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Preface to the Second Edition

Some kinds of problems may yield to sophisticated statistical tech-
nique; others will not. The goal of empirical research is—or should
be—to increase our understanding of the phenomena, rather than dis-
playing our mastery of technique.

—Freedman [91]

The first edition of APER was published five years ago. The subject of the
book has grown in importance and audience during this time, so this second
edition is certainly timely. Moreover, the changes in ape and several related
packages have been so important in the last few years, that, for some time, I
have felt this new edition was required.

Though I acknowledge that the first edition of APER was quite appreciated
by researchers, lecturers and students, it was not out of criticism. With this
second edition, I have tried to improve on all possible points and issues as much
as I was able to do. At the same time, I had to think over on the progress
of the approach I presented five years ago. A difficult task was to review
the development of the many new packages contributing to phylogenetics and
evolutionary biology. It was my choice to focus on some of these packages with
the aim to provide to the reader a consistent set of “techniques” to address
a wide range of issues in phylogenetics and macroevolution. Even restricting
our interest to these two fields, a number of packages are not considered in
this book: this is a choice I fully assume. Besides, I decided to not tackle two
related fields: population genetics and paleobiology. Both have seen critical
developments in the form of several packages. A useful treatment of these
would require two new books, so I have limited myself here to only mention
some data structures in Chapter 3.

The general structure of this second edition is very similar to its prede-
cessor. Chapters 1–4 focus on the “technique” of R and several specialized
packages for phylogenetics and evolutionary biology with the aim to give
to the readers the tools to manipulate, summarize, and display their data.
Chapters 5 on estimation of phylogeny, and 6 on analysis of macroevolution,
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viii Preface to the Second Edition

are more concerned with “understanding the phenomena” of evolution. Com-
pared to the first edition, these two chapters have been much expanded and
emphasized. Though I have tried to go deeper in the inferential and biological
processes, a complete treatment of these questions would require several vol-
umes, and is therefore limited here to the essential points. The new Chapter
7 covers the simulation of evolutionary data, a topic which, I believe, deserves
to be treated with more rigor than done until now. Chapter 8 concludes the
book on the development of phylogenetic computational methods in R. This
chapter has been expanded using essentially my experience over the last few
years. Because the volume of the book has been nearly doubled, the number
of the case studies has been reduced.

At the time of completing this second edition, a number of packages have
been pre-released or are under development. These will, in the years to come,
increase dramatically the quantity of software available to evolutionary biolo-
gists to analyze their data. Even the packages described in details in this book
continue their development. For instance, ape will soon include most published
methods to estimate phylogenies from incomplete distance matrices thanks to
the effort of Andrei-Alin Popescu. Some other packages, such as ade4, diver-
sitree, phangorn, or seqinr, have provided a range of tools and methods to many
evolutionists for some time, and are under continuous development.

An interesting phenomenon emerged recently in the scientific literature:
many authors provide R code as supplementary information to their articles.
Though we can be worried about the proliferation of sources of R programs,
this is very good news for our speciality as it marks a significant progress
towards a wider acceptance of the concept of repeatable research in data
analysis. This, and the above, testify that using R as a computational tool for
phylogenetics and evolutionary biology is meant to last.

Several colleagues kindly read some parts of the manuscript of this second
edition: Christophe Douady, Susan Holmes, Nicolas Hubert, Anthony Ives,
and Errol Rowe. I am grateful to Thibaut Jombart for reading several chap-
ters and for the stimulating discussions, and to Klaus Schliep for our many
discussions. Many thanks also to my colleagues in Nescent for organizing the
Hackathon in December 2007. Thank you to Régis Hocdé for helping me to
obtain the web site ape.mpl.ird.fr, and the repository for the source of ape;
thank you also to the IRD staff for maintaining them over these years. Writ-
ing a book is a tremendeous experience. Having the chance to correct and
amend it is another unique experience. I thank warmly John Kimmel and
Marc Strauss for giving me this opportunity. I am sincerely thankful to a long
list of users, colleagues, and friends for their interest and enthusiasm.

I am grateful to Laure and Sinta for their constant support and patience.

Jakarta Emmanuel Paradis
August 2011



Preface to the First Edition

As a result, the inference of phylogenies often seems divorced from
any connection to other methods of analysis of scientific data.

—Felsenstein [78]

Once calculation became easy, the statistician’s energies could be de-
voted to understanding his or her dataset.

—Venables & Ripley [307]

The study of the evolution of life on Earth stands as one of the most
complex fields in science. It involves observations from very different sources,
and has implications far beyond the domain of basic science. It is concerned
with processes occurring on very long time spans, and we now know that it
is also important for our daily lives as shown by the rapid evolution of many
pathogens.

As a field ecologist, for a long time I was remotely interested in phyloge-
netics and other approaches to evolution. Most of the work I accomplished
during my doctoral studies involved field studies of small mammals and esti-
mation of demographic parameters. Things changed in 1996 when my interest
was attracted by the question of the effect of demographic parameters on
bird diversification. This was a new issue for me, so I searched for relevant
data analysis methods, but I failed to find exactly what I needed. I started to
conduct my own research on this problem to propose some, at least partial,
solutions. This work made me realize that this kind of research critically de-
pends on the available software, and it was clear to me that what was offered
to phylogeneticists at this time was inappropriate.

I first read about R in 1998 while I was working in England: I first tried
it on my computer in early 1999 after I got a position in France. I quickly
thought that R seemed to be the computing system that is needed for devel-
oping phylogenetic methods: versatile, flexible, powerful, with great graphical
possibilities, and free.

ix



x Preface to the First Edition

When I first presented the idea to develop programs written in R for phy-
logenetic analyses in 2001, the reactions from my colleagues were mixed with
enthusiasm and scepticism. The perspective of creating a single environment
for phylogenetic analysis was clearly exciting, but some concerns were ex-
pressed about the computing performance of R which, it was argued, could
not match those of traditional phylogenetic programs. Another criticism was
that biologists would be discouraged from using a program with a command-
line interface. The first version of the R package ape was eventually released
in August 2002. The reactions from some colleagues showed me that related
projects were undertaken elsewhere.

The progress accomplished has been much more than I expected, and
the perspectives are far reaching. Writing a book on phylogenetics with R is
an opportunity to bring together pieces of information from various sources,
programs, and packages, as well as discussing a few ideas.

I realize that the scope of the book is large, and the treatment may seem
superficial in some places, but it was important to treat the present topics
in a concise manner. It was not possible to explore all the potentialities now
offered by R and its packages written for phylogenetic analysis. Similarly, I
tried to explain the underlying concepts of the methods, sometimes illustrated
with R codes, but I meant to keep it short as well.

I must first thank the “R community” of developers and users from whom
I learned much about R through numerous exchanges on the Internet: this def-
initely helped me to find my way and envision the development of ape. Julien
Claude has shared the venture of developing programs in R and contribut-
ing to ape since he was a doctoral student. A great thank you to those who
contributed some codes to ape: Korbinian Strimmer, Gangolf Jobb, Rainer
Opgen-Rhein, Julien Dutheil, Yvonnick Noël, and Ben Bolker. I must empha-
size that all these authors should have full credit for their contributions. I am
grateful to Olivier François and Michael Blum for showing me the possibilities
of their package apTreeshape.

Several colleagues kindly read some parts of the manuscript: Lounès
Chikki, Julien Claude, Jean Lobry, Jean-François Renno, Christophe Thébaud,
Fabienne Thomarat, and several colleagues who chose to remain anonymous.
Thanks to all of them! Special thanks to Susan Holmes for encouragement and
some critical comments. Thank you to Elizabeth Purdom and Julien Dutheil
for discussions about ape and R programming. I am sincerely thankful to John
Kimmel at Springer for the opportunity to write this book, and for managing
all practical aspects of this project. Finally, many thanks to Diane Sahadeo
for handling my manuscript to make it an actual book.

Jakarta Emmanuel Paradis
April 2006
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Introduction

Phylogenetics is the science of the evolutionary relationships among species.
Recently, the term has come to include broader issues such as estimating rates
of evolution, dating divergence among species, reconstructing ancestral char-
acters, or quantifying adaptation, all these using phylogenies as frameworks.

Computers seem to have been used by phylogeneticists as soon they were
available in research departments [62, 63]. Since then, progress has been obvi-
ous in two parallel directions: biological databases, particularly for molecular
sequences, have increased in quantity at an exponential rate and, at the same
time, computing power has grown at an expanding pace. These concurrent
escalations have resulted in the challenge of analyzing larger and larger data
sets using more and more complex methods.

The current complexity of phylogenetic analyses implies some strategic
choices. This chapter explains the advantages of R as a system for phylogenetic
analyses.

1.1 Strategic Considerations

How data are stored, handled, and analyzed with computers is a critical issue.
This is a strategic choice as this conditions what can subsequently be done
with more or less efficiency.

R is a language and environment for statistical and graphical analyses
[146]. It is flexible, powerful, and can be interfaced with several systems and
languages. R has many attractive features: we concentrate on four of them
that are critical for phylogenetic analyses.

Integration

Phylogenetics covers a wide area of related issues. Analyzing phylogenetic
data often implies doing different analyses such as tree estimation, dating di-
vergence times, and estimating speciation rates. The implementation of these

DOI 10.1007/978-1-4614-1743-9_1, © Springer Science+Business Media, LLC 2012
, Use R,E. Paradis, Analysis of Phylogenetics and Evolution with R 1
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methods in R enhances their integration under a single user interface. It should
be pointed out that although the development of phylogenetic methods in R
is relatively recent, a remarkable range of methods is already available.

Integration is not new among phylogenetic analysis programs and the most
widely used ones cover a wide range of methods. However, this feature com-
bined with those detailed below, has a particular importance not observed in
these programs. Besides, integrating phylogenetic methods with standard and
leading-edge statistical methods is unique to R.

A less obvious aspect of integration is the possibility of using different
languages and systems from the same user interface. This is called intersys-
tems interfaces and has been particularly developed in R [38, 104]. The most
commonly used interfaces in R are with programs written in C, C++, or For-
tran, but there exist interfaces with Perl, Python, and Java.1 The gain from
these interfaces is enormous: developers can use the languages or systems they
prefer to implement their new methods, and users do not have to learn a new
interface to access the last methodological developments.

Interactivity

Interactivity is critical in the analysis of large data sets with a great variety
of methods. Exploratory analyses are crucial for assessing data heterogeneity.
Selection of an appropriate model for estimation often needs to interactively
fit several models. Examination of model output is also often very useful (e.g.,
plot of regression diagnostics).

In phylogenetic analyses, the usual computer program strategy follows a
“black box” model where some data, stored in files, are read by a specific
program, some computations are made, and the results are written into a file
on the disk. What happens in the program cannot be accessed by the user.
Several program executions can be combined using a scripting language, but
such programming tasks are generally limited.

R does not follow this model. In R, the data are read from files and stored
in active memory: they can be manipulated, plotted, analyzed, or written into
files. The results of analyses are treated exactly in the same way as data. In
R’s jargon, the data in memory are called objects. Considering data as objects
makes good sense in phylogenetics because this allows us to manipulate differ-
ent kinds of data (trees, phenotypical data, geographical data) simultaneously
and interactively.

Programmability

Data analyses are almost always made of a series of more or less simple tasks.
These analyses need to be repeated for many reasons. The most usual situ-
ation is that new data have been collected and previous analyses need to be
1 http://www.omegahat.org/.

http://www.omegahat.org/
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updated. It is thus very useful to automate such analyses, particularly if they
are composed of a long series of smaller analyses.

R is a flexible and powerful language that can be used for simple tasks
as well as combining a series of analyses. The programmability of R can be
used at a more complex level to develop new methods (Chapter 8). R is an
interpreted language meaning that there is no need to develop a full program
to perform an analysis. An analysis may be done with a single line.

Programmability is important in the context of scientific repeatability.
Writing programs that perform data analyses (often called scripts) ensures
better readability, and improves repeatability by others [104]. In this context,
there exist some sophisticated solutions, such as Sweave (in the package utils)
which mixes data analysis commands with R and text processing with LATEX
[181] (see also ?Sweave in R). The package odfWeave gives this functionality
using ODF documents as used in LibreOffice or OpenOffice instead of LATEX.
Even without employing these sophisticated tools, writing R scripts is a must
and should be taught in all courses on R. Several text editors allow to edit R
scripts with enhanced efficiency (see Section 1.3).

Evolvability

Phylogenetic methods have considerably evolved for several decades, and this
will go on in the future. An efficient data analysis system needs to evolve with
respect to the new methodological developments. Programs written in R are
easy to maintain because programming in this language is relatively simple.
Bugs are much easier to be found and fixed than in a compiled language
inasmuch as there is no need to manage memory allocation (one of the main
time-consuming tasks of progammers).

R’s syntax and function definitions ensure compatibility through time in
most cases. For instance, consider a function called foo which has a single
argument x. Thus the user will call this function with something such as:

foo(x = mydata)

If, for any reason, foo changes to include other options that have default
values, say y = TRUE and z = FALSE, then the above command will still work
with the new version of foo.

In addition, the internal structure and functionalities of R evolve with
respect to technological developments. Thus using R as a computing environ-
ment eases tracking novelties in this area.

R has other strengths as a computing environment. It is scalable: it can
run on a variety of computers with a range of hardware, and can be adapted
for the analysis of large data sets. On the lower bound, R can run on most
current laptops and personal computers, whereas on the upper bound R can
be compiled and run on 64-bit computers and thus use more than 4 Gb of
RAM. Furthermore, there are packages to run R on multiprocessor machines.
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R has very good computing performance: most of its operations are vec-
torized, meaning that as little time as possible is spent on the evaluation of
commands. The graphical environment of R is flexible and powerful giving
many possibilities for graphical analyses (Chapter 4).

R is an environment suitable both for basic users (e.g., biologists) and for
developers. This considerably enhances the transfer of new methodological
developments. R can run on most current operating systems: all commands
are fully compatible across systems (they are portable in computers jargon).

Finally, R is distributed under the terms of the GNU General Public Li-
cense, meaning that its distribution is free, it can be freely modified, and it
can be redistributed under certain conditions.2 There have been numerous
discussions, particularly on the Internet, about the advantages and inconve-
niences of free software [262]. The crucial points are not that R is free to
download and install (this is true for much industrial software), but that it
can be modified by the user, and its development is open to contributions.3

Although it is hard to assess, it is reasonable to assume that such an open
model of software development is more efficient—but not always more attrac-
tive to all users—than a proprietary model (see [104] for some views on this
issue). All computer programs presented in this book are freely distributed.

1.2 Notations

Commands typed in R are printed with a fixed-spaced font, usually on
separate lines. The same font is used for the names of objects in R (functions,
data, options). Names of packages are printed with a sans-serif font.

When necessary, a command is preceded by the symbol >, which is the
usual prompt in R, to distinguish what is typed by the user from what is
printed (or returned) by R. For instance:

> x <- 1
> x
[1] 1

In the R language, # specifies a comment: everything after this character is
ignored until the next line. This is sometimes used in the printed commands:

> mean(x) # get the mean of x

When an output from R is too long, it is cut after “....”. For instance, if we
look at the content of the function plot:
2 Type RShowDoc("COPYING") in R for details.
3 For obvious practical reasons, a limited number of persons, namely, the members

of the R Core Team, can modify the original sources.
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> plot
function (x, y, ...)
{

if (is.null(attr(x, "class")) && is.function(x)) {
....

Names of files are within ‘single quotes’. Their contents are indicated within
a frame:

x y
1 3.5
2 6.9

1.3 Preparing the Computer

R is a modular system: a base installation is composed of a few dozen pack-
ages for reading/writing data, classical data analyses methods, computational
statistical utilities, and tools for developing packages. Several thousand con-
tributed packages add many specialized methods. Note that in R’s terminol-
ogy, a package is a set of files that perform some specific tasks within R, and
that include the related documentation and any needed files. An R package
requires R to run.

R can be installed on a wide range of operating systems: sources and pre-
compiled versions, as well as the installation instructions, can be found at the
Comprehensive R Archive Network (CRAN):

http://cran.r-project.org/

1.3.1 Installations

Phylogenetic analyses in R use, of course, the default R packages, but also
a few specialized ones that need to be installed by the user. Table 1.1 lists
the packages that are discussed in this book. This selection of packages is
motivated by the issues addressed in this book.

The installation of R packages depend on the way R was installed, but usu-
ally the following command in R will work provided the computer is connected
to the Internet:

install.packages("ape")

and the same for all needed packages. Once the packages are installed, they
are available for use after being loaded in memory which is usually done by
the user:

http://cran.r-project.org/


6 1 Introduction

Table 1.1. R packages used for evolutionary analyses

Name Title Chapter(s) Ref.a

ade4 Analysis of environmental data 5,6 [41]
adegenet Spatial and multivariate population genetics 3 [150]
adephylo Phylogenetic comparative methods 6 [151]
ape Analyses of phylogenetics and evolution 3–8 [235]
apTreeshape Analyses of phylogenetic tree shape 6,7 [29]
BoSSA Sequence retrieval 3
distory Distances among trees 5
diversitree Tests of diversification 3,6,7
geiger Evolutionary diversification 6 [125]
LAGOPUS Bayesian molecular dating 5
laser Speciation and extinction estimation 6 [255]
pegas Population genetics 3 [231]
phangorn Phylogeny estimation 3,5,7 [278]
phyclust Phylogenetic clustering and coalescence 7
phylobase Phylogenetic structures and comparative data 3,6
phyloch Tools for phylogenetics and taxonomy 3,5
phyloclim Phylogenetic climatic niche modeling 6
picante Phylogenies and community ecology 6 [158]
seqinr Exploratory analyses of molecular sequences 3 [39]
spacodiR Phylogenetic community structure 6 [59]
TreeSim Tree simulations 7

acitation gives how to cite a package (e.g., citation("ape")).

> library(ape)
> library(ade4)
> library(seqinr)

Most R packages include a few data sets to illustrate how the functions
can be used. These data are loaded in memory with the function data. We
shall use them in our examples.

Additionally to these add-on packages, it is useful to have the computer
connected to the Internet because some functions connect to remote databases
(e.g., ape and seqinr can read DNA sequences from GenBank). The Internet
connection also helps to keep updated one’s system by checking the versions
installed on the computer with those available on CRAN; this is done by
typing regularly:

> update.packages()

Other programs may be required in some applications (e.g., Clustal,
PhyML): the sites where to download them is indicated in the relevant sec-
tions.

Additionally to these required programs, a few others are useful when using
R. Emacs is a flexible text editor that runs under most operating systems. It
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can be used to edit R programs. Installing the ESS (Emacs Speaks Statistics)
package allows syntax highlighting, and other facilities such as running R
within Emacs. Emacs and ESS can be downloaded at, respectively

http://www.gnu.org/software/emacs/emacs.html
http://ess.r-project.org/

Under Windows, a user-friendly alternative to Emacs is Tinn-R:4 this text
editor allows syntax highlighting as well as sending selected lines of commands
directly to R.

GhostScript and GSview are two programs to view and convert files in
PostScript and PDF formats: they can be used to view the figures made with
R. They can be downloaded at

http://www.cs.wisc.edu/˜ghost/

Finally, a Web browser is useful to view the R help pages in HTML format.

1.3.2 Configurations

Once all packages and software are installed, the computer is ready. There is
no special need for the location of data files: they are accessed in the usual way
by R. When R is started, a working directory is set. Under UNIX-like systems,
this is usually the directory where R has been launched. Under Windows, this
is the directory where the executable is located, or if R is started from a
short-cut, the directory specified in the “Start-in” field of this short-cut.5 On
all systems, the working directory is displayed in R with the function getwd()
(get working directory); it can be modified with setwd:

> setwd("/home/paradis/phylo/data") # Linux
> setwd("D:/data/phylo/data") # Windows

Note the use of the forward slashes (/), even under Windows, because the
backslashes (\) have a specific meaning in character strings (Appendix A).

If a file is not in the working directory, it can be accessed by adding the full
path in the file argument, for instance, when reading a tree (see Section 3.2):

> tr <- read.tree("/home/paradis/phylo/data/treeb1.txt")

The same comment applies when writing into a file: the file is written in the
current working directory unless a path is given in the file argument exactly
in the same way as above. If the path does start from the root, it is resolved
from the working directory. The three following examples are similar to the
above one but from different working directories:
4 http://www.sciviews.org/ rgui/projects/Editors.html
5 This can be modified by the user by editing the properties of the short-cut,

usually by right-clicking on its icon. A standard installation under Windows puts
a short-cut of R on the Desktop.

http://www.gnu.org/software/emacs/emacs.html
http://ess.r-project.org/
http://www.cs.wisc.edu/~ghost/
http://www.sciviews.org/
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> setwd("/home/paradis/phylo")
> tr <- read.tree("data/treeb1.txt")
> setwd("/home/paradis/DNA")
> tr <- read.tree("../phylo/data/treeb1.txt")
> setwd("/home/paradis/DNA/data")
> tr <- read.tree("../../phylo/data/treeb1.txt")

The last two examples show how to go back one or two levels in the directory
hierarchy. This is useful when working on several projects and using a standard
set of directory names.

Emacs and ESS need slightly more configuration if the user wants to run
R within Emacs. This is essentially system dependent; the critical step is to
tell Emacs where to find R’s executable. ESS is distributed with several doc-
umentation files detailing the installation and configuration for the different
operating systems.

1.4 Other Readings

Two books come as natural companions of the present one. Felsenstein’s In-
ferring Phylogenies [79] provides a thorough background on phylogenetics,
including historical aspects and the rationale behind many methods. Freed-
man’s Statistical Models: Theory and Practice [91] is probably one of the best
presentation of the principles of statistical inference. His criticism on the cur-
rent practice of some statistical techniques, though particularly focused on
social and medical sciences, is very relevant for evolutionary biology.

I assume the reader has basic knowledge on statistics, and that the fol-
lowing concepts are mastered: distribution, variance, estimation, bias, least
squares, and maximum likelihood. Wikipedia may be a good place to learn or
update knowledge on these concepts out of context.
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First Steps in R for Phylogeneticists

It is clear that some experience with R greatly helps in handling the materials
presented in this book. In the last few years, the practice and teaching of
R has increased dramatically. So it is likely that most readers will already
be familiar with R. The goal of this chapter is more to remind the most
fundamental notions of R, rather than to give a formal introduction for new
users. It is focused on the topics required for the present book, and does not
cover all introductory concepts and notions about R.

A generally deterring fact for new users is that it is almost impossible to
figure out what to do if the user has no notion of languages, commands, or R
itself. A learning step must be taken and this obviously has a cost. Progressing
in the use of R involves successive learning steps. Of course, there are benefits
to taking these steps.

R has spread through the field of computational statistics, and there is now
a wide range of packages for many numerical, analytical, and graphical meth-
ods. The fields of application of R include analysis of DNA microarray data,
genetics (quantitative trait loci, population analyses, etc.), morphometrics,
ecological analyses, drawing maps including the use of geographic informa-
tion systems (GIS) data or GoogleMaps, and interacting with a variety of
other programs such as SQL and other forms of databases. Thus learning R
for a specific task is very likely to be rewarding very rapidly.

If you do not know R, do not have knowledge of computer languages, and
do not want to read introductory documents on R1 (or cannot), then you
should read, certainly carefully, this chapter. If you already have an idea of
computer programming but not R, reading this chapter should be easy and
will point to the particularities of R.
1 See http://cran.r-project.org/manuals.html and http://cran.r-project.org/other-

docs.html.
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2.1 The Command Line Interface

The user can interact with R in several ways. The most interactive way is
to use the command line interface (CLI). R can also be run in batch mode
(i.e., noninteractive) from a system shell. There are several graphical user
interfaces (GUIs), but they are restricted to traditional statistical methods
(see the Rcmdr package), and so do not cover the wide range of methods
available in R. Finally, there exist several Web servers to run R through the
Internet. In this book, we concentrate on the CLI because it is interactive,
versatile, and portable (i.e., the commands will run on all operating systems).

All actions are done on data stored in the active memory of the computer.
These data are stored as objects. To characterize some data, and thus ana-
lyze them relevantly, it is often necessary to have additional information. For
instance, consider a numeric variable taking the values 0 or 1: is it a count
(i.e., a quantitative variable) or a code for a qualitative variable? In R the
complementary information is provided by the attributes of the objects. We
show some examples in the next section.

Commands in R are made of functions and / or operators (+, -, *, etc).
A command returns an object that is either displayed on the screen (and not
stored in memory), or stored in memory using the assign operator <-. The
latter requires giving a name to the object. An object may be displayed by
typing its name as a command:

> 2 + 7
[1] 9
> x <- 2 + 7
> x
[1] 9

R has a wide range of functions and operators to create regular and random
sequences. There are also several functions to read data from files on the disk:
the most useful for us are illustrated in Section 3.8.

The user does not see her data as in a spreadsheet editor (though this is
possible) because many objects with different structure can be stored and ma-
nipulated at the same time, and this cannot be represented as a spreadsheet.
There are, of course, several functions to manage the objects in memory. ls
displays a simple list of the objects currently in memory.

> ls()
character(0)
> n <- 5
> ls()
[1] "n"
> x <- "acgt"
> ls()
[1] "n" "x"
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As we have seen above, typing the name of an object as a command dis-
plays its content. In order to display some attributes of the object, one can
use the function str (structure):

> str(n)
num 5
> str(x)
chr "acgt"

This shows that n is a numeric object, and x is a character one. Both ls and
str can be combined by using the function ls.str:

> ls.str()
n : num 5
x : chr "acgt"

To delete an object in memory, the function rm must be used:

> ls()
[1] "n" "x"
> rm(n)
> ls()
[1] "x"

There are one function and one operator that are good to learn very early
because they are used very often in R: c concatenates several elements to
produce a single one, and : returns a regular series where two successive
elements differ by one. Here are some examples:

> x <- c(2, 6.6, 9.6)
> x
[1] 2.0 6.6 9.6
> y <- 2.2:6
> y
[1] 2.2 3.2 4.2 5.2
> c(x, y)
[1] 2.0 6.6 9.6 2.2 3.2 4.2 5.2
> 1:10
[1] 1 2 3 4 5 6 7 8 9 10
> 5:-5
[1] 5 4 3 2 1 0 -1 -2 -3 -4 -5

It happens from time to time that one forgets to assign the result of a
command to an object. This may be worrying if the command took a long
time to run (e.g., downloading a large number of molecular sequences through
the Internet) and its results are only printed on the console. R actually stores
the last evaluation in a hidden object called .Last.value and this may be
copied into another object, for instance after typing the last command above:
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> x <- .Last.value
> x
[1] 5 4 3 2 1 0 -1 -2 -3 -4 -5

2.2 The Help System

Every function in R is documented through a system of help pages available
in different formats:

• Simple text that can be displayed from the CLI;
• HTML that can be browsed with a Web browser (with hyperlinks between

pages where available);
• PDF that constitutes the manual of the package.

The contents of these different documents are the same.
Through the CLI a help page may be displayed with the function help or

the operator ? (the latter does not work with special characters such as the
operators unless they are quoted):

help("ls")
?ls
?"+"

By default, help only searches in the packages already loaded in memory. The
option try.all.packages = TRUE allows us to search in all packages installed
on the computer.

If one does not know the name of the function that is needed, a search
with keywords is possible with the function help.search. This looks for a
specified topic, given as a character string, in the help pages of all installed
packages. For instance:

help.search("tree")

will display a list of the functions where help pages mention “tree”. If some
packages have been recently installed, it may be necessary to refresh the
database used by help.search using the option rebuild = TRUE.

Another way to look for a function is to browse the help pages in HTML
format. This can be launched from R with the command:

help.start()

This loads in the local Web browser a page with links to all the documentation
installed on the computer, including general documents on R, an FAQ, links to
Internet resources, and the list of the installed packages. This list eventually
leads to the help page of each function.

The help page of a function or operator is formatted in a standard way
with sections, among others, ‘Usage’ giving all possible arguments and their
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eventual default values, ‘See also’ that lists related help pages (as hyperlinks
in HTML and PDF formats), and ‘Examples’ that illustrates some uses of
the documented item(s). Finally, data sets delivered with a package are also
documented: for instance, see ?sunspots for a standard data set in R.

A lot of packages have now vignettes, PDF documents with additional in-
formation and written in a very free by package authors. The list of vignettes
installed on a computer is printed with vignette(), and a specific one is
viewed by giving its name within double quotes (e.g., vignette("adephylo")).

Electronic mailing lists have always been critical in all aspects of the de-
velopment of R [88]. This phenomenon has amplified in recent years with the
emergence of special interest groups hosted on the CRAN, including one in ge-
netics (r-sig-genetics) and one in phylogenetics (r-sig-phylo). These lists play
an important role in structuring the community of users in relation to many
aspects of data analysis, including theoretical ones.

2.3 The Data Structures

We show here how data are stored in R, and how to manipulate them. Any
serious R user must know the contents of this section by heart.

2.3.1 Vector

Vectors are the basic data structures in R. A vector is a series of elements
that are all of the same type. A vector has two attributes: the mode, which
characterizes the type of data, and the length, which is the number of elements.
Vectors can be of five modes: numeric, logical (TRUE or FALSE), character,
raw, and complex. Usually, only the modes numeric and character are used
to store data. Logical vectors are useful to manipulate data. The modes raw
and complex are seldom used and are not discussed here.

When a vector is created or modified, there is no need to specify its mode
and length: this is dealt with by R. It is possible to check these attributes
with the functions of the same names:

> x <- 1:5
> mode(x)
[1] "numeric"
> length(x)
[1] 5

Logical vectors are created by typing “FALSE” or “TRUE”:

> y <- c(FALSE, TRUE)
> y
[1] FALSE TRUE
> mode(y)
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[1] "logical"
> length(y)
[1] 2

In most cases, a logical vector results from a logical operation, such as the
comparison of two values or two objects:

> 1 > 0
[1] TRUE
> x >= 3
[1] FALSE FALSE TRUE TRUE TRUE

A vector of mode character is a series of character strings (and not of single
characters):

> z <- c("order", "family", "genus", "species")
> mode(z)
[1] "character"
> length(z)
[1] 4
> z
[1] "order" "family" "genus" "species"

We have just seen how to create vectors by typing them on the CLI, but
it is clear that in the vast majority of cases they will be created by reading
data from files (e.g., with read.table or read.csv).

R has a powerful and flexible mechanism to manipulate vectors (and other
objects as well as we will see below): the indexing system. There are three
kinds of indexing: numeric, logical, and with names.

The numeric indexing works by giving the indices of the elements that
must be selected. Of course, this can be given as a numeric vector:

> z[1:2]
[1] "order" "family"
> i <- c(1, 3)
> z[i]
[1] "order" "genus"

This can be used to repeat a given element:

> z[c(1, 1, 1)]
[1] "order" "order" "order"
> z[c(1, 1, 1, 4)]
[1] "order" "order" "order" "species"

If the indices are negative, then the corresponding values are removed:
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> z[-1]
[1] "family" "genus" "species"
> j <- -c(1, 4)
> z[j]
[1] "family" "genus"

Positive and negative indices cannot be mixed. If a positive index is out of
range, then a missing value (NA, for not available) is returned, but if the index
is negative, an error occurs:

> z[5]
[1] NA
> z[-5]
Error: subscript out of bounds

The indices may be used to extract some data, but also to change them:

> x[c(1, 4)] <- 10
> x
[1] 10 2 3 10 5

The logical indexing works differently than the numeric one. Logical values
are given as indices: the elements with an index TRUE are selected, and those
with FALSE are removed. If the number of logical indices is shorter than the
vector, then the indices are repeated as many times as necessary (this is
a major difference with numeric indexing); for instance, the two commands
below are strictly equivalent:

> z[c(TRUE, FALSE)]
[1] "order" "genus"
> z[c(TRUE, FALSE, TRUE, FALSE)]
[1] "order" "genus"

As with numeric indexing, the logical indices can be given as a logical
vector. The logical indexing is a powerful and simple way to select some data
from a vector: for instance, if we want to select the values greater than or
equal to five in x:

> x >= 5
[1] TRUE FALSE FALSE TRUE TRUE
> x[x >= 5]
[1] 10 10 5

A useful function in this context is which that takes a logical vector as argu-
ment and returns the numeric indices of the values that are TRUE:

> which(x >= 5)
[1] 1 4 5
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The indexing system with names brings us to introduce a new concept: a
vector may have an attribute called names that is a vector of mode character
of the same length, and serves as labels. It is created or extracted with the
function names. An example could be:

> x <- 4:1
> names(x) <- z
> x
order family genus species

4 3 2 1
> names(x)
[1] "order" "family" "genus" "species"

These names can then be used to select some elements of a vector:

> x[c("order", "genus")]
order genus

4 2

In some situations it is useful to delete the names of a vector; this is done
by giving them the value NULL:

> names(x) <- NULL
> x
[1] 4 3 2 1

2.3.2 Factor

A factor is a data structure derived from a vector, and is the basic way to
store qualitative variables in R. It is of mode numeric and has an attribute
"levels" which is a vector of mode character and specifies the possible values
the factor can take. If a factor is created with the function factor, then the
levels are defined with all values present in the data:

> f <- c("Male", "Male", "Male")
> f
[1] "Male" "Male" "Male"
> f <- factor(f)
> f
[1] Male Male Male
Levels: Male

To specify that other levels exist although they have not been observed in the
present data, the option levels can be used:

> ff <- factor(f, levels = c("Male", "Female"))
> ff
[1] Male Male Male
Levels: Male Female
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This is a crucial point when analyzing this kind of data, for instance, if we
compute the frequencies in each category with the function table:

> table(f)
f
Male

3
> table(ff)
ff
Male Female

3 0

Factors can be indexed and have names exactly in the same way as vectors.
When data are read from a file on the disk with the function read.table,
the default is to treat all character strings as factors (see Chapter 3.8 for
examples). This can be avoided by using the option as.is = TRUE.

2.3.3 Matrix

A matrix can be seen as a vector arranged in a tabular way. It is actually a
vector with an additional attribute called dim (dimensions) which is itself a
numeric vector with length 2, and defines the numbers of rows and columns
of the matrix.

There are two basic ways to create a matrix: either by using the func-
tion matrix with the appropriate options nrow and ncol, or by setting the
attribute dim of a vector:

> matrix(1:9, 3, 3)
[,1] [,2] [,3]

[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
> x <- 1:9
> dim(x) <- c(3, 3)
> x

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9

The numeric and logical indexing systems work in exactly the same way
as for vectors. Because a matrix has two dimensions, it can be indexed with
two integers separated by a comma:

> x[3, 2]
[1] 6



18 2 First Steps in R for Phylogeneticists

If one wants to extract only a row or a column, then the appropriate index
must be omitted (without forgetting the comma):

> x[3, ] # extract the 3rd row
[1] 3 6 9
> x[, 2] # extract the 2nd column
[1] 4 5 6

In contrast to vectors, a subscript out of range results in an error.
R users often hit the problem that extracting a row or a column from a

matrix returns a vector and not a single row, or single column, matrix. This
is because the default behavior of the operator [ is to return an object of the
lowest possible dimension. This can be controled with the option drop which
is TRUE by default:

> x[3, 2, drop = FALSE]
[,1]

[1,] 6
> x[3, , drop = FALSE]

[,1] [,2] [,3]
[1,] 3 6 9
> x[, 2, drop = FALSE]

[,1]
[1,] 4
[2,] 5
[3,] 6

Matrices do not have names in the same way as vectors, but have row-
names, colnames, or both:

> rownames(x) <- c("A", "B", "C")
> colnames(x) <- c("v1", "v2", "v3")
> x
v1 v2 v3

A 1 4 7
B 2 5 8
C 3 6 9

Selection of rows and / or columns follows in nearly the same ways as seen
before:

> x[, "v1"]
A B C
1 2 3
> x["A", ]
v1 v2 v3
1 4 7
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> x[c("A", "C"), ]
v1 v2 v3

A 1 4 7
C 3 6 9

R has also a data structure called array which generalizes matrices to any
number of dimensions.

2.3.4 Data Frame

A data frame is superficially similar to a matrix in the sense that it is a tabular
representation of data. The distinction is that a data frame is a set of distinct
vectors and / or factors all of the same length, but possibly of different modes.

Data frames are the main way to represent data sets in R because this
corresponds roughly to a spreadsheet data structure. This is the type of objects
returned by the function read.table (see Section 3.8 for examples). The other
way to create data frames is with the function data.frame:

> DF <- data.frame(z, y = 0:3, 4:1)
> DF

z y X4.1
1 order 0 4
2 family 1 3
3 genus 2 2
4 species 3 1
> rownames(DF)
[1] "1" "2" "3" "4"
> colnames(DF)
[1] "z" "y" "X4.1"

This example shows how colnames are created in different cases. By default,
the rownames "1", "2", . . . are given, but this can be changed with the option
row.names, or modified subsequently as seen above for matrices.

If one of the vectors is shorter, then it is recycled along the data frame
but this must be an integer number of times:

> data.frame(1:4, 9:10)
X1.4 X9.10

1 1 9
2 2 10
3 3 9
4 4 10
> data.frame(1:4, 9:11)
Error in data.frame(1:4, 9:11) :
arguments imply differing number of rows: 4, 3
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All we have seen about indexing, colnames, and rownames for matrices
apply in exactly the same way to data frames with the difference that col-
names and rownames are mandatory for data frames. An additional feature of
data frames is the possibility of extracting, modifying, or deleting, a column
selectively with the operator $:

> DF$y
[1] 0 1 2 3
> DF$y <- NULL
> colnames(DF)
[1] "z" "X4.1"

2.3.5 List

Lists are the most general data structure in R: they can contain any kind of
objects, even lists. They can be seen as vectors where the elements can be any
kind of object. They are built with the function list:

> L <- list(z = z, 1:2, DF)
> L
$z
[1] "order" "family" "genus" "species"

[[2]]
[1] 1 2

[[3]]
z y X4.1

1 order 0 4
2 family 1 3
3 genus 2 2
4 species 3 1

> length(L)
[1] 3
> names(L)
[1] "z" "" ""

The concepts we have seen on indexing vectors apply also to lists. Ad-
ditionally, an element of a list may be extracted, or deleted, either with its
index within double square brackets, or with the operator $:

> L[[1]]
[1] "order" "family" "genus" "species"
> L$z
[1] "order" "family" "genus" "species"
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Note the subtle, but crucial, difference between [[ and [:

> str(L[[1]])
chr [1:4] "order" "family" "genus" "species"
> str(L[1])
List of 1
$ z: chr [1:4] "order" "family" "genus" "species"

2.4 Creating Graphics

The graphical functions in R need a special mention because they work some-
what differently from the others. A graphical function does not return an
object (though there are a few exceptions), but sends its results to a graphical
device which is either a graphical window (by default) or a graphical file. The
graphical formats depend on the operating systems (see ?device to see those
available on your machine), but mostly the following are available: encapsu-
lated PostScript (EPS), PDF, JPEG, and PNG. These are the most useful
formats for scientific publication.

EPS and PDF are the publishers’ preferred formats because they are line-
based (or vectorial) so they can be scaled without affecting the resolution of
the graphics. Choosing between these two formats is not always trivial because
they have mostly the same capacities. The main weakness of EPS is that it
cannot handle color transparancy (see the option alpha in the function rgb)
while PDF does. PDF files are usually more compact than the equivalent EPS
files, but the latter are more easily modified (even by hand-editing since they
are stored in simple text files). EPS files are easily converted into PDF with
the ‘epstoedit’ utility provided with GhostScript.

JPEG and PNG are pixel-based (or raster) formats. They should be
avoided for scientific publication because scaling-up graphics stored in such a
format is likely to show the limit of resolution (an exception may be when a
graphic contains a lot of elements so the EPS or PDF file may be too large).
On the other hand, these two formats are well-suited for Web pages (PNG is
usually better for line-graphics, whereas JPEG works better with pictures).

There are two ways to write graphics into a file. The most general and
flexible way is to open the appropriate device explicitly, for instance, if we
write into an EPS file:

postscript("plot.eps")

then all subsequent graphical commands will be written in the file ‘plot.eps’.
The operation is terminated (i.e., the file is closed and written on the disk)
with the command:

dev.off()
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The function postscript has many options to set the EPS files. All the figures
of this book have been produced with this function. Similarly, for the other
formats mentioned above, the function would be pdf, jpeg, or png.

The second way is to copy the content of the window device into a file
using the function dev.copy where the user must specify the target device.
Two variants of this function are dev.copy2eps and dev.copy2pdf which
use EPS or PDF device (the file name must be specified by the user). Finally,
dev.print() sends the current graphics to the printer. Under some operating
systems, these commands can be called from the menus.

2.5 Saving and Restoring R Data

R uses two basic formats to save data: ASCII (simple text) and XDR (external
data representation2). They are both cross-platform. The ASCII format is
appropriate to save a single object (vector, matrix, or data frame) into a file.
Two functions can be used: write (for vectors and matrices) and write.table
(for data frames). The latter is very flexible and has many options. The XDR
format can store any kind and any number of objects. It is used with the
function save, for instance, to save three objects:

save(x, y, z, file = "xyz.RData")

These data can then be restored with:

load("xyz.RData")

Some care must be taken before calling load because if some objects named x,
y, or z are present, the above command will erase them without any warning.

In practice, .RData files are useful when you must interrupt your session
and you want to continue your work at a later time. In that case, it is better
to use save.image() or quit R and choose to save the workspace image:

> q()
Save workspace image? [y/n/c]: y

In both cases a file named ‘.RData’ will be written in the current working
directory will all objects in memory. Because these files may not be readable
by many other programs, it is safe to keep your original data files (trees,
molecular sequences, . . . ) in their own formats. However, an XDR file may be
useful if you want to send a heterogeneous set of data to a colleague: in that
case it will be easily loaded in memory with exactly the same attributes.

Apart from these two standard formats, the package foreign, installed by
default with R, provides functions for reading and writing data files from a few
common statistical computer programs. The CRAN has also some packages
for reading a range of more or less specialized data formats (netCDF, HDF5,
2 http://www.faqs.org/rfcs/rfc1832.html.

http://www.faqs.org/rfcs/rfc1832.html
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various GIS and map data formats, medical image formats, PDB for 3-D
molecular structures, . . . )

All commands typed in R’s CLI are stored into memory and can be dis-
played with the command history(), saved into a file (named ‘.Rhistory’ by
default) with savehistory(), or loaded into memory with loadhistory().

2.6 Using R Functions

Now that we have seen a few instances of R function uses, we can draw some
general conclusions on this point.

To execute a function, the parentheses are always needed, even if there is
no argument inside (typing the name of a function without parentheses prints
its contents). The arguments are separated with commas. There are two ways
to specify arguments to a function: by their positions or by their names (also
called tagged arguments). For example, let us consider a hypothetical function
with three arguments:

fcn(arg1, arg2, arg3)

fcn can be executed without using the names arg1, . . . , if the corresponding
objects are placed in the correct position, for instance, fcn(x, y, z). How-
ever, the position has no importance if the names of the arguments are used,
for example, fcn(arg3 = z, arg2 = y, arg1 = x). Another feature of R’s
functions is the possibility of using default values (also called options), for
instance, a function defined as:

fcn(arg1, arg2 = 5, arg3 = FALSE)

Both commands fcn(x) and fcn(x, 5, FALSE) will have exactly the
same result. Of course, tagged arguments can be used to change only some
options, for instance, fcn(x, arg3 = TRUE).

Many functions in R act differently with respect to the type of object
given as arguments: these are called generic functions. They act with respect
to an optional object attribute: the class. The main generic functions in R
are print, summary, and plot. In R’s terminology, summary is a generic func-
tion, whereas the functions that are effectively used (e.g., summary.phylo,
summary.default, summary.lm, etc.) are called methods.

In practice, the use of classes and generics is implicit, but we show in the
next chapter that different ways to code a tree in R correspond to different
classes. The advantage of the generic functions here is that the same command
is used for the different classes.

2.7 Repeating Commands

When it comes to repeating some analyses, several strategies can be used. The
simplest way is to write the required commands in a file, and read them in
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R with the function source. It is usual to name such files with the extension
‘.R’. For instance, the file ‘mytreeplot.R’ could be:

tree1 <- read.tree("tree1.tre")
postscript("tree1.eps")
plot(tree1)
dev.off()

These commands will be executed by typing source("mytreeplot.R") in R.

2.7.1 Loops

As with any language, R has control and programming structures to execute
a series of commands. The most often-used one is the for3 statement, whose
general syntax is:

for (x in y) <command>

where y is an object, and x successively takes the different values of y.
It is not required to use these values in <command> (e.g., for (i in 1:5)
print("done")). A for loop may encompass more than one command in
which case it is necessary to group them within braces:

for (x in y) {
.....
.....

}

y may be a vector of any mode, a factor (in which case the numerical coding
will be used), a matrix (treated as a vector), a data frame (x will be substituted
by the different columns of y), or a list (x will be substituted by the different
elements of y).

Two commands may be useful here: next stops the current iteration and
moves to the next value of x, and break aborts the loop. They are usually
combined with an if statement which takes a single logical value as argument,
for example:

for (i in 1:10) {
if (x[i] < 0) break
.....

}

3 The following words are reserved to the R language and cannot be used to name
objects: for, in, if, else, while, next, break, repeat, function, NULL, NA, NaN,
Inf, TRUE, and FALSE.
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2.7.2 Apply-Like Functions

In many situations, there is an easier and more efficient alternative to the
use of loops and control statements: the apply-like functions. apply applies a
function to all columns and / or rows of a matrix or a data frame. Its syntax
is:

apply(X, MARGIN, FUN, ...)

where X is a matrix or a data frame; the second argument indicates whether
to apply the function on the rows (1), the columns (2), or both (c(1, 2));
FUN is the function to be used; and ‘...’ any argument that may be needed
for FUN.

lapply does the same as apply but on different elements of a list. Its
syntax is:

lapply(x, FUN, ...)

This function returns a list. sapply has nearly the same action as lapply
but it returns its results as a more friendly way as a vector or a matrix
with rownames and colnames. If a list is structured (i.e., made of lists of
objects), rapply is a recursive version of lapply, applying FUN to the non-list
elements. By default, the results are returned as a vector, unless the option
how = "replace" is used.

tapply acts on a vector and applies a function on subsets defined by an
additional argument INDEX:

tapply(X, INDEX, FUN = NULL, ...)

Typically, INDEX defines groups, and the function FUN is applied to each group.
By default, the indices of the groups defined by INDEX are returned. by is a
more elaborate function to apply a function FUN to the subsets of a vector or
a data frame with respect to one or several factors given as a list; its syntax
is:

by(data, INDICES, FUN, ..., simplify = TRUE)

aggregate does the same operation than by but returns the results in a table
rather in a list.

Finally, replicate replicates a command a given number of times, return-
ing the results as a vector, a matrix, or a list; for example,

> replicate(4, rnorm(1))
[1] -1.424699824 0.695066367 0.958153028 0.002594864
> replicate(5, rpois(3, 10))

[,1] [,2] [,3] [,4] [,5]
[1,] 8 15 13 10 10
[2,] 5 8 14 3 6
[3,] 10 11 7 8 6
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2.8 Exercises

1. Start R and print the current working directory. Suppose you want to read
some data in three different files located in three different directories on
your computer: describe two ways to do this.

2. Create a matrix with three columns and 1000 rows where each column
contains a random variable that follows a Poisson distribution with rates 1,
5, and 10, respectively (see ?Poisson for how to generate random Poisson
values). Find two ways to compute the means of each column of this
matrix.

3. Create a vector of 10 random normal values using the three following
methods.
(a) Create and concatenate successively the 10 random values with c.
(b) Create a numeric vector of length 10 and change its values successively.
(c) Use the most direct method.
Compare the timings of these three methods (see ?system.time) and
explain the differences.
Repeat this exercise with 10,000 values.

4. Create the following text file:

Mus_musculus 10
Homo_sapiens 70000
Balaenoptera_musculus 120000000

(a) Read this file with read.table using the default options. Look at the
structure of the data frame and explain what happened. What option
should have been used?

(b) From this file, create a data structure with the numeric values that
you could then index with the species names, for example,

> x["Mus_musculus"]
[1] 10

Find two ways to do this, and explain the differences in the final result.

5. Create these two vectors (source: [13]):

Archaea <- c("Crenarchaea", "Euryarchaea")
Bacteria <- c("Cyanobacteria", "Spirochaetes",

"Acidobacteria")

(a) Create a list named TreeOfLife so that we can do TreeOfLife$Archaea
to print the corresponding group.

(b) Update TreeOfLife by adding the following vector:
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Eukaryotes <- c("Alveolates", "Cercozoa", "Plants",
"Opisthokonts")

It should appear at the same level as Archaea and Bacteria.
(c) Update Archaea by adding "Actinobacteria".
(d) Print all the lowest-level taxa.
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Phylogenetic Data in R

This chapter details how phylogenetic data are handled in R. The issues dis-
cussed here will interest all users. Issues relative to implementation and pro-
gramming are discussed in Chapter 8.

3.1 Phylogenetic Data as R Objects

One strength of R is the flexibility of its data structures. In most phylogenetic
programs, the data structures are completely opaque to the user. This is
because complex data structures in low-level languages (such as C or C++)
need a lot of programming work. This is not the case in R where the list
data structure provides an efficient and flexible way to build complex data
structures using any kind of element. For a tree coded with a list, the critical
advantage is that the user can easily access its components, and manipulate
or analyze them with R’s functions and operators.

As a simple example, consider a tree read in R with ape: this will be
stored in R as an object of class "phylo". If this object is named tr, then its
branch lengths will be accessed simply with tr$edge.length. Any subsequent
analysis can be conducted with the usual R functions; as illustrations, the
following commands will compute the mean, some summary statistics, plot
a frequency histogram, and finally copy these branch lengths into an object
named x.

mean(tr$edge.length)
summary(tr$edge.length)
hist(tr$edge.length)
x <- tr$edge.length

Trees can be coded in different ways in R reflecting the choices done to design
these different classes. The class of an object is the attribute that signs its
particularities. Some functions treat objects differently with respect to their
class (Sections 2.6 and 8.1.1).

DOI 10.1007/978-1-4614-1743-9_3, © Springer Science+Business Media, LLC 2012
, Use R,E. Paradis, Analysis of Phylogenetics and Evolution with R 29
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It is common that the same data can be stored in R with different classes,
mainly because they are adapted to different analyses (often in different pack-
ages). Also it is common that a data structure evolves because it is realized
that the same information can be stored in a better way, or it needs to be
extended. The existence of different data classes should not be a problem for
users: it is expected that R packages provide functions to convert among them
painlessly. We may recall that in R, all actions are done on objects stored in
the active memory of the computer. Consequently, different classes are not
related to different data file formats.

3.1.1 Trees

ape uses a class called "phylo" to store phylogenetic trees. During the past
few years, the majority of new phylogenetic R-packages have used this class
so it has become an implicit standard. The principle of its design is to store
in different elements a description of its hierarchical structure, the names of
the taxa, the branch lengths, and other information that may be necessary.
The structure of an object of class "phylo" is detailed below. ape has another
class called "matching" which is also described below.

The package stats has two classes worth mentioning here: "hclust" and
"dendrogram". These classes are designed to code hierarchical clusters, and
thus contain less information than the two classes described above (they may
be appropriate to code ultrametric trees). However, because objects of class
"hclust" and "dendrogram" are produced by clustering analyses in R, it may
be useful to convert them in objects of class "phylo" which is what can be
done by some functions as shown in Section 3.4. The package clue extends a
wide range of clustering methods and implements its own classes.

The Class "phylo" (ape)

An object of class "phylo" is a list with the following components (see Sec-
tion 8.6 for a technical description).

edge a two-column matrix where each row represents a branch (or edge) of
the tree; the nodes and the tips are symbolized with integers; the n tips
are numbered from 1 to n, and the m (internal) nodes from n+1 to n+m
(the root being n + 1). For each row, the first column gives the ancestor.

edge.length (optional) a numeric vector giving the lengths of the branches
given by edge.

tip.label a vector of mode character giving the labels of the tips; the order
of these labels corresponds to the integers 1 to n in edge.

Nnode an integer value giving the number of nodes in the tree (m).
node.label (optional) a vector of mode character giving the labels of the

nodes (ordered in the same way than tip.label).



3.1 Phylogenetic Data as R Objects 31

root.edge (optional) a numeric value giving the length of the branch at the
root if it exists.

A class in R can be easily extended to include other elements, providing the
names already defined are not reused. For instance, a "phylo" object could
include a numeric vector tip.date giving the dates of the tips if they are not
all contemporary (e.g., for viruses); this will not change the way other elements
are accessed or modified. Another potential extension is to code networks or
reticulograms because this would require simply adding the appropriate rows
in the matrix edge.

The Class "phylo4" (phylobase)

This class is derived from "phylo" but using an S4 approach for its imple-
mentation instead of S3 (see Chapter 8). This makes almost no difference for
end-users analyzing their data. The internal structure is similar to the one
in "phylo"; the following elements are mandatory (and accessed with the
operator @ characteristic of S4):

edge it is similar to what is described above for "phylo" except that, for
rooted trees, the root edge is always included.

edge.length same than above; may be empty (i.e., a numeric vector of length
zero) if the tree has no branch length.

label a vector of mode character giving the labels of the tips (and the nodes
if present).

edge.label the same for edges.
order a character string giving the order of the edges with respect to some

algorithms and operations; may be "unknown".
annote further information; may be an empty list.

The Class "matching" (ape)

Matchings have been introduced by Diaconis and Holmes [56] as a represen-
tation of binary phylogenetic trees. The idea is to assign to each tip and node
a positive number, and then to represent the topology as a series of pairs of
these numbers that are siblings (the matchings). Interestingly, if some conven-
tions are given, this results in a unique representation between a given tree
and a given matching [56]. An object of class "matching" is a list with the
following components.

matching a three-column numeric matrix where the first two columns repre-
sent the sibling pairs (the matching), and the third one the corresponding
ancestor.

tip.label (optional) a character vector giving the tip labels where the ith
element is the label of the tip numbered i in matching.
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node.label (optional) a character vector giving the node labels in the same
order as in matching (i.e., the ith element is the label of the node num-
bered i + n in matching, with n the number of tips).

Ford [87] further investigated coding trees with matchings and related
structures, and developed algorithms for their efficient manipulation.

The Class "treeshape" (apTreeshape)

The class "treeshape" is derived from the "hclust" one. An object of this
class is a list with two elements:

merge a two-column numeric matrix where each row represents a pairing:
a negative number represents a tip, and a positive number represents a
group of tips as identified by the line number of this matrix. For instance,
a row with (-8, 1) means that the eighth tip is paired with the group of
tips defined by the first row of this matrix.

names (optional) a vector of mode character giving the names of the tips.

An object of class "treeshape" can be built with the function treeshape
which takes as arguments these two elements.

The Class "haploNet" (pegas)

This is a class coding for simple networks without reticulations. The main
difference with phylogenies is that observed data (e.g., sequences) may be
at the node of a network while they are only at the tips of a phylogeny. The
structure is based on an edge matrix but this can have additional columns with
or without colnames like what is returned by the function haploNet. This
function adds the attributes "freq" giving the numbers of each haplotype
and "labels" with their respective labels.

3.1.2 Networks

Networks are usually coded in the same way than trees with nodes and edges
linking them. The distinction is that the path between two nodes may not be
unique. Networks are less common than trees in evolutionary studies, maybe
because of the difficulty to draw them graphically. Very often, networks are
analyzed as a sum of distinct trees: migration or horizontal gene transfer
results in reticulations among populations or species but the genetic lineages
have a tree-like dynamics. Other forms of networks (splits, consensus) are more
conceptual and serve as graphical representations of phylogenetic uncertainty
[137, 145].

There are two main classes dedicated to phylogenetic networks: "evonet"
and "networx", implemented in the packages ape and phangorn, respectively.
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They are both derived from the class "phylo". The class "evonet" is built
with a rooted phylogeny and an additional matrix named "reticulation"
that is similar to the "edge" matrix. In "networx", the reticulations are
included in the "edge" matrix. The latter class is used to code consensus
networks.

The classes "network" and "igraph" from the packages of the same names
are general classes for any kind of networks. Both classes use the same principle
of an “edge list matrix” as the class "phylo", and ape provides functions to
convert among these formats (p. 61).

BioConductor provides several packages to handle and plot networks using
sophisticated algorithms for the layout of nodes.

3.1.3 Splits

A split (or bipartition) is a pair of two exclusive sets of tips (or taxa).
For instance, in a phylogenetic tree, each branch defines a split.1 The class
"prop.part" in ape stores splits as a list of vectors of integers and an ad-
ditional attribute "label" which is a vector of mode character storing the
individual labels. Each vector in the list gives a subset of the taxa, so the
complete split is given by this vector and the numbers of the taxa not in-
cluded in it. The optional attribute "number" gives the number of times each
partition was observed (e.g., in a bootstrap analysis; p. 171). Usually, in an
object of class "prop.part", the first split includes all taxa and so is of the
same length than the attribute "label".

The package phangorn uses the class "splits" which is derived from the
previous one. In addition to the above elements, it includes an attribute named
"weights" which is a numeric vector typically used to code the length of
the edge defining each split. Another difference is that, most of the times,
the trivial splits implied by terminal branches (e.g., A|BCD) are included in
objects of class "splits" while they are not in those of class "prop.part".

The function designSplits in phangorn uses another strategy to code
splits: the possible splits (there are 2n−1−1 for n taxa) are numbered sequen-
tially. For instance, for n = 4, we display all possible splits (actually, like for
"prop.part" only one of the two subsets):

> designSplits(4)$Splits
[,1] [,2] [,3] [,4]

[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 1 1 0 0
[4,] 0 0 1 0
[5,] 1 0 1 0
[6,] 0 1 1 0
[7,] 1 1 1 0

1 Splits are traditionally denoted as, e.g., AB|CD for a a set of four taxa {A,B,C,D}.
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You notice that the splits are coded in a similar way than integers are binary
coded in computers, but from left to right instead of from right to left (in
computers 0001 = 1, 0010 = 2, 0011 = 3, 0100 = 4, . . . ) So for the four taxa
{A,B,C,D}, the split AD|BC will be numbered 6.

3.1.4 Molecular Sequences

Sequences of nucleotides (DNA) or amino acids (proteins) can be stored in R
using character vectors or matrices and the conventional codes for these two
types of molecules. However, this is quite memory-consuming and not optimal
for computing. Several classes have been developed to store DNA sequences
using less memory and allowing faster computation. Currently, no specific
class has been proposed for protein sequences and they are stored as simple
character data.

The Class "DNAbin" (ape)

Each nucleotide is coded specifically by a single byte arranged in a vector
(single sequence), a matrix (sequences of the same length), or a list of vectors.
Individual sequences may be identified with labels stored in rownames (matrix)
or names (list). The coding of the individual bytes has been designed to allow
fast comparison of two nucleotides; its principle is shown on Fig. 3.1 and the
coding is detailed in Table 3.1.

A G C T

1 0 0 0 1 0 0 0

Is the base known?

Alignment gap?

Is the character completely unknown?

(unused)

Fig. 3.1. Principles of the binary coding system used in "DNAbin". Each bit of the
byte gives information in the form of a Yes / No answer

The Class "haplotype" (pegas)

It is directly derived from the previous class, and is the set of unique se-
quences that can be extracted from an object of class "DNAbin" by the func-
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Table 3.1. The bit-level coding scheme for nucleotides used in "DNAbin"

Nucleotide IUPAC code Bit-level code

A A 10001000
G G 01001000
C C 00101000
T T 00011000

A or G R 11000000
A or C M 10100000
A or T W 10010000
G or C S 01100000
G or T K 01010000
C or T Y 00110000

A or G or C V 11100000
A or C or T H 10110000
A or G or T D 11010000
G or C or T B 01110000

A or G or C or T N 11110000
Alignement gap (–) 00000100

Unknown character (?) 00000010

tion "haplotype". The attribute "index" identifies the individual sequences
belonging to each haplotype.

The Class "alignment" (seqinr)

This class is designed to store a set of aligned sequences. The data are in a
list with four elements:

nb the number of sequences.
seq the sequences as a vector of mode character where each sequence is a

single string, and all strings have the same number of characters.
nam of vector of mode character giving the individual labels.
com optional comments (may be NA).

The Class "phyDat" (phangorn)

This class can be viewed as a “preparation” of sequence data for phylogeny
estimation (Chapter 5). The sequences must be aligned, and only the patterns
of variation among sequences are stored, corresponding to the unique columns
in the class "DNAbin". This class may be used for any discrete valued variable
(DNA, protein, codon, morphological, . . . ) The data are stored as integers in
a list with as many vectors as sequences. The following attributes give the
necessary information:

"weight" the number of sites observed in each pattern.
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"index" identifies to which pattern belongs the original sites.
"levels" a character vector giving the different possible states.
"type" one of "DNA", "AA", or "USER".
"contrast" a matrix of integers giving the correspondance between the codes

in the matrix (as rows) and the states given in "levels" (as columns).

If type = "DNA" or "AA", the attribute "levels" will be set automatically.
In the case of other kinds of data, a typical use of the function phyDat would
be (with x being a matrix or a data frame):

phyDat(x, "USER", levels = unique(x))

If some levels have not been observed in x, this may be specified by changing
levels.

3.1.5 Allelic Data

The Class "loci" (pegas)

This class is a direct extension of a data frame with an attribute named
"locicol" identifying the columns that are loci; the other columns are ad-
ditional variables that may be of any kind. The loci are coded with factors
(p. 16) where the different levels are the observed genotypes with the alleles
separated with a forward slash, for instance, ‘A/A’ for a classical genotype,
or ‘132/148’ for a microsatellite locus. The rownames are used as individual
labels, and the colnames as labels for the loci and the other variables. Any
level of ploidy can be handled.

The Class "genind" (adegenet)

In this class, allelic information is arranged in a numeric matrix where the rows
are individuals and each column is an allele, so a locus may be represented
by several columns. The entries of this matrix, named tab, are the relative
frequencies of the allele for an individual: a homozygote has one value 1 and
the others 0, whereas a heterozygote has two values 0.5 and the others 0. This
is an S4 class, so the elements are accessed with the @ operator (e.g., x@tab).
Additional information are stored in other slots (@ind.names, @pop, . . . ) The
details can be found with class?genind. This data structure is well-suited
for multivariate analyses.

The Classes "SNPbin" and "genlight" (adegenet)

These two classes code for single nucleotide polymorphism (SNP) data for an
individual or a set of genotypes, respectively. To optimize memory usage, each
SNP is stored on a single bit, so one byte can store eight SNPs. Any level of
ploidy is supported. These are S4 classes. There are a number of functions for
their manipulation which are documented in ?SNPbin and ?genlight as well
as a vignette accessible with vignette("adegenet-genomics").

mailto:@ind.names
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3.1.6 Phenotypic Data

Generally, the standard R data structures are sufficient to store phenotypic
data. Continuous and discrete variables can be coded with numeric vectors
and factors, respectively, and a set of such variables may be grouped in a ma-
trix or, more generally, in a data frame. A list may also be used for repeated
measurements with different numbers of repetitions for each species. The at-
tributes rownames (or names for a vector, a factor, or a list) and colnames
are used to identify the individuals and the variables.

Some standard R functions may be used to check the congruence of sev-
eral series of *names. Most functions analyzing phenotypes and a phylogeny
(e.g., pic) check the consistency of labels and reorder the phenotypic data
if necessary. The rows of a data frame X may be reordered with respect to a
phylogeny tr:

X <- X[tr$tip.label, ]

This will also drop the rows of X which are not in tr. The problem of managing
and matching labels is discussed on page 62.

phylobase has two S4 classes: "pdata" for storing phenotypic data as a data
frame with additional elements type, comment and metadata, and "phylo4d"
to associate phenotypic data (as a data frame) with a phylogeny.

3.2 Reading Phylogenetic Data

3.2.1 Phylogenies

Treelike data structures are very common in computer science, and there are
many ways to store them in files. Fortunately, biologists, systematists, and
phylogeneticists seem to agree on the use of a single data format for trees: the
nested parentheses format, known as the Newick or New Hampshire format.2

This format has many advantages: it is flexible, can be interpreted directly
by humans (if not too long), has a close link with the hierarchical nature of
evolutionary relationships, and can store large trees using little resources on
a computer disk.

A common extension of the Newick format is the NEXUS format which can
also include other data (usually matrices of species characters), and system
commands such as calls to other programs [192].

ape has two functions to read trees in Newick and NEXUS formats:
read.tree and read.nexus. Both functions have a file name (given as a
character string or a variable of mode character) as main argument:

tr <- read.tree("treefile.tre")
trx <- read.nexus("treefile.nex")

2 http://evolution.genetics.washington.edu/phylip/newicktree.html.

http://evolution.genetics.washington.edu/phylip/newicktree.html
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These functions ignore all white spaces and new lines in the tree file. The
latter may contain several trees that are all read: the returned object is of
class "multiPhylo", and is a list of objects of class "phylo" (see p. 55).

If no file name is given, read.tree reads the tree in Newick format from
the standard input, so that the user can type the parenthetic tree directly on
the keyboard (the input is terminated by a blank line). For instance, if we just
type tr <- read.tree(), R then prompts the user to enter the tree (this can
be copied/pasted from a text file). Each line of text is numbered 1:, 2:, and
so on.

> tr <- read.tree()
1: (a:1,b:1);
2:
> ls()
[1] "tr"

Alternatively, it is possible to store the Newick tree in a variable of mode
character and then use the option text:

> a <- "(a:1,b:1);"
> tr <- read.tree(text = a)

Both read.tree and read.nexus create an object of class "phylo". Ad-
ditionally, read.nexus keeps track of the original file in an attribute named
origin.

read.tree can read all kinds of Newick strings as long as they have la-
bels, including star-like trees such as (a,b,c); or trees with a single tip such
as (a); however, it cannot read trees only specified as a “skeleton” made of
parentheses and commas usch as (((,(,)),),(,)).

All characters between straight brackets are ignored as these are considered
as comments in the Newick syntax. If the Newick string is prefixed by some
characters, these are read as tree names unless the option tree.names is
specified.

3.2.2 Molecular Sequences

DNA sequences can be read with the ape function read.dna which reads files
in FASTA, Clustal, interleaved, or sequential format (these formats are de-
scribed in the help page of read.dna) returning the data as an object of class
"DNAbin". The function read.nexus.data reads DNA or protein sequence
alignment in a NEXUS file, returning them as a list of character vectors.
The function read.aa in phangorn reads protein sequences in FASTA, inter-
leaved, or sequential format. This package has read.phyDat that calls either
read.dna or read.nexus.data and returns the data as an object of class
"phyDat".

The function read.GenBank can read sequences in the GenBank databases
via the Internet: its main argument is a vector of mode character giving
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the accession numbers of the nucleotide sequences. These accession numbers
are used, by default, as names for the individual sequences. If the option
species.names = TRUE is used, which is the default, then the species names
(as read in the ORGANISM field in the GenBank data) are returned in an
attribute called "species".

seqinr has two functions which can read sequences stored in local files.
read.fasta reads sequences in FASTA format. It has two arguments: file
to specify the name of the data file, and seqtype to specify the type of the
sequence which is either "DNA" (the default) or "AA" (for proteins). As with
read.dna, read.fasta returns a list of sequences but there are a few addi-
tional attributes including a class "SeqFastadna" or "SeqFastaAA" depending
on the type of the sequence. A few other options allow the user to control the
format of the returned object.

read.alignment reads aligned sequences. There are two arguments: File
and format which can be "mase", "clustal", "phylip", "fasta", or "msf".
If format = "phylip", the function detects whether the format is sequential
or interleaved. The object returned is of class "alignment".

seqinr has an elaborate mechanism for retrieving sequences from molecu-
lar databanks. This works through the ACNUC repository.3 The databanks
available are listed in R with the function choosebank used without argument
(this works only if the computer is connected to the Internet):

> choosebank()
[1] "genbank" "embl" "emblwgs"
[4] "swissprot" "ensembl" "refseq"
[7] "refseqViruses" "nrsub" "hobacnucl"
[10] "hobacprot" "hovergendna" "hovergen"
[13] "hovergen49dna" "hovergen49" "hogenom4"
[16] "hogenom4dna" "hogenom" "hogenomdna"
[19] "homolens" "homolensdna" "greviews"
[22] "polymorphix" "emglib" "taxobacgen"
[25] "apis" "anopheles" "caenorhabditis"
[28] "cionasavignyi" "danio" "drosophila"
[31] "felis" "gallus" "human"
[34] "mouse" "saccharomyces" "tetraodon"
[37] "xenopus"

These databanks are mirrored on the PBIL server in Lyon. The user selects
one of these banks with the same function:

> s <- choosebank("genbank")

It is then possible to query the bank for the available sequences. For instance,
to get the list of the sequences of the bird genus Ramphocelus [116]:

3 http://pbil.univ-lyon1.fr/.

http://pbil.univ-lyon1.fr/
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> query("rampho", "sp=Ramphocelus@")
> rampho
42 SQ for sp=Ramphocelus@

By default query uses the last opened database. If several databases are open
at the same time, the option socket = s$socket may be used here. This com-
mand returns an object named "rampho" which lists the sequences meeting
the selection criteria.4 The special character "@" meets any set of characters
(see ?query for the details of the syntax of this function). The result displayed
by query shows that 42 sequences were found. "rampho" is a list with the ac-
cession numbers and the connection details (server name, port number, etc.)
to retrieve the sequences effectively:

> rampho$req[[1]]
name length frame ncbicg

"AF310048" "921" "0" "2"

The sequences are then extracted from ACNUC with the generic function
getSequence:

> x <- getSequence(rampho)
> length(x)
[1] 42
> length(x[[1]])
[1] 921
> x[[1]][1:20]
[1] "g" "g" "a" "t" "c" "c" "t" "t" "a" "c" "t" "a" "g"
[14] "g" "c" "c" "t" "a" "t" "g"

As a comparison, the first sequence can be extracted with the ape function
read.GenBank:

> y <- read.GenBank("AF310048")
> length(y[[1]])
[1] 921
> attr(y, "species")
[1] "Ramphocelus_carbo"
> identical(x[[1]], as.character(y[[1]]))
[1] TRUE

seqinr comes with a very extensive (and entertaining) manual and numer-
ous example data files. We’ll see again some of its functionalities later in this
book.

The package BoSSA can read PDB (protein data bank) files with the func-
tion read.PDB. The PDB file format is a standard to store three dimensional
molecular structures, often obtained by crystallography. As an example, the
4 The syntax is unusual in R where objects are often created with the operator <-.
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file ‘bdna.pdb’ stores the 3-D structure of a 12-base pair molecule of B-DNA
(this file is included in the supplementary material of the book):

> bdna <- read.PDB("bdna.pdb")
> names(bdna)
[1] "header" "compound" "atom" "sequence"
> bdna$header
[1] "B-DNA

The element named sequence is a list with the sequence(s):

> bdna$sequence
$ref_A
[1] 1 2 3 4 5 6 7 8 9 10 11 12

$chain_A
[1] " G" " C" " G" " A" " A" " A" " T" " T" " T"
[10] " G" " C" " G"

$ref_B
[1] 1 2 3 4 5 6 7 8 9 10 11 12

$chain_B
[1] " C" " G" " C" " A" " A" " A" " T" " T" " T"
[10] " C" " G" " C"

The element atom stores the 3-D structure in a data frame with seven columns:

> names(bdna$atom)
[1] "atom" "aa" "chain" "naa" "X" "Y" "Z"

The last three columns contain the atomic spatial coordinates. A nice repre-
sentation can be done with the rgl package (Fig. 3.2):

> library(rgl)
> points3d(bdna$atom$X, bdna$atom$Y, bdna$atom$Z)

3.2.3 Allelic Data

It is common to store allelic data in a standard tabular form with individuals
as rows and genes (or loci) as columns, each entry giving the corresponding
genotype. pegas has the function read.loci to read such files. It is modeled
after the standard R function read.table and thus has the same flexibility. It
assumed that alleles are separated by a forwardslash but this can be changed
with the option allele.sep.

However, several computer programs widely used in population genetics
have their own data file format. Fortunately, adegenet provides four func-
tions, read.fstat, read.genetix, read.genepop, and read.structure, to
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Fig. 3.2. Three dimensional structure of a B-DNA molecule plotted with rgl. Once
plotted in R, the image may be rotated and zoomed in / out easily

read files from the programs of the same name. pegas includes a detailed
guide explaining step-by-step how to proceed to read all the allelic data files,
including some tips about reading Excel files. It can be open from R with:

vignette("ReadingFiles")

3.2.4 Reading Data Over the Internet

There has been a tremendeous increase in the number of databases and data
sets available on the Internet in the past ten years. This may take various
forms, such as formal databases with sophisticated browsable interfaces, or
simple data files accompanying a publication. With the requirement from most
evolutionary journals to deposit data related to publication in data archives
[33], the trend will surely continue for some time.

Some issues arise with the widespread availability of numerous data sets
on the Internet:

1. How to localize a particular data set?
2. How to read a data set for analysis?
3. How data sets from different sources can be combined in an analysis?
4. How to assess the quality of the data with, for instance, its metadata?

The aim of this section is to show some solutions to the second and third
issues. The first and fourth ones are important but not obvious to treat in a
systematic way.

