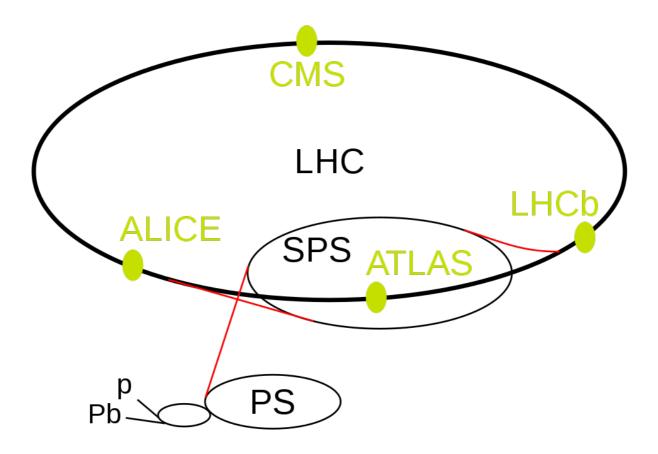


Architecture of large projects in bioinformatics (ADP)

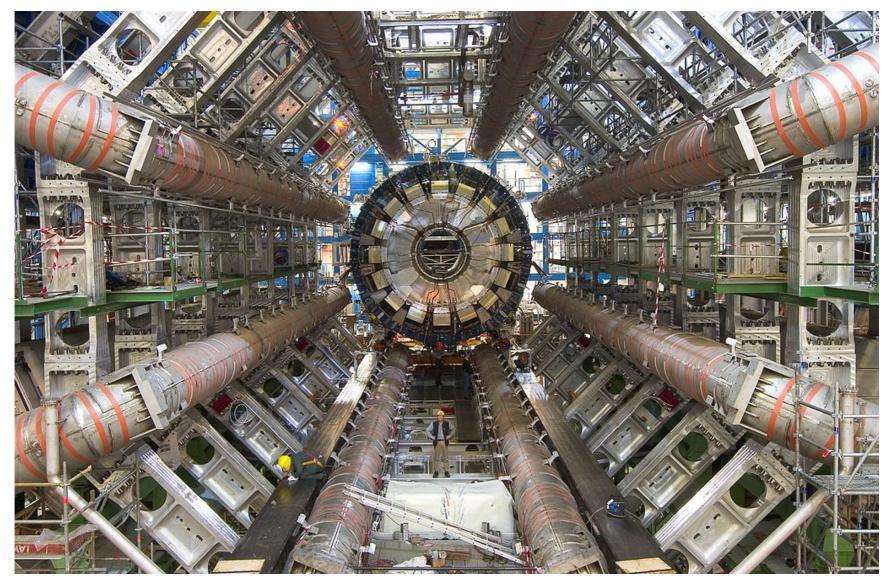

Lecture 08

Łukasz P. Kozłowski

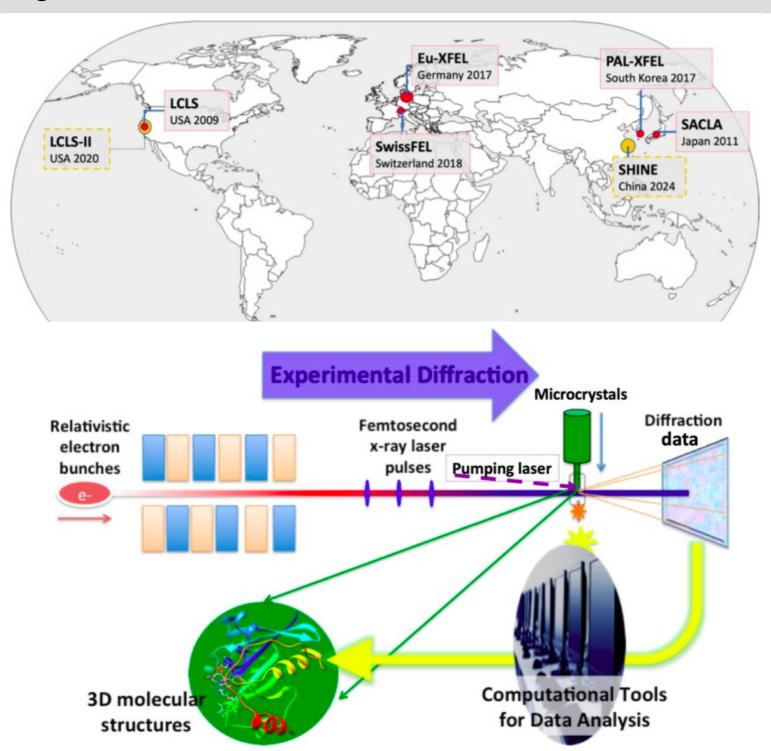
Warsaw, 2025

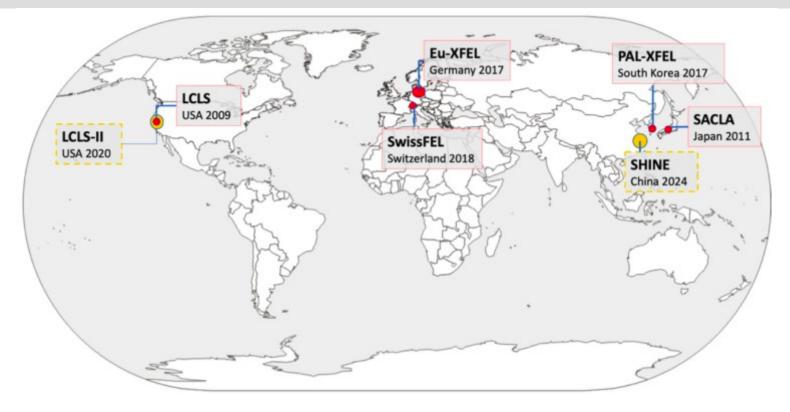
Consortia

Scientific Competitions



ATLAS experiment




ATLAS detector is 46 metres long, 25 metres in diameter, and weighs about 7,000 tonnes; it contains some 3000 km of cable

The experiment is a collaboration involving roughly 10,000 physicists from hundreds institutions in >100 countries

Budget of €7.5 billion

First ring build in 1971–1984

European XFEL

3.4-kilometre (2.1 mi) long tunnel

Cost for the construction and commissioning of the facility is as of 2017 estimated at €1.22 billion

Human Brain Project

Future Emerging Technologies (FET) Flagships from EU

121 partners from universities, research institutes and companies in 20 countries

Launched in 2013

Budget of €1 billion (until 2019)

