaining the open-source status of software is the
use of open-source licences [42], such as the GNU General Public License (GPL)
[47]. This legally-binding document ensures that any item of software covered by it
remains open source. The license allows people to modify the source code of GPL
software, but any modified software they distribute is also covered by the GPL. A
person may distribute GPL software for free or sell it for profit, but they cannot
sell it under a restrictive license, for that would inhibit development of the software
within the open-source framework. Other open-source licences include the Artistic
Licence, the Apache License, and the Python License.

We will bring to the reader’s attention open-source software relevant to the
theme of this chapter.

Cautionary Note:

Most public-domain software (open-sourced, freeware, and shareware) has not been
rigorously tested; therefore, it is more likely to contain programming bugs than
commercially-developed software.

16.3 Logistic Regression Models

[Logistic regression was featured in Sections 3.3 and 10.4.]
There are many statistics packages competing with each other, ranging from the

more advanced packages, such as S-Plus, designed for professional statisticians, to
the more user-friendly packages, such as Data Desk, for non-specialists. All the major
commercial statistics packages – such as Genstat, GLIM, SAS, S-Plus, SPSS, and
Statistica – provide some means of fitting logistic models to data, although there is
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some package-to-package variation in the functionality and diagnostics available.2 3

This is not surprising given that some packages were designed, at least initially, for
specific types of users. For example, SPSS was designed for social scientists, whereas
GLIM was designed for those requiring generalized linear models.

Collett [12, Chap. 9] compared the logistic regression capabilities of six packages;
however, given that his review was written in 1991, some of his comments may no
longer apply.

16.3.1 S-Plus and R

S-Plus is one of the most sophisticated statistics packages available [10, 49, 50].4 It is
based on the S language [3], and is supported by an active discussion group. Harrell
[25] has contributed substantially to the S-Plus code pertaining to regression. This
includes routines for contemporary statistical techniques such as bootstrapping for
model validation. The GLIB S-Plus package by Raftery and Volinsky [40] aids the
use of model-averaged logistic regression (Section 10.5).

Example 1. The logistic regression model

logit(p(Kyphosis = 1|Age, Number, Start)) = β0 + β1Age + β2Number + β3Start

can be fitted to the kyphosis data set [10] using the S-Plus code

kyph.glm <- glm(Kyphosis ˜ Age + Number + Start,
family = binomial, data = kyphosis)

where glm is the generalized linear modelling function. The regression coefficients
and associated standard errors can be viewed using the command summary(kyph.glm)

Coefficients:
Value Std. Error t value

(Intercept) -2.03693225 1.44918287 -1.405573
Age 0.01093048 0.00644419 1.696175

Number 0.41060098 0.22478659 1.826626
Start -0.20651000 0.06768504 -3.051043

Given a new vector of values xnew for Age, Number and Start, the command

predict(kyph.glm, newdata = xnew, type = "response")

provides the estimated probability p(Kyphosis = 1|xnew) from the regression
model. �
2 Updated links to software and discussion groups featured in this chapter are

available from the website http://robots.ox.ac.uk/∼parg/pmbmi.html.
3 Comparisons between a number of mathematical and statistical packages – such

as Gauss, Mathematica, Matlab, and S-Plus – are available at the Scientific Web
website: http://www.scientificweb.com/ncrunch/

4 http://www.insightful.com/
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In our opinion, the best open-source statistics package is R [28], a language and
environment for statistical computing and graphics.5 It is very similar to S-Plus, but
not identical to it; however, a lot of code written for S-Plus can be run unchanged
within the R environment; for example, the glm and predict commands of Example
1 are available in R. One of the advantages of R over S-Plus is that the graphics
capability of R is generally superior to that available from S-Plus.

The evolution of R (the R Project) is managed by a group of coordinated teams.
There are a number of discussion groups associated with these teams, including
a highly effective support forum. There is also a very good online journal called
R-News for the R community.

16.3.2 BUGS

[MCMC methods were featured in Chapters 2 and 10.]
BUGS (Bayesian inference Using Gibbs Sampling) [45] generates the necessary

code to perform MCMC sampling from a model specification supplied by a user.6

The syntax is an extension of the S langauge.
The original format (Classic BUGS) has a command-line interface that provides

univariate Gibbs sampling and a simple Metropolis-within-Gibbs routine. A more
recent version (WinBUGS) provides a GUI for use with Windows, and it has a more
sophisticated univariate Metropolis sampler. Although there is, as yet, no version
of WinBUGS for the Linux or Unix platforms, WinBugs can be run within these
platforms by using an emulator such as Wine.

A wide range of S-Plus and R routines (CODA) supplement BUGS by providing
diagnostics and plots for MCMC analysis and convergence checks.

Example 2. In this example, adapted from Spiegelhalter et al. [44], WinBUGS is
used to estimate the regression coefficients of a random-effects logistic regression
model that allows for over-dispersion. The data consist of N plates for which, in the
ith plate, there were ri positive outcomes out of ni units. The hierarchical structure
of the model is

ri ∼ Binomial(pi, ni)

logit(pi) = β0 + β1x1,i + β2x2,i + β12x1,ix2,i + bi

β0, β1, β2, β12 ∼ Normal(0, 106)

bi ∼ Normal(0, τ−1)

τ ∼ Gamma(10−3, 10−3)

for which the corresponding BUGS code can be written as

model{
for(i in 1:N){

r[i] ˜ dbin(p[i],n[i])
logit(p[i]) <- beta0 + beta1*x1[i] + beta2*x2[i] +

beta12*x1[i]*x2[i] + b[i]

5 http://www.r-project.org/
6 http://www.mrc-bsu.cam.ac.uk/bugs/
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b[i] ˜ dnorm(0.0,tau)
}
beta0 ˜ dnorm(0.0,1.0E-6)
beta1 ˜ dnorm(0.0,1.0E-6)
beta2 ˜ dnorm(0.0,1.0E-6)
beta12 ˜ dnorm(0.0,1.0E-6)
tau ˜ dgamma(0.001,0.001)

}

Following a “burn in” using 1000 samples, 9000 samples from the posterior distri-
bution of the parameters provided the following estimates:

β SE

(intercept) −0.5496 0.1927

x1 0.0772 0.307

x2 1.356 0.2773

x1x2 −0.823 0.4205

�
Several specialized versions of BUGS have been developed for specific domains.

One of these is PKBugs, which was designed to provide hierarchical pharmacokinetic
and pharmacodynamic models. Further details of PKBugs, along with an example,
are given in Chapter 11.

Another MCMC package is Hydra [51], a suite of Java libraries. Although it does
provide a range of MCMC samplers, its use requires some familiarity with the Java
language.

