

Data analysis and visualization (DAV)

Lecture 02

Łukasz P. Kozłowski

Warsaw, 2025

Data analysis and visualization (DAV)

Lecture 02

Good practices

Łukasz P. Kozłowski

Warsaw, 2025

Plots

Plots

the best solution, very natural and easy to interpretation

Plots

the best solution, very natural and easy to interpretation (but also prone for miss-interpretation)

Plots

the best solution, very natural and easy to interpretation (but also prone for miss-interpretation)

Tables

harder to interpret in short time, but higher information content

Plots

the best solution, very natural and easy to interpretation (but also prone for miss-interpretation)

Tables

harder to interpret in short time, but higher information content

* Raw data

for the sake of completeness if you can add them

* The scripts

for the sake of reproducibility if you can add them

Plots

the best solution, very natural and easy to interpretation (but also prone for miss-interpretation)

Tables

harder to interpret in short time, but higher information content

* Raw data

for the sake of completeness if you can add them

* The scripts

for the sake of reproducibility if you can add them

Some proofs:

Some proofs:

93% of human communication is non-verbal

People remember:

80% of what they **see** and 20% what they **read**

Albert Mahrabian (1971) "Silent Messages"

Some proofs:

93% of human communication is non-verbal

People remember:

80% of what they **see** and 20% what they **read**

Albert Mahrabian (1971) "Silent Messages"

using visuals will make a presentation 43% more persuasive

Vogel, D. R., Dickson, G. W., & Lehman, J. A. (1986). Persuasion and the role of visual presentation support: The UM/3M study.

- 1) Use clean template
- 2) Make it interactive if possible (html)

Tables (for print)

State	Date	Item	Price	Qty	Amount
CA	28-May	Tent	199	2	398
WA	16-May	Headlamp	39.99	2	79.98
WA	19-May	Sleeping Bag	58.5	1	58.5
WA	13-May	Headlamp	39.99	1	39.99
CA	6-May	Tent	199	3	597
OR	21-May	Backpack	98.77	1	98.77
OR	5-May	Backpack	98.77	1	98.77
CA	1-May	Bike rack	415.75	2	831.5
CA	5-May	Backpack	180.5	1	180.5
CA	4-May	Bike rack	415.75	1	415.75
CA	12-May	Backpack	220.3	1	220.3
CA	4-May	Headlamp	39.99	4	159.96

Method	Protein dat	aset		Method	Peptide dataset		
	RMSD	%	Outliers		RMSD	%	Outliers
Avg_pI	0.874	0.96	53	Avg_pI	0.454	59.6	1571
Bjellqvist	0.934	0.944	47	Bjellqvist	0.669	161.5	1583
Dawson	0.944	0.945	56	Dawson	0.435	52.9	1432
DTASelect	0.945	1.032	58	DTASelect	0.55	99.1	1714
EMBOSS	0.955	1.056	69	EMBOSS	0.325	18.5	372
Grimsley	0.963	0.968	60	Grimsley	0.616	131.4	1550
IPC_prote in	0.966	0.874	46	IPC_petpti de	0.251	0	232
Lehninger	0.968	0.97	59	Lehninger	0.262	2.5	236
Nozaki	0.97	1.024	56	Nozaki	0.602	124.3	1368
Patrickios	0.97	2.392	227	Patrickios	1.998	5479.1	2739
pIPredict	1.013	1.048	56	pIPredict	1.024	493.6	2720
pIR	1.024	1.013	58	pIR	1.881	4159.7	3358
ProMoST	1.03	0.966	52	ProMoST	1.239	873.4	2649
Rodwell	1.032	0.963	58	Rodwell	0.502	78.4	1359
Sillero	1.048	1.059	63	Sillero	0.428	50.3	1223
Solomon	1.056	0.97	58	Solomon	0.255	0.9	235
Thurlkill	1.059	1.032	61	Thurlkill	0.481	69.7	1361
Toseland	2.392	0.934	52	Toseland	0.425	49.1	990
Wikipedia	0.96	0.955	55	Wikipedia	0.421	47.9	1467

Method	Protein da	ntaset		Method	Peptide d	Peptide dataset			
	RMSD	%	Outliers		RMSD	%	Outliers		
IPC_prote in	0.874	0	46	IPC_pepti de	0.251	0	232		
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235		
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236		
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372		
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467		
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990		
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223		
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432		
Solomon	0.97	24.8	58	Thurlkill	0.481	69.7	1361		
Lehninger	0.97	25	59	Rodwell	0.502	78.4	1359		
pIR	1.013	38	58	DTASelec	0.550	99.1	1714		
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368		
Thurlkill	1.03	43.4	61	Grimsley	0.616	131.4	1550		
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583		
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720		
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649		
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358		
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739		
Avg_pI	0.96	22.1	53	Avg pI	0.454	59.6	1571		

Method	Protein da	ntaset		Method	Peptide d	Peptide dataset		
	RMSD	%	Outliers		RMSD	%	Outliers	
IPC_prote in	0.874	0	46	IPC_pepti de	0.251	0	232	
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235	
Bjellqvist	0.944	17.7	47	Lehninge	0.262	2.5	236	
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372	
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467	
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990	
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223	
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432	
Solomon	0.97	24.8	58	Thurlkill	0.481	69.7	1361	
Lehninger	0.97	25	59	Rodwell	0.502	78.4	1359	
pIR	1.013	38	58	DTASelec	t 0.550	99.1	1714	
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368	
Thurlkill	1.03	43.4	61	Grimsley	0.616	131.4	1550	
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583	
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720	
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649	
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358	
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739	
Avg_pI	0.96	22.1	53	Avg_pI	0.454	59.6	1571	