Brain, graphene and quantum technologies

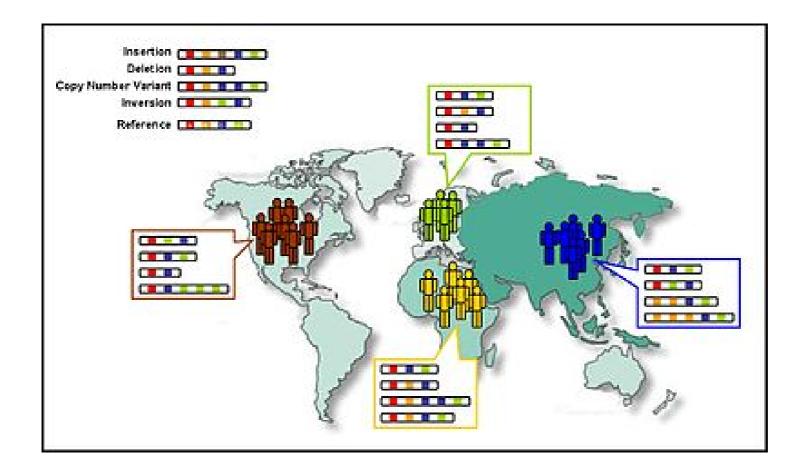
https://www.humanbrainproject.eu

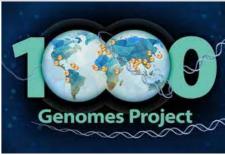
Human Brain Project

Future Emerging Technologies (FET) Flagships from EU

121 partners from universities, research institutes and companies in 20 countries

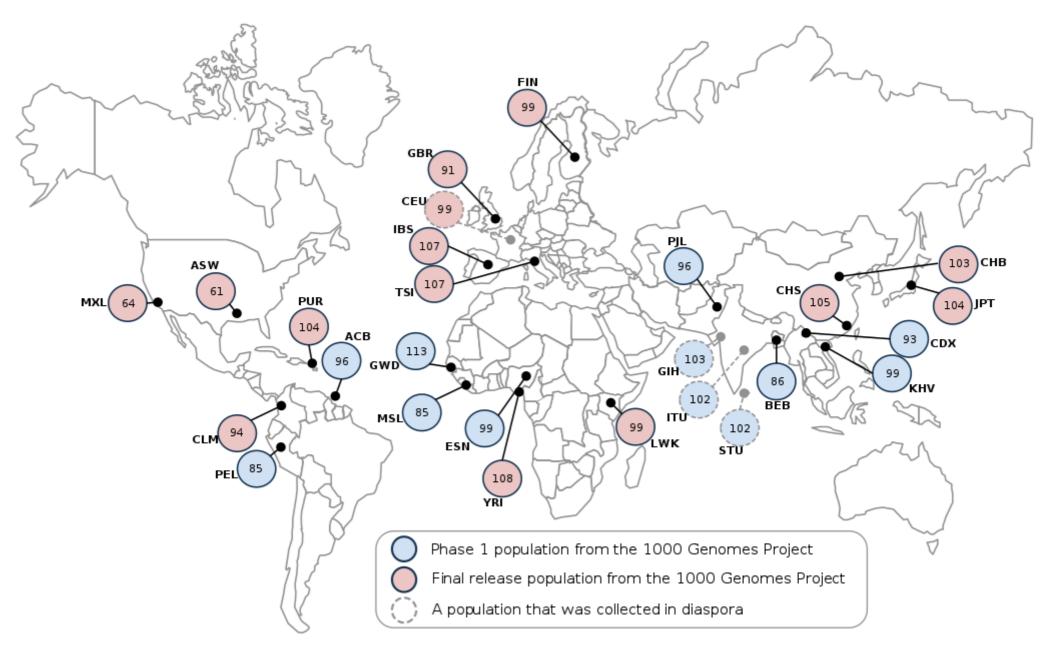
Launched in 2013




Budget of €1 billion (until 2019)

Brain, graphene and quantum technologies

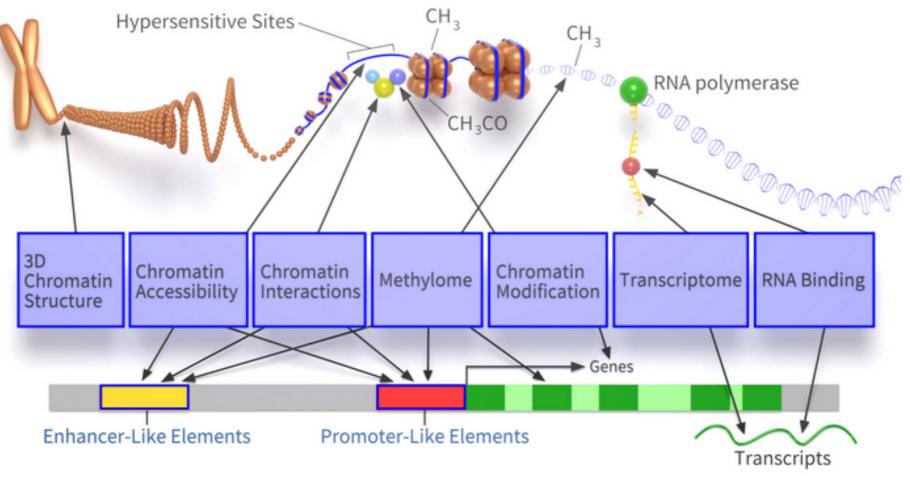
16 of these projects will collaborate with the **Graphene** Flagship and nine with the **Human Brain Project**. These projects will be funded by a total budget of € 16.4 million and are expected to start between December 2019 and March 2020


1000 Genomes Project

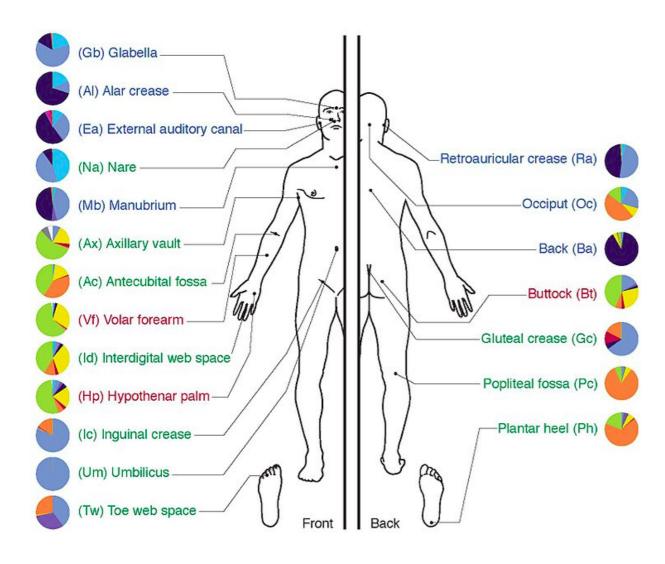
https://www.internationalgenome.org

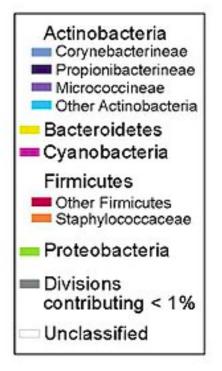
1000 Genomes Project

1000 Plant Genomes Project (1KP)


Followed by 10,000 Plant Genome Project

https://sites.google.com/a/ualberta.ca/onekp/


Encyclopedia of DNA Elements (ENCODE) is a public research project which aims to identify functional elements in the human genome