Most R functions used to input data (e.g., scan, read.table, . . . ) can read
data from files located on the Internet: the file argument is then the complete
URL of the file such as "http://..." or "ftp://...".5 As an example, we
5 URLs with https are not supported by R; see ?connections.
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read the data file compiled by Ernest [71] containing values of life-history
traits of non-flying placental mammals (i.e., excluding egg-laying mammals,
marsupials, and bats). For clarity, we first store the URL in a string:6

> a <- "http://www.esapubs.org/archive/ecol/E084/093/"
> b <- "Mammal_lifehistories_v2.txt"
> ref <- paste(a, b, sep = "")
> X <- read.delim(ref)
> names(X)
[1] "order" "family" "Genus"
[4] "species" "mass.g." "gestation.mo."
[7] "newborn.g." "weaning.mo." "wean.mass.g."

[10] "AFR.mo." "max..life.mo." "litter.size"
[13] "litters.year" "refs"

Once the data have been read into R, they can be manipulated as usual, for
instance, to make a character vector with the genus and species names in a
standard way which may be used to cross this data frame with a tree (see
Section 3.6):

> paste(X$Genus, X$species, sep = "_")[1:5]
[1] "Antilocapra_americana" "Addax_nasomaculatus"
[3] "Aepyceros_melampus" "Alcelaphus_buselaphus"
[5] "Ammodorcas_clarkei"

Fortunately, the input functions in other packages have the possibility
to read remote files. For instance, it is possible to read PDB files from the
Research Collaboratory for Structural Bioinformatics (RCSB) web site, for
instance to read an activation intermediate of cathepsin E “1TZS”:

> library(BoSSA)
> tzs <- read.PDB("http://www.rcsb.org/pdb/files/1TZS.pdb")
> tzs$sequence$chain_P
[1] "GLY" "SER" "LEU" "HIS" "ARG" "VAL" "PRO" "LEU" "ARG"

The ‘pdb/files/’ directory on this site stores the PDB files, so it’s only needed
to change the part between this and the ‘.pdb’ suffix, for instance, to read the
structure of CrgA from Neisseria meningitidis “3HHF”:

> hhf <- read.PDB("http://www.rcsb.org/pdb/files/3HHF.pdb")

This makes possible to write a function to read any of these PDB files where
the reference number as argument:
6 For the sake of keeping the command lines outside the margins, long strings are

built in two steps. This is not needed, but the user must be aware that a linebreak
inserted in a string is read as it is.
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read.rcsb <- function(ref)
{

url <- paste("http://www.rcsb.org/pdb/files/",
ref, ".pdb", sep = "")

read.PDB(url)
}

Pfam is another large database of proteins located on the Sanger Institute
web site [84]. This site allows one to download various information for thou-
sands of protein families, including sequence alignment and trees. Here is an
example reading the chitin binding peritrophin-A “metagenomic” tree:

> a <- "http://pfam.sanger.ac.uk/family/tree/"
> b <- "download?alnType=meta&acc=PF01607"
> ref <- paste(a, b, sep = "")
> tr <- read.tree(ref)
> tr
Phylogenetic tree with 6 tips and 4 internal nodes.

Tip labels:
[1] "EBG17252.1/78-131" "EBB56650.1/58-112"
[3] "EBG17252.1/134-186" "ECX18707.1/2-42"
[5] "ECR19709.1/127-178" "ECR19709.1/65-116"
Node labels:
[1] "" "0.600" "0.670" "0.860"

Unrooted; includes branch lengths.

Here, the ‘alnType=meta’ specifies that the metagenomic tree is read. The
option ‘alnType=’ can take three other values: ‘seed’, ‘full’, or ‘ncbi’. The bit
of text ‘acc=PF01607’ specifies the reference number of the family.

These brief examples show only the flavor of the potentialities of reading
data over the Internet. The Exercices invite the reader to explore further these
ideas.

3.3 Writing Data

We have seen that R works on data stored in the active memory of the com-
puter. It is obviously necessary to be able to write data, at least for two
reasons. The user may want at any time to save all the objects present in
memory to prevent data loss from a computer crash, or because he wants to
quit R and continue his analyses later. The other reason is that the user wants
to analyze some data stored in R with other programs which in most cases
need to read the data from files (unless there is a link between the software
and R; see Chapter 8).
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Any kind of data type in R can be saved in a binary file using the save
function; the objects to be saved are simply listed as arguments separated by
commas.

save(x, y, tr, file = "mydata.RData")

The “.RData” suffix is a convention and is associated with R on some operating
systems (e.g., Windows). The binary files created this way are portable across
platforms. The command save.image() (used without options) is a short-cut
to save all objects in memory (the workspace is R’s jargon) in a file called
‘.RData’. It is eventually called by R when the user quits the system and
chooses to save an image of the workspace.

ape has several functions that write trees and DNA sequences in formats
suitable for other systems. write.tree writes one or several trees in Newick
format. It takes as main argument a "phylo" or "multiPhylo" object. By
default the Newick tree is returned as a character string, and thus can be
used as a variable itself:

> tr <- read.tree(text = "(a:1,b:1);")
> write.tree(tr)
[1] "(a:1,b:1);"
> x <- write.tree(tr)
> x
[1] "(a:1,b:1);"

If a list of trees is used, then a vector with several Newick strings is returned. If
the list has names they are not written in the file unless the option tree.names
= TRUE is used, or a vector of names is given here. To save the tree(s) in a
file, one needs to use the option file:

> write.tree(tr, file = "treefile.tre")

The option append (FALSE by default) controls whether to delete any previous
data in the file.

One or several "phylo" objects can also be written in a NEXUS file using
write.nexus. This function behaves similarly to write.tree in that it prints
by default the tree on the console (but this cannot be reused as a variable).

> write.nexus(tr)
#NEXUS
[R-package APE, Mon Dec 20 11:18:23 2004]

BEGIN TAXA;
DIMENSIONS NTAX = 2;
TAXLABELS

a
b
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;
END;
BEGIN TREES;

TRANSLATE
1 a,
2 b

;
TREE * UNTITLED = [&R] (1:1,2:1);

END;

The options of write.nexus are translate (default TRUE) which re-
places the tip labels in the parenthetic representation with numbers, and
original.data (default TRUE) to write the original data in the NEXUS file
(in agreement with the NEXUS standard [192]). If several trees are written,
they must have the same tip labels, and must be given either as seperated by
commas, or as a list:

> write.nexus(tr1, tr2, tr3, file = "treefile.nex")
> L <- list(tr1, tr2, tr3)
> write.nexus(L, file = "treefile.nex")

If the list of trees has names write.nexus writes them in the file.
DNA sequences are written into files with write.dna. Its option format

can take the values "interleaved" (the default), "sequential", or "fasta".
There are several options to customize the formatting of the output sequences
(see ?write.dna for details). The function write.nexus.data writes DNA
sequences in a NEXUS file.

Splits can be written in a NEXUS file with write.nexus.splits in phang-
orn:

> write.nexus.splits(as.splits(tr))
#NEXUS

[Splits block for Spectronet]
[generated by phangorn:
Schliep K (2011). "phangorn: phylogenetic analysis in R."
_Bioinformatics_, *27*(4), pp. 592-593. ]

BEGIN TAXA;
DIMENSIONS NTAX=2;
TAXLABELS a b ;
END;

BEGIN ST_SPLITS;
DIMENSIONS NSPLITS=3;
FORMAT LABELS WEIGHTS;
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MATRIX
1 1 1 ,
2 1 2 ,
3 0 1 2 ,

;
END;

Allelic data are written with write.loci from pegas: this function calls
write.table, so the data are written in a tabular way and the formatting is
controlled by several specific options (loci.sep, allele.sep) as well as the
usual options of write.table.

3.4 Manipulating Data

This section includes materials on phylogenetic data manipulation in R rang-
ing from basic to elaborate procedures. This will interest most users. Most of
this section is devoted to the manipulation of trees since the manipulation of
molecular, allelic, or phenotypic is usually done using basic R’s tools.

3.4.1 Basic Tree Manipulation

ape has several functions to manipulate "phylo" objects. They are listed
below. In the examples, the trees are written as Newick strings for convenience;
the results could also be visualized with plot instead of write.tree.

drop.tip removes one or several tips from a tree. The former are specified
either by their labels or their positions (indices) in the vector tip.label.
By default, the terminal branches and the corresponding internal ones are
removed. This has the effect of keeping the tree ultrametric in the case
it was beforehand. This behavior can be altered by setting the option
trim.internal = FALSE (Fig. 3.3).

> tr <- read.tree(text = "((a:1,b:1):1,(c:1,d:1):1);")
> write.tree(drop.tip(tr, c("a", "b")))
[1] "(c:1,d:1);"
> write.tree(drop.tip(tr, 1:2)) # same as above
[1] "(c:1,d:1);"
> write.tree(drop.tip(tr, 3:4, trim.internal = FALSE))
[1] "((a:1,b:1):1,NA:1);"

It is often convenient to identify tips with numbers, but you must be very
careful that many operations are likely to change these numbers (essen-
tially because they must be numbered without gaps). In all situations, it
is safest to identify tips with their labels.
This function has three additional options to control how the branches
are removed: subtree, root.edge, and rooted (a logical value to force
to consider the tree as (un)rooted.
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drop.tip(tr, 3:4, trim.internal = FALSE)

Fig. 3.3. Examples of the use of drop.tip

extract.clade does the opposite operation than the previous function: it
keeps all the tips and nodes descending from a node specified by its number
or its label.

> write.tree(extract.clade(tr, node = 6))
[1] "(a:1,b:1);"

drop.fossil is similar to drop.tip but dropping only the tips that are not
contemporaneous (as measured by the distances on the tree) with the
most distant ones from the root.

bind.tree is used to build a tree from two trees where the second one is
grafted on the first one. The arguments are two "phylo" objects. By
default, the second tree is bound on the root of the first one; a different
node may be specified using the option where. If the second tree has a
root.edge this will be used. Thus the binding of two binary (dichotomous)
trees will result in a trichotomy or a tetrachotomy (if there is no root edge)
in the returned tree. This may be avoided by using the option position
to specify where on the branch the tree is to be bound (Fig. 3.4).

> t1 <- read.tree(text = "(a:1,b:1):0.5;")
> t2 <- read.tree(text = "(c:1,d:1):0.5;")
> write.tree(bind.tree(t1, t2))
[1] "(a:1,b:1,(c:1,d:1):0.5):0.5;"
> write.tree(bind.tree(t1, t2, position = 1))
[1] "((a:1,b:1):0.5,(c:1,d:1):0.5):0;"

The operator + applied to two trees is a short-cut for this last example,
eventually adjusting to the root edge length of the first tree:

> write.tree(t1 + t2)
[1] "((a:1,b:1):0.5,(c:1,d:1):0.5):0;"

rotate rotates the internal branch below the most recent common ancestor
of a monophyletic group given by the argument group. The resulting tree
is equivalent to the original one. This function is convenient when plotting
a tree if it is needed to change the order of the tips on the plot.

> write.tree(rotate(t1, 3))
[1] "(b:1,a:1):0.5;"
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Fig. 3.4. Examples of the use of bind.tree

For non-binary nodes, the option polytom specifies which of the two clades
to swap.

ladderize rotates the internal branches of a tree in order to arrange the
sister-clades so that the smallest one is on the right-hand side when plot-
ted upwards. The option right = FALSE ladderizes the tree in the other
direction.

compute.brlen modifies or creates the branch lengths of a tree with respect
to the second argument, method, which may be one of the following.
• A character string specifying the method to be used (e.g., "Grafen").
• An R function used to generate random branch lengths (e.g., runif).
• One or several numeric values (recycled if necessary).
For instance, if we want to set all branch lengths equal to one [97, 113]:
tr <- compute.brlen(tr, 1). This is likely to be useful in comparative
analyses when only a phylogeny with no branch lengths is available.

compute.brtime has a similar action than the previous function but the re-
turned tree is ultrametric; the argument method may be:
• A character string specifying the method to be used to generate the

branching times (e.g., "coalescent" which is the default).
• A numeric vector of the same length than the number of nodes.
The option force.positive allows the user to avoid returning a tree with
negative branch lengths.

3.4.2 Rooted Versus Unrooted Trees

The Newick parenthetic format can represent both rooted and unrooted trees.
In the latter, all nodes are made by the connection of at least three branches.
Thus, in the Newick representation of an unrooted tree, it is necessary that
the basal grouping has (at least) three sibling groups:

((...),(...),(...));

Such a tree read in R with read.tree would result in an object of class
"phylo" whose root has three descendants. In this case, the root has no bio-
logical interpretation: it does not represent a common ancestor of all tips.
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Fig. 3.5. The four trees used in the text to illustrate the difference between rooted
and unrooted trees

The function is.rooted tests whether an object of class "phylo" repre-
sents a rooted tree. It returns TRUE if either only two branches connect to the
root, or if there is a root.edge element.

> ta <- read.tree(text = "(a,b,c);")
> tb <- read.tree(text = "(a,b,c):1;")
> tc <- read.tree(text = "((a,b),c);")
> is.rooted(ta)
[1] FALSE
> is.rooted(tb)
[1] TRUE
> is.rooted(tc)
[1] TRUE

The presence of a zero root.edge allows us to have a rooted tree with a
basal trichotomy:

> td <- read.tree(text = "(a,b,c):0;")
> is.rooted(td)
[1] TRUE

Both objects ta and td are graphically similar; the difference between them
is that the root of td can be interpreted biologically as a common ancestor of
a, b, and c (Fig. 3.5).

The function root (re)roots a tree given an outgroup, made of one or
several tips, as the argument outgroup. If the tree is rooted, it is unrooted
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before being rerooted, so that if outgroup is already an outgroup, then the
returned tree may not be the same as the original one. The specified outgroup
must be monophyletic, otherwise the operation fails and an error message
is printed. The returned tree will have a multichotomous root; the option
resolve.root = TRUE forces the root to be dichotomous be adding a zero-
length branch below the ingroup.

The function unroot transforms a rooted tree into its unrooted counter-
part. If the tree is already unrooted, it is returned unchanged.

The function midpoint in phangorn does a midpoint rooting by placing
the root so to minimize the distances from this node to all tips.

3.4.3 Graphical Tree Manipulation

It is fundamental to allow tree manipulation from the command line because
in many situations the same operation must be done on several trees and this
is practically done via a script or some command lines. But in exploratory
analyses, it may be a bit tedious to pass the correct arguments to these func-
tions, and the user may prefer to interact more closely with the graphical
display of the tree. The functions drop.tip, extract.clade, bind.tree, and
root have an option interactive = FALSE which, when switched to TRUE,
invites the user to click on the plotted tree to identify the argument tip or
node. The user must take care that the correct tree has been plotted, as well
as assigning the returned tree in a possibly different object.

It is possible to write sophisticated, though very short, scripts that enhance
the degree of interactivity. For instance, the next two lines of command plot
the tree tr, call root interactively, save the result in ta, and plot the latter.

> plot(tr)
> plot(ta <- root(tr, interactive = TRUE))
Click close to a node of the tree...
You have set resolve.root = FALSE
> # back to the prompt after clicking

This may be tried with, say, tr <- rtree(5).
The power of these interactive functions may be increased by combin-

ing them with the function identify.phylo which is introduced in the next
chapter (p. 98).

3.4.4 Dichotomous Versus Multichotomous Trees

The Newick format represents multichotomies by having more than two sibling
groups:

(. . . ,(A,B,C),. . . );

This is represented explicitly in the class "phylo" by letting a node have
several descendants in the element edge, for instance:
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...
20 1
20 2
20 3
...

where 1, 2, 3 would be the numbers of the tips A, B, C, and 20 the number
of their ancestor.

As shown in the next chapters, some methods deal only with dichotomous
(i.e., binary) trees, thus it is useful to resolve multichotomies into dichotomies
with internal branches of length zero. On the other hand, when a dichoto-
mous tree has internal branches of length zero it may be needed to collapse
them in a multichotomy. These two operations may be performed with the
functions multi2di and di2multi, respectively. They both take an object of
class "phylo" as main argument; di2multi has a second argument tol that
specifies the tolerance to consider branch lengths significantly greater than
zero (10−8 by default).

There are several ways to solve a multichotomy resulting in different
topologies. The number of possibilities grows very fast with the number of
branches, n, involved in the multichotomy: it is given by the number of la-
belled rooted topologies with n tips (howmanytrees(n) in R). For only three
possibilities with n = 3, there are 105 with n = 5, and 34,459,425 with n = 10.
multi2di has a second argument, random, which specifies whether to solve
the multichotomies in a random order (the default), or in an arbitrary order
if random = FALSE. Repeating the use of multi2di on a tree with the default
option will likely yield different topologies. Specifying random = FALSE may
be preferred if it is required to conserve the same topology in all repetitions.

apTreeshape has a different mechanism to solve multichotomies randomly.
It is used when converting trees of class "phylo" with multichotomies (Sec-
tion 3.5). The function as.treeshape has the option model that can take
the following values: "biased", "pda", "aldous", or "yule". This specifies
the model used to resolve the multichotomies. These models are explained in
Section 7.1.

In a rooted dichotomous tree the number of tips is equal to the number of
nodes minus one, whereas this is minus two for an unrooted tree (because the
root node has been removed). The function is.binary.tree tests whether a
tree, either rooted or unrooted, is dichotomous, and returns a logical value.

3.4.5 Summarizing and Comparing Trees

There is a summary method for "phylo" objects. This function prints a brief
summary of the tree including the numbers of nodes and tips.

is.ultrametric tests if a tree is ultrametric (all tips equally distant from
the root), and returns a logical value. This is done taking the numerical pre-
cision of the computer into account or as specified by the user.
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balance returns, for a fully binary tree, the number of descendants of both
sister-lineages from each node (see Section 6.3.7 for analyses of tree shape).

Once the branch lengths of a "phylo" object have been extracted as shown
above, any computation can be done on them. There are special functions to
perform some particular operations. branching.times returns, for an ultra-
metric tree, the distances from the nodes to the tips using its branch lengths.
coalescent.intervals computes the coalescence times for an ultrametric
tree and returns, in the form of a list, a summary of these computations with
the number of lineages present at each interval, the lengths of the intervals,
the total number of intervals, and the depth of the tree.

It is often necessary to compare two phylogenetic trees because there could
be, for a given format, several representations of the same tree. This is the case
with the Newick format, and also for the "phylo" class of objects. The generic
function all.equal tests whether two objects are “approximately equal”.
For instance, for numeric vectors the comparison is done considering the nu-
merical precision of the computer. For "phylo" objects, two options control
the way the two trees are compared: use.edge.length and use.tip.label,
both being TRUE by default. If use.edge.length = FALSE, only the labeled
topologies are compared; if both options are set to FALSE, then the unlabeled
topologies are compared.

> t1 <- read.tree(text = "((a:1,b:1):1,c:2);")
> t2 <- read.tree(text = "(c:2,(a:1,b:1):1);")
> all.equal(t1, t2)
[1] TRUE
> t3 <- read.tree(text = "(c:1,(a:1,b:1):1);")
> all.equal(t1, t3)
[1] FALSE
> all.equal(t1, t3, use.edge.length = FALSE)
[1] TRUE

Two objects of class "treeshape" can also be compared with all.equal.
Because all.equal does not always return a logical value, it should not be
used in programming a conditional execution. The following should be used
instead:

isTRUE(all.equal(t1, t2))

A graphical comparison is possible with the functions compare.phylo (in
the package phyloch) or phylo.diff (in distory). The first one is especially
useful when comparing two ultrametric trees because it performs a comparison
of the branching times between the two trees; a graphical summary is also done
(Fig. 3.6).

> ta <- read.tree(text = "(((a:1,b:1):1,c:2):1,d:3);")
> tb <- read.tree(text = "(((a:0.5,b:0.5):1.5,d:2):1,c:3);")
> compare.phylo(ta, tb, presCol = "white", absCol = "black",
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Fig. 3.6. Comparison of two trees with compare.phylo

+ tsCol="darkgrey", font = 1)

0 tips from x are missing in y
0 tips from y are missing in x

Summary of the time shift of internal nodes:
max: 0
min: -0.5
median: -0.25
mean: -0.25
standard diviation: 0.3535534

....

$shared_nodes
5 7

xnodes 5 7.0
ynodes 5 7.0
timeshift 0 -0.5

phylo.diff performs a general comparison of the topologies of two phy-
logenies, plotting them side by side and highlighting their differences (the
colors cannot be changed in the current version). It relies on the function
distinct.edges in distory:

> distinct.edges(ta, tb)
[1] 1
> distinct.edges(ta, ta)
NULL
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3.4.6 Manipulating Lists of Trees

Lists of trees of class "multiPhylo" are manipulated in R’s standard way.
These lists can actually be seen as vectors of trees. The operators [, [[, $ are
used in the usual way, and this works both for extracting tree(s) from a list
and for assigning some to a list.

The objects of class "multiPhylo" can exist in two versions: either as a
simple list of trees, or, if all trees have the same tip labels and none of them
are duplicated, the list has an attribute "TipLabel" and the tip numbers in
the matrix edge are the same in all trees. For instance, we can simulate a list
of ten trees:

> TR <- rmtree(10, 5)
> attr(TR, "TipLabel")
NULL

TR may be ‘compressed’ with .compressTipLabel:

> TRcompr <- .compressTipLabel(TR)
> attr(TRcompr, "TipLabel")
[1] "t1" "t4" "t3" "t5" "t2"

This results in a compact and efficient way to store lists of trees. The func-
tion .uncompressTipLabel does the reverse operation. Here, TR and TRcompr
contain the same information, but if we try to change one tree in TRcompr,
the tip labels of the new tree will be checked and the operation will work
only if they are the same than in the list (the tip numbers will eventually be
renumbered):

> TR[[1]] <- rtree(10)
> TRcompr[[1]] <- rtree(10)
Error in ‘[[<-.multiPhylo‘(‘*tmp*‘, 1, value = ....
tree with different number of tips than those in the list
(which all have the same labels; maybe you want
to uncompress them)

Because the tip labels are not compressed in TR, this list can accept any tree,
but after the above operation, it cannot be compressed:

> .compressTipLabel(TR)
Error in .compressTipLabel(TR) :
tree no. 2 has a different number of tips

Checking tip labels is also done when adding new trees to the list:

> TRcompr[11:20] <- rmtree(10, 10)
Error in ‘[[<-.multiPhylo‘(‘*tmp*‘, 1, value = ....
tree with different number of tips than those in the list
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(which all have the same labels; maybe you want
to uncompress them)

> TRcompr[11:20] <- rmtree(10, 5)

Table 3.2 recapitulates the use of the operators for lists of trees.

Table 3.2. Suppose TR is a list of class "multiPhylo" with three trees. Objects in
uppercase are of class "multiPhylo"; those in lowercase are of class "phylo". All
replacement operations check the tip labels of the right-hand term if the labels of
TR are compressed

Example Comment

tr <- TR[[1]] extract one tree
tr <- TR$A id.
tr <- TR["A"] id.
TB <- TR[1] id. but as a list
TB <- TR[1:2] extract two trees
TR[[1]] <- tr replace one tree
TR[1] <- list(tr) or c(tr) id.
TR[1:2] <- c(tr, ts) replace two trees
TR[[4]] <- tr appends a tree to the list
TR[5:6] <- c(tr, ts) appends two trees

3.4.7 Molecular Sequences

DNA sequences read with read.dna are stored in R as a list or a matrix (if
aligned) where each element represents a nucleotide. This allows manipulation
of DNA data with R’s standard tools. Typically, the labels read in the file will
be used as names if the data are stored in a list, or rownames if in a matrix.
The operators [, [[, and $ can be used in the usual way. A useful application
is when selecting sites with respect to codon positions in a coding sequence.
For instance, for a matrix x, and assuming that the reading frame of the
alignment is correct, the following will select the third, the sixth, the ninth,
. . . columns:

y <- x[, c(FALSE, FALSE, TRUE)]

This will work whatever the number of columns because logical indices are
recycled (p. 13). You must be careful to not forget the comma so that indexing
will be applied on the columns only. To do the complementary operation of
selecting the first and second codon positions, one can either use a logical
vector with the first two values set to TRUE, or, more simply, invert the values
of the above vector with the ! operator; in that case it is more convenient to
prepare the logical vector beforehand:
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s <- c(FALSE, FALSE, TRUE)
y <- x[, s]
z <- x[, !s]

Additionally, rbind and cbind can be used to combine matrices rowwise
or columnwise. The latter function has an option fill.with.gaps to possibly
create ‘supermatrices’ where missing data are filled with alignment gaps, as
well as the option check.labels.

Sequences stored in a list can be converted into a matrix with as.matrix
if they have the same length: the names and other attributes will be set
appropriately. However, many functions in ape (e.g., dist.dna) accept lists
of sequences and test whether they all have the same length. The reverse
operation, from a matrix to a list, can be done with del.gaps: this will remove
the eventual alignment gaps. If the latter must be kept, as.list can be used
instead.

seqinr has some sophisticated functions for manipulating molecular se-
quences. comp returns the complement of a DNA sequence:

> x <- scan(what = "")
1: a c g t g g t c a t
11:
Read 10 items
> x
[1] "a" "c" "g" "t" "g" "g" "t" "c" "a" "t"
> comp(x)
[1] "t" "g" "c" "a" "c" "c" "a" "g" "t" "a"

The functions c2s and s2c transform a vector of single characters into a
string, and vice versa:

> c2s(x)
[1] "acgtggtcat"
> s2c(c2s(x))
[1] "a" "c" "g" "t" "g" "g" "t" "c" "a" "t"

splitseq splits a sequence into portions with respect to two options: frame
specifying how many sites to skip before starting to read the sequence (default
is 0), and word giving the length of the portions (default is 3, i.e., a codon for
a DNA sequence):

> splitseq(x)
[1] "acg" "tgg" "tca"
> splitseq(x, frame = 1)
[1] "cgt" "ggt" "cat"
> splitseq(x, word = 5)
[1] "acgtg" "gtcat"
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translate translates a DNA sequence into an amino acid (AA) one. The
option frame may be used as above. Two other options are sens, which can
be "F" (forward, the default) or "R" (reverse) specifying the direction of the
translation, and numcode which takes a numeric value specifying the genetic
code to be used (by default the universal code is used):

> translate(x)
[1] "T" "W" "S"
> translate(x, frame = 1)
[1] "R" "G" "H"
> translate(x, frame = 2)
[1] "V" "V"
> translate(x, frame = 3)
[1] "W" "S"
> translate(x, frame = 4)
[1] "G" "H"

The functions aaa and a convert AA sequences from the one-letter coding
to the three-letter one, and vice versa:

> aaa(translate(x))
[1] "Thr" "Trp" "Ser"
> a(aaa(translate(x)))
[1] "T" "W" "S"

ape has a few functions for summarizing information from a set of DNA
sequences.

• base.freq computes the proportions of each of the four bases; the results
are returned as a table with names "a", "c", "g", and "t". The option freq
= TRUE allows the user to return the counts instead of the proportions. The
option all = TRUE results in counting all 17 possible values (Table 3.1).

• GC.content is based on the previous function, and computes the propor-
tion of guanine and cytosine; a single numeric value is returned.

• seg.sites returns the indices of the segregating sites, that is, the sites
that are polymorphic.

• Ftab computes the contingency table of base frequencies from a pair of
sequences.

seqinr has several functions for summarizing molecular sequences. count
computes the frequencies of all possible combinations of n nucleotides, where
n is specified with the argument word (there is also an option frame used in
the same way as above):

> count(x, word = 1)

a c g t
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2 2 3 3
> count(x, word = 2)

aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt
0 1 0 1 1 0 1 0 0 0 1 2 0 1 1 0

> count(x, word = 3)

aaa aac aag aat aca acc acg act aga agc agg agt ata atc atg
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

att caa cac cag cat cca ccc ccg cct cga cgc cgg cgt cta ctc
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

ctg ctt gaa gac gag gat gca gcc gcg gct gga ggc ggg ggt gta
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

gtc gtg gtt taa tac tag tat tca tcc tcg tct tga tgc tgg tgt
1 1 0 0 0 0 0 1 0 0 0 0 0 1 0

tta ttc ttg ttt
0 0 0 0

The three functions GC, GC2, and GC3 compute the proportion of guanine
and cytosine over the whole sequence, over the second positions, and over the
third ones, respectively:

> GC(x)
[1] 0.5
> GC2(x)
[1] 0.9999
> GC3(x)
[1] 0.6666

There are two summary methods for the classes "SeqFastaAA" and
"SeqFastadna": they print a summary of the frequencies of the different amino
acids or bases, and other information such as the lengths of the sequences.

AAstat has the same effect as summary.SeqFastaAA, but additionally a
graph is plotted of the position of the different categories of amino acids. For
instance, taking a protein sequence distributed with seqinr (Fig. 3.7):

> ss <- read.fasta(system.file("sequences/seqAA.fasta",
+ package = "seqinr"),
+ seqtype = "AA")
> AAstat(ss[[1]])
$Compo

* A C D E F G H I K L M N P Q R S T V W
1 8 6 6 18 6 8 1 9 14 29 5 7 10 9 13 16 7 6 3
Y
1
....
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Fig. 3.7. Plot of the distribution of amino acid categories along the sequence of a
protein

3.4.8 Allelic Data

Objects of class "loci" can be manipulated easily since they are a direct
extension of data frames. pegas has a few method functions adapted to this
class: rbind, cbind, and the indexing operator [. Some other functions, such
as subset, split, rownames, colnames, or the $ operator, can be used without
problem since they respect additional attributes. Additionally, pegas allows
to edit a "loci" object with edit or fix. The command edit(x) opens the
data in R’s spreadsheet-like data editor, and returns the possibly modified
object. On the other hand, fix(x) modifies directly the object x.

adegenet allows to edit an object of class "genind", but since this is an S4
class, the elements are accessed with the @ operator. The help page ?genind
describes them in details. A few functions are provided to ease the manipula-
tion of "genind" objects because setting all elements by hand may be tedious:
seploc splits the data with respect to each locus, seppop does the same with
respect to each population, and repool allows to do the opposite operation.

It is also possible to select a part of a "genind" object with the usual
indexing operator [, the indices will apply to the rows and/or columns of the
@tab slot, and the other slots will be modified accordingly. Some care should
be paid when using numerical indexing on columns because something like
x[, 1] will only select one allele column, eventually excluding other alleles of
the same locus. It is safer to use the option loc which specifies the loci to be
selected, and so will select the appropriate allele columns. Further details are
available in ?pop as well as information on some other functions.
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3.5 Converting Objects

We have seen that a tree may be coded in different ways in R that correspond
to different classes of objects. It is obviously useful to be able to convert among
these different classes because some operations or analyses can be done on
some classes but not others. Table 3.3 gives details on how to convert among
the classes discussed here. Only direct possible conversions are indicated; oth-
ers must be done in two (or more) steps. For instance, to convert a "phylo"
object in a "dendrogram" one, we will do:

as.dendrogram(as.hclust(x))

There is currently no way to convert a "dendrogram" object to another class.

Table 3.3. Conversion among the different classes of tree objects in R (x is the
object of the original class)

From To Command Package

phylo phylo4 as(x, "phylo4") phylobase
matching as.matching(x) ape
treeshape as.treeshape(x) apTreeshape
hclust as.hclust(x) ape
prop.part prop.part(x) ape
splits as.splits(x) phangorn
evonet evonet(x, from, to) ape
network as.network(x) ape
igraph as.igraph(x) ape

phylo4 phylo as(x, "phylo") phylobase
matching phylo as.phylo(x) ape
treeshape phylo as.phylo(x) apTreeshape
splits phylo as.phylo(x) phangorn

networx as.networx(x) phangorn
evonet phylo as.phylo(x) ape

networx as.networx(x) ape
network as.network(x) ape
igraph as.igraph(x) ape

haploNet network as.network(x) pegas
igraph as.igraph(x) pegas

hclust phylo as.phylo(x) ape
dendrogram as.dendrogram(x) stats

Table 3.4 gives the same information for genetic and phenotypic data ob-
jects.
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Table 3.4. Conversion among the different classes of DNA, allelic, and standard
objects in R (x is the object of the original class)

From To Command Package

DNAbin character as.character(x) ape
alignment as.alignment(x) ape
phyDat as.phyDat(x) phangorn
genind DNAbin2genind(x) adegenet

character DNAbin as.DNAbin(x) ape
loci as.loci(x) pegas

alignment DNAbin as.DNAbin(x) ape
phyDat as.phyDat(x) phangorn
character as.matrix(x) seqinr
genind alignment2genind(x) adegenet

phyDat DNAbin as.DNAbin(x) phangorn
character as.character(x) phangorn

loci genind loci2genind(x) pegas
data frame class(x) <- "data.frame"

genind loci genind2loci(x) pegas
data frame phyDat as.phyDat(x) phangorn

loci as.loci(x) pegas
genind df2genind(x) adegenet

matrix phyDat as.phyDat(x) phangorn

3.6 Managing Labels and Linking Data Sets

There are two ways to link distinct data objects in R:

• Observations are ordered similarly in the different objects.
• Observations are identified by labels.

The first way is efficient because the data are easily located. The second
way is safer when putting different data sets together, but it is not so straight-
forward because labels may be duplicated, or have typing errors, or come from
computers with different locales of encoding systems (e.g., geographic locali-
ties with accented characters, or even encoded in non-Roman characters).

Often, a user handles two sets of labels for the same object because one
set may refer to the labels used in, say, a database, or the user wants to have
at the same time a full description of the data as well as a shortened version
for plotting. Three functions in ape help to modify labels. makeLabel modifies
labels to shorten them, make them unique, delete some characters considered
as “illegal”, and possibly quote them. The options are:

makeLabel(x, len = 99, space = "_", make.unique = TRUE,
illegal = "():;,[]", quote = FALSE, ...)

It is a generic function. The options above are those when x is a character
vector. The options when x is of class "phylo" are:
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makeLabel(x, tips = TRUE, nodes = TRUE, ...)

The ‘...’ permits to use the same options than above; the two other options
specify whether to apply the operation on the tip and / or node labels.

When creating several sets of labels for the same observations, it is better
to keep them together in a data.frame, for instance, if we wish to use exter-
nal programs with our data. PhyML accepts labels up to 99 character long,
Clustal up to 30, and Phylip up to 10. Suppose we have an alignment of DNA
sequences X, we could do:

LABELS <- data.frame(original = rownames(X),
phyml = makeLabel(rownames(X)),
clustal = makeLabel(rownames(X), 30),
phylip = makeLabel(rownames(X), 10),
stringsAsFactors = FALSE)

The data are prepared and written on the disk for an analysis with PhyML,
such as:

rownames(X) <- LABELS$phyml
write.dna(X, "X.txt")

After estimating a tree with PhyML and reading it into R (say tr), we want
to replace its labels with the original ones:

o <- match(tr$tip.label, LABELS$phyml)
tr$tip.label <- LABELS$original[o]
rownames(X) <- LABELS$original

tr now has the same labels than X. This mechanism based on the base R
function match may be used to link any type of objects were observations are
identified with labels, names, or rownames.

Labels in R are virtually illimited in size but long labels often need to be
formatted when plotted. mixedFontLabel helps for this task:

mixedFontLabel(..., sep = " ", italic = 0, bold = 0,
parenthesis = 0,
always.roman = c("sp.", "spp.", "ssp."))

Here ‘...’ is not for passing arguments among functions but because various
numbers of vectors may be passed. These vectors are then paste together
separated with the string(s) given in sep. The three next options specify the
formatting of each element—note than an element may be in bold and italics
if its number is passed to both options. The last option specifies that some
strings are never printed in italics even if the vector they belong to is in
italic. This function returns a vector of R expressions which is not readable
to the human eye, but if in the tip.label element of a "phylo" object,
plot.phylo will interpret it correctly. For instance:
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tr$tip.label <- mixedFontLabel(tr$tip.label, geo, paren = 2)
plot(tr)

The last of these three functions is makeNodeLabel: it creates labels for the
noded of a "phylo" tree. The second argument, method, gives the method to
create these labels. This is simple for "number" (the default) and "md5sum";
the third possibility, "user", though more complicated to use, is potentially
powerful. Suppose tr is a large tree with all species of mammals and we
want to label the clade of all primate species “Primates” and the one of all
rodent species “Rodentia” on the appropriate nodes. Suppose also that we
have two character vectors listing all species of these two orders (primates
and rodents). Then the following command will create the labels:

tr <- makeNodeLabel(tr, "user",
nodeList = list(Primates = primates, Rodentia = rodents))

The mechanism used inside makeNodeLabel is based on regular expressions,
so even a list of genera is enough. Previous node labels are not erased, it is
thus possible to use similar commands repeatedly. The regular expressions
make possible to identify clades with other bits of text present in the labels
of the tips (geographic locations, strains, . . . ) Appendix A gives a summary
of the use of regular expressions.

The option method = "md5sum" creates node labels that are unique for
a given set of tip labels. This is done by writting into a temporary file the
labels of tips descendant from each node (after sorting them alphabetically),
then the md5sum of this file is extracted and used as label. This results in a
32-character string which is unique—even accross trees—for a given set of tip
labels. This is useful for crossing information among trees, and is used in the
function node.trans in phyloch.

3.7 Sequence Alignment

Sequence alignment is an essential step in evolutionary analyses of molecular
sequences because it identifies homologous sites in spite of insertions and dele-
tions (indels) that blurs this identification. A good introduction and summary
of this subject are provided by Higgins and Lemey [134] as well as a listing
of computer programs to perform multiple sequence alignment with different
methods. These authors stress that two rules should be observed:

• Protein-coding sequences of nucleotides must first be aligned at the amino
acid level.

• At least two computer programs should be used to check the robustness
of the alignment.

Methods of sequence alignment vary greatly but they are mainly based on
scoring the dissimilarity between sequences and balancing this scoring against
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gap opening in the sequences. Clustal X [299] is the most widely used program
of sequence alignment and is available for most operating systems.7 There are
also several interfaces to the Clustal computing engine, such as the Web-
interface ClustalWWW [40].

Programs for sequence alignment are often large applications that are
costly to re-program de novo in a new language such as R. On the other
hand, most of them can be called with a CLI which makes them relatively
simple to interface with R using system calls. This is what is implemented in
several functions of phyloch. The programs currently available are the most
recommended by Higgins and Lemey [134]: Clustal, Mafft [156],8 Muscle [60],9

T-Coffee [220],10, as well as Prank11 not listed by Higgins and Lemey. All
these programs but the last one are also distributed in various GNU/Linux
distributions. The interfaces of mafft and prank are:

mafft(x, method = "localpair", maxiterate = 1000, op = 1.53,
ep = 0.123)

prank(x, outfile, guidetree = NULL, gaprate = 0.025,
gapext = 0.75)

where x is an object of class "DNAbin" and the other options control the
alignment procedure. Both functions return an object of this class.

Similar functions can be found in ape for Clustal, Muscle, and T-Coffee:

clustal(x, pw.gapopen = 10, pw.gapext = 0.1,
gapopen = 10, gapext = 0.2, exec = NULL,
MoreArgs = "", quiet = TRUE)

muscle(x, exec = "muscle", MoreArgs = "", quiet = TRUE)
tcoffee(x, exec = "t_coffee", MoreArgs = "", quiet = TRUE)

Once an alignment has been performed, it is recommended to check its
quality by visual inspection. Clustal X includes a graphical display to this
end. Furthermore, ape has a method image for "DNAbin" objects which al-
lows one to plot a nucleotide alignment in a flexible way. The advantages
compared to a classical graphical display are that the whole alignment can be
visualized globally, and it is possible to plot a selected base (or several). The
selection of colors is straightforward so that it can be adapted to color-blind
users. Furthermore, I found in my experience that even with well-contrasted
colors, the simultaneous plot of the four bases leads to an overload of infor-
mation. The possibility to plot a single base (e.g., with image(x, "a")) helps
to better visualize the portions of the alignment rich or poor in this base. The
distribution of alignement gaps is also easily displayed with image(x, "-").
7 http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/
8 http://align.bmr.kyushu-u.ac.jp/mafft/software/
9 http://www.drive5.com/muscle/

10 http://www.tcoffee.org/
11 http://www.ebi.ac.uk/goldman-srv/prank/prank/

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/
http://align.bmr.kyushu-u.ac.jp/ma�t/software/
http://www.drive5.com/muscle/
http://www.tco�ee.org/
http://www.ebi.ac.uk/goldman-srv/prank/prank/
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Fig. 3.8. Plot of the fifty first sites of the woodmouse data displaying the guanine
and the missing data

Thanks to the efficient subsetting of "DNAbin" objects (p. 56), it is easy to
zoom on a portion of an alignment. Figure 3.8 shows the first 50 nucleotides of
the woodmouse data displaying the guanine together with the missing data.
A grid is added to ease reading the graph:

x <- woodmouse[, 1:50]
image(x, c("g", "n"), c("black", "grey"))
grid(ncol(x), nrow(x), col = "lightgrey")

Finally, the function del.gaps in ape is useful here because it removes all
inserted gaps (-) and returns the sequences as a list.

3.8 Case Studies

The case studies show examples of workflow when using R for phylogenetic
analyses. All operations are detailed and explained so readers can repeat them,
and eventually adapt them to their needs. In this chapter, we consider prepar-
ing several data sets from the literature. Some of these data are analyzed
further in the next chapters.

3.8.1 Sylvia Warblers

Böhning-Gaese et al. [27] studied the evolution of ecological niches in 26
species of warblers of the genus Sylvia. They also sequenced the gene of the
cytochrome b for these species; the sequences were deposited in GenBank and
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have accession numbers AJ534526–AJ534549 and Z73494. We consider these
molecular data as well the ecological data in their Table 1. The goal of this
application is to get the sequence data from GenBank, prepare (align) them,
and read the ecological data from a file.

Because the DNA data are accessible through GenBank, we get them with
read.GenBank. We first create a vector of mode character with the accession
numbers using the function paste:

> x <- paste("AJ5345", 26:49, sep = "")
> x <- c("Z73494", x)
> x
[1] "Z73494" "AJ534526" "AJ534527" "AJ534528" "AJ534529"
[6] "AJ534530" "AJ534531" "AJ534532" "AJ534533" "AJ534534"
[11] "AJ534535" "AJ534536" "AJ534537" "AJ534538" "AJ534539"
[16] "AJ534540" "AJ534541" "AJ534542" "AJ534543" "AJ534544"
[21] "AJ534545" "AJ534546" "AJ534547" "AJ534548" "AJ534549"

We then read the sequences. Of course, the computer must be connected to
the Internet:

> sylvia.seq <- read.GenBank(x)

We check that the data have been correctly downloaded by printing the re-
turned object:

> sylvia.seq
25 DNA sequences in binary format stored in a list.

Mean sequence length: 1134.84
Shortest sequence: 1041
Longest sequence: 1143

Labels: Z73494 AJ534526 AJ534527 AJ534528 AJ534529 AJ534530...

Base composition:
a c g t

0.270 0.354 0.131 0.245

We have effectively a list with 25 sequences: 23 of them have 1143 nucleotides,
and 2 have 1041. This necessitates an alignment operation which is done with
Clustal:

> sylvia.clus <- clustal(sylvia.seq)

The alignment operation shows that there are 102 missing nucleotides in the
last two sequences (which could be easily visualized with image(sylvia.clus)).
To check the stability of the alignment produced by Clustal, we perform the
same operation with MAFFT:
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> library(phyloch)
> sylvia.maff <- mafft(sylvia.seq)
blosum 62
generating 200PAM scoring matrix for nucleotides ... done
scoremtx = -1
....

Because the external programs will likely reorder the sequences, we compare
their outputs after reordering the rows:

> identical(sylvia.clus[x, ], sylvia.maff[x, ])
[1] TRUE

Note that we kept the original (unaligned) sequences from GenBank be-
cause they have the species names. To save some memory, we can keep the
latter in a separate vector whose names are the accession numbers—we see
later the advantage of using this structure—and erase the original sequences:

> taxa.sylvia <- attr(sylvia.seq, "species")
> names(taxa.sylvia) <- names(sylvia.seq)
> rm(sylvia.seq)

We then see that two of these names have to be fixed:

> taxa.sylvia[c(1, 24)]
Z73494

"Sylvia_atricapilla_atricapilla"
AJ534548

"Illadopsis_abyssinica"

Böhning-Gaese et al. [27] wrote that Illadopsis abyssinica had a different
generic status, but they considered it as belonging to Sylvia: we change this
accordingly for consistency. We also remove the subspecies name of the first
sequence, and print all the species names:

> taxa.sylvia[1] <- "Sylvia_atricapilla"
> taxa.sylvia[24] <- "Sylvia_abyssinica"
> taxa.sylvia

Z73494 AJ534526
"Sylvia_atricapilla" "Chamaea_fasciata"

AJ534527 AJ534528
"Sylvia_nisoria" "Sylvia_layardi"

AJ534529 AJ534530
"Sylvia_subcaeruleum" "Sylvia_boehmi"

AJ534531 AJ534532
"Sylvia_buryi" "Sylvia_lugens"

AJ534533 AJ534534
"Sylvia_leucomelaena" "Sylvia_hortensis"
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AJ534535 AJ534536
"Sylvia_crassirostris" "Sylvia_curruca"

AJ534537 AJ534538
"Sylvia_nana" "Sylvia_communis"

AJ534539 AJ534540
"Sylvia_conspicillata" "Sylvia_deserticola"

AJ534541 AJ534542
"Sylvia_balearica" "Sylvia_undata"

AJ534543 AJ534544
"Sylvia_cantillans" "Sylvia_melanocephala"

AJ534545 AJ534546
"Sylvia_mystacea" "Sylvia_melanothorax"

AJ534547 AJ534548
"Sylvia_rueppelli" "Sylvia_abyssinica"

AJ534549
"Sylvia_borin"

The ecological data are in a file ‘sylvia data.txt’ whose first three lines are:

mig.dist mig.behav geo.range
Sylvia_abyssinica 0 resid trop
Sylvia_atricapilla 5000 short temptrop
....

We read these data with read.table, and check the returned object:

> sylvia.eco <- read.table("sylvia_data.txt")
> str(sylvia.eco)
‘data.frame’: 26 obs. of 3 variables:
$ mig.dist : int 0 5000 7500 5900 5500 3400 2600 0 0 0 ...
$ mig.behav: Factor w/ 3 levels "long","resid",..
$ geo.range: Factor w/ 3 levels "temp","temptrop",..

Note that the species names are used as rownames in this data frame:

> rownames(sylvia.eco)
[1] "Sylvia_abyssinica" "Sylvia_atricapilla"
[3] "Sylvia_borin" "Sylvia_nisoria"
[5] "Sylvia_curruca" "Sylvia_hortensis"
[7] "Sylvia_crassirostris" "Sylvia_leucomelaena"
[9] "Sylvia_buryi" "Sylvia_lugens"
[11] "Sylvia_layardi" "Sylvia_subcaeruleum"
[13] "Sylvia_boehmi" "Sylvia_nana"
[15] "Sylvia_deserti" "Sylvia_communis"
[17] "Sylvia_conspicillata" "Sylvia_deserticola"
[19] "Sylvia_undata" "Sylvia_sarda"
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[21] "Sylvia_balearica" "Sylvia_cantillans"
[23] "Sylvia_mystacea" "Sylvia_melanocephala"
[25] "Sylvia_rueppelli" "Sylvia_melanothorax"

The data are ready and can be saved in an R workspace before being
analyzed:

> save(sylvia.clu, taxa.sylvia, sylvia.eco,
+ file = "sylvia.RData")

3.8.2 Mammalian Mitochondrial Genomes

In the first edition of this book, this case study used a data set downloaded
in April 2005 representing 109 species. For this second edition, the analyses
have been updated with a larger data set. Except for a few changes—number
of lines to skip or read, number of species—the commands below are virtu-
ally identical to those in the first edition, thus demonstrating the concept of
“programmability” discussed in Chapter 1.

Gibson et al. [106] made a comprehensive analysis of the mitochondrial
genomes of 69 species of mammals. They explored the variations in base com-
position in different regions of this genome. We limit ourselves to simpler
analyses. The goal is to show how to read heterogeneous data in a big file,
and manipulate and prepare them in R.

The original data come from the OGRe (Organellar Genome Retrieval
system) database.12 All mammalian mtGenomes available in the database
were downloaded in March 2011. This represents 233 species. The data were
saved in a single file called ‘mammal mtGenome.fasta’.

The first six lines of this file show how the data are presented:

################################################
# OGRe sequences #
################################################

#ORYCUNMIT : _Oryctolagus cuniculus_ (rabbit) : MITOCHONDRION
#OCHPRIMIT : _Ochotona princeps_ (American pika) : MITOCH....
....

After the 233 species names and codes, the sequences are printed in FASTA
format. For instance, the lines 240–242 are:

>ORYCUNMIT(ATP6)
atgaacgaaaatttattctcctctttcgctaccccaacactaatagggctccctatt....
caactttactatttccctcccctagccgactaattaacaaccgactagtctcaaccc....
....

12 http://ogre.mcmaster.ca/.

http://ogre.mcmaster.ca/
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Thus the species codes used in the first part of the file are used for the
sequence names together with the names of the genes in parentheses. Conse-
quently we need to get the correspondence between these species codes and
the species names. Thanks to the flexibility of read.table we do this rela-
tively straightforwardly. If we examine the first lines from the file above, we
notice that the command needed to read the species names and codes will
need to:

• Skip the first four lines,
• Read only 233 lines,
• Use the underscore " " as the character separating the two columns,
• Ignore what comes after the scientific name on each line.

The corresponding command is (we again use the as.is = TRUE option
for the same reason):

> mtgen.taxa <- read.table("mammal_mtGenome.fasta", skip = 4,
+ nrows = 233, sep = "_", comment.char = "(", as.is = TRUE)

Note that we take advantage of the fact that the common names are within
parentheses: this is done with the option comment.char (whose default value
is "#"). We look at the first five rows:

> mtgen.taxa[1:5, ]
V1 V2 V3

1 #ORYCUNMIT : Oryctolagus cuniculus NA
2 #OCHPRIMIT : Ochotona princeps NA
3 #OCHCOLMIT : Ochotona collaris NA
4 #LEPEURMIT : Lepus europaeus NA
5 #EREGRAMIT : Eremitalpa granti NA

There are a few undesirable side-effects to our command, but this is easily
solved. The fact that we set sep = " " resulted in the space after the second
underscore being read as a variable. We can delete it with:

> mtgen.taxa$V3 <- NULL

The first column containing the species codes have a few extra characters that
we wish to remove. We can do this operation with gsub.

> mtgen.taxa$V1 <- gsub("#", "", mtgen.taxa$V1)
> mtgen.taxa$V1 <- gsub(" : ", "", mtgen.taxa$V1)

Finally we change the names of the columns and check the results:

> colnames(mtgen.taxa) <- c("code", "species")
> mtgen.taxa[1:5, ]

code species
1 ORYCUNMIT Oryctolagus cuniculus
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2 OCHPRIMIT Ochotona princeps
3 OCHCOLMIT Ochotona collaris
4 LEPEURMIT Lepus europaeus
5 EREGRAMIT Eremitalpa granti

After this small string manipulation, we can read the sequences with
read.dna. This function also has an option skip that we use here. We then
check the number of sequences read:

> mtgen <- read.dna("mammal_mtGenome.fasta",
+ format = "fasta", skip = 239)
> length(mtgen)
[1] 9087

We now check the names of the first ten sequences:

> names(mtgen)[1:10]
[1] "ORYCUNMIT(ATP6)" "OCHPRIMIT(ATP6)" "OCHCOLMIT(ATP6)"
[4] "LEPEURMIT(ATP6)" "EREGRAMIT(ATP6)" "PONBLAMIT(ATP6)"
[7] "CAPHIRMIT(ATP6)" "MONMONMIT(ATP6)" "BALOMUMIT(ATP6)"

[10] "CAPMARMIT(ATP6)"

It would be interesting now to get only the name of the gene for each se-
quence in a separate vector. Again we can use gsub for this, but the command
is slightly more complicated because we want to remove all characters outside
the parentheses, and the latter as well. We use the fact that gsub can treat
regular expressions. For instance, we can do this:

> genes <- gsub("^[[:alnum:]]{1,}\\(", "", names(mtgen))

where "^[[:alnum:]]{1,}\\(" means “a character string starting with one
or more alphanumeric character(s) and followed by a left parenthesis”. We
need to call gsub a second time to remove the trailing right parenthesis:

> genes <- gsub("\\)$", "", genes)

Note in these two examples how the caret ^ and the dollar $ are used to specify
that the characters we are looking for start or end the string, respectively
(Appendix A).

After this operation it appears that some values in genes indicate that
the sequence is actually empty:

> unique(genes)[15]
[1] "RNL)Sequence does not exist"

To remove these missing sequences, we find them using grep:

> i <- grep("Sequence does not exist", names(mtgen))
> str(i)
int [1:519] 3137 4149 4382 4615 4848 5081 5547 5780 ...
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There are thus 519 missing sequences in the data set. We remove them with:

> mtgen <- mtgen[-i]

And we repeat the operation of extracting the sequence names:

> genes <- gsub("^[[:alnum:]]{1,}\\(", "", names(mtgen))
> genes <- gsub("\\)$", "", genes)

We can now look at how many sequences there are for each gene:

> table(genes)
genes

ATP6 ATP8 COX1 COX2
233 233 233 233
COX3 CYTB ND1 ND2
233 233 233 233
ND3 ND4 ND4L ND5
233 233 233 233
ND6 RNL RNS tRNA-Ala
233 232 233 233

tRNA-Arg tRNA-Asn tRNA-Asp tRNA-Cys
233 232 232 232

tRNA-Gln tRNA-Glu tRNA-Gly tRNA-His
232 232 233 232

tRNA-Ile tRNA-Leu tRNA-Leu(CUN) tRNA-Leu(UUR)
232 16 217 217

tRNA-Lys tRNA-Met tRNA-Phe tRNA-Pro
232 232 230 227

tRNA-Ser tRNA-Ser(AGY) tRNA-Ser(UCN) tRNA-Thr
17 216 218 232

tRNA-Trp tRNA-Tyr tRNA-Val
232 232 233

We are now ready to do all sorts of analyses with this data set. We see how
to analyze base frequencies at three levels of variation:

• Between species (all genes pooled);
• Between genes (all species pooled);
• Between sites for a single protein-coding gene (all species pooled).

To calculate the base frequencies for each species, we first create a matrix
with 233 rows and 4 columns that will store the results:

> BF.sp <- matrix(NA, nrow = 233, ncol = 4)

We set its rownames with the species names, and the colnames with the four
base symbols:
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> rownames(BF.sp) <- mtgen.taxa$species
> colnames(BF.sp) <- c("A", "C", "G", "T")

We put in each row of this matrix the frequency of each base. This involves:

1. Selecting only the sequences with the corresponding species code using
grep;

2. Computing the base frequencies for the selected sequences with the func-
tion base.freq;

3. Repeating these two operations for all 233 species.

A simple approach is to use a for loop where a variable, say i, will vary from
1 to 233: this will be used as index for both BF.sp and mtgen.taxa$code.
The commands are relatively simple and use some elements seen above. For
clarity, we write two separate commands within the loop (the indices of the
selected genes are stored in x):

> for (i in 1:233) {
+ x <- grep(mtgen.taxa$code[i], names(mtgen))
+ BF.sp[i, ] <- base.freq(mtgen[x])
+ }

To visualize the results, we use the graphical function matplot which plots
the columns of a matrix. We add the options type = "l" to have lines (the
default is points), and col = 1 to avoid colors. We further add a legend
(Fig. 3.9):

> matplot(BF.sp, type = "l", col = 1, xlab = "Species",
+ ylab = "Base frequency")
> legend(0, 0.22, c("A", "C", "G", "T"), lty=1:4, bty="n")

The second analysis—between genes for all species pooled—will follow the
same lines as the previous one. The matrix used to store the results will have
39 rows, and its rownames will be the names of the genes.

A subtlety here is the need to use the option fixed = TRUE in grep: the
reason is that some gene names contain parentheses and these characters have
a special meaning in regular expressions. The option used here forces grep to
treat its first argument as a simple character string, and thus avoids this
annoyance. The full set of commands is:

> BF.gene <- matrix(NA, nrow = 39, ncol = 4)
> rownames(BF.gene) <- unique(genes)
> colnames(BF.gene) <- c("A", "C", "G", "T")
> for (i in 1:nrow(BF.gene)) {
+ x <- grep(rownames(BF.gene)[i], names(mtgen), fixed=TRUE)
+ BF.gene[i, ] <- base.freq(mtgen[x])
+ }
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Fig. 3.9. Plot of the base frequencies of the mitochondrial genome of 233 species
of mammals

We represent the results in a different way by using the function barplot
which, by default, makes a stacked barplot of the rows for each column: we
thus need to transpose the matrix BF.gene first. Because some gene names
are somewhat long, we modify the margins; we also use the options las = 2
to force the labels on the x-axis to be vertical, and legend = TRUE to add a
legend (Fig. 3.10):

> par(mar = c(8, 3, 3, 2))
> barplot(t(BF.gene), las = 2, legend = TRUE,
+ args.legend = list(horiz = TRUE, bg = "white"))

For the third analysis—between sites for a single gene—we focus on the
genes of the cytochrome oxydase 1 whose code is COX1. We first extract the
sequences of this gene by taking the appropriate indices in the way seen above:

> cox1 <- mtgen[grep("COX1", names(mtgen))]
> cox1
233 DNA sequences in binary format stored in a list.

Mean sequence length: 1545.056
Shortest sequence: 1539
Longest sequence: 1557
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Fig. 3.10. Plot of the base frequencies of the mitochondrial genome of 233 species
of mammals for each gene

Labels: ORYCUNMIT(COX1) OCHPRIMIT(COX1) OCHCOLMIT(COX1)
LEPEURMIT(COX1) EREGRAMIT(COX1) PONBLAMIT(COX1) ...

Base composition:
a c g t

0.279 0.247 0.167 0.307

We now look at the length of each sequence using sapply and length, and
summarize the results with table:

> table(sapply(cox1, length))

1539 1540 1541 1542 1543 1545 1546 1548 1551 1554 1557
1 5 1 57 4 126 2 7 23 6 1

The majority of these sequences has 1545 sites and thus it is likely that they
are properly aligned. Furthermore a look at the first few nucleotides (which
can be done with str(cox1)) suggests this is true for the whole sequences.
We align the sequences with Muscle and MAFFT:

> cox1.muscle <- muscle(cox1)
> cox1.mafft <- mafft(cox1)

The two returned alignments differ in size:
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> dim(cox1.muscle)
[1] 233 1569
> dim(cox1.mafft)
[1] 233 1565

A visualization with image shows that the difference comes from the insertion
of gaps towards the 3’ end of the sequences. Indeed, both alignments agree
over 1532 nucleotides, and we select this portion (which covers 99.16% of the
average sequence lenght) for our subsequent analyses.

> nm <- rownames(cox1.muscle)
> identical(cox1.muscle[, 1:1532], cox1.mafft[nm, 1:1532])
[1] TRUE
> cox1.ali <- cox1.muscle[, 1:1532]

To extract the first, second, or third codon position we use logical indixing
on the columns as explained on page 56. So, we make a loop where at each iter-
ation a vector with three values FALSE is created and the appropriate element
is changed to TRUE. This is then used to subset the columns of the alignment
and compute the base frequencies. (Compared to the first edition, this step is
considerably simplified because we work direcly with the alignment.)

> BF.cox1 <- matrix(NA, 3, 4)
> rownames(BF.cox1) <- paste("codon position", 1:3)
> colnames(BF.cox1) <- c("A", "C", "G", "T")
> for (i in 1:3) {
+ s <- rep(FALSE, 3)
+ s[i] <- TRUE
+ BF.cox1[i, ] <- base.freq(cox1.ali[, s])
+ }
> BF.cox1

A C G T
codon position 1 0.2655149 0.2037661 0.29134156 0.2393775
codon position 2 0.1814517 0.2610573 0.14905679 0.4084343
codon position 3 0.3829284 0.2784842 0.06391537 0.2746720

We plot the results again using barplot but adding a few annotations to
present the figure (Fig. 3.11):

> par(mar = c(2.5, 4.1, 4.1, 1))
> barplot(t(BF.cox1), main = "Cytochrome oxydase I",
+ ylab = "Base frequency")
> par(cex = 2)
> text(0.7, BF.cox1[1, 1]/2, "A", col = "white")
> text(0.7, BF.cox1[1,1]+BF.cox1[1,2]/2, "C", col = "white")
> text(0.7, sum(BF.cox1[1, 1:2]) + BF.cox1[1, 3]/2, "G")
> text(0.7, sum(BF.cox1[1, 1:3]) + BF.cox1[1, 4]/2, "T")
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Fig. 3.11. Plot of the base frequencies at the three codon positions of the gene of
the cytochrome oxydase I for 233 species of mammals

3.8.3 Butterfly DNA Barcodes

Hebert et al. [131] analyzed the molecular variation in the neotropical skipper
butterfly Astraptes fulgerator in order to assess the species limits among dif-
ferent forms known to have larval stages feeding on distinct host plants. They
sequenced a portion of the mitochondrial gene cytochrome oxydase I (COI)
of 466 individuals belonging to 12 larval forms. The goal of this application
is to prepare a large data set of DNA sequences, and align them for further
analyses (Chapter 5).

The GenBank accession numbers are AY666597–AY667060, AY724411,
and AY724412 (there is a printing error in [131] for these last two numbers).
We read the sequences with read.GenBank in the same way as seen for the
Sylvia or Felidae data.

> x <- paste("AY66", 6597:7060, sep = "")
> x <- c(x, "AY724411", "AY724412")
> astraptes.seq <- read.GenBank(x)

We then look at how the sequence lengths are distributed:

> table(sapply(astraptes.seq, length))

208 219 227 244 297 370 373 413 440 548 555 573 582 599 600
1 1 1 1 1 1 1 1 1 1 3 1 1 1 1

601 603 608 609 616 619 620 623 626 627 628 629 630 631 632
2 2 1 1 2 1 1 1 4 1 5 3 4 3 7

633 634 635 636 638 639
1 1 12 6 2 389
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The sequences clearly need to be aligned. We use Clustal:

> astraptes.seq.ali <- clustal(astraptes.seq)

A graph with image(astraptes.seq.ali, "-") shows that all alignment
gaps have been inserted at the beginning or the end of the sequences.

We check the species names of the sequences downloaded from GenBank:

> table(attr(astraptes.seq, "species"))

Astraptes_sp._BYTTNER Astraptes_sp._CELT
4 23

Astraptes_sp._FABOV Astraptes_sp._HIHAMP
31 16

Astraptes_sp._INGCUPnumt Astraptes_sp._LOHAMP
66 47

Astraptes_sp._LONCHO Astraptes_sp._MYST
41 3

Astraptes_sp._SENNOV Astraptes_sp._TRIGO
105 51

Astraptes_sp._YESENN
79

All specimens were thus attributed to Astraptes sp. with further information
given as a code (explained in [131]). We do the same operation as above to
store the taxon names with the accession numbers:

> taxa.astraptes <- attr(astraptes.seq, "species")
> names(taxa.astraptes) <- names(astraptes.seq)

We finally save the data for further analyses:

> save(astraptes.seq.ali, taxa.astraptes,
+ file = "astraptes.RData")

3.9 Exercises

Exercises 1–3 aim at familiarizing the reader with tree data structures in R;
exercises 4–6 give more concrete applications of the concepts from this chapter.

1. Create a random tree with 10 tips.
(a) Extract the branch lengths, and store them in a vector.
(b) Delete the branch lengths, and plot the tree.
(c) Give new, random branch lengths from a uniform distribution U [0, 10].

Do this in a way that works for any number of tips.
(d) Restore the original branch lengths of the tree.
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2. Create a random tree with 5 tips, print it, and plot it. Find the way to
delete the class of this object, and print it again. Try to plot it again:
comment on what happens. Find a way to force the plot of the tree as
before.

3. Generate three random trees with 10 tips. Write them in a file. Read this
file in R. Print a summary of each tree. Write a small program that will
do these operations for any number of trees (say N) and any number of
tips (n).

4. (a) Write a function that will read trees from the Pfam database, so that
so we can use it with:

read.pfamtree(accnum, type = "full")
where accnum is the accession number of the family, and type is the
type of the alignment (see p. 44).

(b) Extract the tree #1000 in Pfam. Make three copies of this tree, and
give them branch lengths (i) all equal to one, (ii) so that the node
heights are proportional to the number of species, and (iii) randomly
extracted from a uniform distribution U [0, 0.1].

5. Extract the sequences of the cytochrome b gene with the accession num-
bers U15717–U15724 (source: [116]).
(a) Print the species names of each sequence.
(b) Print, with a single command, the length of each sequence.
(c) Arrange the data in a matrix.
(d) Extract and store in three matrices the first, the second, and the

third codon positions of all sequences. Compute their base frequencies.
What do you conclude?

(e) Save the three matrices in three different files. Read these files, and
concatenate the three sets of sequences.

6. (a) Write a program that will extract single nucleotide polymorphism
(SNP) from a sequence alignment. The output will include the posi-
tion of the SNPs along the sequence and the observed bases (alleles).
You will include an option to output the sequence of the constant
sites.

(b) Write a second program that will transform the above alignment into
an object of class "loci".
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Plotting Phylogenies

But at least a few computer graphics only evoke the response “Isn’t remark-
able that the computer can be programmed to draw like that?” instead of
“My, what interesting data.”.

—Edward R. Tufte [301]

Drawing phylogenetic trees has been important for a long time in the study
of biological evolution, as illustrated by Darwin’s only figure in his Origin of
Species [49]. A plotted phylogeny is the usual way to summarize the results of a
phylogenetic anlysis. This also gives the essence of the evolutionary processes
and patterns.

Quite surprisingly, graphical tools have been somewhat neglected in the
analysis of phylogenetic data. There is a very limited treatment on graph-
ics in recent phylogenetics textbooks [79, 119, 218, 317]. On the other hand,
an important area of statistical research has been developed on the graphi-
cal analysis and exploration of data. Some of these developments have been
implemented in R (e.g., see the lattice package). R also has a flexible and
programmable graphical environment [211].

There are undoubtedly values in the graphical exploration of phylogenetic
data. Character mapping has been done for some time in some issues, and
it will be valuable to have a more general approach for graphical analysis
and exploration of phylogenetic data. In this chapter, I explore some of these
ideas, as well as explaining how to plot phylogenetic trees in simple ways.
Inasmuch as there are many illustrations throughout the chapter, there are
no case studies.

4.1 Simple Tree Drawing

plot.phylo in ape can draw five kinds of trees: phylograms (also called rectan-
gular cladograms), cladograms (triangular cladograms), unrooted trees (den-
drograms), radial trees, and circular (fan) trees. This function is a method: it

DOI 10.1007/978-1-4614-1743-9_4, © Springer Science+Business Media, LLC 2012
, Use R,E. Paradis, Analysis of Phylogenetics and Evolution with R 81
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Fig. 4.1. A simple use of plot(tr)

uses R’s syntax of the generic function plot, and acts specifically on "phylo"
objects. It has several options; all of them are defined with default values.
In its most direct use (i.e., plot(tr)) a phylogram is plotted on the current
graphical device from left (root) to right (tips) with some space around (as
defined by the current margins). The branch lengths, if available, are used.
The tip labels are printed in italics, left-justified from the tips of their respec-
tive terminal branches. The node labels and the root edge, if available, are
ignored. As an example, Fig. 4.1 shows a tree named tr showing the relation-
ships among some species of woodmice (Apodemus) and a few closely related
species of rodents published by Michaux et al. [205]. The tree was plotted, after
being read with tr <- read.tree("rodent.tre") (Section 3.2), by simply
typing plot(tr).1

The options alter these settings. They are described in Table 4.1. Most of
these options have intuitive effects (e.g., type, font, etc.), whereas some have
a NULL value by default. This means that, unless the user gives a specific value,
it is determined with respect to other arguments. We have seen an illustration
of this mechanism above with the simple command plot(tr).

An obvious case where one option alters the default value of another is
when the tree is plotted leftwards using direction = "l": the labels are now
right-justified, which seems an obvious consequence of the change in direction.
For instance, a leftwards cladogram of the same tree may be obtained with
(the resulting plot is in Fig. 4.2):

plot(tr, type = "c", use.edge.length = FALSE,

1 In this chapter, the box delimiting the figures indicates the presence of margins
around the tree.



4.1 Simple Tree Drawing 83

Table 4.1. The options of plot.phylo. The values marked with (d) are the default
ones

Option Effect Possible values

type Type of tree "p" (d), "c", "u", "r", "f"
use.edge.length Whether to use branch lengths TRUE (d), FALSE
node.pos Vertical position of the nodes with NULL (d), 1, 2

respect to the positions of the tips
show.tip.label Whether to show tip labels TRUE (d), FALSE
show.node.label Whether to show node labels FALSE (d), TRUE
edge.color The line colors of the edges "black" (d), a vector of

strings giving the colors
edge.width The line thickness of the edges 1 (d), a vector of

numeric values
edge.lty The line type of the edges 1 (d), a vector of

numeric values
font The font of the labels 1 (normal), 2 (bold),

3 (italics) (d), 4 (bold italics)
cex Relative character size A numeric value (default: 1)
adj Horizontal and vertical NULL (d), one or two numeric

adjustment of the labels values
srt Rotation of the labels A numeric value (default: 0)
no.margin Leave some space around the tree FALSE (d), TRUE
root.edge Draw the root edge FALSE (d), TRUE
label.offset Space between the tips 0 (d), a numeric value

and the labels
underscore Display the underscores FALSE (d), TRUE

in tip labels
x.lim Limits on the horizontal axis NULL (d), two numeric values
y.lim Limits on the vertical axis NULL (d), two numeric values
direction Direction of the tree "r" (d), "l", "u", "d"
lab4ut Style of labels for unrooted trees "horizontal" (d), "radial"
tip.color The colors of the tip labels "black" (d), a vector of

strings giving the colors
draw Draw the tree TRUE (d), FALSE

direction = "l")

If the user wants to keep the labels left-justified, then the option adj must be
used (Fig. 4.3):

plot(tr, type = "c", use.edge.length = FALSE,
direction = "l", adj = 0)

Many publishers of journals or books prefer to receive figures in Encapsu-
lated PostScript (EPS) format. The function postscript in R may be used
to produce such files. Note that when the tree is plotted in a PostScript file,
the default is to print in landscape format so that the tree will be vertical if



84 4 Plotting Phylogenies

Apodemus alpicola
Apodemus uralensis
Apodemus flavicollis

Apodemus sylvaticus
Apodemus hermonensis

Apodemus mystacinus
Apodemus peninsulae

Apodemus semotus
Apodemus agrarius

Tokudaia minutus
Mus musculus

Mus caroli

Rattus norvegicus
Diplothrix legata

Fig. 4.2. A leftwards cladogram with default label justification
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Fig. 4.3. A leftwards cladogram with left-justified labels

the page is viewed in portrait format. To set the page in portrait format, you
must set horizontal = FALSE in the function postscript.

In R, it is possible to add further graphical elements to an existing plot
using the low-level plotting commands (see Murrell’s excellent textbook [211],
for further details on how R graphics work). plot.phylo exploits this by
letting the user manage the space around the tree. This can be accomplished
in two non-exclusive ways: either through setting the margins, or by changing
the scales of the axes.
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When plotting a tree, the current margins are used. The size of the latter,
in number of lines, can be found by querying the graphical parameters with
the command par("mar"). By default, this gives:

> par("mar")
[1] 5.1 4.1 4.1 2.1

These can be changed with, for instance:

par(mar = rep(1, 4))

The option no.margin = TRUE in plot.phylo has the same effect as doing:

par(mar = rep(0, 4))

The margins of a graphic are usually used to add text around a plot: this
is done with the function mtext (marginal text). The axes can also be drawn
with the function axis, but this is likely to be informative only for the axis
parallel to the branches. Also the default display of the tick marks may not
be appropriate for the tree (see the functions axisPhylo and add.scale.bar,
Section 4.1.1). Finally, the function box adds a box delimiting the margins
from the plot region where the tree is drawn.