16.4 Neural Networks

[Neural networks were featured in Chapters 3 and 12, and Section 10.6.]
There are at least 35 commercial packages and 47 freeware/shareware packages

for neural computation. James [29] provides a review of some of the commercial
packages, and a tabular comparison of 12 packages is given in Table 16.1. Some of
the major mathematical packages, such as Mathematica, and Matlab, have neural-
network toolboxes designed specifically for them. This also true of some of the
statistical packages, including S-Plus and Statistica; however, in our opinion, the
toolbox with the most functionality is an open-sourced package called Netlab.

16.4.1 Netlab

Netlab was developed to accompany the seminal book Neural Networks for Pattern
Recognition by Chris Bishop [4], and, in our experience, it has the best functionality
of any neural-network package.7

Matlab [27] is a powerful commercial software package for performing technical
computations,8 and Netlab is a collection of open-source routines designed to be
7 http://www.ncrg.aston.ac.uk/netlab/
8 http://www.mathworks.com/
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executed within the Matlab environment. In addition to being open-sourced, Netlab
contains a powerful collection of routines for neural computation, including routines
for Bayesian computations, latent-variable models (such as Generative Topographic
Mapping [48]), and Gaussian processes [22]. Nabney [33] has written an excellent
textbook and manual for Netlab, which provides many worked examples based on
Bishop’s book.

Example 3. The topology of a classification multilayer perceptron (MLP) with a
single hidden layer is defined by the number of input nodes nin for the feature
vectors x, the number of hidden nodes nhidden, and the number of output nodes
nout for the conditional class probabilities p(y = k|x). With these structural values,
an MLP can be created in Matlab by using the Netlab mlp routine; for example,

nin = 4; nhidden = 6; nout = 1;
alpha = 0.1; % weight-decay coefficient
net = mlp(nin, nhidden, nout, ‘logistic‘, alpha);

The string ‘logistic‘ specifies that the logistic function is to be used for the
output-node activation function.

The mlp routine initializes the network weights to random values; however, the
command net = mlpinit(net, prior) can be used to randomly select the weights
from a zero-mean Gaussian distribution with covariance 1/prior.

If a data set consists of input-target pairs (xi, yi), the MLP can now be trained
for, say, 1000 cycles using the quasi-Newton optimization algorithm:

options = foptions; options(14) = 1000; % algorithm options
[nnet, options] = netopt(net, options, xdata, ydata, ‘quasinew‘);

where xdata is the matrix of xi values, and ydata is the vector of the yi values
associated with xdata. Forward propagation of a new feature vector xnew along the
trained network is performed with

cpd = mlpfwd(nnet, xnew);

which estimates the conditional probability distribution p(y|xnew). �

16.4.2 The Stuttgart Neural Network Simulator

A limitation of Netlab is that it does not provide networks specifically for the con-
struction of temporal neural networks. In contrast, the Stuttgart Neural Network
Simulator (SNNS), supports time-delay networks (TDNN), Jordan networks, Elman
networks, and extended hierarchical Elman networks.9

16.5 Bayesian Networks

[Bayesian networks were featured in Chapters 2 and 4 and Section 10.9.]
As a result of the large interest in Bayesian networks (BNs), many software pack-

ages have been designed to support BN development. We are aware of at least eight

9 http://www-ra.informatik.uni-tuebingen.de/SNNS/
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commercial and 30 academic BN packages, with at least 20 of the latter providing
source code. Kevin Murphy has compiled an extensive table that summarizes the
features of 37 BN packages. A modified version of this table is shown in Table 16.2.
Korb and Nicholson [30] have made a detailed comparison of 12 packages, including
Bayes Net Toolbox, Hugin, Bayesware Discoverer, and Tetrad.

Table 16.1. Summary of some academic and commercial software for neural-network
development. The “Code” column states whether the source code is available (N ≡
no). If it is, the language used is given. The “GUI” column states whether a GUI is
available (Y ≡ yes). The “RBF” column states whether radial basis function networks
can be developed. The “t” column states whether temporal (dynamic) networks can be
developed beyond the use of delay vectors. The “B” column states whether Bayesian
neural techniques can be used. The “Free” column states whether the software is free
(R ≡ only a restricted version is free).

Package Developer Code GUI RBF t B Free

BrainMaker California Scientific
Software

N Y N N N N

Mathematica
Neural Networks

Wolfram Research Mathematica N Y Y N N

Matlab Neural
Network Toolbox
[24]

The MathWorks Matlab Y Y Y Y a N

Netlab [33] I.T. Nabney et al. Matlab N Y N Y b Y

NeuralWorks NeuralWare N Y Y Y N R

NeuroSolutions
[38]

NeuroDimension N Y Y Y N R

NuRho soNit.biz N Y N N N R

PDP++ [35] R.C. O’Reilly et al. C++ Y N Y N Y

SNNS University of
Stuttgart

C Y Y Y N Y

Statistica Neural
Networks

StatSoft N Y Y N N R

ThinksPro Logical Designs
Consulting

N Y Y Y N R

Tiberius P. Brierley VB/Excel c Y N N N R
a Bayesian regularization.
b Includes the evidence framework and MCMC-based approximation.
c Backpropagation code also available in Fortran 90 and Java.
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Table 16.2. Summary of some academic and commercial software for BN de-
velopment (adapted from Murphy [32], reprinted with permission). The “Code”
column states whether the source code is available (N ≡ no). If it is, the language
used is given. The “CVN” column states whether continuous-valued nodes can be
accommodated (N ≡ restricted to discrete-valued nodes; Y ≡ yes and without dis-
cretization; D ≡ yes but requires discretization). The “GUI” column states whether
a GUI is available. The “θ” column states whether parameter learning is possible.
The “G” column states whether structure learning is possible. The “Free” column
states whether the software is free (R ≡ only a restricted version is free).