http://encodeproject.org/

ENCODE

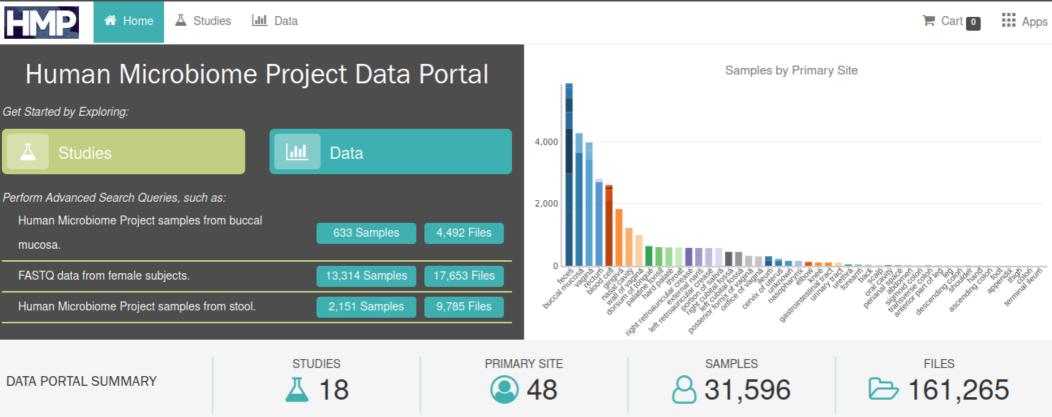
Human Microbiome Project

https://hmpdacc.org

ADP

ENCODE Data Encyclop	pedia Materials & Method	s Help	New » Search	Q Sign in / Create account
Software search	Showing 25 of	144 results w All		{;}
Software type	✓ Imperio – source			Software
Purpose used_by Selected filters: ③ ENCODE ENCODE	 otations by integration of the section of the section	tegrating deep learning ning annotations with S or integrating deep lear nstruct allelic-effect ann to blood-related traits ss of deep learning mod	, a gradient boosting method for construct gallelic-effect annotations with fine-mapp SNP-to-gene (S2G) linking strategies and re rning annotations with S2G strategies to p notations based on changes in predicted of are described in our manuscript "Integrat dels for human complex diseases".	relevant gene sets, and (iii) Imper predict gene expression in whole expression. Applications of these
	REDITS – source REDITs contai Software typ	n a suite of tools to ider	ntify differential RNA editing sites using R	Software RNA-seq data • released
	n sites in RNA	ber is a method for de		Software ipt start sites and polyadenylatio • released
	DEADD			Cottuero

Human Microbiome Project


ENCODE Data Ency	vclopedia	Materials & Methods	Help	New » Search	٩	Sign in / Create account
Software search	1	Showing 25 of 14				{;}
Software type	~	Imperio – source		oost, a gradient boosting method for cons	tructing boosted doop lo	Software
Purpose	~	otations by integr ese deep learning	rating deep learn g annotations wi	ning allelic-effect annotations with fine-m th SNP-to-gene (S2G) linking strategies ar	happed SNPs; (ii) tools to and relevant gene sets, an	combine th d (iii) Imper
used_by Selected filters: Selected	E	blood and constru 3 approaches to b	uct allelic-effect blood-related tra f deep learning	learning annotations with S2G strategies annotations based on changes in predict aits are described in our manuscript "Inte models for human complex diseases".	ed expression. Application	ons of these
		REDITS — source C REDITs contain a s Software type: o		identify differential RNA editing sites usin	ng RNA-seq data	Software released
		mountainClimber mountainClimber n sites in RNA-sec Software type: t	r is a method for data	r de novo identification of alternative tran fication	script start sites and pol	Software yadenylatio ● released

Coffeenan

Human Microbiome Project

https://hmpdacc.org

UK Biobank is a large-scale biomedical database and research resource, containing indepth genetic and health information from **half a million UK participants**

- NGS data
- Magnetic Resonance Imaging (MRI) data from the brain, heart and abdomen (>60k)

• • •

Association of alcohol types, coffee and tea intake with mortality

Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease


Association between household size and COVID-19: A UK Biobank observational study

Association of alcohol types, coffee and tea intake with mortality

Adiposity, diabetes, lifestyle factors and risk of gastroesophageal reflux disease

Association between household size and COVID-19: A UK Biobank observational study

Frontiers in Genetics, November 29th 2022 Association of insomnia and daytime sleepiness with low back pain: A bidirectional mendelian randomization analysis 🖓

Peng Shu, Lixian Ji, Zichuan Ping, Zhibo Sun, Wei Liu

Science of The Total Environment, November 1st 2022

Exposure to various ambient air pollutants increases the risk of venous thromboembolism: A cohort study in UK Biobank ^[2]

Sleep Medicine, October 1st 2022

<u>Gender-specific association between obstructive sleep apnea and cognitive impairment among adults</u> *K Qiu et al*

Ecotoxicology and Environmental Safety, September 1st 2022

Long-term exposure to air pollution and risk of incident inflammatory bowel disease among middle and old aged adults

Search Publications:

2013 (6)