Sort (decide how, use html if possible)

Data analysis and visualization

Method	Protein	datase	t	Method	Peptide dataset		
	RMSD	%	Outliers	7	RMSD	%	Outliers
IPC_protein	0.874	0	46	IPC_peptide	0.251	0	232
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432
Solomon	0.97	24.8	58	Thurlkill	0.481	69.7	1361
Lehninger	0.97	25	59	Rodwell	0.502	78.4	1359
pIR	1.013	38	58	DTASelect	0.550	99.1	1714
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368
Thurlkill	1.03	43.4	61	Grimsley	0.616	131.4	1550
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739
Avg_pI	0.96	22.1	53	Avg_pI	0.454	59.6	1571

Method	Protein	datase	t	Method	Peptide dataset			
	RMSD	%	Outliers	7	RMSD	%	Outliers	
IPC_protein	0.874	0	46	IPC_peptide	0.251	0	232	
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235	
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236	
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372	
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467	
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990	
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223	
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432	
Solomon	0.97	24.8	58	Thurlkill	0.481	69.7	1361	
Lehninger	0.97	25	59	Rodwell	0.502	78.4	1359	
pIR	1.013	38	58	DTASelect	0.550	99.1	1714	
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368	
Thurlkill	1.03	43.4	61	Grimsley	0.616	131.4	1550	
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583	
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720	
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649	
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358	
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739	
Avg_pI	0.96	22.1	53	Avg_pI	0.454	59.6	1571	

Bold & Align, the same font (size, type, consider using monotype font for better alignment)

Optimal width of columns and vertical and horizontal alignment, avoid blank spaces

Method	Protein dataset			Method	Peptide dataset			
	RMSD	%	Outliers		RMSD	%	Outliers	
IPC_protein	0.874	0.0	46	IPC_peptide	0.251	0.0	232	
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235	
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236	
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372	
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467	
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990	
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223	
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432	
Solomon	0.970	24.8	58	Thurlkill	0.481	69.7	1361	
Lehninger	0.970	25.0	59	Rodwell	0.502	78.4	1359	
pIR	1.013	38.0	58	DTASelect	0.550	99.1	1714	
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368	
Thurlkill	1.030	43.4	61	Grimsley	0.616	131.4	1550	
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583	
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720	
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649	
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358	
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739	
Avg_pI	0.960	22.1	53	Avg_pI	0.454	59.6	1571	

Use the same decimal point (do not round at different levels)

Mathad	Pro	otein da	taset	Method Peptide dataset			taset
Method	RMSD	%	Outliers	Method	RMSD	%	Outliers
IPC_protein	0.874	0.0	46	IPC_peptide	0.251	0.0	232
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990
Pro MoST	0.966	23.6	52	Sillero	0.428	50.3	1223
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432
Solomon	0.970	24.8	58	Thurlkill	0.481	69.7	1361
Lehninger	0.970	25.0	59	Rodwell	0.502	78.4	1359
pIR	1.013	38.0	58	DTASelect	0.550	99.1	1714
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368
Thurlkill	1.030	43.4	61	Grimsley	0.616	131.4	1550
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739
Avg_pI	0.960	22.1	53	Avg_pI	0.454	59.6	1571

Less is more (hide some of the borders and make them ticker)

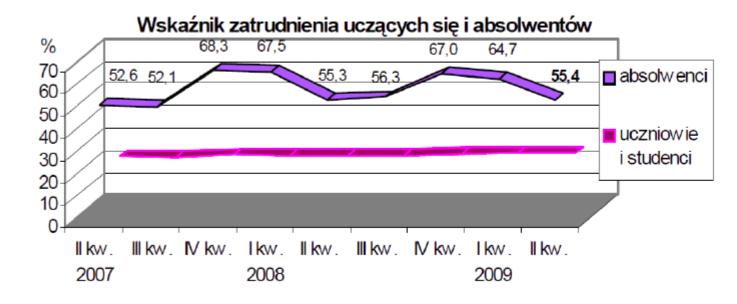
	Pr	otein dat	aset		Pe	ptide dat	aset
Method	RMSD	%	Outliers	Method	RMSD	%	Outliers
IPC_protein	0.874	0.0	46	IPC_peptide	0.251	0.0	232
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432
Solomon	0.970	24.8	58	Thurlkill	0.481	69.7	1361
Lehninger	0.970	25.0	59	Rodwell	0.502	78.4	1359
pIR	1.013	38.0	58	DTASelect	0.550	99.1	1714
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368
Thurlkill	1.030	43.4	61	Grimsley	0.616	131.4	1550
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739
Avg_pI*	0.960	22.1	53	Avg_pI	0.454	59.6	1571