Package Developer Code CVN GUI θ G Free

BayesBuilder SNN Nijmegen N N Y N N R

BayesiaLab Bayesia N D Y Y Y R

Bayesware
Discoverer

Bayesware N D Y Y a Y a R

BN PowerCon-
structor

J. Cheng N N Y Y Y b Y

BNT [32] K. Murphy Matlab/C Y N Y Y Y

BNJ W.H. Hsu et al. Java N Y N Y Y

BUGS [45] MRC/Imperial
College

N Y Y Y N Y

CoCo [1] c J.H. Badsberg C/Lisp N Y Y Y Y

Deal [6] S.G. Bøttcher et al. R Y d Y Y Y Y

GDAGsim [53] D. Wilkinson C Y e N N N Y

GRAPPA P.J. Green R N N N N Y

Hugin Hugin Expert N Y Y Y Y R

Hydra [51] G. Warnes Java Y Y Y N Y

JavaBayes [14] F.G. Cozman Java N Y N N Y

MIM [17] f Hypergraph
Software

Y Y Y Y Y R

MSBNx [26] Microsoft N N Y N N R

Netica Norsys Software N Y Y Y N R

Tetrad [43] P. Spirtes et al. N Y N Y Y Y

WebWeaver Y. Xiang Java N Y N N Y
a Uses the “bound and collapse” algorithm [41] to learn from incomplete data.
b Uses Cheng’s three-phase construction algorithm [11].
c Analyzes associations between discrete variables of large, complete, contingency

tables.
d Restricted to conditional Gaussian BNs.
e Restricted to Gaussian BNs.
f Provides graphical modelling for undirected graphs and chain graphs as well as

DAGs.
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16.5.1 Hugin and Netica

The best-known commercial packages for BN development are Hugin and Netica.10

Hugin (Hugin Expert) has an easy-to-use graphical user interface (GUI) for
BN construction and inference (Figure 16.1).11 It supports the learning of both
BN parameters and BN structures from (possibly incomplete) data sets of sample
cases. The structure-learning is done via the PC algorithm [46]. APIs (application
programmers interfaces) are available for C, C++ and Java, and an Active-X server
is provided. These enable the inference engine to be used within other programs.
Hugin is compatible with the Windows, Solaris and Linux platforms.

Like Hugin, Netica (Norsys Software) supports BN construction and inference
through an advanced GUI.12 It has broad platform support (Windows, Linux, Sun
Sparc, Macintosh, Silicon Graphics, and DOS), and APIs are available for C, C++,
Java, and Visual Basic. Netica enables parameters (but not structures) to be es-
timated from (possibly incomplete) data; however, although the functionality of
Netica is less than that of Hugin, it is considerably less expensive.

16.5.2 The Bayes Net Toolbox

In 1997, Kevin Murphy started to develop the Bayes Net Toolbox (BNT) [32] in
response to weaknesses of the BN systems available at the time.

BNT is an open-sourced collection of Matlab routines for BN (and influence dia-
gram) construction and inference, including dynamic probability networks.13 It allows
a wide variety of probability distributions to be used at the nodes (e.g., multino-
mial, Gaussian, and MLP), and both exact and approximate inference methods are
available (e.g., junction tree, variable elimination, and MCMC sampling).

Both parameter and structure estimation from (possibly incomplete) data are
supported. Structures can be learnt from data by means of the K2 [13] and IC/PC
[46] algorithms. When data are incomplete, the structural EM algorithm can be
used.14

Example 4. In BNT, a directed acyclic graph (DAG) is specified by a binary-valued
matrix {ei,j}, where ei,j = 1 if a directed edge goes from node i to node j. For the
DAG shown in Figure 16.1(a), this adjacency matrix is obtained by

N = 4; % Number of nodes
dag = zeros(N,N); % Initially no edges
C = 1; S = 2; R = 3; W = 4; % IDs for the four nodes
dag(C,[R S]) = 1; dag(R,W) = 1; dag(S,W)=1; % Edges defined

Next, the type of nodes to be used for the BN are defined:

discrete_nodes = 1:N; % All nodes are discrete-valued
nodesizes = 2*ones(1,N); % All nodes are binary
bnet = mk_bnet(dag,node_sizes,’discrete’, discrete_nodes);

10 Hugin and Netica also support the development of influence diagrams.
11 http://www.hugin.com/
12 http://www.norsys.com/
13 http://www.ai.mit.edu/∼murphyk/Software/BNT/bnt.html
14 See Section 2.3.6 and Section 4.4.5.
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Fig. 16.1. (a) A DAG for the classic “wet grass” scenario. (b) A Hugin rendering
of this DAG. The histograms show the probability distributions at each node X,
which, initially, are the prior probabilities p(X). (c) Cloudy = true; consequently,
the probabilities are updated to the posterior distributions p(X|Cloudy = true).
(d) Cloudy = true and Rain = false; therefore, the probability distributions are
updated to p(X|Cloudy = true, Rain = false).

(In BNT, false = 1 and true = 2.) The BN definition is completed by defining
the conditional probability distribution at each node. For this example, binomial
distributions are used, and the values are entered manually. If V1, . . . , Vn are the
parents of node X, with sizes |V1|, . . . , |Vn|, the conditional probability distribution
p(X|V1, . . . , Vn) for node X can be defined as follows:

CPT = zeros(|V1|, . . . , |Vn|, |X|);
CPT(v1, . . . , vn, x) = p(X = x|V1 = v1, . . . , Vn = vn);

· · · repeated for each p(x|v1, . . . , vn)

bnet.CPD{X} = tabular CPD(bnet, X, ‘CPT‘, CPT);

We can perform inferences with this BN. To enter the evidence that Cloudy =
true and find the updated probability p(WetGrass = true|Cloudy = true) via the
junction-tree algorithm, we can use
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evidence = cell(1,N); evidence{C} = 2; % Cloudy = true
engine = jtree_inf_engine(bnet); % Use junction-tree algorithm
[engine, loglikelihood] = enter_evidence(engine, evidence);
marg = marginal_nodes(engine, W); % p(W|Cloudy = true)
prob = marg.T(2); % p(W = 2|Cloudy = true)

An alternative to the above manual approach is to let BNT learn the probabilities
from available data. To obtain the maximum-likelihood estimates of the probabilities
from a complete data set data, we can first initialize the probabilities to random
values,

seed = 0; rand(’state’, seed);
bnet.CPD{C} = tabular_CPD(bnet, C, ’CPT’, ’rnd’);
bnet.CPD{R} = tabular_CPD(bnet, R, ’CPT’, ’rnd’);
bnet.CPD{S} = tabular_CPD(bnet, S, ’CPT’, ’rnd’);
bnet.CPD{W} = tabular_CPD(bnet, W, ’CPT’, ’rnd’);

and then apply

bnet = learn_params(bnet, data);

�

There are some limitations to BNT. Firstly, it does not have a GUI. Secondly,
BNT requires Matlab to run it. It would be better if a version of BNT was developed
that is independent of any commercial software. Furthermore, Matlab is a subop-
timal language in that it is slow compared with C, and its object structure is less
advanced than that of Java or C++. The desire to overcome these drawbacks was
the motivation behind the OpenBayes initiative.