The other way to manage space around the tree is to alter the scales of
the plotting region itself. plot.phylo draws the edges using the lengths of
the "phylo" object directly, then computes how much space is needed for the
labels, and sets the axes so that the plotting region is optimally used. Unless
the axes are displayed explicitly with the axis function, the user does not
know the size of the plotting region. However, plot.phylo invisibly returns
(meaning that it is not normally displayed) a list with the option values when
it was called. This list can be accessed by assigning the call; its elements are
then extracted in the usual way:

> tr.sett <- plot(tr)
> names(tr.sett)
[1] "type" "use.edge.length" "node.pos"
[4] "show.tip.label" "show.node.label" "font"
[7] "cex" "adj" "srt"
[10] "no.margin" "label.offset" "x.lim"
[13] "y.lim" "direction" "tip.color"
[16] "Ntip" "Nnode"
> tr.sett$x.lim
[1] 0.0000000 0.1326358
> tr.sett$y.lim
[1] 1 14

This shows that the horizontal axis of the plot in Fig. 4.1 ranges from 0
to 0.132. To draw the same tree but leaving about half the space of the plot
region free either on the right-hand side, or on the left-hand side, one can do:
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Fig. 4.4. An unrooted tree of the bird orders

plot(tr, x.lim = c(0, 0.264))
plot(tr, x.lim = c(-0.132, 0.132))

Drawing unrooted trees is a difficult task because the optimal positions
of the tips and nodes cannot be found in a straightforward way. plot.phylo
uses a simple algorithm, inspired by the program drawtree in Phylip, where
clades are allocated angles with respect to their number of species [79]. With
this scheme, edges should never cross. The option lab4ut (labels for unrooted
trees) allows two positions for the tip labels: "horizontal" (the default) or
"radial". Using the latter and adjusting the font size with "cex" is likely to
give readable trees in most situations, even if they are quite large. Figure 4.4
shows an unrooted tree of the recent bird orders [284]. The command used is:

plot(bird.orders, type = "u", font = 1, no.margin = TRUE)

Circular trees can be drawn with plot(tr, "fan") (Fig. 4.5). ape can also
plot circular trees by using the option type = "radial" in plot.phylo but
this does not take branch lengths into account. All tips are placed equispaced
on a circle, the root being at the center of this circle. The nodes are then
placed on concentric circles with distances from the outer circle depending on
the number of descendant tips. Figure 4.6 shows an example with the families
of birds [284]. This representation can be used for rooted and unrooted trees.
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Fig. 4.5. A circular tree with plot(tr, "fan")

It has the advantages of being easily computed; the lines have no chance to
cross and the tips are equally spaced. It should be noted that circular trees
are not appropriate for displaying information on branch lengths because the
edges are represented with different angles which is a well-known confusing
effect in graphical display [301].

4.1.1 Node, Tip and Edge Annotations

plot.phylo allows us to display node labels with the option show.node.label:
this simply prints the labels using the same font and justification as for the
tips. This option is very limited, and it is often needed to have a more flex-
ible mechanism to display clade names, bootstrap values, estimated diver-
gence dates, and so on. Furthermore, the character strings displayed with
show.node.label = TRUE are from the node.label element of the "phylo"
object, whereas it may be needed to display values coming from some other
data.

Three functions offer a flexible way to add labels on a tree: nodelabels,
tiplabels, and edgelabels. Their respective names tell us where the labels
will be drawn. The point of these functions is to identify the nodes, tips, or
edges using the numbering system of the class "phylo"(Section 3.1.1), then
R finds itself where to exactly draw the text or symbols. They are low-level
plotting functions: the labels are added on a previously plotted tree. They can
print text (like the function text), symbols (like points), “thermometers”
(like symbols), or pie charts (like pie) on all or some nodes. The formatting
allows us to place the labels exactly on the node, or at a point around it, thus
giving the possibility of adding information. The text can be framed with
rectangles or circles, and colors can be used.
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Fig. 4.6. A circular tree using type = "radial" in plot.phylo

The number of options of these three functions is quite small (Table 4.2),
but they take advantage of the ... (pronounced “dot-dot-dot”) argument of
R’s methods. This “mysterious” argument means that all arguments that are
not predefined (i.e., those not in Table 4.2 in the present case) are passed
internally to another function, in the present case either text or points (see
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Table 4.2. The options of nodelabels, tiplabels, and edgelabels. The values
marked with (d) are the default ones

Option Effect Possible values

text Text to be printed A character vector; can be left missing (d)
node, tip, Where to print A numeric vector; can be left missing (d)
or edge

adj Position with respect to the One or two numeric values; centered (d)
node, tip or edge

frame Type of frame around text "r" (d), "c", "n"
pch The type of plotting symbol An integer between 1 and 25, or a

character string
thermo Draw filled thermometers A numeric vector or matrix
pie Draw pie charts id.
piecol Colors for thermo or pie A vector of string or a color code
col Colors for text or symbol id.
bg Colors for the background id.

of the frame or the symbol
... Further arguments cex = , font = , vfont =

offset = , pos =

below). Particularly, text has a few options to define font, character expan-
sion, and position of the text (some examples are given in Table 4.2) which
thus may be used in these functions.

The option pch is defined as NULL by default, meaning that some text
will be printed by default; if pch is given a value, then text is ignored. The
nodes—in the case of nodelabels—where the labels are printed are specified
with node: this is done using the numbers of the edge element of the "phylo"
object. Obviously, it seems necessary to know these node numbers to use
nodelabels, but this is not a difficulty: they can be displayed on the screen
using this function with no argument (i.e., nodelabels(); Fig. 4.7). To display
all numbers, we could do:

plot(tr); nodelabels(); tiplabels(); edgelabels()

That will plot the node numbers on a blue background, the tip numbers on a
yellow background, and the edges numbers on a green background. Note that
edge numbers are the row numbers of the edge matrix of the tree.

Another way to proceed is to assume that the vector of labels (or symbols
to plot) is already ordered along the nodes: they will be displayed on the nodes
in the correct order. This will be true if the values to be plotted come from
an analysis done on the tree like bootstrap values (Section 5.5) or ancestral
reconstructions (Section 6.2), or node labels output from another program. In
that case, the argument node can be left missing—or similarly tip or edge
for the two other functions.
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Fig. 4.7. Display of node numbers with nodelabels()

For a very simple operational example, consider plotting a tree showing
the estimated divergence dates among gorillas, chimpanzees, and humans. We
take the dates estimated by Stauffer et al. [289]:

trape <- read.tree(text = "((Homo,Pan),Gorilla);")
plot(trape, x.lim = c(-0.1, 2.2))
nodelabels("6.4 Ma", 4, frame = "c", bg = "white")
nodelabels("5.4 Ma", 5, frame = "c", bg = "white")

Because the labels need some space, we have to leave a little extra space
between the root and the left-hand side margin, hence the use of the x.lim
option (Fig. 4.8). We know that the root is numbered 4 (number of tips +
1). Similarly, the second node is obviously numbered 5. If the node numbers
are omitted, the labels are printed successively on all nodes. Thus, the same
figure could have been obtained with:

plot(trape, x.lim = c(-0.1, 2.2))
nodelabels(c("6.4 Ma", "5.4 Ma"), frame = "c", bg = "white")

This is clearly useful if one has a large number of values to add on the tree.
It is also often needed to print numeric values close to, but not exactly on,
the nodes, for instance, bootstrap values. Usually, such values are arranged
in a vector (say bs) and ordered along the nodes. It is common to print the
bootstrap values right-justified with respect to the nodes and without frames
which can be done with:

plot(tr)
nodelabels(bs, adj = 0, frame = "n")
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Fig. 4.8. Adding dates with nodelabels

In some cases, this may need to be tuned slightly because the labels will
be stuck to the nodes and the font size may be too large (or too small): the
former can be moved slightly rightwards by giving a small negative value to
adj (e.g., adj = -0.2), and the font size can be set by using the option cex.

Note that here a single value has been given to adj: this sets the horizontal
justification only, and this conforms to standard R’s graphical functions (see
?par in R for details).

If a program outputs bootstrap values as node labels in a Newick tree,
then this can be handled easily because once the tree has been read with
read.tree these values are stored in the node.label element of the "phylo"
object (see Section 3.1.1). They can be plotted with something like:

plot(tr)
nodelabels(tr$node.label, adj = 0, frame = "n")

It is also usual to plot several values around a node. Michaux et al. [205]
showed on their tree bootstrap values from the different phylogeny reconstruc-
tion methods they used: parsimony, neighbor-joining, and maximum likeli-
hood. This can be done by successive calls to nodelabels with different values
for adj. The option font can be used to distinguish the different values. We
first input the bootstrap values on the keyboard using scan:

> bs.pars <- scan()
1: NA 76 34 54 74 100 56 91 74 60 63 100 100
14:
Read 13 items
> bs.nj <- scan()
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Fig. 4.9. Adding bootstrap values

1: NA 74 48 68 75 100 NA 91 67 82 52 100 100
14:
Read 13 items
> bs.ml <- scan()
1: NA 88 76 73 71 100 45 81 72 67 63 100 100
14:
Read 13 items

There are of course many other ways to input these values (they will
usually be read from the Newick file as node labels). Note that we have given
a missing value to the first node, because this is the root and the tree was
rooted with an outgroup. We then plot the tree without the margins to leave
more space for the bootstrap values, and add successively the latter with three
calls to nodelabels (Fig. 4.9):

plot(tr, no.margin = TRUE)
nodelabels(bs.pars, adj = c(-0.2, -0.1), frame = "n",

cex = 0.8, font = 2)
nodelabels(bs.nj, adj = c(1.2, -0.5), frame = "n",

cex = 0.8, font = 3)
nodelabels(bs.ml, adj = c(1.2, 1.5), frame = "n", cex = 0.8)
add.scale.bar(length = 0.01)

The last command adds a scale bar (see below for explanation of this function).
To graphically display the different levels of a single proportion, say bs.ml,

we can use the option thermo. It represents the proportions of two or more
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Fig. 4.10. Plotting proportions on nodes with thermometers

categories as a filled thermometer. This representation is less usual than circu-
lar symbols such as piecharts (option pie), but the latter are less intelligible,
particularly with more than three proportions. The commands are (Fig. 4.10):

plot(tr, no.margin = TRUE)
nodelabels(thermo = bs.ml/100, piecol = "grey")

We now illustrate the use of the pch option by plotting symbols instead
of the raw numeric values. For this, we consider again the bootstrap values
of the maximum likelihood method (bs.ml). Suppose we want to plot a filled
circle for a bootstrap value greater than or equal to 90, a grey circle for a
value between 70 and 90, and an open circle for a value less than 70. We
first create a vector of mode character and assign strings with respect to the
original bootstrap values according to the rules defined above.

> p <- character(length(bs.ml))
> p[bs.ml >= 90] <- "black"
> p[bs.ml < 90 & bs.ml >= 70] <- "grey"
> p[bs.ml < 70] <- "white"
> p
[1] "" "grey" "grey" "grey" "grey" "black" "white"
[8] "grey" "grey" "white" "white" "black" "black"

This is neat, but it is convenient to use a more flexible code:

co <- c("black", "grey", "white")
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Fig. 4.11. Plotting symbols on nodes

p <- character(length(bs.ml))
p[bs.ml >= 90] <- co[1]
p[bs.ml < 90 & bs.ml >= 70] <- co[2]
p[bs.ml < 70] <- co[3]

The result is exactly the same but the advantage is that the vector co is
easily modified, for instance, if the user wants to make a colored version of
her graph. We can now plot the tree, then call nodelabels giving p as value
for the option bg. We also specify pch = 21 which uses a color-filled circle.

plot(tr, no.margin = TRUE)
nodelabels(node = 16:27, pch = 21, bg = p[-1], cex = 2)

Here we must use node to avoid a symbol being plotted at the root. Also we
have to tell the option bg to ignore the first value of p (which is actually an
empty string). To finish the figure, we further add a legend which can be done
manually by two calls to points and text:

points(rep(0.005, 3), 1:3, pch = 21, cex = 2, bg = co)
text(rep(0.01, 3), 1:3, adj = 0,

c("90 <= BP", "70 <= BP < 90", "BP < 70"))

A more sophisticated solution is to use legend; we also pass the text of the
legend as R expressions so they are plotted in a more elaborate way (Fig. 4.11):

legend("bottomleft", legend = expression(90 <= BP,
70 <= BP * " < 90", BP < 70),
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pch = 21, pt.bg = co, pt.cex = 2, bty = "n")

We have focused on nodelabels in this section, but the ideas developed
here apply exactly to tiplabels and edgelabels as well. These functions
allow us to print some labels highlighted on a colored background as can be
seen sometimes in some publications for some tip labels. To achieve this, we
first plot the tree without displaying the tip labels but we must leave some
space to print them later. There are several ways to do this; here we plot the
tree without options and save the settings that we then use to set the x.lim
option:

o <- plot(trape)
plot(trape, show.tip.label = FALSE, x.lim = o$x.lim)

We can now print the tip labels with a single command where the options bg
and col are set so that only the second tip label is highlighted:

tiplabels(trape$tip.label, adj = 0, bg = c("white", "black",
"white"), col = c("black", "white", "black"))

We do not need to use the option tip because the tip labels are obviously
correctly ordered in the element tip.label of the tree. With this command all
labels would appear with a frame around them which may not be aesthetically
the best result. To avoid this we have to call tiplabels twice using tip this
time and frame = "n" for the labels not highlighted (Fig. 4.12):

tiplabels(trape$tip.label[2], 2, adj = 0,
bg = "black", col = "white")

tiplabels(trape$tip.label[-2], c(1, 3), frame = "n", adj = 0)

We will see more details in Section 4.1.5 on how to use this kind of tools
to explore phylogenetic data.
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4.1.2 Axes and Scales

ape has two low-level plotting functions that add an indication of the scale of
the branches on a phylogeny plot.

add.scale.bar() adds a short bar at the bottom left corner of the
plotting region. If this default location is not suitable, it can be modified
with the arguments x and y. This location may be found interactively with
add.scale.bar(ask = TRUE): the user is then asked to click on the graph
to indicate where to draw the bar. The length of the bar is calculated from
the lengths of the plotted tree (so this works even if the tree has no branch
lengths); this can be modified too with the length option (see Fig. 4.9). In
all cases, the bar is drawn parallel to the branches of the tree.

axisPhylo() adds a scale on the bottom side of the plot which scales from
zero on the rightmost tip to increasing values leftwards (see Figs. 4.18 and
4.20). If the tree is ultrametric, this may represent a time scale. The option
side allows us to draw the scale on different sides of the plot: side = 1 (the
default) draws it below, 2 on the left, 3 above, and 4 on the right. Note that
either 2 or 4 should be used if the tree is vertical.

axisGeo in phyloch adds a geological time scale below a plotted tree with
branch lengths scaled in million of years. This has many options such as
specifying which levels of the geological periods to print.

4.1.3 Manual and Interactive Annotation

R’s low-level plotting commands can be used to annotate a tree manually once
it has been plotted. The useful functions in this context are text, segments,
arrows (all have explicit names), and mtext (marginal text). Except for the
last one, the coordinates must be given by the user.

A simple, but hopefully didactic example, plots a four-taxon tree, and adds
various annotations (Fig. 4.13):

tree.owls <- read.tree(text = "(((Strix_aluco:4.2,
Asio_otus:4.2):3.1,Athene_noctua:7.3):6.3,
Tyto_alba:13.5);")

plot(tree.owls, x.lim = 19)
box(lty = 2)
text(2, 1.5, "This is a node", font = 2)
arrows(3.5, 1.55, 6.1, 2.2, length = 0.1, lwd = 2)
text(0.5, 3.125, "Root", srt = 270)
points(rep(18.5, 4), 1:4, pch = 15:18, cex = 1.5)
mtext("Simple text above")
mtext("Text above with \"line = 2\"", at = 0, line = 2)
mtext("Text below (\"side = 1\")", side = 1)
mtext("Text in the left-hand margin (\"side = 2\")",

side = 2, line = 1)
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Fig. 4.13. Manual annotation of a tree

The call to box helps to visualize the limit between the plotting region
and the margins. Note the use of the option x.lim to leave a little extra space
for the symbols plotted by points. By default, mtext prints the text at the
center of the closest line to the plotting region: this is altered by the options
at and line, respectively, as illustrated above. Note how double quotes are
specified inside a character string: a backslash is needed to escape them.

Colors (which are not used here) can be specified in all of these functions
with the col options.

All the above examples show how to add graphical elements once the
coordinates or the numbers of nodes or tips are known. It is indeed important
to be able to make graphics with lines of commands because they may be
saved for future use, or they may be programmed for more complex analyses
of exploration of data. On the other hand, in many situations it may be
tedious to find all these coordinates or numbers, and a more interactive way
of drawing may be preferable.

The coordinates of any location on a plot may be obtained with the base
graphics function locator. It may be used without option: the user then left-
clicks on the plot up to 512 times; a right-click interrupts the acquisition and
a list is then returned with two vectors x and y containing the coordinates of
all the locations previously clicked. It is not unusual to forget to assign such
a procedure (i.e., XY <- locator()), so .Last.value (Section 2.1) may be
useful here. The list returned by locator can in fact be used directly by most
graphical functions, so it is not even needed to print these coordinates, even
to save them. For instance, if you type:
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text(locator(1), "Some text")

You then click on the plotting region, and “Some text” will be printed at this
location.

identify is another function to interact with a plot. It is a generic func-
tion: in its standard form it is used after a bivariate plot, say plot(x, y),
with identify(x, y). As above, the user is invited silently to click on the
plot, and interrupts the process with a right-click. The indices of the data
points that are closest to the clicked locations are returned, and these points
are identified on the plot (this may be switched off with the option plot =
FALSE).

There is an identify method for the class "phylo" (so it is documented
at ?identify.phylo). Its options are:

identify(tr, nodes = TRUE, tips = FALSE, labels = FALSE)

By contrast to the default method, the user is allowed to click only once on
the tree: this will identify a node by its number. For instance, if we do the
following command and click close to the node marked with the arrow on
Fig. 4.13:

> identify(tree.owls)
Click close to a node of the tree...
$nodes
[1] 6

The returned object is a named list. Switching tips = TRUE results in return-
ing the indices of the node and the tips descending from it:

> identify(tree.owls, tips = TRUE)
Click close to a node of the tree...
$tips
[1] 1 2 3

$nodes
[1] 6

Using labels = TRUE returns the labels instead of the numbers:

> identify(tree.owls, tips = TRUE, labels = TRUE)
Click close to a node of the tree...
$tips
[1] "Strix_aluco" "Asio_otus" "Athene_noctua"

$nodes
[1] 6

This tree has no node labels, so the node is still identified by its number.
The call to identify may be embedded in nodelabels or tiplabels:
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nodelabels("Some text", identify(tree.owls)$nodes)

This command will print “Some text” at the node closest to the clicked loca-
tion.

4.1.4 Showing Clades

Trees are statistical tools for classification of observations, and it is obvious
that in some situations clades (monophyletic groups) need to be identified in
a plotted phylogeny. This may be for simple illustrative purpose, for instance,
to show how different groups segregate on a phylogeny, or for exploratory
reasons. In the latter case, an automated approach is clearly required.

I have found four ways commonly used in the literature to show clades on
a phylogeny:

• Drawing bars facing the tips of the clade;
• Labeling the node corresponding to the most recent common ancestor of

the clade;
• Coloring the branches of the clade;
• Drawing an ellipse or a rectangle over the branches and tips belonging to

the clade.

The second approach is covered in Section 4.1.1. The first and fourth ap-
proaches are mostly appropriate for illustrative purposes, whereas the second
and third ones are the best suited for exploratory analyses.

Bars can be added easily on the side of a tree with the low-level plotting
command segments. The options of this function that are useful in this con-
text are lwd for the line width and col for its color. When drawing such bars,
it will be necessary to leave some space on the appropriate side of the plot.

It is useful to know that the coordinates of the tips of the tree on the
y-axis are 1, 2, and so on. This may be helpful in specifying the coordinates
of the vertical bars. Figure 4.14 shows a simple example with a phylogeny of
bird orders; the commands used were:

data(bird.orders)
plot(bird.orders, font = 1, x.lim = 40,

no.margin = TRUE)
segments(38, 1, 38, 5, lwd = 2)
text(39, 3, "Proaves", srt = 270)
segments(38, 6, 38, 23, lwd = 2)
text(39, 14.5, "Neoaves", srt = 270)

Some arguments are obviously repeated in the successive calls to segments
and text: they are the coordinates of the plotted objects. These calls may be
grouped in a single one (e.g., text(rep(39, 1), c(3, 14.5), c("Proaves",
"Neoaves"), srt = 270); they were kept distinct for clarity.
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Fig. 4.14. Simple bars

Colors are interesting for showing clades, because this can be some-
what automated in R, and thus used for exploratory graphical analyses. In
plot.phylo, the options edge.color, edge.width, and edge.lty allow us
to specify the color, width, and line type of each branch of the tree. For in-
stance, edge.color = "blue" will color all edges in blue. As many colors as
the number of branches may be specified, the values being possibly recycled:
edge.color = c("blue", "red") will color the first, third, . . . , branches in
blue, and the second, fourth, . . . , in red. The problem is to know the numbers
of the branches. This may be easy with a small "phylo" object by printing
its edge matrix, say tr$edge, and then visually finding the number of each
branch. However, this may be more difficult with large trees. The function
which.edge may be used here because it returns the indices of the branches
that belong to a specified group. The latter may be not monophyletic in which
case the indices will include branches up to the most recent common ancestor
of the group. For instance, using the same bird phylogeny:

> wh <- which.edge(bird.orders, 19:23)
> wh
[1] 31 35 37 38 39 40 41 42 43 44

It is now easy to define a vector of colors to be used in plot.phylo. We first
repeat a default color (say black) with as many branches as in the tree:

colo <- rep("black", Nedge(bird.orders))
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Fig. 4.15. Simple edge colors

The function Nedge extracts the number of edges of a tree: we now have a
vector with 45 repetitions of "black". The colors of the clades defined above
(tips 19–23) are simply modified with:

colo[wh] <- "grey"

The tree can now be drawn. We use wider lines to display the difference in
colors better (Fig. 4.15):

plot(bird.orders, "c", FALSE, font = 1, edge.color = colo,
edge.width = 3, no.margin = TRUE)

Showing a clade with a frame or an ellipse is not so easy because if the
contour is added after the tree is plotted, it will overlap the latter and hide
a portion of it if a colored background is chosen. An obvious solution is to
plot a contour without background (which is the default in most functions in
R). For instance, with the bird phylogeny, if we want a rectangle showing the
clade of the first five orders, we could do:

plot(bird.orders, font = 1)
rect(1.2, 0.5, 36, 5.4, lty = 2)

By default, the lines of the rectangle are the same as those of the tree
edges, hence it may be good to distinguish them with the usual options (lty
= 2 specifies dashed lines). The numeric arguments to rect give the position
of the leftmost, lower, rightmost, and upper sides of the rectangle. Those can
be obtained with locator.
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Fig. 4.16. A framed clade

A more flexible solution is to first call plot.phylo with its option draw =
FALSE: the result is to set the graphics as if the tree was plotted. Low-level
plotting commands can then be called as usual: the results will be plotted on
a blank window. The tree can be plotted on top of the graph. The trick here
is to set the graphical parameter new as TRUE: this tells R that the current
graphical device has been freshly opened, and the output of the next high-level
plotting command can plotted on it (Fig. 4.16):

plot(bird.orders, font = 1, no.margin = TRUE, draw = FALSE)
rect(1.2, 0.5, 36, 5.4, col = "lightgrey")
par(new = TRUE)
plot(bird.orders, font = 1, no.margin = TRUE)

After calling a high-level plotting command, such as plot, the new is auto-
matically set to FALSE. Setting it to TRUE actually forces high-level plotting
commands to behave like low-level ones.

An interesting feature of setting draw = FALSE is that the coordinates are
computed and saved in a special environment. This gives many possibilities
to program one’s own graphical function.

4.1.5 Plotting Phylogenetic Variables

We have seen various tools to plot a tree with colors and other annotations
with text and symbols. These serve for the appearance of the tree, but can be
tools for representing variables linked to a tree. As such, these may be powerful
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exploratory analysis tools. The basic idea is that variables associated to a tree
will match the indexing and numbering system of the class "phylo" (p. 30).
For instance, a variable associated to the n tips of a tree will be in vector
of length n so that its first element will be the value of the first tip, and
so on. Similarly, a variable associated with the branches will be in a vector
of the same length than the number of branches (just like the edge.length
element in the class "phylo"). Such variables may be passed to the appropriate
arguments of some functions previously described, either directly or after some
manipulations that we will illustrate in this section.

The functions to be used are plot.phylo—with its options tip.color,
cex, font for the tips, and edge.color, edge.width, edge.lty for the
branches (Table 4.1)—tiplabels, nodelabels, and edgelabels—with their
options text, pch, thermo, pie, col, bg, and cex (Table 4.2). All these argu-
ments use the “recycling rule” of R which says that if the passed element is
shorter than what is required, then it is repeated as many times as necessary.
For instance, plot(tr, tip.color = c("blue", "red")) will color the tip
labels alternatively in blue and red.

The variables to be represented may be passed directly—possibly after
rescaling—to some of the above options (edge.width, thermo, pie, cex),
whereas a coding is likely to be necessary in the other cases.

The possibilities are vast and some examples are given in the next chapters.

4.2 Combining Plots

It may be enlightening to combine several plots in a single figure. This may
be needed to indicate the distribution of some variables among recent species
(represented by the tips of the tree). ape has no special function to combine
trees with other plots: this must be done with standard R functions. adephylo
has a few special functions to plot variables in the face of the tips of a tree.
Let us first see what can be done with them.

4.2.1 Tree–Variable Coplot

table.phylo4d in adephylo plots multivariate data sets facing a tree. All
variables are centered and scaled by default. This function requires the data
to be in an object of class "phylo4d" which is easily done with the function
of the same name. We illustrate this with random data (Fig. 4.17):

X <- phylo4d(rcoal(20), matrix(rnorm(100), 20))
table.phylo4d(X, box = FALSE)

This function has also several options to customize the appearance of the plot.
To have a more flexible way of plotting variables, one can use plot.phylo

and manually add further graphical elements. It is useful to know here that
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Fig. 4.17. The function table.phylo4d with random data

when plotting a phylogram or a cladogram, the tips have—in most cases—the
coordinates 1, 2, and so on (whatever the direction). It is thus possible to add,
for instance, horizontal bars after leaving extra space with x.lim (or y.lim if
the tree is vertical). We could, for instance, plot the species richness of each
avian order in the face of the corresponding phylogeny. We have the vector
Orders.dat with names set as the orders:

> Orders.dat <- scan()
1: 10 47 69 214 161 17 355 51 56 10 39 152
13: 6 143 358 103 319 23 291 313 196 1027 5712
24:
Read 23 items
> names(Orders.dat) <- bird.orders$tip.label
> Orders.dat
Struthioniformes Tinamiformes Craciformes

10 47 69
Galliformes Anseriformes Turniciformes
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Fig. 4.18. Bars in the face of a tree plotted with plot.phylo

214 161 17
Piciformes Galbuliformes Bucerotiformes

355 51 56
Upupiformes Trogoniformes Coraciiformes

10 39 152
Coliiformes Cuculiformes Psittaciformes

6 143 358
Apodiformes Trochiliformes Musophagiformes

103 319 23
Strigiformes Columbiformes Gruiformes

291 313 196
Ciconiiformes Passeriformes

1027 5712

Fortunately, the data are in the same order as in the tree.2 We can thus
proceed in a simple manner (Fig. 4.18):

plot(bird.orders, x.lim = 50, font = 1, cex = 0.8)
segments(rep(40, 23), 1:23, rep(40, 23) +

log(Orders.dat), 1:23, lwd = 3)
axis(1, at = c(40, 45, 50), labels = c(0, 5, 10))
mtext("ln(species richness)", at = 45, side = 1, line = 2)
axisPhylo()

2 If they were not in the correct order, the names would solve this easily with
Orders.dat[bird.orders$tip.label].
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Once we have determined that the bars will span between 40 and 50 on the
horizontal scale (which could be done by examining the default x.lim of
plot.phylo), it is easy to set the other values in the command. Note how we
draw a ‘custom’ scale on the x-axis. We did not use no.margin = TRUE to
leave some space for the scales under the plot.

In the examples we have seen above, the different graphics were plotted in
the same plotting region. It is possible to plot different graphs on the same
graphical device. This is usually done by splitting the graphical device (i.e.,
the window or the file) in several regions then calling successively different
high-level plotting functions. The most useful approach is to use the function
layout. The main argument of this function is a matrix with integer numbers
indicating the numbers of the ‘subwindows’. For instance, to divide the device
into four equal parts:

> layout(matrix(1:4, 2, 2))

Printing the matrix makes clear how the device is divided:

> matrix(1:4, 2, 2)
[,1] [,2]

[1,] 1 3
[2,] 2 4

The first graph will be plotted in the top-left quarter, the second in the
bottom-left quarter, the third in the top-right quarter, and the fourth in the
bottom-right quarter. Whereas with:

> matrix(c(1, 1, 2, 3), 2, 2)
[,1] [,2]

[1,] 1 2
[2,] 1 3

the first graph will span the left half of the device, and the second and third
ones will be in the top-right and bottom-right quarters, respectively. Quite
a large number of graphs can be plotted on the same device, for instance 16
with:3

> matrix(1:16, 4, 4)
[,1] [,2] [,3] [,4]

[1,] 1 5 9 13
[2,] 2 6 10 14
[3,] 3 7 11 15
[4,] 4 8 12 16

3 It may happen that R cannot plot the graphs if there is not enough space in the
plotting region.
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Fig. 4.19. Insert an histogram

Note the possibility with layout of inserting a graph within a larger one.
In principle the different subwindows are completely independent, but if one
of them is surrounded by another, then the graph in the first will overlap
with the second. For instance, with the following matrix given as argument
to layout:

matrix(c(2, 1, 1, 1), 2, 2)
[,1] [,2]

[1,] 2 1
[2,] 1 1

the first graph will be plotted on the whole graphical device, and the second
one will be on the top-left quarter, thus potentially partially overlapping the
first one. To further reduce the size of the insert, one could do:4

layout(matrix(c(2, rep(1, 8)), 3, 3))

Here is an example of how this could be used (Fig. 4.19):

plot(bird.orders, "p", FALSE, font = 1,
no.margin = TRUE)

arrows(4.3, 15.5, 6.9, 12, length = 0.1)
par(mar = c(2, 2, 0, 0))
hist(rnorm(1000), main = "")

4 layout has options width and height to modulate the sizes of the subwindows
in a more flexible way than done here.
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4.2.2 Cophylogenetic Plot

To illustrate the possibilities given by layout, we consider plotting two trees
of the same species but showing different information. Let us come back to the
Apodemus data (Fig. 4.1). Michaux et al. [205] estimated divergence dates on
their tree using a molecular clock. The tree on Fig. 4.1 could also be analyzed
with the penalized likelihood method of Sanderson [276] using the calibration
point of 12 Ma (million years ago) for the divergence Mus–Rattus. This is
done with the function chronopl (Section 5.6). We can proceed very easily by
reading the clock tree of Michaux et al., computing the chronogram, splitting
the graphical device in two, and finally plotting both trees successively. The
needed commands are:

trk <- read.tree("rodent_clock.tre")
trc <- chronopl(tr, lambda = 2, age.min = 12)
layout(matrix(1:2, 1, 2))
plot(trk)
plot(trc, show.tip.label = FALSE, direction = "l")

The figure obtained this way will not display the information nicely be-
cause of the default margins which are too wide here. We need a little extra
work to make the figure informative. We first change the tip labels of the first
tree to replace the genus names with their initials. This could be done manu-
ally by editing trk$tip.label and replacing "Apodemus agrarius" with "A.
agrarius", and so on. Fortunately, R has functions that manipulate regular
expressions which considerably facilitates this kind of task. Here we use the
function gsub (global substitution), for instance:

trk$tip.label <- gsub("Apodemus", "A.", trk$tip.label)

will replace every occurrence of "Apodemus" by "A.". We could do this for
the five genera in the tree but this is still tedious, and there is a more general
solution:

trk$tip.label <- gsub("[[:lower:]]{1,}_", "._", trk$tip.label)

The regular expression "[[:lower:]]{1,}_" means “one or more lowercase
letter(s) followed by an underscore”. We clearly take advantage of the fact
that the genus and species names are separated by this last character.

We can now plot the trees but we need to care about the space around
both. Let us first see the whole commands, then explain what has been done.
The resulting plot is in Fig. 4.20.

layout(matrix(1:2, 1, 2), width = c(1.4, 1))
par(mar = c(4, 0, 0, 0))
plot(trk, adj = 0.5, cex = 0.8, x.lim = 16)
nodelabels(node = 26, "?", adj = 2, bg = "white")
axisPhylo()
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Fig. 4.20. Facing trees

plot(trc, show.tip.label = FALSE, direction = "l")
axisPhylo()

The critical options are width for layout and x.lim for plot: they allow
us to have both trees of the same size on the figure. These commands will work
for any other data providing these two options are set correctly. Note that we
remove the space around the trees except the one below, so we cannot use the
option no.margin of plot.phylo: instead we use the par function. The call
to nodelabels is used to indicate that one node (the divergence between the
two species of Mus) was not dated by Michaux et al. [205]. Finally, we draw
the axis below each tree using axisPhylo.

It is debatable whether Fig. 4.20 is the best way to represent these results.
Because the topologies are identical, the tree may be plotted together in the
same direction for an easy comparison:

layout(matrix(1:2, 2, 1))
plot(trk); title("trk"); axisPhylo()
plot(trc); title("trc"); axisPhylo()

Besides, a more accurate comparison of the branching times may be obtained
with the function branching.times (see Exercises).

The use of layout is easily generalized for plotting more than two trees.
Additionally, if the trees are in a list of class "multiPhylo", there is a plot
method which second argument is layout specifying the number of trees plot-
ted at the same time.
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ape has the function cophyloplot that is devoted to plot two facing trees
with links between their tips. The two trees may have distinct labels. As an
example we will take a subset of the data from Light and Hafner [184] who
studied the phylogeny of several species of rodents and their lice of the genus
Fahrenholzia. We take two small clades from their Fig. 4:

TR <- read.tree("host_parasite.tre")

The file ‘host parasite.tre’ contains the two trees, the first one is the host
phylogeny. cophyloplot also needs a two-column matrix where each row is a
link between the two trees:

> A
col1 col2

[1,] "C.hispidus" "F.zacatecae-C.h."
[2,] "C.formosus" "F.reducta-C.f."
[3,] "C.eremicus" "F.zacatecae-C.e."
[4,] "C.intermedius" "F.zacatecae-C.i."
[5,] "C.californicus" "F.tribulosa-C.c."
[6,] "C.baileyi" "F.reducta-C.b."

We can now call the function (Fig. 4.21):

cophyloplot(TR[[1]], TR[[2]], A, space = 40,
length.line = -3, lty = 2)

It is often necessary to allow a large space between the two trees via the
space argument. By default standard lines are drawn to represent the links,
so we use the option lty = 2 to have dashed lines.

Several trees can be plotted on the same (temporal) scale with kronoviz.
The main argument is a list of trees, for instance with six simulated coalescent
trees (Fig. 4.22):

TR <- replicate(6, rcoal(10), simplify = FALSE)
kronoviz(TR, horiz = FALSE, type = "c", show.tip.label=FALSE)

The option layout (not used here) controls how many trees are plotted at
the same time (all by default), and horiz controls the direction of the trees
(TRUE by default). All other options are passed to plot.phylo.

4.3 Large Phylogenies

Large trees have become an issue with the availability of larger and larger
molecular databases such as GenBank, and the development of ambitious
projects to assemble the tree of life. Large trees are also becoming present in
fields such as genomics where a single experiment can result in thousands of
observations.
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Fig. 4.21. Cophylogeny of six spexies of Chaetodipus and their parasites Fahren-
holzia [184]

The general strategy to visualize a large tree is to plot only a portion of
the full phylogeny, while indicating its context, that is, how it relates to the
rest of the tree.

We show that most of the necessary ingredients to visualize and explore
large trees are present in various functions in ape. plot.phylo and drop.tip
may be used in conjunction with R’s functions layout and X11 to give a
powerful and flexible environment for the graphical exploration of phylogenies.
One function in ape, zoom, integrates these ideas to give an automated way
to explore large trees.

We have seen that drop.tip removes some terminal branches from a
"phylo" object, and possibly trims the corresponding internal branches. It
is thus possible to use this function to extract a subtree by passing all but the
wanted tips as argument. If one has the numbers of the wanted tips, say in a
vector x, this can be done with:

drop.tip(tr, tr$tip.label[-x])

Alternatively, if x is a vector with the labels of the tips to be kept, one could
do:

drop.tip(tr, which(!tr$tip.label %in% x))

The expression tr$tip.label %in% x returns a logical value for each tip
label: it is TRUE if the label is in x, FALSE otherwise. The operator ! inverts
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Fig. 4.22. Use of kronoviz

these logical values, and the function which returns the indices of those that
are TRUE.

Thus the action of drop.tip is quite straightforward, but it may be useful
to show in some way the relationship of the returned subtree with the original
tree. This can be done with the option subtree which takes a logical value.
If it is TRUE (the default is FALSE), a branch is included in the returned tree
that shows how many tips have been deleted in the operation; this is done for
as many monophyletic groups as have been removed.

Let us see how this works with a supertree of the mammal order Chiroptera
[154]. Our goal is to extract a subtree with the first 15 tips. The tree has
916 tips, thus the second argument to drop.tip could either be 16:916 or
chiroptera$tiplabel[-(1:15)] with exactly the same result. We then plot
the extracted tree (Fig. 4.23):

data(chiroptera)
tr <- drop.tip(chiroptera, 16:916, subtree = TRUE)
plot(tr, font = c(rep(3, 15), rep(2, 3)), cex = 0.8,

no.margin = TRUE)

Note how we specified the font argument to have only the species names in
italics.

drop.tip can thus be used to explore large trees. One can use layout, as
we have seen above, to plot the whole tree and a subtree on the same device.
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Fig. 4.23. Extracting a subtree

Another possibility is to open another device and plot the whole tree and the
subtrees on the different devices. For instance, to explore the bat supertree,
the following commands can be used:

plot(chiroptera)
X11()
plot(tr)

This will open a second graphical window, and plot the extracted subtree.
Because this second window is the active device, all subsequent graphics will
be plotted in it.5

zoom is a function that allows exploration of large trees in a more user-
friendly way. Its principle is to plot the whole tree in the left third of the
device, and one or several subtrees in the remaining portion of the device.
The locations of the subtrees are indicated with colors on the whole tree.
The subtree(s) is (are) specified in the same way as in drop.tip. There are
two options: subtree which has the same effect as in drop.tip, and col
which indicates the colors to be used. By default, a preset rainbow palette is
used. Any further argument recognized by plot.phylo (see Table 4.1) may
be passed thanks to the ‘...’ argument (see p. 88).

A simple example of the use of zoom could be (Fig. 4.24):

data(bird.families)
zoom(bird.families, 1:15, col = "grey", no.margin = TRUE,

5 See ?dev.list on how to set the priority of graphical devices.
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Fig. 4.24. Using zoom

font = 1, subtree = TRUE)

We have set subtree = TRUE (the default is FALSE) to show the context of
the specified subtree, and no.margin = TRUE (which is passed to plot.phylo
as part of the ‘...’ argument) to use as much space as available on the device.

If several subtrees need to be visualized on the same plot, they have to be
specified as a list (because they could differ in size). For instance (Fig. 4.25):

zoom(bird.families, list(1:15, 38:48),
col = c("lightgrey", "slategrey"),
no.margin = TRUE, font = 1, subtree = TRUE)

The function trex (tree exploration) can be seen as an interactive muti-
window version of zoom. The idea is simple: you plot a tree, say plot(tr),
then call trex(tr) and left-click on any node and the subtree is plotted on
a new window. You can click as many times as you want: this refreshes the
new window. A right-click exits from the operation. There are options such as
a default title and a different background color. Each time trex is called the
subtree is plotted on a new window without closing or deleting those possibly
already plotted. They may be distinguished with titles and / or background
colors.

4.4 Networks

Networks of the class "evonet" and "networx" have their own plot method.
Plotting networks is not trivial when branch lengths are involved because this
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Struthionidae
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Apterygidae
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Cracidae

Megapodiidae
Phasianidae
Numididae
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Anhimidae
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Anatidae
Turnicidae

[122 tips]
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Cuculidae
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Coccyzidae
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Crotophagidae
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Apodidae
Hemiprocnidae
Trochilidae
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[5 tips]
[16 tips]

[9 tips]
[80 tips]

Fig. 4.25. Using zoom to show two groups

might not be physically possible. With the class "evonet", this problem is
solved simply by plotting the base tree of the network with plot.phylo and
representing the additional reticulations in a different way. Possible informa-
tion on the reticulations can be represented with line width or color. We take
a simple network from a rooted tree:

> net <- evonet(stree(4, "balanced"), 6, 7)
> net

Evolutionary network with 1 reticulation

--- Base tree ---
Phylogenetic tree with 4 tips and 3 internal nodes.

Tip labels:
[1] "t1" "t2" "t3" "t4"

Rooted; no branch lengths.

The plot method calls plot.phylo to draw the tree; some arguments can
be passed with ‘...’. Other arguments help to format the reticulations
(Fig. 4.26):

plot(net, type = "c", col = "darkgrey", alpha = 1,
arrows = 3, arrow.type = "h")
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t4

Fig. 4.26. A phylogenetic network (class "evonet")

The argument alpha codes for the color transparency of the reticulations
(0.5 by default). arrows follows the same syntax than the function of the
same name, but if arrow.type is used a specific function, fancyarrows, from
ape is used: the two possible choices are "triangle" and "harpoon" (or an
abbreviation of these).

The class "networx" is appropriate to code consensus networks where
reticulations represent uncertainty (instead of evolutionary events such as
hybridization, gene transfer, or migration; see Section 5.5.4 on page 180).
Nonetheless, a network of class "evonet" can be converted into this class
but this requires the network to have branch lengths, so we create them with
compute.brlen (Fig. 4.27):

ntx <- as.networx(compute.brlen(net, 1))
plot(ntx, "2D", edge.width = 1, tip.color = "black")

By default, plot.networx plots the network in 3-D with the package rgl (see
an example in the next section); a standard plot is done with the option "2D".
This function uses the Kamada–Kawai algorithm which optimizes the spacing
of the branches and the nodes. It is a random algorithm, so each call of the
plot function produces a different output.6

It is possible to plot elaborate networks with the packages network and
igraph. When converting trees of class "phylo" into objects of class "network"
or "igraph", the node labels, if present, are used as labels in the returned
object together with the tip labels. Both classes have a plot method. Note
that each repetition of the commands below will result in a different layout
of the nodes (Fig. 4.28):

library(network)
library(igraph)

6 See details in ?layout.kamada.kawai from the package igraph.
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Fig. 4.27. A phylogenetic network (class "networx")

layout(matrix(1:2, 1))
plot(as.network(net), vertex.col="white", displaylabels=TRUE)
plot(as.igraph(net), vertex.color = "white")

The parameters controlling the appearance of these plots are documented in
?plot.network and ?igraph.plotting, respectively.

In addition to its standard plotting function, igraph has the function
tkplot which plots the network on a special device using the package tcltk: the
graph can then be edited with the computer mouse moving the nodes freely,
and the features of the nodes and edges (color, size, line type and width) can
be edited like in a common graphical user interface with left- and right-clicks.
The layout of the nodes can also be changed by calling an algorithm from the
menu. Most importantly, the coordinates of the nodes can be saved with the
function tkplot.getcoords.

A rich set of graphics for networks is available in Rgraphviz which is part
of BioConductor. The package pegas has also a plot method for the class
"haploNet".

4.5 Data Exploration with Animations

Data exploration often requires to make many graphics and plots. Anima-
tions are useful tools to explore large-scale, high-dimensional data sets such
as lists of phylogenies or molecular sequence alignments. There are a num-
ber of specialized computer programs dedicated to animated data exploration
(e.g., GGobi [45]). Fortunately for us, several packages are available to per-
form similar tasks directly from R. We will focus on two of them: rgl and
animation.
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Fig. 4.28. Plotting a network with the packages network (left) and igraph (right).
Note the root of the tree labeled “Node1” or “0” which is a node of degree 2

rgl is a port of the OpenGL library to R: it uses a specific graphical device
(called “RGL”) where the plot is rotated and zoomed in / out with the com-
puter mouse. We come back to the network of class "networx" used in the
previous section:

library(rgl)
open3d()
plot(ntx, edge.width = 1, tip.color = "black")

By default, the network is plotted under a dark grey background with blue
tip labels, so we change these settings slightly. After the last command, the
RGL can be manipulated freely by the user. An alternative is to animate the
device with functions from rgl. A typical use is:

play3d(spin3d())

This will rotate the graph until the user stops it (play3d has the option
duration = Inf). spin3d has two options which are, with their default val-
ues, axis = c(0, 0, 1) and rpm = 5 to control the rotation.

Instead of playing the animation, the views can be saved in files in PNG
format with (Fig. 4.29):

movie3d(spin3d(), 12, fps = 1, convert = FALSE, dir = ".")
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Fig. 4.29. Animation with phangorn and rgl

The second argument is the duration of the animation (here 12 s), fps is
the number of frame(s) per second, convert = FALSE prevents to convert
the PNG files into a single animation file (GIF by default which requires an
external program such as ImageMagick), and dir = "." says to save the files
in the current working directory (by default, a temporary directory is created).

The package animation provides several tools to create animations in var-
ious formats, some of them requiring external programs to be fully effective.
Thus we will focus on saveHTML which creates a HTML file with animation
coded in JavaScript. The individual files are saved in PNG. As an example,
suppose we wish to visualize ten trees:

> TR <- rmtree(10, 10)
> library(animation)
> saveHTML(lapply(TR, plot))
HTML file created at: /tmp/Rtmp53QHfk/index.html

The files are stored in the temporary directory ‘/tmp/Rtmp53QHfk/’ (this
includes some subdirectories): the files can be accessed as long as the R session
is open. This then opens a Web browser displaying sequentially the PNG files
(Fig. 4.30). The parameters of the animation are controled with buttons.

The syntax is saveHTML(<some R code>, <some options>), where the
first argument can be any number of R commands (possibly included within
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Fig. 4.30. HTML animation with animation

{ }). Often, it is useful to increase the size of the graphics, especially with
high resolution screens (the default is 480×480 pixels). In the example below,
we create an animation with the woodmouse data visualizing the four bases,
gaps, and missing data (p. 66). The plot size is 800 × 1200 pixels.

saveHTML(
for (b in c("a", "g", "c", "t", "-", "n"))

image(woodmouse, b, "blue"),
ani.height = 800, ani.width = 1200)

Clearly, this gives a lot of possibilities with very little programming. Below,
we visualize the whole alignment in a standard way (all bases colored at the
same time) displaying fifty columns:

saveHTML(
for (i in seq(1, 901, 50)) {

image(woodmouse[, i:(i + 49)])
mtext(c(i, i + 50), at = c(1, 50), line = 1, font = 2)

},
ani.height = 800, ani.width = 1200)

For LATEX users, saveLatex creates a PDF file with animations and has
a similar syntax than the previous function, though the options are different;
for instance:
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saveLatex(
for (i in seq(1, 901, 50)) {

image(woodmouse[, i:(i + 49)])
mtext(c(i, i + 50), at = c(1, 50), line = 1, font = 2)

},
ani.opts = "controls,loop,width=0.95\\textwidth",
latex.filename = "woodmouse.tex",
interval = 0.1, nmax = 10, ani.dev = "pdf",
ani.type = "pdf", ani.width = 7, ani.height = 7)

A simpler alternative is to use the base function Sys.sleep which stops
R execution during the number of seconds given as argument. This may be
inserted in series of command such as:

for (i in seq(1, 901, 50)) {
image(woodmouse[, i:(i + 49)])
mtext(c(i, i + 50), at = c(1, 50), line = 1, font = 2)
Sys.sleep(1)

}

4.6 Exercises

1. Draw Fig. 4.11 using a color scale in place of the grey one. The figure
should include a legend.

2. Plot the phylogeny of avian orders, and color the Proaves in blue. Repeat
this but only for the terminal branches of this clade.

3. Suppose you have a factor representing a character state for each node
and each tip of a tree. Find a way to associate a color with each branch
depending on the state at both ends of the branch.

4. Consider the trees trc and trk. Do a comparison of branching times as
suggested above. This will include a bivariate plot with a dotted line x = y.
You will also indicate the node by their numbers on the plot.

5. Create a list of trees simulated using a Yule process with λ = 0.1 (see
Chapter 7). Sort the trees in increasing order of number of tips. Create an
animation to visualize sequentially the tree on top and its lineage-through
time plot (Chapter 6) on bottom.
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Phylogeny Estimation

When I took up my post in Pavia in October 1961, [. . . ] Cavalli-Sforza
introduced me to his idea of developing methods for a computer-based
construction of evolutionary trees from contemporary data [. . . ]. Ini-
tially, I was skeptical. I had studied linkage estimation theory under
Fisher himself and I knew how difficult it was. I had visions of evo-
lutionary tree estimation being much the same but with the addition
of the need to estimate the form of the tree itself, surely a fatal com-
plexity: my intuition was that there would be insufficient data for the
task. Cavalli-Sforza was very persuasive, however.

—Edwards [63]

Reconstructing the evolutionary relationships among living species is one
of the oldest problems in biology. There have been some real advances during
the past two decades, but several difficulties remain.

• The estimation of phylogenies is a computationally hard problem which is
analytically intractable in the general case [43].

• Realistic models of character evolution involve many parameters, and it is
likely that real processes are much more complex than the most complex
models available in the literature.

• A common biological complication is that the species and the characters
under study do not have the same history; this is particularly the case for
genetic data [12].

• It is often necessary to estimate many parameters simultaneously though
only some of them are of interest [135].

• There is some confusion in the use of some terminology related to esti-
mation and statistics that is likely to reveal difficulties in communicating
across different scientific fields [138].

• Some confusion arises because phylogeny estimation methods are also used
for systematics (i.e., classification of species) rather than estimating evo-
lutionary parameters.

DOI 10.1007/978-1-4614-1743-9_5, © Springer Science+Business Media, LLC 2012
, Use R,E. Paradis, Analysis of Phylogenetics and Evolution with R 123



124 5 Phylogeny Estimation

• Many studies assessed the “performance” of phylogenetic methods using
simulations but these considered only special cases, and the conclusions
drawn from these simulations are of very limited value [138].

• The different methods, models, and algorithms for phylogeny estimation
are available in distinct programs resulting in several practical difficulties
[169, 203, 202].

The last point is of particular interest here. All these programs have their
own features and requirements in terms of operating systems, user interfaces,
data formats, or licenses. Comparing different methods is difficult because it
is often hard to decide whether the observed differences in the results are
due to different assumptions, algorithms, run-time environments, computer
architectures, or other features that vary among programs. Even the analysis
of a single data set is made difficult by the need to switch between different
software and / or operating systems.

All phylogeny estimation methods are characterized by:

1. A numerical criterion to measure the adequacy of a given tree topology
compared to another.

2. A formula to calculate the branch lengths.
3. An algorithm to explore the tree space.

The development of phylogeny estimation in R is very recent, and sig-
nificant progress has been made in distance-based and maximum likelihood
methods. This is limited compared to the methods available in the literature
(particularly with respect to the old, well-established parsimony methods, and
the current success of Bayesian methods). There are good reasons to focus on
distance and likelihood methods, because these methods have been shown to
perform well in a number of situations (although we have to be cautious in
generalizing these conclusions as mentioned above). There has been a long-
lasting debate on the merits of parsimony, and although this method has been
severely criticized [77], it can be viewed as a valid nonparametric method [138].
Bayesian methods enjoy a current success, but some critics pointed out the
limitations of this approach [79, 293]. However, Bayesian phylogeny estima-
tion may be implemented in a straightforward way because all the necessary
ingredients exist in R or have been developed in various packages as we will
see later in this chapter.

5.1 Distance Methods

Distance methods have a long history because they are generally tractable
even with a large amount of data [298]. Consider a phylogenetic tree T among
a set of species. T defines a unique matrix of pairwise distances, Δ, given by
the paths between species (the patristic distances):
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T −→ Δ

However, for a given distance matrix, many trees may be defined depending
on the criterion used to define them:

Δ −→ T1, T2, . . .

All the problematic of distance-based methods is to find the tree for a given
distance matrix. The driving idea is that the distances in Δ give information
on the relative closeness of observations. The distances are used to estimate
both the topology of the tree and its branch lengths. There are two main
strategies to find a tree: aggregating the most closely related observations,
or splitting the most distant sets of observations. We will see below that for
a given data set (sequences, measurements, . . . ) there are several possible
distance matrices depending on the method used to compute them.

There has been considerable progress in implementing these methods in R,
particularly based on the numerous methods to compute distances in R from
various types of data which are the focus of the first section.

5.1.1 Calculating Distances

There is a difference between the concepts of statistical and evolutionary dis-
tances. In statistics, a distance can be viewed as a “physical” or geometric
distance between two observations, each variable being a dimension in a hy-
perspace. In evolutionary biology, a distance is an estimate of the divergence
between two units (individuals, populations, or species). This is usually mea-
sured in quantity of evolutionary change (e.g., numbers of mutations).

R has various functions to compute distances available in different pack-
ages. Table 5.1 lists these functions, which are detailed in the following sec-
tions.

Classical Distances

There are several ways to define a distance between two observations using
numerical data. It would be too long to detail all of them here. Fortunately,
the help pages of the functions mentioned below include the formulae of the
different methods.

dist in package stats performs distance calculations taking a matrix as
its main argument. Its main option is method which can take one of the
six following strings: "euclidean" (the default), "maximum", "manhattan",
"canberra", "binary", or "minkowski". As a simple example, consider three
variables taken on three individuals:

> X <- matrix(c(0, 1, 5), 3, 3)
> rownames(X) <- LETTERS[1:3]
> X
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Table 5.1. Functions for computing distances in R

Package Function Data Types

stats dist Continous or binary
cophenetic Objects of class "hclust" or "dendrogram"

cluster daisy Continuous and / or discrete
ade4 dist.binary Binary

dist.prop Relative frequencies
dist.quant Continous

ape dist.gene Discrete
dist.dna Aligned DNA sequences
weight.taxo ‘Taxonomic’ levels
cophenetic An object of class "phylo"

adephylo distTips Objects of class "phylo", "phylo4" or "phylo4d"

adegenet dist.genpopa An object of class "genpop"

phangorn dist.ml An alignment of amino acids
aReplaces dist.genet from ade4

[,1] [,2] [,3]
A 0 0 0
B 1 1 1
C 5 5 5

These may be viewed as three points in a 3-d space where A would be at the
origin of the space.

> dist(X)
A B

B 1.732051
C 8.660254 6.928203
> dist(X, method = "maximum")
A B

B 1
C 5 4
> dist(X, method = "manhattan")

A B
B 3
C 15 12
> dist(X, "binary")
A B

B 1
C 1 0

dist returns an object of class "dist" which is a vector storing only the lower
triangle of the distance matrix (because it is symmetric and all its diagonal
elements are equal to zero). This class can be converted into a matrix using
the generic function as.matrix, and a matrix can be converted with as.dist:
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> d <- dist(X)
> class(d)
[1] "dist"
> as.matrix(d)

A B C
A 0.000000 1.732051 8.660254
B 1.732051 0.000000 6.928203
C 8.660254 6.928203 0.000000

The function daisy in the package cluster also performs distance cal-
culations but it implements some methods that can deal with mixed data
types. Three metrics are available via the option metric: "euclidean",
"manhattan", or "gower". The last one implements Gower’s coefficient of
similarity for mixed data types [112]. The types of the variables are either
identified with respect to the class of the columns, or specified with the op-
tion type (see ?daisy for details). In the example below, we convert the
columns of X as factors to build the data frame Y:

> daisy(X, "gower")
Dissimilarities :

A B
B 0.2
C 1.0 0.8

Metric : mixed ; Types = I, I, I
Number of objects : 3
> Y <- as.data.frame(apply(X, 2, factor))
> Y
V1 V2 V3

A 0 0 0
B 1 1 1
C 5 5 5
> daisy(Y, "gower")
Dissimilarities :
A B

B 1
C 1 1

Metric : mixed ; Types = N, N, N
Number of objects : 3

dist.quant in ade4 implements three metrics (canonical or Euclidean,
Joreskog, and Mahalanobis) specified with an integer between 1 and 3:

> dist.quant(X, 1) # canonical
A B
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B 1.732051
C 8.660254 6.928203
> dist.quant(X, 2) # Joreskog

A B
B 0.8017837
C 4.0089186 3.2071349
> dist.quant(X, 3) # Mahalanobis

A B
B 0.4629100
C 2.3145502 1.8516402

dist and daisy handle missing data and will usually correct the distances
for their presence, but the returned distance may be NA if there are too many
missing values. On the other hand, dist.quant does not accept missing values.

Evolutionary Distances

dist.gene provides a simple interface to compute the distance between two
haplotypes using a simple binomial distribution of the pairwise differences.
This allows one to compute easily the variance of the estimated distances
using the expected variance of the binomial distribution. The input data are
a matrix or a data frame where each row represents a haplotype, and each
column a locus. Missing values are accepted and handled through the option
pairwise.deletion. By default, the columns with at least one NA are deleted
before computing (global deletion), so that all distances are computed with
the same columns. If a few missing values are spread over all columns, this
procedure may result in very few (even none) variables left for computing the
distances. If pairwise.deletion = TRUE, columns are deleted on a pairwise
basis and the distances are adjusted with the respective numbers of variables
used.

dist.dna provides a comprehensive function for the estimation of dis-
tances from aligned DNA sequences using substitution models or counts of the
number of differences ("n", "raw" scales by the sequence length), transitions
("ts"), transversions ("tv"), or alignement gaps ("indel", "indelblock"
counts contiguous gaps as a single unit). The options are detaild in Table 5.2.
The substitution models are described in Section 5.2.1.1 If a correction for
among-sites heterogeneity (usually based on a Γ distribution) is available,
this may be taken into account. The variances of the distances can be com-
puted as well. Missing and ambiguous nucleotides are taken into account with
the option pairwise.deletion as described in the previous paragraph.

dist.genpop takes as input an object of class "genpop". Five methods are
available to compute these distances: standard (or Nei), angular (or Edwards),
1 dist.dna calculates distances for the models whose an analytical formula has

been found. See page 144 for a general numerical formula.
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Table 5.2. Options of the function dist.dna. The values marked with (d) are the
default ones

Options Effect Possible Values

model Specifies the substitu-
tion model

"raw", "n", "ts", "tv", "indel",
"indelblock", "JC69", "K80" (d),
"K81", "F81", "F84", "BH87",
"T92", "TN93", "GG95", "logdet",
"paralin"

variance Whether to compute the
variances

FALSE (d), TRUE

gamma The value of α for the Γ
correction

NULL (no correction) (d), a numeric
giving the value of α

pairwise.deletion Whether to delete the
sites with missing data in
a pairwise way

FALSE (d), TRUE

base.freq The frequencies of the
four bases

NULL (calculated from the data) (d),
four numeric values

as.matrix Whether to return the
results as a matrix or as
an object of class "dist"

TRUE (d), FALSE

Reynolds, Rogers, and Provesti. This is specified with the option method which
takes an integer value between 1 and 5.

These three functions return an object of class "dist", except dist.dna
with model = "BH87" because the Barry–Hartigan model is asymmetric [21].

Special Distances

The package ade4 has two functions that compute distances with some special
types of data: dist.binary and dist.prop, for binary data and proportions,
respectively. The first one has the option method which takes an integer be-
tween 1 and 10; this includes the well-known Jaccard, and the Sokal and
Sneath methods. The second function has a similar option taking an integer
between 1 and 5: this includes Rogers’s, Nei’s, and Edwards’s methods.

ape has the function weight.taxo that computes a similarity matrix be-
tween observations characterized by categories that can be interpreted as a
taxonomic level (i.e., a numeric code, a character string, or a factor). The
value is 1 if both observations are identical, 0 otherwise.

stats has a generic function cophenetic that computes the distances
among the tips of a hierarchical data structure: there are methods for ob-
jects of class "hclust", "dendrogram", and "phylo". Additionally, adephylo
has the function distTips computing various distances from a tree (patristic,
node path, Abouheif’s, and sum of descendants of nodes on path). ade4 and
vegan have a comprehensive list of ecological distances.
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5.1.2 Exploring and Assessing Distances

The choice of a particular distance is often dictated by the type of data at
hand, but in most situations it is very useful to compare different distances
computed with the same data. Because distances are easily computed, they
may be potentially useful exploratory tools that have been underexploited in
phylogenetic analyses. It is important to emphasize that even if a distance-
based method is not used, pairwise distances contain information that could
be explored before tree estimation.

A simple graphical exploration of the distances may be revealing. Because
an object of class "dist" (say d) contains only the lower triangle of the dis-
tance matrix, it can be plotted with hist(d). It is well-known that the way
classes are defined in a histogram may hide patterns in the data, so it is use-
ful to compare the default number of classes used by hist (approximately
20) with, for instance, hist(d, 50). An alternative is to draw a curve of
the empirical density on top of the histogram plotted as densities, instead of
numbers, so its total area equals one:

hist(d, freq = FALSE)
lines(density(d))

lattice gives a nice alternative with densityplot(~ d). Ideally, with the objec-
tive of phylogeny estimation in mind, one wants to have the distances spread
as much as possible in order to obtain a resolved phylogeny. One has to be
careful on the scale of the x-axis here because similarly shaped histograms
may have different scales. Small distances may indicate observations that will
be difficult to pull apart in the phylogeny (typically, < 0.005 for a sequence of
1000 sites). On the other hand, large distances will lead to a similar problem
because of mutation saturation: the JC69 distance cannot exceed 0.75, but in
practice distances greater than 0.3 lead to difficulties.

A second useful, though very simple, graphical exploration tool is to plot
two sets of distances computed on the same data with the goal to contrast
the effect of different methods. A form of this approach is well-known as the
‘saturation plot’ where the number of transitions or transversions is plotted
against the K80 distance (see p. 191), but this can be generalized. For instance,
the F81 model differs from the JC69 one by considering unbalanced base
frequencies (p. 142). So plotting these two distances together will show the
impact of this assumption:

djc69 <- dist.dna(x, "JC69")
dk81 <- dist.dna(x, "K81")
plot(djc69, dk81)
abline(b = 1, a = 0)

We take advantage of the fact that the observations are ordered in the same
way in both "dist" objects. In case of doubt this may be checked with:
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all(attr(djc69, "Labels") == attr(dk81, "Labels"))

Distance matrices may be characterized by a number of properties that
may give helpful indications on the evolutionary information in the data. We
will consider only a few of these properties. A particularly interesting one is
additivity. A distance matrix is said to be additive if it satisfies the four-point
condition. Consider a quartet of observations q = {x, y, u, v}, and define:

dxy|uv = dxy + duv.

Then the four-point condition is satisfied for q if among the three quantities
dxy|uv, dxu|yv, and dxv|yu the two largest ones are equal. Additive distances
may be represented appropriately with a tree structure. Holland et al. [136]
developed an exploratory method to assess the addivity of a distance matrix.
They define the ratio:

δq =
dxv|yu − dxu|yv

dxv|yu − dxy|uv
,

under the condition that dxy|uv ≤ dxu|yv ≤ dxv|yu. If the distances are additive
δq will be close to zero. The function delta.plot implements this method. δq

is computed for all possible quartets, and their distribution is examined with
a histogram. Additionally, a mean value δ̄ is computed for each observation
taking all δq values where this observation is involved. For illustration, we take
a distance matrix computed from a set of fifteen sequences of cytochrome b,
and another matrix computed from a random set of five variables for fifteen
observations (Fig. 5.1):

> data(woodmouse)
> dw <- dist.dna(woodmouse)
> x <- replicate(5, rnorm(15))
> dx <- dist(x)
> delta.plot(dw)
> delta.plot(dx)

A difficulty with δ-plots is that the shape of the distribution of the δq

depends on several factors, including the number of variables (e.g., if x had
only one column in the above example, then δq = 0 for all quartets). It may
thus be appropriate to examine some hypothetical scenarios with simulated
data.

Another relevant property is whether a distance is Euclidean. Euclidean
distances are measured in a purely isotropic space, i.e., a space where classical
geometry applies. Most multivariate methods, such as principal components
analysis, requires variables to be represented in a Euclidean space so that ro-
tations are meaningful. ade4 has the function is.euclid that returns TRUE
or FALSE. Note that for a given data set, a distance matrix may or may not
be Euclidean depending on the method used. A non-Euclidean distance ma-
trix can be transformed into a Euclidean one by multiplying the distances
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Fig. 5.1. δ-plot of fifteen sequences of cytochrome b (top) and fifteen random
observations (bottom)

by a coefficient that is found from an eigen decomposition of the original
matrix. Two functions are available in ade4: cailliez that does a simple lin-
ear transformation of the distances, and lingoes that does the same on the
squared distances. Note also the function quasieuclid to ‘clean’ an already
Euclidean matrix which is not completely so because of numerical approxi-
mations (Thibaut Jombart, personal communication). Recently, de Vienne,
Aguileta and Ollier [51] showed that taking the square root of the distances
make them Euclidean. This simple transformation, done with sqrt(d), implies
less distortion of the original distances compared to the Caillez transform.

A well-known property of distances in evolutionary biology is ultrametric-
ity. A distance matrix is ultrametric if it satisfies the following inequality:

dxy ≤ max(dxz, dyz) ,

for all triplets {x, y, z}. Consider the case where there are only three obser-
vations: it is clear that the above condition is met only if all distances are
equal. So if we represent these three observations with a tree, it would have
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three equal branch lengths, and all tips would be equally distant from the
root which is the definition of an ultrametric tree. Ultrametricity is appeal-
ing for evolutionists because if evolution is homogeneous across lineages—but
not necessarily through time—then distances among them are expected to
be ultrametric. Several decades of research have shown that this will be not
generally true with real data. Fortunately, a distance matrix may be non-
ultrametric but still be additive. The reader is invited to explore further these
ideas in the Exercices of this chapter.

Campbell, Legendre and Lapointe [36, 37] developed a test of the congru-
ence among ultrametric distance matrices. It is implemented in the functions
CADM.global and CADM.post in ape.

5.1.3 Simple Clustering, UPGMA, and WPGMA

There is a corpus of phylogeny estimation methods that are based on sta-
tistical clustering methods. They were popular in the past, but have recently
declined since the rise of likelihood and Bayesian methods. These methods are
aggregative. The first step is to find the two observations with the shortest
pairwise distance in the matrix: this distance is used to calculate the ‘height’
at which they aggregate, that is the distance from the node to each of these
tips. Since no other observation come into this height calculation, it is not
possible to assume different rates of change in both branches, so they have
the same length. The second step is to calculate the distances from the in-
ferred node to the remaining observations: this is where clustering methods
differ because there are many ways to recalculate distances. Once this is done,
the two steps are repeated until no observation remains.

R has a reasonably large number of functions that perform clustering [307].
They mostly work on a distance (also called dissimilarity) matrix, but some of
them work directly on the original data matrix (observations and variables).
The unweighted pair-group method using arithmetic average (UPGMA) is
similar to a hierarchical clustering with the average method as implemented
in the hclust function. The only difference is that the branch lengths are
halved in the UPGMA method. This is implemented in the function upgma in
phangorn, for instance:

M <- dist.dna(woodmouse)
tr <- upgma(M)

The substitution model can be changed with the appropriate option in
dist.dna. Giving the graphical functions detailed in the previous chapter,
it is easy to compare the trees estimated with different substitution models.
For instance:

M1 <- dist.dna(woodmouse) # K80 is the default
tr1 <- upgma(M1)
M2 <- dist.dna(woodmouse, model = "F84")
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tr2 <- upgma(M2)
layout(matrix(1:2, 2, 1))
plot(tr1, main = "Kimura (80) distances")
plot(tr2, main = "Felsenstein (84) distances")

We show some practical examples in Section 5.8.
upgma has an option method that specifies the method used to update the

distances in the second step described above. The default is "average"; six
other methods are available and described in the help page ?hclust. Set-
ting method = "mcquitty" is the same thing that using the function wpgma
that implements the weighted version or WPGMA. The topology and branch
lengths of the tree are substantially affected by the choice of this method (see
Exercices).

5.1.4 Neighbor-Joining

The neighbor-joining (NJ) is one of the most widely used methods of phy-
logeny estimation. It is a splitting method. The first step is to build a tree
with a single internal branch where one node is linked to two observations
(the neighbors), and the other is linked to all the others. All possible pairs of
neighbors are considered: the tree with the smallest total branch length is se-
lected. The second step is to update the distance matrix by removing the two
neighbors and calculating the distance from the new node to the remaining
observations. The two steps are repeated until the tree is dichotomous. The
branch lengths are estimated by least squares, so the rates of evolution may
vary among branches.

ape has the function nj that performs the NJ algorithm. Its use is simple:
it takes a distance matrix as unique argument, and returns the estimated tree
as an object of class "phylo". As for the UPGMA, it is easy to obtain NJ trees
with different substitution models. It is also possible to call nj repeatedly for
a series of models:

mod <- list("JC69", "K80", "F81", "F84")
lapply(mod, function(m) nj(dist.dna(X, model = m)))

In the above command, we insert the call to dist.dna with the call to nj in
a function where the model is treated as a variable. lapply then dispatches
the different models to this function, and returns the results as a list.

Because branch lengths are estimated by least squares, it happens some-
times that some of them may be negative. This is the case with the woodmouse
data:

> trw <- nj(dist.dna(woodmouse))
> which(trw$edge.length < 0)
[1] 5
> trw$edge.length[5]
[1] -3.160774e-05
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Usually, these negative branch lengths are tiny (the mean branch length of
trw is 2.43×10−3), and it seems reasonable to consider them as equal to zero
if needed in subsequent analyses [102, 172].

The properties of NJ have been extensively studied in the literature [e.g.,
100, 103, 273]. Particularly, NJ has good statistical properties when distances
are unbiased.

5.1.5 Extensions of Neighbor-Joining: UNJ and BIONJ

We have seen above that clustering methods differ essentially in the way the
distance matrix is updated after two observations have been clustered. Simi-
larly, the NJ method may vary with respect to the way distances are updated
after a splitting step. In the original version of the method, the new distances
are calculated with:

dui =
dxi + dyi − dxy

2
i �= x, y ,

where x and y are the two neighbors, and u is the new node to be added in
the matrix. During the first iteration of the NJ algorithm, x and y are original
observations (species, populations, . . . ) but in the subsequent iterations they
can be nodes created during the previous steps and so representing more
than one observations. The unweighted neighbor-joining (UNJ) takes this into
account by correcting the above formula with the number of observations (i.e.,
tips) in x and y [99]. It is unweighted in the sense that all observations are
given the same weight [101]. The UNJ method is implemented in the function
UNJ in phangorn.

So far, we have ignored the variances and covariances of the distances
which are considered as independent and with equal variance. This is un-
likely to be generally true because of the shared evolutionary history which
makes distances non-independent (a theme we will revisit extensively in the
next chapter), and the longer distances will tend to have higher variances.
However, computing the variances and covariances of the distances is compu-
tationally complicated. Gascuel [98] proposed an approximation in the case
where distances are from molecular sequences: the variances are then calcu-
lated with the distances read in the matrix divided by the sequence length.
These approximations are used to calculate dui in a way to minimize the vari-
ance of the distances. This is the BIONJ method, and implemented in the
function bionj in ape.

5.1.6 Minimum Evolution

Desper and Gascuel [55] developed a method that aims to alleviate some of the
limitations of NJ. Because their method is based on the principle of minimum
evolution, and it is faster than others, the authors named it FastME. They
developed two versions of it. In the OLS (ordinary least squares) version, a
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tree is first built agglomeratively using a fast algorithm. In a second step, a
method of tree rearrangements based on nearest-neighbors interchange (NNI;
Fig. 5.2) is applied until the shortest tree has been found. These two steps
do not require the calculation of the branch lengths—in contrast to NJ which
does so at each iteration. Finally, branch lengths are estimated on the final
tree by least squares. This method is implemented in the function fastme.ols
in ape:

fastme.ols(X, nni = TRUE)

The second version of FastME is based on a “balanced” approach to com-
puting distances. This uses a formula established by Pauplin [236] to calculate
the length of a tree without requiring to calculate its branch lengths. The pro-
cedure is otherwise close to the OLS version. However, the balanced approach
allows to use more complex tree rearrangements, namely subtree pruning and
regrafting (SPR), and tree bisection and reconnection (TBR).2 This is imple-
mented in fastme.bal also in ape:

fastme.bal(X, nni = TRUE, spr = TRUE, tbr = TRUE)

Desper and Gascuel wrote that FastME is faster than NJ [55]. In practice
with the present implementation, however, fastme.ols is faster than nj while
fastme.bal is slower, particularly if TBR rearrangements are used. Neverthe-
less, the overall computing time of the latter remains reasonable even with a
large data set (≈ 15 s with 500 observations on a modern laptop). On the other
hand, Desper and Gascuel claimed a greater accuracy of the balanced version
of FastME compared to NJ, which should make this method an attractive
alternative to NJ with moderate-sized data sets.

We have seen repeatedly the importance of least squares in distance meth-
ods. These may be formally defined with:∑

i<j

(dij − tij)2 , (5.1)

where i and j are the observations, dij is as before, and tij is the distance
from the tree. This quantity is used for estimation in several methods, but
it can also be used as a measure of the goodness-of-fit of the estimated tree.
The generic function cophenetic returns the distances from a tree: it is then
possible to compare them with the original distances. For instance, taking the
woodmouse data and estimating an NJ tree:

d <- dist.dna(woodmouse)
tr.nj <- nj(d)
dt.nj <- cophenetic(tr.nj)

2 At the time of writing of this book, these improvements are not yet published in
the literature (Olivier Gascuel, personal communication).
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NNI SPR

TBR

Fig. 5.2. The three common tree rearrangement operations consider an internal
branch (in thick line). NNI: the two grey subtrees are exchanged; there are two
possible NNIs for each internal branch. SPR: the grey subtree is moved to an internal
branch of the black subtree; the circled node is deleted and a new one is created
where the grey subtree is regrafted. TBR: both grey subtrees are moved in the same
way than in SPR; the two circled nodes are deleted and a new one is created on
each subtree
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We have to insure that the distances are ordered in the same way in d and in
dt.nj. The latter is a matrix—not an object of class "dist"—which helps to
reorder its rows and columns:

dmat <- as.matrix(d)
nms <- rownames(dmat)
dt.nj <- dt.nj[nms, nms]
dt.nj <- as.dist(dt.nj)

We have converted dt.nj as a "dist" object to have each distance only once
and remove the diagonal of zeros. There are several ways to plot these two
sets of distances, for instance:

plot(dt.nj - d, ylab = "distance residuals")
abline(h = 0, lty = 3)

to display something similar to a plot of residuals in a regression analysis. This
is done using four tree estimation methods in Fig. 5.3. UPGMA shows a clear
larger dispersion of these ‘residuals’ compared to the three other methods.
Interestingly, BIONJ shows a more compact dispersion around the y = 0 line
of most points, though the extreme points are similar to NJ and FastME.