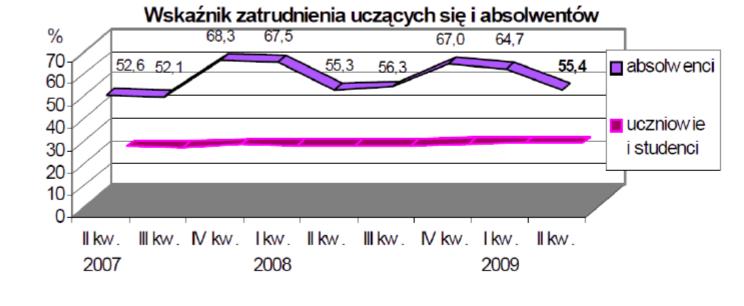
Less is more

avoid as many blank space as possible, correct the width of columns

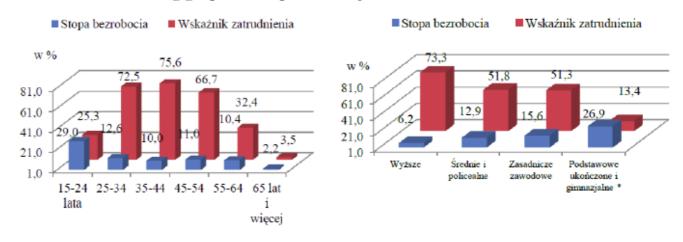
	Pr	otein dat	aset		Pe	ptide dat	aset
Method	RMSD	%	Outliers	Method	RMSD	%	Outliers
IPC_protein	0.874	0.0	46	IPC_peptide	0.251	0.0	232
Toseland	0.934	14.9	52	Solomon	0.255	0.9	235
Bjellqvist	0.944	17.7	47	Lehninger	0.262	2.5	236
Dawson	0.945	17.8	56	EMBOSS	0.325	18.5	372
Wikipedia	0.955	20.5	55	Wikipedia	0.421	47.9	1467
Rodwell	0.963	22.8	58	Toseland	0.425	49.1	990
ProMoST	0.966	23.6	52	Sillero	0.428	50.3	1223
Grimsley	0.968	24.2	60	Dawson	0.435	52.9	1432
Solomon	0.970	24.8	58	Thurlkill	0.481	69.7	1361
Lehninger	0.970	25.0	59	Rodwell	0.502	78.4	1359
pIR	1.013	38.0	58	DTASelect	0.550	99.1	1714
Nozaki	1.024	41.3	56	Nozaki	0.602	124.3	1368
Thurlkill	1.030	43.4	61	Grimsley	0.616	131.4	1550
DTASelect	1.032	44.1	58	Bjellqvist	0.669	161.5	1583
pIPredict	1.048	49.4	56	pIPredict	1.024	493.6	2720
EMBOSS	1.056	52.3	69	ProMoST	1.239	873.4	2649
Sillero	1.059	53.2	63	pIR	1.881	4159.7	3358
Patrickios	2.392	3201.8	227	Patrickios	1.998	5479.1	2739
Avg_pI*	0.960	22.1	53	Avg_pI	0.454	59.6	1571

Each table should be single script





Wykres 7. Wskaźnik zatrudnienia oraz stopa bezrobocia według grup wieku i poziomu wykształcenia w 2011 r.



łącznie z wykształceniem podstawowym nieukończonym i bez wykształcenia szkolnego

column 1 name, column 2 name, column 3 name first row data 1, first row data 2, first row data 3 second row data 1, second row data 2, second row data 3


```
column 1 name, column 2 name, column 3 name
first row data 1, first row data 2, first row data 3
second row data 1, second row data 2, second row data 3
```


printable ASCII or Unicode characters.

```
column 1 name, column 2 name, column 3 name
first row data 1, first row data 2, first row data 3
second row data 1, second row data 2, second row data 3
```


printable ASCII or Unicode characters.

Other popular delimiters include the tab (\t), colon (:) and semicolon (;) characters. Properly parsing a CSV file requires us to know which delimiter is being used.

```
column 1 name, column 2 name, column 3 name
first row data 1, first row data 2, first row data 3
second row data 1, second row data 2, second row data 3
...
```


printable ASCII or Unicode characters.

Other popular delimiters include the tab (\t), colon (:) and semicolon (;) characters. Properly parsing a CSV file requires us to know which delimiter is being used.

CSV files are very easy to work with programmatically. Any language that supports text file input and string manipulation (like Python) can work with CSV files directly.

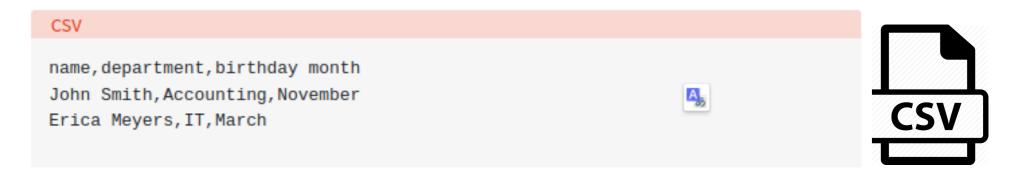
```
column 1 name, column 2 name, column 3 name
first row data 1, first row data 2, first row data 3
second row data 1, second row data 2, second row data 3
...
```


printable ASCII or Unicode characters.

Other popular delimiters include the tab (\t), colon (:) and semicolon (;) characters. Properly parsing a CSV file requires us to know which delimiter is being used.

CSV files are very easy to work with programmatically. Any language that supports text file input and string manipulation (like Python) can work with CSV files directly.

Nice to work with unix commands like: head, tail, split, cat, etc.