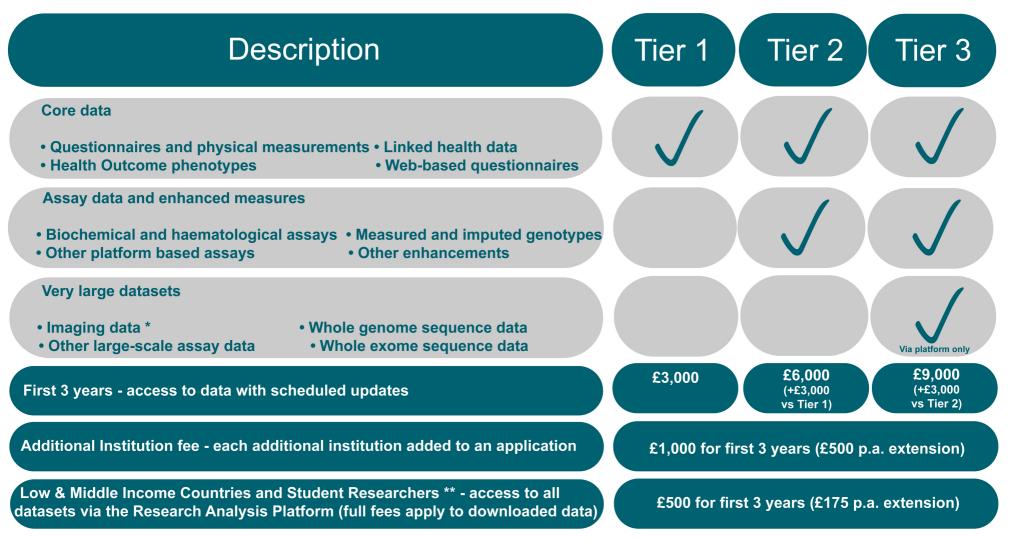
2012(1)

 Enter search term
 Q

 Year
 2022 (584)
 2021 (931)
 2020 (664)

 2019 (429)
 2018 (310)
 2017 (173)

 2016 (92)
 2015 (30)
 2014 (16)


2008(1

F Li et al

biobank

Enabling scientific discoveries that improve human health

https://www.ukbiobank.ac.uk/

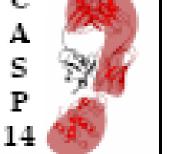
Scientific Competitions

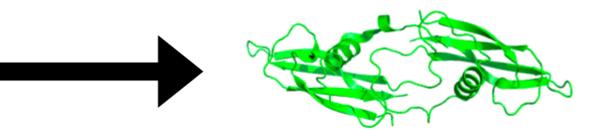
Collective experiment for blind RNA structure prediction (RNA-Puzzles)

Critical Assessment of Prediction of Interactions (CAPRI)

Critical Assessment of Functional Annotation (CAFA)

Critical Assessment of Microarray Data Analysis (CAMDA)


Genome Annotation Assessment Project (GASP)


Bone X-Ray Deep Learning Competition

LUng Nodule Analysis 2016

CASP is a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994

Met-Giu-Leu-Gly-Leu-Gly-Gly-Leu-Ser-Thr-Leu-Ser-His-Cys-Pro Trp-Pro-Arg-Gin-Gin-Pro-Ala-Leu-Trp-Pro-Thr-Leu-Ala-Ala-Leus Ala-Leu-Leu-Ser-Ser-Val-Ala-Glu-Ala-Ser-Leu-Gly-Ser-Ala-Pro Arg-Ser-Pro-Ala-Pro-Arg-Glu-Gly-Pro-Pro-Pro-Val-Leu-Ala-Ser Pro-Ala-Gly-His-Leu-Pro-Cly-Gly-Arg-Thr-Ala-Arg-Trp-Cys-Ser Gly-Arg-Ala-Arg-Arg-Pro-Pro-Pro-Gln-Pro-Ser-Arg-Pro-Ala-Pro Pro-Pro-Pro-Ala-Pro-Pro-Ser-Ala-Leu-Pro-Arg-Gly-Gly-Arg-Ala Ala-Arg-Ala-Gly-Gly-Pro-Gly-Ser-Arg-Ala-Arg-Gly-Gly-Arg-Ala Ala-Arg-Ala-Gly-Gly-Pro-Gly-Ser-Arg-Ala-Arg-Ala-Ala-Gly-Ala Arg-Gly-Cys-Arg-Leu-Arg-Ser-Gln-Leu-Val-Pro-Val-Arg-Ala-Leu Gly-Leu-Gly-His-Arg-Ser-Asp-Glu-Leu-Val-Pro-Val-Arg-Ala-Leu Ala-Ser-Cys-Arg-Arg-Ala-Arg-Ser-Pro-His-Asp-Leu-Ser-Leu Ala-Ser-Leu-Gly-Ala-Gly-Ala-Leu-Arg-Pro-Pro-Pro-Pro-Pro-Gly-Ser Arg-Pro-Val-Ser-Gin-Pro-Cys-Cys-Arg-Pro-Thr-Arg-Tyr-Glu-Ala Val-Ser-Phe-Met-Asp-Val-Arn-Ser-Thr-Trp-Arg-Thr-Val-Asp-Arg Leu-Ser-Ala-Thr-Ala-Cys-Gly-Cys-Leu-Gly

CASP is a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994

Every second spring-summer around 100 targets* are released

Targets – protein sequences for which the structure has been solved recently (not Available publicly e.g. not in PDB)

Blind benchmark

ADP

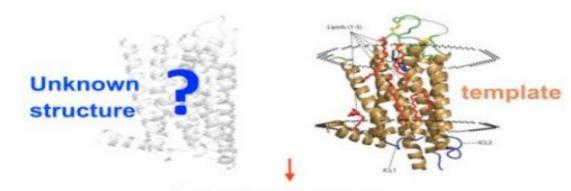
CASP is a community-wide, worldwide experiment for protein structure prediction taking place every two years since 1994

Every second spring-summer around 100 targets* are released

Targets – protein sequences for which the structure has been solved recently (not Available publicly e.g. not in PDB)

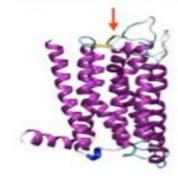
Blind benchmark

Categories: servers (72 h) and humans (3 weeks) homology modeling & Free Modeling


Evaluation of the results is carried out in the following prediction catego

- tertiary structure prediction (all CASPs)
- secondary structure prediction (dropped after CASP5)
- prediction of structure complexes (CASP2 only; a separate experiment - CAPRI—carries on this subject)
- residue-residue contact prediction (starting CASP4)
- disordered regions prediction (starting CASP5)
- domain boundary prediction (CASP6–CASP8)
- function prediction (starting CASP6)
- model quality assessment (starting CASP7)
- model refinement (starting CASP7)
- high-accuracy template-based prediction (starting CASP7)

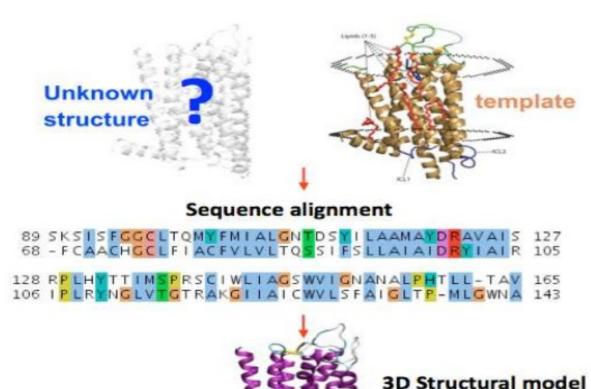
Tertiary structure prediction (all CASPs)