Note that regression residuals are assumed to be independent; however,
we cannot make the same assumption for the points in Fig. 5.3 because they
are calculated using pairwise distances.

It is simple from the above code lines to build functions to ease this kind of
goodness-of-fit diagnostics, or even to propose other kinds of plots. The reader
is invited to explore these ideas in the Exercices at the end of this chapter.

5.2 Maximum Likelihood Methods

Maximum likelihood is the cornerstone of modern statistics [61, 67]. Applying
this estimation method to phylogenetic problems is simple in principle. Sup-
pose we have data on a trait from three species, one mammal, one bird, and
one fish. With a statistical model of the evolution of this trait and the phy-
logeny ((mammal,bird),fish), it is possible to compute the probabilities of the
trait values on the tree. There are two big difficulties though. First, choosing
a model of evolution seems to have a particular impact on the result of phy-
logeny estimation which raises the question of what is a “good” model of trait
evolution. Second, it is rare that we know the tree of the species or sequences
under study, and since this is the question of interest to most researchers this
has attracted considerable attention.

Before diving in these two issues, the first section gives the bases of sub-
stitution models as applied to molecular sequences which are the most widely
used data for phylogeny estimation.
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Fig. 5.3. Plot of the difference between the distances from the estimated tree and
original distances (distance residuals) for four tree estimation methods

5.2.1 Substitution Models: A Primer

The vast majority of models of evolution for discrete characters are Markovian
implying that:

• The number of character states is finite;
• The probabilities of transitions among these states are controlled by some

parameters;
• The process is at equilibrium.

This can be applied to many kinds of data, but the recent rise of large-
scale molecular databases has led to this approach being applied essentially
to nucleotide (DNA) and amino acid (protein) sequences.

A substitution model is a formulation of the instantaneous rate(s) of
change among the different states of the character. For instance, for a char-
acter with two states, A and B, where the rate of change (i.e., the probability
of change from one state to another for a very short time) is symmetric and
equal to 0.1, the rate matrix, usually denoted Q, is:

Q =
[
−0.1 0.1

0.1 −0.1

]
. (5.2)



140 5 Phylogeny Estimation

The rows of Q correspond to the initial state, and its columns to the final
one. The elements on the diagonal are set so that the sum of each row is zero.
For an arbitrary time interval t, the probability matrix P is obtained by the
matrix exponentiation of Q:

P = etQ . (5.3)

The element pij from the ith row and jth column of P is the probability of
being in state j after time t given that the initial state was i. The probabilities
in P take into account possible multiple changes (e.g., a change from A to
B may be the result of A → B, or A → B → A → B, . . . ). The matrix
exponentiation is usually calculated with an infinite sum:

etQ = I + tQ +
(tQ)2

2!
+

(tQ)3

3!
+ · · · (5.4)

= I +
∞∑

i=1

(tQ)i

i!
. (5.5)

In practice, an approximation is done. ape has the function matexpo:

> Q <- matrix(c(-0.1, 0.1, 0.1, -0.1), 2)
> Q

[,1] [,2]
[1,] -0.1 0.1
[2,] 0.1 -0.1
> matexpo(Q) # t = 1

[,1] [,2]
[1,] 0.90936538 0.09063462
[2,] 0.09063462 0.90936538
> matexpo(10*Q) # t = 10

[,1] [,2]
[1,] 0.5676676 0.4323324
[2,] 0.4323324 0.5676676

We effectively have probabilities because the rows sum to one. Note that Q is
independent of time whereas P is not. Both calculated matrices are symmetric;
they could be asymmetric if Q were.

With longer time t, the probabilities in P tend to be equal. Indeed if
t = 1000, all probabilities would be equal to 0.5 in the above example. This is
an important property of Markovian models: the final state is independent of
the initial state and its probabilities are equal to the equilibrium frequencies
of the states. Here we assumed that these frequencies are balanced, but it
does not need to be always true: in that case, the transition rates must be
multiplied by these frequencies. For instance, if the equilibrium frequencies of
A and B are 0.95 and 0.05, Q and P become:
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> Q <- matrix(c(-0.005, 0.095, 0.005, -0.095), 2)
> Q

[,1] [,2]
[1,] -0.005 0.005
[2,] 0.095 -0.095
> matexpo(Q) # t = 1

[,1] [,2]
[1,] 0.99524187 0.004758129
[2,] 0.09040445 0.909595547
> matexpo(Q*1000) # t = 1000

[,1] [,2]
[1,] 0.95 0.05
[2,] 0.95 0.05

When fitting a substitution model to some data, its parameter(s) will
usually be unknown. For the hypothetical two-state character we write:

Q =
[

. α
α .

]
, (5.6)

where α is the parameter and the dots on the diagonal indicate that these
values are set so that the rows sum to zero. There may be other parameters,
for instance, if the equilibrium frequencies are to be estimated as well, there
would be one additional parameter in Q:

Q =
[

. (1 − fA)α
fAα .

]
.

This is generalized to DNA sequences (by assuming that Q is 4 × 4), or to
protein sequences (20×20). The substitution models differ in the way the rate
matrix Q is modeled. We consider here in detail the case of DNA sequences
because substitution models for this kind of data are implemented in several
functions in various packages.

For the simplest models of DNA substitution, it is possible to derive the
transition probabilities (i.e., the elements of P ) without matrix exponentia-
tion: this is nicely explained by Felsenstein [79, p. 156]. Substitution models
are used to calculate distances between pairs of sequences (p. 128) in which
case the parameters may not be estimated [317]. When these models are used
in phylogeny estimation, their parameters are estimated from the data (see
details below). We focus on the structure of the models and give pointers to
the literature for the formulae (e.g., [317] for a thorough treatment).

Jukes and Cantor 1969 (JC69)

This is the simplest model of DNA substitution [155]. The probability of
change from one nucleotide to any other is the same. It is assumed that all
four bases have the same frequencies (0.25). The rate matrix Q is:
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A G C T
A
G
C
T

⎡
⎢⎢⎣

. α α α
α . α α
α α . α
α α α .

⎤
⎥⎥⎦ .

As with the general case above, the rows correspond to the original state of
the nucleotide, and the columns to the final state (the row and column labels
are omitted in the following models).

The overall rate of change in this model is thus 3α. The probability of
change from one base to another during time t can easily be derived (see
[79]):

pab(t) = (1 − e−4αt)/4 a �= b , (5.7)

where a and b are among A, G, C, and T.
The expected mean number of substitutions between two sequences is

3(1 − e−4αt)/4 because there are three different types of change. From this, it
is straightforward to derive an estimate of the distance (t̂).

Kimura 1980 (K80)

Because there are two kinds of bases with different chemical structures, purines
(A and G) and pyrimidines (C and T), it is likely that the changes within and
between these kinds are different. Kimura [161] developed a model whose rate
matrix is: ⎡

⎢⎢⎣
. α β β
α . β β
β β . α
β β α .

⎤
⎥⎥⎦ .

A change within a type of base is called a transition and occurs at rate
α; a change between types is called a transversion and occurs at rate β. The
base frequencies are assumed to be equal.

Felsenstein 1981 (F81)

Felsenstein [74] extended the JC69 model by relaxing the assumption of equal
frequencies. Thus the rate parameters are proportional to the latter:⎡

⎢⎢⎣
. απG απC απT

απA . απC απT

απA απG . απT

απA απG απC .

⎤
⎥⎥⎦ .
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There are three additional parameters (the base frequencies, πA, πG, πC ,
and πT , sum to one, thus only three of them must be estimated) but they are
usually estimated from the pooled sample of sequences.

Kimura 1981 (K81)

Kimura [162] generalized his model K80 by assuming that two kinds of
transversions have different rates: A ↔ C and G ↔ T on one side, and A
↔ T and C ↔ G on the other. ⎡

⎢⎢⎣
. α β γ
α . γ β
β γ . α
γ β α .

⎤
⎥⎥⎦ .

Felsenstein 1984 (F84)

This model can be viewed as a synthesis of K80 and F81: there are different
rates for base transitions and transversions, and the base frequencies are not
assumed to be equal. The rate matrix is:

⎡
⎢⎢⎣

. πG(α/πR + β) βπC βπT

πA(α/πR + β) . βπC βπT

βπA βπG . πT (α/πY + β)
βπA βπG πC(α/πY + β) .

⎤
⎥⎥⎦ ,

where πR = πA + πG, and πY = πC + πT (the proportions of purines and
pyrimidines, respectively). Felsenstein and Churchill [83] gave formulae for
the probability matrix and the distance.

Hasegawa, Kishino, and Yano 1985 (HKY85)

This model is very close in essence to the previous one but its parameterization
is different [129]: ⎡

⎢⎢⎣
. απG βπC βπT

απA . βπC βπT

βπA βπG . απT

βπA βπG απC .

⎤
⎥⎥⎦ .

Due to some mathematical properties of this rate matrix, it is not possible
to derive analytical formulae of the transition probabilities, and so for the
distance as well [314].



144 5 Phylogeny Estimation

Tamura 1992 (T92)

The model developed by Tamura [296] is a generalization of K80 that takes
into account the content of G + C. The rate matrix is:⎡

⎢⎢⎣
. αθ βθ β(1 − θ)

α(1 − θ) . βθ β(1 − θ)
β(1 − θ) βθ . α(1 − θ)
β(1 − θ) βθ αθ .

⎤
⎥⎥⎦ ,

where θ = πG + πC . Tamura [296] gave formulae for the distance, and Galtier
and Gouy [94] gave formulae for the transition probabilities.

Tamura and Nei 1993 (TN93)

Tamura and Nei [297] developed a model where both kinds of base transitions,
A ↔ G and C ↔ T, have different rates αR and αY , respectively. The base
frequencies may be unequal. All the above models can be seen as particular
cases of the TN93 model. The rate matrix is:

⎡
⎢⎢⎣

. πG(αR/πR + β) βπC βπT

πA(αR/πR + β) . βπC βπT

βπA βπG . πT (αY /πY + β)
βπA βπG πC(αY /πY + β) .

⎤
⎥⎥⎦ .

Fixing αR = αY results in the F84 model, whereas fixing αR/πR = αY /πY

results in the HKY85 model [79].

The General Time-Reversible Model (GTR)

This is the most general time-reversible model. All substitution rates are dif-
ferent, and the base frequencies may be unequal [176]. The rate matrix is:⎡

⎢⎢⎣
. απG βπC γπT

απA . δπC επT

βπA δπG . ζπT

γπA επG ζπC .

⎤
⎥⎥⎦ .

There are no analytical formulae for the transition probabilities, nor for
the distance. Nonetheless, it is possible to calculate a distance with [317]:

t̂ = −trace{Π̂ ln(Π̂−1F̂ )} , (5.8)

where Π̂ is a diagonal matrix with the observed base frequencies, F̂ is a 4× 4
matrix with the observed relative frequencies of pairs of nucleotides, and ‘ln’
is the matrix logarithm calculated as ln(X) = V UV −1 with V the matrix of
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eigenvalues of X and U a diagonal matrix with the logarithm of the eigenvalues
of X. This is not implemented in a phylogenetic package, but it can computed
using standard R commands and this is the subject of an exercise at the end
of this chapter.

It appears from the structure of the GTR model in the above matrix that
a number of intermediate models, albeit still time-reversible, can be defined
by constraining the six substitution rates (α, . . . ) and / or the four base fre-
quencies (πA, . . . ). phangorn implements twenty three of these models in its
function modelTest: these include six of the models described above (F84 and
T92 being not included in phangorn’s scheme; Table 5.4, p. 152).

Barry and Hartigan 1987, LogDet, and Paralinear

More complex models than the GTR can be built by removing the constraint of
time-reversibility: the most general model would thus have twelve substitution
rates—plus eventually the three frequency parameters. The models though are
difficult to analyze with real data, and their general usefulness in data anlysis
is not clear [79, 317].3

Barry and Hartigan developed a formula to compute the distance from a
general model [21]. They claim this distance is valid even when the model
is non-stationary (i.e., the rates are not assumed to be constant through
time). The distance matrix is not symmetric, for instance examing the six
first columns and rows with the woodmouse data:

> round(dist.dna(woodmouse, "BH87")[1:6, 1:6], 4)
No305 No304 No306 No0906S No0908S No0909S

No305 0.0000 0.0174 0.0165 0.0230 0.0182 0.0179
No304 0.0136 0.0000 0.0041 0.0169 0.0119 0.0155
No306 0.0125 0.0039 0.0000 0.0127 0.0077 0.0113
No0906S 0.0148 0.0125 0.0085 0.0000 0.0101 0.0137
No0908S 0.0158 0.0132 0.0092 0.0158 0.0000 0.0146
No0909S 0.0160 0.0175 0.0135 0.0201 0.0152 0.0000

The level of asymmetry is visible to the third digit. This clearly leads to the
virtual impossibility to use the Barry–Hartigan distance in distance-based
methods. Lake [174] and Lockhart et al. [186] derived variants of the Barry–
Hartigan distance that are symmetric: the LogDet and paralinear distances,
respectively. These three distances are available in dist.dna.

Galtier and Gouy 1995

Galtier and Gouy [93] developed a nonequilibrium model where the G + C
content is allowed to change through time. Sequences are assumed to evolve
3 Rodŕıguez et al. [269] showed that models that are more complex than GTR do

not have an estimable distance with pairwise data.
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on each lineage depending on its G + C content. This is estimated from the
G + C content of the recent species or populations. It is thus necessary to
estimate ancestral G + C contents. The rate matrices for each lineage are
similar to the one for the T92 model except that θ may vary. This model is
available in dist.dna.

Amino Acid Models

Substitution models applied to amino acid sequences use a radically different
approach than the one used for nucleodite data: they are based on empirical
rate matrices and amino acid frequencies derived from databases of protein
sequences so that the rate matrix Q is given, and no parameter has to be
estimated. Various authors established different versions of Q; nine of them
are available in phangorn for phylogeny estimation (Table 5.3). Additionally,
the function dist.ml computes distances for aligned amino acid sequences
under these models.

Table 5.3. Models of amino acid sequence evolution available in phangorn

Model Description Ref.

Dayhoff General model developed in the late 1970’s [50]
JTT Improved version of the above [153]
WAG General improved model with a maximum likelihood approach [311]
LG Improved version of the above [178]
cpREV Model for amino acid sequences from chloroplast genes [4]
mtmam Model for mitochondrial proteins of mammals [318]
mtArt Model for proteins of arthropods [1]
MtZoa General model for mitochondrial proteins of animals [271]
mtREV24 General model developed in the late 1990’s [3]

5.2.2 Estimation with Molecular Sequences

If the probabilities of change along a tree are known (using one of the models
described in the previous section), the likelihood of the tree can be computed.
However, the states of the data on the nodes of the tree are unknown, and
it is necessary to sum the probabilities for all possible states on the nodes
which may involve a very large number of terms even for a moderate data set.
Felsenstein [74] presented an algorithm that allows considerable time saving
in this computation. The idea is to compute successively the likelihoods of
each character state at each node by summing the probabilities giving the
likelihoods of the descendants (hence the name “pruning algorithm”).

Denote as M the number of states (e.g., M = 4 for DNA data), pab(t) the
probability of change from state a to state b during time t. Then the likelihood
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Fig. 5.4. A tree with tips x and y (left) and a matrix with two nucleotides (right)

of state a at node z, given the likelihood of its descendants x and y (assuming
a binary tree) and the branch lengths txz and tyz is:

Laz =

(
M∑

b=1

pab(txz)Lbx

) (
M∑

b=1

pab(tyz)Lby

)
. (5.9)

If x is a tip, then Lbx = 1 if state b is observed, 0 otherwise. This equation looks
complicated but its logic is apparent with a very simple example. Figure 5.4
shows a tree (or a part of a bigger tree) with two tips, x and y, where two
nucleotides have been observed: the first site is the same for both tips (A)
while the second site is polymorphic. To make things simple, we shall use the
Jukes–Cantor model with α = 0.05. So we only have to use (5.7) to build the
probability matrices; for the branch between x and z with txz = 1:

> pab <- (1 - exp(-4 * 0.05))/4
> Px <- matrix(pab, 4, 4)
> diag(Px) <- 1 - 3 * pab
> Px

[,1] [,2] [,3] [,4]
[1,] 0.86404806 0.04531731 0.04531731 0.04531731
[2,] 0.04531731 0.86404806 0.04531731 0.04531731
[3,] 0.04531731 0.04531731 0.86404806 0.04531731
[4,] 0.04531731 0.04531731 0.04531731 0.86404806

The calculations are the same for the branch between y and z except that
tyz = 2: this creates the matrix Py (not shown). Consider the first site: the
datum is the same for x and y, so we create two identical vectors with the
appropriate 1 and 0’s:

> Lx <- Ly <- c(1, 0, 0, 0)

We can compute (5.9) now. Below are two ways to do this: the first command,
using a for loop, has the advantage of displaying clearly its relationship with
the mathematical equation, but the second one, using R recycling rule, is more
efficient from all points of view:
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> # for (i in 1:4) print(sum(Px[i, ]*Lx) * sum(Py[i, ]*Ly))
> colSums(Px * Lx) * colSums(Py * Ly)
[1] 0.650403570 0.003735052 0.003735052 0.003735052

Not surprisingly, the likelihood of z having A on this first site is the highest,
but the likelihoods of the other states are not zero.

Now consider the second site. The datum is the same for x, so we change
only Ly. The probability matrices are unchanged (the branch lengths and α
are the same), so calculation proceeds exactly as before:

> Ly <- c(0, 0, 0, 1)
> colSums(Px * Lx) * colSums(Py * Ly)
[1] 0.071214832 0.003735052 0.003735052 0.034112155

Further opportunities to discuss these calculations are provided in the Exer-
cises.

Once this computation has been applied to all nodes of the tree, the like-
lihood of the character for the tree is obtained by:

L =
M∑

a=1

πaLar ,

where πa is the frequency of the ath state, and r is the root of the tree. The
root can actually be placed on any internal node of the tree because the latter
is unrooted [74]. The likelihood of the full data set is:

L =
N∏

i=1

M∑
a=1

πaLair ,

where N is the number of characters. Taking the logarithm of this expression
leads to:

lnL =
N∑

i=1

ln

(
M∑

a=1

πaLair

)
. (5.10)

A further layer of complexity is added by considering heterogeneity among
sites. Two types of heterogeneity are commonly considered: partitions and
mixtures [247, 316]. With partitions, the different sites are assigned in dif-
ferent categories, whereas with mixtures we assume that there are different
categories, but we do not know which sites belong to which categories. Denote
as fk the frequency of the kth category in the mixture (with

∑
k fk = 1), then

(5.9) would become:

Laiz =
∑

k

fk

(
M∑

b=1

pk
ab(txz)Lbix

) (
M∑

b=1

pk
ab(tyz)Lbiy

)
. (5.11)
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The exponent k of p indicates that these probabilities depend on the categories
of the mixture.

The presence of partitions is ignored in this formulation, but they can be
taken into account easily because the log-likelihood is summed over all sites:
the full log-likelihood would become a sum of individual log-likelihoods similar
to (5.10) for each partition (see the section on partitioned models below).

phangorn provides a wide array of tools to estimate phylogenies by maxi-
mum likelihood. Its main function is pml:

pml(tree, data, bf = NULL, Q = NULL, inv = 0, k = 1,
shape = 1, rate = 1, model = "", ...)

where tree is an object of class "phylo" and data is an object of class
"phyDat". Recall that this data class may store several kinds of discrete data:
nucleotides, amino acids, or user-defined. By default the frequencies of the
states are taken as equal unless bf is used; it is the same for the rate matrix
unless Q is used. The three next arguments parameterize inter-site variation
in substitution rate as commonly used in phylogenetic analyses [315]: inv is
the proportion of invariant sites, k is the number of categories with different
substitution rates, and shape is the parameter of the Γ distribution. These
two forms of inter-site variation are mixtures because we do not know the
category each site belongs to. When the data are amino acids, model specifies
the substitution model. Finally, ‘...’ is used to pass some arguments to other
functions.

pml calculates the likelihood of the data given the tree and the model
specified. Coming back to our two-tip, two-nucleotide data above, we can
compute its likelihood as we did by hand:

> tr <- read.tree(text = "(y:2,x:1);")
> x <- matrix(c("a", "a", "a", "t"), 2, 2)
> rownames(x) <- c("x", "y")
> x <- as.phyDat(x)
> pml(tr, x, rate = .05/.25)

loglikelihood: -5.288237

unconstrained loglikelihood: -1.386294

Rate matrix:
a c g t

a 0 1 1 1
c 1 0 1 1
g 1 1 0 1
t 1 1 1 0

Base frequencies:
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0.25 0.25 0.25 0.25

If we use (5.10) above we find −5.368 which is quite close but not equal. This is
because pml uses standard formulae for all models and parameterizations. The
rate parameters in Q are multiplied by the base frequencies before computing
the probability matrix: this is why we used rate = .05/.25 (i.e., α/π).

The “unconstrained loglikelihood” is a measure of the maximally achiev-
able value of the log-likelihood—though it is often smaller than the log-
likelihood of the data as shown below—and is independent of the tree.

pml does not estimate the parameters in the sense that it does not find their
values that maximize the likelihood function. This is done with optim.pml:

optim.pml(object, optNni=FALSE, optBf=FALSE, optQ=FALSE,
optInv=FALSE, optGamma=FALSE, optEdge=TRUE, optRate=FALSE,
control=pml.control(eps=1e-08, maxit=10, trace=1),
model=NULL, subs=NULL, ...)

object is an output from pml, and the arguments of the form opt* specify
which parameters to estimate. Very logically, we cannot estimate the param-
eters in our two-tip example, so we take the woodmouse data and its NJ
tree:

> tw <- nj(dist.dna(woodmouse))
> x <- as.phyDat(woodmouse)
> o1 <- pml(tw, x)
Warning message:
In log(siteLik) : NaNs produced
> o2 <- optim.pml(o1)
optimize edge weights: -1867.307 --> -1857.168
optimize edge weights: -1857.168 --> -1857.168
optimize edge weights: -1857.168 --> -1857.168
> o2

loglikelihood: -1857.168

unconstrained loglikelihood: -1866.991

Rate matrix:
a c g t

a 0 1 1 1
c 1 0 1 1
g 1 1 0 1
t 1 1 1 0

Base frequencies:
0.25 0.25 0.25 0.25
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(The warning message issued after the first call of pml is caused by the
fact that tw has one branch length negative; this problem is solved once
we estimated them by maximum likelihood.) We used the default options
of optim.pml, so only the branch lengths have been estimated. Thus we effec-
tively used the JC69 model. The log-likelihood has been increased from −1867
to −1857. We have changed the parameter values in order to maximize the
likelihood. This is the normal estimation procedure and there are no reason
to compare the two values here. Now let us try to estimate the substitution
rate together with the branch lengths:

> ctr <- pml.control(trace = 0)
> optim.pml(o1, optRate = TRUE, control = ctr)

loglikelihood: -1857.168
....

Warning message:
you can’t optimise edges and rates at the same time,
only edges are optimised

The warning issued by phangorn is clear: the substitution rate α cannot be
identified separately from the branch lengths. Of course, we could estimate
the rate if we assume the branch lengths to be known:

> o3 <- optim.pml(o1, optRate=TRUE, optEdge=FALSE, control=ctr)
> o3$rate
[1] 1.105272

Thus using the branch lengths as estimated by NJ, the maximum likelihood
estimate is α̂ = 1.105. However, the branch lengths estimated by NJ have
also time and substitution rate confounded; such estimates of rates are more
useful when branch lengths are in absolute time units.

optim.pml allows us to define the model by specifying which parameters
are to be estimated. To see this, let us fit the GTR model:

> o4 <- optim.pml(o1, optBf=TRUE, optQ=TRUE, control=ctr)
> o4

loglikelihood: -1756.274

unconstrained loglikelihood: -1866.991

Rate matrix:
a c g t

a 0.000000e+00 1.455591 22.192215 5.133905e-05
c 1.455591e+00 0.000000 2.332634 1.964957e+01
g 2.219222e+01 2.332634 0.000000 1.000000e+00
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Table 5.4. Nucleotide substition models in phangorn in order of decreasing complex-
ity. The second column shows how rates of the GTR model are reduced to simplify
the models

Model Substitution rates Base frequencies

GTR α, β, γ, δ, ε, ζ Unbalanced
SYM ” Balanced
TVM α = ζ Unbalanced
TVMe ” Balanced
TIM3 β = δ, γ = ε Unbalanced
TIM3e ” Balanced
TIM2 β = γ, δ = ε Unbalanced
TIM2e ” Balanced
TIM1 β = ε, γ = δ Unbalanced
TIM1e ” Balanced
TPM3u α = ζ, β = δ, γ = ε Unbalanced
TPM3 ” Balanced
TPM2u α = ζ, β = γ, δ = ε Unbalanced
TPM2 ” Balanced
TPM1u α = ζ, β = ε, γ = δ Unbalanced
K81 (TPM1) ” Balanced
TrN β = γ = δ = ε Unbalanced
TrNe ” Balanced
HKY α = ζ, β = γ = δ = ε Unbalanced
K80 ” Balanced
F81 α = β = γ = δ = ε = ζ Unbalanced
JC ” Balanced

t 5.133905e-05 19.649572 1.000000 0.000000e+00

Base frequencies:
0.3042873 0.2662815 0.1288796 0.3005517

What we have done now is very different from above: We have added param-
eters in the model: this will necessarily increase the likelihood. This increase
is because we gave more freedom to the model to fit the data by adding pa-
rameters. A statistical test may tell us whether this increase is significant or
not. Instead of rushing into the tests, let us have a look at the rate matrix.
The diagonal is set to 0, but this is arbitrary. Like for the JC69 model, rates
cannot be identified separately from the edge lenths, however, if there are
several rates their relative values may be estimated. So here the rate of the
substituion G ↔ T is fixed and, e.g., the rate of A ↔ G is estimated to be 22
times higher.

It is critical to examine such outputs before doing the tests, because they
give more than useful information on the processes. Now, we may wonder if
the increase in log-likelihood from −1857 to −1756 is statistically significant.
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We know that twice this difference in log-likelihood follows a χ2 with degrees
of freedom given by the number of additional parameters (this is a likelihood
ratio test, LRT). We have added eight parameters (five rates and three base
frequencies), so the LRT is χ2

8 = 202. The P -value may be calculated with
1 - pchisq(202, 8). Getting these differences correctly may be sometimes
tedious, and the generic function anova is helpful here:

> anova(o2, o4)
Likelihood Ratio Test Table
Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -1857.2 27
2 -1756.3 35 8 100.89 < 2.2e-16

It is left to the user to insure that the correct models are passed to anova.
For instance, it would not be meaningful to do anova(o1, o4) because the
branch lengths were not estimated by maximum likelihood in o1.

Now we incorporate inter-site variation with the usual Γ distribution: we
have to redefine a new model with pml and estimate α:

> o5 <- optim.pml(pml(tw, x, k = 4), optBf=TRUE, optQ=TRUE,
+ optGamma = TRUE, control = ctr)
> o5

loglikelihood: -1743.367

unconstrained loglikelihood: -1866.991
Discrete gamma model
Number of rate categories: 4
Shape parameter: 0.004467235

Rate matrix:
a c g t

a 0.000000e+00 1.476878 23.294362 6.595230e-05
c 1.476878e+00 0.000000 2.566102 2.010049e+01
g 2.329436e+01 2.566102 0.000000 1.000000e+00
t 6.595230e-05 20.100486 1.000000 0.000000e+00

Base frequencies:
0.3054005 0.2646932 0.1279518 0.3019545

The fact that substitution rates vary substantially within coding sequences
has been widely documented in the literature, so we anticipate the estimate of
the shape parameter α̂Γ = 0.0045 (the subscript Γ is to avoid confusion with
the substitution rate α) to be statistically significant. Note that if αΓ → ∞,
then there is no intersite variation in substitution rate.

> anova(o4, o5)
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Likelihood Ratio Test Table
Log lik. Df Df change Diff log lik. Pr(>|Chi|)

1 -1756.3 35
2 -1743.4 38 3 25.820 1.040e-05

There are many other models that we may fit to these data. The choice
of the fitted models must be driven by biological questions—as far as the
evolutionary biologist is concerned. Figure 5.14 and Table 5.5 give general
guidelines on how to conduct phylogeny estimation.

Partitioned Models

pmlPart is the function in phangorn to fit partitioned models. It is used with
pmlPart(global ~ local, object, ...) with global being the compo-
nents of the model that are common across partitions, local are the compo-
nents specific to each partition, and object is an object of class "pml". For
instance, pmlPart(edge ~ shape, obj) will estimate branch lengths com-
mon to all partitions and an αΓ specific to each one. Only the parameters
whose components are given in this formula are estimated by pmlPart. Be-
fore calling the function, we have to specify whose partition each site belongs
to. The procedure is slightly tedious, so we detail it here. For the woodmouse
data it makes sense to define three partitions with the three codon positions.
We recall that the 965 sites define 65 patterns across the 15 individuals:

> x
15 sequences with 965 character and 65 different site patterns
The states are a c g t

It may be useful to remind that the site patterns correspond to the unique
columns of the original alignment, and two sites with the same pattern have
exactly the same contribution to the likelihood function, so we have to com-
pute (5.10) for N = 65 sites instead of 965. The attribute "index" keeps track
of the pattern each site belongs to:

> str(attr(x, "index"))
num [1:965] 1 2 2 3 4 5 5 5 5 5 ...

So the second and third columns in woodmouse have the same pattern (i.e.,
they are identical) which is the second one in x, while the first, fourth, and fifth
columns define different patterns, etc. We have now to make a contingency
table dispatching the 65 site patterns in the three partitions defined by the
three codon positions. This can be done with xtabs as illustrated in the help
page ?pmlPart, or more directly with table:

> w <- table(attr(x, "index"), rep(1:3, length.out = 965))
> dim(w)
[1] 65 3
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> w[11:15, ]

1 2 3
11 0 0 1
12 0 0 1
13 82 60 120
14 76 125 59
15 70 73 82

This shows that, for instance, the eleventh and twelveth patterns were ob-
served only once on a third position, whereas the thirteenth pattern was ob-
served 82, 60, and 120 times on each position, and so on for the 65 rows of w.
This table is used as weights in the call to pmlPart:

> o6 <- pmlPart(~ rate, o2, weight = w, control = ctr)
> o6

loglikelihood: -1827.652

loglikelihood of partitions:
-530.835 -490.0756 -806.7415

AIC: 3713.304 BIC: 3854.596

Proportion of invariant sites: 0 0 0

Rates:
0.4397931 0.2189536 2.345432
....

The improvement in log-likelihood is nearly 30 units for two additional pa-
rameters, so this is surely very significant:

> pchisq(2*(1857.168 - 1827.652), 2, lower.tail = FALSE)
[1] 1.518323e-13

The estimated rates agree with the expectation that the second codon posi-
tions are those evolving at the slowest rate while the third ones are the fastest
ones.

We have shown in the previous section that the GTR + Γ model fits better
to these data than the simple JC69, so we now try this model with different
rates and shape parameters (denoted αΓ ) in the three partitions:

> o7 <- pmlPart(~ rate + shape, o5, weight = w, control = ctr)
> o7

loglikelihood: -1714.530
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loglikelihood of partitions:
-529.0336 -473.0926 -712.4034

AIC: 3521.059 BIC: 3745.177

Proportion of invariant sites: 0 0 0

Rates:
0.3793673 0.1884981 2.436596

Shape parameter:
0.005775529 99.99474 0.2169682
....

The decrease in log-likelihood is again close to 30, but this time we added four
parameters:

> pchisq(1743.367 - 1714.530, 4, lower.tail = FALSE)
[1] 8.436594e-06

This is again very significant, and suggests that substitution rate is more
heterogeneous in the first codon position than in the third one (recall that the
smaller the value of αΓ , the more heterogeneous the substitution rate among
sites). However, a more parsimonious model shows that this is not significant
with the present data:

> o8 <- pmlPart(~ rate, o5, weight = w, control = ctr)
> o8

loglikelihood: -1715.329

loglikelihood of partitions:
-529.0337 -473.2011 -713.0942

AIC: 3510.658 BIC: 3705.543

Proportion of invariant sites: 0 0 0

Rates:
0.3910165 0.1919223 2.421476
....

The increase in log-likelihood of o7 compared to o8 is less than one while, to
be significant with two degrees of freedom, it needs to be at least three.

Mixture Models

We have seen that including intersite variation in substitution rate with a Γ
distribution is a form of mixture. pmlMix is a function to model higher order
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mixtures. Its syntax is close to the one of pmlPart, the differences are the
option m specifying the number of categories (2 by default), and omega is a
vector giving their frequencies (fk in eq. 5.11); by default they are equal and
used as starting values for the estimation procedure. Let us take the fitted
object o2 which is a simple JC69 model. We now include a mixture on its rate
with four categories:

> o9 <- pmlMix(~ rate, o2, m = 4, control = ctr)
> o9

loglikelihood: -1845.219

unconstrained loglikelihood: -1866.991
AIC: 3750.438 BIC: 3815.670

posterior: 0.7313842 0.004928028 0.2476871 0.01600061

Rates:
3.523458e-07 0.3680481 4.030027 1.448669e-05
....

The substitution rate varies considerably along the sequence (remind this is
cytochrome b) and the most frequent category is the one with the lowest rate.

Logically we expect similar results with a traditional Γ distribution. We
check it by printing the log-likelihood:

> logLik(optim.pml(update(o2, k = 4), optGamma = TRUE,
+ control = ctr))
’log Lik.’ -1845.001 (df=30)

The values are close but not equal because o6 did not use a Γ distribution.
It is interesting to compare this result with the one from the partitioned

model (o8). The likelihoods cannot be compared directly with a LRT because
the models have different structures and no relationship of nestedness. How-
ever, the AIC values can be compared and show that the partitioned model
fits much better. This shows that if the structure in the data can be identified
and taken into account explicitly, this leads to much more powerful analyses.

5.2.3 Finding the Maximum Likelihood Tree

The previous section details how to find the parameter values, including
branch lengths, that maximize the likelihood function for a given tree topol-
ogy. Finding the topology that maximizes the likelihood function is a much
more difficult problem. Many solutions have been proposed in the literature
and not a single one seems superior, though some are more useful than others.
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phangorn implements an approach similar to the one developed by Guin-
don and Gascuel [115] whose principle is to consider only NNIs (a tree rear-
rangement seen above about FastME) that improves the likelihood. Guindon
and Gascuel’s idea is to avoid recalculating the likelihood of the whole tree
by realizing that the likelihood values at a node, as detailed above, may be
computed in two directions in an unrooted tree. After performing an NNI
operation, some node likelihoods in one direction will be unchanged, and oth-
ers in the other direction as well: this limits considerably the calculations to
obtain the complete likelihood of the new topology. Besides, there is only one
possible NNI for each internal branch, so scanning the tree for all potential
improvements is straightforward. These cycles of NNI moves are alternated
with cycles of parameter optimizations. The whole procedure is iterated until
the tree likelihood is stable. The option optNni = TRUE in optim.pml will
perform this likelihood topology estimation.

phangorn has a significant improvement over PhyML in that partitions can
be modeled with pmlPart and it is possible to estimate a different topology
for each partition with pmlPart(~ nni, ....), meaning that NNI search
will be performed independently in each partition. This is what is often called
“mixture of trees” in the literature.

Because phylogeny estimation by maximum likelihood requires intensive
computations, computer programs to perform this task are the results of a lot
of work. phangorn represents a significant achievement with this respect, but
it makes sense to write simple interfaces between R and other applications.
There already exist several of them in various packages and two of them are
relevant here: phymltest in ape (detailed in the next section) and raxml in
phyloch, an interface to RAxML [287].4

RAxML was particularly designed for the analysis of large data sets
(> 1000 sequences) though it can analyse small data sets as well. It uses a
tree rearrangement named lazy subtree rearrangement (LSR) where a subtree
is pruned and grafted on a neighboring branch: among all the new topolo-
gies explored, only the 20 best trees are fully optimized [288]. This procedure
is repeated until no better topology is found. RAxML uses an initial parsi-
mony tree. Another particularity of this program is the use of a GTR–CAT
model in place of the usual GTR + Γ : the likelihood are first calculated for
each individual site which is then attributed to a category with respect to its
individual likelihood contribution. This avoids recalculating the contribution
of each site to each category of the Γ distribution. However, the likelihood
values calculated with the GTR–CAT model are not comparable with those
from traditional models, so RAxML allows one to use the GTR + Γ model
on the final topology in order to estimate αΓ .

The interface from R is:

raxml(seq, runs = 10, partition = NULL, outgroup = NULL,
backbone = NULL, path = "/Applications/RAxML-7.0.4",

4 http://icwww.epfl.ch/˜stamatak/index-Dateien/Page443.htm

http://icwww.ep .ch/~stamatak/index-Dateien/Page443.htm
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optimize = FALSE, clear = TRUE, file = "fromR")

The data seq must be of class "DNAbin". The option partition allows to
define a partitioned model. The call of raxml creates a subdirectory in the
directory defined by the argument path where the outputs of RAxML are
stored and returns a tree of class "phylo":

> MLtree <- raxml(woodmouse, path = "~/RAxML-7.0.4/")
....
Overall Time for 10 Inferences 6.447887
Average Time per Inference 0.644789
Average Likelihood : -1743.700212

Best Likelihood in run number 8: likelihood -1743.528033
....

The returned log-likelihood (and not likelihood as printed by RAxML) is very
close to the one obtained with optim.pml (see o5, p. 153).

5.2.4 DNA Mining with PhyML and modelTest

The previous section explains how to define and fit a variety of molecular
evolution models. How to select the appropriate model(s) for parameter es-
timation is an issue that has attracted a lot of attention and debate among
statisticians [34, 35, 48, 204]. The importance of model selection in a like-
lihood framework has been made repeatedly in the phylogenetic literature
[206, 246, 244]. Posada and Crandall [245] developed a computer program,
to be used with the program PAUP*, that fits a series of DNA evolution
models to a given data set. This program is supposed to help in selecting a
substitution model for further analyses.

In order to provide a similar functionality, but with a free phylogeny
estimation program, ape has the function phymltest which uses PhyML
developed by Guindon and Gascuel [115, 139].5 Another difference is that
phymltest lets PhyML search for the best tree using NNI moves for all fitted
models. All substitution models available in PhyML are used; these are: JC69,
K80, F81, F84, HKY85, TN93, and GTR. Additionally, models with(out) in-
variant sites and / or intersite variation (with the usual Γ distribution) are
used. This results in 28 fitted models. The interface is:

phymltest(seqfile, format = "interleaved", itree = NULL,
exclude = NULL, execname = NULL, append = TRUE)

where seqfile is the name of the file with the sequences (given as a character).
The other arguments have default values: itree is the initial tree (by default,
a BIONJ tree made by PhyML), and execname is the name of the PhyML

5 http://www.atgc-montpellier.fr/phyml/

http://www.atgc-montpellier.fr/phyml/
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executable which depends on the operating system (phyml 3.0.1 linux32,
phyml 3.0.1 macintel, or phyml 3.0.1 win32.exe). Under Unix-style systems,
it is convenient to create a symbolic link named ‘phyml’, for instance in your
home directory, which can be subsequently modified when a new version of
PhyML is issued; thus it is not needed to change the R scripts which have
execname = "~/phyml".

Some care must be taken to set correctly the three diffferent paths involved
here: the path to PhyML’s executable, the path to the sequence file, and the
path to R’s working directory. Here are two possible uses under Linux and
Windows:

phymltest("/home/paradis/data/seq.txt",
execname = "phyml", path2exec = "/usr/bin")

phymltest("D:/data/seq.txt", path2exec = "D:/phyml")

If R returns an error message because of a problem in finding one of
the files, it might be better to move all files in the same directory, say
‘/home/paradis/phyml’ or ‘D:/phyml’, and set the latter as R’s working di-
rectory:

# Linux:
setwd("/home/paradis/phyml")
phymltest("seq.txt", execname = "phyml_linux")
# Windows:
setwd("D:/phyml")
phymltest("seq.txt")

phymltest returns an object of class "phymltest" that has three meth-
ods: the print method prints a table of all fitted models with the number of
free parameters, the values of the log-likelihood, and the Akaike Information
Criterion (AIC); the summary method computes and prints all possible likeli-
hood ratio tests (LRTs) between pairs of nested models; and the plot method
plots, on a vertical axis, all AIC values with an indication of the corresponding
model (see Section 5.8 for an example).

phangorn has a similar function, modelTest, that fits a series of models
with its own functions. The set of default models is slightly different: JC69,
F81, K80, HKY85, SYM, GTR, and includes intersite variation with four
categories and invariants. These may be controlled with the options model, G,
I (both logical), and k for the number of categories if G = TRUE. modelTest
returns a data frame with the values of log-likelihood, AIC and BIC (Bayesian
Information Criterion). For a simple example with the woodmouse data:

> modelTest(x, G = FALSE, I = FALSE)
Model df logLik AIC BIC

1 JC 27 -1857.165 3768.330 3899.878
2 F81 30 -1810.958 3681.916 3828.080
3 K80 28 -1806.798 3669.596 3806.016
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4 HKY 31 -1759.459 3580.918 3731.954
5 SYM 32 -1803.493 3670.986 3826.894
6 GTR 35 -1756.274 3582.548 3753.073

The AIC and BIC values agree that the HKY85 model is the best one for
these data, closely followed by GTR, while the four other models do not fit
appropriately.

5.3 Bayesian Methods

The methods we have used so far consider that data are produced by a random
process whose unknown parameters are constant; the estimates of these pa-
rameters are random variables. They are called frequentist methods. Bayesian
methods do not consider parameters as constants but as probabilistic distribu-
tions. This requires to define these distributions before looking at the data: the
priors.6 Bayesian methods calculate the posterior distributions of the param-
eters by combining the priors with the likelihood of the data using conditional
probabilities with Bayes’s theorem (or Bayes rule). Such a calculation involves
integrating over the priors of all parameters in the model: this integral has
thus as many dimensions as there are parameters. Calculating an integral in
a single dimension may be difficult, so calculating an integral in many di-
mensions is an arduous task. A large number of computational methods have
been invented to do these calculations, the most well-known being the Markov
chains Monte Carlo (MCMC).

It would take many pages to describe Bayesian phylogenetic methods and
the controversy about their use (which is little compared to the same debate
among statisticians), but the above paragraph summarizes the fundamental
points to keep in mind when using a Bayesian method in phylogenetics, and
actually in any field. For a gentle introduction to Bayesian statistics see Al-
bert’s Bayesian Computation With R [7].

Consider a very simple Bayesian estimation of a phylogeny. We assume
a JC69 model, so there is only one substitution parameter (α). Priors must
therefore be specified for the tree topology, the branch lengths, and α. We
choose the followings: all topologies are equiprobable, branch lengths from a
uniform distribution on [0, 0.1], and α from a uniform distribution on [0, 1].
Integrating over all the parameters is not possible with standard mathematics.
A solution is to sample this multidimensional space randomly in order to have
a general image of its density. The sampling procedure is repeated a large
number of times (say 106) storing each value α and the log-likelihood (the
data x is of class "phyDat", and the number of sequences is n). We focus here
on the estimation of α:
6 Bayesian priors may be interpreted very differently depending on the meaning

attached to them.
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alpha <- lnL <- numeric(1e6)
for (i in 1:1e6) {

tr <- rtree(n, rooted = FALSE, tip.label = names(x),
br = runif, min = 0, max = 0.1)

alpha[i] <- runif(1)
lnL[i] <- pml(tr, x, rate = alpha[i])$logLik

}

We compute the posterior distribution of α for the woodmouse data with a
histogram; we take care to set the x-axis on the original scale of the prior
(Fig. 5.5):

o <- hist(alpha*lnL/sum(alpha*lnL), 50, xaxt = "n",
main = "", xlab = expression(alpha))

axis(1, at = seq(min(o$breaks), max(o$breaks), length.out=5),
labels = seq(min(alpha), max(alpha), length.out = 5))

The posterior is highest at α ≈ 0.05. It can be checked that this distribution
is heavily influenced by the priors by modifying the above code.
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Fig. 5.5. Posterior distribution of α from 106 Monte Carlo generations

What we have done is a simple Monte Carlo integration assuming that the
algorithm sufficiently explored the parameter space to give a picture of the
posterior distribution. In most cases Monte Carlo integration is not efficient
because the space is very large and its random exploration spends a lot of
time in parts of low likelihood value. A significant improvement is due to
Hastings [130] who proposed to avoid exploring the low-likelihood portions of
the parameter space with the following rule:
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• If the likelihood of the new proposal is higher than the previous one, then
accept it.

• If the likelihood of the new proposal is lower, then accept it with proba-
bility equal to the ratio of the two likelihoods. If it is rejected, sample the
priors for another proposal.

If we try to implement a Metropolis–Hastings version of our algorithm
above, the chain would be quickly stuck because the complete random sam-
pling procedure is highly likely to generate data far from the current tree and
so will be rejected. To avoid this we sample trees in a correlated way: topolo-
gies are modified with a NNI move using the function rNNI from phangorn,
and branch lengths are modified by adding to each of them a small noise.
Still we sample from the same priors by constraining the branch lengths to be
between 0 and 0.1. For the sake of simplicity, we continue to sample values
of α in a non-correlated way. The code is longer this time because we must
initialize the chain with a random tree, and we implement the Hastings ratio.
As before, we focus on the estimation of α.

alpha <- lnL <- numeric(1e3)
tr <- rtree(n, rooted = FALSE, tip.label = names(x),

br = runif, min = 0, max = 0.1)
alpha[1] <- runif(1)
lnL[1] <- pml(tr, x, rate = alpha[1])$logLik
i <- 2
while (i <= 1e3) {

tr2 <- rNNI(tr)
tr2$edge.length <- tr2$edge.length

+ rnorm(2*n - 3, sd = 0.1)
tr2$edge.length[tr2$edge.length < 0] <- 0
tr2$edge.length[tr2$edge.length > 0.1] <- 0.1
alpha[i] <- runif(1)
lnL[i] <- pml(tr2, x, rate = alpha[i])$logLik
accept <- if (lnL[i] >= lnL[i - 1]) TRUE
else as.logical(rbinom(1, size = 1,

prob = exp(lnL[i] - lnL[i - 1])))
if (accept) {

tr <- tr2
i <- i + 1

}
}

We run this until we have 1000 proposal trees accepted. Figure 5.6 shows the
evolution of the log-likelihood along the chain:

plot(lnL, type="l", xlab="Generation", ylab="Log-likelihood")
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Fig. 5.6. Change in log-likelihood along an MCMC

The same plot for the simple Metropolis algorithm, not shown here, would
have displayed wide variation in the log-likelihood of the sampled trees. Fig-
ure 5.7 displays the estimated posteriors for α with all samples (left) and
after removing the first one hundred ones (right); the code is the same than
above. This time the estimates are much more narrower and concentrated
around α ≈ 0.066. In publications, these distribution estimates are plotted as
a smoothed curve (see ?density on how to smooth easily a histogram, or the
package KernSmooth for more sophisticated methods).
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This very simple example gives a brief view of the complexity of Bayesian
estimation in a situation with many parameters which is the case in phylo-
genetics. Checking the impact of the priors, the convergence of the chains,
the impact of the sampler used should all be done routinely, but this is a
lot work. Often (too often in my opinion), a Bayesian analysis is run more
to contemplate the final tree rather than to give insights into the biological
processes that shaped the data. I recommend to spend a comparable effort
into graphical exploratory analyses, examination of the alignment(s) and of
the distribution of pairwise distances, quantification of inter-site variation in
substitution rate, and assessment of support and conflict values from boot-
strap trees. This list is not limitative and Fig. 5.14 gives an overview of this
process.

The function mrbayes in phyloch provides an interface to MrBayes [142]:

mrbayes(x, file, nst = 6, rates = "invgamma", ngammacat = 4,
nruns = 2, ngen = 1e+06, printfreq = 100, samplefreq = 10,
nchains = 4, savebrlens = "yes", temp = 0.2, burnin = 10,
contype = "allcompat", path="/Applications/mrbayes-3.1.2/",
run = TRUE)

mrbayes.mixed has exactly the same options: it considers morphological data.

5.4 Other Methods

5.4.1 Parsimony

The parsimony principle is extremely simple: assume the least number of
evolutionary changes through time.7 For instance, let us go back to the data
on Fig. 5.4 and take the first site: it is the same for x and y. So the parsimony
principle leads us to say that z had A as well on this site. This reasoning
involves no parameter and no branch lengths. We have seen in Section 5.2.2
7 The principle of parsimony as it is applied to phylogenetics must be distinguished

from the principle of the same name in statistics. The latter says that non-
significant effects should not be included in a model. For instance, the linear
model y = β1x1 is preferred to y = β1x1 + β2x2 if we find that β2 is not signifi-
cantly different from zero. There are two fundamental differences between these
two principles of parsimony. First, statistical parsimony is data-driven: the choice
of the model depends on the data at hand. Phylogenetic parsimony is an a priori
concept which does not require any data. Second, statistical parsimony is more
closely related to the principle of not invoking unnecessary causes known as Oc-
cam’s razor. A single cause, high mutation rate, may result in many changes in
a molecular sequence. Parsimony in process does not imply parsimony in pat-
tern. On the other hand, parsimony analysis of complex characters (eye, lung,
. . . ) is meaningful because such characters evolve slowly and, certainly, each with
different causes, but this logic applies poorly to DNA sequences.
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that the likelihood approach does not ignore the fact that z may not have A
(z is not observed) but this requires to assume an evolutionary model.

Let us consider the second site now (recall that it is A in x and T in y). The
likelihood calculations followed logically, but what about applying parsimony
in this case? Clearly, we have to assume that one change occurred. But on
which branch? Because branch lengths do not exist in parsimony, this is a
problem.

Suppose that we observe the same second site on many other species (x and
y are still sister-species). If A is observed in these species, then we will conclude
that a change occurred on the branch z → y. If T is observed instead, then
we will conclude that a change occurred on the branch z → x. The likelihood
calculations for z will remain the same in both cases.

This illustrates a property of parsimony. When polymorphism is low, par-
simony calculations are relatively easy, but when this is not the case, they are
problematic.

phangorn has the function parsimony that computes the parsimony score
of a tree (or a list of trees) and some data of class "phyDat". Two methods are
available through the option method: "sankoff" (the default) and "fitch".

> parsimony(tw, x)
[1] 68

optim.parsimony searches for the maximum parsimony tree by performing
NNIs on the topology; the branch lengths are in number of inferred changes:

> pars.tr <- optim.parsimony(tr, x)
optimize topology: 68 --> 68
Final p-score 68 after 0 nni operations
> pars.tr$edge.length
[1] 1 1 1 0 1 3 1 6 9 5 3 2 2 3 3 0 4 5 1 2 5 2 1 1 1 2 3

Thus the MP tree has the same topology than the NJ tree. We remember that
the ML tree inferred on page 153 has a slightly different topology than the
NJ one:

> parsimony(o5$tree, x)
[1] 68

So the ML tree has the same parsimony score.
The functions CI and RI calculate the consistency and retention indices:

> CI(tw, x)
[1] 3.191176
> RI(tw, x)
[1] -0.4056604
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5.4.2 Hadamard Conjugation

Methods of phylogenetic inference based on the Hadamard conjugation have
the advantage of permitting direct calculations of the quantities of interest,
instead of the recursive computations needed for likelihood or distance-based
methods. Their weaknesses however prevent their general use. Only simple
substitution models can be handled: the most complex model that can be
analyzed is K81. Furthermore, though the calculations are direct they cannot
handle a large number of observations (see below). This section will outline the
principle of these methods and illustrate the functions available in phangorn.

The principle of Hadamard methods is to calculate the frequency distri-
bution of the site patterns among the observations. To illustrate this, we take
four sequences from the woodmouse data that we transform in two-state char-
acters (purine and pyrimidine, R and Y) with the function acgt2ry:

> X <- acgt2ry(as.phyDat(woodmouse[12:15, ]))
> X
4 sequences with 915 character and 5 different site patterns
The states are r y

To see what are the five site patterns, we print the structure of these data:

> str(X)
List of 4
$ No1114S: int [1:5] 1 2 1 2 2
$ No1202S: int [1:5] 1 2 1 1 2
$ No1206S: int [1:5] 1 2 1 1 1
$ No1208S: int [1:5] 1 2 2 1 2
....
- attr(*, "weight")= int [1:5] 393 518 1 2 1
....

The first observed pattern is R in all four sequences and it was observed 393
times; the second pattern is Y everywhere and it was observed 518 times, and
so on.

Hendy and Penny [133] developed a series of equations that allow calcula-
tion of the distribution of the site patterns for a given tree assuming a model
of equal rate of change R ↔ Y. By reversing these equations and using the
observed site pattern frequencies, it is possible to estimate the branch lengths
of the tree. Different trees can be compared with a least squares criterion.

The function h2st in phangorn computes the Hadamard conjugation under
this model. It is limited to analyze no more than 23 sequences. The calculations
are based on identifying the site patterns that define a split: the sequences
with R all on one side, and those with Y on the other. With two states, there
are 2n−1 possible splits, here n = 4, so 24−1 = 8 (taken from the internal code
of h2st):
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> sv
[1] 911 2 0 0 1 0 0 1

These are the numbers of sites defining each split. So there are 911 sites definig
the first split (393 + 518, as seen in "weight"), and so on. For each of these
splits, one internal branch is defined, and its length is computed with the fast
Walsh–Hadamard transform:

> cbind(sv, qv)
sv qv

[1,] 911 6.814539e+00
[2,] 2 2.195398e-03
[3,] 0 5.290676e-09
[4,] 0 -1.204954e-06
[5,] 1 1.097702e-03
[6,] 0 -2.409891e-06
[7,] 0 -2.409891e-06
[8,] 1 1.097702e-03

Logically, the splits defined by site patterns not observed in the data have
very small or negative internal branch lenths. h2st drops the first split (with
all observations) and those whose branch length is below a value given by its
option eps (0.001 by default):

> h2st(X)
[[1]]
[1] 1

[[2]]
[1] 3

[[3]]
[1] 1 2 3

attr(,"weights")
[1] 0.002195398 0.001097702 0.001097702
attr(,"labels")
[1] "No1114S" "No1202S" "No1206S" "No1208S"
attr(,"class")
[1] "splits"

h4st implements the Hadamard conjugation with the K81 model. It is
limited to n ≤ 11. The calculations are more complicated and we take only
three sequences to shorten the output:

> h4st(as.phyDat(woodmouse[13:15, ]))
$q
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transversion transition.1 transition.2
[1,] 0.003125601 -1.077571e-06 3.019600e-08
[2,] 0.005269232 1.060610e-03 -5.553509e-06
[3,] 0.010586204 1.038186e-03 2.110004e-03

$qv
[,1] [,2] [,3] [,4]

[1,] 6.848987958 3.019600e-08 -5.553509e-06 2.110004e-03
[2,] 0.003125601 -1.077571e-06 -1.120762e-05 -1.206513e-05
[3,] 0.005269232 -2.226369e-06 1.060610e-03 -1.436271e-05
[4,] 0.010586204 2.527083e-08 -3.255929e-06 1.038186e-03

$sv
[,1] [,2] [,3] [,4]

[1,] 943 0 0 2
[2,] 3 0 0 0
[3,] 5 0 1 0
[4,] 10 0 0 1

$n
[1] 965

$names
[1] "No1202S" "No1206S" "No1208S"

5.4.3 Species Trees Versus Gene Trees

Molecular phylogenies allow us to trace back the history of genetic lineages,
but these may not coincide completely with the history of species because, as
geneticists have demonstrated some time ago, different genes may have differ-
ent histories [163, 165]. The problem is particularly acute for recently diverged
species: Kimura and Ohta’s classical result showed that it takes some time
for two populations to diverge by genetic drift, so that some shared molecular
polymorphism can be the result of recent inherante from their ancestors [164].
This process is called incomplete lineage sorting [193].

A classical text-book image shows connected tubes (the species tree) with
lines inside (the gene trees) that diverge before or after the tubes diverged
themselves. The distribution of the gene trees depends on the coalescent and
has attracted a lot of attention in recent years [e.g., 52, 243]. Several methods
developed to estimate a species tree from a set of gene trees share a common
framework:

1. For each gene tree, compute the cophenetic distance matrix; this gives for
each pair of taxa a series of distances derived from each gene.

2. Summarize this series of distances resulting in a new distance matrix for
all taxa.
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3. Compute a hierarchical clustering from this matrix using a single-linkage
method.

This framework is implemented in the function speciesTree:

speciesTree(x, FUN = min)

x is a list of (gene) trees, and FUN is the function used in step 2 above. The
default calculates the maximum tree of Liu et al. [185]. If FUN = sum, then the
species tree is calculated with the shallowest divergence tree of Maddison and
Knowles [193]. The trees in x must be ultrametric and with branch lengths on
the same temporal scale. Edwards et al. [65] showed using simulations that the
gene-tree approach performs much better than the concatenation of sequences
(supermatrix) approach, particularly even if most gene trees are discordant
with the species tree. However, the gene-tree approach seems well suited when
there are many genes and few species.

We take a simple hypothetical example with three species and two gene
trees that have the same topology (though the gene trees may have different
topologies):

> t1 <- read.tree(text = "(c:2,(a:1,b:1):1);")
> t2 <- read.tree(text = "(c:4,(a:2,b:2):2);")
> tmax <- speciesTree(list(t1, t2))
> all.equal(tmax, t1)
[1] TRUE

So here the maximum tree is the shortest of the two gene trees. This seems
logical in the sense that oldest gene splits predate the species divergence. The
shallowest divergence tree is different (Fig. 5.8):

> tsha <- speciesTree(list(t1, t2), sum)
> kronoviz(list(t1, t2, tmax, tsha), type = "c")

5.5 Bootstrap Methods and Distances Between Trees

The use of the bootstrap has enjoyed great success in phylogenetic analyses
[75]. The idea of the bootstrap can be sketched as follows: suppose we are
interested in quantifying the confidence level in a parameter estimate given
some data, but the expected distribution of this parameter does not hold
(because, e.g., of a small sample size, or non-independence of observations).
Then we could resample the data at hand many times, mimicking the process
of sampling the real population. The variation in the estimated parameter
from the “bootstrap” samples is a measure of the confidence level in this
estimate [66].

The idea is simple, intuitive, and elegant, but, in some situations, requires
intensive computations [69]. The application of the bootstrap in phylogeny
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Fig. 5.8. Two gene trees (t1 and t2 in the text) on top, the maximum tree, and
the shallowest divergence tree on bottom

estimation is almost as simple: estimate a tree with a given method, resample
the original data (the matrix taxa × characters) a large number of times,
and analyze these “bootstrap” samples with the same method, and calculate
the number of times the clades observed in the estimated tree appear in the
“bootstrap” ones.

The application of the bootstrap to assess confidence levels in phylogenetic
estimation has been criticized, but Efron, Halloran, and Holmes [68] showed
that this was due to confusion in the interpretation of the original bootstrap
method by Felsenstein [75]. Efron et al. also proposed another way to compute
the bootstrap values for hypothesis testing rather than assessing confidence
levels [68]. Shimodaira and Hasegawa [283] developed a similar test to compare
different topologies with a bootstrap resampling and a likelihood ratio test (see
the function SH.test in phangorn).

In this section, we examine the different ways of resampling phylogenetic
data, comparing (possibly a large number of) phylogenetic trees, and com-
puting bootstrap values.

5.5.1 Resampling Phylogenetic Data

R has a powerful function, sample, that can be used to create a bootstrap
sample from a data set: this function returns a sample, by default without
replacement, of the vector given as argument. If the option replace = TRUE
is used, then sampling is done with replacement which is clearly what is needed
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for a bootstrap sample. Below is a simple example with a vector x containing
10 values 1, 2, . . . , 10:

> x <- 1:10
> sample(x)
[1] 9 8 6 1 10 7 5 4 3 2
> sample(x, replace = TRUE)
[1] 7 5 2 4 10 6 2 1 2 2

Note that sample(x) returns a random permutation of the data. We can also
give a single integer value to sample, say 10, which will then return a sample
of integers from 1 to 10.

With phylogenetic data we are mostly interested in resampling the columns
of the matrix taxa × characters (where taxa are the rows, and characters the
columns). If this matrix is called X, then one can simply do:

X[, sample(ncol(X), replace = TRUE)]

Note the presence of the comma just after the left bracket which means that
all rows of X will be selected (see p. 17). Here is an example of how this could
be used:

> x <- scan(what = "")
1: a a c t t a a c t t c a c c t
16:
Read 15 items
> X <- matrix(x, 3, 5, byrow = TRUE)
> X

[,1] [,2] [,3] [,4] [,5]
[1,] "a" "a" "c" "t" "t"
[2,] "a" "a" "c" "t" "t"
[3,] "c" "a" "c" "c" "t"
> X[, sample(ncol(X), replace = TRUE)]

[,1] [,2] [,3] [,4] [,5]
[1,] "a" "c" "c" "a" "a"
[2,] "a" "c" "c" "a" "a"
[3,] "a" "c" "c" "a" "c"

It happens sometimes that the columns of a matrix are affected with
weights, for instance, because the same values have been observed several
times for all taxa [68, 168]. This may be a useful way to reduce the size of
the data matrix, particularly if few sites are polymorphic. In these cases, re-
sampling must take these weights into account. Suppose each column of X is
associated with a weight stored in a vector w (length(w) is equal to ncol(X)),
then a bootstrap sample is obtained using the option prob of sample:

X[, sample(ncol(X), replace = TRUE, prob = w)]
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The values passed to prob need not sum to 1 because they are used as relative
probability weights. If the values in w are integer weights, one may need to
use the option size to produce a sample of the appropriate size:

X[, sample(ncol(X), replace = TRUE, prob = w, size = sum(w))]

An issue in resampling phylogenetic data is that the columns may not be
independent, particularly in the case of molecular sequences. A solution is
to sample the sites by groups (or blocks) rather than individually. There are
several ways to do this in R. A general solution is to sample the indices of the
vector instead of the vector itself. Let us consider the case of sampling blocks
of three nucleotides in a vector x. First, build a vector with the indices 3, 6,
. . . :

> x <- scan(what = "")
1: a a a c c c g g g t t t
13:
Read 12 items
> x
[1] "a" "a" "a" "c" "c" "c" "g" "g" "g" "t" "t" "t"

> block <- 3
> i <- seq(block, length(x), block)
> i
[1] 3 6 9 12

Then, sample this vector i as before:

> iboot <- sample(i, replace = TRUE)
> iboot
[1] 12 6 12 9

What we want in fact is a vector with the values 10, 11, 12, 4, 5, 6, 10, 11, 12,
7, 8, and 9. The pattern is clear: the 3rd, 6th, 9th, and 12th values are those
in i.boot, the 2nd, 5th, 8th, and 11th ones can be obtained with i.boot -
1, and the 1st, 4th, 7th, and 10th ones can be obtained with i.boot - 2.
Binding these three vectors in a matrix converted then in a vector is a simple
way to proceed:

> boot.ind <- as.vector(rbind(iboot - 2, iboot - 1, iboot))
> boot.ind
[1] 10 11 12 4 5 6 10 11 12 7 8 9

The bootstrap sample is finally obtained with:

> x[boot.ind]
[1] "t" "t" "t" "c" "c" "c" "t" "t" "t" "g" "g" "g"
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Note that we did not use the value of block (3) or length(x) (12) in
the above commands, so they can be used in different situations. They also
can be used to resample blocks of columns of a data matrix: in this case it is
necessary to replace length(x) by ncol(x), and the final command by x[,
boot.ind].

Because in most cases, a large number of bootstrap samples will be needed,
it is useful to include the appropriate sampling commands in a loop and / or
a function. This is what is done by the function boot.phylo described below.

For data of class "phyDat", the above scheme cannot be used because the
characters are compressed: those with the same pattern among taxa are not
repeated. phangorn has two functions to perform a bootstrap on this data
class:

bootstrap.pml(x, bs = 100, trees = TRUE, ...)
bootstrap.phyDat(x, FUN, bs = 100, ...)

The first function does the bootstrap with maximum likelihood estimation,
while the second has the argument FUN similar to boot.phylo (see below). In
both cases, a list of bs trees is returned.

When doing a bootstrap, it is not always trivial what needs to be resam-
pled: the rows or the columns of a data matrix? What we resample depends on
the assumptions of the model. In a phylogeny estimation, the rows of the data
matrix (the sequences, the species, or the populations) are not assumed to be
independent because of their phylogenetic relationships. The characters (the
columns of the matrix) are assumed to evolve independently of each other,
so these are the elements to be resampled. In case we do not want to assume
independent evolution of the characters, resampling of independent blocks of
characters may be done.

5.5.2 Bipartitions and Computing Bootstrap Values

Once bootstrap samples and trees have been obtained, it is necessary to sum-
marize the information from them. ape and phangorn provide several functions
for this task depending on the approach taken.

A bipartition is similar to a split: it is made with two subsets of the tips
of a tree as defined by an internal branch. prop.part takes as its argument
a list of trees and returns an object of class "prop.part" which is a list of
all observed bipartitions together with their frequencies. There are print and
summary methods for this class; the latter prints only the frequencies. Here is
the result with a four-taxa tree:

> tr <- read.tree(text = "((a,(b,c)),d);")
> prop.part(tr)
==> 1 time(s):[1] a b c d
==> 1 time(s):[1] a b c
==> 1 time(s):[1] b c
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Instead of a list of bipartitions indexed to the internal branches, prop.part
returns a list indexed to the numbers of the nodes, and gives the tips that
are descendants of the corresponding node: thus the first vector in the list
includes all tips because the first node is the root. It is then straightforward
to get the bipartitions. The following code prints them for an object named
Y:

for (i in 2:length(Y)) {
cat("Internal branch", i - 1, "\n")
print(Y[[i]], quote = FALSE)
cat("vs.\n")
print(Y[[1]][!(Y[[1]] %in% Y[[i]])], quote = FALSE)
cat("\n")

}

prop.clades takes two arguments: a tree (as a "phylo" object), and either
a list of trees, or a list of bipartitions as returned by prop.part. In the latter
case, the list of bipartitions must be named explicitly (e.g., prop.clades(tr,
part = list.part)). This function returns a numeric vector with, for each
clade in the tree given as first argument, the number of times it was observed
in the other trees or bipartitions. For instance, we have the obvious following
result:

> prop.clades(tr, tr)
[1] 1 1 1

Like the previous function, the results are indexed according to the node
numbers.

Using the two functions just described, bootstrap samples obtained as de-
scribed in the previous section, and the appropriate function(s) for phylogeny
estimation, one can perform the bootstrap for the estimated phylogeny in
a straightforward way using basic programming techniques. However, to do
such an analysis directly, the function boot.phylo can be used instead. Its
interface is:

boot.phylo(phy, x, FUN, B = 100, block = 1, trees = FALSE,
quiet = FALSE, rooted = FALSE)

with the following arguments:

phy: an object of class "phylo" which is the estimated tree;
x: the original data matrix (taxa as rows and characters as columns);
FUN: the function used to estimate phy from x. Note that if the tree was

estimated with a distance method, this must be specified as something
such as:
FUN = function(xx) nj(dist.dna(xx))

or:
FUN = function(xx) bionj(dist.dna(xx, "TN93"))
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B: the number of bootstrap replicates;
block: the size of the “block” of columns, that is, the number of columns

that are sampled together during the bootstrap sampling process (e.g., if
block = 2, columns 1 and 2 are sampled together, the same for columns
3 and 4, 5 and 6, and so on; see above);

trees: a logical value indicating whether to return the B bootstrap trees;
quiet: a logical value indicating whether to display a progress bar;
rooted: a logical value indicating whether to treat the trees as rooted or not.

If FALSE, the splits are counted; if TRUE, the clades are counted.

boot.phylo returns exactly the same vector as prop.clades. By default,
the bootstrap trees are not saved, and so cannot be examined or further
analyzed, for instance, to perform the two-level bootstrap procedure developed
by Efron et al. [68]. Setting trees = TRUE allows to return the bootstrap trees:
boot.phylo then returns a list with the bootstrap values and the trees.

Why would we want to examine bootstrap trees when we have the boot-
strap values right at the nodes of the estimated tree? If these bootstrap values
are high, then this is fine, but if they are low this may indicate either a lack
of information in the data or a systematic bias in the estimation. A lack of
information will be revealed by the fact that bipartition frequencies are more
or less random among the bootstrap trees. On the other hand, if a bipartition
appears at a high frequency, which would not be visible in the bootstrap val-
ues because it is absent in the estimated tree, this may be evidence for a bias,
maybe due to a few sites that are resampled rarely during the bootstrap. In
this case, using a different approach, for instance with partitions or mixtures,
may be useful.

A way to analyze a list of trees and the potential conflict among them is
provided by the Lento plot [182]. The function lento in phangorn analyzes
a list of trees provided as an object of class "splits". Two quantities are
calculated for each split:

• ‘support’ which is equal to the observed frequency of the split (as given by
the attribute "weights" in the class "splits", or the attribute "number"
in the class "prop.part");

• ‘conflict’ which is the sum of the support values of the splits that are not
compatible with the considered one.

Two splits are not compatible if they cannot be observed in the same binary
tree (e.g., AB|CD and A|BCD are compatible, while AB|CD and AC|BD are
not). For illustration, we do a bootstrap analysis on the woodmouse data and
store the bootstraped trees:

> f <- function(x) nj(dist.dna(x))
> tw <- f(woodmouse)
> o <- boot.phylo(tw, woodmouse, f, trees = TRUE)
|==================================================| 100%
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> o
$BP
[1] 100 24 54 58 61 50 78 65 87 89 95 99 59

$trees
100 phylogenetic trees

We extract the splits and their frequencies; we can do this operation with
prop.part but we prefer as.splits so the result can be input directly into
lento:

> s <- as.splits(o$trees)
> length(s)
[1] 90

So there are 108 different splits observed among the 100 bootstrap trees. We
can now do the Lento plot (Fig. 5.9):

> lento(s, trivial = TRUE)

The splits are ordered from left to right with decreasing support value indi-
cated as positive. The conflict values are indicated as negative. The structure
of each split is displayed with plot symbols. The first sixteen splits are the
trivial ones: the fifteen defined by the terminal branches and the one with all
tips. They cannot conflict with any other, and so are obviously observed in all
trees—they are not plotted by default. It is interesting to note in the present
example that, apart the trivial splits, only one has a non-zero conflict value
(No1208S, No1007S, No0909S), which may result from the low divergence of
these sequences.

Fig. 5.9. Lento plot from 100 bootstrap trees of the woodmouse data
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White et al. [312] proposed an alternative way to partition the phyloge-
netic signal present in a sequence alignment into three components—internal,
terminal, and residual—summing to one and so can be represented as fre-
quencies on a triangle. This has the advantage of displaying the phylogenetic
information with a single point, thus several data sets (or subsets) can be
represented simultaneously.

Finally, the bootstrap seems ideally suited to examine bias in the estima-
tion of other evolutionary parameters (substitution rates, shape parameter of
inter-site variation, branch lengths, . . . ) though this does not seem to have
attracted some attention (see Freedman [91] for the use of the bootstrap to
assess estimator bias).

5.5.3 Distances Between Trees

The idea of distances between trees is related to the bootstrap because this
requires summarizing and quantifying the variation in topology among differ-
ent trees. Several ways to compute these distances have been proposed in the
literature [79, Chap. 30]. Two of them are available in the function dist.topo.

Penny and Hendy [241] proposed measuring the distance between two trees
as twice the number of internal branches that differ in their splits. Rzhestky
and Nei [272] proposed a modification of this distance to take multichotomies
into account: this is the default method in dist.topo. For a trivial example:

> tr <- read.tree(text = "((a,b),(c,d));")
> tb <- read.tree(text = "((a,d),(c,b));")
> dist.topo(tr, tb)
[1] 2
> dist.topo(tr, tr)
[1] 0

Kuhner and Felsenstein [170] proposed to calculate the square root of the
sum of the squared differences of the internal branch lengths defining similar
splits in both trees. They called this distance as the branch length score; it
is somewhat similar to the previous distance but taking branch lengths into
account.