Here's code to read it:

```
import csv

with open('employee_birthday.txt') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
        if line_count == 0:
            print(f'Column names are {", ".join(row)}')
            line_count += 1
        else:
            print(f'\t{row[0]} works in the {row[1]} department, and was born :
            line_count += 1
        print(f'Processed {line_count} lines.')
```


Here's code to read it:

```
import csv

with open('employee_birthday.txt') as csv_file:
    csv_reader = csv.reader(csv_file, delimiter=',')
    line_count = 0
    for row in csv_reader:
        if line_count == 0:
            print(f'Column names are {", ".join(row)}')
            line_count += 1
        else:
            print(f'\t{row[0]} works in the {row[1]} department, and was born :
            line_count += 1
        print(f'Processed {line_count} lines.')
```


Shell

```
Column names are name, department, birthday month

John Smith works in the Accounting department, and was born in November.

Erica Meyers works in the IT department, and was born in March.

Processed 3 lines.
```

import csv

import pandas

import csv

import pandas
df = pandas.read_csv('hrdata.csv')
print(df)


```
Shell
            Name Hire Date Salary Sick Days remaining
  Graham Chapman 03/15/14
                            50000.0
                                                     10
     John Cleese 06/01/15
                           65000.0
       Eric Idle 05/12/14 45000.0
                                                     10
     Terry Jones 11/01/13 70000.0
4
   Terry Gilliam 08/12/14
                            48000.0
   Michael Palin 05/23/13
5
                           66000.0
                                                      8
```

```
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 27,
"address": {
  "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
  "postalCode": "10021-3100"
},
"phoneNumbers": [
   "type": "home",
    "number": "212 555-1234"
  },
   "type": "office",
   "number": "646 555-4567"
  },
   "type": "mobile",
    "number": "123 456-7890"
"children": [],
"spouse": null
```



```
import json

person = '{"name": "Bob", "languages": ["English", "Fench"]}'
person_dict = json.loads(person)

# Output: {'name': 'Bob', 'languages': ['English', 'Fench']}
print( person_dict)

# Output: ['English', 'French']
print(person_dict['languages'])
```

```
import json

person = '{"name": "Bob", "languages": ["English", "Fench"]}'
person_dict = json.loads(person)

# Output: {'name': 'Bob', 'languages': ['English', 'Fench']}
print( person_dict)

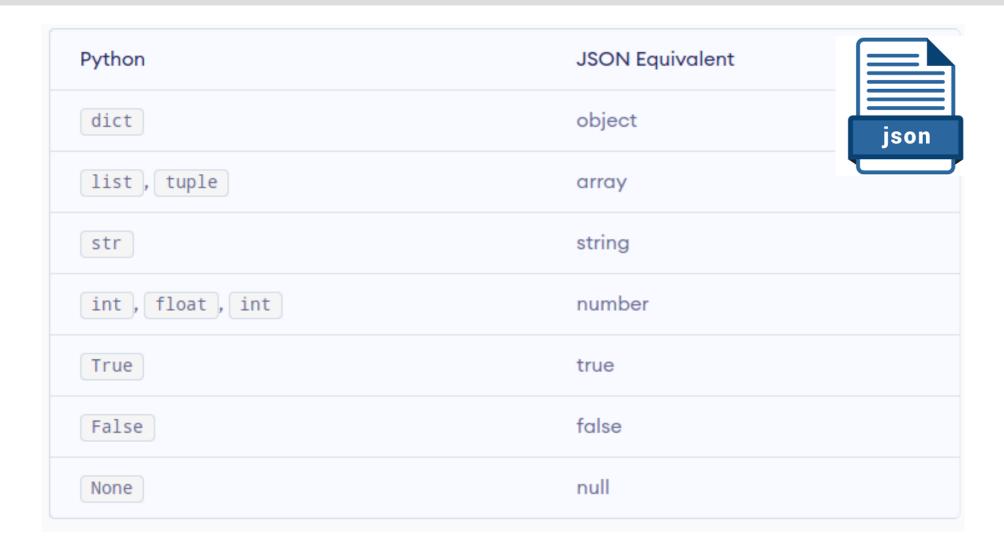
# Output: ['English', 'French']
print(person_dict['languages'])
```

```
import json

person_dict = {'name': 'Bob',
   'age': 12,
   'children': None
}

person_json = json.dumps(person_dict)

# Output: {"name": "Bob", "age": 12, "children": null}
print(person_json)
```