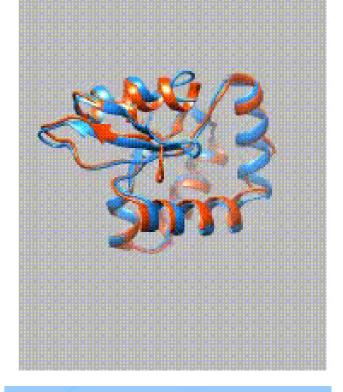

HOMOLOGY MODELLING CONCEPT

Sequence alignment

89 SKSISFGGCLTQMYFMIALGNTDSYILAAMAYDRAVAI 68 - FCAACHGCLFIACFVLVLTQSSIFSLLAIAIDRYIAI		
139 PRINTTIMEROSCIWILLACSWALCHANALPHTILLT	165	

128 RPLH	TTIMSPR	SCIWLI	AGSWVIGN	ANALPHT	LL-TAV	165
106 IPLR	NGLVTGT	RAKGII	AICWVLSF	AIGLTP-	MLGWNA	143

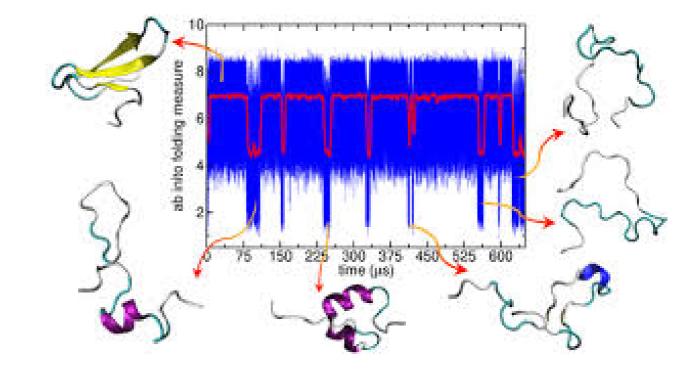



3D Structural model

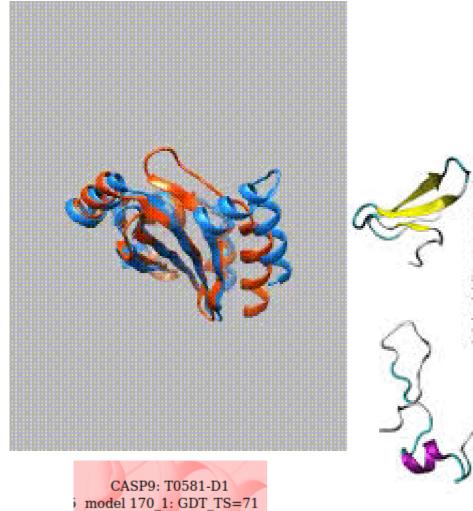
Tertiary structure prediction (all CASPs)

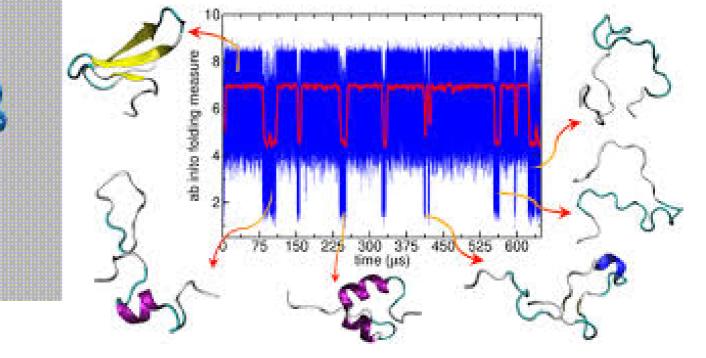
C A S P 14

HOMOLOGY MODELLING CONCEPT

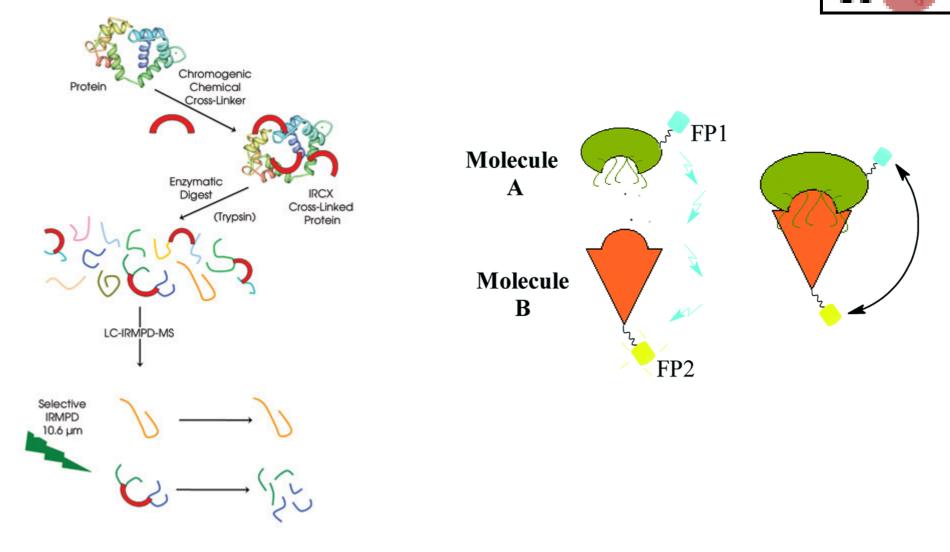

target T0868-D1 (orange) model 330_2 (blue): GDT_TS=87 best template: 2cw6 (seq.id= 4.2%)

Scientific Competitions

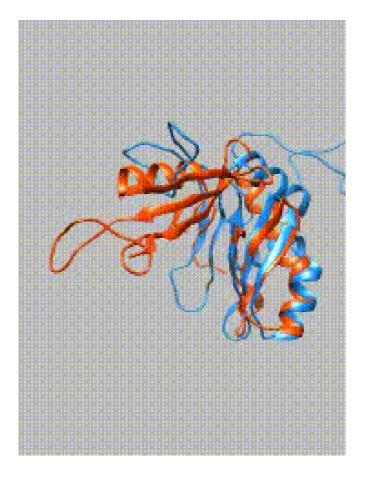

Tertiary structure prediction (all CASPs)

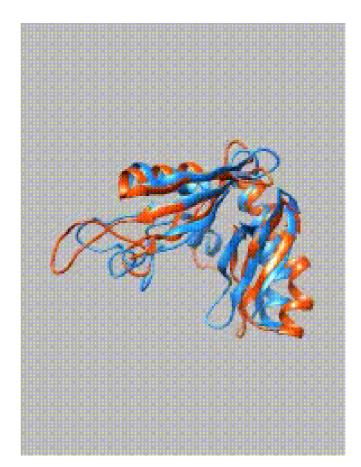


Scientific Competitions


Tertiary structure prediction (all CASPs)

Data-assisted or hybrid modeling, in which low-resolution experimental data are combined with computational methods, is becoming increasing important for a range of experimental data, including NMR, chemical cross-linking and surface labeling, X-ray and neutron scattering, electron microscopy and FRET.