> tr <- rtree(10)
> tb <- rtree(10)
> dist.topo(tr, tb, "score")
[1] 2.270937

The function treedist in phangorn offers an alternative implementation
by computing four distances for a pair of trees:

> treedist(tr, tb)
symmetric.difference branch.score.difference

14.000000 2.587576
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path.difference quadratic.path.difference
16.248077 10.082005

The “symmetric difference” is the same than Penny and Hendy’s distance in
dist.topo. The “path difference” is the difference in path lengths, counted as
the numbers of branches, between the pairs of tips [290], while the “quadratic
path difference” is the same but using branch lengths.

Billera, Holmes, and Vogtmann [23] developed an elaborate distance based
on the concept of tree space. This space is actually a cube complex because it
is made up of cubes that share certain faces. Two trees with the same topology
lie in the same cube of dimension n − 2 (n being the number of tips). If they
do not have the same topology they will be in two distinct cubes. However,
these cubes meet at the origin where the internal branches that are different
between the trees are equal to zero (Fig. 5.10). Thus it is possible to define a
distance between two rooted trees across these interconnected cubes which is
called a geodesic distance. The package distory implements this distance as well
as other tools. The function dist.multiPhylo calculates the geodesic given
a list of trees, which could be an object of class "multiPhylo", and returns
an object of class "dist". For instance, computing the distance between the
two binary trees on Fig. 5.10:

> library(distory)
> ta <- read.tree(text = "((a:1,b:1):1,c:1);")
> tc <- read.tree(text = "((a:1,c:1):1,b:1);")
> dist.multiPhylo(c(ta, tc))

1
2 2

For rooted trees phylo.diff is a graphical tool to identify internal
branches that are unique between two trees (see also compare.phylo, p. 54).

The fact that the geodesic distance has a physical interpretation leads
to the possibility of using it in some applications related to the idea of a
tree space. distory implements some of them. For instance, the help page
?dist.multiPhylo gives an example of the use of the geodesic distance to-
gether with multidimensional scaling (also known as principal coordinates
analysis) to represent geometrically a set of bootstrap trees.

Another application is provided by the function mcmc.target.seq which
finds, using MCMC, a bootstrap sample of a "DNAbin" object that is closest
to a target tree in terms of geodesic distance [68]. The distance at each step
is output so that the convergence of Markov chain can be assessed.

5.5.4 Consensus Trees and Networks

Consensus trees are an interesting way to summarize a set of trees: if they are
dichotomous, the clades not observed in all (strict consensus) or the majority
(majority-rule consensus) will be collapsed as multichotomies.
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Fig. 5.10. The tree space for n = 3. It is made of three 1-d spaces interconnected
at their origin—and not the three dimensions of a 3-d space. The grey dots indicate
the positions of the three trees in this space. The dashed line shows the geodesic
distance between the two binary trees. In addition each tree is characterized by an
n-d Euclidean space representing the terminal branches

The function consensus in ape returns the consensus from a list of trees
given in the same way as for prop.part or prop.clades. There is one op-
tion, p, which specifies the threshold, as a number between 0.5 and 1, of the
proportion of the splits for their inclusion in the consensus tree. If p = 1 (the
default), then the strict consensus tree is returned, whereas p = 0.5 returns
the majority-rule consensus tree. This corresponds to the parameter l of the
Ml consensus methods in [79].

This parameter l cannot be smaller than 0.5 because the splits not ob-
served in at least 50% of the trees are incompatible with some observed in the
majority of the trees and so cannot be represented together in the same tree.
A way to solve this problem is to display alternative branchings with reticu-
lations. Consider the unrooted trees in the middle of Fig. 5.11: their internal
branches define splits, namely 12|34, 13|24, and 14|23, which clearly cannot
be observed in the same tree and thus are all incompatible. The network on
the top left represents simultaneously the two first trees with a rectangle sym-
bolizing the two internal branches. In order to represent all three splits, we
need a cube as shown by the network on the right of Fig. 5.11.

The remarkable thing about consensus networks is that once boxes and
rectangles have been identified like in Fig. 5.11, they can be assembled using
the geometry of some structures known as squaregraphs [14]. Figure 5.12
shows an example of a network made of two rectangles displaying three splits.
An internal branch in an unrooted tree is represented as two or more parallel
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Fig. 5.11. The three possible unrooted topologies with n = 4 (middle), two out
of the three possible consensus networks involving two topologies (left), and the
consensus network representing the three topologies (right). The internal branches
and their representations in the networks are shown with the same shades of grey

edges in a consensus network. This idea was originally introduced by Bandelt
[15, 16, 17].

The function consensusNet in phangorn computes the consensus network
for a list of trees given as first argument or, equivalently, a list of splits.
The second argument, prob, gives the minimum frequency for a split to be
uncluded in the network (0.33 by default). We come back to the bootstrap
trees from the woodmouse data:

> cnt <- consensusNet(s) # same than consensusNet(o$trees)
> class(cnt)
[1] "networx" "phylo"
> cnt

Phylogenetic tree with 15 tips and 17 internal nodes.

Tip labels:
No305, No304, No306, No0906S, No0908S, No0909S, ...

Unrooted; includes branch lengths.
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A
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E

Fig. 5.12. A consensus network showing the splits AB|CDE, ABC|DE, and ACD|BE
which is incompatible with the two previous ones

We note that the number of nodes is greater than the number of tips—in a
tree without reticulation the former is always smaller than the latter. The
network is then plotted with the appropriate method (Fig. 5.13):

plot(cnt, "2", tip.color = "black", edge.width = 1, font = 1)

The edge lengths are proportional to the frequencies of the splits, so a more
“open” box indicates, in the present case, a stronger bootstrap support. This
simple example clearly shows the advantage of the consensus network over
a tree with bootstrap values. Here, the alternative positions of No1206S and
No0908S cannot be represented together on the same tree, and similarly for
No1007S, No1208S, and No0909S. Setting prob = 0.1 gives logically a more
complex network which is best visualized in 3-D with rgl (see Exercices).

The 3-D plot of consensus networks was originally developed by Schliep
for phangorn [278]; the 2-D version used here is derived from this one (Klaus
Schliep, personal communication). Other details on plotting networks can be
found on page 117.

5.6 Molecular Dating

Branch lengths and substitution rates are confounded in phylogenetic esti-
mation, therefore it is not possible to estimate branch lengths in units that
are proportional to time. This must be done using additional assumptions
on rate variations. This is the approach used in molecular dating methods.
These techniques have two goals: transform a non-ultrametric tree into an
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Fig. 5.13. Consensus network made from 100 bootstrap trees of the woodmouse
data

ultrametric one, and estimate the absolute dates of the nodes of a tree. The
latter requires at least one “calibration point”, that is a node of the phylogeny
which date is known. Each of these dates may be known exactly or within an
interval defined by a lower (younger) and upper (older) bounds.

5.6.1 Molecular Clock

If substitution rate is constant, then molecular sequences are said to evolve
according to the molecular clock: molecular divergence is related to time. Note
that even if the substitution rate is constant, we do not expect a strictly linear
relationship between molecular distance and time because of the stochastic
nature of molecular evolution [163].

There are various methods in the literature to estimate a dated tree under a
molecular clock model [79]. Britton et al. [32] proposed the mean path lenghts
method where the date of a node is estimated with the mean of the distances
from this node to all tips descending from it. This is implemented in the
function chronoMPL in ape which takes as argument a phylogeny whose branch
lengths are the mean numbers of substitutions, so branch lengths in numbers
of susbtitutions per site must be multiplied by the sequence length before
analysis. Under the molecular clock assumption, the two subtrees originating
from a node are expected to accumulate similar molecular divergence: this
leads to a test, computed by default by chronoMPL, for each node of the
phylogeny. The results are returned as attributes of the dated tree (and thus
extracted with attr; see ?chronoMPL for an example).
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The present method must be seen as mainly exploratory. Often, a plot of
the original rooted phylogeny is very informative on variation in substitution
rate.

5.6.2 Penalized Likelihood

Sanderson [275] proposed a method called nonparametric rate smoothing
(NPRS) which assumes that each branch of the tree has its own rate, but
these rates change smoothly between connected branches. Given a tree with
estimated branch lengths in terms of number of substitutions, it is possible to
estimate the dates of the nodes by minimizing the changes in rates from one
branch to another. Practically this is done by minimizing the function:

Φ =
∑

|r̂k − r̂j |p , (5.12)

where r̂ is the estimated substitution rate, k and j are two nodes of the same
branch, and p is an exponent (usually 2). In order to make a trade-off be-
tween clock-like and non-clock models, Sanderson [276] proposed to modify
his method by using a semiparametric approach based on a penalized likeli-
hood. The latter (denoted Ψ) is made of the likelihood L of the “saturated”
model (the one that assumes one rate for each branch of the tree) minus a
roughness penalty which is similar to (5.12) multiplied by a smoothing pa-
rameter λ:

Ψ = lnL − λΦ , (5.13)

L =
∏

rx e−r

x!
. (5.14)

with x being the number of substitutions observed on a branch. The product
in L is made over all branches of the tree. If λ = 0 then the above model is
the saturated model with one distinct rate for each branch. If λ = +∞, then
the model converges to a clock-like model with the same rate for all branches.
In order to choose an optimal value for λ, Sanderson [276] suggested a cross-
validation technique where each terminal branch is removed from the data and
then its length is predicted from the reduced data set. A different criterion is
used here:

D2
i =

n−2∑
j=1

(t̂j − t̂−i
j )2

t̂j
, (5.15)

where t̂j is the estimated date for node j with the full data, and t̂−i
j is the

one estimated after removing tip i. This criterion is easier to calculate than
Sanderson’s [276].

The penalized likelihood method is implemented in the function chronopl;
its interface is:
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chronopl(phy, lambda, age.min = 1, age.max = NULL,
node = "root", S = 1, tol = 1e-8, CV = FALSE,
eval.max = 500, iter.max = 500, ...)

where phy is an object of class "phylo" with branch lengths giving the number
of substitutions (or its expectation), lambda is the smoothing parameter λ,
age.min and age.max are numeric vectors giving the lower and upper bounds
of the dates that are known, node is the number of the nodes whose dates are
known (the last three arguments must be of the same length), S is the number
of sites used as unit for the original branch lengths (usually this must be left
as default), CV is a logical specifying whether to do the cross-validation, and
tol, eval.max and iter.max are usual parameters to control the estimation
process. This function returns a tree with branch lengths proportional to time
(i.e., a chronogram) with attributes rates (the estimated absolute rates, r̂),
and ploglik (the penalized likelihood). If CV = TRUE, an additional attribute
D2 is returned with the value calculated with (5.15) for each tip.

The cross-validation may be done for different values of λ, for instance,
for λ = 0.1, 1, 10, . . . , 106:

l <- 10^(-1:6)
cv <- sapply(l, function(x) sum(attr(chronopl(phy,

lambda = x, CV = TRUE), "D2")))
plot(l, cv)

Sanderson suggested selecting the value of λ that minimizes the cross-validation
criterion. If CV = TRUE, chronopl returns a value D2

i for each tip, so it is pos-
sible to examine which observations are particularly influential, for instance
with:

chr <- chronopl(phy = phy.est, lambda = 1, CV = TRUE)
plot(attr(chr, "D2"), type = "l")

5.6.3 Bayesian Dating Methods

A Bayesian approach to molecular dating requires to define priors for the
substitution rates and for the dates of the tree. There are several ways to
do the latter, the most common one being to assume that the times between
branching events follow a specific distribution. Thorne et al. [300] proposed
to use a Dirichlet distribution (a Dirichlet process generates multidimensional
variables that sum to one). Other methods are based on a birth-death process
[317]. Defining a prior for the substitution rate is somewhat easier and a
lognormal distribution is usually assumed [see 300, for details].

As mentioned above, implementing Bayesian methods requires a lot of
programming and it makes sense to interface existing programs with R. That
is what the package LAGOPUS does with its function multidivtime which
calls Thorne’s programs ‘estbranches’ and ‘multidivtime’ which themselves
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call Yang’s program ‘baseml’. These programs must therefore be installed on
the computer and accessible from R’s working directory. The most efficient
way to achieve this is to create symbolic links from the executable binaries to
the working directory. Running multidivtime is quite tedious and LAGOPUS
makes a very good job to have the results returned into R.

The input data is an object of class "mdt.in" built with the function of the
same name: it includes all the sets of sequences, associated trees, and a data
frame defining the time calibration points. The list multicntrl.dat controls
the MCMC run by multidivtime and must be loaded into R:

> library(LAGOPUS)
> data(multicntrl.dat)
> multicntrl.dat
$numsamps
[1] 10000

$sampfreq
[1] 100

$burnin
[1] 1e+05

$rttm
[1] 90

$rttmsd
[1] 90

$rtrate
[1] "median"

$rtratesd
[1] "median"

$brownmean
[1] 0.4

$brownsd
[1] 0.4

$minab
[1] 1

$newk
[1] 1
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$othk
[1] 0.5

$thek
[1] 0.5

$bigtime
[1] 200

$tipsnotcoll
[1] 0

$nodata
[1] 0

$commonbrown
[1] 0

Once the data have been prepared with mdt.in and the above list has been
loaded, multidivtime may be called in R; the inteface is:

multidivtime(x, file = NULL, start = "baseml", part = 1,
runs = 1, path = NULL, transfer.files = TRUE,
LogLCheck = 100, plot = TRUE)

The object returned is of class "mdt" and is a list with three components:
TREE (the estimated chronogram), TABLE (the estimated dates with confidence
intervals), and CONSTRAINTS (a recap of the time constraints used as calibra-
tion points). There is also a nice plot method which draws the credibility
intervals computed from the posterior density of the dates over the estimated
chronogram; this has many options.

Running multidivtime from LAGOPUS takes a few minutes with the de-
fault controls. So this package not only eases the use of an existing program,
but also makes possible to repeat the analyses since Bayesian computations
are relatively fast in the present case.

5.7 Summary and Recommendations

Figure 5.14 summarizes a workflow of phylogeny estimation derived from this
chapter. This shows how the techniques exposed in the previous sections can
be used for phylogenetic inference. This considers DNA sequences as the raw
data: they are not the only kind of data that can be analyzed for estimating
phylogenies, but they have appeared more and more clearly over the last few
years as the most appropriate for this task [31, 64]. Table 5.5 gives for each
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step, the points which are particularly important to examine, though they are
not limitative.

There has been an increasing trend in the literature over the past few years
to perform estimation of phylogenies as a black-box computation where data
are input and a tree is output. The availability of high performance hardware
and software, not surprisingly, has reinforced this practice. I defend here a
different approach. Phylogeny estimation should be done like other statistical
inference procedures. Thus, some attention must be paid to heterogeneity
and variability in the processes under investigation. This obviously requires
a combination of exploratory, graphical, and modeling tools. The description
of such tools in this chapter, and these final recommendations, do not mean
to be exhaustive in this respect. Nevertheless, I hope they will contribute to
a more critical approach to phylogeny estimation.

Data from sequencing
Sequence Alignment

(Chapter 3)

Pairwise Distances

Distance-based Methods Maximum Likelihood

Assess Topology

Molecular Dating
Macroevolution

(Chapter 6)

Calibration points
and intervals

Data from morphology,
ecology, physiology,
biogeography, . . .

Fig. 5.14. Flowchart of phylogeny estimation. Straight arrows indicate direct flow
of data; dotted arrows show when some results from the origin would impact the
process in the destination
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Table 5.5. Some points to be considered in phylogeny estimation

Points to be examined Tools
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Low level of variability
Multiple substitutions
Ts/Tv bias (etc.)

Heterogeneity along the sequences

Heterogeneity among genes

Saturation

Histogram and summary statistics
Plot JC69 against uncorrected
Plot K80 against JC69, F81 against F84
(etc.)
Same than above with data subsets
(e.g., codon positions)
Same than above with different plots on
the same figure
Histogram and saturation plots

D
is

.
M

e
t
.

Robustness to the algorithm

Impact of heterogeneity
within / among sequences

Use different methods (NJ, FastME,
BIONJ, . . . )
Repeat analyses for different data sub-
sets

M
a
x
.
L
ik

e
l
ih

.

Test hypotheses on variation in
substitution rate(s)
– along sequences
– among genes
– parameters
– base frequencies
Alternative topologies

Fit alternative models

With(out) Γ variation
With(out) partitions
Alternative models (GTR, . . . )
Id.
Shimodaira–Hasegawa test

A
ss

e
ss

T
o
p
.

Confidence in the inferred topology
Bias and conflicting signal

Incomplete lineage sorting

Bootstrap, MCMC
Lento plot, consensus network
Geodesic distance with multidimen-
sional scaling
Species tree estimation from gene trees

M
o
l
.
D

a
t
in

g Heterogeneity in substitution rate
among branches
Assess unclock-like of the
substitution rate
Impact of individual sequences

Plot rooted trees with scale

Find the best value of λ with PL

Examine individual contributions
to CV with D2

i with PL

5.8 Case Studies

In this section, we come back to some of the data prepared in Chapter 3. We
see how we can estimate phylogenies, eventually repeat some analyses done
in the original publications, and possibly see how we could go further with R.
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5.8.1 Sylvia Warblers

To continue with the Sylvia data, it may be necessary to reload the data
prepared and saved previously:

load("sylvia.RData")

A distance matrix can be estimated from these aligned sequences using
dist.dna; because 2 of the 25 sequences are substantially incomplete, we use
the option pairwise.deletion = TRUE:

syl.K80 <- dist.dna(sylvia.seq.ali, pairwise.deletion = TRUE)

We recall that the default model for this function is Kimura’s two-parameter
one. We use the option model to try different models:

syl.F84 <- dist.dna(sylvia.seq.ali, model = "F84", p = TRUE)
syl.TN93 <- dist.dna(sylvia.seq.ali, model = "TN93", p = TRUE)
syl.GG95 <- dist.dna(sylvia.seq.ali, model = "GG95", p = TRUE)

A way to compare these distance matrices is simply to look at their correla-
tions. We do this by binding all distances in a single matrix, and compute the
correlations among its columns (the results are rounded to three digits):

> round(cor(cbind(syl.K80, syl.F84, syl.TN93, syl.GG95)), 3)
syl.K80 syl.F84 syl.TN93 syl.GG95

syl.K80 1.000 1.000 1.000 0.928
syl.F84 1.000 1.000 1.000 0.927
syl.TN93 1.000 1.000 1.000 0.925
syl.GG95 0.928 0.927 0.925 1.000

This shows that the GG95 distances differ substantially from the others. Note
that a perfect correlation does not guarantee that the distances are the same:
some graphical analyses are needed to check this. We do this to examine the
saturation of substitutions in the sequences. We first compute the distances
using the JC69 model and the raw distance (i.e., proportion of different sites):

syl.JC69 <- dist.dna(sylvia.seq.ali, model = "JC69", p=TRUE)
syl.raw <- dist.dna(sylvia.seq.ali, model = "raw", p=TRUE)

We then plot these two distances expecting the raw distances to be smaller
because they do not consider multiple substitutions; we also plot the Jukes–
Cantor distance versus the Kimura one to show the potential influence of the
transition/transversion ratio (Fig. 5.15):

layout(matrix(1:2, 1))
plot(syl.JC69, syl.raw); abline(b = 1, a = 0) # draw x=y line
plot(syl.K80, syl.JC69); abline(b = 1, a = 0)
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Fig. 5.15. Saturation plots for the cytochrome b sequences of 25 species of Sylvia
showing the effects of multiple substitutions (left) and of the transition/transversion
ratio (right)

These plots show, as expected, that the most divergent sequences are slightly
saturated, whereas the transition/transversion ratio does not seem to affect
the estimated distances greatly.

This analysis, though informative, is not what is usually called “saturation
plots” in the literature. The latter is a plot, eventually for each codon position,
of the numbers of transitions and transversions on the x-axis against the K80
distance on the y-axis. These graphs are not shown here but the code to do
them is as follows:

layout(matrix(1:3, 1))
for (i in 1:3) {

s <- logical(3); s[i] <- TRUE
x <- sylvia.seq.ali[, s]
d <- dist.dna(x, p = TRUE)
ts <- dist.dna(x, "Ts", p = TRUE)
tv <- dist.dna(x, "Tv", p = TRUE)
plot(ts, d, xlab = "Number of Ts or Tv", col = "blue",

ylab = "K80 distance", xlim = range(c(ts, tv)),
main = paste("Position", i))

points(tv, d, col = "red")
}
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A special attention must be paid to the scales of the x- and y-axes when
interpreting the three plots created by these commands.

A complementary graphical analysis can be done by plotting a histogram
of the pairwise distances for each codon position (as suggested in Table 5.5).
In order to plot the three histograms on the same scales, we use the function
histogram in lattice instead of the usual hist. To this end, we prepare the
data by computing the distances for each position, and concatenating them
in a single vector. We then create a factor variable so that histogram can
attribute each value of the concatenated vector to its codon position which is
used as a conditional variable in the call of this function (Fig. 5.16):

y <- numeric()
for (i in 1:3) {

s <- logical(3); s[i] <- TRUE
y <- c(y, dist.dna(sylvia.seq.ali[, s], p = TRUE))

}
g <- gl(3, length(y) / 3)
library(lattice)
histogram(~ y | g, breaks = 20)

The figure is very revealing: not only the mean pairwise distance is affected
by the codon position but also its variance. This will have a significant impact
on the choice of model for phylogeny estimation.
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Fig. 5.16. Pairwise histograms for the cytochrome b sequences of 25 species of
Sylvia for the three codon positions

A point we explore briefly is the impact of the choice of the substitution
model on the phylogeny estimation with the NJ method. We estimate a tree
with the function nj for the K80 and GG95 distance matrices:

nj.sylvia.K80 <- nj(syl.K80)
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nj.sylvia.GG95 <- nj(syl.GG95)

To see if the estimated topologies are similar, we compute the topological
distance between them:

> dist.topo(nj.sylvia.K80, nj.sylvia.GG95)
[1] 12

We now do a bootstrap analysis like the one reported by Böhning-Gaese
et al. [27] using boot.phylo. There are several ways to conduct this analysis.
We choose to treat rooted trees, and so first identify the outgroup species,
Chamaea fasciata:

> grep("Chamaea", taxa.sylvia, value = TRUE)
AJ534526

"Chamaea_fasciata"

We then build a function that includes the root function in order to estimate
the NJ tree including the rooting operation:

f <- function(xx) root(nj(dist.dna(xx, p=TRUE)), "AJ534526")
tr <- f(sylvia.seq.ali)
## same than: tr <- root(nj.sylvia.K80, "AJ534526")

We may now call boot.phylo specifying the option rooted = TRUE and using
200 bootstrap replicates as in [27]:

> nj.boot.sylvia <- boot.phylo(tr, sylvia.seq.ali, f, 200,
+ rooted = TRUE)
> nj.boot.sylvia
[1] 200 186 78 143 146 103 107 200 187 94 192 197 33 154
[15] 82 86 170 195 86 197 134 193 72

How could these bootstrap values have been influenced by the fact that
we deal with coding sequences? We can assess this by using the option block
of boot.phylo; this will result in resampling at the codon level instead of at
the site level:

> nj.boot.codon <- boot.phylo(tr, sylvia.seq.ali, f, 200, 3,
+ rooted = TRUE)
> nj.boot.codon
[1] 200 193 72 139 134 99 99 198 180 87 192 194 38 163
[15] 75 87 164 194 97 196 140 196 94

The results are very close to the site-level resampling analysis; we thus consider
the latter in the following.

We now plot the estimated tree by NJ with the bootstrap values on the
nodes. We first copy the estimated tree and substitute the accession numbers
(which were used as tip labels) with the species names:
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nj.est <- tr
nj.est$tip.label <- taxa.sylvia[tr$tip.label]

The tree is then plotted with plot, the bootstrap values are added with
nodelabels, and we draw a scale bar (Fig. 5.17):

plot(nj.est, no.margin = TRUE)
nodelabels(round(nj.boot.sylvia / 200, 2), bg = "white")
add.scale.bar(length = 0.01)
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Fig. 5.17. Phylogenetic relationships among 25 species of the genus Sylvia based on
cytochrome b sequences analyzed with neighbor-joining and Kimura’s two-parameter
distance

The bootstrap values shown in Fig. 5.17 are very close to those obtained
by Böhning-Gaese et al. [27]. We finally save the final tree in a file using the
Newick format:

write.tree(nj.est, "sylvia_nj_k80.tre")

We now move on to maximum likelihood by first performing an analysis
with phymltest. PhyML has been installed and set as described on page 159.
The command for the present analysis is thus simply (after writing the se-
quences in a file):

write.dna(sylvia.seq.ali, "sylvia.txt")
phyml.sylvia <- phymltest("sylvia.txt", execname = "~/phyml")
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This takes a few minutes to run on a modern laptop. Displaying the results
shows the log-likelihood and AIC values for each model:

> phyml.sylvia
nb.free.para loglik AIC

JC69 1 -9022.097 18046.19
JC69+I 2 -8307.898 16619.80
JC69+G 2 -8227.001 16458.00
JC69+I+G 3 -8223.574 16453.15
K80 2 -8508.629 17021.26
K80+I 3 -7766.568 15539.14
K80+G 3 -7680.375 15366.75
K80+I+G 4 -7656.458 15320.92
F81 4 -8941.140 17890.28
F81+I 5 -8157.509 16325.02
F81+G 5 -8072.674 16155.35
F81+I+G 6 -8055.982 16123.96
F84 5 -8430.607 16871.21
F84+I 6 -7575.661 15163.32
F84+G 6 -7489.272 14990.54
F84+I+G 7 -7467.842 14949.68
HKY85 5 -8471.269 16952.54
HKY85+I 6 -7600.758 15213.52
HKY85+G 6 -7505.759 15023.52
HKY85+I+G 7 -7482.774 14979.55
TN93 6 -8413.108 16838.22
TN93+I 7 -7569.273 15152.55
TN93+G 7 -7483.681 14981.36
TN93+I+G 8 -7461.591 14939.18
GTR 9 -8350.477 16718.95
GTR+I 10 -7548.011 15116.02
GTR+G 10 -7467.290 14954.58
GTR+I+G 11 -7444.848 14911.70

The function summary computes all possible paired likelihood ratio tests (211
tests):

> summary(phyml.sylvia)
model1 model2 chi2 df P.val

1 JC69 JC69+I 1428.39644 1 0.0000
2 JC69 JC69+G 1590.19116 1 0.0000
3 JC69 JC69+I+G 1597.04450 2 0.0000
4 JC69 K80 1026.93474 1 0.0000
5 JC69 K80+I 2511.05698 2 0.0000
....

We can plot these results to have a more synthetic view (Fig. 5.18):
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plot(phyml.sylvia, col = "black")
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Fig. 5.18. Results of the analysis of 25 species of the genus Sylvia based on cy-
tochrome b sequences with phymltest

The most complex model GTR + I + Γ is the one that best explains
the data in terms of AIC. An interesting pattern from Fig. 5.18 is that for a
given substitution model, adding invariants (I) considerably improves the fit,
whereas this improvement is even better by adding Γ , and again better with
both; thus there is a hierarchy X >>> X + I >> X + Γ > X + I + Γ (X
being a substitution model).

When comparing the substitution models, the key element seems to take
the transition / transversion ratio into account. Once this has been included
in the model (F80 being the simplest one), taking unequal base frequencies
into account is also important although less than the previous parameter.

Once the analysis with phymltest has been done, it is possible to read the
trees estimated by PhyML:

> TR <- read.tree("sylvia.txt_phyml_tree.txt")
> TR
28 phylogenetic trees

This file contains the 28 trees estimated by PhyML, the last one being the
one estimated with the most complex model. We extract this tree, substitute
its tip labels to get the species names in place of the accession numbers, and
root the tree with Chamaea fasciata as outgroup (Fig. 5.19):
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mltr.sylvia <- TR[[28]]
mltr.sylvia$tip.label <- taxa.sylvia[mltr.sylvia$tip.label]
mltr.sylvia <- root(mltr.sylvia, "Chamaea_fasciata")
plot(mltr.sylvia, no.margin = TRUE)
add.scale.bar(length = 0.01)

Naturally, the next step of our analyses should be to fit partitioned mod-
els because of the heterogeneity we have characterized in relation to codon
position. However, the practical details of this approach have been exposed
with the woodmouse data earlier in this chapter (p. 154), and we shall keep
the present analysis shorter than it should be.
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Fig. 5.19. Maximum likelihood phylogeny estimate of 25 species of the genus Sylvia
based on cytochrome b sequences with the GTR + I + Γ model

From this ML estimate of the phylogeny of Sylvia, we can now estimate a
chronogram with the penalized likelihood method [276]. The fossil record of
these birds is extremely sparse and it is difficult to obtain a calibration point
from it. Blondel, Catzeflis and Perret [26] found, using a molecular clock, a
time of origin of the common ancestor of Sylvia between 12.1 and 13 million
years ago which, unsurprisingly, agrees with the date estimated by Sibley and
Ahlquist [284]. For the present analysis, we use an interval 12-16 Ma for the
most recent common ancestor of Sylvia. We perform the penalized likelihood
analysis, with cross-validation, with values of the smoothing parameter (λ)
10−4, 10−3, . . . , 103, 104. Before proceeding, we drop the outgroup from the
estimated maximum likelihood tree:

tr.ml <- drop.tip(mltr.sylvia, "Chamaea_fasciata")
res <- vector("list", 9)
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for (L in -4:4)
res[[L + 5]] <- chronopl(tr.ml, 10^L, 12, 16, CV = TRUE)

We now plot the sum of the cross-validation values (5.15) against the value
of λ (Fig. 5.20):

Lambda <- 10^(-4:4)
CV <- sapply(res, function(x) sum(attr(x, "D2")))
plot(Lambda, CV / 1e5, log = "x")
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Fig. 5.20. Plot of the cross-validation criterion (CV) with respect to the value of
the smoothing parameter λ

The lowest values show the lowest discrepancy between the predicted and
the observed values. Therefore, we select the chronogram estimated with λ =
10−3. We remind that a small value of λ implies heterogeneous substitution
rates among brances (because we have set an absolute time frame, branch
lengths and substitution rates can be disentangled). The attribute "rates"
stores the estimated absolute rates of substitution:

> sylvia.chrono <- res[[2]]
> rts <- attr(sylvia.chrono, "rates")
> summary(rts)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.002187 0.013950 0.025660 0.025350 0.034200 0.059810

These values are ordered along the edges of the tree, so they can be used as
argument to some options of plot.phylo, such as edge.color or edge.width.
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We now plot the estimated chronogram with the edge thickness proportional
to these rates, and draw the time-axis with axisPhylo (Fig. 5.21). The scaling
factor of 100 is found after several attempts in order to get the best visual
effect:

par(mar = c(2, 0, 0, 0))
plot(sylvia.chrono, edge.width = 100*rts, label.offset = .15)
axisPhylo()

We finally save this chronogram for further analysis:

write.tree(sylvia.chrono, "sylvia.chrono.tre")
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Fig. 5.21. Chronogram of the Sylvia warblers based on the penalized likelihood
method. The branch thicknesses are proportional to the absolute rates of molecular
evolution

5.8.2 Butterfly DNA Barcodes

We have 466 aligned sequences of COI: we limit ourselves here to simple anal-
yses. Hebert et al. [131] showed that there seem to be several (ten actually)
species instead of one originally recognized. We compute the pairwise dis-
tances between all specimens with dist.dna. We take care to use the option
pairwise.deletion = TRUE because many sequences do not have the same
length:

M.astraptes.K80 <- dist.dna(astraptes.seq.ali, p = TRUE)
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We look at the distribution of the distances using summary:

> summary(M.astraptes.K80)
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00000 0.01590 0.02107 0.02749 0.03887 0.08326

We may plot an histogram of the 108,345 distances (Fig. 5.22):
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Fig. 5.22. Distribution of pairwise distances among 466 specimens Astraptes ful-
gerator based on cytochrome oxydase I sequences analyzed with Kimura’s two-
parameter distance

hist(M.astraptes.K80)

This clearly shows three peaks in the distribution: at 0, around 0.02, and
around 0.07. This is in complete agreement with Hebert et al.’s results which
showed that these peaks correspond to differentiation within populations, in-
traspecies, and interspecies, respectively.

It is possible to estimate an NJ tree with the distance matrix to assess
how the different taxa are differentiated:

tr <- nj(M.astraptes.K80)
tr$tip.label <- taxa.astraptes[tr$tip.label]

The resulting tree is a bit too large to be displayed with plot.phylo, so we
may use zoom instead. For this we have to find the indices of each taxon in
the vector of tip labels. Here is a possible solution:

taxon <- unique(taxa.astraptes)
L <- vector(mode = "list", length = 10)
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for (i in 1:10)
L[[i]] <- grep(taxon[i], tr$tip.label)

We can now use L as an argument to zoom. We may plot all the subtrees at
once in a large PDF file with:

pdf("astraptes.pdf", width = 30, height = 30)
zoom(tr, L)
dev.off()

and then open it with an appropriate viewer. Each taxon can be visualized
separately with, for instance, zoom(tr, L[1]).

5.9 Exercises

1. (a) Show that ultrametric distances are also Euclidean.
(b) Simulate some data with rTraitCont and show that distances among

these variables may be Euclidean. Compare with data generated with
rnorm.

(c) Show that DNA distances cannot be Euclidean. Find a distance
method with continuous variables that shows the same property. See
the formula in ?dist and compare with what you know on how DNA
distances are calculated.

2. Compare the seven methods available in upgma. You will draw a single
figure with the seven UPGMA trees and the necessary annotations. You
will take a data set of your choice.

3. Longer distances inferred from molecular sequences tend to have higher
variances than the shorter ones. Derive a weighted version of the least
squares formula by modifying equation 5.1 (p. 136) in order to give less
importance to longer distances. Find a diagnostic plot that will confirm
the rationale of this weighting scheme. (Hint: you may type example(lm)
in R to find some inspiration.)

4. Consider a DNA sequence that evolves according to the Jukes–Cantor
(JC69) model.
(a) Build the corresponding rate matrix using for the overall rate of change

the value 3 × 10−4.
(b) Compute, using two different approaches, the probability matrix for

t = 1, t = 1000, and t = 1 × 106. What do you observe? Was that
expected?

(c) What could you conclude about phylogeny estimation from this exer-
cise?
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5. Consider a GTR model with the following parameters: α = 0.001, β =
5 × 10−4, γ = 2 × 10−4, δ = 3 × 10−4, ε = 1 × 10−4, ζ = 5 × 10−5,
πA = 0.35, πG = 0.17, πC = 0.25, and πT = 0.23.
(a) Build the corresponding rate matrix.
(b) Compute the probability matrix for t = 1.
(c) Find a method to simulate the evolution of a DNA sequence under

this GTR model for an arbitrary t.
(d) What are the expected base frequencies when t is very large?

6. Write R code to calculate the distance between two aligned nucleotide
sequences with the GTR model using equation 5.8 (p. 144). (Hints: you
will need the functions base.freq, Ftab, eigen, and solve. The ‘trace’
function is the sum of the diagonal elements of a matrix.)

7. (a) Give the R code to calculate Py in Section 5.2.2. Compare with Px.
How this will affect subsequent calculations? Eventually try different
values of α.

(b) Why the likelihood values do not sum to one?
(c) For site 2, why the likelihood for A is twice bigger than for T?
(d) How many parameters are involved in these calculations?
(e) Write an R function to calculate the likelihood of the (full) data; the

arguments of this function will be these parameters.

8. Sketch a function doing Bayesian estimation of phylogeny. The code should
include comments explaining the rationale of the choices.

9. Take the data prepared in Exercise 5 of Chapter 3.
(a) Build saturation diagrams for the whole sequence, and for each codon

position.
(b) Examine graphically the effects of unequal transition and transversion

rates and / or unequal base frequencies on the distance estimates for
each data set (whole sequences and each codon position).

10. Generate 100 bootstrap trees from the woodmouse data (see p.176). Com-
pute and plot the consensus network displaying the splits with frequency
0.1 or more. Compare with Fig. 5.13 and explain the differences. Repeat
with 1000 bootstrap trees.
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Analysis of Macroevolution with Phylogenies

Reconstructing the history of species is a necessary step in understanding the
mechanisms of biological evolution. Once a phylogeny has been estimated, a
lot of questions on how species have evolved can be addressed. Why are some
taxonomic groups more diverse than others? How have species traits evolved?
Have some traits favored diversification? Are some traits linked through evo-
lution?

By contrast to the field of molecular evolution which is recent in the history
of sciences, these questions are old issues that were already lively debated in
the nineteenth century. The remarkable development of phylogenetics during
the past decades has renewed interest in these long-standing issues, and led
to the development of new analytical methods to address them. This chapter
presents these methods. Their common feature is that they take an estimated
tree as raw data. The first section presents methods to analyze species data
in a phylogenetic framework, the second one, methods that estimate ances-
tral characters, the third one, methods to analyze diversification above the
species level, and the fourth one treats issues recently developed in the use of
phylogenies in ecology and biogeography.

6.1 Phylogenetic Comparative Methods

Comparing observations made on different species is an intuitive and appeal-
ing approach that certainly dates back to antiquity [127]. For instance, if some
combinations of traits are consistently associated across several species, this
could suggest that evolutionary forces, such as selection, shaped these associ-
ations. However, nonrandom associations of some traits among some species
may be due to common heritage from their ancestor, and thus concomitant
change through time cannot be inferred. Therefore, if characters have evolved
randomly without association, more closely related species are more likely to
be similar than others, thus creating apparent relationships among characters
[76, 267].

DOI 10.1007/978-1-4614-1743-9_6, © Springer Science+Business Media, LLC 2012
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It is consequently necessary to consider the phylogenetic relationships
among species when analyzing their characters. Several attempts in this direc-
tion have been made early on by considering partial phylogenetic information
such as taxonomic information (see [127] for a review). With the growing avail-
ability of complete phylogenies with estimated branch lengths, it is possible
to go further.

From an analytical perspective, two issues may be addressed when incor-
porating phylogeny into comparative data:

• Taking interspecies nonindependence into account when studying traits
and their relationships, and

• Estimating the parameters of character evolution.

Both issues are tightly connected. It is indeed important to realize that
the impact of phylogeny on trait distributions depends not only on phylogeny
but also on the way these traits evolve.

Particular emphasis has been given to the first issue because traditional
comparative methods (i.e., without phylogeny) have been widely used for
decades [128]. The methods devised to “correct for phylogenetic dependence”
usually assume a simple model of character evolution: Brownian motion for
continuous characters, or parsimonious change for discrete ones. However,
even if these models do not apply to a particular situation, phylogeny is still
important in the distribution of species traits [122].

When estimating parameters of character evolution, a model must be for-
mulated explicitly and fit to the data (the characters and the tree), usually
by maximum likelihood. Several models can be fit to the same data set and
compared with the usual statistical techniques (e.g., likelihood ratio tests, or
information criteria).

Phylogenetic comparative methods are now part of the standard back-
ground of all evolutionists. As in any statistical method, an improper use of
these methods might lead to spurious or aberrant results. We shall see a few
examples below; for a more complete treatment of potential problems, see
Freckleton [90].

6.1.1 Phylogenetically Independent Contrasts

Felsenstein [76] was probably the first to propose a method that fully takes
phylogeny into account in the analysis of comparative data. The idea be-
hind the “contrasts”1 method is that, if we assume that a continuous trait
evolves randomly in any direction (i.e., the Brownian motion model), then
the “contrast” between two species is expected to have a normal distribution
1 Phylogenetically independent contrasts, often called “contrasts” in the phyloge-

netic literature, are related to the statistical contrasts used in analysis of variance
and other methods (see ?contrasts in R) in the sense that they both consider
contrasts in expected means.
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with mean zero, and variance proportional to the time since divergence. If the
contrasts are scaled with the latter, then they have a variance equal to one.

A contrast is computed with:

Cij =
xi − xj√

dij

, (6.1)

where xi and xj are the values of the trait observed on species i and j,
and the distance between both species dij is measured on the tree. This is
straightforward if xi and xj are observed on recent species, but this can be
done also for internal nodes because under the assumptions of the Brownian
model the ancestral state of the variable can be calculated; a rescaling of the
internal branches eventually occurs.

In this formulation, the tree needs to be binary (fully dichotomous), and
a contrast is computed for each node. Thus for n species, n − 1 contrasts
will be computed. The contrasts are independent (i.e., their covariances are
null, unlike the original values of x), and standard statistical methods for
continuous variables can be used.

The method of phylogenetically independent contrasts (PICs), is imple-
mented in the function pic. This function computes the PICs giving a tree
and a vector of values. The result is a vector of numeric values with the com-
puted PICs.

As a simple example we take a data set analyzed by Lynch [190] consisting
of the log-transformed body mass and longevity of five species of primates.

> tree.primates <- read.tree("primfive.tre")
> body <- c(4.09434, 3.61092, 2.37024, 2.02815, -1.46968)
> longevity <- c(4.74493, 3.3322, 3.3673, 2.89037, 2.30259)
> names(body) <- names(longevity) <- c("Homo",
+ "Pongo", "Macaca", "Ateles", "Galago")
> pic.body <- pic(body, tree.primates)
> pic.longevity <- pic(longevity, tree.primates)
> pic.body

6 7 8 9
3.3583189 1.1929263 1.5847416 0.7459333
> pic.longevity

6 7 8 9
0.8970604 0.8678969 0.7176125 2.1798897

We plot the tree and show the values of the PICs with nodelabels (Fig. 6.1):

plot(tree.primates)
nodelabels(round(pic.body, 3), adj = c(0, -0.5),

frame = "n")
nodelabels(round(pic.longevity, 3), adj = c(0, 1),

frame = "n")
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Fig. 6.1. A tree of five primate genera showing phylogenetically independent con-
trasts of ln(body mass) and ln(longevity), above and below, respectively

A plot of the two sets of PICs shows no clear relationship between them
(Fig. 6.2):
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Fig. 6.2. Plot of the four pairs of contrasts from Fig. 6.1; the dashed line is x = y

plot(pic.body, pic.longevity)
abline(a = 0, b = 1, lty = 2) # x = y line

This is confirmed by a correlation and a simple regression:
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> cor(pic.body, pic.longevity)
[1] -0.5179156
> lm(pic.longevity ~ pic.body)

Call:
lm(formula = pic.longevity ~ pic.body)

Coefficients:
(Intercept) pic.body

1.6957 -0.3081

Because PICs have expected mean zero, Garland et al. [97] recommended
that such linear regressions should be done through the origin (i.e. the inter-
cept is set to zero). It is clear from Fig. 6.2 that the result will be different:

> lm(pic.longevity ~ pic.body - 1)

Call:
lm(formula = pic.longevity ~ pic.body - 1)

Coefficients:
pic.body
0.4319

None of the above coefficients is significantly different from zero which is
hardly surprising considering the small sample size. Doing the regression
among PICs through the origin is justified if the characters evolve under
a Brownian motion model and there is a linear relation between them [97].
However, I argue that many biologically realistic—and interesting—situations
are likely to be ignored by a regression trough the origin, such as nonlinear
relationships [252], heterogeneity in rate of evolution, or presence of a trend
as suggested with our primate data. In all cases, it is wise to plot the PICs.

Legendre and Desdevises [179] showed that in the case of the regression
through the origin the standard test for the significance of the slope based on
the F -distribution is actually slightly biased and proposed instead a permu-
tation procedure for this test. This is implemented in the function lmorigin
which is used in the same way as lm with the addition of a few options that
control the permutation procedure:

> lmorigin(pic.longevity ~ pic.body, nperm = 1e4)
Regression through the origin
Permutation method = raw data
Computation time = 26.087000 sec

Regression through the origin
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Call:
lmorigin(formula = pic.longevity ~ pic.body, nperm = 10000)

Coefficients and parametric test results

Coefficient Std_error t-value Pr(>|t|)
pic.body 0.43193 0.28649 1.5077 0.2288

Two-tailed tests of regression coefficients

Coefficient p-param p-perm
pic.body 0.43193 0.2288 0.2350

One-tailed tests of regression coefficients:
test in the direction of the sign of the coefficient

Coefficient p-param p-perm
pic.body 0.43193 0.1144 0.1155

Residual standard error: 1.137666 on 3 degrees of freedom
Multiple R-square: 0.4310711 Adjusted R-square: 0.2414281

F-statistic: 2.273067 on 1 and 3 DF:
parametric p-value : 0.228751
permutational p-value: 0.2349765

after 10000 permutations of raw data

Generally, like with our primate data, the difference will be small, the P -value
of the permutation test being slightly larger than the one of the standard F -
test.

Purvis and Garland [248] introduced a modification of Felsenstein’s [76]
method in order to take multichotomies into account. This is not implemented
in the function pic, but this may be done by combining this function with
others such as multi2di (Section 3.4.4). There are alternative approaches,
such as generalized least squares, to cope with multichotomies with continuous
traits (Section 6.1.5).

Contrasts can be calculated for discrete variables. The underlying model
would be the threshold model described by Felsenstein [81] where a binary
trait is determined by a continuous parameter, called liability, and it can be
assumed that this parameter evolves under Brownian motion. It follows that
the contrasts can be interpreted as changes in liability along the phylogeny.
The same approach can be used if there are more than two states with the
slight complication that liability will have more than one parameter. This
implies that more than one contrast must be computed. This can be done
using the binary coding used to enter factors in regression models (the func-
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tion model.matrix may be useful here). The number of contrasts will be the
number of states minus one.

6.1.2 Phylogenetic Autocorrelation

Because species are not independent through their phylogenetic relationships,
the latter may be used to quantify the association between the variables ob-
served on the species. Gittleman and Kot [109] introduced a method based on
an autocorrelation approach. This uses Moran’s autocorrelation index I [208]:

I =
n

S0

n∑
i=1

n∑
j=1

wij(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2
, (6.2)

S0 =
n∑

i=1

n∑
j=1

wij , (6.3)

where wij is a weight quantifying the ‘phylogenetic proximity’ between species
i and j, and x̄ is the observed mean of x. This is somehow similar to the cor-
relation between two variables, but instead looks at different values of the
same variables (in the present context, made on different species), and where
each pair is weighted with w. Because it is expected that more closely related
species are more similar, the latter can be derived from the phylogeny. Git-
tleman and Kot [109] proposed that in the absence of an accurate phylogeny,
the weights can be derived from the taxonomy. They considered two ways to
calculate them:

• With phylogenetic distances among species, e.g., wij = 1/dij , where dij

are distances measured on a tree, and wii = 0.
• With taxonomic levels where wij = 1 if species i and j belong to the same

group, 0 otherwise.

There are quite a lot of possibilities to set the weights in the first situation.
For instance, Gittleman and Kot also proposed:

wij =
{

1/dα
ij dij ≤ c

0 dij > c,

where c is a cut-off phylogenetic distance above which the species are con-
sidered to have evolved completely independently, and α is a coefficient (see
[109] for details). By analogy to the use of a spatial correlogram where co-
efficients are calculated assuming different sizes of the “neighborhood” and
then plotted to visualize the spatial extent of autocorrelation, they proposed
to calculate I at different taxonomic levels.
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In the absence of phylogenetic autocorrelation, the mean expected value
of I and its variance are known [109]. It is thus possible to test the null
hypothesis of the absence of dependence among observations.

Gittleman and Kot’s [109] method is implemented in the function Moran.I.
Considering the primate small data set, the distances between species can be
computed with the function cophenetic (the user must be sure that the vector
and the matrix are ordered in the same way):

> w <- 1/cophenetic(tree.primates)
> diag(w) <- 0 # OR: w[w == Inf] <- 0
> Moran.I(body, w)
$observed
[1] -0.0731218

$expected
[1] -0.25

$sd
[1] 0.08910814

$p.value
[1] 0.04714628

The result is a list with four elements: the observed value of I (observed),
its expected value under the null hypothesis of no correlation (expected),
the standard-deviation of the observed I (sd), and the P -value of the null
hypothesis (p.value).

The diagonal elements of the matrix returned by cophenetic are all equal
to zero (the distance of a tip to itself), so calculating 1/0 returns ∞ and we
set the diagonal of w to zero. The alternative command is to be preferred if
there are tips seperated by zero-length branches so their cophenetic distance
is zero as well.

This result suggests a slighly significant positive phylogenetic correlation,
in agreement with the positive values observed for the contrasts in the previous
section. Note that the expected value is negative (−0.25): this is not really
intuitive, but in the absence of correlation among observations, the expected
value of Moran’s autocorrelation coefficient is negative (see [208]).

ade4 has the function gearymoran which computes Moran’s coefficient and
tests its significance with a randomization procedure. The two main arguments
of this function are a distance matrix and a data frame with one or several
vectors. The option nrepet specifies the number of replications of the ran-
domization test (999 by default). We leave this option as its default for the
present analysis:

> library(ade4)
> gearymoran(w, data.frame(body, longevity))
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class: krandtest
Monte-Carlo tests

Test number: 2
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 body -0.06256789 2.1376964 greater 0.001
2 longevity -0.22990437 0.3574691 greater 0.363

other elements: NULL

The result for body mass is close to the one with Moran.I. This latter function
gives with longevity:

> Moran.I(longevity, cophenetic(tree.primates))
$observed
[1] -0.1837739

$expected
[1] -0.25

$sd
[1] 0.0911455

$p.value
[1] 0.4674727

For this variable, the computed coefficients are close between both functions,
but the P -values are somehow different although both not significant. An
exercise at the end of this chapter proposes to explore how these results are
influenced by the choice of the weights.

adephylo has another implementation with its function abouheif.moran:
it performs Abouheif’s [2] test which is in fact a Moran test with a special
weight matrix as shown by Pavoine et al. [240]. This function may be used
like the previous one with one or several traits and a weight matrix:

> library(adephylo)
> abouheif.moran(cbind(body, longevity), w)
....
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 body 0.03108993 1.8209696 greater 0.012
2 longevity -0.16812515 0.5720004 greater 0.252

Another way to proceed is to build a "phylo4d" object, and then use
the option method whose default is "oriAbouheif" (other possibilities are
"patristic", "nNodes", "Abouheif", or "sumDD"):
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> X <- phylo4d(tree.primates, data.frame(body, longevity))
> abouheif.moran(X)
....

Test Obs Std.Obs Alter Pvalue
1 body 0.4458995 2.2458001 greater 0.017
2 longevity 0.1848654 0.9640888 greater 0.182
> abouheif.moran(X, method = "sumDD")
....

Test Obs Std.Obs Alter Pvalue
1 body -0.0449781 2.169082 greater 0.021
2 longevity -0.1112259 1.409788 greater 0.106

Gittleman and Kot [109] suggested the use of correlograms to visualize
the results of phylogenetic autocorrelative analyses. The idea is to look at
the correlation at different distance categories. This can be done even in the
absence of a complete phylogeny using taxonomic levels. If a phylogeny is
available, then at least two distance categories must be defined. Both methods
(with taxonomic levels or with a phylogeny) are implemented in two functions:
correlogram.formula and correlogram.phylo, respectively. The options in
these two functions are slightly different.

To illustrate the use of taxonomic levels, we take the data compiled by
Gittleman [108] on 112 species of carnivores. This includes various life-history
variables as well as taxonomic levels (species, genus, family, super-family, and
order). We consider (as in [109]) the correlation levels in mean body mass at
the various taxonomic levels. The function correlogram.formula requires a
formula where the levels are separated with slashes:2

> data(carnivora)
> frm <- SW ~ Order/SuperFamily/Family/Genus
> correl.carn <- correlogram.formula(frm, data = carnivora)
> correl.carn

obs p.values labels
1 0.432479537 8.806040e-05 Genus
2 0.572366226 0.000000e+00 Family
3 -0.119934300 2.135604e-10 SuperFamily
4 -0.004402383 6.776239e-01 Order

The returned object is of class "correlogram"; there is a plot method for
this class (Fig. 6.3):

plot(correl.carn, col = c("white", "black"))

The correlation coefficient at the “Genus” level is computed among pairs of
species belonging to the same genus, and the same for those at the “Family”,
“SuperFamily”, and “Order” levels.
2 This is the usual notation to specify nested effects in R’s formulae; see
vignette("MoranI") for details.
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Fig. 6.3. Phylogenetic correlogram of body mass among 112 species of carnivores

Cheverud, Dow, and Leutenegger [42] proposed a method based on autore-
gression of the trait, but it seems to be inappropriate for comparative analyses
[79, p. 442]. This method is implemented in the function compar.cheverud,
but it is not computationally stable. Furthermore, we will see that general-
ized least squares provides a nice alternative for the analysis of a single trait
(Section 6.1.5).

6.1.3 Orthonormal Decomposition

Multivariate methods can be used to summarize the structure of phylogenetic
trees leading to possible measures of phylogenetic dependence. Diniz-Filho, de
Sant’Ana, and Bini [57] developed a method they called phylogenetic eigen-
vector regression (PVR). Its principle is to do an eigen decomposition of the
doubly centered matrix of among-species distances. A regression of the studied
variable is then made on the matrix of eigenvectors. Diniz-Filho et al. recom-
mended first running a phylogenetic autocorrelation analysis (Section 6.1.2)
to test for the presence of significant phylogenetic dependence. If the test
is significant, this dependence may be quantified with PVR: the number of
eigenvectors used in the regression is selected according to the expectation
under a broken-stick model. Sakamoto, Lloyd, and Benton used this method,
together with others described later in this chapter, to assess the quantity of
phylogenetic and ecological constraints in the evolution of biting performance
among felid species [274].

Ollier, Couteron, and Chessel [222] proposed a related approach that dif-
fers substantially in the details. Instead of using a distance matrix, they use
a matrix built from the topology of the tree. They then perform an orthonor-
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mal transform on this matrix leading to a matrix whose columns are linear
combinations of the columns of the original matrix.

The function treePart in package adephylo calculates this orthonormal
basis. By default, this returns the dummy matrix coding the tree topology.
As a simple example:

> tr <- rtree(3)
> treePart(tr)

X5
t3 1
t1 1
t2 0

Each column represents a node of the tree, and the rows are the tips. The value
is 1 if the tip is a descendant of the node, 0 otherwise (the first column with
only 1’s is omitted). The option "orthobasis" returns the QR decomposition
of this dummy matrix:

> treePart(tr, "orthobasis")
V 1 V 2

t3 -0.7071068 -1.224745e+00
t1 -0.7071068 1.224745e+00
t2 1.4142136 -1.155374e-16

For a tree with n tips, the returned matrix has n rows and n − 1 columns.
The latter have mean zero, variance one, and are uncorrelated. The succes-
sive columns of this orthonormal basis quantifies the phylogenetic dependence
among tips in order of decreasing strength [222].

The function orthobasis.phylo generalizes Ollier et al.’s idea and com-
putes an orthonormal basis for a phylogeny using different measures of phy-
logenetic structure:

> as.matrix(orthobasis.phylo(tr))
ME 1 ME 2

t3 -0.7410234 1.20452662
t1 -0.6726390 -1.24400836
t2 1.4136623 0.03948174

This matrix is a linear transformation of the cophenetic distance matrix that
satifies the three conditions mentioned above (independence, mean zero, and
variance one). By default, the cophenetic (patristic) distances are used to
calculate this basis. This may be modified either with the option prox to pass
a user-defined matrix of phylogenetic proximities, or with method which may
take the same values than in the function abouheif.moran seen above except
that the default is different.

A phylogenetic analysis of variance can be performed with the first two
columns of an orthonormal basis [57]. Considering again the primate data:
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> B <- as.matrix(orthobasis.phylo(tree.primates))
> X <- B[, 1:2]
> X

ME 1 ME 2
Homo 1.1696539 0.3172214
Pongo 1.1696539 0.3172214
Macaca -0.3194465 -1.0382542
Ateles -0.7630971 -1.1470267
Galago -1.2567642 1.5508381

We may now perform a standard linear regression with lm. We are essentially
interested in the global F -test of the model which is performed with anova:

> anova(lm(body ~ X))
Analysis of Variance Table

Response: body
Df Sum Sq Mean Sq F value Pr(>F)

X 2 18.910 9.4548 112.57 0.008805
Residuals 2 0.168 0.0840

We thus conclude with a significant phylogenetic inertia for body mass. The
same analysis with longevity gives:

> anova(lm(longevity ~ X))
Analysis of Variance Table

Response: longevity
Df Sum Sq Mean Sq F value Pr(>F)

X 2 2.2304 1.1152 2.1829 0.3142
Residuals 2 1.0218 0.5109

The test is in agreement with the results from the autocorrelation analysis.
Ollier et al. developed a tool called ‘orthogram’ that quantifies the vari-

ance in a continuous trait explained by the phylogeny. They compute a series
of coefficients as r = 1

nBT x0 where B is an orthonormal basis and x0 is the
centered and standardized trait x (scale(x) in R). The sum of the squared
coefficients is equal to one:

∑n−1
i=1 r2

i = 1. This leads to two graphical tools: the
variance decomposition given by the values r2

i , and the cumulative variance
decomposition given by their cumulative sums. These are computed and plot-
ted by the function orthogram in adephylo. This function also performs four
tests of phylogenetic dependence proposed by Ollier et al. [222] (detailed in
?orthogram). The significance of these tests is calculated by randomization.
The orthogram with body size for the primate shows no significant phyloge-
netic dependence (Fig. 6.4):

> orthogram(body, tree.primates)
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class: krandtest
Monte-Carlo tests
Call: orthogram(x = body, tre = tree.primates)

Test number: 4
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 R2Max 0.8475057 0.8184698 greater 0.344
2 SkR2k 1.2415354 -1.5846800 greater 0.979
3 Dmax 0.5975057 1.5069381 greater 0.211
4 SCE 0.5904470 1.5608456 greater 0.065

Only SCE, which measures the local variation in the r2
i values, is close to

significance. However, the cumulative variance suggests a phylogenetic de-
pendence (as could be shown with simulated data). The same analysis with
longevity shows clearly an absence of phylogenetic dependence (Fig. 6.4):

> orthogram(longevity, tree.primates)
class: krandtest
Monte-Carlo tests
Call: orthogram(x = longevity, tre = tree.primates)

Test number: 4
Permutation number: 999

Test Obs Std.Obs Alter Pvalue
1 R2Max 0.40372034 -1.6978893 greater 0.992
2 SkR2k 2.30231793 -0.2756344 greater 0.607
3 Dmax 0.15372034 -0.3770156 greater 0.630
4 SCE 0.03702042 -1.2127811 greater 0.956

By default, orthogram uses an orthonormal basis computed from the
topology of the tree computed by treePart and thus ignores branch lengths.
This may be modified by using either the option orthobas to pass a user-
defined basis, or prox to pass a matrix of phylogenetic proximities as returned
by proxTips.

Desdevises et al. [54] proposed a method close to Diniz-Filho et al.’s [57]:
instead of selecting the eigenvectors according to a broken-stick model, they
suggested selecting all statistically significant eigenvectors in the regression.

Giannini [105] proposed a method with a matrix coding the tree structure
similar to the one used by Ollier et al. [222]: he then performed a linear
regression of the studied variable on this matrix. The best subset of the “tree”
matrix was selected using Monte Carlo permutations.

6.1.4 Multivariate Methods

Jombart et al. [152] developed the phylogenetic principal component analysis
(pPCA) which, by contrast to the methods described above, is really mul-
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Fig. 6.4. Orthograms of the phylogenetic variance decomposition of body size (left)
and longevity (right) for the primate data

tivariate in considering a matrix of data X. The principle is to perform a
principal component analysis (PCA) using a weight matrix W as defined in
Section 6.1.2. Specifically, a decomposition of XT WX is done, which is close
to a PCA done by decomposition of XT V X where V is a variance-covariance
matrix. Jombart et al. select the largest and smallest principal components of
the pPCA. The largest components summarize the general covariance struc-
ture in the data, and are called “global axes”: the variables contributing to
these axes are likely to evolve in the same direction throughout the phylogeny.
The smallest (negative) components summarize negative covariances in the
data: the variables contributing to these “local axes” are likely to evolve in
opposite direction for closely related species.

The function ppca in adephylo performs the pPCA. Its use is quite simple
requiring to prepare the data as a "phylo4d" object. We illustrate its use with
a random tree (tr) and two sets of five variables: one normally distributed (X)
and one simulated along the tree with a Brownian motion model (X2). The
commands are:

tr <- rtree(30)
X <- matrix(rnorm(150), 30, 5)
rownames(X) <- tr$tip.label
X2 <- replicate(5, rTraitCont(tr))
dat <- phylo4d(tr, X)
dat2 <- phylo4d(tr, X2)
res <- ppca(dat)
res2 <- ppca(dat2)

The results of the pPCA may be printed directly or with the summary method.
However, the plot method is particularly informative (Figs. 6.5 and 6.6):
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Fig. 6.5. pPCA of five random variables

plot(res)
plot(res2)

The contrast in the distribution of the eigenvalues is especially striking and
shows that all eigenvalues tend to be positive when traits evolve along the
phylogeny, even if they evolved independently.

Revell [266] independently developed a similar method: it uses a phyloge-
netic variance-covariance matrix (see Section 6.1.5) instead of a weight ma-
trix, and the variables are centered with their respective phylogenetic means
(p. 225) instead of the usual means in Jombart et al.’s pPCA. Revell’s method
was proposed in the context of correcting for body size prior to a phylogenetic
regression as we see in the next section. Schmitz and Motani [210, 280], on
the other hand, adapted a multivariate discriminant approach into a phyloge-
netic framework to devise a method called phylogenetic flexible discriminant
analysis (pFDA). All these authors provide R code with their publications.

6.1.5 Generalized Least Squares

The method of generalized least squares (GLS) can be seen as an extension
of the method of ordinary least squares. With the latter, observations are
assumed to have the same variance, and covariances equal to zero. These
assumptions are relaxed with GLS.
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Fig. 6.6. pPCA of five random variables simulated with a Brownian motion model
along the phylogeny

For a trait evolving along a phylogeny following a given model, it is possi-
ble to derive the theoretical variance-covariance matrix among species. This
matrix quantifies how much species resemble each others (covariance), and
how much they diverged from their common ancestor (variance). Using such
a matrix in a GLS model fitting approach is therefore logical.

Models of Trait Evolution and Covariance Structures

The use of GLS in comparative methods came as a way to generalize the
contrasts approach. Grafen [113] first proposed this approach as a way to deal
with multichotomies in trees and also as a way to integrate more complex
models of multi-character evolution. He suggested a model where each node is
given a height equal to the number of tips minus one; these heights are then
scaled so that the root has height one and the other heights are raised to power
ρ (with ρ > 0). Grafen’s model is actually similar to a Brownian motion model
with modified branch lengths. Under a Brownian motion model of character
evolution, the covariance between species i and j, denoted vij , is given by:

vij = σ2da , (6.4)

where da is the distance between the root and the most common recent an-
cestor of species i and j, and σ2 is the variance of the Brownian process.
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Martins and Hansen [199] suggested the Ornstein–Uhlenbeck model where
the covariance between two species is given by:

vij =
σ2

2α
exp(−αdij) , (6.5)

where σ2 is similar to the variance of the Brownian process, α specifies the
strength of the evolutionary contraint, and dij is the distance between both
species. We shall see the Ornstein–Uhlenbeck model again in Section 6.1.8.

Two other modifications of the Brownian model have been proposed. Pagel
[224] modifies the variance-covariance matrix by multiplying the off-diagonal
elements (i.e., the covariances) with the parameter λ. Blomberg, Garland, and
Ives [24] proposed the ACDC (accelerated/decelerated) model where traits
evolve under a Brownian motion model which rates accelerates (g < 1) or
decelerates (g > 1) through time. These two models reduce to the Brownian
motion model if λ = 1 or g = 1, respectively.

The function gls in package nlme is used to fit models with GLS. This is
a very general function that can accomodate correlation among observations
and heterogeneous variance functions. The former is specified with an object
of class "corStruct": the variance–covariance matrix is then generated during
the analysis through several functions called internally by gls.

Julien Dutheil introduced the idea of using the correlation structures used
in the package nlme to code phylogenetic correlation structures. The models
sketched above are specified with the following functions:

corGrafen(value, phy, fixed = FALSE)
corBrownian(value = 1, phy)
corMartins(value, phy, fixed = FALSE)
corPagel(value, phy, fixed = FALSE)
corBlomberg(value, phy, fixed = FALSE)

where value is the parameter of the model, phy is an object of class "phylo",
and fixed a logical indicating whether to estimate the parameters from the
data (the default). This last option is not available in corBrownian because
the variance of the Brownian process is confounded with the residual variance
of the regression model (see below). These functions return an object of class
with three elements:

1. The name of the called function;
2. "corPhyl";
3. "corStruct".

The last one is important because it allows us to fit these models with gls
or gnls for linear or nonlinear models.
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Model Fitting by Residual Maximum Likelihood

The combination of the phylogenetic correlation structures with the model
fitting functions of nlme gives an extremely flexible and powerful framework
for the analysis of trait evolution.

For instance, coming back to the primate data, we first create a correlation
structure assuming a Brownian motion model:

bm.prim <- corBrownian(phy = tree.primates)

We then fit the linear model where longevity is a function of body mass. A
small data manipulation is required by creating a data frame that includes
the studied variables to ease the way they are passed to gls:3

DF.prim <- data.frame(body, longevity)

We can now fit the model:

library(nlme)
m1 <- gls(longevity ~ body, DF.prim, correlation = bm.prim)

We extract the details of the model fit with summary:

> summary(m1)
Generalized least squares fit by REML
Model: longevity ~ body
Data: DF.prim

AIC BIC logLik
17.48072 14.77656 -5.74036

Correlation Structure: corBrownian
Formula: ~1
Parameter estimate(s):
numeric(0)

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5000672 0.7754516 3.224014 0.0484
body 0.4319328 0.2864904 1.507669 0.2288

Correlation:
(Intr)

body -0.437

3 When this data frame is created, the names of the vectors are used as rownames
(see p. 19); the latter are then matched with the tip labels of the tree, even if
they are not in the same order.
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Standardized residuals:
Homo Pongo Macaca Ateles Galago

0.4187373 -0.6395037 -0.1376075 -0.4269456 0.3844060
attr(,"std")
[1] 1.137666 1.137666 1.137666 1.137666 1.137666
attr(,"label")
[1] "Standardized residuals"

Residual standard error: 1.137666
Degrees of freedom: 5 total; 3 residual

Note that no parameter is estimated in the present correlation structure,
hence the output numeric(0). The item labelled “Correlation:” gives the cor-
relation among the estimated parameters: it is computed from the variance-
covariance matrix extracted from the fitted object (m1$varBeta or vcov(m1)).
The “Standardized residuals” are the raw residuals divided by the residual
standard error (the raw residuals can be output with residuals(m1)).

The estimated slope is equal to the slope of the regression through the
origin with the contrasts (p. 207). This is not a coincidence: both analyses are
identical and have the same number of degrees of freedom (five data points
minus three estimated parameters with the GLS; four minus two with the
contrasts).

The default fitting method of gls is residual maximum likelihood (REML).
This differs from maximum likelihood (used if method = "ML") in the way
the variance parameters are estimated. With ML, the likelihood function is
optimized over all parameters (regression coefficients and variance parame-
ters) simultaneously. This leads to a negative bias in the variance parameters.
REML takes into account the fact that some parameters need to be estimated
to calculate the variance parameters. The same model fitted by either REML
or ML will give exactly the same regression coefficient estimates and their
associated standard errors.4 On the other hand, the estimate of the residual
standard error will always be different and smaller with ML than with REML.
It is recommended to always use the default REML.

If one predictor is discrete (i.e., a factor), the coefficients are interpreted
in the same way than for an analysis of variance. It could be shown that
including a factor as a predictor in a GLS regression gives the same results
than computing the corresponding PICs as described on page 209 and entering
them as predictors in a standard linear regression. This further emphasizes
the similarity between PICs and GLS.

We now fit the Ornstein–Uhlenbeck model based on Martins and Hansen’s
correlation structure to the same data:

> ou.prim <- corMartins(1, tree.primates)

4 The standard errors of the coefficients will be different for models including ran-
dom effects; see ?anova.lme.
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> m2 <- gls(longevity ~ body, DF.prim, correlation = ou.prim)
> summary(m2)
Generalized least squares fit by REML
Model: longevity ~ body
Data: DF.prim

AIC BIC logLik
17.81707 14.21152 -4.908536

Correlation Structure: corMartins
Formula: ~1
Parameter estimate(s):
alpha

51.55332

Coefficients:
Value Std.Error t-value p-value

(Intercept) 2.5989768 0.3843447 6.762099 0.0066
body 0.3425349 0.1330977 2.573561 0.0822

....

The AIC value does not indicate an improvement compared to the Brownian
model. Not surprisingly, the parameter estimates are very close in these two
models.

Variance Heterogeneity

In the present analysis, the standard deviation (attr(,"std")) is the same for
all residuals and equal to the residual standard error. This is consistent with
the assumption of homogeneous variance among the five species resulting from
the ultrametric tree. It is perfectly reasonable to assume a non-ultrametric tree
resulting in phenotypic rates of evolution proportional to the branch length
units instead of time. In that case the expected variance of the species, as
given by the distances from the root to the tips, will differ among species.
Because gls works with a correlation matrix, heterogeneous variances must
be modeled with the option weights. As an example, we replace the branch
lengths of the tree with random numbers uniformly distributed between 0 and
1. We have then to recalculate the correlation structure; the diagonal of the
corresponding variance-covariance matrix contains the expected variances:

> tr <- compute.brlen(tree.primates, runif)
> couni <- corBrownian(phy = tr)
> v <- diag(vcv(couni))
> vf <- varFixed(~ v)
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The function varFixed returns an object of class c("varFixed", "varFunc").
The class "varFunc" in nlme is a general description of variance functions in-
cluding cases where variances are modeled with respect to other covariates (see
?varClasses). We now fit the model with the modified correlation structure
and the variance function:

> summary(gls(longevity ~ body, DF.prim, couni, weights = vf))
Generalized least squares fit by REML
Model: longevity ~ body
Data: DF.prim

AIC BIC logLik
17.69167 14.98751 -5.845836

....

Standardized residuals:
Homo Pongo Macaca Ateles Galago

0.1406854 -0.5622591 -0.1986280 -0.5611175 0.5321529
attr(,"std")

Homo Pongo Macaca Ateles Galago
1.545858 1.689781 1.438930 1.050152 1.121496
attr(,"label")
[1] "Standardized residuals"

Residual standard error: 1.247344
Degrees of freedom: 5 total; 3 residual

The standard deviation associated to each observation is now heterogeneous
and given by the product of the expected variance and the residual standard
error:

> sqrt(v) * 1.247344
Homo Pongo Macaca Ateles Galago

1.545859 1.689781 1.438931 1.050152 1.121496

Coefficient of Determination

Researchers often want to compute the coefficient of determination of their
phylogenetic regressions. Before exposing how this can be calculated, it is
useful to remind that such coefficients, usually denoted as R2, though very
popular in the scientific literature, must be interpreted with care. Particu-
larly, they depend directly on the range of the predictors so they have little
predictive value—only the parameter values allow us to make predictions. Sev-
eral definitions of the coefficient of determination are available and we whall
consider three of them here.

The standard definition 1−σ̂2
M/σ̂2

0 can be used with GLS provided that the
estimates of the residual variance of the model, σ̂2

M, and of the null (intercept-
only) model, σ̂2

0 , are done with the same correlation structure. This way, the
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value R2 is the quantity of variation explained by the linear model taking the
correlation among observations into account (otherwise it would be inflated).

A general definition of R2 is based on the scaled likelihood-ratio [196]:

R2
LR = 1 − exp

[
2
n

(lnLM − lnL0)
]

,

where L is the maximum likelihood and the subscripts are as before. This has
the advantage of being applicable to a wide range of models. Nagelkerke [212]
suggested to adjust this coefficient by the maximum achievable value given by
1 − exp( 2

n lnL0) so that R2
LR varies between 0 and 1.

The third definition is used by Lavin et al. [177] and taken from the econo-
metric literature:

1 − (eT V −1e)
(y − ȳφ)T V −1(y − ȳφ)

,

where e is the vector of (raw) residuals from the GLS, V is the variance-
covariance matrix, and ȳφ is the estimated phylogenetic mean of y:

ȳφ = (1T V −11)−1(1T V −1y) . (6.6)

These three definitions will give different, but usually close, values. They
will not be correct if the wrong correlation structure is used: thus they must
not be used for model selection.

The calculations in R are relatively simple. We first need to fit the null
GLS model and then calculate the first and second versions of R2:

> m1.0 <- gls(longevity ~ 1, DF.prim, correlation = bm.prim)
> 1 - (m1$sigma/m1.0$sigma)^2
[1] 0.2414281
> 1 - exp(-2*(m1$logLik - m1.0$logLik)/5)
[1] 0.2506952

The code for the “econometric” version is longer and gives a different result:

> iV <- solve(vcv(bm.prim))
> one <- rep(1, 5)
> e <- residuals(m1)
> y <- longevity
> m <- solve(t(one) %*% iV %*% one) %*% (t(one) %*% iV %*% y)
> 1 - (t(e) %*% iV %*% e)/(t(y - m) %*% iV %*% (y - m))

[,1]
[1,] 0.4310711

As mentioned above, ignoring the correlation structure gives an inflated value
of R2:
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> summary(lm(longevity ~ body))$r.squared
[1] 0.6882539

It could be that the first two versions give negative values in which case
they should be considered as effectively equal to zero:

> tr <- rcoal(100)
> x <- rTraitCont(tr)
> y <- rTraitCont(tr)
> DF <- data.frame(x, y)
> cb <- corBrownian(phy = tr)
> m <- gls(y ~ x, DF, correlation = cb)
> m0 <- gls(y ~ 1, DF, correlation = cb)
> 1 - (m$sigma/m0$sigma)^2
[1] -0.00875768
> 1 - exp(-2*(m$logLik - m0$logLik)/n)
[1] -0.02647871

It is remarkable that with these two independent variables, but with phyloge-
netic correlation among observations, the ordinary R2 value is very high:

> summary(lm(y ~ x))$r.squared
[1] 0.5318128

(Repeated simulations would show that the ordinary R2 is highly variable
whereas its GLS counterparts are stable around zero. This points out again
on the limited usefulness of these coefficients: we already have all the needed
information in the model structure and its estimated parameters.)