MUST be in UTF-8

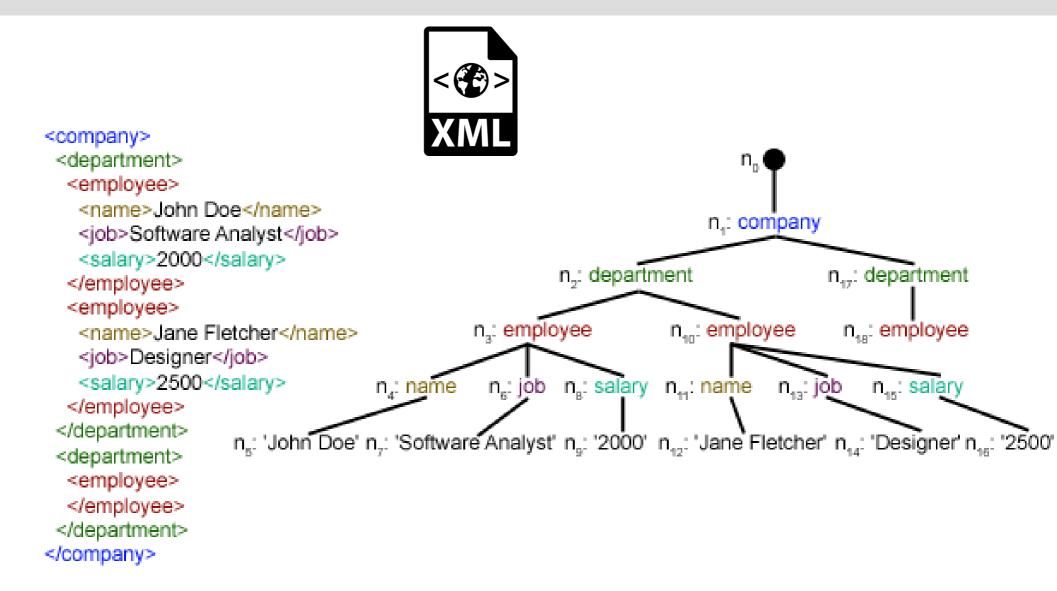
https://www.programiz.com/python-programming/json

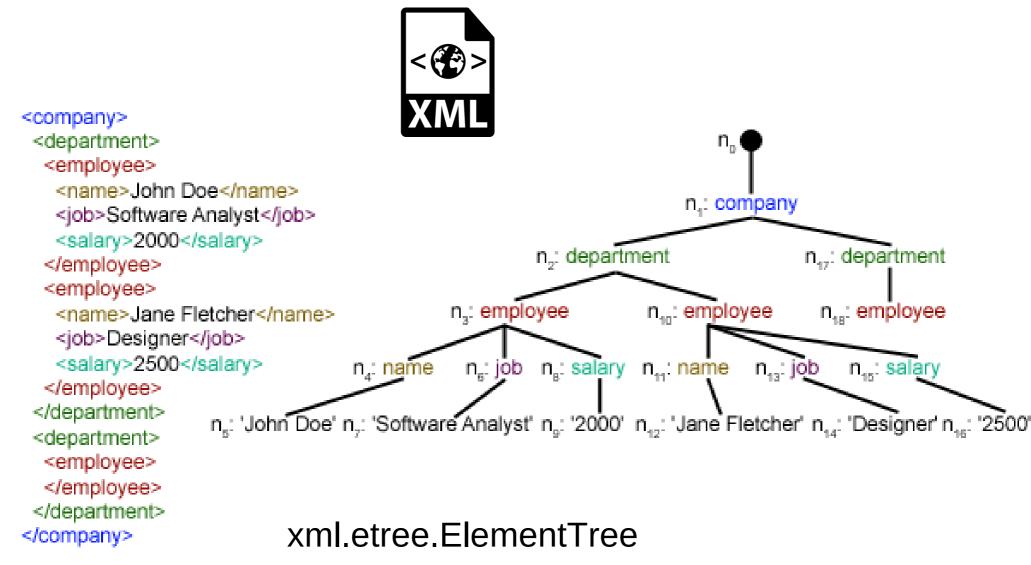
json

```
$ python test_serialization_speed.py
  Encoding Tests
Encoding: 100000 x {'m': 'asdsasdqwqw', 't': 3}
      json] 1.12385 seconds for 100000 runs. avg: 0.011239ms
[simplejson] 0.44356 seconds for 100000 runs. avg: 0.004436ms
      cjson] 0.09593 seconds for 100000 runs. avg: 0.000959ms
Encoding: 10000 x {'m': [['0', 1, '2', 3, '4', 5, '6', 7, '8', 9, '10', 11, '12', 13,
      json] 7.76628 seconds for 10000 runs. avg: 0.776628ms
[simplejson] 0.51179 seconds for 10000 runs. avg: 0.051179ms
      cjson] 0.44362 seconds for 10000 runs. avg: 0.044362ms
  Decoding Tests
Decoding: 100000 x {"m": "asdsasdqwqw", "t": 3}
      json] 3.32861 seconds for 100000 runs. avg: 0.033286ms
[simplejson] 0.37164 seconds for 100000 runs. avg: 0.003716ms
      cjson] 0.03893 seconds for 100000 runs. avg: 0.000389ms
Decoding: 10000 x {"m": [["0", 1, "2", 3, "4", 5, "6", 7, "8", 9, "10", 11, "12", 13,
      json] 37.26270 seconds for 10000 runs. avg: 3.726270ms
[simplejson] 0.56643 seconds for 10000 runs. avg: 0.056643ms
      cjson] 0.33007 seconds for 10000 runs. avg: 0.033007ms
```


simplejson, ujson, cjson, ...