16.5.3 The OpenBayes Initiative

Although there are a number of software packages available for constructing and
computing graphical models, no single package contains all the features that one
would like to see, and most of the commercial packages are expensive. Therefore, in
order to have a package that contains the features desired by the BN community,
InferSpace launched the OpenBayes initiative in January 2001, the aim of which was
to prompt the building of an open-sourced software environment for graphical-model
development.

There have been other BN-oriented open-source initiatives, such as Fabio Coz-
man’s JavaBayes system.

16.5.4 The Probabilistic Networks Library

In late 2001, Intel began to develop an open-sourced C++ library called the Proba-
bilistic Networks Library (PNL), which initially closely modelled the BNT package.15

PNL has been available to the public since December 2003.

15 http://www.ai.mit.edu/∼murphyk/Software/PNL/pnl.html
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16.5.5 The gR Project

In September 2002, the gR project was conceived, the purpose of which is to de-
velop facilities in R for graphical modelling [31].16 The project is being managed by
Aalborg University.

The software associated with the gR project includes (i) Deal [6], for learning
conditionally Gaussian networks in R, (ii) mimR, an interface from R to MIM (which
provides graphical modelling for undirected graphs, DAGs, and chain graphs [17]),
and (iii) an R port for CoCo [1], which analyzes associations within contingency
tables. The ability of R (and S-Plus) to interface with programs written in C++
means that Intel’s PNL could become a powerful part of the gR project.

16.5.6 The VIBES Project

The use of variational methods for approximate reasoning in place of MCMC sam-
pling is gaining interest (Chapter 14). In a joint project between Cambridge Uni-
versity and Microsoft Research, a system called VIBES (Variational Inference for
Bayesian Networks) [5] is being developed that will allow variational inference to be
performed automatically on a BN specified through a GUI.

16.6 Class-probability trees

[Class-probability trees were featured in Section 10.10.]
Two of the original tree-induction packages are C4.5 [39] and CART [7]. C4.5 has

been superseded by C5.0, which, like its Windows counterpart See5, is a commercial
product developed by RuleQuest Research.17

CART introduced the concept of surrogate splits to enable trees to handle miss-
ing data (Section 10.10). It is available as a commercial package from Salford Sys-
tems.18

Class-probability trees can also be created by several statistical packages. These
facilities include the S-Plus tree function and the R rpart function. An advantage
of the rpart function is that it can use surrogate variables in a manner closely
resembling that proposed by Breiman et al. [7].

Example 5. The R function rpart can grow a tree from the kyphosis data used in
Example 1:

kyph.tree <- rpart(Kyphosis ˜ Age + Number + Start,
data=kyphosis, parms=list(split=’gini’))

In this example, the Gini index of class heterogeneity has been used. The information-
theoretic entropy measure is also available. Figure 16.2 shows a visualization of the
tree obtained with

plot(kyph.tree); text(kyph.tree, use.n=TRUE)

16 http://www.r-project.org/gR/gR.html
17 http://www.rulequest.com/
18 http://www.salford-systems.com/
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A new feature vector of values xnew can be dropped down the tree in order to
estimate p(Kyphosis = 1|xnew) from a leaf node. This is done using

predict(kyph.tree, newdata = xnew)

�

In Section 10.10.2, we described Buntine’s approach to Bayesian trees [8]. His
ideas are implemented in the IND package, which can now be obtained (along with
the source code) from the NASA Ames Research Center under a NASA software
usage agreement.19

|Start>=8.5

Start>=14.5
Age<55

Age>=111
absent

29/0 absent
12/0

absent
12/2

present
3/4

present
8/11

Fig. 16.2. Plot obtained when the R function rpart was used to grow a tree (Exam-
ple 5). At each split, the left branch corresponds to the case when the split criterion
is true for a given feature vector, and the right branch to when the criterion is false.
Each leaf node is labelled with the associated classification followed by the frequency
of the classes “absent” and “present” at the node (delimited by “/”).

16.7 Hidden Markov Models

[Hidden Markov models were featured in Chapter 14 and Sections 10.11.4, 2.2.2,
4.4.7 and 5.10.]

A Hidden Markov model (HMM) consists of a discrete-valued hidden node S
linked to a discrete- or continuous-valued observed node X. Figure 16.3 shows the
model “unrolled” over three time steps: τ = 1, 2, 3.

Although the majority of statistical software packages enable classical time-
series models, such as ARIMA, to be built, tools for modelling with HMMs are not
a standard feature. This is also true of mathematical packages such as Matlab and
Mathematica.
19 http://ic.arc.nasa.gov/projects/bayes-group/ind/IND-program.html
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Fig. 16.3. A graphical representation of an HMM. The model is defined by the
probability distributions p(S(1)), p(S(τ+1)|S(τ)), and p(X(τ)|S(τ)). The last two dis-
tributions are assumed to be the same for all time slices τ ≥ 1.

16.7.1 Hidden Markov Model Toolbox for Matlab

Kevin Murphy has written a toolbox for developing hidden HMMs with Matlab.20

Tools for this purpose are also available within his BNT package (Section 16.5.2).
We illustrate the HMM toolbox with the following example.

Example 6. Suppose we wish to classify a biomedical time series x = {x(1), x(2), . . . ,
x(T )} by assigning it to one of K classes (for example, K physiological states). We
assume that a time series is generated by an HMM associated with a class, there
being a unique set of HMM parameters θk for each class k. The required classification
can be done probabilistically by assigning a new time series xnew to the class k for
which p(θk|xnew) is maximum.

For each of the K classes of interest, we can train an HMM using a sample
(data k) of time series associated with class k. The standard method is to use the
EM algorithm to compute the MLE θ̂k of θk with respect to data k:

[LL, prior_k, transmat_k, obsmat_k] =
dhmm_em(data_k, prior0, transmat0, obsmat0, ’max_iterations’,10);

where prior0, transmat0, obsmat0 are initial random values respectively corre-
sponding to the prior probability distribution p(S(1)), the transition probability
matrix p(S(τ+1)|S(τ)), and the observation probability matrix p(X(τ)|S(τ)). The re-
sulting MLEs for these probabilities are given by prior k, transmat k, and obsmat k,
which collectively provide θ̂k.

From θ̂k, the log-likelihood log p(x new|θ̂k) for a new time series x new can be
obtained using

loglik = dhmm_logprob(x_new, prior_k, transmat_k, obsmat_k)

which can be related to p(θ̂k|x new) by Bayes’ theorem. �
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Appendix: Conventions and Notation

Table A.1: Conventions.

X (i.e., upper case) refers to a random variable

x (i.e., lower case) refers to a value. x also refers to a random variable
in Chapters 1, 2, 4, 5, 6, 8, and 9

X (i.e., bold upper case) refers to a matrix of random variables or values.
X also refers to a vector of random variables in Chapter 10

x (i.e., bold lower case) refers to a vector of random variables or values

Table A.2: Abbreviations used frequently.