Nonlinear Models

The possibility to fit nonlinear models with gnls opens a range of possibilities
that has been certainly underexploited in the evolutionary literature. The
use of this function is similar to gls except that the model is specified as a
nonlinear formula and starting values for the parameter estimation procedure
must be given. (It is generally recommended to repeat the model fitting with
different starting values to check the stability of the estimates).

Among the many possible models for the primate data, we will consider
longevity as an exponential function of body size:

longevityi = exp(β bodyi) + α + εi

This insures that longevity will always be positive (though it was originally
log-transformed). The relationship will be increasing if β > 0 or decreasing if
β is negative. If β = 0, longevity will not depend on body and will be equal
to 1 + α. We first create the model formula (mod) and the list of starting
values for the estimation (init), then we call gnls with the Brownian motion
correlation structure:
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> mod <- longevity ~ exp(beta * body) + alpha
> init <- list(alpha = 1, beta = 1)
> exm1 <- gnls(mod, DF.prim, start=init, correlation=bm.prim)
> summary(exm1)
Generalized nonlinear least squares fit

Model: longevity ~ exp(beta * body) + alpha
Data: DF.prim

AIC BIC logLik
15.4518 14.28011 -4.725899

Correlation Structure: corBrownian
Formula: ~1
Parameter estimate(s):

numeric(0)

Coefficients:
Value Std.Error t-value p-value

alpha 1.2721242 0.6498292 1.957628 0.1452
beta 0.3031309 0.0730883 4.147461 0.0255

Correlation:
alpha

beta -0.466

Standardized residuals:
Homo Pongo Macaca Ateles Galago

0.01419676 -0.98915677 0.04673264 -0.24629510 0.41572935
attr(,"std")
[1] 0.9380269 0.9380269 0.9380269 0.9380269 0.9380269
attr(,"label")
[1] "Standardized residuals"

Residual standard error: 0.9380269
Degrees of freedom: 5 total; 3 residual

Unsurprisingly, the AIC value is improved compared to the linear model m1.
However, gnls uses maximum likelihood because REML works properly only
for linear models.5 We must thus refit the linear model by maximum likelihood
to make a meaningful comparison:

> AIC(update(m1, method = "ML"))
[1] 17.38136

5 https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q1/002104.html

https://stat.ethz.ch/pipermail/r-sig-mixed-models/2009q1/002104.html
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The difference between ML and REML is slight and confirms the better fit of
the exponential model. We now fit the exponential model assuming indepen-
dence of observations:

> exm0 <- update(exm1, correlation = NULL)
> summary(exm0)
Generalized nonlinear least squares fit
Model: mod
Data: DF.prim

AIC BIC logLik
10.27032 9.098629 -2.135158

Coefficients:
Value Std.Error t-value p-value

alpha 1.4262893 0.3405199 4.188563 0.0248
beta 0.2535032 0.0485285 5.223802 0.0136
....

The decrease in AIC suggests that a significant nonlinear relationship exists
between these two traits and is not influenced by the phylogeny (keep in
mind that this latter characteristics concerns the relationship between the two
variables, not the variables themselves). As a final comparison we compute
the AIC for the standard linear regression assuming independence:

> AIC(update(m1, correlation = NULL, method = "ML"))
[1] 12.21108

6.1.6 Generalized Estimating Equations

The use of generalized estimating equations (GEEs) for the analysis of com-
parative data had two motivations: to deal easily with multichotomies, and
to analyze categorical variables in a natural way [234].

GEEs were introduced by Liang and Zeger [183] as an extension of gen-
eralized linear models (GLMs) for correlated data. The correlation structure
is specified through a correlation matrix. Similarly to GLMs, the model is
specified with a link function g:

g(E[yi]) = xT
i β , (6.7)

However, the distinction comes from the way the variance–covariance matrix
is given:

V = φA1/2RA1/2 , (6.8)

where A is an n×n diagonal matrix defined by diag{V(E[yi])}: that is, a ma-
trix with all its elements zero except the diagonal which contains the variances



6.1 Phylogenetic Comparative Methods 229

of the n observations expected under the (marginal) GLM, R is the correla-
tion matrix of the elements of y, φ is the scale (or dispersion) parameter, and
V is the variance function. These two components, φ and V, are defined with
respect to the distribution assumed for y in the same way as in a standard
GLM. If the observations are independent, then R is an n×n identity matrix
(i.e., with 1’s on the diagonal and 0’s elsewhere).

Beyond the technicalities of the GEE approach lies the possibility of ana-
lyzing different kinds of variables thanks to the GLM framework. The analysis
is done with the function compar.gee. This uses the same interface as glm: the
model is given as a formula, and the distribution of the response is specified
with the option family. By default this option is "normal", thus we do not
need to use it for the small primate data:

> compar.gee(longevity ~ body, phy = tree.primates)
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
running glm to get initial regression estimate
(Intercept) body
2.5989768 0.3425349

Call: compar.gee(formula=longevity ~ body, phy=tree.primates)
Number of observations: 5
Model:

Link: identity
Variance to Mean Relation: gaussian

QIC: 9.23932

Summary of Residuals:
Min 1Q Median 3Q Max

-0.7275418 -0.4857216 -0.1565515 0.4373258 0.4763833

Coefficients:
Estimate S.E. t Pr(T > |t|)

(Intercept) 2.5000672 0.4325167 5.780279 0.06773259
body 0.4319328 0.1597932 2.703074 0.17406821

Estimated Scale Parameter: 0.4026486
"Phylogenetic" df (dfP): 3.32

The output from compar.gee reports the quasilikelihood information cri-
terion (QIC) which is an extension of AIC using quasilikelihood instead of
the likelihood function and a penalty term that takes the correlation among
observations into account [225]. Like in the case of the AIC with GLS, QIC is
most appropriate to select an appropriate correlation structure.

If the argument phy is used the correlation structure under a Brownian
motion is used. Instead, the argument corStruct may be used with a phylo-
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genetic correlation structure. For instance, we repeat the above analysis with
the correlation structure as estimated in Section 6.1.5:

> co <- corMartins(51, tree.primates, fixed = TRUE)
> compar.gee(longevity ~ body, corStruct = co)
Beginning Cgee S-function, @(#) geeformula.q 4.13 98/01/27
running glm to get initial regression estimate
(Intercept) body
2.5989768 0.3425349

Call: compar.gee(formula = longevity ~ body, corStruct = co)
Number of observations: 5
Model:

Link: identity
Variance to Mean Relation: gaussian

QIC: 5.013872

Summary of Residuals:
Min 1Q Median 3Q Max

-0.50364294 -0.40331899 -0.04356675 0.20702984 0.74349884

Coefficients:
Estimate S.E. t Pr(T > |t|)

(Intercept) 2.5989768 0.3843447 6.762099 0.05532622
body 0.3425349 0.1330977 2.573561 0.18436023

Estimated Scale Parameter: 0.3379575
"Phylogenetic" df (dfP): 3.32

The value of QIC is improved but the relationship is not significant with these
correlation structures.

Some simulations showed that if the statistical tests on the regression
parameters are done with a t-test with the usual residual number of degrees
of freedom, then type I error rates are inflated [234]. A solution to this problem
is to correct the number of degrees of freedom (dfP) with:

dfP = n ×
∑

tree branch length∑n
i=1 distance from root to tipi

, (6.9)

where n is the number of species in the tree. This correction was found empir-
ically, and works in practice, but it still needs to be confirmed theoretically,
and possibly refined.
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6.1.7 Mixed Models and Variance Partitioning

In the literature on comparative methods, some emphasis is put on relation-
ships among variables: many comparative analyses are motivated by establish-
ing relationships among ecological or physiological variables [95, 96]. Lynch
[190] pointed out that these approaches do not consider all the available infor-
mation on the evolutionary process. He suggested rather to shift the attention
on (co)variation of the traits by using an approach close to one used in quan-
titative genetics to assess the different components of genetic variation. He
proposed the following model:

xi = μ + ai + ei , (6.10)

where μ is the grand mean of the trait, ai comes from a normal distribution
with a variance–covariance matrix σ2

aG where G is a correlation matrix derived
from the phylogeny (we can write this as a ∼ N (0, σ2

aG)), and the ei’s are
independent normal variables so that e ∼ N (0, σ2

e). This univariate model can
be extended to several variables in which case there are additional parameters,
Va and Ve, namely the covariance explained by the phylogeny and the residual
covariance, respectively [190].

Lynch proposed an expectation–maximization (EM [53]) algorithm to fit
model (6.10) by maximum likelihood but this is very slow and becomes in-
tractable with large sample sizes. Housworth et al. [140] proposed a reparam-
eterization of (6.10) and a new algorithm to remedy this problem, but this
applied only to uni- and bivariate cases.

Fitting model (6.10) is actually a difficult task. A possible explanation
may be because both components of variance are confounded, and cannot
be estimated separately. In mixed-effects models, variance components are
usually estimated with different groups that are statistically independent, but
observations within groups can be correlated [242]. With phylogenetic data,
there is only one group, and thus σ2

a and σ2
e are confounded. Felsenstein [82]

used Lynch’s model in the case where several measures of the same variable
are available in each species (p. 244). Hadfield and Nakagawa [118] proposed
an alternative approach based on Bayesian analysis, which can be generalized
to other models, using the package MCMCglmm [117].

The function compar.lynch uses the EM algorithm proposed by Lynch
[190] to fit model (6.10). We illustrate its use with the small primate data set.
We first build a correlation matrix in the way seen previously:

> G <- vcv(tree.primates, corr = TRUE)
> compar.lynch(cbind(body, longevity), G = G)
$vare

[,1] [,2]
[1,] 0.04908818 0.1053366
[2,] 0.10533661 0.2674316
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$vara
body longevity

body 3.0018670 0.9582542
longevity 0.9582542 0.3068966

$A
[,1] [,2]

[1,] 2.5056671 0.8006949
[2,] 2.5705959 0.8201169
[3,] 1.1485439 0.3663313
[4,] 0.9654236 0.3065841
[5,] -2.7534270 -0.8779460

$E
[,1] [,2]

[1,] 0.34915743 0.89988706
[2,] -0.19919129 -0.53226494
[3,] -0.01781930 -0.04337929
[4,] -0.17678902 -0.46056213
[5,] 0.04423158 0.13618796

$u
body longevity

1.239433 3.044322

$lik
[,1]

[1,] -12.21719

The results are returned as a list with five elements:

vare: the estimated residual variance–covariance matrix;
vara: the estimated additive effect variance–covariance matrix;
u: the estimates of the phylogeny wide means;
A: the additive value estimates;
E: the residual value estimates;
lik: the log-likelihood.

6.1.8 The Ornstein–Uhlenbeck Model

The Brownian motion model assumes that continuous characters could di-
verge indefinitely after divergence from the same values. A more realistic
model would be one where characters are constrained to evolve around a
given value. A candidate model is the Ornstein–Uhlenbeck (OU) model which
has two additional parameters compared to the Brownian motion model: the
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“optimum” value (denoted as θ), and the strength of character evolution to-
wards θ (α). The quantity of character change over a short time interval dt
according to a general OU model is [18, 173]:

dxt = −α(xt − θ)dt + dεt , (6.11)

where εt ∼ N (0, σ2). If α = 0, the OU model reduces to a Brownian motion
model. A discrete-time version of (6.11) is:

xt+1 = xt − α(xt − θ) + εt . (6.12)

It is straightforward to simulate an OU model in R using (6.12). If we set
α = 0, then we simulate a Brownian motion model with zero as initial value
and σ2 = 1, on 99 time-steps (dt = 1) with:

x <- cumsum(c(0, rnorm(99)))

The OU equivalent with α = 0.2 and θ = 0 would be:

x <- numeric(100)
for (i in 1:99)

x[i + 1] <- x[i] - 0.2 * x[i] + rnorm(1)

To replicate the Brownian motion simulation, say five times, we can use
the following code:

X <- replicate(5, cumsum(c(0, rnorm(99))))

For the OU version of this code, we first create a function that includes the
commands above:

sim.ou <- function() {
x <- numeric(100)
for (i in 1:99)

x[i + 1] <- x[i] - 0.2 * x[i] + rnorm(1)
x # returns the value of x

}

The function can then be used in the same way as above:

X2 <- replicate(5, sim.ou())

It is interesting to look at the variances at t = 100 among the five replicates
for each model:

> var(X[100 ,])
[1] 75.83865
> var(X2[100 ,])
[1] 0.8434638
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Fig. 6.7. Simulations with five replicates of the Brownian motion (left) and
Ornstein–Uhlenbeck models (right)

A plot of the simulated values shows even more clearly the contrast between
both models (Fig. 6.7):

layout(matrix(1:2, 1, 2))
yl <- range(X)
matplot(X, ylim = yl, type = "l", col = 1, main = "Brownian")
matplot(X2, ylim = yl, type = "l", col = 1, main = "OU")

The function rTraitCont gives a way to simulate an OU model along a phy-
logeny (Section 7.2).

Hansen [121] developed a methodology to estimate θ, α, and σ2 by max-
imum likelihood from a phylogeny and trait values observed at the tips. The
interesting feature of this is that θ may vary through the phylogeny leading to
biologically relevant models which can be assessed by likelihood comparisons.
This method is implemented in the function compar.ou:

compar.ou(x, phy, node = NULL, alpha = NULL)

where x is a numeric variable, phy is a tree (as an object of class "phylo"),
node specifies the nodes where θ changes, and alpha is the value of α. The
latter parameter is assumed to be constant throughout the phylogeny; only
the optimum θ can change. When a node number is given in node, then it is
assumed that the optimum changes at this point for all branches from this
node. By default (i.e., if node = NULL), it is assumed that θ is the same for
all branches.
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By default, α is estimated from the data but this is not usually a good
idea as the estimation is unstable. It is preferable to give a fixed value when
fitting the model. Hansen made similar observations on the instability of the
estimates of α [121].

As a simple example with the primate data, we fit an OU model to the
longevity data using α = {0.2, 2}:

> compar.ou(longevity, tree.primates, alpha = 0.2)
$deviance
[1] 13.88476

$para
estimate stderr

sigma2 3.698962 1.654556
theta1 16.720164 2.593057
....
> compar.ou(longevity, tree.primates, alpha = 2)
$deviance
[1] 12.41897

$para
estimate stderr

sigma2 0.7480796 0.3346408
theta1 3.6893089 0.3572333
....

The function returns the deviance (−2 × log-likelihood) of the model, the
parameter estimates with their standard errors, and the function call recalling
the fitted model. This example shows that the model with α = 2 fits better
because its deviance is smaller, indicating that there is substantial constraint
in the evolution of longevity. The estimated optimum, with its 95% confidence
interval, is θ̂ = 3.08 ± 0.62, and the estimated variance of the OU process is
σ̂2 = 0.74 ± 0.67. The estimates of α and σ2 are highly correlated which could
be the result of the small sample size.

We illustrate now briefly how to fit a model with variable θ. We may want
to fit a model where the optimum longevity is different for the three Old World
primates (Macaca, Pongo, and Homo) than for the rest of the tree. We can
find easily that this implies a shift in θ at node number 8 (Chapter 4). It is
then simply required to pass this number to the argument node:

> compar.ou(longevity, tree.primates, alpha = 2, node = 8)
$deviance
[1] 9.869067

$para
estimate stderr
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sigma2 0.4492266 0.2009895
theta1 4.8491740 0.5280661
theta2 3.0028738 0.3840086
....

The deviance has decreased but this is not significant:

> 1 - pchisq(12.41897 - 9.869067, 1)
[1] 0.110301

6.1.9 Phylogenetic Signal

The concept of phylogenetic signal is at the heart of most phylogenetic meth-
ods. From a statistical point of view, a phylogenetic signal is defined by the
non null covariances (i.e., non independence) among species. From a biological
point of view, phylogenetic signal is a direct consequence of the evolution of
traits and its form will depend on the evolutionary mechanisms in action.

Testing for the presence of phylogenetic signal may seem trivial: traits
characterize species, and species are related by their phylogenetic relation-
ships, so logically phylogenetic signal is present in species traits (this is a
consequence of Darwin’s principle of descendance with modification). If the
observed variation in a trait is completely determined by the environment,
then phylogenetic signal will be zero (unless of course related species live in
similar environments) even though the trait may have evolved among species.
Similarly, if a trait evolves very slowly, little variation among species will be
observed, and phylogenetic signal will be absent. Thus it appears the issue is
not whether phylogenetic signal is present or not, but on its correct quantifi-
cation and how to include it properly in among-trait analyses. An important
point though is that phylogenetic signal depends on the context of the analy-
sis so that it may differ if a trait is considered alone or in a regression model
as we shall see below.

Section 6.1.3 detailed an approach to quantify phylogenetic signal using
orthonormal decomposition. We shall see in the section other approaches to
this issue.

Blomberg, Garland and Ives [24] formulated a way to quantify phylogenetic
signal in a single trait based on the ratio of residual standard error with and
without taking phylogenetic covariances into account. This is different, though
with a similar logic, than the R2 seen on page 224 where residual errors
are calculated with and without predictors. In order to avoid confusion, I
borrow the notation used in the literature and write Blomberg et al.’s ratio
as MSE0/MSE with MSE0 being the usual variance of the trait and MSE
is the mean squared error taking phylogeny into account.6 For consistency,
MSE0 is calculated with the phylogenetic (not arithmetic) mean (6.6). For a

6 MSE, and not MSE0, is identical to σ̂2
0 in the definition of R2.
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given phylogeny and assuming that a trait evolved under a Brownian motion
process, this ratio has expectation:

∑
i v2

ii −
n∑

i,j v2
ij

n − 1
=

tr(V ) − n(1T V −11)−1

n − 1
.

This quantity will always be less than one. The statistic K is defined by the
ratio of the observed MSE0/MSE on its expected value. If K > 1 then the
covariance among species is stronger than expected under Browian motion
evolution. If K < 1, then species tend to be independent with respect to their
phylogenetic relationships.

In picante, Kcalc calculates K and phylosignal tests whether it is signif-
icantly different from 0 by randomization of the trait values among species:

Kcalc(x, phy, checkdata = TRUE)
phylosignal(x, phy, reps = 999, checkdata = TRUE, ...)

x must be a vector so only a single trait can be treated. To analyze several
traits at once, we can build a list with the individual vectors and use sapply:

> x <- list(body = body, longevity = longevity)
> sapply(x, phylosignal, tree.primates)

body longevity
K 1.911770 0.7045068
PIC.variance.obs 5.2564 2.274950
PIC.variance.rnd.mean 13.69819 2.3597
PIC.variance.P 0.0105 0.57
PIC.variance.Z -1.333335 -0.0780428

> sapply(x, Kcalc, tree.primates)
body longevity

1.9117696 0.7045068

Another way to quantify phylogenetic signal in a single trait is to fit an
intercept-only model by GLS: by comparing the fit assuming different correla-
tion structures, it is possible to quantify phylogenetic signal in the trait. How
to select an appropriate correlation structure with information criteria has
been particularly investigated in the statistical literature [6, 44, 144, 167, 282].
The Akaike information criterion (AIC) is well-suited for this because it al-
lows to compare non-nested models which is the case when comparing different
correlation structures.

The procedure in R is relatively simple: fit the same model body ~ 1 with
different phylogenetic correlation structures and compare them with their re-
spective AIC. We first create a function where the argument is the correlation
structure passed to gls, and then the correlation structures we want to assess
(we create only one here as the others have been created above):
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> f <- function(cs) gls(body ~ 1, DF.prim, correlation = cs)
> pa.prim <- corPagel(1, tree.primates)

We now use *apply functions to fit the models and extract the AIC values:

> o1 <- lapply(list(NULL, bm.prim, pa.prim, ou.prim), f)
> sapply(o1, AIC)
[1] 23.209805 20.273722 20.733318 9.501006

The results are consistent with the above one with phylosignal. There is a
clear phylogenetic signal in body mass: assuming no covariance among species
(NULL) gave the worst fit. However, the present analysis allows us to go further
in showing that an OU-type correlation structure gives a better description
of the data than a Brownian motion one. This is consistent with the fact that
K was significantly greater than one for this trait.

After editing f and replacing body for longevity, we repeat the analysis:

> o2 <- lapply(list(NULL, bm.prim, pa.prim, ou.prim), f)
> sapply(o2, AIC)
[1] 16.13314 16.92377 17.96771 18.08444

The results are again consistent with the above ones showing no evidence of
phylogenetic signal in longevity. Since we have two lists of model fits, we can
extract further results such as the estimated λ:

> o1[[3]]$modelStruct # lambda for ’body’
corStruct parameters:
[1] 1.237311
> o2[[3]]$modelStruct # lambda for ’longevity’
corStruct parameters:
[1] 0.4304575

Let us come back to the regression of longevity on body mass. We recall
that we found a slightly smaller AIC value for a Brownian motion correlation
structure than an OU-type one (Section 6.1.5). Thus this small data sets tells
us an interesting story: whether we treat the variables separately or together
we obtained different results relative to the phylogenetic signal. This is not
surprising if we look at the models we are fitting here:

yi = βxi + α + εi εi ∼ N (0, σ2C)

Here C is the correlation matrix derived from V . The model makes no as-
sumption on the correlation structure among the xi’s, only on the error terms
εi’s. So we may find no phylogenetic signal in x alone, but require to include
a phylogenetic correlation when fitting the above model.

On the other hand if x shows a phylogenetic signal (as is true for body), y
may or may not show one depending on the error term which includes factors
not identified by the researcher. This seems to explain the present results:
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body mass has a phylogenetic component, and longevity is positively affected
by body mass (the coefficient was not significant but recall that n = 5) and
probably other non-phylogenetic factors. Similar results have been recently
reported and widely discussed on mailing lists. Providing care is given in the
analyses and interpretation, these will surely reveal interesting evolutionary
patterns.

A graphical exploration of phylogenetic signal gives useful information
because it can show the pairs of species that are more or less alike compared
to what is expected under Brownian motion. Under this model of evolution, we
expect a greater variance with greater phylogenetic distance. This suggests a
simple graphical tool by plotting the Euclidean distances among species traits
against the phylogenetic distances. As example, we consider random data with
a normal variable (x) and a variable (y) simulated along the tree (Fig. 6.8):

tr <- rcoal(30)
x <- rnorm(30)
y <- rTraitCont(tr)
dphy <- as.dist(cophenetic(tr))
layout(matrix(1:2, 1))
plot(dphy, dist(x))
plot(dphy, dist(y))

The ultrametric nature of the tree is important here. If rtree is used in place
of rcoal, the pattern would not be as clear albeit still present. For both
variables, we can check the most appropriate correlation structure as done
previously for the primate data:

> AIC(gls(x ~ 1))
[1] 93.2606
> AIC(gls(x ~ 1, correlation = corBrownian(1, tr)))
[1] 198.012
> AIC(gls(y ~ 1))
[1] -53.22712
> AIC(gls(y ~ 1, correlation = corBrownian(1, tr)))
[1] -114.6699

6.1.10 Intraspecific Variation

Though the present book focuses on issues at the level of species and above,
the problem of intraspecific variation has come into comparative methods
when addressing questions that consider explictly interindividual differences
such as environmental niche breadth (Section 6.4.4). Most methods seen in
the above sections can be extended fairly naturally to include intraspecific
variation. I shall detail three approaches proposed in the literature.

Cornillon, Pontier and Rochet [46] proposed an approach based on the
weight matrix used in autocorrelation models (Section 6.1.2). They build the
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Fig. 6.8. Euclidean distances among observations for a random normal trait (left)
and a trait generated by Brownian motion evolution (right) with respect to phylo-
genetic distances

W matrix with two components, Wb and Ww for the between and within
species weights, respectively. These matrices have as many rows as there are
populations. The elements of Wb are calculated as described in Section 6.1.2,
and those of Ww are set to one if the two populations belong to the same
species, zero otherwise [268]. As before, the diagonals are set to zero. Cornillon
et al. used these matrices to fit an autoregressive model of the form:

Y = (ρbWb + ρwWw)Y .

As mentionned above, generalized least squares provides a much richer set of
tools and models to study this kind of models.

Ives, Midford and Garland [149] used error measurement models to in-
corporate intraspecific variation in a GLS framework. This kind of models
consider an additional error term:

yi = βxi + εi + ηi ηi ∼ N (0, σ2
m) ,

where σ2
m is assumed to be known (otherwise it would be confounded with

the variance σ2 of the εi’s). In this situation, we do not need individual ob-
servations within each species, only a measure of intraspecific variances.

Fitting the model above is relatively easy with the function varFixed as
explained in Section 6.1.5. Because this function requires a covariate, it is
possible to specify a heterogeneous variance with varFixed(~ vi) where vi
is a vector of length equal to the number of observations. Several variance
functions can be combined with varComb, e.g.:
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vf <- varComb(varFixed(~ v), varFixed(~ vi))

The output is, as above, passed as the weights argument to gls. As an
example, suppose σ2

m varies from 1 to 5 for the five species of primates:

> vi <- 1:5
> vf <- varFixed(~ vi)
> gls(longevity ~ body, correlation = bm.prim, weights = vf)
Generalized least squares fit by REML
Model: longevity ~ body
Data: NULL
Log-restricted-likelihood: -6.175346

Coefficients:
(Intercept) body

2.485621 0.623599
....
Degrees of freedom: 5 total; 3 residual
Residual standard error: 0.7680576

This obviously decreases the estimated value of σ2 because a part of the
residual variance is interpreted as intraspecific variation.

Ives et al. [149] also developed a phylogenetic estimator for the slope of the
reduced major axis (RMA, or type II regression, or geometric mean regression,
GMR) in the bivariate case. The RMA is the regression line with the residuals
projection orthogonal to the line itself instead of parallel to the y-axis. If the
points are assumed to be independent, the slope and the intercept of the RMA
are:

b̂ = σ̂y/σ̂x â = ȳ − b̂x̄ ,

which are trivial to calculate with R. A phylogenetically corrected version of
the slope estimator is:

b̂φ =

√
(y − ȳφ)T V −1(y − ȳφ)
(x − x̄φ)T V −1(x − x̄φ)

,

which is also simple to calculate with R (x̄φ and ȳφ are the phylogenetic means
of x and y). If the variance-covariance matrices differ between x and y, the
V ’s above would be substituted by Vy and Vx, respectively.

The third method is by Felsenstein [82] who extended his contrast method
to consider situations when several observations are available for each species.
This method computes contrasts with standardized coefficients so that they
are an orthonormal transformation (i.e., geometrically independent). So in-
stead of scaling the contrast with its variance as in (6.1), they are multiplied
by a function of the coefficients calculated from the number of observations:



242 6 Analysis of Macroevolution with Phylogenies

Cij =
xi − xj√
si + sj

,

If i denotes an observed species, then si = 1/ni with ni being the number
of observations of the trait x on that species. If it is a node, the it is calcu-
lated recursively taking branch lengths and the orthogonality constraint into
account. Ancestral values of x and their variance are calculated in the same
way than for standardized contrasts. If several observations are available for
species i (xi1, xi2, . . . ), the intraspecific contrasts are computed differently:

Ci1 =

√
1
2
(xi1 − xi2) ,

Ci2 =

√
2
3

(
xi3 −

xi1 + xi2

2

)
,

...

Cini−1 =
√

ni − 1
ni

⎛
⎝xini

− 1
ni − 1

ni−1∑
j=1

xij

⎞
⎠ ,

where ni is the number of observations for species i. The normalizing con-
stants are calculated so that the sum of squares of the coefficients in each
contrast is one. These calculations assume that individuals within a species
are linked by zero-length branches. Felsenstein [82] emphasized that these for-
mulae are arbitrary, though other ways to compute the intraspecific contrasts
are equivalent for a given analysis. However, a GLS approach offers a flexible
way to model alternative correlation structures within a species (see below).

The function pic.ortho computes the orthonormal contrasts with the
same arguments than pic:

> pic.ortho(body, tree.primates)
6 7 8 9

3.7679120 1.0087441 1.2103664 0.3418296
> pic.ortho(longevity, tree.primates)

6 7 8 9
1.0064693 0.7338977 0.5480856 0.9989510

The values are of course different than those returned by pic (p. 204). The
option intra = TRUE allows one to return the intraspecific contrasts (which
are actually not needed to compute the inter-species contrasts). In this case,
the data must be arranged in a list where each element is a vector with the
individual observations of each species (so that sample size may vary among
species). We generate random data for the example below (and print the
length of the simulated vectors):

> x <- lapply(sample(1:5, 5, TRUE), rnorm)
> sapply(x, length)
[1] 5 2 1 4 4
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> pic.ortho(x, tree.primates, intra = TRUE)
6 7 8 9

-1.2298571 -1.7143343 -0.7097605 2.4022110
attr(,"intra")
attr(,"intra")$Homo
[1] -0.22660428 -0.03895118 -0.97516058 -0.46674599

attr(,"intra")$Pongo
[1] 0.2000180

attr(,"intra")$Macaca
NULL

attr(,"intra")$Ateles
[1] -0.4508026 0.6215559 -0.7486237

attr(,"intra")$Galago
[1] -0.7789450 0.3658776 -0.1497702

The value NULL is returned if there is only one observation for that species.
Felsenstein further developed the model proposed by Lynch [190] (see

Section 6.1.7) showing that when several traits are analyzed on a tree, the
variance-covariance matrix of their orthonormal contrasts can be partitioned
into a phylogenetic (A) and a phenotypic (P ) components:

W ⊗ A + I ⊗ P ,

where W is a matrix with the variances of the contrasts. Felsenstein developed
an EM algorithm to estimate A and P . This is implemented in Phylip [80]
and the function varCompPhylip in ape calls this program to estimate these
parameters in a flexible way:

> varCompPhylip(cbind(body, longevity), tree.primates)
$varA

[,1] [,2]
[1,] 3.676570 1.097208
[2,] 1.097208 0.328000

$varE
[,1] [,2]

[1,] 0.069079 0.152302
[2,] 0.152302 0.344948

The flexibility comes from the way the data are specified: they can be a vector
(single trait and ni = 1 for all species), a matrix or a data frame (multiple
traits, ni = 1), a list of vectors (single trait, ni ≥ 1), or a list of matrices
(multiple traits, ni ≥ 1). The example above shows an analysis with our two



244 6 Analysis of Macroevolution with Phylogenies

traits and five species. The results are indeed close to those obtained with
compar.lynch (p. 231). The two examples below are with the list of vectors
simulated above and with a single vector:

> varCompPhylip(x, tree.primates)
$varA
[1] 0.000193

$varE
[1] 0.720686

> y <- rTraitCont(tree.primates, sigma = 1)
> varCompPhylip(y, tree.primates)
$varA
[1] 0.997501

$varE
[1] 0.000128
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Fig. 6.9. A three-species phylogeny and its derived correlation matrix assuming
a Brownian motion model of trait evolution (top), and the expanded phylogeny
including intraspecific observations with the correlation matrix (bottom). Here the
intraspecific correlation is parameterized with ζ
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Because generalized least squares are equivalent to phylogenetically inde-
pendent contrasts, it is natural to extend the orthonormal contrast approach
to GLS using an appropriate intraspecific correlation structure. For instance,
Fig. 6.9 shows on top a phylogeny and the corresponding interspecific corre-
lation matrix assuming a Brownian motion model of trait evolution. The tree
with six tips on bottom shows the same interspecific relationships but with
two observations for each species. The corresponding correlation matrix shows
an expanded block structure with in addition a parameter, denoted here as ζ,
for the intraspecific correlation.

Once the correlation structure is established and parameterized, it is easy
to include it in a GLS model fitting as seen in Section 6.1.5. Giving the
tight correspondence between PICs and GLS, we may also expect a close
relationship between the GLS approach sketched in the previous paragraph
and the orthonormal contrasts method. However, a GLS approach offers a
wide range of parameterizations for the correlation structure. For instance,
one might want to test the hypothesis that ζ �= 0, or that ζ is the same for
the three species.

The variance can also be modeled with separate variance functions pa-
rameterazing the interspecific (e.g., tree height) and intraspecific components,
possibly heterogeneous among species. This again offers a wide range of mod-
els many of them being biologically interesting.

6.1.11 Phylogenetic Uncertainty

Phylogenies are models of the relationships among species, and like any model,
they are subject to uncertainty. It might be necessary to take this phylogenetic
uncertainty into account in comparative analyses, at least for the principle.
There is no unique formal method for this task, and evolutionists tend to use
a single phylogeny for their analyses. This may be a consequence of earlier
works on this issue showing that using a wrong tree is better than using no
tree at all [187, 197, 198]. Clearly, if there is some covariance among species,
assuming a wrong covariance is closer to the truth than assuming none. Thus
assessing the impact of uncertainties in phylogeny may seem more as a formal
excercise than a really useful analysis.

Various approaches are possible here, and R makes them relatively easy
to program with a few commands. They may be classified into two rough
categories:

1. Starting from a list of trees taken from a phylogeny estimation (e.g., boot-
strap or MCMC), the comparative analysis may be repeated by simply
looping over the trees. Depending on the question of interest, the results
may be summarized in different ways:
• Plot or summary statistics of a parameter estimate or P -value. For in-

stance, Duponchelle et al. [58] repeated a GEE-based regression with
100 bootstrap trees, and observed all P < 0.05 concluding that phylo-
genetic uncertainty did not affect their general conclusion.
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• If the likelihood of each tree is available, it is possible to average a
parameter estimate over all trees by weighting them with their likeli-
hoods, thus giving more weight to the estimates derived from the most
likely trees.

2. If no information is available on the phylogeny estimation and some priors
on the distribution of the tree or of the among-species covariance matrix
can be assumed, a Bayesian approach may be used.

Both categories are not exclusive. For instance, a list of trees may be used
to compute a distribution of covariances for each pair of species. These may
then be resampled by Monte Carlo and repeat at each step a GLS regression
modeling. All these tasks do not require special functions. All that is needed
are basic programming skills that can be found in Chapter 2.

As a small illustration, let us consider the Laurasiatherian data in phang-
orn. We do a simple NJ tree estimation assessing uncertainty with a bootstrap
and 100 replications:

data(Laurasiatherian)
X <- as.DNAbin(Laurasiatherian)
f <- function(x) nj(dist.dna(x))
tr <- f(X)
o <- boot.phylo(tr, X, f, trees = TRUE)

From the 100 trees returned by boot.phylo, we want to assess how much the
correlation matrix varies among these bootstrap replicates. Using lapply, we
extract the correlation matrix with vcv that we transform directly into an
object of class "dist":

V <- lapply(o$trees, function(x) as.dist(vcv(x, corr=TRUE)))

V is thus a list with 100 elements. Fortunately, the 100 trees returned by
boot.phylo have their tip labels in the same order; otherwise we would have
to reorder the rows and columns of the matrices returned by vcv. To ease
further analyses we transform V into a matrix with 100 columns:

V <- matrix(unlist(V), ncol = 100)

Thus for a given row, the 100 columns of V store the “bootstrap” samples
of the same phylogenetic correlation element. We can now easily apply some
functions on the rows of V, for instance, we can compute the means and
standard deviations and plot them (Fig. 6.10):

plot(apply(V, 1, mean), apply(V, 1, sd))

This shows that overall the standard deviations are relatively small (< 0.09)
so phylogenetic uncertainty will have little impact on the correlation matrix
eventually used in GLS. Besides, the smallest correlations—which are the most
important for a regression because they relate independent observations—are
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the less variable. To conclude, this suggests that it might not be useful to
replicate the regressions with these 100 trees; the analysis using the NJ tree
only is likely to be enough.
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Fig. 6.10. Variation in among species correlations with 100 bootstrap replicates of
the Laurasiatherian data. Each point is one of the 1081 elements of the correlation
matrix showing its mean (x-axis) and standard-deviation (y-axis) calculated accross
the bootstrap samples

6.2 Estimating Ancestral Characters

For some time, the estimation of ancestral characters was considered as a
component of phylogeny estimation with parsimony methods where deriving
ancestral and derived characters is an essential step. With the development
of alternative methods where ancestral character values are not necessary
(distance methods) or their probabilistic distribution is taken into account
(likelihood and Bayesian methods), the estimation of ancestral values has
become less critical in phylogeny estimation.

The use of phylogenies to test evolutionary hypotheses has created new
interest in estimating ancestral character values. Many issues depend on how
characters evolved from an ancestral value [92]. Some researchers have focused
their attention on statistical methods of ancestral character estimation where
uncertainty in the estimates is taken into account [221]. Ancestral character
values are not observed, and thus it is more rational to consider them as
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parameters in a model where the character values of recent species are the
observed variables. Consequently, the word “estimation” seems preferable to
“reconstruction”.7 In the same way, it is better to write “character values”
rather than “character states” inasmuch as we consider both continuous and
discrete characters (“state” implicitly refers to discrete characters).

ape has a single function to perform ancestral character estimation: ace.
By default, ace performs estimation for continuous characters assuming a
Brownian motion model fit by maximum likelihood. The options of ace have
different effects depending on the types of character under study. In all cases
a fully resolved phylogeny is required. geiger has alternative implementations
with the functions fitDiscrete and fitContinuous. These functions use
statistical estimation based on (generalized) least squares or maximum like-
lihood. ape has the function MPR that finds the sets of most parsimonious
ancestral states for some discrete characters. Several functions are also avail-
able in phangorn to perform ancestral reconstruction for discrete characters
under maximum likelihood and various parsimony methods.

6.2.1 Continuous Characters

Four methods can be used for continuous characters in ace: least squares
(method = "pic"), maximum likelihood (method = "ML", the default), resid-
ual maximum likelihood (method = "REML"), and GLS (method = "GLS").
The model of evolution is specified with the option model.

The least squares estimator follows from the phylogenetically independent
contrasts method [76] (Section 6.1.1). This assumes a Brownian motion model
of evolution: this allows us to compute the variance of each ancestral char-
acter estimate. This variance depends only on the tree topology and branch
lengths because it is computed from its expectation under the model. A 95%
confidence interval can be calcuted with the usual formula x̂a±1.96

√
var(x̂a),

with x̂a being the estimated ancestral value.
The maximum likelihood estimator under a Brownian motion model de-

veloped by Schluter et al. [279] uses a likelihood function where the ancestral
values are parameters:

L(σ2, xa|T , x) =
1
σn

exp

⎛
⎝ 1

2σ

∑
i�=j

(xi − xj)2

tij

⎞
⎠ , (6.13)

where σ2 is the variance of the Brownian motion process, xa is a vector of
ancestral values, T is the phylogeny, and x is a vector of observed values of
the character at the tips of T . Once (6.13) has been maximized, the standard

7 Strictly speaking, not all methods in this section do “estimation” of ancestral
values: for instance, in the case of discrete characters, the likelihood function is
maximized with respect to the rate parameters, the ancestral states are inferred
afterwards.
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errors of σ2 and x̂a are obtained with the second partial derivatives, and
confidence intervals are computed as above. Note that σ2 is also estimated.

Equation (6.13) clearly shows that maximum likelihood estimation is done
simultaneously on σ2 and the ancestral values. This leads, in most cases, to
a downward bias in the estimation of σ2 in the same way than we have seen
above about GLS (p. 222). The REML approach used by ace proceeds in
three steps: first estimate the phylogenetic mean of x; then estimate σ2 by
maximizing a likelihood function under a multivariate normal distribution of
the observed trait values; finally estimate the ancestral values using a modified
version of (6.13) where σ2 is fixed.

The GLS estimator of ancestral characters is [199]:

x̂a = V (xa, x)V (x)−1x , (6.14)

where V (xa, x) is the expected covariance matrix between the ancestral values
and the recent ones, V (x) is the expected variance-covariance matrix among
recent ones, and x is as before. These expected matrices are derived from the
phylogenetic tree and the model of evolution assumed for x. Unlike the two
other motheds, the model is specified as a correlation structure with the option
corStruct (model is ignored if method = "GLS"); the way these structures
are built is explained in Section 6.1.5. The variance of the GLS estimator is
[199]:

var(x̂a) = V (xa) − V (xa, x)V (x)−1V (x, xa) . (6.15)

Let us try these four methods on the body mass of the primate data set.
We first fit a Brownian motion model with the default maximum likelihood
method:

> ace(body, tree.primates)

Ancestral Character Estimation

Call: ace(x = body, phy = tree.primates)

Log-likelihood: -6.714469

$ace
6 7 8 9

1.183725 2.192018 2.571320 3.503182

$sigma2
[1] 1.9711502 0.6970463

$CI95
[,1] [,2]
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6 -0.5058590 2.873308
7 0.9868737 3.397163
8 1.4844056 3.658235
9 2.6858445 4.320519

The results are returned as a list with the ancestral estimates (ace) and their
95% confidence intervals in a matrix (CI); these values are indexed with the
numbers of the node (see Section 3.1.1). With the default method, the function
returns additionally the log-likelihood (loglik) and the estimated variance of
the Brownian motion model with its standard error in a vector of length two
(sigma2).

The option CI, whose default is TRUE, allows us to compute the 95% con-
fidence intervals of the ancestral estimates. The same analysis with REML
is:

> ace(body, tree.primates, method = "REML")

Ancestral Character Estimation

Call: ace(x = body, phy = tree.primates, method = "REML")

Residual log-likelihood: -7.094482

$sigma2
[1] 3.153838 1.99506

$ace
6 7 8 9

1.183721 2.192012 2.571315 3.503179

$CI95
[,1] [,2]

6 -0.9534511 3.320893
7 0.6676123 3.716413
8 1.1964649 3.946165
9 2.4693199 4.537038

As expected the estimate of σ2 is substantially higher. The ancestral values are
very close to the previous ones, but the confidence intervals are wider because
we assume a higher variance here. We now use the least squares method:

> ace(body, tree.primates, method = "pic")

Ancestral Character Estimation

Call: ace(x = body, phy = tree.primates, method = "pic")



6.2 Estimating Ancestral Characters 251

$ace
6 7 8 9

1.183725 2.780824 3.200378 3.852630

$CI95
[,1] [,2]

6 -1.296931 3.664381
7 0.854866 4.706781
8 1.367000 5.033757
9 2.582428 5.122832

The least squares estimates are slightly larger than the maximum likelihood
ones, particularly for the oldest nodes. Interestingly, the estimated value at
the root is the same than above and equal to the phylogenetic mean. Further-
more, the confidence intervals computed by maximum likelihood or REML are
usually narrower than those by least squares (remind that the latter depend
only on the tree). Now on for the GLS analysis:

> co <- corBrownian(1, tree.primates)
> ace(body, tree.primates, method = "GLS", corStruct = co)

Ancestral Character Estimation

Call: ace(x = body, phy = tree.primates, method = "GLS",
corStruct = co)

$ace
6 7 8 9

1.183725 2.192018 2.571320 3.503182

$CI95
[,1] [,2]

6 1.183725 1.183725
7 1.458418 2.925619
8 1.849527 3.293114
9 2.926902 4.079462

The ancestral values are identical to the maximum likelihood and REML ones.
fitContinuous uses a method similar to REML. For instance, in the case

of the Brownian motion model, the function estimates σ2:

> fitContinuous(tree.primates, body)
Fitting BM model:
$Trait1
$Trait1$lnl
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[1] -9.194399

$Trait1$beta
[1] 3.153841

$Trait1$aic
[1] 22.38880

$Trait1$aicc
[1] 34.3888

$Trait1$k
[1] 2

6.2.2 Discrete Characters

Markovian models provide a useful and practical tool for modeling the evolu-
tion of discrete characters [223]. We have already seen this framework with the
substitution models of DNA and protein sequences (Section 5.2.1). Because
Markovian models have a probabilistic formulation, they can be fit by maxi-
mum likelihood and compared, for a given data set, with standard statistical
methods. ace allows the user to set a variety of models in a flexible way.

Discrete characters are given as vectors or factors, and specify the option
type = "discrete". The option model is used to parameterize the transition
rates among the states. The number of states is taken from the data (this can
be seen with unique(x)).

The model is specified with a matrix of integers representing the indices of
the parameters: 1 represents the first parameter, 2 the second one, and so on.
The same number may appear several times in the matrix, meaning that the
rates have the same values. For instance, with a two-state character, model
= matrix(c(0, 1, 1, 0), nrow = 2) specifies that the transitions among
both states occur at equal rates, and so there is only one parameter to be
estimated from the data. This is best visualized by printing the matrix (the
diagonal is always ignored here):

> matrix(c(0, 1, 1, 0), nrow = 2)
[,1] [,2]

[1,] 0 1
[2,] 1 0

If instead we use the following matrix,

> matrix(c(0, 1, 2, 0), nrow = 2)
[,1] [,2]

[1,] 0 2
[2,] 1 0



6.2 Estimating Ancestral Characters 253

then different rates are assumed for both changes, and there are two param-
eters. We may recall that in the rate matrix, the rows represent the initial
states and the columns the final states.

If there are three states, some possible models could have the following
rate matrices.

> matrix(c(0, 1, 1, 1, 0, 1, 1, 1, 0), nrow = 3)
[,1] [,2] [,3]

[1,] 0 1 1
[2,] 1 0 1
[3,] 1 1 0
> matrix(c(0, 1, 2, 1, 0, 3, 2, 3, 0), nrow = 3)

[,1] [,2] [,3]
[1,] 0 1 2
[2,] 1 0 3
[3,] 2 3 0
> matrix(c(0, 1:3, 0, 4:6, 0), nrow = 3)

[,1] [,2] [,3]
[1,] 0 3 5
[2,] 1 0 6
[3,] 2 4 0

To indicate that a transition is impossible, a zero must be given in the
appropriate cell of the matrix. For instance, a “cyclical” change model could
be specified by:

> matrix(c(0, 0, 3, 1, 0, 0, 0, 2, 0), nrow = 3)
[,1] [,2] [,3]

[1,] 0 1 0
[2,] 0 0 2
[3,] 3 0 0

where, if the three states are denoted A, B,C, the permitted changes are the
following: A → B → C → A.

The number of possible models is very large, even with three states. The
interest is to let the user define the models that may be sensible for a particular
study and test whether they are appropriate.

There are short-cuts with character strings that can be used instead of a
numeric matrix. The possible short-cuts are:

• model = "ER" for the equal-rates model,
• model = "SYM" for the symmetrical model,
• model = "ARD" for the all-rates-different model.

For a three-state character, these short-cuts result in exactly the same rate
matrices shown above, respectively. If the user sets type = "discrete", then
the default model is "ER".
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If the option CI = TRUE is used, then the likelihood of each ancestral state
is returned for each node in a matrix called lik.anc. They are computed with
a formula similar to (5.9), and scaled so that they sum to one for each node.

With the primate data, consider a character that sets Galago apart from
the other genera (say “big eyes”). We first fit the default model (equal rates):

> x <- c(2, 2, 2, 2, 1)
> x.er <- ace(x, tree.primates, type = "discrete")
> x.er

Ancestral Character Estimation

Call: ace(x = x, phy = tree.primates, type = "discrete")

Log-likelihood: -1.768921

Rate index matrix:
1 2

1 . 1
2 1 .

Parameter estimates:
rate index estimate std-err

1 0.3776 0.3058

Scaled likelihoods at the root
(type ’x$lik.anc’ to get them for all nodes):

1 2
0.3047886 0.6952114

The likelihood of the states “big eyes” and “small eyes” at the root are 0.3
and 0.7, respectively. Under this model, it is highly likely that the three other
nodes of the tree were “small eyes”.

We now fit the all-rates-different model:

> x.ard <- ace(x, tree.primates, type = "d", model = "ARD")
> x.ard
....

Log-likelihood: -1.602901

Rate index matrix:
1 2

1 . 2
2 1 .
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Parameter estimates:
rate index estimate std-err

1 0.3060 0.3864
2 1.0893 1.2244

Scaled likelihoods at the root....
1 2

0.52689 0.47311

Interestingly, the likelihoods on the root are quite affected by the model: the
state of the root is now much less certain. For the other nodes, the likely state
is still “small-eyes”. The increase in likelihood with the additional parameter
is not significant:

> 1 - pchisq(2*(1.768921 - 1.602901), 1)
[1] 0.5644603

In practice, there is an anova method for the class "ace" which simplifies the
calculation of this test:

> anova(x.er, x.ard)
Likelihood Ratio Test Table
Log lik. Df Df change Resid. Dev Pr(>|Chi|)

1 -1.7689 1
2 -1.6029 2 1 0.33204 0.5645

fitDiscrete in geiger uses the same syntax than ace (ER, . . . ) and gives
similar results:

> fitDiscrete(tree.primates, x)
....
$Trait1
$Trait1$lnl
[1] -2.462069

$Trait1$q
[1] 0.3775513
....
> fitDiscrete(tree.primates, x, "ARD")
....
$Trait1
$Trait1$lnl
[1] -2.296048

$Trait1$q
[,1] [,2]

[1,] -1.0892897 1.0892897
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[2,] 0.3059753 -0.3059753
....

The log-likelihood values are scaled differently than in ace but the likelihood-
ratio test is the same:

> 2*(-2.296048 - -2.462069)
[1] 0.332042

This is a reminder that likelihood values have no absolute meaning.
The package diversitree has also functions to perform ancestral state re-

construction: these are introduced and detailed, together with the general
approach of this package on page 272.

The genus Homo is sufficiently different from the other primate genera that
it is not hard to find a discrete character that separates them. So we consider
a character taking the value 1 in Homo,8 and 2 in the four other genera. We fit
the above two models and examine how their assumptions affect the likelihood
of ancestral estimates.

> y <- c(1, 2, 2, 2, 2)
> ace(y, tree.primates, type = "discrete")
....

Log-likelihood: -2.772589

Rate index matrix:
1 2

1 . 1
2 1 .

Parameter estimates:
rate index estimate std-err

1 25.9881 15920.75

Scaled likelihoods at the root....
1 2

0.5 0.5
> ace(y, tree.primates, type = "discrete", model = "ARD")
....

Log-likelihood: -1.808865

Rate index matrix:
1 2

1 . 2
8 This could be standing and moving upright, speaking complex languages, com-

plex social structures, cooking food, writing poems, using computers to analyze
phylogenies, and so on.
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2 1 .

Parameter estimates:
rate index estimate std-err

1 3350.683 NaN
2 13402.728 NaN

Scaled likelihoods at the root....
1 2

0.5 0.5
Warning message:
In sqrt(diag(solve(h))) : NaNs produced

The distribution of y leads to much uncertainty in the ancestral likelihoods,
a fact well-known to the users of the parsimony-based methods.

A more concrete application of ace with discrete characters is presented
below with the Sylvia data.

Parsimony reconstruction is based on minimizing the changes along the
branches of tree; ancestral states might then be inferred. However there are,
in many cases, several solutions to assigning ancestral states that would min-
imize the length of the tree. The method of most parsimonious reconstruc-
tions (MPR) tries to solve this problem by finding for each node the states
that would minimize the number of changes along the tree. This method due
to Hanazawa et al. [120, 213] is a generalization of the accelerated / decel-
erated transformation (ACCTRAN / DELTRAN) method by Swofford and
Maddison [294]. MPR returns the most parsimonious reconstructions of discrete
characters. The data must be in a vector of integers (or one that can be co-
erced as integers), and the tree must be unrooted and fully dichotomous. One
of the tip must be defined as outgroup. For instance with our vector x defined
above we have the obvious result:

> MPR(x, unroot(tree.primates), "Galago")
lower upper

6 2 2
7 2 2
8 2 2

So there is only one most parsimonious tree with a transition 1 → 2 between
Galago and the subtending node.

phangorn has two functions to do ancestral state reconstruction in the con-
text of phylogeny estimation either by maximum likelihood or by parsimony
(Chapter 5). The first function is ancestral.pml which has two arguments:

ancestral.pml(object, type = c("ml", "bayes"))

object is of class "pml" and type specifies the type of recontruction. By
default, likelihood reconstruction (rescaled to one) is done. The result is an
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object of class "phyDat" including the original data and the likelihood recon-
structions for each node.

The function ancestral.pars has three arguments:

ancestral.pars(tree, data, type = c("MPR", "ACCTRAN"))

tree is of class "phylo", data is of class "phyDat", and type is as before.
Like for the previous function, the returned object is an expanded object of
class "phyDat" with the ancestral reconstructions, possibly with ambiguities.

6.3 Analysis of Diversification

The increasing availability of estimated phylogenies has led to a renewed in-
terest in the study of macroevolution processes. For a long time, this issue
was in the territory of paleontology. The fact that complete phylogenies be-
come more numerous for more and more taxonomic groups has brought the
biologists into the party.

The analysis of diversification is based on ultrametric trees with dated
nodes. Most methods are based on a probabilistic model of speciation and ex-
tinction called the “birth–death” model [159]. This model assumes that there
is an instantaneous speciation probability (denoted λ) and an instantaneous
extinction probability (μ).

There are variations and extensions to this basic model. The most well
known is when μ = 0 (i.e., no extinction), which is called the Yule model.
Nee et al. [216] suggested a generalization of the birth–death model where λ
and μ vary through time. I suggested a model, called the Yule model with
covariates, where λ varies with respect to species traits [230]. Because the
birth–death model and its variants are probabilistic models, they can be fit to
data by maximum likelihood. These models can be used both for parameter
estimation and hypothesis testing. From a biological point of view, the main
interest is the possibility of testing a variety of biological hypotheses depending
on the models.

Other approaches consider a graphical or statistical analysis of the dis-
tribution of the branching times without assuming an explicit model. These
methods focus on hypothesis testing.

6.3.1 Graphical Methods

Phylogenetic trees can be used to depict changes in the number of species
through time. This idea has been explored by Nee et al. [217] and Harvey
et al. [126]. The lineages-through-time plot is very simple in its principle: it
plots the number of lineages observed on a tree with respect to time. With a
phylogeny estimated from recent species, this number is obviously increasing
because no extinction can be observed. If diversification has been constant
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through time, and the numbers of lineages are plotted on a logarithmic scale,
then a straight line is expected. If diversification rates decreased through time,
then the observed plot is expected to lay above the straight line, whereas the
opposite result is expected if diversification rates increased through time.

The interpretation of lineages-through-time plots is actually not straight-
forward because in applications with real data the shape of the observed curve
rarely conforms to one of the three scenarios sketched above [70]. This graph-
ical method is of limited value to test hypotheses; particularly, its behavior
is not known in the presence of heterogeneity in diversification parameters.
However, it is an interesting exploratory tool given its very low computational
cost.
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Fig. 6.11. Lineages-through-time plot of the clock tree of Michaux et al. [205]
(Fig. 4.20) with a logarithmic scale on the right-hand side

There are three functions in ape for performing lineages-through-time
plots: ltt.plot, ltt.lines, and mltt.plot. The first one does a simple
plot taking a phylogeny as argument. By default, the x- and y-axes are la-
beled “Time” and “N”, but this can be changed with the options xlab and
ylab, respectively. This function has also a ‘...’ argument (see p. 88 for an
explanation of this) that can be used to format the plot (e.g., to alter the
appearance of the line). As an illustration, let us come back to the rodent
tree displayed in Fig. 4.20. It is ultrametric and so can be analyzed with the
present method. We simply display the plot twice, with the default options,
and set the y-axis on a logarithmic scale (Fig. 6.11):

layout(matrix(1:2, 1, 2))
ltt.plot(trk)
ltt.plot(trk, log = "y")
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ltt.lines can be used to add a lineages-through-time plot on an existing
graph (it is a low-level plotting command). It has only two arguments: an
object of class "phylo" and the ‘...’ argument to specify the formatting
of the new line (because by default, it is likely to look like the line already
plotted). For instance, if we want to draw the lineages-through-time plots of
both trees on Fig. 4.20, we could do:

ltt.plot(trk)
ltt.lines(trc, lty = 2)

mltt.plot is more sophisticated for plotting several lineages-through-time
plots on the same graph. Its interface is:

mltt.plot(phy, ..., dcol = TRUE, dlty = FALSE,
legend = TRUE, xlab = "Time", ylab = "N")

Note that the “dot-dot-dot” argument is not the last one; thus it does not have
the same meaning as in the first two functions. Here, ‘...’ means “a series
of objects of class "phylo"”. The options dcol and dlty specify whether the
lines should be distinguished by their colors and / or their types (solid, dashed,
dotted, etc.). To produce a graph without colors, one will need to invert the
default values of these two options. The option legend indicates whether to
draw a legend (the default). To compare the lineages-through-time plots of
our two trees, we could do (Fig. 6.12):

mltt.plot(trk, trc, dcol = FALSE, dlty = TRUE)

Note that the axes are set to represent both lines correctly, which may not
be the case when using ltt.lines (although the axes may be set with xlim
and ylim passed to ltt.plot with the ‘...’). The advantage of the latter is
that the lines may be customized at will, whereas this is done automatically
by mltt.plot.

6.3.2 The Simple Birth–Death and Yule Models

Birth–death processes provide a simple way to model diversification. There are
reasons to believe that these models do not correctly depict macroevolutionary
processes [188], but they are useful to use for data analysis because there
has been considerable work to derive probability functions related to these
processes making likelihood-based inference possible [159, 160].

The estimation of speciation and extinction probabilities when all spe-
ciation and extinction events are observed through time is not problematic
[157]. Some difficulties arise when only the recent species are observed. Nee
et al. [216] derived maximum likelihood estimates of these parameters in this
case. They used the following reparameterization: r = λ − μ, a = μ/λ. The
estimates λ̂ and μ̂ are then obtained by back-transformation. The function
birthdeath implements this method: it takes as single argument an object
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Fig. 6.12. Multiple lineages-through-time plot of the clock tree of Michaux et
al. [205] and the tree estimated from the nonparametric rate smoothing method
(Fig. 4.20)

of class "phylo". Note that this tree must be dichotomous. If this is not the
case, it could be transformed with multi2di (Section 3.4.4): this assumes that
a series of speciation events occurred very rapidly. The results are returned
as an object of class "birthdeath". As an example, we come back to the
14-species rodent tree examined above with lineages-through-time plots:

> bd.trk <- birthdeath(trk)
> bd.trk

Estimation of Speciation and Extinction Rates
With Birth-Death Models

Phylogenetic tree: trk
Number of tips: 14

Deviance: 25.42547
Log-likelihood: -12.71274

Parameter estimates:
d / b = 0 StdErr = 0
b - d = 0.1438844 StdErr = 0.02939069

(b: speciation rate, d: extinction rate)
Profile likelihood 95% confidence intervals:

d / b: [0, 0.5178809]
b - d: [0.07706837, 0.2412832]

The standard errors of the parameter estimates are computed using the usual
method based on the second derivatives of the likelihood function at its maxi-
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mum. In addition, 95% confidence intervals of both parameters are computed
using profile likelihood: they are particularly useful if the estimate of a is at
the boundary of the parameter space (i.e., 0, which is often the case [235]).

birthdeath returns a list that allows us to extract the results if necessary.
As an illustration of this, let us examine the question of how sensitive the
above result could be to removing one species from the tree. The idea is
simple: we drop one tip from the tree successively, and look at the estimated
parameters (returned in the element para of the list). Instead of displaying
the results directly we store them in a matrix called res. Each row of this
matrix receives the result of one analysis:

> res <- matrix(NA, 14, 2)
> for (i in 1:14)
+ res[i, ] <- birthdeath(drop.tip(trk, i))$para
> res

[,1] [,2]
[1,] 0 0.1354675
[2,] 0 0.1354675
[3,] 0 0.1361381
[4,] 0 0.1369858
[5,] 0 0.1376716
[6,] 0 0.1439786
[7,] 0 0.1410251
[8,] 0 0.1410251
[9,] 0 0.1421184
[10,] 0 0.1490515
[11,] 0 0.1318945
[12,] 0 0.1318945
[13,] 0 0.1361381
[14,] 0 0.1361381

This shows that the analysis is only slightly affected by the deletion of one
species from the tree. With a larger tree, one could examine these results
graphically, for instance, with a histogram (i.e., hist(res[, 2])).

diversitree has an alternative function make.bd: this function returns a
likelihood function that is subsequently optimized with find.mle:

> library(diversitree)
> trk.bd <- make.bd(trk)
> trk.bd
Constant rate birth-death likelihood function:
function (pars, ...)
ll.bd(cache, pars, ...)
<environment: 0xa0cca8>
> o <- find.mle(trk.bd)
> o
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$par
lambda mu

1.419601e-01 6.512626e-08

$lnLik
[1] -12.71382
....

attr(,"class")
[1] "fit.mle.bd" "fit.mle"

diversitree does Bayesian estimation with its function mcmc starting from
the likelihood function output by make.bd. This requires to give the initial
values of the parameters, the number of steps of the chain, and the parameter
w giving the approximate width of the high probability region. For instance,
an MCMC with 10,000 steps taking the above maximum likelihood estimates
as starting values would be:

> outmcmc <- mcmc(trk.bd, o$par, nsteps = 1e4, w=c(0.1, 0.1),
+ print.every = 0)
> str(outmcmc)
’data.frame’: 10000 obs. of 4 variables:
$ i : int 1 2 3 4 5 6 7 8 9 10 ...
$ lambda: num 0.22 0.147 0.326 0.271 0.291 ...
$ mu : num 0.1062 0.0352 0.4256 0.2245 0.3231 ...
$ p : num -13.5 -13 -17 -14.4 -15.5 ...

The posterior distributions can be displayed with profiles.plot (Fig. 6.13):

co <- c("darkgrey", "lightgrey")
profiles.plot(outmcmc[c("lambda", "mu")], col.line = co)
legend("topright", c(expression(lambda), expression(mu)),

pch = 15, col = co, bty = "n")

The function yule in ape fits a simple Yule model (i.e., assuming μ = 0)
by maximum likelihood returning the estimate λ̂, its standard-error, and the
(maximized) log-likelihood:

> yule(trk)
$lambda
[1] 0.1438849

$se
[1] 0.04153599

$loglik
[1] -12.71274
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Fig. 6.13. Posterior distributions of speciation and extinction probabilities for the
tree trk

attr(,"class")
[1] "yule"

diversitree has make.yule which works in the same way than above:

> find.mle(make.yule(trk))
$par

lambda
0.1438849

$lnLik
[1] -12.71274
....

6.3.3 Time-Dependent Models

Speciation and extinction probabilities can vary at two levels: through time
and among species. These two levels of variation have led to extend the basic
birth–death model into two directions: time- and trait-dependent models. The
latter is treated below (p. 271), while the former is the subject of the present
section.

Several approaches have been developed in various packages: we are detail-
ing them in order of increasing complexity. We first consider the Yule model
which can be extended to have a speciation rate λ varying with time. laser
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has four functions, yule2rate, yule3rate, yule4rate, yule5rate, fitting a
model assuming constant speciation rates within two, three, four, or five time
intervals (see [256] for the likelihood framework). We try the first one with a
random Yule tree:

> tr <- rbdtree(0.1, 0, Tmax = 25)
> library(laser)
> yule2rate(branching.times(tr))

LH st1 r1 r2 aic
1 -17.56427 19.85357 0.2094644 0.108714 41.12853

By default, these functions take the breakpoint (or shift) time as one of the
branching times: the one maximizing the likelihood function is taken as the
estimate of the parameter denoted as ‘st1’. This may be relaxed with the
option ints.

A more flexible framework is provided by the function yule.time in ape,
though it is more complex because it requires the user to build an R function
coding the temporal variation in λ. Some examples are provided in the help
page ?yule.time where we take following the function to fit a model similar
to the one used in yule2rate:

birth.step <- function(l1, l2, Tcl) {
ans <- rep(l1, length(t))
ans[t > Tcl] <- l2
ans

}

where l1, l2, and Tcl are the same parameters than r1, r2, and st1 above.
The option start is used to specify starting values of the estimation proce-
dure:

> yule.time(tr, birth.step, start = c(.1, .1, 15))
$estimate

l1 l2 Tcl
0.1295375 0.1049495 14.9994565

$se
l1 l2 Tcl

0.04103592 0.02476942 0.13510211

$loglik
[1] -17.75767

attr(,"class")
[1] "yule"



266 6 Analysis of Macroevolution with Phylogenies

The standard-errors are calculated with the traditional method using the sec-
ond derivatives of the likelihood function. This fit can be compared with the
one from a standard Yule model:

> yule(tr)
$lambda
[1] 0.1125819

$se
[1] 0.02127598

$loglik
[1] -17.89704

attr(,"class")
[1] "yule"

The increase in likelihood due to adding two parameters is very small (≈ 0.14)
and does not require to compute the LRT.

Rabosky and Lovette [259] included extinction in the likelihood framework
by developing three models of decreasing diversification caused by decreasing
speciation rate, increasing extinction rate, or both. These are implemented
in the functions fitSPVAR, fitEXVAR, and fitBOTHVAR, respectively. Like for
the above functions in the same package, they take as main argument a set
of branching times, and an option init to change the initial values of the
likelihood optimization procedure. We try these functions with the random
tree tr but just print their (optimized) log-likelihood value:

> fitSPVAR(branching.times(tr))$LH
[1] -17.83660
> fitEXVAR(branching.times(tr))$LH
[1] -17.88876
> fitBOTHVAR(branching.times(tr))$LH
[1] -17.83197

Unsurprisingly, no model provides a better fit compared to the Yule model.
An alternative model is to assume that diversification has decreased

through time in relation to increasing diversity [217, 258]. This model, called
the diversity-dependent diversification model, has a structure similar to the
density-dependent models used in population ecology. Two possible formula-
tions are:

λt = λ0N
−x
t ,

λt = λ0(1 − Nt/K) ,
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where Nt is the diversity at time t, and x and K are parameters controlling
the decrease in λ with respect to Nt. It is assumed that there is no extinction
(μ = 0). These two models reduce to the Yule model if x = 0 or K = +∞.
They are implemented in laser with the functions DDX and DDL, respectively:

> DDX(branching.times(tr))
$LH
[1] -17.82203

$aic
[1] 39.64405

$r1
[1] 0.1491700

$xparam
[1] 0.1095250
> DDL(branching.times(tr))
$LH
[1] -17.87188

$aic
[1] 39.74375

$r1
[1] 0.1219429

$kparam
[1] 206.3641

Again no significant increase in log-likelihood is observed.
It seems logical to attempt generalizing the above models into a framework

where any time-dependent model of speciation and extinction could be fitted.
diversitree provides make.bd.t that can fit a model defined by the user with
R functions. For instance, if we want to fit a model where both λ and μ vary
following a logistic function:

logis.t <- function(t, a, b) 1/(1 + exp(-a * t - b))
f <- make.bd.t(phy, list(logis.t, logis.t))
find.mle(f, c(0.02, -2, 0.02, -2))

However, such a likelihood estimation approach is problematic for some
reasons I have exposed in a recent paper [232]. I proposed an alternative
method that fits a model by minimizing the deviation between the expected
and observed distributions of branching times with a least squares criterion.
This method is implemented in the function bd.time. The user specifies the
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speciation and extinction functions in the same way than with yule.time
(p. 265) which is slightly different than above:

b.logis <- function(a, b) 1/(1 + exp(-a * t - b))
d.logis <- function(c, d) 1/(1 + exp(-c * t - d))
bd.time(phy, b.logis, d.logis)

bd.time returns the estimated parameters and the sum of squares of the fitted
model. An F -test comparing two nested models can be computed with the
ratio of the sum of squares divided by the number of additional parameters.
The numbers of degrees of freedom are the number of additional parameters
and the residual number of freedom. Confidence in the parameter estimates
can be assessed with a bootstrap.

Currently, make.bd.t and bd.time run slowly for any slightly complicated
model because they need to compute numerical integrals repeatedly during
the fitting process. A detailed comparison showed that least squares work
better than maximum likelihood in some situations than the former [232]. It
will surely need more work to determine the respective merits of each method,
and this is an exciting area of future research which will help us to know how
much we can infer on evolution with phylogenies.

6.3.4 Combining Phylogenetic and Taxonomic Data

It often occurs that a phylogeny is not complete in the sense that not all
living species are included. This leads to some difficulties in the analysis of
diversification because there are some obvious missing data. Two broad, non-
exclusive situations can be defined.

• A phylogeny is resolved at high taxonomic levels and the number of species
within these higher taxa is known.

• Monophyletic groups have been identified and the phylogenetic relation-
ships among and within them are unknown; however, the date of the origin
of each group is known.

We set aside the situation of complete ignorance where species have not yet
been discovered.

Magallón and Sanderson [195] developed a simple and general framework
that applies well to the second situation above. They used the fact that under a
constant-rate birth–death model, the expected number of species after a time
t is given by E(Nt) = N0e

rt with N0 being the initial number of species and, as
before, r = λ−μ. If t is the crown age of the group, then N0 = 2; otherwise if t
is its stem age, then N0 = 1. We have the estimator r̂ = (lnNt−lnN0)/t. Note
that this a moment estimator, not a maximum likelihood estimator, because
it is based on the expection of a quantity, not on the probability distribution
of some observed variables.

rate.estimate in geiger implements Magallón and Sanderson’s method.
Its options are:



6.3 Analysis of Diversification 269

Table 6.1. Functions to fit birth–death models with respect to the type of data.
This shows that inference is limited when a dated tree is not available. “Richness”
means number of species. The functions separated by a comma fit the same model
but with different algorithms, methods, or parameterizations

Model Data
Dated tree High-level dated tree Ages

+ richness + richness

Constant rate
μ fixed (= 0) yule fitNDR 1ratea rate.estimate

μ estimated birthdeath, make.bd bd.ext

Time-dependence
μ fixed (= 0) DDX, DDL fitNDR 2ratea

yule[2-5]rate

μ estimated fitSPVAR

fitEXVAR

fitBOTHVAR

General time
μ fixed (= 0) yule.time

μ estimated bd.time, make.bd.t
Trait-dependence
μ fixed (= 0) yule.cov

μ estimated make.bisse make.bisse

make.musse

make.quasse
aIn these two functions, μ is fixed by the user and can be different from zero

rate.estimate(time = 0, n = 0, phy = NULL, epsilon = 0,
missing = 0, crown = TRUE, kendall.moran = FALSE)

time and n are two vectors giving t and Nt, respectively. By default, time are
considered are crown ages: crown = FALSE results in treating them as stem
ages. epsilon is the assumed value of extinction rate. phy is an alternative
way to specify the data as a tree of class "phylo" (in which case a single
estimate of r will be computed); missing is the number of species possibly
absent from this tree. The last option allows one to calculate the Kendall–
Moran estimate of the speciation rate if phy is given (which is the same as
the one calculated by yule). As a simple example of this function:

> rate.estimate(10, 10)
[1] 0.1609438
> rate.estimate(10, 10, crown = FALSE)
[1] 0.2302585

The estimate assuming a stem age is higher because it implies one additional
branching event for the same time interval. Given a pair of values for r and μ,
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the function crown.limits calculates a 95% confidence interval of the extant
number of species for a vector of times:

> crown.limits(r = 0.1609, epsilon = 0, time = 8:10)
[,1] [,2]

[1,] 2.411291 18.76913
[2,] 2.542183 22.31456
[3,] 2.702569 26.47092
> crown.limits(r = 0.1609, epsilon = 0.9, time = 8:10)

[,1] [,2]
[1,] 1.729496 106.3033
[2,] 1.898394 130.8073
[3,] 2.096817 159.5878

This clearly shows the increasing variance in diversity when extinction rate
is increased even though the expected diversity E(Nt) is the same because r
is kept constant. The function stem.limits does the same calculations but
with N0 = 1.

laser has four functions which perform exactly the same calculations
than in geiger: these are lambda.crown.ms01, lambda.stem.ms01, lambda.
stem.ml, and lambda.stem.ci.

In the first situation described above, the data are in the form of a phylo-
genetic tree with species richness associated with each tip. Pybus et al. [251]
have approached this problem using simulations and randomization proce-
dures. A more formal and general approach has been developed independently
by Bokma [28] and myself [228]. The idea is to combine the information from
phylogenetic data (branching times) and taxonomic data (species diversity).
Formulae can be derived to calculate the probabilities of both kinds of obser-
vations, and because they depend on the same parameters (λ and μ) they can
be combined into a single likelihood function. The probabilities of species di-
versity are computed conditional on no extinction, thus avoiding a downward
bias in extinction rate estimation [257].