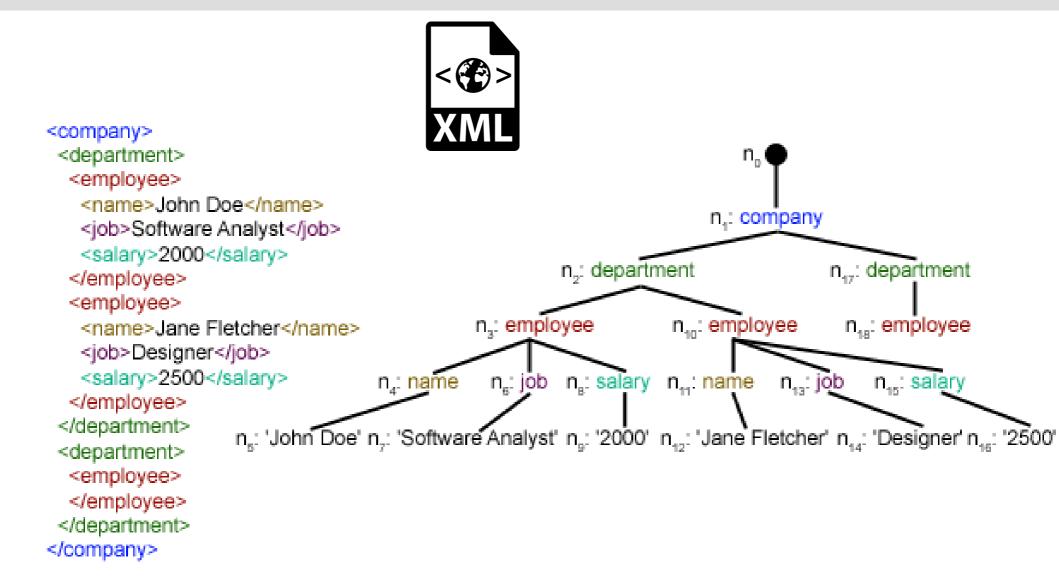
https://stackoverflow.com/questions/712791/what-are-the-differences-between-json-and-simplejson-python-modules





xml.dom.minidom

etree.XMLParser() [from lxml)



XML is not known for being short and sweet

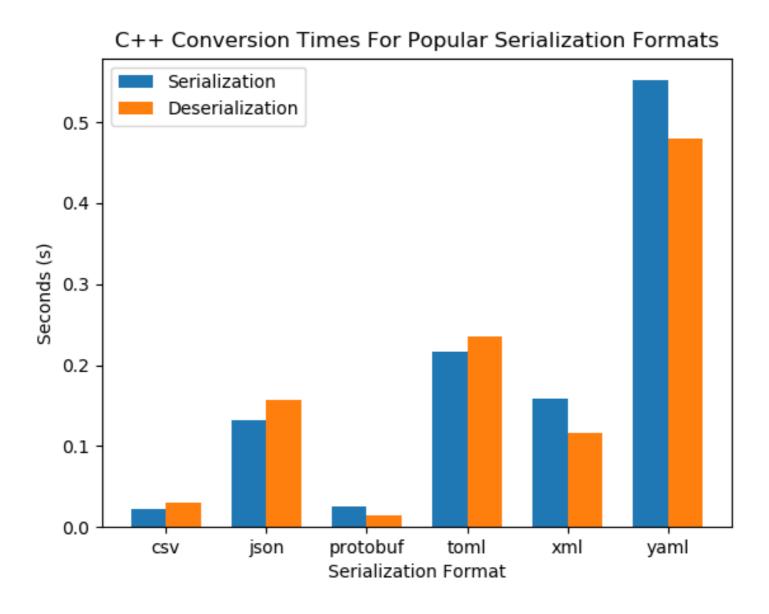
Human-readable, although ...

you can get lost in-between all the tags in-front of your eyes

Properties	CSV	JSON	Parquet	Avro
Columnar	*	×	V	×
Compressable	V	V	V	
Splittable	V *	\(\start \)	V	
Readable	V		X	×
Complex data structure	X	V		V
Schema evolution	X	X		V
'			@lumin	ousmen.com