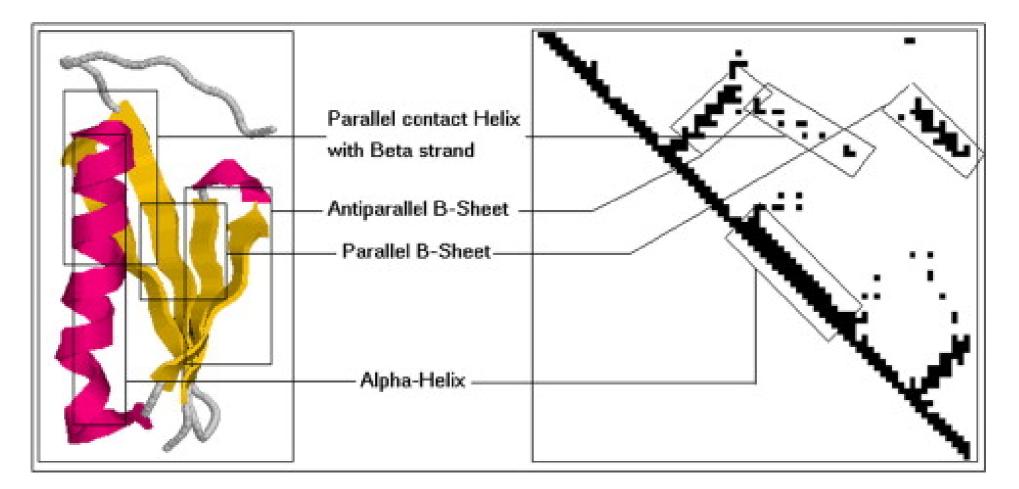

С


A

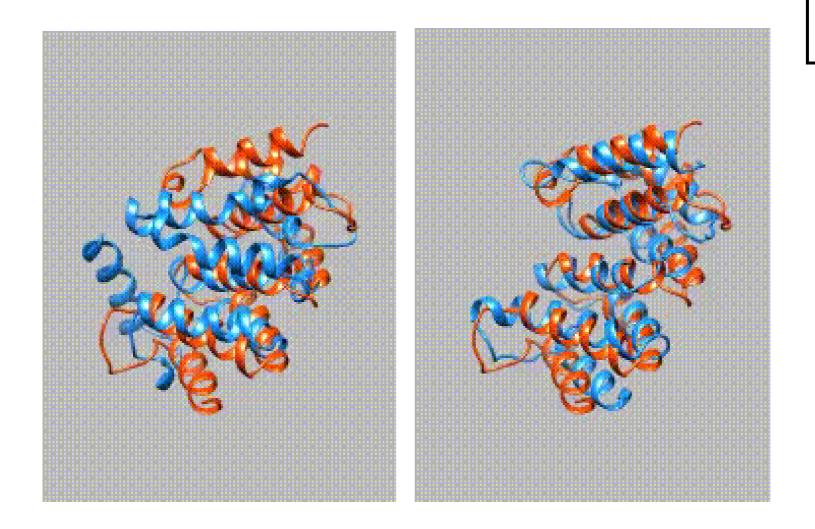
 \mathbf{S}

P

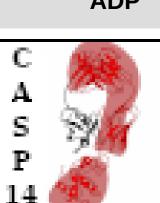
Data-assisted or hybrid modeling, in which low-resolution experimental data are combined with computational methods, is becoming increasing important for a range of experimental data, including NMR, chemical cross-linking and surface labeling, X-ray and neutron scattering, electron microscopy and FRET


without restrains

with restrains


ADP

Residue-residue contact prediction



Residue-residue contact prediction

without restrains

with restrains

14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction

Target List csv

Home

Menu

PC Login

PC Registration

CASP Experiments

CASP14 (2020)

CASP Commons (COVID-19, 2020)

CASP13 (2018) CASP12 (2016) CASP11 (2014) CASP10 (2012) CASP9 (2010) CASP8 (2008)

CASP7 (2006) CASP6 (2004)

CASP5 (2002)

CASP4 (2000)

CASP3 (1998)

CASP2 (1996)

CASP1 (1994)

Initiatives

Data Archive

Proceedings

CASP Measures

Feedback

Assessors

Targets expire on the specified date at noon (12:00) local time in California (GMT - 7 hours).

Green color - active target; Yellow color - target expires within 48 hours; Orange color - target expires within 24 hours; Red color - target has expired for experience predictions. Refinement and data-assisted targets are highlighted with the light grey background.