The approach developed in [228] is implemented in the function bd.ext
in ape. Let us consider the phylogeny of bird orders (Fig. 4.14). The number
of species in each order can be found in Sibley and Monroe [285]. These are
entered by hand:

> data(bird.orders)
> S <- c(10, 47, 69, 214, 161, 17, 355, 51, 56, 10, 39, 152,
+ 6, 143, 358, 103, 319, 23, 291, 313, 196, 1027, 5712)
> bd.ext(bird.orders, S)

Extended Version of the Birth-Death Models to
Estimate Speciation and Extinction Rates

Data: phylogenetic: bird.orders
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taxonomic: S
Number of tips: 23

Deviance: 289.1639
Log-likelihood: -144.5820

Parameter estimates:
d / b = 0 StdErr = 0
b - d = 0.2866789 StdErr = 0.007215592

(b: speciation rate, d: extinction rate)

The output is fairly similar to the one from birthdeath. Note that it is
possible to plot the log-likelihood function with respect to different values
of a and r in order to derive profile likelihood confidence intervals of the
parameter estimates (see [228] for examples).

laser has the function fitNDR 1rate that implements a method close to
the one bd.ext, the distinction is that the parameter a (= μ/λ) is kept con-
stant (zero by default) [257]. The data must be prepared with the function
getTipdata:

> fitNDR_1rate(getTipdata(S, bird.orders))
LH aic r lambda eps

1 -200.6427 403.2855 0.2839806 0.2839806 0

6.3.5 Trait-Dependent Models

In this section, we will see in details two relatively sophisticated approaches
to analyze diversification with respect to one or several species traits. Ther
represent another extension of the birth-death model with, in this case, spe-
ciation and extinction rates depending on variables observed on the recent
species.

The Yule Model with Covariates

Modeling the variation in diversification rates with respect to one or several
species traits is appealing biologically because a major issue in biology is to
identify the biological traits that lead to higher speciation and / or extinction
rates [92, 143].

I proposed [230] to model speciation rates using a generalized linear model
(GLM) written as

ln
λi

1 − λi
= β1xi1 + β2xi2 + · · · + βpxip + α , (6.16)

where λi is the speciation rate for species i, xi1, xi2, . . . , xip are variables
measured on species i, and β1, β2, . . . , βp, α are the parameters of the model.
The function ln(x/(1 − x)) is called the logit function (it is used in logistic
regression and GLMs): it allows the term on the left-hand side to vary between
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−∞ and +∞. The terms on the right-hand side must be interpreted in the
same way as a usual linear regression model. Let us rewrite (6.16) in matrix
form as logit(λi) = xT

i β. Giving some values of the vector β and of the traits
xi it is possible to predict the value of the speciation rate with the inverse
logit function:

λi =
1

1 + e−xT
i β

. (6.17)

If we make the assumption that there is no extinction (μ = 0), then it is
possible to derive a likelihood function to estimate the parameters of (6.16)
giving an observed phylogeny and values of x. Because this uses a regression
approach, different models can be compared with likelihood ratio tests in the
usual way.

A critical assumption of this model is that the extinction rate is equal to
zero. This is clearly unrealistic but it appeared that including extinction rates
in the model made it too complex to permit parameter estimation [230]. Some
simulations showed that the test of the hypothesis β = 0 is affected by the
presence of extinctions but it keeps some statistical power (it can detect an
effect when it is present; see [230] for details).

The function yule.cov fits the Yule model with covariates. It takes as
arguments a phylogenetic tree, and a one-sided formula giving the predictors
of the linear model (e.g., ~ a + b). The variables in the latter can be located in
a data frame, in which case the option data must be used. They can be numeric
vectors and / or factors: they are treated as continuous and discrete variables,
respectively. The predictors must be provided for the tips and the nodes of the
tree; for the latter they can be estimated with ace (Section 6.2). The results
are simply displayed on the console. An application of these functions with
the Sylvia data is detailed below (Section 6.6.1).

Binary and Multistate Traits

This section details some aspects of the package diversitree because these are
integrated with the binary state speciation and extinction (BiSSE) model
introduced by Maddison et al. [194]. This model considers a single binary
trait which states are, for simplicity, denoted as 0 and 1. The speciation and
extinction rates depend on this trait which itself evolves accoring to a Markov
model. There are thus six parameters: λ0, λ1, μ0, μ1, q10, and q01 where the
subscripts 0 and 1 are the two states of the trait, and qij is the rate of the
transition i → j. See page 327 for simulating data from this model.

The first step to analyze some data with this model is to call make.bisse in
order to build a likelihood function that will be subsequently treated by other
functions. The basic usage is to pass a tree of class "phylo" and a vector, with
names matching the tip labels of the tree, giving their states. Other options
give information on a possible incompleteness of the data (see below). We
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explore this function and others in diversitree with some completely random
data:

> tr <- rcoal(20)
> x <- sample(0:1, size = 20, replace = TRUE)
> names(x) <- tr$tip.label

We build the likelihood function of the BiSSE model:

> library(diversitree)
> f <- make.bisse(tr, x)
> f
BiSSE likelihood function:
function (pars, ...)
ll.bisse(cache, pars, branches, ...)
<environment: 0xb6ec10>

f stores the information on the data and on the model. We fit the model by
maximum likelihood with find.mle; this requires to give some initial values
for the six parameters:9

> out <- find.mle(f, rep(0.1, 6))
> out
$par

lambda0 lambda1 mu0 mu1
4.122753e-07 1.497310e+01 1.047648e+01 6.740341e+00

q01 q10
7.058190e+02 6.832535e+02

$lnLik
[1] -10.88618
....

The estimates of q10 and q01 are large which is typical when state values
are randomly distributed among the tips of the tree. The model we have just
fitted can be seen as the “full” BiSSE model with six parameters. The function
constrain allows us to define more restricted models (i.e., more parsimonious
in the statistical sense), and so to test hypotheses such as: Are μ0 and μ1

significantly different? We call constrain with the likelihood function of the
full model, and a formula that defines a contraint on the parameter(s). We
may then fit this new model:

> f.mu <- constrain(f, mu1 ~ mu0)
> out.mu <- find.mle(f.mu, rep(0.1, 5))
> out.mu
$par

9 diversitree has the function starting.point.bisse to help finding initial values.
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lambda0 lambda1 mu0 q01
3.358217e-05 1.467586e+01 8.435833e+00 7.378969e+02

q10
7.060755e+02

$lnLik
[1] -10.88675
....

The decrease in log-likelihood is very small. Fortunately, diversitree provides
an anova method to calculate easily the tests (see below).

It is possible to define a third, more parsimonious, model by adding the
additional constraint λ0 = λ1:

> f.lambda <- constrain(f.mu, lambda1 ~ lambda0)
> out.lambda <- find.mle(f.lambda, rep(0.1, 4))

Instead of building a series of models of increasing parsimony, we could add
several constraints at once by giving several formulae separated by commas
with the likelihood function of the full model:

> f.null <- constrain(f, lambda1~lambda0, mu1~mu0, q10~q01)

It is also possible to constrain a parameter to a fixed value (e.g., mu1 ~ 0),
or proportional to another parameter (lambda1 ~ 2 * lambda0). We finally
fit the null model, and compare all the fitted models with anova:

> out.null <- find.mle(f.null, rep(0.1, 3))
> anova(out, out.mu, out.lambda, out.null)

Df lnLik AIC ChiSq Pr(>|Chi|)
full 6 -10.886 33.772
model 1 5 -10.887 31.774 0.00116 0.9729
model 2 4 -11.408 30.817 1.04423 0.5933
model 3 3 -11.458 28.916 1.14355 0.7666

As expected, none of the variation in λ, μ or q can be explained by x.
As seen above for the simple birth-death model (p. 263), Bayesian esti-

mation can be done with the BiSSE model with the same function mcmc. A
typical usage could be (using the maximum likelihood estimates as starting
values):

mcmc(f, coef(out), 1e3, rep(0.1, length(coef(out))))

This appears to be relatively slow with the current version of diversitree. How-
ever, a nice feature of this function is that if it is interrupted before the com-
pletion of the chain, then the results until this stage are returned.

The original formulation of the BiSSE model [194] assumes that the phy-
logeny is fully known. FitzJohn et al. [86] extended this to the case of incom-
pletely resolved phylogenies. This case is similar to the first situation described
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in Section 6.3.4: some tips of the tree represent clades whose number of species
are known. In addition here, it is known how many species are in the states 0/1
in each clade. The third argument of make.bisse is unresolved and, if used,
this must be given a data frame including four columns named tip.label,
Nc, n0, and n1. These are, respectively, the labels of the tips that are actually
clades with several species, the number of species in these clades, and the
number of species that are known to be in state 0 or 1. n0 and n1 may be
equal to zero. For instance, suppose that the tips “t1” and “t2” are clades
with ten species each.

> u <- data.frame(tip.label = I(c("t1", "t2")),
+ Nc = c(10, 10), n0 = 0, n1 = 0)

The function I() serves to “isolate” the character vector because by de-
fault character strings are treated as factors in data frames (alternatively
one could do u$tip.label <- as.character(u$tip.label) after calling
data.frame). We now define and fit a BiSSE model with these new data:

> f.u <- make.bisse(tr, x, u)
> out.u <- find.mle(f.u, rep(0.1, 6))
> out.u
$par

lambda0 lambda1 mu0 mu1
1.736204e-04 5.397004e+01 3.560434e-04 5.635014e+01

q01 q10
4.560002e+01 3.762528e+01

$lnLik
[1] -21.02996

To get an idea of the potential consequence of taking this phylogenetic uncer-
tainty for our inference, we define and fit a null model and compare it with
the full one:

> f.u.null <- constrain(f.u, lambda1~lambda0, mu1~mu0, q10~q01)
> out.u.null <- find.mle(f.u.null, rep(0.1, 3))
> out.u.null
$par
lambda0 mu0 q01

23.69290 24.87693 679.78359

$lnLik
[1] -23.46765
....
> anova(out.u, out.u.null)

Df lnLik AIC ChiSq Pr(>|Chi|)
full 6 -21.030 54.060
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model 1 3 -23.468 52.935 4.8754 0.1812

The null model is again the best, but the estimates of λ and μ are much higher
because the number of species is now 38 instead of 20, for the same tree. This
result would be quite different if we had specify n0 = 10 in u.

Once a BiSSE model has been fitted, it is possible to calculate the ancestral
values of the binary trait with the function asr.marginal:10

> asr.marginal(f.null, coef(out.null))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

[1,] 0.5000001 0.5 0.5 0.5000001 0.5 0.5 0.5 0.5
[2,] 0.4999999 0.5 0.5 0.4999999 0.5 0.5 0.5 0.5

[,9] [,10] [,11] [,12] [,13] [,14] [,15]
[1,] 0.5000001 0.4999999 0.5 0.5 0.5 0.4999988 0.5
[2,] 0.4999999 0.5000001 0.5 0.5 0.5 0.5000012 0.5

[,16] [,17] [,18] [,19]
[1,] 0.4999999 0.5000001 0.4999995 0.03554341
[2,] 0.5000001 0.4999999 0.5000005 0.96445659

It could be checked that very close values are obtained with ace. We check
this by printing the estimated value of the rate of change of x (q):

> coef(out.null)["q01"]
q01

679.2548
> ace(x, tr, type = "d")$rates
[1] 680.1794

Also, the same results are found with the unresolved data (not shown).
The BiSSE model is extended by four other functions still under develop-

ment in diversitree. make.musse implements the multistate speciation and ex-
tinction (MuSSE) model where the trait influencing λ and μ has more than two
states (which is equivalent to consider multiple binary traits). make.quasse
implements the quantitative speciation and extinction (QuaSSE) model where
a single quantitative trait affects λ and μ [85]. At the moment these two func-
tions require a fully resolved phylogeny (i.e., the option unresolved is not
available, but see the option f.sampling described in the next paragraph).
make.bisse.split implements a BiSSE model with parameters changing
along the tree (specified with the option nodes). It can consider unresolved
phylogenies with the option unresolved. The fourth function, make.bisse.td,
implements a time-dependent version of BiSSE with its option n.epoch. It has
also an option unresolved. The last version of diversitree (0.7-2) includes sim-
ilar functions for the MuSSE model, make.musse.split and make.musse.td,
and two functions which extend make.bd.t (p. 267), make.bisse.t and
make.musse.t.
10 diversitree has also the functions asr.joint and asr.stoch to do stochastic re-

constructions but they currently work only with make.mk2.
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The functions of diversitree listed in this section can take uncertainty in
the trait into account with the option sampling.f. It gives the proportion of
species in each state that have been included in the phylogeny. This is a way
to include information from species not included in the tree. If the state of
a species included in the tree is unknown, it must be NA in the appropriate
vector (which is the case for unresolved clades).

The Yule model with covariates (yule.cov) and the MuSSE class of mod-
els have their own respective strengths. The former can model several traits
simultaneously—which has proved useful in the case of the effect of body mass
on diversification of primates [230]. The fact of assuming no extinction leads
to fast model fitting, and fairly large data sets may be handled easily. At the
moment, no approach has been developed to include missing data in the Yule
model with covariates, though some simple ad-hoc solutions are possible.

The MuSSE class of models has the advantage of modeling extinction ex-
plicitly, though with fairly large variance in the estimates [194], and the avail-
ability of several tools to take data uncertainty into account. Both maximum
likelihood and Bayesian estimation are possible (though Bayesian estimation
can be done with the Yule model with covariates).

6.3.6 Other Methods

This section develops two methods developed in the late 1990’s. They are
slightly outdated given the recent developments and extensions of the birth–
death model.

Survival Models

The problem of missing species in phylogenies motivated some initial works
on how to deal with this problem in the analysis of diversification. I suggested
the use of continuous-time survival models for this purpose because they can
handle missing data in the form of censored data [226].

Typical survival data are times to failure of individuals or objects [47].
It often occurs that some individuals are known to have been living until a
certain time, but their exact failure times are unknown for various reasons
(e.g., they left the study area, or the study ended before they failed or died).
This is called censorship. The idea is to use this concept for missing species
in phylogenies inasmuch as it is often possible to establish a minimum time
of occurence for them.

Using survival models to analyze diversification implies that speciation
and extinction rates cannot be estimated separately. The estimated survival
(or hazard) rate must be interpreted as a diversification rate. It is denoted δ
(= λ − μ). In theory a variety of models could be used, but only three are
implemented in ape (see [226] for details):

• Model A assumes a constant diversification rate through time;
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• Model B assumes that diversification changed through time according to
a Weibull distribution with a parameter denoted β. If β > 1, then the di-
versification rate decreased through time; if β < 1, then the rate increased
through time. If β = 1, then Model B reduces to Model A;11

• Model C assumes that diversification changed with a breakpoint at time
Tc.

These three models can be fit with the function diversi.time. This func-
tion takes as main arguments the values of the branching times (which can
be computed beforehand, for instance, with branching.times). As a simple
example, we take the data on Ramphocelus analyzed in [226]. This genus of
passerine birds includes eight species: six of them were studied by Hackett
[116] who resolved their phylogenetic relationships. For the two remaining
species, some approximate dates of branching could be inferred from data
reported in [116]. We enter the data by hand in R:

> x <- c(0.8, 1, 1.15, 1.55, 2.3, 0.8, 0.8)
> indicator <- c(rep(1, 5), rep(0, 2))
> diversi.time(x, indicator)

Analysis of Diversification with Survival Models

Data: x
Number of branching times: 7

accurately known: 5
censored: 2

Model A: constant diversification
log-likelihood = -7.594 AIC = 17.188
delta = 0.595238 StdErr = 0.266199

Model B: diversification follows a Weibull law
log-likelihood = -4.048 AIC = 12.096
alpha = 0.631836 StdErr = 0.095854
beta = 2.947881 StdErr = 0.927013

Model C: diversification changes with a breakpoint at time=1
log-likelihood = -7.321 AIC = 18.643
delta1 = 0.15625 StdErr = 0.15625
delta2 = 0.4 StdErr = 0.2

Likelihood ratio tests:
Model A vs. Model B: chi^2 = 7.092 df = 1, P = 0.0077

11 R uses a different parameterization of the Weibull distribution (see ?Weibull):
the scale parameter, denoted as b, is equal to 1/β.
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Model A vs. Model C: chi^2 = 0.545 df = 1, P = 0.4604

The results are simply printed on the screen. Note that here the branching
times are scaled in million years ago (Ma), and thus the estimated parameters
δ̂ (delta), α̂ (alpha), δ̂1 (delta1, value of δ after Tc in model C), and δ̂2

(delta2, value of δ before Tc in model C) must be interpreted with respect to
this time scale. However, the estimate of β (beta) and the values of the LRTs
are scale independent.

In spite of its simplicity, this method has some good statistical performance
in terms of type I and II error rates, and its χ2 tests are quite powerful with
small trees. It has also the merit to be easily computed.

Goodness-of-Fit Tests

As pointed out earlier in this chapter, the estimation of extinction rates is dif-
ficult with phylogenies of recent species because extinctions are not observed
[229]. However, it is clear that extinctions affect the distribution of branching
times of a given tree [126, 214]. An alternative approach to parametric mod-
els is to focus on this distribution and compare it to a theoretical one with
statistical goodness-of-fit tests based on the empirical cumulative distribution
function (ECDF) [291, 295]. These tests compare the ECDF of branching
times to the distribution predicted under a given model. The null hypothesis
is that the observed distribution comes from this theoretical one. A difficulty
of these tests is that their distribution depends on the null hypothesis, and
thus the critical values must be determined on a case-by-case basis.

The function diversi.gof implements the goodness-of-fit tests as applied
to testing a model of diversification [227]. It takes as main argument a vector
of branching times in the same way as diversi.time. The second argument
(null) specifies the distribution under the null hypothesis: by default null
= "exponential" meaning that it tests whether the branching times follow
an exponential distribution. The other possible choice is null = "user" in
which case the user must supply a theoretical distribution for the branching
times in a third argument (z).

As an application we consider the same data on Ramphocelus as in the
previous section:

> diversi.gof(x)

Tests of Constant Diversification Rates

Data: x
Number of branching times: 7
Null model: exponential

Cramer-von Mises test: W2 = 0.841 P < 0.01
Anderson-Darling test: A2 = 4.81 P < 0.01
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Two tests are computed: the Cramér–von Mises test which considers all
data points equally, and the Anderson–Darling test which gives more emphasis
in the tails of the distribution [292]. The critical values of both tests have been
determined by Stephens [291]. If we want to consider only the five accurately
known data points, the results are not changed:

> diversi.gof(x[indicator == 1])

Tests of Constant Diversification Rates

Data: x[indicator == 1]
Number of branching times: 5
Null model: exponential

Cramer-von Mises test: W2 = 0.578 P < 0.01
Anderson-Darling test: A2 = 3.433 P < 0.01

The results of these tests are scale independent.
Another goodness-of-fit test is the γ-statistic [250]. It is based on the in-

ternode intervals of a phylogeny: under the assumption that the clade diver-
sified at constant rates, it follows a normal distribution with mean zero and
standard deviation one. The γ-statistic can be calculated with the function
gammaStat which takes as unique argument an object of class "phylo". The
null hypothesis can be tested with:

1 - 2 * pnorm(abs(gammaStat(tr)))

6.3.7 Tree Shape and Indices of Diversification

The methods for analyzing diversification we have seen until now require
knowledge of the branch lengths of the tree. Some researchers have inves-
tigated whether it is possible to get some information on diversification using
only the topology of a phylogenetic tree (see [5, 10, 166] for reviews). Intu-
itively, we may expect unbalanced phylogenetic trees to result from differential
diversification rates. On the other hand, different models of speciation predict
different distributions of tree shapes.

apTreeshape implements statistical tests for two indices of tree shape:
Sackin’s and Colless’s. Their formulae are:

IS =
n∑

i=1

di ,

IC =
n−1∑
j=1

|Lj − Rj | ,
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where di is the number of branches between tip i and the root, and Lj and Rj

are the number of tips descendant of the two subclades originating from node
j. These indices have large values for unbalanced trees, and small values for
fully balanced trees. They can be calculated for a given tree with the functions
sackin and colless. Two other functions, sackin.test and colless.test,
compute the indices and test, using a Monte Carlo method, the hypothesis
that the tree was generated under a specified model. Both functions have the
same options:

colless.test(tree, model = "yule", alternative = "less",
n.mc = 500)

sackin.test(tree, model = "yule", alternative = "less",
n.mc = 500)

where tree is an object of class "treeshape", model gives the null model,
alternative specifies whether to reject the null hypothesis for small (default)
or large values (alternative = "greater") of the index, and n.mc gives the
number of simulated trees to generate the null distribution. The two possible
null models are the Yule model (the default), and the PDA (model = "pda").
These models are described on page 319.

A more powerful test of the above indices is the shape statistic which is the
likelihood ratio under both Yule and PDA models. This statistic has distinct
distributions under both models, so it is possible to define a most powerful
test (i.e., one with optimal probabilities of rejecting either hypothesis when it
is false). This is implemented in the function likelihood.test. We generate
a random tree with the Yule model, and then try the function:

> trs <- rtreeshape(1, 50, model = "yule")[[1]]
> likelihood.test(trs)
Test of the Yule hypothesis:
statistic = -1.207237
p.value = 0.2273407
alternative hypothesis: the tree does not fit the Yule model

Note: the p.value was computed according to
a normal approximation

> likelihood.test(trs, model = "pda")
Test of the PDA hypothesis:
statistic = -3.280261
p.value = 0.001037112
alternative hypothesis: the tree does not fit the PDA model

Note: the p.value was computed according to
a normal approximation

Aldous [9, 10] introduced a graphical method where, for each node, the
number of descendants of both subclades from this node are plotted one versus
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Fig. 6.14. Plot of the number of descendants of both subclades for each node of a
tree with 50 tips simulated under a Yule model. The labeled lines are the expected
distribution under these models, and the grey curve is a quantile regression on the
points

the other with the largest one on the x-axis. The expected distribution of these
points is different under the Yule and PDA models. The function aldous.test
makes this graphical analysis. Together with the points, the expected lines are
drawn under these two models. The option xmin = 20 controls the scale of
the x-axis: by default, the smallest clades are not represented which may be
suitable for large trees. If we do the Aldous test with the small tree simulated
above (Fig. 6.14):

aldous.test(trs, xmin = 1)

The expected lines are labeled with the null models just above them. The grey
curve is a quantile regression on the points.

6.3.8 Tests of Diversification Shifts

Several methods have been developed to test for the presence of shifts in
diversification using various kinds of data. One of the earliest tests was pro-
posed by Slowinski and Guyer [286] by analyzing species richness in a series
of sister-clades where one is characterized by a trait or a variable that is sup-
posed to affect the rate of diversification. The null hypothesis is that the trait
has no effect on diversification, whereas the alternative hypothesis is that the
trait increases diversification rate (this is a one-tailed test: it cannot detect
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if the trait decreases diversification). The test is implemented in the function
slowinskiguyer.test taking as argument a matrix with two columns giving
the species richness with and without the trait, respectively—each row being
a pair of sister-clades.

Several researchers have pointed out that the Slowinski–Guyer test is prone
to type II error when richness data are overdispersed [111, 304]. In addition, I
have shown that this test has relatively low statistical power—and so is prone
to type I error—in a wide range of realistic situations [233]. Three alternative
tests are available in ape.

The diversity contrast test is nonparametric and can be written in a generic
form as sign(x1i − x2i) × Ci where x1i and x2i are the numbers of species
from the ith pair of sister-clades and Ci is a contrast calculated with the
xi’s [304]. Four variants of this test have been proposed in the literature
[19, 20, 277, 313]. An extensive simulation study showed that it is the sim-
plest form with Ci = |x1i − x2i|, as proposed by Sargent [277], that has the
best statistical proporties [233]. The four versions are available in the function
diversity.contrast.test. By default, the null hypothesis that the distri-
bution of the diversity contrasts is centered on zero is tested with a Wilcoxon
test. If the option nrep is used, then a randomization test is done. The test
can be one- or two-tailed.

The McConway–Sims test [201], implemented in mcconwaysims.test, is
based on a likelihood-ratio test. This is a two-tailed test. The likelihood func-
tion assumes a geometric distribution of species richness. This test suffers
from the same low power and lack of robustness than the Slowinski–Guyer
one [233].

I have proposed a new test based on the distribution of species richnesses
from a Yule model. The probability to observe n species after a time t from
an initial single species is given by:

e−λt(1 − e−λt)n−1 .

A simple likelihood-ratio test may be calculated by fitting a null model with a
single value of λ and an alternative model with λ depending on the trait. This
is implemented in the function richness.yule.test. Some simulations have
shown it is more robust and powerful than the previous tests even when the
values of t are unknown [233]. The data considered by these tests are easily
simulated, for instance:

> n0 <- replicate(10, Ntip(rbdtree(.1, .09, Tmax = 35)))
> n1 <- replicate(10, Ntip(rbdtree(.15, .1, Tmax = 35)))

n1 contains the species richnesses in clades where diversification has increased.
We then bind the two vectors of species richnesses putting the clades with the
trait supposed to increase diversification first (the order is important for the
Slowinski–Guyer test):
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> x <- cbind(n1, n0)
> slowinskiguyer.test(x)

chisq df P.val
28.18434 20 0.1051071

> mcconwaysims.test(x)
chisq df P.val

8.151978 10 0.6139948
> richness.yule.test(x, 100)

chisq df P.val
6.739111 1 0.009432162

Note the robustness of the Yule-based test to the presence of extinctions even
though we speficied a wrong value of t (100).

These four tests require to identify a priori the clades that are susceptible
to show increased diversification. Two other tests try to find the nodes in
a phylogeny where diversification has increased without identifying them a
priori. They are implemented in the functions rc in geiger and shift.test
in apTreeshape. The first function implements a method developed by Purvis
et al. [249] based on the same principle than the Slowinski–Guyer test: at a
given time it evaluates all combinations that are less favorable to the null
hypothesis of equal diversification in all lineages. Arbitrarily, the time points
where the test is conducted are the branching times of the tree, so the analysis
essentially tests, for each node, whether diversification has increased in this
clade compared to the rest of the tree (Fig. 6.15).

The shift.test function provides an alternative test developed by Moore
et al. [207] based on the relative likelihoods of the distributions of species
richness comparing the two hypotheses with or without shifts in diversification
at a particular node. By contrast to Purvis et al.’s method, the present one
does not require branth lengths. It relies on calculating for each node of the
tree the Δ1 statistic:

Δ1 = ΛO − ΛI ,

Λ = lnL(x|H1) − lnL(x|H0) ,

where Λ is the likelihood ratio of the hypothesis, H1, that diversification rate
shifted at the node against the null hypothesis, H0, of homogeneous diversifi-
cation, and x are the data (i.e., the species richness of the outgroup and the
two sister-clades of the ingroup). The likelihood ratio is calculated at the node
ancestor of the ingroup and the outgroup (ΛO), and at the node ancestor of
the ingroup (ΛI ; Fig. 6.15). The significance of Δ1 is assessed with a Monte
Carlo procedure.

These two methods are mainly exploratory, and their results should be
taken as indications where diversification has been heterogeneous in a tree.
The interpretation of the level of significance of the possibly numerous tests
can be problematic [30].
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Fig. 6.15. Analysis of a phylogeny with Purvis et al.’s (top) and Moore et al.’s
(bottom) methods. The first method considers the number of descendants of the
lineages at a point in the past (e.g., the dashed grey line). The test calculates the
probability that the lineage with twelve surviving species had a higher diversification
rate compared to the five other lineages present at the same time. The present test
is significant (P = 0.029). Moore et al.’s method calculates the likelihood ratios ΛO

for the pair {12,2} and ΛI for the pair {6,6}, and is slightly significant (Δ1 = 1.999,
P = 0.049). The present tree was simulated using a Yule model with λ = 0.05

Alfaro et al. [11] developed a more sophisticated approach similar to step-
wise regressions. The analysis starts by fitting a constant-parameter model
which, in a second step, is complexified by adding a shift in parameters at
a node. Each node is tested in turn, and the one giving the best significant
increase in model fit is selected. More shifts are added in the subsequent steps.
A model is selected based on an increase in the AIC value, hence the name of
the method: MEDUSA (modeling evolutionary diversification using stepwise
AIC). In its current implementation, there is no objective stopping criterion:
diversification shifts are added until a limit specified by the user is reached.
The function in geiger is named runMedusa:

runMedusa(phy, richness, estimateExtinction = TRUE,
modelLimit = 20, cutAtStem = TRUE,
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startR = 0.05, startE = 0.5, ...)

phy, as usual, is a tree of class "phylo", and richness is a data frame with
the taxa names (matching the tip labels of phy) and the species richnesses.
The third option specifies whether to estimate extinction rate (the default),
or to assume μ = 0; modelLimit is the number of models output; cutAtStem
specifies if the shift concerns also the basal branch of the clade (the default);
and the last two options give starting values for the estimation process. The
model fitted is a birth–death model combining phylogenetic and taxonomic
data (Section 6.3.4). There is also a function summaryMedusa to summarize
the output of runMedusa and plot a phylogeny displaying the branches where
a significant shift in diversification was found.

fitNDR 2rate in laser does a similar analysis with only a single shift in
the tree. Its use is similar to fitNDR 1rate (p. 271).

6.4 Ecology and Biogeography

This section treats new topics compared to the first edition. It witnesses of
the vigorous developments that occurred in the last four years in this area.

6.4.1 Phylogenetic Diversity

Faith [73] was one of the first to propose the use of phylogenies to quantify
biodiversity with the logic that three distantly related species represent more
biological diversity than three, or even more, closely related ones. For a single
tree, phylogenetic diversity is computed as the length of the branch lengths:

> sum(tree.primates$edge.length)
[1] 3.32

picante has several functions to perform this kind of computations. They re-
quire two mandatory arguments: a data frame giving information on the dis-
tribution of the species in local communities (or samples), and a phylogeny
with these species. For instance, we build a simple data frame for our five
primate species (as columns) with a single sample (as rows):

> d <- as.data.frame(t(rep(1, 5)))
> names(d) <- tree.primates$tip.label
> pd(d, tree.primates)

PD SR
1 3.32 5

Phylogenetic diversity (PD) and species richness (SR) are computed for each
community. Table 6.2 describes functions in picante that performs various
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diversity calculations. These indices are closely related to the concept of phy-
logenetic covariances [132]. The phylogenetic relationships are established in-
dependently of the community structures (i.e., there is a single phylogeny for
all species). Note that PSE = PSV with presence / absence (0 / 1) data. It is
possible to compute the expected variances for PSV and PSR with the option
compute.var (TRUE by default).

Table 6.2. Phylogenetic diversity functions in picante. In addition psd is a wrapper
calling the last four functions

Function Quantity(ies) Description

pd Phylogenetic diver-
sity (PD)

Sum of branch lengths linking species in the com-
munity

Species richness (SR) Number of species in the community
psv Phylogenetic species

variability (PSV)
Mean of phylogenetic correlations among species in
the community; varies between 0 (phylogenetic and
community structures coincide) and 1 (no phyloge-
netic relationship among species in a community)

psr Phylogenetic species
richness (PSR)

PSR = PSV × SR

pse Phylogenetic species
evenness (PSE)

Similar to PSV but taking relative species abun-
dances into account (PSE = PSV with pres-
ence / absence data)

psc Phylogenetic species
clustering (PSC)

Mean of the deepest phylogenetic correlations in
the community; varies between 0 (species are con-
nected with zero-branch length) and 1 (species are
connected by a star tree to the root)

Nee and May [215] used Faith’s idea to devise an algorithm that opti-
mizes phylogenetic diversity in the face of extinction. This is implemented
in optimEH (optimize evolutionary history) in ade4. Consider our five-species
phylogeny and assume we want to optimize diversity while one species is going
extinct. Which species should be selected as “candidate” for extinction?

> optimEH(tree.primates, 4) # we want to keep 4 species
$value
[1] 3.11

$selected.sp
names

1 Homo OR Pongo
2 Macaca
3 Ateles
4 Galago
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So we should “sacrifice” either men or orang utans. (Sadly, the choice of the
latter seems to have been done already.) If one of these two species goes
extinct, the phylogenetic diversity will decrease from 3.32 to 3.11. See also
randEH to perform the same operation but after random extinction(s).

ade4 has another function, originality, to calculate the evolutionary
originality of each species according to seven methods described in Table 6.3:

> round(originality(tree.primates, method = 1:7), 4)
VW M NWU* NWW QEbased ED eqsplit

Homo 0.1071 0.1071 0.1071 0.1421 0.1122 0.4883 0.43
Pongo 0.1071 0.1071 0.1071 0.1421 0.1122 0.4883 0.43
Macaca 0.1429 0.1429 0.1429 0.1827 0.1764 0.6283 0.65
Ateles 0.2143 0.2143 0.2143 0.3198 0.2234 0.7150 0.81
Galago 0.4286 0.4286 0.4286 0.2132 0.3757 1.0000 1.00

The last two methods, which are very close in definition and present results,
are also available in evol.distinct in picante. See also orisaved in ade4 to
calculate the proportion of originality preserved after species extinction.

Table 6.3. The seven methods used to calculate species’s originality in the function
originality. Δ is the distance matrix among species

Description Ref.

VW Inverse of number of nodes from the tip to the root [305]
M Id. but each node is weighted by the number of branches de-

scending from it
[200]

NWU* Id. than VW but each node is weighted by 1 if its SR is higher
than the sister-node, 0 otherwise

[219]

NWW Inverse of SR of each subclade where the species belongs to [219]
QEbased Maximize the quadratic entropy (i.e., calculate Δ−11/1TΔ−11)

resulting in giving greater weights to the more distinctive species
[238]

ED Sum of branch lengths (weighted by their lengths divided by
their number of descendants) from the tip to the root

[147]

eqsplit Id. than ED but weights are lengths divided by degree of the
basal node

[263]

Rao’s quadratic entropy [239, 261] takes the phylogenetic distance among
species into account to compute diversity:

D =
n∑

i,j=1

di,jxixj , (6.18)

where i and j are pairs of species, di,j is the distance between them, and the
x’s are abundances. So Rao’s D will be high for communities made of many,
abundant, distantly-related species.
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raoD in picante takes as arguments a community matrix (communities
as rows, species as columns) and an ultrametric "phylo" tree.12 The second
argument is optional (in which case equidistance among species is assumed);
the tree is pruned if needed. For illustration, we add a second sample to the
above data frame d with random values from a Poisson distribution:

> d[2, ] <- rpois(5, 10)
> rownames(x) <- paste("Comm", 1:2)
> d

Homo Pongo Macaca Ateles Galago
Comm 1 1 1 1 1 1
Comm 2 8 9 8 19 10
> raoD(d, tree.primates)
$Dkk

Comm 1 Comm 2
0.5640000 0.5598491

$Dkl
Comm 1 Comm 2

Comm 1 0.5640000 0.5725185
Comm 2 0.5725185 0.5598491

$H
Comm 1 Comm 2

Comm 1 0.00000000 0.01059396
Comm 2 0.01059396 0.00000000

$total
[1] 0.5618443

$alpha
[1] 0.5602009

$beta
[1] 0.001643419

$Fst
[1] 0.002925043

Dkk: Rao’s D computed within each community (xi and xj are taken in the
same row of the matrix);

Dkl: the same but between pairs of communities (xi and xj are taken in two
rows of the matrix) so its diagonal repeats Dkk;

12 The function divc in ade4 calculates Rao’s D but the distances are square-rooted.
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H: between community diversity excluding within community diversity (Dkl
minus the mean of the Dkk’s);

total: Rao’s D computed on the pooled communities;
alpha: mean local diversity (sum of the Dkk’s weighted by the relative abun-

dance in each community);
beta = total − alpha;
Fst = beta/total.

Pavoine, Baguette and Bonsall [237] further developed the decomposition
of trait diversity using Rao’s quadratic entropy. They provide R code accom-
panying their paper.

6.4.2 Community Structure

The methodology of the analysis of phylogenetic community structure relies
on two main aspects: the use of a metric to quantify the distances among
species or communities, and the application of randomization procedures to
test the discrepancy between observed patterns and predictions from a null
model [303].

picante is the main package to analyze community structure in a phyloge-
netic framework. Most of the functions in this package need a matrix commu-
nity × species and either a phylogeny or a distance matrix for these species.
The matrix may give presence/absence or absolute or relative abundances.
Some methods also analyze species traits.

Table 6.4 lists four functions computing distances among communities. The
first two analyze a community data frame and a matrix of distances among
species. They both have an option abundance.weighted which is FALSE by
default and says that the data must be treated as presence/absence (must
be switched to TRUE to analyze abundances). The two other functions take a
community and a tree as arguments: they calculate complementary quantities.
These four functions return an object of class "dist".

Table 6.4. Phylogenetic community distances in picante

Function Description

comdist Mean pairwise distance between communitiesa

comdistnt Mean nearest taxon distance; 0 if species compositions are the same
phylosor Shared fraction of branch lengths between two communities
unifrac Non-shared fraction of branch lengths between two communities

aSame than Dkl in raoD but here the distances are not divided by two and they
can be non-ultrametric
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Two functions in picante assess phylogenetic community structure by
comparing co-occurences and phylogenetic distances: comm.phylo.cor and
phylostruct. Their arguments are:

comm.phylo.cor(samp, phylo, metric = "cij",
null.model = "sample.taxa.labels", runs = 999, ...)

phylostruct(samp, tree, env = NULL, metric = "psv",
null.model = "frequency", runs = 100, it = 1000,
alpha = 0.05, fam = "binomial")

The option null.model specifies how the data should be randomized to gen-
erate a null distribution of the test statistic; the values are listed below.

"sample.taxa.labels": shuffle phylogeny tip labels (only the species present
in the community data).

"pool.taxa.labels": shuffle phylogeny tip labels (all taxa in the phylogeny).
"frequency": randomize community data matrix abundances within species

(maintains species occurence frequencies).
"richness": randomize community data matrix abundances within samples

(maintains sample species richness).
"independentswap": randomize community data matrix maintaining species

occurrence frequencies and site richness using independent swaps.
"trialswap": randomize community data matrix maintaining species occur-

rence frequencies and site richness using trial swaps.

Only the last four randomization procedures are available for phylostruct.
comm.phylo.cor tests the null hypothesis of no correlation between the

phylogenetic and community structures. phylostruct calculates a null distri-
bution a the specified metric (PSV by default):

> comm.phylo.cor(d, tree.primates)
$obs.corr
[1] -0.07202592

$obs.corr.p
[1] 0.8432581

$obs.rank
[1] 247.5

$runs
[1] 999

$obs.rand.p
[1] 0.2475
....
> phylostruct(d, tree.primates)
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$metric
[1] "psv"

$null.model
[1] "frequency"

$runs
[1] 100

$it
[1] NA

$mean.obs
[1] 0.705

$mean.null
[1] 0.705

$quantiles.null
2.5% 97.5%

0.705 0.705
....

The output of these functions include all values calculated at each run.
spacodiR provides another set of tools to assess phylogenetic community

structuring based on Rao’s quadratic entropy. They use modified estimators of
Rao’s D inspired from variance component estimators where a bias correction
is applied with respect to sample size:

D̂k =
nk

nk − 1
Dk ,

where nk is the number of individuals in the kth community and Dk is com-
puted with (6.18) for the N communities (k = 1, . . . , N). Hardy and Senterre
[124] used this estimator to characterize diversity into a local, DS (site), and
a global, DT (total), component:

D̂S =
1
N

D̂k ,

D̂T =
1

N(N − 1)
DT ,

where DT is computed with (6.18) using the pooled community data. This
leads to the following index:

D̂T − D̂S

D̂T

.
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Two versions of this index are derived: IST calculated without taking phy-
logeny into account (similar to assuming a star-tree among species), and PST

which takes phylogeny into account. Hardy and Senterre developed a third
index, ΠST , which is similar to PST but considering only presence / absence
data. Hardy and Jost [123] proposed a fourth index, BST , which quantifies
how much species in the same community are more closely related than those
in different communities, so BST ≈ PST − IST .

These four indices are computed by the function spacodi.calc. The main
argument is a matrix with species as rows and communities as columns, which
is the transpose of the format required by picante. Fortunately, spacodiR has
several functions to convert community matrices among different packages
including the program phylocom. The second argument is the phylogeny:

> spacodi.calc(as.spacodi(d), tree.primates)
Formatting assumed to be that used with picante
$Ist
[1] -0.1134949

$Pst
[1] -0.1118464

$Bst
[1] -0.0003915409

$PIst
[1] 0
....

Because here N = 2, D̂T < D̂S leading to negative indices.
Overall, picante and spacodiR offer a wide range of tools for community

phylogenetics. Currently, these approaches are mainly descriptive or correla-
tive. Recently, Ives and Helmus proposed an approach based on generalized
linear mixed-effects models aiming to test more complex hypotheses of com-
munity structure and trait evolution [148]. Merging the community approach
with models of diversification and trait evolution will be an exciting area of
future research leading to more mechanistic models of biodiversity.

6.4.3 Phylogenetic Biogeography

Biogeography is the science of the geographical distribution of living species.
There is a long tradition of integrating biogeography with evolutionary biology
[e.g., 25, 191, 209], and in the past few years, some attempts have been made
to develop a phylogenetic approach to biogeographical inference [189]. Lamm
and Redelings [175] gave an overview of these recent developments which are
mostly based on the use of Markovian models for discrete character change to
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model changes in geographic distributions over time. By coding the geographic
ranges as discrete character(s), the methodology outlined on pages 139 and
247 can be utilized to infer ancestral ranges and the rates of biogeographical
processes such as dispersal or regional extinction.

Thus it appears that some functions in various packages can be used for
biogeographical analyses with no pain. As a first example, Ree and Smith [264]
summarized a parametric approach named dispersal–extinction–cladogenesis
(DEC). In their model, space is divided into discrete units labeled A, B, C,
etc., and the geographic ranges of species are thus A if the species is present
in unit A, AB if it is present in both A and B, and so on. These define the
states for the Markov model. Two basic events are considered: dispersal with
rate d leading to the colonization of a single new unit (e.g., A → AB), and
extinction with rate e leading to a range contraction by a single unit (e.g.,
AB → A) or to complete extinction (e.g., A → ∅). Only single-unit steps are
permitted as transitions. For a two-unit area, the model would therefore be:

⎡
⎢⎢⎣

∅ A B AB

∅ . 0 0 0
A e . 0 d
B e 0 . d

AB 0 e e .

⎤
⎥⎥⎦ .

As above, the zeros indicate transitions that cannot be done directly. This
model can be built for an analysis with ace (p. 252) as follows:

> m <- matrix(0, 4, 4)
> m[c(2:3, 8, 12)] <- 1
> m[14:15] <- 2
> m

[,1] [,2] [,3] [,4]
[1,] 0 0 0 0
[2,] 1 0 0 2
[3,] 1 0 0 2
[4,] 0 1 1 0

The trait is coded with a four-state vector or factor where, obviously, the first
state (∅) cannot be observed. The likelihood values of the ancestral states give
a reconstruction of the ancestral ranges along the phylogeny.

This formulation can be generalized to more than two area units, for in-
stance with three units [264, 265]:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∅ A B C AB AC BC ABC

∅ . 0 0 0 0 0 0 0
A e . 0 0 d d 0 0
B e 0 . 0 d 0 d 0
C e 0 0 . 0 d d 0

AB 0 e e 0 . 0 0 2d
AC 0 e 0 e 0 . 0 2d
BC 0 0 e e 0 0 . 2d

ABC 0 0 0 0 e e e .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The transition AB → ABC happens at rate 2d because the colonization may
occur from unit A or from unit B. Coding this model is problematic with ace
because of this parameterization resulting in some constraints on transition
rates. make.mkn from diversitree may be used here because it accepts linear
constraints (a rate being proportional to another; ace accepts only equality
constraints where a rate is equal to another). However, coding the above
model directly in make.mkn will be somewhat tedious because of the many
constraints to code (p. 273). An alternative is to reparameterize the model
to simplify it thanks to the assumption of isotropic colonization (dispersal
can reach any unit from any occupied one). Thus geographic range may be
recoded with a four-state character giving the number of occupied units: 0
(∅), 1 (A, B, or C), 2 (AB, AC, or BC), and 3 (ABC). The transition matrix
becomes:

⎡
⎢⎢⎣

0 1 2 3

0 . 0 0 0
1 e . d 0
2 0 e . 2d
3 0 0 e .

⎤
⎥⎥⎦ .

Manipulating the model in this form with make.mkn is now much easier.
On the other hand, Ree and Sanmart́ın [264] proposed to relax the assump-

tion of isotropic dispersal by adding proportional constraints (e.g., dispersal
between units B and C occurs at rate 0.1d). In this situation, the above sim-
plification cannot be done and a complete rate matrix must be built. More
steps in relaxing the model could be done by assuming different rates of dis-
persal among geographic units. In those cases, an anlysis with either ace or
make.mkn may be conducted. With these functions, different models can be
compared using the usual likelihood tools (LRT or AIC).

Instead of fitting a Markov model by maximum likelihood, a parsimony
approach can be used as proposed by Ronquist [270]. This is the dispersal–
vicariance (DIVA) method. Each kind of event is associated with a cost: zero
for speciation, either by vicariance (e.g., splitting of AB into A and B), or by
“local” divergence within a single unit, one for dispersal or local extinction.
Other kinds of events must be compounded from these four basic events. For
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instance, if an ancestral species has range AB and its two daughter-species
as well, this implies speciation by vicariance followed by two dispersal events,
and thus a total cost of two. For the two-unit case, the cost matrix is:

⎡
⎣

A B AB

A 0 1 1
B 1 0 1

AB 0 0 2

⎤
⎦ ,

which can be used in phangorn and the function parsimony with its option
cost. The ancestral reconstructions are done with ancestral.pars. The cost
matrix is built with:

> m <- c(0, 1, 0, 1, 0, 0, 1, 1, 2)
> dim(m) <- c(3, 3)
> m

[,1] [,2] [,3]
[1,] 0 1 1
[2,] 1 0 1
[3,] 0 0 2

Before calling a function in phangorn the data must be converted into
"phyDat" class. Suppose the ranges are stored in a character vector x:

> x
[1] "AB" "B" "A" "B" "B" "A" "AB" "AB" "AB" "AB" "A"
[12] "B" "B" "B" "AB" "A" "B" "AB" "AB" "A"
> y <- phyDat(matrix(x), "USER", levels = unique(x))

The parsimony score and the ancestral values are calculated with:

parsimony(tr, y, "sankoff", cost = m)
ancestral.pars(tr, y)

Lamm and Redelings [175] pointed out that because DIVA minimizes the
number of inferred dispersal and extinction events, this method tends to recon-
struct widespread ancestral ranges. Obviously, the cost matrix can be easily
modified to relax the assumption of greater cost of dispersal and extinction
compared to speciation. The function MPR (p. 248) may also be used if the
problem is reparameterized with the number of geographical units occupied.

Goldberg, Lancaster and Ree [110] used the MuSSE model framework
(p. 276) to develop a biogeographical model with three states representing
the geographic range: restricted (A or B) or widespread (AB). Their model
has seven parameters: the speciation rates (λA, λB, λAB), the local extinction
rates (μA, μB), and the dispersal rates from region A or B (dA, dB). It is im-
plemented in the function make.geosse in the package diversitree. Hypotheses
can be tested with the function constrain in the same way detailed above
for the BiSSE model.
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6.4.4 Niche and Bioclimatic Evolution

The availability of large data sets of species distributions and environmen-
tal variables has revived the interest in the concept of ecological niche [308].
Recent developments have attempted to quantify the niche of a species with
empirical and theoretical distributions that are closely related to probabil-
ity density functions. This approach is called environmental niche modeling
(ENM). Basically, the output of such models is made of a vector of intervals
of an environmental variable, and the corresponding expected proportions of
occurence of the species. See Franklin [89] for an overview of methods.

Given a set of species with their respective ENM and a phylogeny, it
is of interest to reconstruct the ancestral states of the niche. Graham et al.
[114] used ancestral estimation for continuous characters to infer the ancestral
values of the minimum and the maximum of the ENMs calculated for a group
of frog species. This approach has the drawback of not integrating all the
information in the niche model in the evolutionary analysis. To remedy this,
Evans et al. [72] analyzed the output of ENMs by treating each component of
the niche model and analyzing it with an ancestral reconstruction method.

phyloclim is a specialized package with methods to analyze and model
bioclimatic niche evolution. The function anc.clim implements Evans et al.’s
method:

anc.clim(target, posterior=NULL, pno, n=100, method="GLS")

target is a phylogeny and pno (predicted niche occupancy) is an output
from a program estimating the niche of the species in target. The option
posterior is an alternative to target as a list of trees: the estimation is
done on each tree in the list. n controls the sampling process of pno before
calling ace (p. 248) on each quantile point of the data in pno. As a simple
example, we generate random data for an imaginary environmental variable
varying from 1 to 10 for the five primate species:

> f <- function(n) {x <- runif(n); x/sum(x)}
> X <- as.data.frame(cbind(1:10, replicate(5, f(10))))
> names(X) <- c("variable", tree.primates$tip.label)
> X[1:2, 1:3]

variable Homo Pongo
1 1 0.006232414 0.02663926
2 2 0.107894926 0.12386842

The columns of the data frame must be ordered like in this example. We can
now call anc.clim:

o <- anc.clim(tree.primates, pno = X)

The companion funcion of anc.clim is plotAncClim which displays
the result of the reconstruction of the ancestral niches with the phylogeny
(Fig. 6.16):
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plotAncClim(o, xspace = c(-0.3, -0.3), col = rep("black", 5))
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Fig. 6.16. Plot of ancestral niches

The function niche.overlap calculates two indices of niche overlap from
a data frame similar to X or from data files on the disk storing similar infor-
mation (e.g., output from a geographical information system).

> D <- niche.overlap(X)
> D

Homo Pongo Macaca Ateles Galago
Homo NA 0.7824326 0.7627297 0.6801493 0.6843619
Pongo 0.8122422 NA 0.7114907 0.6605182 0.5314554
Macaca 0.8325692 0.7982735 NA 0.7623236 0.6021067
Ateles 0.7742633 0.7451474 0.8582586 NA 0.5612213
Galago 0.8208744 0.6818138 0.7625051 0.7347804 NA
attr(,"class")
[1] "niolap"

The upper and lower triangles contain Schoener’s similarity and a similarity
based on the Hellinger distance, respectively. Schoener’s similarity is derived
from the Manhattan distance and is defined as [281]:
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D(i, j) = 1 − 1
2

∑
|pi − pj | ,

so it can also be computed with 1 - dist(t(X[, -1]), "manhattan")/2.
The Hellinger distance is a measure of the dissimilarity between two proba-
bility distributions and is defined as:

H(i, j)2 =
1
2

∑ (√
pi −

√
pj

)2
.

This leads to the similarity index defined by Warren et al. [310] as:

I(i, j) = 1 − H(i, j)2 .

The function age.range.correlation analyzes niche overlap quantifued
with the above similarity indices: a linear regression is done with niche overlaps
as response and divergence times as predictor. Significance is assessed by
randomization controlled by the option n = 1000 by default.

out.arc <- age.range.correlation(tree.primates, D)

The option tri, not used here, specifies which similarity matrix to use with
two possible choices: "upper" (the default) or "lower". The results are re-
turned as a list whose elements can be plotted with (Fig. 6.17):

plot(out.arc$age.range.correlation)
apply(out.arc$MonteCarlo.replicates, 1, abline,

lwd = 0.2, col = "grey")
abline(out.arc$linear.regression$coefficients)

6.4.5 Coevolutionary Phylogenetics

The study of cospeciation between phylogenies of parasites and their hosts
has attracted a lot of attention. Currently, one method is available in ape: the
ParaFit method by Legendre, Desdevises and Bazin [180]. It requires three
matrices: the phylogenetic distances among the hosts (C), the phylogenetic
distances among the parasites (B), and an association matrix (A) with hosts
as rows and parasites as columns containing 1’s for the observed pairs of host–
parasite or 0’s otherwise. A fourth matrix is computed as D = CAT B. This
double matrix product has for effect to multiply the pairwise evolutionary
distances of the hosts and the parasites with the weights given by A. So the
elements of D will be high if a pair of hosts and a pair of parasites have both
diverged deeply and some of them are associated. On the other hand, they
will be low if the pairs have diverged recently and / or are not associated.
This leads to a test of global cospeciation among the hosts and the parasites
defined as ParaFitGlobal = tr(DT D) =

∑
ij d2

ij . The significance of this test
is assessed by randomization of the rows of the matrix A. The null hypothesis
is that the hosts and their parasites have speciated independently.
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Fig. 6.17. Results of an analysis of niche overlap with respect to divergence time
(age). The grey lines represent the randomized regressions

The ParaFit method is programmed in the function parafit: its first three
arguments are mandatory and give the distances among hosts, the distances
among parasites, and their association matrix. Other optional arguments con-
trol the number of replicates of the randomization tests and whether to per-
form individual host–parasite tests (see below). As an example, we simulate a
pair of trees with perfect cospeciation, so the trees are identical (with different
labels) and the association matrix is a diagonal matrix:

> H <- P <- rcoal(10)
> H$tip.label <- paste("host", 1:10)
> P$tip.label <- paste("parasite", 1:10)
> A <- diag(10)
> dimnames(A) <- list(H$tip.label, P$tip.label)
> A[1:4, 1:4]

parasite 1 parasite 2 parasite 3 parasite 4
host 1 1 0 0 0
host 2 0 1 0 0
host 3 0 0 1 0
host 4 0 0 0 1

We thus expect a strongly significant test of global cospeciation:

> parafit(cophenetic(H), cophenetic(P), A)
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n.hosts = 10 , n.parasites = 10
....
Test of host-parasite coevolution

Global test: ParaFitGlobal = 1234.557
p-value = 0.001 (999 permutations)

....
Number of parasites per host
host 1 host 2 host 3 host 4 host 5 host 6 host 7

1 1 1 1 1 1 1
host 8 host 9 host 10

1 1 1

Number of hosts per parasite
parasite 1 parasite 2 parasite 3 parasite 4 parasite 5

1 1 1 1 1
parasite 6 parasite 7 parasite 8 parasite 9 parasite 10

1 1 1 1 1

As an alternative example, we change the matrix A by randomly assigning
links among hosts and parasites:

> A[] <- rbinom(100, size = 1, prob = 0.5)
> A[1:4, 1:4]

parasite 1 parasite 2 parasite 3 parasite 4
host 1 1 1 1 1
host 2 1 0 0 1
host 3 0 1 1 1
host 4 1 0 1 0
> parafit(cophenetic(H), cophenetic(P), A)
n.hosts = 10 , n.parasites = 10
....
Test of host-parasite coevolution

Global test: ParaFitGlobal = 184.2006
p-value = 0.178 (999 permutations)

....
Number of parasites per host
host 1 host 2 host 3 host 4 host 5 host 6 host 7

6 4 4 3 7 5 7
host 8 host 9 host 10

4 6 8

Number of hosts per parasite
parasite 1 parasite 2 parasite 3 parasite 4 parasite 5

9 6 7 7 6
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parasite 6 parasite 7 parasite 8 parasite 9 parasite 10
5 3 5 4 2

So, logically, if the phylogenies of the hosts and the parasites are identical but
their associations are random, there is no significant cospeciation.

parafit can also performs tests of individual host–parasite association
with the option test.links = TRUE. These tests are based on the idea that
each observed association contribute to the “ParaFitGlobal” test, so that
deleting it decreases the value of the global test.

6.5 Perspectives

In the first edition of this book, some perspectives were drawn for the future
developments of the methods for macroevolutionary analyses in R. Most of
them have been accomplished during the last five years. For comparative
methods, most published methods are available in several packages, and those
not yet available can be more or less easily programmed. For diversification
analyses, R provides all published methods and is now clearly the software de
choix to address issues in diversification and macroevolution. The perspectives
for the future are now of continuous progress and improvement. The tight
integration with statistical, simulation, and graphical tools will lead to fast
and reliable development for at least the next few years.

6.6 Case Studies

The case studies are here reduced to the Sylvia warblers for which we have
estimated several trees in Chapter 5.

6.6.1 Sylvia Warblers

We begin by reading in the Sylvia data if necessary. We drop the outgroup
species (Chamaea fasciata) for which we have no ecological data:

load("sylvia.RData")
nj.est <- read.tree("sylvia_nj_k80.tre")
nj.est <- drop.tip(nj.est, "Chamaea_fasciata")

We also sort the data frame of ecological data so that its rows are in the same
order as the tip labels of the tree:13

DF <- sylvia.eco[nj.est$tip.label, ]

13 Most functions in ape and ade4 do not need this because the tip labels and the
rownames are matched, but because here there are extra species in sylvia.eco,
we do both operations at once.
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We focus on an analysis of the geographical range by trying to reconstruct
the evolution of this character. Migratory behavior is tightly linked with ge-
ographical range:

> table(DF$geo.range, DF$mig.behav)

long resid short
temp 0 4 0
temptrop 9 0 4
trop 0 7 0

We can assume in a first step that evolutionary changes among the three
states occur at the same rate. We fit a model with ace using the option type
= "discrete"—which may be abbreviated with "d"—and the default model
(equal rates):

> syl.er <- ace(DF$geo.range, nj.est, type = "d")
> syl.er

Ancestral Character Estimation

Call: ace(x = DF$geo.range, phy = nj.est, type = "d")

Log-likelihood: -22.16276

Rate index matrix:
temp temptrop trop

temp . 1 1
temptrop 1 . 1
trop 1 1 .

Parameter estimates:
rate index estimate std-err

1 5.4806 1.8448

Scaled likelihoods at the root
(type ’...$lik.anc’ to get them for all nodes):

temp temptrop trop
0.01809245 0.90972802 0.07217953

We now fit the symmetrical model where transition rates differ from one state
to another but transitions between two given states have equal rates in both
directions. We use the short-cut model = "SYM":

> syl.sym <- ace(DF$geo.range, nj.est, type="d", model="SYM")
> syl.sym

Ancestral Character Estimation
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Call: ace(x=DF$geo.range, phy=nj.est, type="d", model="SYM")

Log-likelihood: -20.38674

Rate index matrix:
temp temptrop trop

temp . 1 2
temptrop 1 . 3
trop 2 3 .

Parameter estimates:
rate index estimate std-err

1 3.4911 1.9330
2 0.0000 NaN
3 10.1228 4.3518

Scaled likelihoods at the root
(type ’...$lik.anc’ to get them for all nodes):

temp temptrop trop
0.001717209 0.777724754 0.220558038

This model fits better: this is not surprising because we added two parameters.
We can compute the likelihood ratio test comparing the two models to test
whether the increase in fit is significant:

> anova(syl.er, syl.sym)
Likelihood Ratio Test Table
Log lik. Df Df change Resid. Dev Pr(>|Chi|)

1 -22.163 1
2 -20.387 3 2 3.552 0.1693

This is not significant. We may want to try an intermediate “custom” model
where only the transitions temp↔ temptrop↔ trop are permitted. We define
a symmetric matrix mod which is used as a model in ace:

> mod <- matrix(0, 3, 3)
> mod[2, 1] <- mod[1, 2] <- 1
> mod[2, 3] <- mod[3, 2] <- 2
> mod

[,1] [,2] [,3]
[1,] 0 1 0
[2,] 1 0 2
[3,] 0 2 0

The rate matrix mod has two parameters: the first one for the transition temp
↔ temptrop, and the second one for the transition temptrop ↔ trop.
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> syl.mod <- ace(DF$geo.range, nj.est, type="d", model=mod)
> syl.mod

Ancestral Character Estimation

Call: ace(x=DF$geo.range, phy=nj.est, type="d", model=mod)

Log-likelihood: -20.38674

Rate index matrix:
temp temptrop trop

temp . 1 0
temptrop 1 . 2
trop 0 2 .

Parameter estimates:
rate index estimate std-err

1 3.4911 2.0072
2 10.1228 4.3878

Scaled likelihoods at the root
(type ’...$lik.anc’ to get them for all nodes):

temp temptrop trop
0.001717212 0.777724598 0.220558190

This model has no nestedness relationship with the two others (i.e., it cannot
be derived from the symmetrical model with an equality constraint, and it
cannot be reduced to the equal-rate model either). Therefore, we compare
these three models with their AIC values:

> sapply(list(syl.er, syl.sym, syl.mod), AIC)
[1] 46.32552 46.77348 44.77348

The slighly smaller AIC value of the equal-rate model compared to the sym-
metrical one confirms the result of the likelihood ratio test. However, the
custom model has the smallest AIC value among the three models and we
select it for further analyses.

How do we interpret the rates estimated by ace? We use the methodology
described for substitution models to calculate a probability matrix from the
rate matrix (Section 5.2.1). We first build the latter with the estimated rates.
A good starting point is to take rate index matrix returned by ace, then
setting its diagonal to zero:

> Q <- syl.mod$index.matrix
> Q

[,1] [,2] [,3]
[1,] NA 1 0
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[2,] 1 NA 2
[3,] 0 2 NA
> diag(Q) <- 0

We can then extract the estimated rates and fill the appropriate elements of
the matrix:

Q[1, 2] <- Q[2, 1] <- syl.mod$rates[1]
Q[2, 3] <- Q[3, 2] <- syl.mod$rates[2]

The above syntax is clear but there is a more general one that works in all
situations:

Q[] <- c(0, syl.mod$rates)[Q + 1]

We set the diagonal of the matrix so that the rows sum to zero (the command
below will work if this diagonal is initially filled with zeros):

> diag(Q) <- -rowSums(Q)
> Q

[,1] [,2] [,3]
[1,] -3.491143 3.491143 0.00000
[2,] 3.491143 -13.613993 10.12285
[3,] 0.000000 10.122850 -10.12285

The rate matrix is now ready and we can compute the probabilities for a given
time. The latter must be relevant with respect to the estimated parameters
(i.e., on the same scale as the original branch lengths); here we take t = 0.05:

> P <- matexpo(0.05 * Q)
> rownames(P) <- c("temp", "temptrop", "trop")
> colnames(P) <- rownames(P)
> P

temp temptrop trop
temp 0.8509512 0.1201852 0.0288636
temptrop 0.1201852 0.5861571 0.2936578
trop 0.0288636 0.2936578 0.6774786

These probabilities suggest that temperate-tropical is the most “unstable”
state, and that most transitions occur between this state and the tropical
one. Temperate species seem to evolve only from temperate-tropical ones.

We now plot the likelihoods of the ancestral characters on the tree to-
gether with the values observed for the species. We first create a vector of
mode character to store the colors used for the symbols on the tips: black for
temperate, white for tropical, and grey for temperate-tropical.

co <- rep("grey", 24)
co[DF$geo.range == "temp"] <- "black"
co[DF$geo.range == "trop"] <- "white"
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Sylvia layardi
Sylvia boehmi
Sylvia buryi
Sylvia lugens
Sylvia hortensis
Sylvia leucomelaena
Sylvia crassirostris
Sylvia curruca
Sylvia subcaeruleum
Sylvia nana

Sylvia deserticola
Sylvia undata
Sylvia balearica
Sylvia conspicillata

Sylvia melanocephala
Sylvia mystacea
Sylvia cantillans

Sylvia melanothorax
Sylvia rueppelli

Sylvia communis
Sylvia nisoria

Sylvia atricapilla
Sylvia borin
Sylvia abyssinica

Fig. 6.18. Ancestral estimates of geographical range for 24 species of Sylvia. The
thermometers on the nodes show the relative likelihoods of the three states: tem-
perate (black), temperate-tropical (grey), tropical (white). The state of the recent
species are shown on the tips of the tree

We plot the tree as a cladogram to better display the information; the option
label.offset is used to leave some space for the symbols. The latter are
drawn with tiplabels: the symbols are colored with the vector co prepared
above, and adj = 1 avoids the symbols overlapping with the tips of the tree.
Finally, the likelihoods of the ancestral characters are added with nodelabels
using the option thermo (Fig. 6.18):

plot(nj.est, "c", FALSE, no.margin = TRUE, label.offset = 1)
tiplabels(pch = 22, bg = co, cex = 2, adj = 1)
nodelabels(thermo = syl.mod$lik.anc, cex = 0.8,

piecol = c("black", "grey", "white"))

From this analysis we can infer that the ancestor of the genus Sylvia was,
probably, a temperate-tropical bird. Because all temperate-tropical Sylvia are
also migratory, this genus probably evolved from a temperate-tropical migra-
tory species.

We continue with an analysis of diversification by first reading back the
estimated chronogram in R:

sylvia.chrono <- read.tree("sylvia.chrono.tre")
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We are interested here in the diversification parameters of this group. We first
estimate the global speciation rate of this phylogeny by fitting a Yule model:

> yule(sylvia.chrono)
Constant rate Yule model likelihood function:
$lambda
[1] 0.2474897

$se
[1] 0.05276498

$loglik
[1] -1.113822

The estimated speciation probability is quite high (λ̂ = 0.25± 0.05). We now
try to fit the simple birth–death model:

> birthdeath(sylvia.chrono)

Estimation of Speciation and Extinction Rates
with Birth-Death Models

Phylogenetic tree: sylvia.chrono
Number of tips: 24

Deviance: 2.068224
Log-likelihood: -1.034112

Parameter estimates:
d / b = 0.2668499 StdErr = 0.4236002
b - d = 0.2056182 StdErr = 0.08229464

(b: speciation rate, d: extinction rate)
Profile likelihood 95% confidence intervals:

d / b: [0, 0.6152018]
b - d: [0.1271991, 0.3129619]

This is an interesting result because in most applications of the birth–death
model without fossils the estimated extinction probability is usually zero, even
when there are extinctions [229]. The estimated parameters are â = 0.27 and
r̂ = 0.21. By back-substitution using λ = r/(1 − a) and μ = λa, we obtain
λ̂ = 0.28 and μ̂ = 0.07. We can compare the Yule model with the birth–
death model with a likelihood ratio test because the latter has one additional
parameter (μ):

> 1 - pchisq(2*(-1.034112 - -1.113822), 1)
[1] 0.6896911

This is not significant leading us to accept the null hypothesis that μ = 0,
but we need to be very cautious about this result because the estimation
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of extinction rates is particularly difficult with phylogenies of recent species
[229].

We now explore the possible effect of geographic range on speciation rate
using the Yule model with covariates. This analysis requires ancestral values
of this trait which can be obtained from the previous analysis. However, we
need to repeat it with the chronogram instead of the NJ tree (which would
eventually show that our inference relative to the ancestral states of geographic
range are overall robust to the phylogeny we used, though we do not detail
this point here).

x <- sylvia.eco[sylvia.chrono$tip.label, "geo.range"]
ANC <- ace(x, sylvia.chrono, type = "d", model = mod)

The element lik.anc of the object ANC stores the relative likelihoods of the
ancestral states:

> ANC$lik.anc[1:3, ]
temp temptrop trop

[1,] 0.11797210 0.3921956 0.4898323
[2,] 0.00686829 0.6445059 0.3486258
[3,] 0.01302076 0.4493441 0.5376351

A simple way to derive ancestral states from this matrix is to find the maxi-
mum value for each row:

> anc <- apply(ANC$lik.anc, 1, which.max)
> anc
[1] 3 2 3 3 3 2 2 1 1 1 2 2 2 1 3 3 3 3 2 3 3 3 3

Because x is ordered along the tips and anc is ordered along the nodes, we
can concatenate them to create a factor which will be used as a predictor in
yule.cov:

> X <- factor(c(x, anc))
> yule.cov(sylvia.chrono, ~ X)

---- Yule Model with Covariates ----

Phylogenetic tree: sylvia.chrono
Number of tips: 24

Number of nodes: 23
Deviance: -0.07197108

Log-likelihood: 0.03598554

Parameter estimates:
Estimate StdErr

(Intercept) -0.0535529 0.6887034
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X2 -1.4608019 0.7619809
X3 -0.9775966 0.7469707

Null Deviance: 2.227645
Test of the fitted model: chi^2 = 2.3 df = 2 P = 0.317

We recall that the predictors in the Yule model with covariates are interpreted
in the same way than in a linear model; so a factor with k levels is modeled
with k − 1 coefficients. The predicted values of speciation rates for the three
levels can be calculated with the inverse logit function (6.17):

> 1 / (1 + exp(-(-0.0535529)))
[1] 0.486615
> 1 / (1 + exp(-(-0.0535529 -1.4608019)))
[1] 0.1802943
> 1 / (1 + exp(-(-0.0535529 -0.9775966)))
[1] 0.2628613

This shows quite important differences but they appear as not significant
from the likelihood ratio test comparing this model with the null Yule model
(χ2

2 = 2.3, P = 0.317).
This analysis assumes that the ancestral values are given, which is not a

reflection of the reality. Furthermore, we have inferred relative likelihoods for
each node, so we can use them to sample the three states of the geographic
range, and repeat the above analysis a large number of times. The goal of this
analysis is to assess the impact of the choice of particular ancestral values on
the results of the Yule model with covariates.

In order to perform a random sample of the three states, we use the func-
tion sample with its option prob. We thus build a function which will be
applied to each row of ANC$lik.anc as we did above with which.max:

fsamp <- function(x) sample(length(x), size = 1, prob = x)

Note that we used length(x) instead of ‘3’ so that this code can be used with
any number of states. We can now repeat the model fitting procedure a large
number of times. We here simply focus on the P -value of the likelihood ratio
test:

nrep <- 1e3
Pvls <- numeric(nrep)
for (i in 1:nrep) {

anc <- apply(ANC$lik.anc, 1, fsamp)
X <- factor(c(x, anc))
Pvls[i] <- yule.cov(sylvia.chrono, ~ X)$Pval

}

We can then compute a summary of the distribution of Pvls or plot a his-
togram of its relative frequencies together with a smoothed density curve
(Fig. 6.19):
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Fig. 6.19. Histogram and smoothed density curve of 1000 P -values from resampling
of ancestral states before fitting a Yule model with covariates on the Sylvia data

hist(Pvls, freq = FALSE, main = "")
lines(density(Pvls))

It appears that some P -values are less than 0.05 but they occurred at a low
frequency. So the results may be affected by the choice of ancestral values,
but using the evidence from the likelihood values, we can conclude that the
previous results were not affected by the choice of the most likely ancestral
values.

6.7 Exercises

1. Simulate for 99 time-steps two independent Brownian motion models with
the same initial values. These variables should be taken as two species
that have diverged after t = 1, and they should be stored in a two-column
matrix.
(a) Simulate the divergence of each species in two daughter-species at

t = 100 under the same model for 100 time-steps: the results should
be stored in a four-column matrix. Plot the whole evolution for the
200 time-steps on a single graph.

(b) Repeat (a) but using an Ornstein–Uhlenbeck model with α = 0.2,
θ1 = −1 for the first pair of species, and θ2 = 1 for the second one.
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(c) Repeat (b) with θ1 = −20 and θ2 = 20. Compare the results.

2. Repeat the analyses on the primate data with Moran’s I (Section 6.1.2)
using weights computed from the variance-covariance matrix (see ?vcv).

3. Simulate two variables with rnorm and two with rTraitCont. You will an-
alyze these pairs of variables with phylogenetically independent contrasts
(Section 6.1.1) and with generalized least squares (Section 6.1.5); you will
do all regressions with and without intercept. Find when the regression
coefficients are the same with both methods.

4. Calculate the expected values of the Brownian motion and the Ornstein–
Uhlenbeck models after 100 time-steps. Compare with the observed values
from the simulations above.

5. Simulate a standard Brownian motion process with dt = 0.1 until t =
100 (hint: there should be 999 iterations in the simulation). Calculate
the variance among replicates of this process and compare with the one
simulated above with dt = 1. Which parameter of the latter we should
modify to obtain similar variances?

6. Implement Desdevises et al.’s [54] method in R (see p. 216).

7. Consider the phylogenies estimated for Sylvia (Section 5.8.1). Compute
the phylogenetically independent contrasts for migration distance using
the following branch lengths:
• The neighbor-joining estimates (Fig. 5.17);
• From the chronogram estimated by penalized likelihood (Fig. 5.21);
• Setting the node heights so that they are equal to the number of de-

scendants (see compute.brlen);
• All equal to one.
Compare the results and comment on the assumptions underlying the use
of each set of branch lengths.

8. Consider the neighbor-joining tree estimated for the genus Sylvia and the
associated bootstrap values.
(a) Compute the phylogenetically independent contrasts for the contin-

uous variable (migratory distance, mig.dist) in the ecological data
set.

(b) We want to give more importance in the analysis to the contrasts
associated with the nodes that are well supported by the bootstrap
analysis. Propose a solution.

(c) Compare the two sets of contrasts.
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Simulating Phylogenies and Evolutionary Data

Data simulation has a critical place in evolutionary biology. Because evolu-
tionary patterns and processes unroll over long time spans, their simulations
has become an important ingredient of evolutionary research [e.g., 8]. From
a statistical inference point of view, it is necessary to simulate data to as-
sess the statistical properties of hypothesis tests and parameter estimators.
This practice still needs to be generalized: it is quite common to read papers
describing new data analysis methods without presenting some simulation re-
sults in order to asses the bias and variance of the estimators, or the type
I and II error rates of the test. On the other hand, the recent rise in uses
of simulation procedures for statistical inference (e.g., Markov chains Monte
Carlo) has emphasized the need for simulating data under a wide range of
situations.

7.1 Trees

7.1.1 Simple Trees

ape has several functions to generate random trees under different models.
rtree generates a tree by recursive random splitting; its interface is:

rtree(n, rooted = TRUE, tip.label = NULL, br = runif, ...)

where n specifies the number of tips. The tree is rooted by default. If
tip.label is left NULL, the labels “t1”, “t2”, and so on, are given to the
tips. br specifies the function to generate random branch lengths: further ar-
guments for this function are given in place of ‘...’. By default, a uniform
distribution between 0 and 1 is used. Use br = NULL for a tree with no branch
length. The algorithm used by rtree is:

1. Draw randomly an integer a on the interval [1, n − 1]. Set b = n − a.
2. If a > 1, apply (recursively) step 1 after substituting n by a.