Parquet (Apache) – column based format

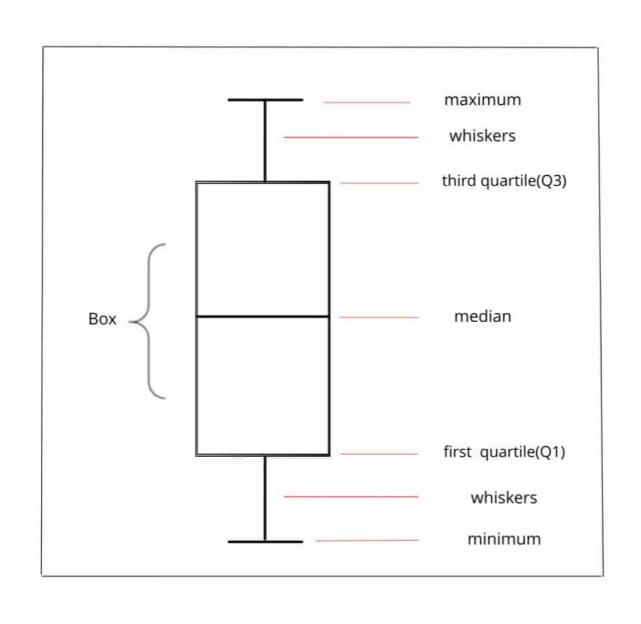
Avro (Hadoop) – row based format

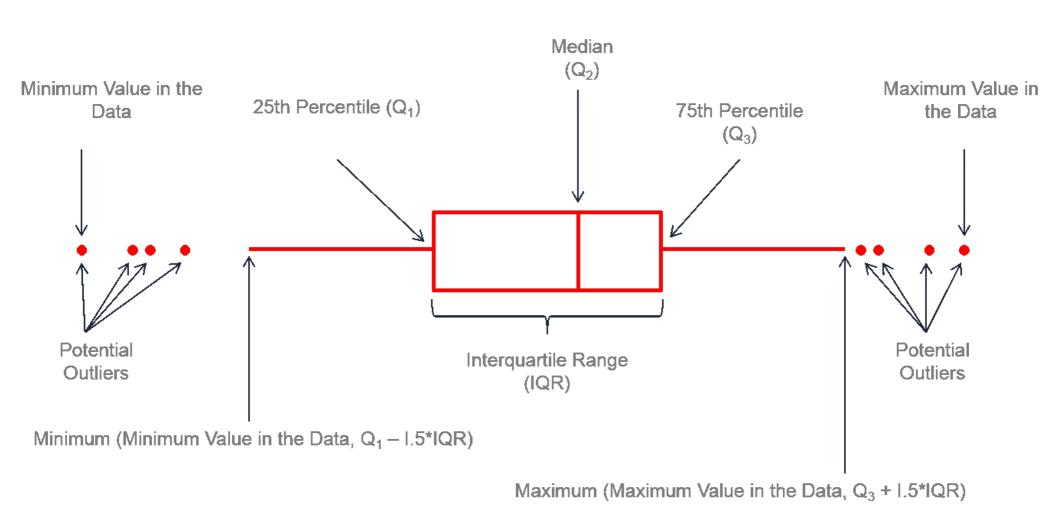


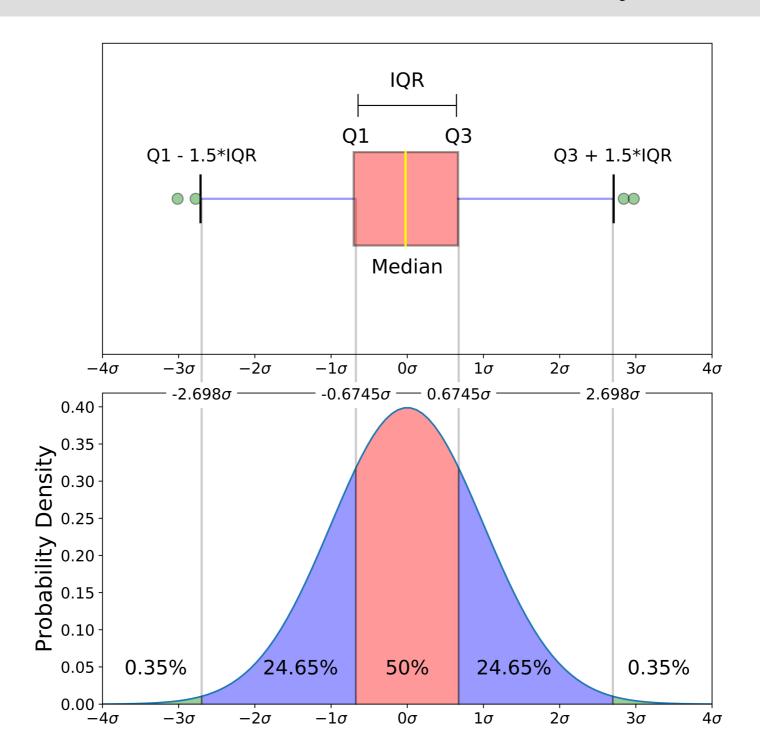
https://blog.mbedded.ninja/programming/serialization-formats/a-comparison-of-serialization-formats/

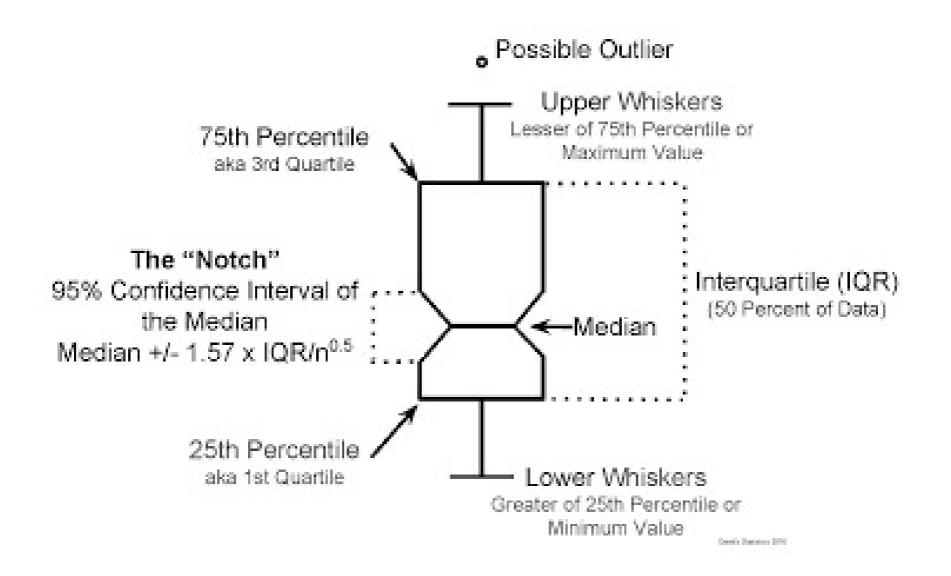
Format	File Size (MiB, 10k records)	File Size (MiB, 100k records)
CSV	0.41	4.2
json	0.81	8.2
xml	1.50	15
yaml	0.80	8.1

https://blog.mbedded.ninja/programming/serialization-formats/a-comparison-of-serialization-formats/