ANN artificial neural network

ARD Automatic Relevance Determination

BN Bayesian (belief) network

DAG directed acyclic graph

ECG electrocardiogram

EEG electroencephalogram

EM expectation-maximization

HMM hidden Markov model

MAP maximum a posteriori

MCMC Markov chain Monte Carlo

MLE maximum likelihood estimate

continued on next page
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continued from previous table

MLP multilayer perceptron

PCA principal component analysis

PD pharmacodynamics

PK pharmacokinetics

RBFNN radial basis function neural network

Table A.3: Non-Greek notation used frequently.

B(a, b) beta distribution with parameters a and b

Bernoulli(p) Bernoulli distribution with success probability p

D data

Dir(α1, . . . , αn) Dirichlet distribution with parameters α1, . . . , αn

E(θ) error function with respect to parameters θ

E expectation operator

Gamma(α, β);
G(α, β)

gamma distribution with coefficients α and β

KL(A,B);
D(A||B)

Kullback–Leibler divergence between A and B

� logistic function

L set of leaf nodes of a tree in Chapter 4

M model or structure

Normal(µ, ν);
N(µ, ν); N (µ, ν)

Normal distribution with mean µ and variance ν

MVNp(µ,Σ);
Mp(µ,Σ)

p-dimensional multivariate Normal distribution with
mean µ and variance Σ

p(A); P (A) probability of A 1

p(A|B); P (A|B) probability of A given knowledge of B

q parameter vector (alternative notation to θ)

R the set of real numbers

continued on next page

1 p (and P ) denotes different functions for different arguments; e.g., p(X) and p(Y )
are different functions.
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continued from previous table

S hidden state; i.e., the random variable associated
with a hidden node in a Bayesian network. S denotes
a tree topology in Chapters 4 and 5 2

S a set, sequence, or vector of hidden states

tr(A) trace of matrix A

Var(X); V ar(X) variance of X

W(α,Σ) Wishart distribution with parameters α and Σ

w vector of neural-network weights in Chapter 3. w de-
notes branch lengths in a phylogenetic tree in Chap-
ters 4, 5, and 6

Table A.4: Greek notation used frequently.

β regression coefficient

β vector of regression coefficients

δ(x) delta function 3

δi,k Kronecker delta

Γ (x) gamma function 4

Γ (α, β) gamma distribution with coefficients α and β

θ parameter vector (alternative notation to q)

µ mean of a univariate normal distribution

µ mean of a multivariate normal distribution

σ standard deviation

Σ covariance matrix

Ω[ξ] sample space for ξ

2 Chapter 5 combines both notations in that the tree topology corresponds to the
hidden state of an HMM, hence S is both a hidden state and a tree topology.

3 δ(0) = ∞, δ(x) = 0 if x �= 0, and
∫ ∞

−∞ δ(x)dx = 1
4

∞∫
0

exp(−t)tx−1dt. For integer n, Γ (n + 1) = n!
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Table A.5: Other mathematical conventions and symbols used fre-
quently.

X̃ approximate value of X(
N
k

)
combination of k from N 5

|A|; det(A) determinant of matrix A

n!! double factorial of n 6

x ∈ A x is an element of set A

� end of example

� end of proof

X̂ estimated value of X (usually an MLE)

〈X〉 expectation of X

∀x for all values of x

∇f(x) gradient at f(x)

A ⊥ B A is independent of B

A ⊥ B | C A is independent of B given C

A ∩B intersection of sets A and B

A \B set A minus set B

|A| number of elements in set or vector A

A ⊆ B A is a subset of B

AT; A† transposition of vector or matrix A

A ∪B union of sets A and B

5 (
N
k

)
= N !

k!(N−k)! for integer N, k, but
(

N
k

)
= Γ (N+1)

(k+1)Γ (N−k+1) for continuous N, k
6 n!! = n × (n − 2) × (n − 4) × . . . × 3 × 1 for n odd, and n!! = n × (n − 2) × (n −

4) × . . . × 4 × 2 for n even.
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A-optimality, 226
AIDS, 84, 86, 88, 147
ALARM system, 320
ANOVA, 226
apoptosis, 289
approximating a posterior distribution,

420, 421
Archea, 192
Automatic Relevance Determination,

316, 375

backpropagation, 14
batch learning, 72
Baum-Welch, 425
Bayes Net Toolbox, 480, 481
Bayes’ theorem, 4, 10, 299, 372, 397,

398, 400
BayesBuilder, 480
BayesiaLab, 480
Bayesian information criterion, 41, 53
Bayesian model selection, 421
Bayesian networks, 239, 241, 317, 452,

478
conditional Gaussian networks, 320
construction, 321, 322
dynamic, 251, 252, 317
example, 18
Gaussian networks, 320
greedy search, 322
hidden states, 46
inference, 318
introduction to, 17
junction-tree algorithm, 52, 319
loopy belief propagation, 320

missing data, see missing data,
Bayesian networks

parameters, 25, 26
Pearl’s message passing algorithm,

52, 116
quickscore algorithm, 319
structure, 17, 26
synonyms, 317

Bayesian statistics, 10, 63, 130, 298,
352, 356, 360, 363, 365, 367, 372,
391, 393–398, 400, 403, 405, 407,
408, 411, 412, 416

axioms, 391
Bayes factor, 304
computations, 300
conjugate priors, 403
decision, 391
evidence, 395
full conditional distributions, 405,

407, 408
Gibbs sampling, 403
hierarchical models, 306
inference, 391, 400, 403, 405, 407,

408, 416
Jeffreys’ prior, 394
logistic regression, 302
marginal likelihood, 395
marginalisation, 392, 397, 398, 400,

416
model averaging, 299
model uncertainty, 395–398, 400
modelling, 396
neural networks, 311
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parameter averaging, 299
parameter inference, 400
parameter uncertainty, 394, 396–398,

400, 411, 412
posterior probability, 393, 394, 397,

398, 400, 405, 407, 408
prediction, 397, 416
preprocessing, 392–395, 416
prior probability, 363, 365, 394, 403

Dirichlet, 321
uninformative, 299

theory, 391
tree induction, 325
uncertainty, 391, 392, 396–398, 400
updating, 299