DOI 10.1007/978-1-4614-1743-9_7, © Springer Science+Business Media, LLC 2012
, Use R,E. Paradis, Analysis of Phylogenetics and Evolution with R 313
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3. Repeat step 2 with b in place of a.
4. Assign randomly the n tip labels to the tips.

This algorithm is simple and easily implemented in R (p. 336). If step 4 is
deleted, this gives an algorithm to simulate random unlabelled topologies.
The above algorithm seems to have interesting properties in that the simulated
trees are not biased in a particular direction, though no detailed study has
assessed this.

7.1.2 Coalescent Trees

rcoal in ape generates a coalescent tree by random clustering of tips; its
interface is:

rcoal(n, tip.label = NULL, br = "coalescent", ...)

where the options are similar to rtree. The algorithm may be sketched as
follows:

1. Generate a set of n − 1 random coalescent times.
2. Draw randomly two tips among the n. Set the branching time between

them as the first coalescent time generated in step 1.
3. Aggregate these two tips into a single one, and delete the first coalescent

time from the set.
4. Repeat steps 2 and 3 substituting n by n − 1 until all coalescent times

have been assigned.

Note that the default for br is to generate branch lengths under a coalescent
model with constant population parameter Θ. This parameter is traditionally
given by 4Neν where Ne is the effective population size and ν is the mutation
rate [309] (the constant 4 may vary depending on the type of locus considered).
The R code to generate a set of coalescent times among n individuals in a
population assuming constant Θ is simple:

2 * rexp(n - 1)/(n:2 * (n - 1):1)

Instead of its default value, br may be a numeric vector computed before-
hand. This gives the possibility to simulate coalescent trees with Θ(t) variable
through time (though homogeneous across lineages) by rescaling the coales-
cent times t simulated under constant Θ with:

t′ =
1

Θ(0)

∫ t

0

Θ(u)du .

For instance, for a population following an exponential growth model with
parameter ρ [171]:

t′ =
eρt − 1

ρ
.

The corresponding R code is:
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x <- 2 * rexp(n - 1)/(n:2 * (n - 1):1)
tr <- rcoal(n, br = (exp(rho * x) - 1)/rho)

Both rtree and rcoal generate a single tree: they must be called repeat-
edly to generate a sample of trees. This is what rmtree does: it returns an
object of class "multiPhylo".

Coalescent trees can also be simulated with the function ms from phyclust.
This package includes a port of the ms program developed by Hudson [141].
The ms function does simulation under a wide range of situations: single or
multiple populations linked with migration rate(s), exponential population
growth with rate(s) that can change through time as well as with respect to
population size, and populations can be split and / or merged.

The details of all options can be displayed from R with ms(). The first
argument nsam is the number of sequences n and must be specified. The second
argument is the number of replications (1 by default). The third argument is
a character string giving the options to pass to ms. The option "-T" is needed
if one wants to output the tree. The output is an object of class "ms" which is
a vector of mode character where the first element is the command call to ms,
then come the Newick strings separated by "//". These Newick strings can
be converted into "phylo" objects with read.tree using the option text:

> library(phyclust)
> x <- ms(2, 2, opts = "-T")
> x
ms 2 2 -T
//
(1: 0.290178149939,2: 0.290178149939);
//
(1: 1.012070059776,2: 1.012070059776);
> x[c(3, 5)]
[1] "(1: 0.290178149939,2: 0.290178149939);"
[2] "(1: 1.012070059776,2: 1.012070059776);"
> read.tree(text = x[c(3, 5)])
2 phylogenetic trees

The output may also include the number of segregating sites and their posi-
tions:

> ms(2, opts = "-s 2 -T")
ms 2 1 -s 2 -T
//
(1: 0.041870053858,2: 0.041870053858);
segsites: 2
positions: 0.6410705887 0.7874408402
00
11
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It is possible to generate only the segregating sites:

> ms(2, opts = "-s 1")
ms 2 1 -s 1
//
segsites: 1
positions: 0.3150193479
1
0

The option "-F" is used to output only the sites with a frequency of minor
allele greater than or equal to a specified value (e.g., "-F 0.1").

7.1.3 Speciation–Extinction Trees

Two functions in ape generate trees under a birth–death model of random
speciation and extinction. Their options are:

rlineage(birth, death, Tmax = 50, BIRTH = NULL, DEATH = NULL,
n0 = 2, eps = 1e-6)

rbdtree(birth, death, Tmax = 50, BIRTH = NULL, DEATH = NULL,
n0 = 2, eps = 1e-6)

They simulate a continuous-time birth–death process. rlineage simulates a
complete phylogeny including those that go extinct before Tmax while rbdtree
does not consider them and returns an ultrametric tree. birth and death
may be either single numeric values or functions specifying how speciation
and extinction probabilities vary through time. BIRTH and DEATH are optional
functions giving the primitive functions of birth and death used to speed
computations. n0 is the number of initial species: by default the tree is sim-
ulated from its root node; setting n0 = 1 leads to simulate a tree with a
root edge. Finally, eps gives the required numerical resolution of the branch
lengths: if computing times with these functions are long, it may be judicious
to increase this parameter (say eps = 1e-3). The function drop.fossil al-
lows to remove the extinct species from a tree simulated with rlineage.

Here are four examples of trees simulated with rlineage:

t1 <- rlineage(0.1, 0, Tmax = 25)
t2 <- rlineage(0.1, 0.025)
b <- function(t) 1/(1 + exp(-0.03*t + 3))
t3 <- rlineage(b, 0.1)
t4 <- rlineage(b, 0.05)

The first tree is simulated with a Yule process since the extinction probability
μ = 0, the second tree is a simple birth–death tree, and the third and fourth
trees are simulated with the same time-dependent speciation probability λ(t)
and two different values of μ. These trees can be plotted with (Fig. 7.1):
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25 20 15 10 5 0

λ = 0.1, μ = 0

50 40 30 20 10 0

λ = 0.1, μ = 0.025

50 40 30 20 10 0

λ(t) =
1

1 + exp(− 0.03t + 3), μ = 0.1

50 40 30 20 10 0

λ(t) as above, μ = 0.05

Fig. 7.1. Four random birth–death trees generated with rlineage

layout(matrix(1:4, 2, 2))
plot(t1, show.tip.label = FALSE); axisPhylo()
title(expression(list(lambda == 0.1, mu == 0)))
plot(t2, show.tip.label = FALSE); axisPhylo()
title(expression(list(lambda == 0.1, mu == 0.025)))
plot(t3, show.tip.label = FALSE); axisPhylo()
title(expression(list(lambda(t) ==

frac(1, 1 + exp(-0.03*t + 3)), mu == 0.1)))
plot(t4, show.tip.label = FALSE); axisPhylo()
title(expression(lambda(t)*" as above, "* mu == 0.05))

The algorithms used by these two functions are detailed in the supple-
mentary information of [232]. The general idea is based on simulating times
to events which may be speciations and / or extinctions; each lineage being
considered successively. In the case of rlineage, this can be sketched as fol-
lows (for simplicity, the procedure of recording nodes and branch lengths is
ignored):
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Generate a time-to-event on a lineage: is it smaller than Tmax?
1. Yes: is it a speciation or an extinction event?

(a) Speciation: apply the whole procedure recursively to each daughter-
lineage.

(b) Extinction: record the tip and consider the next lineage.
2. No: record the tip and consider the next lineage.

Note that with this algorithm, it could happen that no lineage survives until
Tmax. The algorithm for rbdtree is simpler because only the speciation events
are considered:

Is there a speciation event on a lineage before Tmax?
1. Yes: apply the whole procedure recursively to each daughter-lineage.
2. No: record the tip and consider the next lineage.

Both algorithms generate trees with random n, and the topologies are not
biased because all lineages are treated equally.

The functions tree.bd and tree.yule in diversitree implement the same
algorithm than rbdtree but with constant parameters only; tree.yule(0.1)
is a short-cut to tree.bd(c(0.1, 0)). The interface is:

tree.bd(pars, max.taxa=Inf, max.t=Inf, include.extinct=FALSE)

Either max.taxa or max.t must be specified to stop the simulation. diver-
sitree has also functions to do tree–trait simulations which are detailed in
Section 7.3. tree.bd assumes a single species at the start of the simulation
(though the resulting root edge is not output).

The package geiger has the function birthdeath.tree which implements
the continuous-time simulation algorithm with constant probabilities and two
initial species that may go extinct before the end of the simulation. The op-
tions are similar to those in tree.bd with the defaults time.stop = 0 and
taxa.stop = 0.

A note of caution must be kept in mind with respect to the simula-
tion of birth–death trees with a fixed number of tips. In a random birth–
death process, the number of living species at any time is a random variable.
birthdeath.tree uses an algorithm similar to rbdtree, but if taxa.stop
is specified, the recursive procedure is stopped. This has the consequence
of not treating all lineages equally, and so producing trees with unbalanced
topologies. With tree.bd, this bias is avoided by selecting randomly the next
lineage in the procedure. The trees thus generated are—apparently at least—
topologically unbiased.

The package TreeSim implements different algorithms to simulate birth–
death trees under constant parameters, but conditioned on a fixed number of
species at the end of the simulation. The driving idea of these algorithms is
still one of simulating time to events, but under various conditioning rules. The
main functions in this package are sim.bd.taxa, sim.bd.age, sim.gsa.taxa,
and sim.rateshift.taxa. Some methods to simulate incomplete sampling of
the species are also implemented.
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7.1.4 Tree Shapes

apTreeshape has the function rtreeshape which generates tree topologies un-
der various models. Its interface is:

rtreeshape(n, tip.number, p = 0.3, model = "", FUN = "")

where n is the number of generated trees, tip.number is the number of tips,
p is a parameter used if model = "biased" (see below), model specifies the
model to be used, and FUN gives a function to generate trees according to
Aldous’s Markov branching model [9]. Either model or FUN must be specified,
but not both. Note that the arguments are not recycled in R’s usual way:
for instance, rtreeshape(2, c(5, 10), model = "yule") will generate four
trees (two with five tips, and two with ten).

The four models that can be specified with the argument model are:

• The Yule model (model = "yule") where each species has the same prob-
ability of splitting in two species;

• The PDA (proportional to distinguishable arrangements) model (model =
"pda") where each topology is equiprobable;

• Aldous’s model (model = "aldous") where a clade of size n splits in two
clades of size i and n − i with probability proportional to 1/(i(n − i)) [9];

• The biased model (model = "biased") where a species with splitting
probability r gives, if it splits, two daughter-species with splitting prob-
ability pr and 1 − pr, respectively [166]. The value of p is given by the
argument p.

If the option FUN is used, the splitting probabilities are specified through a
function denoted as Qn(i) which gives the probability that a clade with n tips
is made of two sibling groups with i and n − i tips, respectively. We specify
these probabilities with, say, Q which is an R function of the form Q(n, i).
For instance, for a completely unbalanced tree we would use the following:

Q <- function(n, i) if (i == 1) 1 else 0
rtreeshape(1, 10, FUN = Q)

which says that a clade of size n is certain to be made of two subclades with
one and n− 1 tips, respectively. The probabilities given in FUN do not need to
sum to one, so that it is easy to specify a given model. An interesting model
may be to have splitting probabilities proportional to the size of the clade:

Q <- function(n, i) if (i > 0 && i < n) n else 0
rtreeshape(1, 30, FUN = Q)

An example is shown in Fig. 7.2. Note that Aldous’s model can be coded with:

Q <- function(n, i) if (i %in% c(0, n)) 0 else 1/(i*(n - i))
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Fig. 7.2. A random tree generated with rtreeshape with splitting probabilities
proportional to clade size

7.2 Phenotypic Data

Phenotypic traits are simulated in an evolutionary framework using phyloge-
nies where traits evolve along their branches. This process creates covariance
among the trait values at the tip of the phylogeny: species closely more related
are more alike than those distantly related. Thus there are two approaches for
trait simulation on a phylogeny:

• Compute the expected variance-covariance matrix of the trait values at
the tips, and use standard methods to simulate multivariate data.

• Simulate the traits along the branches of the tree starting from the root
to the tips. This allows to have the trait values at any point in time.

7.2.1 Covariance-Based Simulation

The first approach is particularly suited for continuous characters because
correlated variables may be simulated with a linear combination of indepen-
dent variables. Suppose we want to simulate two correlated variables from a
multivariate normal distribution: we first simulate x1 and x2 independently
from a standard normal distribution, then replace them by ax1 + bx2 and
cx1 + dx2. This transformation is easily written in matrix form:
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a b
c d

]
×

[
x1

x2

]
.

Of course, if the correlation is zero we want to have a = d = 1 and b = c = 0.
We see two methods to do this. The first one is based on the decomposition of
the correlation matrix in its eigenvalues and eigenvectors. This is used by the
function mvrnorm in the package MASS. The coefficients are computed with:

Ψ ×
[ √

λ1 0
0

√
λ2

]
,

where Ψ is the matrix of eigenvectors and λ are the eigenvalues. For illustration
take a strong correlation of 0.9:

> R <- matrix(c(1, 0.9, 0.9, 1), 2)
> R

[,1] [,2]
[1,] 1.0 0.9
[2,] 0.9 1.0
> e <- eigen(R, EISPACK = TRUE)
> e
$values
[1] 1.9 0.1

$vectors
[,1] [,2]

[1,] 0.7071068 0.7071068
[2,] 0.7071068 -0.7071068

So the matrix of coefficients is:

[
0.707 0.707
0.707 −0.707

]
×

[ √
1.9 0
0

√
0.1

]
=

[
0.975 0.224
0.975 −0.224

]
,

computed in R with:

> e$vectors %*% diag(sqrt(e$values))
[,1] [,2]

[1,] 0.9746794 0.2236068
[2,] 0.9746794 -0.2236068

These calculations may be done directly with mvrnorm which simulates from a
multivariate normal distribution with known variance-covariance matrix. This
matrix can be computed from a phylogeny with the function vcv in ape:

> tr <- rcoal(4)
> V <- vcv(tr)
> V
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t1 t3 t2 t4
t1 1.558640 1.302033 0.000000 0.000000
t3 1.302033 1.558640 0.000000 0.000000
t2 0.000000 0.000000 1.558640 1.389731
t4 0.000000 0.000000 1.389731 1.558640

We guess easily that the topology of the tree was ((t1,t3),(t2,t4)). vcv is
a generic function with methods for objects of class "phylo" and of class
"corPhyl" that describes phylogenetic correlations (see Section 6.1.5). This
allows to simulate traits under different models of phenotypic evolution. Here
we simulate three variables with expected mean equal to zero:

> library(MASS)
> mvrnorm(3, mu = rep(0, 4), Sigma = V)

t1 t3 t2 t4
[1,] 0.2741027 1.038781 -1.5651816 -1.8108536
[2,] 1.5845245 2.066122 -0.5960545 -1.0833940
[3,] 1.4304574 1.667481 0.5220741 0.4967692

The pairs of tips identified above look indeed similar. Note that the variables
are arranged as rows, but the matrix can be transposed.

The second method is based on a Choleski decomposition of the correlation
matrix which gives directly the coefficients:

> chol(R)
[,1] [,2]

[1,] 1 0.9000000
[2,] 0 0.4358899

Here the coefficients are arranged columnwise, so the terms in the matrix
product are swapped and the vector of variables is transposed:

[
x1 x2

]
×

[
1 0.900
0 0.436

]
.

This gives a different result than the first method even if x1 and x2 are the
same. As mentioned above, we may check that the coefficients are correct if
there is no correlation:

> chol(matrix(c(1, 0, 0, 1), 2))
[,1] [,2]

[1,] 1 0
[2,] 0 1

This second method is easier to use if we want to combine the correlation
among observations (due to the phylogeny) with correlations among the vari-
ables (the three variables generated above with mvrnorm are independent, in
other words, they evolved independently along the tree):
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> X <- matrix(rnorm(8), 4)
> t(X %*% chol(R)) %*% chol(V)

t1 t3 t2 t4
[1,] 0.7418616 -0.30547800 -1.549183 -0.6135896
[2,] 0.8165200 0.04249274 -2.300228 -1.0549728

The correlation between the two variables (again as rows) is obvious. This
code, originally posted to r-sig-phylo by Liam Revell,1 works with any number
of variables. Note that this procedure can be generalized to the first method
as well:

> f <- eigen(V, EISPACK = TRUE)
> A <- f$vectors %*% diag(sqrt(f$values))
> B <- e$vectors %*% diag(sqrt(e$values))
> A %*% t(B %*% t(X))

[,1] [,2]
[1,] -1.9654785 -2.0440239
[2,] -0.8323502 -1.4442619
[3,] 0.3123180 0.3247053
[4,] 1.2426276 0.9332076

The matrix is now correctly arranged (observations as rows, variables as
columns) and both forms of correlation are clear.

The simulation of correlated variables may be combined with linear or
nonlinear relationships among variables. In the examples above no formal
relationship among the variables was assumed, only correlation. A simple
model of two coevolving variables may be yi = βxi + εi with xi ∼ MN (μ, V )
and εi ∼ N (0, σ2); x is a variable evolving according to Brownian motion with
expected mean μ (the value at the root of the tree), β is the coefficient linking
x and y, and ε are independent random variables. This might be simulated
with (after setting the values of mu, beta, sigma, and n as the number of
species):

x <- mvrnorm(1, mu = rep(mu, n), Sigma = V)
y <- beta * x + rnorm(n, 0, sigma)

This assumes that y “follows” the evolution of x, so if β = 0, the y’s are not
phylogenetically correlated. We may relax the assumption of independence of
the εi with:

y <- beta * x + mvrnorm(1, mu = rep(0, n), Sigma = V)

Different variance-covariance matrices may be used to generate the xi’s and
the εi’s. This gives a lot of possibilities, including nonlinear, multivariate mod-
els.
1 https://stat.ethz.ch/pipermail/r-sig-phylo/2009-May/000369.html

https://stat.ethz.ch/pipermail/r-sig-phylo/2009-May/000369.html
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7.2.2 Time-Explicit Simulation

The second approach simulates the traits along the branches of the tree. The
idea is simple: given a model of evolution we may predict the distribution of
the trait after the time given by the branch lengths. It is only required to
know the value at the root of the tree.

The second approach has two main advantages compared to the first one:
though covariance-based simulations are more direct, their computating times
are expected to increase with n2 because of the manipulation of n×n matrices
while they will be proportional to n for the second approach. The second
advantage is that it is possible to output trait values at the node of the tree
as well as at the tips.

ape has two functions for time-explicit trait simulation: rTraitCont and
rTraitDisc. These functions must be seen as general trait simulators because
they accept user-defined models allowing for a wide range of possibilities. The
interface of rTraitCont is:

rTraitCont(phy, model = "BM", sigma = 0.1, alpha = 1,
theta = 0, ancestor = FALSE, root.value = 0, ...)

The option model may be "BM", "OU", or a function created by the user that
specifies how the trait evolves. This function is of the form model(x, l)
where x is the ancestral (or initial) trait value and l is the branch lenght. For
instance, the Brownian motion model with σ2 = 0.1 could be coded with:

model <- function(x, l) x + rnorm(1, 0, sqrt(l * 0.1))

A speciational model where change occurs only after a speciation event may be
coded with (l is not used inside the function, but it still needs to be included
as argument):

model <- function(x, l) x + rnorm(1, 0, sqrt(0.1))

If model = "BM", a Brownian motion (also called Wiener) process is sim-
ulated with parameter σ (sigma). If model = "OU", an Ornstein–Uhlenbeck
process with parameters σ, α, the strength of the constraint, and θ, the value
of the optimum (sigma, alpha, and theta). In both models, the parameters
may be different for each branch of the tree, making possible to simulate a
wide range of scenarios with varying selective regimes, evolutionary optima,
and / or levels of noise. The exact updating formula by Gillespie [107] are
used ensuring correct simulation output in all situations.

The function simulating discrete traits is somewhat similar:

rTraitDisc(phy, model = "ER",
k = if (is.matrix(model)) ncol(model) else 2,
rate = 0.1, states = LETTERS[1:k], freq = rep(1/k, k),
ancestor = FALSE, root.value = 1, ...)
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here model is "ER", "SYM", "ARD" (see Section 6.2.2 for details), or a function
coding the evolution of the discrete trait of the same form as described above.

Both rTraitCont and rTraitDisc simulate a single trait. A matrix of
traits can be simulated with replicate, e.g., p continuous traits:

X <- replicate(p, rTraitCont(tr))

These p traits are independent among themselves. The same procedure used
above can be used to create correlation among the traits (R is here a p × p
correlation matrix):

X %*% chol(R)

Relationships among variables can also be simulated as sketched above
for covariance-based simulations. Another possibility is to use the function
rTraitMult:

rTraitMult(phy, model, p = 1, root.value = rep(0, p),
ancestor = FALSE, asFactor = NULL,
trait.labels = paste("x", 1:p, sep = ""), ...)

where some options are similar to those in the two previous functions but here
model can only be a function, and p is the number of traits. The returned
object is a data frame with p columns; the argument asFactor specifies those
that should be returned as factors and thus considered as discrete variables.
The fact that model is a function makes possible to simulate any kind of
model. For instance, consider a model with two traits x and y following two
correlated Brownian motion processes:

xt+δ ∼ N (xt + γyt, δσ
2) ,

yt+δ ∼ N (yt + γxt, δσ
2) .

Fixing γ = 0.5 leads to the R function:

mod <- function(x, l) {
out1 <- rnorm(1, x[1] + 0.5 * x[2], sqrt(l * 0.1))
out2 <- rnorm(1, 0.5 * x[1] + x[2], sqrt(l * 0.1))
c(out1, out2)

}

This is used in the same way than above but here we specify the number of
traits:

> tr <- rcoal(20)
> x <- rTraitMult(tr, mod, 2)
> x[1:4, ]

x1 x2
t20 -0.7623281 -0.6179466
t1 -0.8454842 -0.5600850
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Fig. 7.3. Two correlated traits (top) and the phylogeny (bottom) used to simulate
them

t11 -1.3345170 -1.1848345
t18 -1.3926053 -1.1020585

We may plot both traits together as well as the tree (Fig. 7.3):

layout(matrix(1:2, 2))
plot(x, type = "n")
text(x, labels = rownames(x), cex = 0.7)
plot(tr, font = 1, cex = 0.7)

Some extra arguments may be passed with the ‘...’ if they are already
defined in the model function, such as:

mod <- function(x, l, gamma) {
out1 <- rnorm(1, x[1] + gamma * x[2], sqrt(l * 0.1))
out2 <- rnorm(1, gamma * x[1] + x[2], sqrt(l * 0.1))
c(out1, out2)

}

This allows to call the same model with different parameter values:
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rTraitMult(tr, mod, 2, gamma = 0.5) # same than above
rTraitMult(tr, mod, 2, gamma = 0.2) # weaker correlation

7.3 Joint Tree–Trait Simulation

The package diversitree allows us to simulate the evolution of a clade where
speciation and extinction probabilities are affected by a discrete character
which evolves itself according to a Markov model. There are two such func-
tions. tree.bisse simulates with a binary character:

tree.bisse(pars, max.taxa = Inf, max.t = Inf,
include.extinct = FALSE, x0 = NA, ...)

with pars being a numeric vector with six values for the parameters λ0, λ1,
μ0, μ1, q10, and q01 where 0 and 1 are the two states of the trait, λ and μ are
the speciation and extinction probabilities, and qij is the transition rate from
state i to state j. The argument x0 is the initial state at the root; by default,
a random value is drawn. The three other options control the simulation:
either max.t or max.taxa must be given a finite value, and include.extinct
controls whether the extinct species must be pruned from the tree (‘...’ is
actually unused).

tree.musse is similar to tree.bisse but with multiple state traits. The
argument pars is a numeric vector with the required parameters; for instance,
twelve parameters are needed for a three-state trait (the number of parameters
is k + k2 if k is the number of states).

These two functions use a continuous-time algorithm based on the principle
of time-to-event outlined above: here the events are speciation, extinction, and
transition among the states. The object returned is a tree of class "phylo"
with additional elements that describe the evolution of the discrete trait. The
function history.from.sim.discrete extracts this information and return
an object of class "history" which is a list of vectors describing the state
changes of the trait along each branch of the tree. There is a plot method
allowing to display these changes with colors on the branches of the plotted
tree. This may include the extinct species as well. Figure 7.4 shows an example
with two states and equal speciation rates, but μ1 = 2μ0, and the transition
rates are asymmetric:

p <- c(0.1, 0.1, 0.03, 0.06, 0.1, 0.5)
tr.bisse <- tree.bisse(p, max.taxa = 30, x0 = 0,

include.extinct = TRUE)
h <- history.from.sim.discrete(tr.bisse, 0:1)
tr <- prune(tr.bisse)
hp <- history.from.sim.discrete(tr, 0:1)
layout(matrix(1:2, 2))
par(mar = rep(0, 4))
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Fig. 7.4. Joint simulation of a binary trait and a phylogeny with the complete (top)
and the pruned phylogeny (bottom). State 0 is in black, and state 1 in grey

plot(h, tr.bisse, c("black", "grey"), show.tip.label = FALSE)
plot(hp, tr, c("black", "grey"), show.tip.label = FALSE)

The tree with the extinct species removed is obtained with diversitree’s special
function prune which edits the history.

7.4 Molecular Sequences

Molecules are discrete characters, so molecular sequences could be simulated
with some of the functions described in the previous section. However, there
are models specific for this kind of data so that some specific functions have
been written for simulating them. These models are described in Section 5.2.1.
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simSeq in phangorn gives a general framework for simulating sequences.
Its interface is:

simSeq(tree, l = 1000, Q = NULL, bf = NULL, rootseq = NULL,
type = "DNA", model = "USER", levels = NULL, rate = 1,
ancestral = FALSE)

This does not look so dissimilar to what we have seen above. If Q is not
specified, a single-rate model is used, and if bf is not specified as well, equal
frequencies of the states are assumed. Thus by default a JC69 model is used
because type = "DNA" by default. The option model is used only if type =
"AA": the four possible choices are "WAG", "JTT", "LG", and "Dayhoff".

The function stree may be useful to generate, for instance, star trees
with the aim of simulating sequences on regular tree topologies. The following
commands generate a star tree with all branch lengths equal to 10, or drawn
randomly from a uniform distribution between 0 and 1, respectively:

compute.brlen(stree(5), 10)
compute.brlen(stree(5), runif(5))

simSeq returns an object of class "phyDat".
It is interesting to mention the function seqgen in phyclust which is a port

to R of the program Seq-Gen [260]. The same options as in the stand-alone
program can be used in phyclust. By default, the function returns the available
options (similar to seq-gen -h from a shell):

> seqgen()

Sequence Generator - seq-gen

Version 1.3.2

(c) Copyright, 1996-2004 Andrew Rambaut and Nick Grassly

....

Substitution model options:

-m: MODEL = HKY, F84, GTR, JTT, WAG, PAM, BLOSUM, MTREV, GENERAL

HKY, F84 & GTR are for nucleotides the rest are for amino acids

-a: # = shape (alpha) for gamma rate heterogeneity [default = none].

-g: # = number of gamma rate categories [default = continuous].

-i: # = proportion of invariable sites [default = 0.0].

....

There are less substitution models of DNA evolution compared to simSeq,
but it is possible here to specify some forms of intersite variation in substitu-
tion rates—though this can be simulated with simSeq by successive calls with
different parameter values. The options of seqgen are:

seqgen(opts = NULL, rooted.tree = NULL, newick.tree = NULL,
input = NULL)

where the first argument is the list of options given as a single character string
(e.g., "-mHKY -l1000 -a1 -g4").
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7.5 Exercises

1. Show that Aldous’s branching model produces trees that tend to be bal-
anced. Demonstrate this directly (i.e., without simulating trees) and by
using tree simulations.

2. Simulate several discrete traits on a phylogenetic tree. Find some proce-
dures to simulate a correlated evolution among these traits.

3. Simulate a sequence of nucleotides coding for a protein using as substitu-
tion rates 1, 0.8, and 2 for the three codon positions, respectively.

4. Simulate three continuous characters and three discrete ones along a phy-
logeny. Prepare a data frame with these six characters setting the row-
names correctly.

5. Simulate some data in the same way than done to produce Fig. 7.3. Repeat
the simulation outputting the ancestral values. Plot the two traits but
displaying the nodes together with the tips. What analyses from Chapter 6
would you do on these data?
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Developing and Implementing Phylogenetic
Methods in R

In our view it is somewhat ironic that even very substantial software
contributions do not seem to attract the same academic credit as
refereed publications: in reality nearly every user of software becomes
a more meticulous and critical reviewer than most anonymous referees!

—Venables & Ripley [306]

We have seen several times in this book that it is not necessary to know
R in depth to use it for data analysis, even to tackle complex analyses. On
the other hand, we need to know more of the language and R’s features to
develop and implement methods with it.

The materials in this chapter are not a formal introduction to R, but high-
light some useful points in the present context. The primary references are the
manuals distributed with R (located in the directory R HOME/doc/manual/)
and available on CRAN.1 This chapter essentially uses materials from Writing
R Extensions [254] and the R Language Definition [253].

8.1 Features of R

R is a language that is qualified as a dialect of S, a language for statistics [22].
The syntax of both languages is essentially identical, but their implementa-
tions differ. This implies that programs written in S will not necessarily run
under R, but compatibility is very large. For a brief comparison of R and S,
one can see the R-FAQ available both on CRAN,2 and distributed with R
(R HOME/FAQ).

R is an interpreted language: all commands are read by a parser, then
interpreted, and, if syntactically correct, executed. There are different ways
1 http://cran.r-project.org/manuals.html.
2 http://cran.r-project.org/faqs.html.
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to enter commands in R: they can be typed directly at R’s prompt (in a console
or a terminal), or read from a file with the function source.

8.1.1 Object-Orientation

R is an object-oriented language. Object-orientation is often seen as a complex
mechanism in computer programming (e.g., C++ is often cited as being more
complex than C). In R, however, this feature is not as complex as in Java or
in C++, and considerably simplifies things.

We have seen the use of generic functions several times in the previous
chapters. Let us now see some details. A generic function is named after its
main use: print, summary, plot, and so on. All these functions have similar
content, for instance:3

> print
function (x, ...)
UseMethod("print")
<environment: namespace:base>

Consider an object x of class "cls", then print(x) is equivalent to
print.cls(x). The function print.cls (as well as any function print.*)
is called a method. If the method of a particular class does not exist, then the
generic uses the default method (for instance, if print.cls does not exist,
print(x) uses print.default(x)).

A nice example of the use of generics/methods is when plotting an ob-
ject. Suppose x is a numeric vector (say, 1, 2, 3, . . . ), then the command
plot(x) will do a simple plot of the values of x. But if x is a phylogenetic
tree (e.g., an object of class "phylo"), we do not want this! Because the func-
tion plot.phylo is defined in the package ape, plot(x) will correctly plot the
tree (Chapter 4).

A method is written in exactly the same way as another function: only
its name must follow the rule generic.class where generic is the name
of the generic, and class is the name of the class. A method must have,
at least, all the arguments of the generic, with the same names and in the
same order. If the generic function has a “dot-dot-dot” argument (which is
often the case), this is almost always the last one. For instance, consider the
function all.equal that compares two objects taking some approximations
into account. The generic is:

> all.equal
function (target, current, ...)
UseMethod("all.equal")
<environment: namespace:base>

3 It may be useful to recall that typing the name of an object results in printing
its content; thus typing the name of a function, without the parentheses, prints
its content.
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The method that does this comparison for two objects of class "phylo" is, of
course, called all.equal.phylo, and its first few lines are:

> all.equal.phylo
function (target, current, use.edge.length = TRUE,

use.tip.label = TRUE, index.return = FALSE, tolerance =
.Machine$double.eps^0.5, scale = NULL, ...)

{
same.node <- function(i, j) {

....

A method is used practically as its generic is, but it is possible to
force the use of a particular method. For instance, because an object of
class "phylo" is a list, it is possible to compare two of these objects with
all.equal.list(tr1, tr2).

Often, a data structure is derived or closely similar to another one. In
this situation, it is useful to relate them so that the derived structure can
use the functions that are already defined for other(s). Consider the function
haplotype in pegas: it returns the unique sequences from an object of class
"DNAbin" together with additional information. Because, both data structures
are of the same nature, it seems natural to define a class "haplotype" derived
from "DNAbin": this is done with class inheritance. In this case, the class is
not made with one but two (or possibly more) character strings:

> h <- haplotype(woodmouse)
> class(h)
[1] "haplotype" "DNAbin"

We say that the class "haplotype" inherits the class "DNAbin". The proper
way to test for class inheritance is with the function inherits (and not with
the ‘==’ operator):

> inherits(h, "DNAbin")
[1] TRUE

Now that the class of h is made of two strings, what happens when
we call a generic function such as print? R first searches for a function
print.haplotype; if it there is none, it then searches for print.DNAbin. Thus
the new class benefits from the previously written functions. The available
methods of a given class can be found with the function methods using the
option class:

> methods(class = "DNAbin")
[1] as.character.DNAbin as.list.DNAbin
[3] as.matrix.DNAbin cbind.DNAbin
[5] c.DNAbin [.DNAbin
[7] labels.DNAbin makeLabel.DNAbin
[9] print.DNAbin rbind.DNAbin
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We only need to write new methods if we want the results to be different or
if they do not exist:

> methods(class = "haplotype")
[1] plot.haplotype print.haplotype

Non-generic functions may also be used, which is maybe even more important
for us. For instance, we can compute genetic distances among the haplotypes
with dist.dna because the internal coding is the same:

> dist.dna(h[1:3, ], "n")
I II

II 16
III 13 5

A class may be made of more than two strings, like with the phylogenetic
correlation structures met in Section 6.1.5:

> class(bm.prim)
[1] "corBrownian" "corPhyl" "corStruct"

The search for methods is done sequentially. This allows us to write some
functions common to all phylogenetic correlation structures we may build:

> methods(class = "corPhyl")
[1] Initialize.corPhyl vcv.corPhyl

8.1.2 Variable Definition and Scope

In R, it is not necessary to declare the variables and objects used within a
function (in contrast to languages such as C or Fortran). For instance, an
expression like x <- 1 creates the vector x and sets its attributes accordingly;
if x already exists then it is erased beforehand. On the other hand, for an
expression like y <- x, x must already exist.

When writing a computer program (whatever the language), it is often
necessary to decide whether a variable is local (used only within a function)
or global (can be used by several functions in the program). In R, because the
declaration of variables is implicit, a rule is needed. This rule is called lexical
scoping. To understand this mechanism, let us consider these two very simple
functions:

f <- function() print(x)
g <- function() {x <- 2; print(x)}

They are the same except that g has a variable named x in its body. Because
no variable named x has been created within f, R will seek in the enclosing
environment if there is an object called x, and will print its value (otherwise,
a message error is displayed, and the execution is stopped).
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> x <- 1
> f()
[1] 1
> g()
[1] 2

If an object x is created within our function, the value of x in the global
environment is not changed:

> x
[1] 1

Now print(x) uses the object x that is defined within its environment, that
is, the environment of g.

The word enclosing above is important. In our two example functions,
there are two environments: the global one and the one of the function f or
g. If there are three or more nested environments, the search for the objects
is made progressively from a given environment to the enclosing one, and so
on, up to the global one.

An environment can be seen as a portion of the memory of the computer
that contains some objects (data, functions, . . . ). When R is running, several
distinct environments are open, hence the possibility to have different objects
with the same name. Basically, the different environments are:

• one for each loaded package (hence distinct functions with the same name
can be used in the same session);

• one for each function call (see example above);
• the global environment (usually named workspace);
• any that may be created by the user.

Environments in R are objects, and there are functions to create, manipu-
late, or delete them. Several basic functions have an envir argument to pass
them an environment (e.g., ls, get, assign). One aspect that is worth con-
sidering with attention is that the enclosing environment of a function is the
environment where it was defined—and not where it was called. This is impor-
tant for recursive functions (that call themselves): each recursive call has the
same enclosing environment, so that they can modify the same object with
the super-assignment operator <<- which does assigment in the enclosing en-
vironment instead of the current one. To understand how this can be used, let
us consider the structure below—it does not matter what is computed here:

FUN <- function(n) {
if (....) return(NULL) # stops the recursion

.... # code that computes ’y’ and finds ’i’
x[i] <<- y
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.... # code that computes ’m’
FUN(m)

}

The variables i, y, and m are located in the environment created by each call
to FUN: if there are 20 iterative calls, there will be 20 environments each with
these three variables (of course, with possibly different values). On the other
hand, x is located in the enclosing environment of FUN which is the same for
all recursive calls. There must be a way to stop the process to prevent infinite
recursion which is what is done by the first line. Such a function is used with
something like:

x <- vector(N)
FUN(N)

This makes possible to build efficient algorithms in R as used in the func-
tion rtree in ape (Section 7.1.1). The general structure of this function is:

rtree <- function(n) {
FUN <- function(n) {

....
edge[i, ] <<-
....
FUN(m)

}
edge <- matrix(NA, n, 2)
FUN(n)
list(edge = edge, ....

}

Such a coding structure is very efficient because the object that is built (here
edge) is created at the correct size once, the different calls to FUN have access
to the very same object. Further, the position along the edge matrix is passed
through the recursive calls so they are easily updated. We shall see other
aspects of efficient computations in Section 8.5.

8.1.3 How R Works

All the actions of R are done on objects stored in the active memory of the
computer: no temporary files are used (Fig. 8.1). Files on the disk are read
and written for input and output of data and results (graphics, etc.) The user
executes the functions via some commands. The results are displayed directly
on the screen, stored in an object, or written on the disk (particularly for
graphics). Because the results are themselves objects, they can be considered
as data and analyzed as such. Data files can be read on the local disk or on a
remote server through the Internet.
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Hard disk
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Fig. 8.1. A schematic view of how R works

The functions available to the user are stored in a directory called
R HOME/library (R HOME is the directory where R is installed). This di-
rectory contains packages of functions, which are themselves structured in
directories. The package named base is in a way the core of R and contains
the basic functions of the language for reading, manipulating, and writing
data.

8.2 Writing Functions in R

Writing functions can be somehow extrapolated from what can be read in
the previous sections. Quite logically, a function is defined with the function
function which takes as arguments the variable(s) that will be used locally
within the function when it is called. R functions are objects, and the result
of the function function can be assigned in the same way as other objects
(the examples below are purely didactical):



338 8 Developing and Implementing Phylogenetic Methods in R

> f <- function(x) print(mode(x))
> f
function(x) print(mode(x))
> f(1)
[1] "numeric"
> f(TRUE)
[1] "logical"
> f("a")
[1] "character"

In this example, the object x is local to the variable and if an object called x
exists in the workspace, it will not be used:

> x <- FALSE
> print(mode(x)) # takes x in the workspace
[1] "logical"
> f(x = 1) # takes x in the environment of f
[1] "numeric"

Note that we used the tagged argument in the last call to emphasize this
point.

Default arguments (often called options) are set by preassigning them in
the function definition:

> fb <- function(x, prefix = "Mode:")
+ print(paste(prefix, mode(x)))
> fb(1)
[1] "Mode: numeric"
> fb(1, "")
[1] " numeric"
> fb(1, "The mode is")
[1] "The mode is numeric"

Quite often, default arguments are logicals to control what is computed by
the function. For instance, if we want a function that calculates the mean of
a sample with the possibility of removing all negative values, we can control
this with a logical argument whose default value will be FALSE:

> foo <- function(x, rm.negative = FALSE)
+ if (rm.negative) print(mean(x[x >= 0]))
+ else print(mean(x))
> y <- rnorm(100)
> foo(y)
[1] 0.04609175
> foo(y, TRUE)
[1] 0.751289



8.2 Writing Functions in R 339

To be executed, a function must be loaded in memory, and this can be
done in several ways. The commands of a function can be typed directly
on the keyboard, as with any other command, or copied and pasted from
an editor. If the function has been written in a text file, it can be loaded
with source like another program; a single file can contain several functions.
Similarly, functions can be saved in an ‘.RData’ file, as with any R objects,
and loaded in memory with load. Finally, it is possible to create a package:
this is discussed in Section 8.4.

To load some functions, packages, or data in memory when R is started,
the best option is to configure the file ‘.Rprofile’. This file, if it exists, is read
by R at start-up: it must be located in the HOME directory of the user. This
file is user dependent, so that if a computer is shared by several users, they
may have different ‘.Rprofile’ files. The path to the HOME directory can
be printed in R with the command:

> Sys.getenv("HOME")
HOME

"/home/paradis"

This directory should not be confused with the R HOME directory which is
the place where R is installed, and is unique to a computer. Here is an example
on a Linux system:

> Sys.getenv("R_HOME")
R_HOME

"/usr/lib/R"

The contents of ‘.Rprofile’ are normal R commands, and comments can
be included as well. This is normally the place where you will customize R by
modifying the options. The list and meanings of these options is explained in
?options. Here is an example:

options(width = 60) # narrower output on the screen
options(editor = "emacs") # the default on Linux is vi...
options(show.signif.stars = FALSE) # avoid the Milky Way
library(ade4)
library(ape)
library(seqinr)
load("/home/paradis/data/always_load_this.RData")
source("/home/paradis/data/always_source_this.R")

8.2.1 Programming Methods and Generics

Creating a new generic function is extremely simple. Below are two examples
from ape:
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vcv <- function(phy, ...) UseMethod("vcv")

as.phylo <- function (x, ...)
{

if (class(x) == "phylo")
return(x)

UseMethod("as.phylo")
}

The arguments may be of any number and name(s). The methods are then
named as outlined above, e.g., vcv.phylo, as.phylo.hclust, etc. It is re-
quired that a method contains at least the same arguments than its generic
in the same order, including the ‘...’.

Most operators in R are generic and it is often useful to program methods
especially because the extracting or subsetting operators ($, [[, [) drop extra
attributes, including the class. We see an example from ape with the indexing
operator for the class "DNAbin":

"[.DNAbin" <- function(x, i, j, drop = FALSE)
{

oc <- oldClass(x)
class(x) <- NULL
....
ans <- x[i, j, drop = drop]
....
class(ans) <- oc
ans

}

The first line saves the original class of the data which is restored before
returning the result: it is done this way in order to work with the classes that
inherit the present one such as "haplotype" (Section 8.1.1). The second line
deletes the class to avoid infinite recursive calls of the present method. Note
also the default of drop which is different than the standard ‘[’ operator.

The replacement versions of these operators are also generic. Here are the
first few lines of the code of [[<- for the class "multiPhylo":

‘[[<-.multiPhylo‘ <- function(x, ..., value)
{

if (!inherits(value, "phylo"))
stop(’trying to assign an object not of class
"phylo" into an object of class "multiPhylo".’)

....

This is used with x[[...]] <- value, so it is not possible to assign an object
not of class "phylo" into an object of class "multiPhylo".
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8.2.2 S3 Versus S4

The scheme described in the previous section actually refers to S3 classes. In
the late 1990’s, another scheme was defined: S4 classes (see Chambers’s book
[38] for a historical account). Why was another standard needed? There are
two main reasons. First, when an object of a given class is created, R does
not check whether its contents is correct and agrees with what some functions
expect. For instance, nothing prevents us to create an object of class "phylo"
which is not a tree:

> x <- 2
> class(x) <- "phylo"
> str(x)
Class ’phylo’ num 2
> x
Error in x$tip.label :

$ operator is invalid for atomic vectors

Clearly, the function print.phylo does not know how to handle x.
The second problem is more subtle and is related to class inheritance in S3

which appears here as a two-edged sword. In the case of the object bm.prim
on page 334, the class inherance and hierarchy seems obvious: a Brownian
correlation is a special type of phylogenetic correlation which is itself a special
statistical correlation structure. But we can create an object and not respect
the class hierarchy:

> y <- bm.prim
> class(y) <- c("corBrownian", "corStruct")

The change may seem harmless (as above, it is permitted) but the consequence
will be an error that is difficult to track down:

> gls(longevity ~ body, correlation = y)
Error in corMatrix.corBrownian(object) :
object have not been initialized.

Trying to compute the variance-covariance matrix even suggests that an ap-
propriate method is missing:

> vcv(y)
Error in UseMethod("vcv") :
no applicable method for ’vcv’ applied to an object
of class "c(’corBrownian’, ’corStruct’)"

Thus, one could be tempted to write a function vcv.corBrownian which may
have dramatic effects because this would disrupt in an unpredictable way
computations on objects of the correct class like bm.prim. The problem with
the object y is called inconsistent class inheritance by Chambers [38].
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Before considering some details about S4, we may ponder that the weak-
nesses of S3 classes are not disastrous: most of R relies on S3 and this is has
not prevented it to become the de facto standard software for statistical anal-
ysis. The examples given here are rather extreme: very rarely you will need
to set the class of an object. Besides, programming errors are facts of life: the
example of inconsistent class inheritance observed by Chambers [38, p. 368]
in the base function Sys.time has since been fixed.

By contrast to S3, an S4 class must be defined explicitly in R before we
can create an object. This is done with the function setClass:

> setClass("phylo", representation(edge = "matrix",
+ tip.label = "character"))
[1] "phylo"

In this example, we have created an S4 class "phylo" which is similar to its S3
homonym without branch lengths. The new definition is stored in an object
named . C phylo (hence hidden to ls()):

> .__C__phylo
Class "phylo" [in ".GlobalEnv"]

Slots:

Name: edge tip.label
Class: integer character

The mandatory elements of an S4 class are called slots. An S4 object is created
with the function new. With our S4 "phylo" class, this could be:

> x <- new("phylo", edge = tree.primates$edge,
+ tip.label = tree.primates$tip.label)
> x
An object of class "phylo"
Slot "edge":

[,1] [,2]
[1,] 6 7
[2,] 7 8
[3,] 8 9
[4,] 9 1
[5,] 9 2
[6,] 8 3
[7,] 7 4
[8,] 6 5

Slot "tip.label":
[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"
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The slots are extracted with the @ operator:

> x@tip.label
[1] "Homo" "Pongo" "Macaca" "Ateles" "Galago"

What happens if we try to create a “fake” object as we did above?

> new("phylo", edge = 2)
Error in validObject(.Object) :

invalid class "phylo" object: invalid object for
slot "edge" in class "phylo": got class "numeric",
should be or extend class "matrix"

We now avoid this obvious mistake, but we can still create invalid objects:

> new("phylo", edge = matrix("a", 2, 2))
An object of class "phylo"
Slot "edge":

[,1] [,2]
[1,] "a" "a"
[2,] "a" "a"

Slot "tip.label":
character(0)

setClass defines the slot edge as a matrix but it does not say that it should
be integer. The function setValidity allows us to define what should be a
valid S4 "phylo" object:

setValidity("phylo", f)

where f is a function (we will usually choose a more appropriate name) that
tests the validity of the class "phylo":

valid.phylo <- function(object) {
if (!is.integer(object@edge)) {

cat("slot ’edge’ not integer\n")
return(FALSE)

}
if (!is.character(object@tip.label)) {

cat("slot ’tip.label’ not character\n")
return(FALSE)

}
TRUE

}

We then associate this validity checker with the class:

mailto:@tip.label
mailto:@tip.label
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> setValidity("phylo", valid.phylo)
Class "phylo" [in ".GlobalEnv"]

Slots:

Name: edge tip.label
Class: matrix character

If we try again the above operation, this now returns an error:

> new("phylo", edge = matrix("a", 2, 2))
slot ’edge’ not integer
Error in validObject(.Object) : invalid class

"phylo" object: FALSE

Of course, we can still create an invalid object as long as it passes the tests
in valid.phylo:

> new("phylo", edge = matrix(0L, 2, 2))
An object of class "phylo"
Slot "edge":

[,1] [,2]
[1,] 0 0
[2,] 0 0

Slot "tip.label":
character(0)

Further tests can be added to avoid this and other problems.
If an S4 class inherits from other class(es), this must be defined in the call

to setClass with the option contains: in this case all the slots of the inherited
class are included in the new one. Generic functions and their methods are
defined with the functions setGeneric and setMethod, respectively. All these
functions and others relative to S4 classes are in the package methods which
is part of the base installation of R.

Choosing between S3 and S4 for a given project is not trivial. “Old” S3
classes are flexible and easy to use and still widespread to prove their use-
fulness. For projects focused on computing with simple data structures, they
are certainly sufficient. If complex data structures are necessary, and their in-
tegrity in especially important, S4 classes may be more appropriate. This will
be at the expense of more programming work, and less efficient computation
due to mandatory validity data checking. Usually, choosing between S3 or S4
will have little consequences for the end-users. Finally, some projects may do
not even need to define new classes (e.g., porting an existing library of C/C++
code will only require to write the appropriate interface and possibly a driver).
One strength of R—probably its most prevailing—is its flexibility. The more
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sophisticated S4 classes should not be viewed as adding more constraints com-
pared to S3, but rather as giving an alternative choice to developpers with its
own benefits and costs.

8.3 Interfacing R with Other Languages

Phylogenetic methods are often computationally intensive, and thus phyloge-
netic programs are mostly written in low-level languages (mainly C or C++).
These programs need to be compiled (in contrast to programs in interpreted
languages such as R) to be used. However, and this is completely transparent
to the user, R uses compiled programs too: most computational tasks in R are
made by compiled C or Fortran programs.

R has several mechanisms to interface compiled programs with its inter-
preter (the CLI we have seen through this book). At least three benefits can
be found in using these interfaces when implementing a phylogenetic method
in R.

• The performance of an R program can be greatly improved when the com-
putationally demanding part is done with compiled codes (see an example
below);

• The R application programmer interface (API) can be used making avail-
able many C functions useful in computational statistics (mathematical,
matrix calculus, probability distribution, optimization functions, and so
on);

• Existing programs in C or C++ can be ported to R.

The cost is that one has to learn these interfaces, but this is relatively
easy, and outlined in this section.

8.3.1 Simple Interfaces

The R function .C gives the way to call a C function from R using a simple
interface that matches the arguments in C. The latter must be pointers. An
example could be:

void fcn(int * arg1, double * arg2, char ** arg3)
{
...
}

The code in this function can be any C code, and can call other functions.
fcn can be called from R with:

.C("fcn", as.integer(i), as.double(x), as.character(b),
PACKAGE = "pkg")
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It is necessary that the data types to be checked before passing the variables
to the C code: this explains the distinction between integers and doubles here.
R does not distinguish these two data types, so there is a single numeric mode
(Section 2.3.1). On the other hand, C has different data types for integers and
reals, hence the conversion when passing data from R to C. "pkg" is the name
of the R package where fcn can be found.

To be able to use fcn from R, this C function must be compiled and
loaded into R. The compilation is done so as to produce a library file (‘*.dll’
under Windows, or ‘*.so’ for the other operating systems). The library is
loaded with the function library.dynam. Usually, it is easier to build a small
package where the needed codes are included (Section 8.4).

In practice, .C is not called directly by the user but it is included in an R
function, for example,

fcn <- function(i, x)
{
.C("fcn", as.integer(i), as.double(x), as.character(b),

PACKAGE = "pkg")
}

so that the user does not see whether the function calls a compiled code:

fcn(i, x)

Programs written in C++ are called in a way similar to C from R, but in
the C++ code a wrapper must be written:

// X_main.cc:
#include ...
extern "C" {
void X_main () {
...

}
} // extern "C"

Such a program must be compiled with a C++ compiler.

8.3.2 Complex Interfaces

We have seen that with .C, only simple data types can be passed to the C
code. This may be problematic if one wants to manipulate R objects that have
a complex structure, such as lists, and for which the number of elements is
not known a priori. In this situation, the function .Call can be used. Its use,
from the R side, is simpler than .C:

.Call("fcn", a, b)
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There is no data type checking here: this is done in the C program. The
structure of the latter is more complex, and makes use of the data type SEXP
(S expression):

SEXP fcn(SEXP a, SEXP b)
{
...
}

All the details on how to handle SEXP data in C are explained in [254].
There is an even more complex mechanism with the function .External

which can be used with an a priori unknown number of arguments. It is used
in a similar way in R:

.External("fcn", a, b)

But in C there is only one argument:

SEXP fcn(SEXP args)
{
...
}

The elements passed with args may be extracted sequentially with special
functions:

...
first = CADR(args);
second = CADDR(args);
third = CADDDR(args);
fourth = CAD4R(args);
...

The sources of ape and ade4 provide some examples of the use of .C and
.Call with phylogenetic data, and those of seqinr of the use of .Call with
sequence data.

8.4 Writing R Packages

All the details of writing an R package are explained in a clear way in [254].
We show here only how we can make a minimal package that could be used
to port some C codes to R.

A nice way to write an R package is to compile and install R and C codes
so that it can be tested. If this is sucessful and the developer wants to publish
the package, then the next stage is to write the documentation.
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8.4.1 A Minimalist Package

A package may contain only R codes which is straightforward to make and
install. We consider cases where some codes need to be compiled. Suppose
we have written the R and C functions, and they are collected in files called
accordingly (*.R and *.c). Then we need to create two other files: ‘DESCRIP-
TION’ and ‘zzz.R’. The files must be arranged in the following directories:

/pkg/DESCRIPTION
/pkg/R/*.R
/pkg/src/*.C

The file ‘DESCRIPTION’ contains some general information on the pack-
age. It must contain at least the following fields:

Package: pkg
Version: 0.1
Date: 2005-12-25
Title: PKG
Author: John Marillion <john@marillion.net>
Maintainer: John Marillion <john@marillion.net>
Description: This is a minimalist install for pkg.
License: GPL version 2 or newer

This file must eventually be more detailed if there are dependencies with
other packages or libraries. The file ‘zzz.R’ is necessary if there are compiled
codes. Its content is:

.First.lib <- function(lib, pkg) {
library.dynam("pkg", pkg, lib)

}

where "pkg" should be replaced by the quoted name of the package, but pkg
should be left unchanged; for instance, for ape this is library.dynam("ape",
pkg, lib). The function .First.lib is executed when the package is loaded
with library(pkg).

Once the files and directories have been prepared, pkg can be installed
with the command (from a shell):

R CMD INSTALL pkg

The package may then be used in R.

mailto:@marillion.net
mailto:@marillion.net
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8.4.2 The Documentation System

Every function written in R when distributed in a package must be docu-
mented. There is a single documentation format called Rd that is processed
during the installation to create help pages in simple text (read with ?),
HTML, and PDF.

Once the help pages have been prepared and put in the directory pkg/man/,
it is possible to check the package with:

R CMD check pkg

This command will do many operations on the files within the ‘pkg/’ directory,
including:

• Checking format of the *.Rd files (mismatching braces, . . . )
• Checking consistency between the function definition (arguments) and

their documentation, including the default values.
• A number of checks of the syntax in *.R files, foreign function calls, package

dependies, etc.
• Executing all examples given in the *.Rd files.

The last item emphasizes the value of examples in R package documen-
tation. These examples, if carefully selected, are very useful to most users,
especially in packages directed to non-statisticians. Furthermore, they may
be efficient tests of the reliability of a package, particularly if it depends on
others because CRAN tests daily all packages deposited in its archive. This
may allow package maintainers to quickly find bugs related to new features
in other packages.

8.5 Performance Issues and Strategies

From all we have seen in this book, it appears that we often have a choice
among several possibilities for the same task. This is common in computer
programming where different algorithms can be used to do the same operation.
Here, we also have a choice among different computer languages that can be
interfaced among each other.

Roughly, there are three strategies when implementing a method in R:
use only R codes, interface C and / or C++ codes with R using the simple
interface function .C, and doing the same but with the complex interface
functions .Call and / or .External. These three strategies are detailed in
Table 8.1 with their gains and costs.

Although more costs are listed for the “R + C” strategies, this actually
reveals a contrast simplicity versus performance. Interfacing C programs with
R will almost always result in a significant increase in performance at the cost
of more complex programming.
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Table 8.1. Comparative gains and costs of different strategies when implementing
a computational method in R

Gains Costs

Pure R Easily programmed.
Programs can be tested directly.
Programs can be shared directly
among operating systems.
Performance can be very good.
Bugs are easily fixed.

Performance can be poor.

.C C and C++ programs can be
ported to R.
C functions already programmed
in R can be used.
Performance is generally greatly
improved.

Programs need to be compiled to
be tested.
Compilation is system depen-
dent.
Bugs are more difficult to find
than in R.
Only simple R data types (vec-
tors) can be passed to C.

.Call Same as .C.
Complex R objects (e.g., lists)
can be passed to C.

Same than .C but the last point.
Need to learn the R macros to
manipulate R objects in C.

.External Same as .Call. Same as .Call.
The number of objects passed to
C may vary.

To give an idea of the gain in performance that could result from trans-
ferring a computation done in R to C, we can consider a concrete example
from ape. When plotting a tree, the function plot.phylo computes the coor-
dinates of the nodes and tips in the graph, and then draws the appropriate
lines. Originally, all computations were done only in R code. One of these
functions returned the distance from the root to each node and tip using edge
lengths:

node.depth.edgelength <- function(x, el)
### Input: the matrix ‘edge’ of an object of class
### "phylo", and the corresponding vector ‘edge.length’.
{

tmp <- as.numeric(x)
nb.tip <- max(tmp)
nb.node <- -min(tmp)
xx <- as.numeric(rep(NA, nb.tip + nb.node))
names(xx) <- as.character(c(-(1:nb.node), 1:nb.tip))
xx["-1"] <- 0
for (i in 2:length(xx)) {

nod <- names(xx[i])
ind <- which(x[, 2] == nod)
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base <- x[ind, 1]
xx[i] <- xx[base] + el[ind]

}
xx

}

From version 1.4 of ape, this function has been replaced by a small C program
called from R:

void node_depth_edgelength(int *ntip, int *nnode, int *edge1,
int *edge2, int *nms, double *edge_length, double *xx)

{
int i, j, k;

for (i = 1; i < *ntip + *nnode; i++) {
j = 0;
while (edge2[j] != nms[i]) j++;
if (edge1[j] < 0) k = -edge1[j] - 1;
else k = *nnode + edge1[j] - 1;
xx[i] = xx[k] + edge_length[j];

}
}

which is called from R with:

.C("node_depth_edgelength", as.integer(nb.tip),
as.integer(nb.node), as.integer(x$edge[, 1]),
as.integer(x$edge[, 2]), as.integer(nb.edge),
as.double(x$edge.length),
as.double(numeric(nb.tip + nb.node)),
DUP = FALSE, PACKAGE = "ape")[[7]]

Although the C program is slightly shorter than its R version, the way argu-
ments are passed is more complex and needs more caution. It is possible to
compare the performance of both approaches (Table 8.2).4

Two comments arise from this comparison. First, a program written in
pure R can be very fast with small data sets: 0.004 s is actually negligible. In
practice, a tree with more than 500 tips is not readable when plotted directly
on the screen. The second comment is that with large data sets the gain in
speed is critical, and this should be considered when developing computation-
ally intensive methods.

A critical issue in R programming is vectorization. This means that re-
peated calls to compiled codes by the interpreter are avoided. For instance,
when generating random variables, the number of independent replicates, say
4 All computing times have been updated for this second edition with a laptop

running Ubuntu 9.10 and R 2.12.1 with 8 Gb RAM and 8 Gb swap.



352 8 Developing and Implementing Phylogenetic Methods in R

Table 8.2. Computing times (in seconds) of two programs performing the same task
on phylogenetic trees with n tips (times measured with the function system.time)

n Pure R R + C

100 0.004 < 0.0001
1000 0.311 0.0001
2000 1.232 0.0002
5000 6.767 0.0004

10,000 29.014 0.0008

100, is passed as argument, thus the compiled code is called only once which
is more efficient than calling it 100 times. To fix ideas, we can use a trivial
example consisting of the sum of many numbers. Say we generate 1,000,000
normal random variables with mean zero and variance unity, and we want to
compute their sum. Ignoring the (vectorized) function sum, a possible solution
could be:

x <- rnorm(1e6)
s <- 0
for (i in 1:1e6) s <- s + x[i]

The time needed to perform the for loop that does the summation is
0.84 s. Of course, a beginner with R quickly learns that there is the function
sum and will never do the above: sum(x) actually takes 0.002 s.

The use of vectorization may be less obvious. Consider we want to sum
only the negative values of x; the most intuitive approach may be to use an
if statement such as:

s <- 0
for (i in 1:1e6) if (x[i] < 0) s <- s + x[i]

This takes 1.2 s to be completed. A vectorized version is possible with logical
indexing:

sum(x[x < 0])

The computation time is now 0.033 s. To do the same task with a dedicated
compiled C code, we can write the following function,

#include <R.h>

void sum_neg(double *x, int *n, double *sum)
{

int i;

*sum = 0;
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for (i = 0; i < *n; i++) {
if (x[i] < 0) *sum += x[i];

}
}

and call it (after compilation) from R with the function:

sumneg <- function(x)
{

ans <- .C("sum_neg", as.double(x), as.integer(length(x)),
double(1), PACKAGE = "pkg")

ans[[3]]
}

The time needed to complete sumneg(x) is 0.018 s. The gain will obviously be
even smaller with a smaller data set. This shows clearly that writing compiled
code may not always be advantageous with R.

This can be further improved: .C has two options to speed-up how data
are passed to the C code. By default, data are duplicated before being sent
to C, so that any change at the C level will not affect the corresponding R
object. If we are sure that this will not occur, like in our present example, we
may avoid data duplication with DUP = FALSE. This should be done carefully,
however, and in case of doubt it is recommended to leave this option as its
default. The second option is, by default, NAOK = FALSE so that the data are
first checked for missing values (NA) before being sent to C. If we are sure
about the absence of missing values, we may avoid this check. Thus a faster
version of our R function would be (this does not require to recompile the C
functions):

sumneg.fast <- function(x)
{

ans <- .C("sum_neg", as.double(x), as.integer(length(x)),
double(1), DUP=FALSE, NAOK=TRUE, PACKAGE="pkg")

ans[[3]]
}

Its computing time is 0.005 s (0.008 s if only DUP = FALSE is used). These two
options are used in several places in ape like in the above example.

The crucial point, in terms of performance, is thus whether vectorization
can be achieved in an R program. We have seen above an example where
a C code was used to manipulate objects of class "phylo". This is a case
where vectorization cannot be done easily because we need to manipulate
the elements in a complicated way so that we need repeated loops and if
statements.

However, vectorization can be achieved in some cases with objects of class
"phylo". The functions birthdeath, yule, or yule.cov provide some ex-
amples. For instance, the speciation rate estimator under the Yule model is
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λ̂ = BT /XT where BT is the number of observed branching events during
time T , and XT is the sum of all branch lengths during the same time [157].
This estimator can be computed for a tree, say tr, relatively easily:

(tr$Node - 1) / sum(tr$edge.length)

The branch lengths are stored in a single numeric vector, thus the second term
is easily computed.

A strategy often used by R developers is to first develop the program in
pure R. When it is stable and some “computational bottlenecks” have been
eventually identified, some tasks can be transferred to C programs. A mixed
strategy is to keep the most complex data manipulation (e.g., involving lists,
names, etc.) in R, and using compiled codes to do computations on vectors:
this is the strategy used in plot.phylo.

8.6 Computing with the class "phylo"

The class "phylo" was created in 2002 for coding phylogenetic trees in ape. A
major modification of the internal coding happened in 2006 while keeping the
general design of the class; this was released with ape 1.9 in November of that
year. Over the years, this class has become an implicit standard for coding
and manipulating phylogenies in R. Package developers have used it for its
flexibility within R as well as the high- and low-level graphical functions in ape
allowing them to annotate trees easily (Chapter 4), and the input / output
functions using the standard Newick and NEXUS file formats (Chapter 3).
Other features have been added in recent years that have increased the utility
of using the class "phylo". The aim of this section is to summarize them and
indicate to the reader where to find detailed technical information.

8.6.1 The Main Design and its Variants

The design of the class "phylo" is borrowed from what computer scientists
call a graph: a structure made of a set of vertices (nodes and tips) linked by
edges (branches). This data coding structure is different from what is called a
tree in computer science: a hierarchical structure, often binary and recursive.
Interestingly, the latter structure was used in most computer programs to
code phylogenetic trees [79]. The next section compares both structures and
how to compute with them.

Figure 8.2 shows the basic structure of a "phylo" object. If a tree has no
reticulation and its number of tips is n and its number of nodes is m, then its
number of edges is n + m − 1. Such a structure is called an acyclical graph.
In the "phylo" representation, each node is coded with an integer: from 1
to n for the tips, and from n + 1 to n + m for the nodes. The matrix edge
contains this topological information. This coding is called an adjacency list.
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Fig. 8.2. An extract from a phylogeny (left) and its coding as a "phylo" object
(right). The grey lines on the tree shows the node numbers that are assigned by the
coding. n is the number of tips (also called leaves or terminal nodes) of the tree,
and m is its number of (internal) nodes

This topological information can also be stored in an adjacency matrix which
can be built from an object of class "phylo" (say tr) with:

M <- Ntip(tr) + Nnode(tr)
A <- matrix(0L, M, M)
A[tr$edge] <- 1L
A[tr$edge[, 2:1]] <- 1L

This adjacency matrix is square and symmetric and so can be decomposed
with its eigenvalues and eigenvectors (see Section 6.1.3).

The basic structure of the class "phylo" is extended using two different
mechanisms to match data. The first one is matching by indices where data are
matched because they have the same position (index) in different vectors, lists,
or matrices. This is widely used in the class "phylo", for instance, to store
branch lengths using a vector edge.length of length n + m − 1, so that the
length of the edge coded as the ith row in edge is given by edge.length[i].

The second mechanism is matching by labels and is used to match trees
with external data such as vectors or data frames. Chambers [38, p. 180] points
out that this mechanism is generally more meaningful that the previous one.
There is indeed little meaning in saying that Pongo is the kth tip in our tree.
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Fig. 8.3. The four nodes from Fig. 8.2 coded in a recursive tree-like structure. The
four stacked rectangles represent four variables storing, from top to bottom, two
memoty addresses (symbolized as 0x. . . ), a branch length, and a label

On the other hand, matching with indices is much faster than with labels
because the former allows computing code to access the data directly.

The general rule therefore is to match data with labels externally while
using index matching internally. Typically, matching with labels is done at
the R level using efficient base functions, and matching with indices can be
done at the R or C level because it is an easy and fast operation. This rule
appears advantageous in many situations, such as resampling for bootstrap
or dealing with a large set of trees where the tips are numbered in the same
way.

8.6.2 Iterative Versus Recursive Computing

The graph-like data structure used for coding "phylo" objects contrasts with
the recursive structures used in the majority of phylogenetic computer pro-
grams. Figure 8.3 shows how the nodes displayed on Fig. 8.2 would be coded
in a tree-like coding structure. Basically, each node (internal or terminal) is
coded with four variables: the identities of its two node-sons, the length of
the subtending edge, and a label. Typically, the identities will be memory
addresses (stored in pointer variables in languages like C or C++).

Compared to the "phylo" structure, two weaknesses appear. The first
one is the memory requirement. If we exclude the branch lengths and the
labels (which have similar memory requirements in both structures), the tree-
like structure requires 2 × (n + m) pointers while an edge matrix requires
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2 × (n + m − 1) integers. This is nearly the same on 32-bit machines because
pointers and integers are stored on four bytes, but on 64-bit architectures,
pointers are stored on eight bytes while integers are still stored on four bytes.
Thus, on modern computers a tree-like data structure will use twice as much
memory as a graph-like one.

The second weakness is linked to the fundamental recursive nature of tree-
like data so that computing must be done recursively. On the other hand,
the "phylo" structure allows the programmer either iterative or recursive
computing. An example of the latter in R has been seen in Section 8.1.2, and
similar recursive computing on the edge matrix can be done in C as well.5

Iterative computing is usually faster than its recursive counterpart because it
avoids successive function calls. To illustrate this, we take the classic example
of calculating the factorial of an integer n: n! = 1 × 2 × . . . n. The recursive
version is a textbook example and very simple in R:

fact.recu <- function(n)
{

if (n <= 1) return(1)
n * fact.recu(n - 1)

}

The iterative version is even simpler but almost 80 times faster than the above
with n = 100:6

fact.iter <- function(n) prod(1:n)

A typical use of iterative computation with the "phylo" class has been
mentioned above with the calculation of the sum of branch lengths which is
as efficient in R than in C. On the other hand, with a data structure as the
one sketched on Fig. 8.3 the same operation can be done only with recursive
computation.

With the "phylo" class, some operations or algorithms can be done using
a combination of recursive and iterative computations. The generic function
reorder acts on "phylo" objects by reordering the rows of the edge matrix
with respect to two methods: “cladewise” or “pruningwise”. The latter is in-
teresting here because it will order the branches so that various algorithms can
be applied iteratively either from the tips to the root of the tree (descending
along the rows of the edge matrix), or from the root to the tips (ascending
along the rows). This is used by several functions in ape such as pic which
computes the phylogenetically independent contrasts from tips to root, or the
functions simulating traits along a tree described in Section 7.2.2 from root
to tips. phangorn uses also this approach to compute the likelihood of char-
acters (Chapter 5). Valiente provides a complete theoretical and algorithmic
treatment of these issues [302].
5 See the file ‘src/tree phylo.c’ in ape’s sources.
6 This function is about 1.8 times slower than R’s factorial(n) which uses the Γ

function and works also with real numbers.
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The growing acceptance of the class "phylo" as a coding standard for
phylogenetic trees in R has pointed to the need of improved documentation
for developers. A Web site has been created in February 2008 with centralized
information on ape.7 It includes:

• A detailed description of the structure of the class "phylo" as well as some
others used in ape;

• An application programming interface (API) describing the C code includ-
ing in ape and how to call it from R;

• A repository of ape’s source regularly updated (using the subversion ver-
sioning system);

• General information on ape, its history, citations, tips on its installation,
etc.

The whole contents of the site is regularly updated particularly when a new
version of ape is released.

7 http://ape.mpl.ird.fr/

http://ape.mpl.ird.fr/


A

Short Course on Regular Expressions

Manipulating character strings flexibly appears particularly advantageous in
R. A crucial aspect of this strength relies on the implementation of regular
expressions (“regexp” in short). R can handle extended regexp as well as
Perl-like ones. This short appendix focuses on the former.

A regexp in R is a character string which is interpreted in a special way
by some functions (sub, gsub, strsplit, grep, gregexpr, and a few others).
Some of the most basic regexp are:

. any character
[azerty] any one of the character within brackets
[a-h] or [0-9] same than [abcdefgh] or [0123456789]
[^a] any character but a
a{6} same than aaaaaa
a{n,} a is repeated n times or more
a* same than a{0,}
a+ same than a{1,}
a{n,m} a is repeated between n and m times
^aze start of the string
rty$ end of the string

Note that [A-Za-z] means “an upper- or lowercase letter”, whereas
[A-Z][a-z] means “an uppercase letter followed by a lowercase one”. An
alternative to using explicitly the characters (which depends on the locale) is
to use predefined classes. Some of them are given below (more can be found
with ?regexp):

[:alpha:] upper- and lowercase letters
[:digit:] digits
[:lower:] lowercase letters
[:space:] spaces, tabulations and new lines
[:upper:] uppercase letters
[:alnum:] [:alpha:] and [:digit:]

DOI 10.1007/978-1-4614-1743-9, © Springer Science+Business Media, LLC 2012
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The characters {, }, [, ], +, ^, and $ are part of the syntax of regexp
and must be preceded by \\. However, this is context-dependent: the regexp
"[[]" means “a left bracket” and is thus the same than "\\[".

We note that the backward slash is doubled: the reason is that R uses a
C-like syntax to code strings where the character next to ‘\’ is interpreted in
a special way (e.g., \n is a new line, \t a tabulation, \" a quote—these are
actually single characters as can be checked with nchar("\n")). Therefore,
to code for a backward slash in a character string it must be doubled, but in
a regexp it must be quadrupled:

> x <- "C:\\Program Files\\"
> cat(x, "\n")
C:\Program Files\
> gsub("\\\\", "/", x)
[1] "C:/Program Files/"

Regexp’s may sometimes be tedious to find, if not always for the really
useful ones. It is good to test them with gsub to make sure they work as
expected; cat is also useful to see if the escaped characters are interpreted
correctly like in the example above. An example is provided by the code of
read.nexus where comments inserted in the Newick string are deleted with
gsub:

> x <- "Pan:1.2[a comment],Homo:1.2[another comment]"
> gsub("\\[[^]]*\\]", "", x)
[1] "Pan:1.2,Homo:1.2"

The vertical bar means an alternative between two regexp:

> gsub("Pan|Homo", "XXX", x)
[1] "XXX:1.2[a comment],XXX:1.2[another comment]"

Most functions handling regexp in R have the option fixed = TRUE to
inactivate the regexp matching mechanism and treat its main argument as a
standard character string (or literate regexp):

> gsub("[a comment]", "", x)
[1] "P:1.2[],H:1.2[hr]"
> gsub("[a comment]", "", x, fixed = TRUE)
[1] "Pan:1.2,Homo:1.2[another comment]"

Parentheses have the meaning, similar to most languages, of grouping ex-
pressions, making possible to build complicated ones. For instance:

"((C|T)A){10,}G{5}"

means “the pair of characters, either CA or CT, repeated ten times or more,
and followed by G five times”.
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