* targets selected for CAPRI experiment

	All targ		Regular Il groups Server only	Het	teromers	<u>Ref</u> i	inement		d structure pre AXS <u>X-link</u> <u>NM</u>	
	#	Tar-id	🗢 Туре	Res	Stoi- chiom.	♣ Entry Date	Server Expiration		Human Expiration	Description
	1.	<u>T1024</u>	All groups	408	A1	2020-05-18	2020-05-21	m1: 2020-05-25 m2: 2020-05-27	2020-06-08	LmrP PDB code <u>6t1z</u>
	2.	<u>T1025</u>	Server only	268	A1	2020-05-19	2020-05-22	m1: 2020-05-26 m2: 2020-05-28	2020-06-09	AtmM PDB code <u>6uv6</u>
	3.	<u>T1026</u>	All groups	172	A1	2020-05-19	2020-05-22	m1: 2020-05-26 m2: 2020-05-28	2020-06-09	FBNSV PDB code <u>6s44</u>
	4.	<u>T1027</u>	All groups	168	A1	2020-05-20	2020-05-23	m1: 2020-05-27 m2: 2020-05-29	2020-06-10	GLuc PDB code <u>7d2o</u>
	5.	<u>T1028</u>	Server only	316	A1	2020-05-21	2020-05-24	m1: 2020-05-28 m2: 2020-05-30	2020-06-11	CalU17 PDB code <u>6vqp</u>
	6.	<u>T1029</u>	All groups	125	A1	2020-05-21	2020-05-24	m1: 2020-05-28 m2: 2020-05-30	2020-06-11	EbsA PDB code <u>6uf2</u>
	7.	<u>T1030</u>	All groups	273	A1	2020-05-22	2020-05-25	m1: 2020-05-29 m2: 2020-05-31	2020-06-12	BibA PDB code <u>6poo</u>
	8.	<u>T1031</u>	All groups	95	A1	2020-05-25	2020-05-28	m1: 2020-06-01 m2: 2020-06-03	2020-06-15	S0A2C3d1 PDB code 6vr4
	9.	<u>T1032</u> *	All groups	284	A2	2020-05-25	2020-05-28	m1: 2020-06-01 m2: 2020-06-03	2020-06-15	smchD1 PDB code <u>6n64</u>
	10.	<u>T1033</u>	All groups	100	A1	2020-05-26	2020-05-29	m1: 2020-06-02 m2: 2020-06-04	2020-06-16	S0A2C3d2 PDB code 6vr4
								m1- 2020 06 02		0.110

C S P 14		14th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction							
Menu	Groups List								
Home PC Login									
PC Registration	♦ Group Name	♦Group #	♦ Туре	Predictors	Submitted predictions				
▼ CASP Experiments CASP14 (2020) CASP_Commons (COVID-19, 2020) CASP13 (2018)	191227	061	Human	Xi Cheng wenjun he Denghui Liu Dingyan Wang Chi Xu Meng Xu Iei zhang Mingyue Zheng	TS(regular targets): 390 models for 78 targets RR(regular targets): 78 models for 78 targets				
CASP12 (2016)	3DCNN_prof	074	Human	Takashi Ishida	QA(regular targets): 166 models for 83 targets				
CASP11 (2014) CASP10 (2012)	3D-JIGSAW-SwarmLoop	169	Server	Paul Bates Raphael Chaleil	TS(regular targets): 83 models for 83 targets				
CASP9 (2010)	A2I2Prot	431	Human	Thin Nguyen Tri Nguyen Minh	RR(regular targets): 76 models for 76 targets				
CASP8 (2008) CASP7 (2006)	ACOMPMOD	063	Server	Ricardo Nunez Miguel	TS(regular targets): 410 models for 83 targets				
<u>CASP7 (2006)</u> <u>CASP6 (2004)</u> <u>CASP5 (2002)</u> CASP4 (2000)	AILON	192	Human	kyungmin cho Hyoje Cho Kyeongtak Han Wonjun Lee	TS(regular targets): 402 models for 81 targets TS(refinement targets): 247 models for 50 targets RR(regular targets): 78 models for 78 targets				
<u>CASP3 (1998)</u> <u>CASP2 (1996)</u>	AIR	100	Human	Hongbin shen Di wang Chengpeng Zhou	TS(refinement targets): 250 models for 50 targets				
CASP1 (1994) Initiatives Data Archive Proceedings 	AlphaFold2	427	Human	Russ Bates Alex Bridgland Timothy Green John Jumper Kathryn Tunyasuvunakool Augustin Zidek	TS(regular targets): 390 models for 78 targets				
CASP Measures Feedback	AmoebaContact	286	Server-E	Yaoguang Xing Yunxin Xu	RR(regular targets): 83 models for 83 targets				
Assessors People	angleQA	391	Server-E	Jianzhao Gao Boling Wang	QA(regular targets): 166 models for 83 targets				
People	W 11								

Evaluation of the results is carried out in the following prediction catego

- tertiary structure prediction (all CASPs)
- secondary structure prediction (dropped after CASP5)
- prediction of structure complexes (CASP2 only; a separate experiment - CAPRI—carries on this subject)
- residue-residue contact prediction (starting CASP4)
- disordered regions prediction (starting CASP5)
- domain boundary prediction (CASP6–CASP8)
- function prediction (starting CASP6)
- model quality assessment (starting CASP7)
- model refinement (starting CASP7)
- high-accuracy template-based prediction (starting CASP7)

ADP

Evaluation of the results is carried out in the following prediction catego

secondary structure prediction (dropped after CASP5)

prediction of structure complexes (CASP2 only; a separate experiment - CAPRI—carries on this subject)

due contact prediction (st regions prediction (startin ndary prediction (CASP6diction (starting CASP6) model quality assessment (starting

Janusz Bujnickiment (starting CASP7

International Institute of Molecular and Cell Biology in Warsaw

late-based pi

Andrzej Koliński

Evaluation of the results is carried out in the following prediction catego

- tertiary structure prediction (all CASPs)
- secondary structure prediction (dropped after C
- prediction of structure complexes (CASP2 only; a separate experiment - CAPRI—carries on this st
- residue-residue contact prediction
- disordered regions prediction (starting CASP5)
- domain boundary prediction (CASP6–CASP8)
- function prediction (starting CASP6)
- model quality assessment (starting CASP
- model refinement (starting CASP7)
- high-accuracy template-based prediction

and Cell Biology in Warsaw

Michał Piętal

ADP

Evaluation of the results is carried out in the following prediction catego

- tertiary structure prediction (all CASPs)
- secondary structure prediction (dropped after
- prediction of structure complexes (CASP2 onl a separate experiment - CAPRI—carries on this
- residue-residue contact prediction
- disordered regions prediction (starting CASP)
- domain boundary prediction (CASP6–CASP8
- function prediction (starting CASP6)
- model quality assessment (starting CASP
- model refinement (starting CASP7)
- high-accuracy template-based prediction