Bayesware Discoverer, 480
BCI, 393
beta distribution, 11, 12
BIC, see Bayesian information criterion
BILAG index, 382
binary dummy variables, 69
bioavailability, 354, 364
birth weight, 302, 324
BLAST, 258
BN PowerConstructor, 480
BNJ, 480
bootstrapping, 281

in phylogenetics, 127–129
comparison with Bayesian posterior

probabilities, 208
comparison with MCMC, 134
example, 9
illustration of, 8
introduction, 8
parametric, 158
shortcomings of, 129

brain computer interface, see BCI
BrainMaker, 479
BUGS, 476, 480

C4.5, 484
C5.0, 484
CART, 484
causal Markov assumption, 38, 246
Chapman-Kolmogorov equation, 107,

114, 115, 140
Cheyne Stokes respiration, 436
class-probability trees, 484
classical statistics, see statistics

classification, 60, 66, 234, 391, 396, 400,
413, 416

probabilistic classification, 66
static, 396
time series, 400

clinical trial, 468
clustering, 234, 241

neighbour joining, 96, 98, 126, 159
shortcomings of, 98
UPGMA, 93–95, 129

CoCo, 480, 484
codon position, 136, 140
coefficient of variation, 219
cognitive tasks, 439
combining information, see sensor

fusion
compensatory substitutions, see RNA
conjugate distributions, 426
conjugate prior, see prior probability
consensus tree, see phylogenetic tree
cost-benefit analysis, 463
covariation, see RNA
cross-validation, 75
curse of dimensionality, 77
cytokines, 289

d-separation, see DAG
DAG, 18, 392, 396, 397, 400, 402, 403,

405
arcs, see edges
child, 17
clique, 52
d-separation, 22–24, 246
edges, 17
equivalence classes, 35, 38, 39, 251
explaining away, 22
Markov blanket, 19, 179, 246
Markov neighbours, 245
neighbourhood, 35
nodes, 17
order relations, 246
parent, 17
separator relations, 246
v-structure, 35, 38
vertices, see nodes

data conditioning, 327
Deal, 480, 484
decision boundary, 61
decision regions, 61
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decision-support systems, 451
delta method, 219
deoxyribonucleic acid, see DNA
desiderata for models, 297
detailed balance, see Markov chain
diagnosis, 391
directed acyclic graph, see DAG
discrete gamma distribution, see gamma

distribution
diseases

acute abdominal pain, 317
arrhythmia, 375
brain tumours, 333
breast cancer, 305, 320
cervical cancer, 308
cyanosis, 320
epilepsy, 332
hepatitis, 326
lupus, 382
multiple sclerosis, 314
Parkinson’s disease, 314
sepsis, 453
urinary tract infection, 309, 455

distance between sequences, see genetic
distances

DNA, 87
base pairs, 212
coding versus non-coding, 136
deletions, 45
double helix, 212
gaps, 45, 135
hybridization, 212
indels, 45
insertions, 45
multiple sequence alignment, 45, 88,

89, 147
mutations, 86
pairwise sequence alignment, 45, 46
replication, 86
sequencing, 84, 87

DNAML, see likelihood method in
phylogenetics

double helix, see DNA
dynamic programming, 48, 50

E-score, see BLAST
E-step, see EM algorithm
E. coli, 194
EEG, see electroencephalogram

electrocardiogram, 375
electroencephalogram, 328, 330, 332,

336, 391, 395, 411–413
artefacts, 395
cognitive tasks, 391, 412, 413
electrode positions, 10-20 system,

411, 412
sleep, 391, 411
sleep spindles, 391, 411, 413

EM algorithm, 52, 274
applied to HMMs, 49
E-step, 44, 274
for detecting recombination, 175
illustration of, 44
introduction to, 43
M-step, 44, 275
structural EM algorithm, 53, 125, 322

empirical models, 352, 353, 367
entropy, 194
epidemiology, 83
epoch, 72
equivalence classes, see DAG
eukaryotes, 192
evidence procedure, 41, 304, 373
evolution, 83
evolutionary distances, see genetic

distances
exogenous variables, 272, 273
expectation maximization algorithm,

see EM algorithm
extreme value theory, 338

false discovery rate (FDR), 233
family wise error rate (FWER), 232
feature extraction, see preprocessing
feature space, 61
feature vector, 60
filters

autoregressive, 327
Kalman–Bucy, 328
linear, 327

Fisher information matrix, 41
Fisher’s z-transform, 395
Fitch-Margoliash algorithm, 159
fixation, 196
forensic science, 83
free energy, 194, 195
frequentist statistics, see statistics
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G+C-content, 140, 141
gamma distribution

discrete, 136
GDAGsim, 480
gene, 212

expression, 212
expression data, 211, 269, 288

gene conversion, 184, 185
general time-reversible model, see

nucleotide substitutions
generalisation accuracy, 411–414, 416

cross validation, 411, 412
generative model, 393, 396, 400
genetic distances, 91, 99, 159

additivity, 97
corrected, 93
saturation of, 93

genetic networks, 239, 269
Gibbs sampling, 177, 178, 304, 316
Gibbs-Metropolis hybrid sampler, 365
GLIB, 304, 475
gR, 484
gradient ascent, 120, 121
GRAPPA, 480
greedy optimization, 120, 121

Haemophilus influenzae, 87
Hastings ratio, see Markov chain Monte

Carlo
Heart Beat Intervals, 437
hepatitis-B virus, 45
Hidden Markov Model Toolbox for

Matlab, 486
hidden Markov models, 335–338, 400,

402, 423, 486
Bayesian HMMs, 176
coupled, 337
derivation of Baum-Welch recursions,

443
emission probabilities, 47–49
estimation of observation model size,

431
estimation of state space dimension,

431
factor graph representation, 424
factorial HMM, 180
for detecting recombination, 171, 173,

174, 183, 186

for modelling rate variation in
phylogenetics, 138

forward-backward algorithm, 50, 425
Gaussian observation model, 427, 447
graphical model representation, 423
illustration of, 47
initial state probability, 423, 426
introduction to, 44
KL divergences, 445
linear observation model, 448
negative entropy, 446
observation model, 423
Poisson observation model, 448
state space representation, 423
state transition probability, 423, 426
transition probabilities, 47–49
Viterbi algorithm, 48, 175

HIV, 84, 86, 150
HKY85 model, see nucleotide substitu-

tions
HMMs, see hidden Markov models
homologous nucleotides, 88
Hugin, 458, 480, 481
human immunodeficiency virus, see