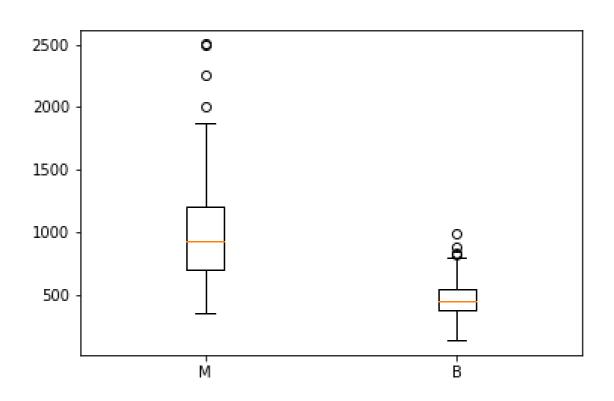


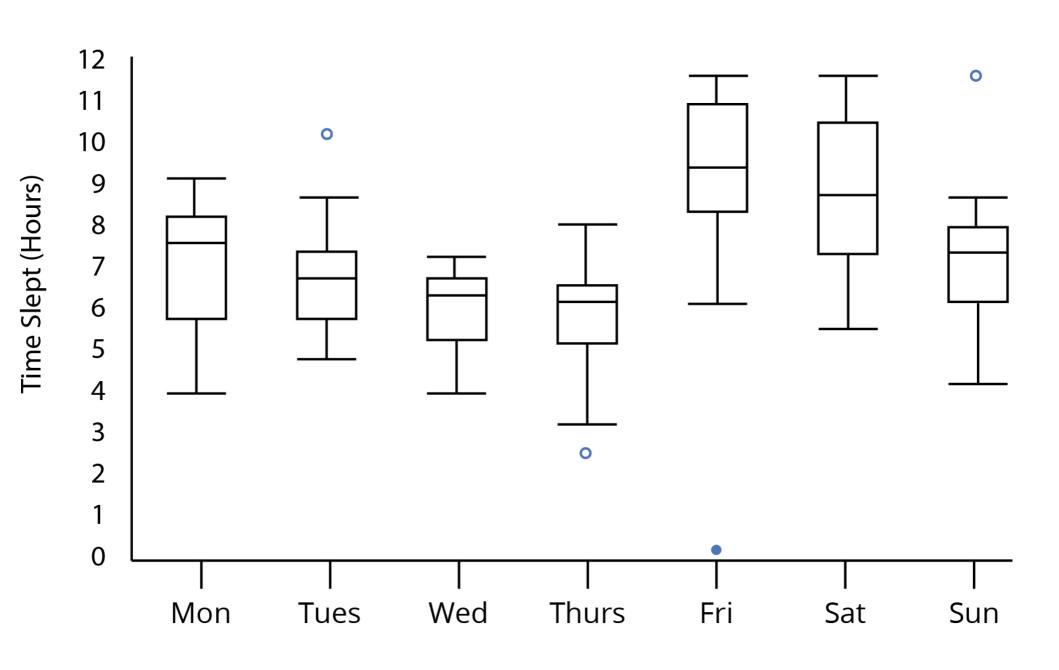


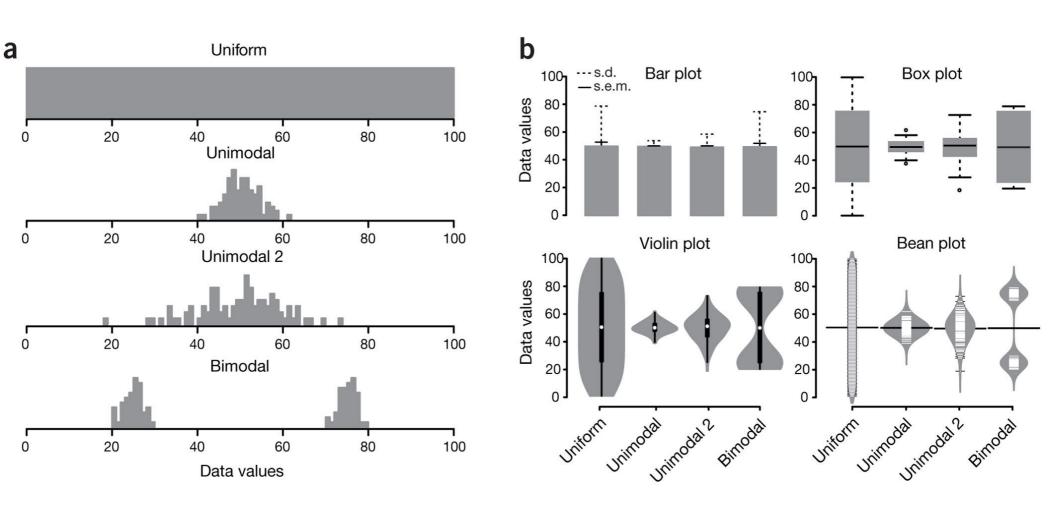


```
malignant = df[df['diagnosis']=='M']['area_mean']
benign = df[df['diagnosis']=='B']['area_mean']
```

```
fig = plt.figure()
ax = fig.add_subplot(111)
ax.boxplot([malignant,benign], labels=['M', 'B'])
```







Thank you for your time and See you at the next lecture

Any other questions & comments

l.kozlowski@mimuw.edu.pl