HIV
hybridization, see DNA
Hydra, 477, 480
hyperparameters, 12, 174
hyperthermophiles, 140
hypothesis testing, 283, 285

null hypothesis, 282
hysteretic oscillator, 258

image analysis
median filter, 215
morphological opening, 215
top-hat filter, 215

IND, 485
independence

conditional, 20, 23
marginal, 21, 23

independent component anaylsis, 329
blind source separation, 329

inference, 3, 4
inflammation response, 289
intensive care, 301
interleukin, 289
Internet, 473
intervention versus observation, 39
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JavaBayes, 480
junction-tree algorithm, see Bayesian

networks

Kalman filter, 276
Kalman gain matrix, see Kalman filter
Kalman smoother, 275
kernel function, 309
Kimura model, see nucleotide substitu-

tions
Kullback-Leibler (KL) divergence, 43,

51, 164, 330
Dirichlet density, 446
Gamma density, 446
matrix variate Normal density, 447
multivariate Normal density, 447
Wishart density, 447

Laplace approximation, 42
latent space, 398, 400, 416
latent variable, 391, 392, 396
ligand, 258
likelihood, 5, 11, 402

marginal, 27
of a phylogenetic tree, 111

likelihood method in phylogenetics, 104
Bayesian inference, 130
comparison with parsimony, 118
DNAML, 122, 126
maximum likelihood, 120
peeling algorithm, 116, 174
quartet puzzling, 123, 124, 126

linear dynamical systems, see state-
space models

linlog-function, 222
localization assays, 262
loess normalization, 227
log-transformation, 219
logistic regression, 65, 301, 474
long branch attraction, see phylogenet-

ics, parsimony method
loop design, 226

M-step, see EM algorithm
magnetic resonance imaging, 329
maize actin genes, 185
MammoNet, 320
MAP estimate, see maximum a

posteriori estimate

Markov blanket, see DAG
Markov chain

aperiodic, 29
detailed balance, 30
ergodic, 29
homogeneous, 106, 110
illustration of, 29
irreducible, 29
non-homogeneous, 139
non-stationary, 139
stationary, 110
stationary distribution, 29

Markov chain Monte Carlo, 28, 300,
315, 391, 398, 400, 402, 403, 405,
407–411, 416

algorithms, 409, 410
applied to HMMs, 177
comparison with bootstrapping, 134
convergence, 33, 179, 411
convergence test, 36, 255
for detecting recombination, 163
full conditional distributions, 405,

407, 408
Gibbs sampling, 403, 405, 407, 408
Hastings ratio, 33, 35, 248
hybrid, 315
illustration of, 32
in phylogenetics, 131, 200
Metropolis algorithm, 33, 315
Metropolis-Hastings algorithm, 31,

33, 403, 408
proposal moves in tree space, 133
reversible jump MCMC, 54, 332
sweeps, model inference, 409
sweeps, model prediction, 410

Markov Chain sampling, 372
Markov neighbours, see DAG
Markov relations, see DAG, Markov

neighbours
Mathematica Neural Networks, 479
Matlab, 477
Matlab Neural Network Toolbox, 479
maximum a posteriori, 299, 420
maximum a posteriori estimate, 13
maximum chi-squared method, 152

illustration of, 152, 153
shortcoming of, 155

maximum likelihood, 65, 298, 419
maximum likelihood estimate, 5, 13, 43
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maximum parsimony, see phylogenetics,
parsimony method

MCMC, see Markov chain Monte Carlo
mean field approximation, 53, 421
median filter, see image analysis
metabolism, 358, 359
metric, 96

of a tree, 97
Metropolis algorithm, see Markov chain

Monte Carlo
Metropolis-Hastings algorithm, see

Markov chain Monte Carlo
microarrays, 211, 269

cDNA-array, 213
background, 216
channel, 213
differential expression, 228
dye swap, 226
eigenarray, 234
eigengene, 234
flagging, 224
gridding, 216
housekeeping genes, 225
landing lights, 216
MA-plot, 223
mismatch, 213
normalization, 222
oligonucleotide arrays, 213
perfect match, 213
probe, 212
quantile normalization, 228
rank invariant set of genes, 228
SAM, 233
simulated gene expression data, 258,

259
spiking, 225
spot, 216
target, 212
technical replicates, 224, 282
transformation, 218

MIM, 480, 484
minimum description length, 42
missing data, 298

Bayesian networks, 322
cold-deck imputation, 310
data augmentation, 310
distinction of parameters, 310
EM algorithm, 310
hot-deck imputation, 310

ignorability, 310
imputation, 310
missing at random, 310
multiple imputation, 310
neural networks, 310
tree-based models, 324

mixed model, 226
mixture models, 229
mixture of Gaussians model, 332
mixtures of variational distributions,

422
ML estimate, see maximum likelihood

estimate
model selection, 281, 305
molecular clock, 95, 96
molecular phylogenetics, see phyloge-

netics
morphological opening, see image

analysis
MSBNx, 480
multi-layer perceptron, 307
multinomial distribution, 243

näıve Bayes, 316, 396–398, 400, 459
neighbour joining, see clustering
Netica, 480, 481
Netlab, 477, 479
neural networks, 59–78, 307, 477

1-in-c coding, 69
activation functions, 61
back-propagation algorithm, 63
balanced data set, 78
bias–variance trade-off, 74
committee of networks, 77, 313
conjugate-gradients algorithm, 73
early stopping, 75
error function, 69, 307

cross-entropy, 69
error surface, 70
evidence framework, 75, 312
generalization, 74
global minimum, 70
gradient descent, 70, 73
hyperparameters, 312
learning rate, 70
local minima, 75
McCulloch-Pitts neuron, 59
missing data, see missing data, neural

networks
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moderated output, 311
momentum, 73
multi-layer perceptron, 62–63, 67–78

back-propagation algorithm, 70–72
forward propagation, 72
hidden nodes, 62, 77
training, 69–73

number of exemplars, 78
over-fitting, 74
preprocessing, 77
probabilistic neural networks, 309
quasi-Newton algorithm, 68, 73
radial basis functions, 309
random restarts, 77
regularization, 74, 307
single-layer perceptron, 61
softmax, 69
weight decay, 68, 75

NeuralWorks, 479
NeuroSolutions, 479
novelty detection, 78, 338
nucleotide substitutions, 92

general time-reversible model, 199
HKY85 model, 110, 112, 173, 199
Kimura model, 107, 108, 112, 173,

199
mathematical model, 104–106, 139

for RNA, 197
rate heterogeneity, 136
rate matrix, 107, 110
reversibility condition, 112, 199
Tamura model, 140
transitions, 105, 198
transversions, 105, 198

nucleotides, 87
NuRho, 479
Neisseria, 147, 184

Occam factor, 27
open-source software, 474

GNU General Public License, 474
Linux, 474
OpenBayes, 483

order relation, see DAG
outgroup, see phylogenetic tree
over-fitting, 14, 28

p-value, 155, 231
adjusted, 232

PAPNET, 308
parsimony, see phylogenetics
partially directed acyclic graph, see

PDAG
Pathfinder, 322
pattern recognition, 60
pattern-based learning, 72
PCA, see principal component analysis
PDAG, 35, 38, 39
PDM, 162, 168

global versus local, 165
illustration of, 163, 164

PDP++, 479
Pearl’s message-passing algorithm, see

Bayesian networks
peeling algorithm, see likelihood

method in phylogenetics
penalty term, 14, 42, 53
penicillin resistance, 147
periodic respiration, 436
permutation test, 231
pharmacodynamics, 351, 352, 359, 360
pharmacokinetics, 351, 352, 360–362,

364
PHASE program, 200
PHYLIP, 122, 202
phylogenetic networks, 148, 151
phylogenetic tree

branch lengths, 85
consensus tree, 129, 135, 202
equivalence classes, 113, 114
interpreted as a Bayesian network,

111
mammalian, inferred from RNA

genes, 203
of HIV and SIV strains, 87
outgroup, 84, 201, 202
rooted, 84, 85, 140
topology, 84
unrooted, 84, 86, 140

phylogenetics, 83
distance method, 90

failure of, 98
information loss, 100

likelihood method, see likelihood
method in phylogenetics

parsimony method, 100, 171
failure of, 103
illustration of, 101, 102
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long branch attraction, 104
phylogeny, see phylogenetics
physiologically-based models, 356
PK/PD models, 352, 365, 367, 368
PKBugs, 367, 477
PLATO, 156, 168

illustration of, 157
polymorphic sites, 152, 156
positive false discovery rate (pFDR),

233
posterior probability, 11
prediction, 391, 398

information for, 398
preprocessing, 77, 391–395

AR model, 393–395
Bayesian, 392–395
lattice filter, 393–395
stochastic model, 392, 393

principal component analysis, 234
principal component analysis (PCA),

77, 379
prior probability, 11

conjugate prior, 11
probabilistic divergence method, see

PDM
probabilistic graphical models, see

Bayesian networks
Probabilistic Networks Library, 483
probability

conditional, 3
joint, 3
marginal, 3
posterior, see posterior probability
prior, see prior probability

probability model, 66
prokaryotes, 192
Promedas, 320
promoter, 257, 258
protein, 212

degradation, 257, 259, 269
dimerization, 257–259
FYN binding, 289
sequences, 138
synthesis, 212

purines, 87, 105, 198
pyrimidines, 87, 105, 198

quantiles, 282, 284

quartet puzzling, see likelihood method
in phylogenetics

Quick Medical Reference model, 319

R, 476
randomization test, 154
rate heterogeneity, see nucleotide

substitutions
rate matrix, see nucleotide substitutions
Rauch-Tung-Streibel smoother, 276
receiver operator characteristics curve,

see ROC curve
recombination, 147, 148

in Neisseria, 184
in HIV, 150
influence on phylogenetic inference,

149
simulation of, 168, 181
synthetic benchmark study, 167, 169,

170
RECPARS, 170, 182
reference design, 226
regression, 64

function, 64
linear, 64
logistic, see logistic regression
polynomial, 64

regularization term, see penalty term
REML, 226
reverse engineering, 239, 270, 283
reversibility condition, see nucleotide

substitutions
reversible jump MCMC, see Markov

chain Monte Carlo
ribonucleic acid, see RNA
RNA, 191

compensatory substitutions, 196
covariation, 195
mismatch (MM) base-pairs, 193, 198
mRNA, 212, 257, 258
mRNA degradation, 257, 259, 269
rRNA, 140, 141, 191
secondary structure, 193, 194

helices, 193, 194, 204
loops, 194, 204

secondary structure prediction, 193
comparative methods, 193
minimum free energy methods, 193

sequence alignment, 192, 195
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stacking interactions, 194
tertiary structure, 193
tRNA, 191
Watson-Crick base-pairs, 193

ROC curve, 256, 261, 285–288, 414, 416
RR Intervals, 437
RTS smoother, see Rauch-Tung-Streibel

smoother

S-Plus, 475
Streptococcus, 147
See5, 484
segmentation, 331

image, 333
sensitivity, 254, 285
sensor fusion, 391, 393, 396, 400, 413,

416
predictions, 413
spatio-temporal, 400, 413, 416

separator relations, see DAG, see DAG
simian immunodeficiency virus, see SIV
singular value decomposition (SVD),

234
SIV, 86
sleep EEG, 435
SNNS, 479
sparse candidate algorithm, 248, 270
specificity, 254, 285
Spiegelhalter–Lauritzen–MacKay

approximation, 303
splicing, 212
split decomposition, 148
standard error of difference (SED), 230
state-space models, 272

controllability, 277
extended identifiability, 279
identifiability, 278
observability, 278
stability, 277

Statistica, 479
statistics

Bayesian, see Bayesian statistics
classical or frequentist, 5, 6, 127
comparison: frequentist versus

Bayesian, 10, 12
step-down method, 232
stochastic model, 360, 364, 366
structural EM algorithm, see EM

algorithm

structured variational approximation,
422

Stuttgart Neural Network Simulator,
478

T cell, see T lymphocytes
T lymphocytes, 289
t-test, 230
test set, 75
Tetrad, 480
ThinksPro, 479
Tiberius, 479
top-hat filter, see image analysis
TOPAL, 159, 168

dependence on the window size, 161
DSS statistic, 159
illustration of, 160

transcription, 212, 257–259
transcription factor, 257, 258
transition-transversion ratio, 108
transitions, see nucleotide substitutions
translation, 212, 257–259
transversions, see nucleotide substitu-

tions
Treat, 452–470
tree metric, see metric
tree-based models

CART algorithm, 323, 327
class-probability trees, 323
classification trees, 323
cost-complexity pruning, 324
option trees, 326
surrogate split, 325
tree smoothing, 326

tree-type models
Bayesian tree induction, see Bayesian

statistics, tree induction
missing data, see missing data,

tree-type models
triangle inequality, 97

unweighted pair group method using
arithmetic averages, see clustering,
UPGMA

UPGMA, see clustering

v-structure, see DAG
validation set, 75
variable subset selection, 77, 375
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variance-stabilizing transformation, 219
variational methods, 291, 320, 330, 332

model-free mean-field update
equations, 442

cost function, 425
framework, 420

Venn diagram, 3
VIBES, 484
Viterbi algorithm, see hidden Markov

models

Watson-Crick base-pairs, see RNA
WebWeaver, 480
Welch-statistic, 230
WinBUGS, 363, 367, 368, 476

X-ray crystallography, 193
XOR regulation, 244

yeast cell cycle, 247
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