С

A

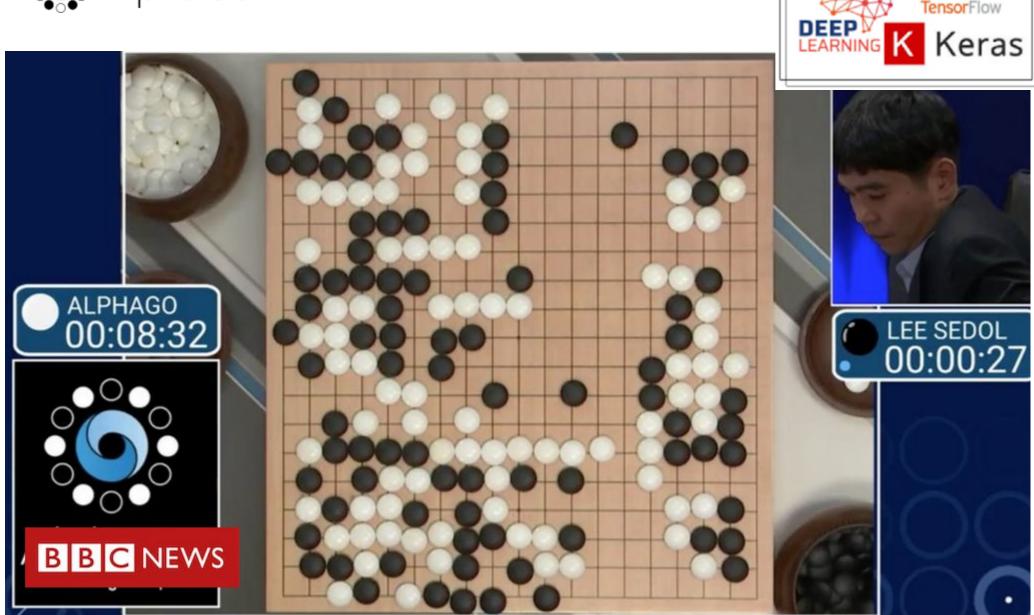
 \mathbf{S}

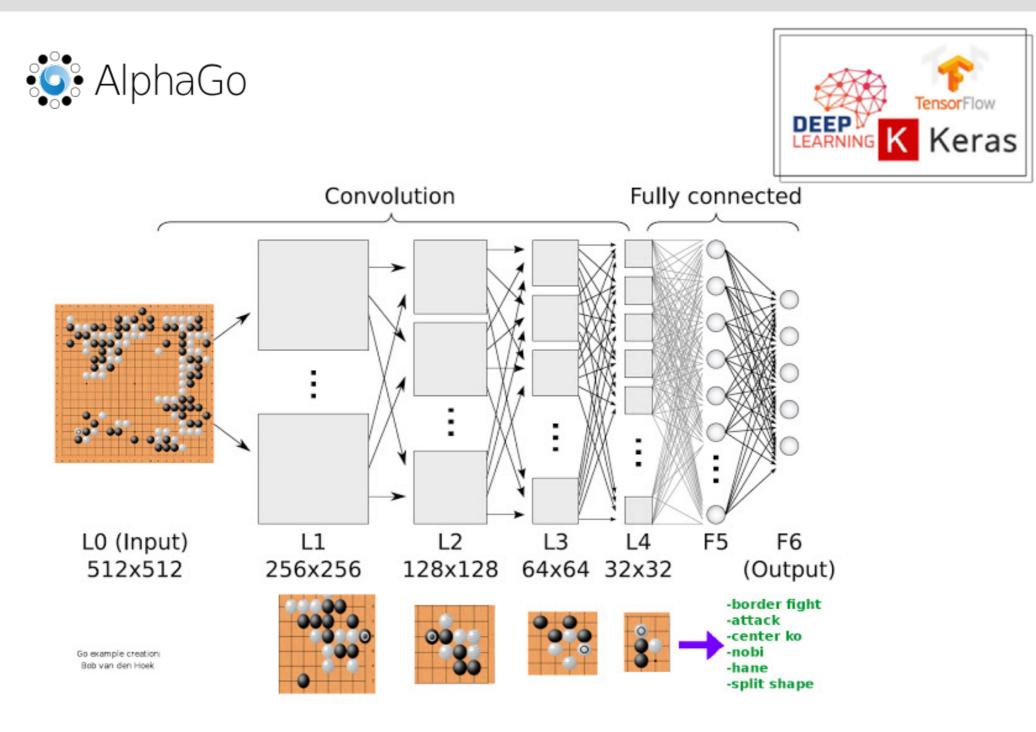
P

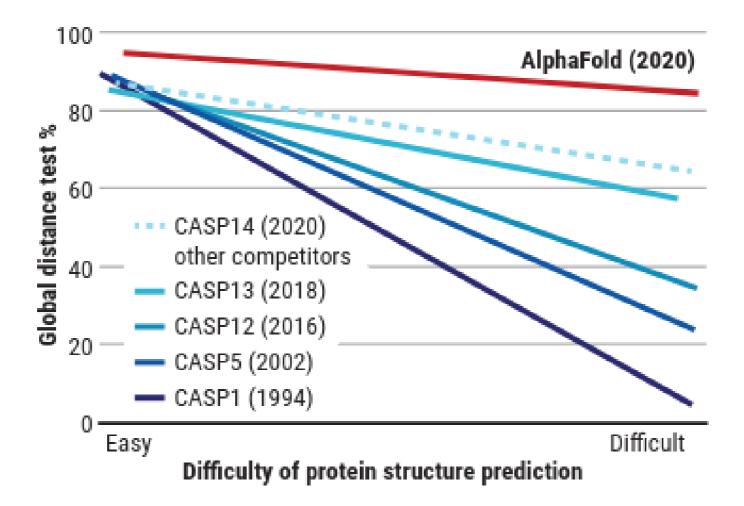
Łukasz P. Kozłowski

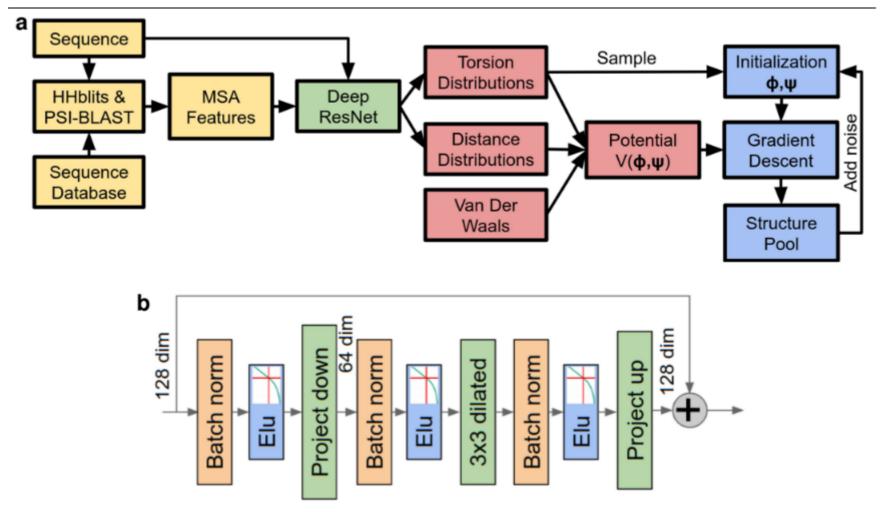
Evaluation of the results is carried out in the following prediction catego

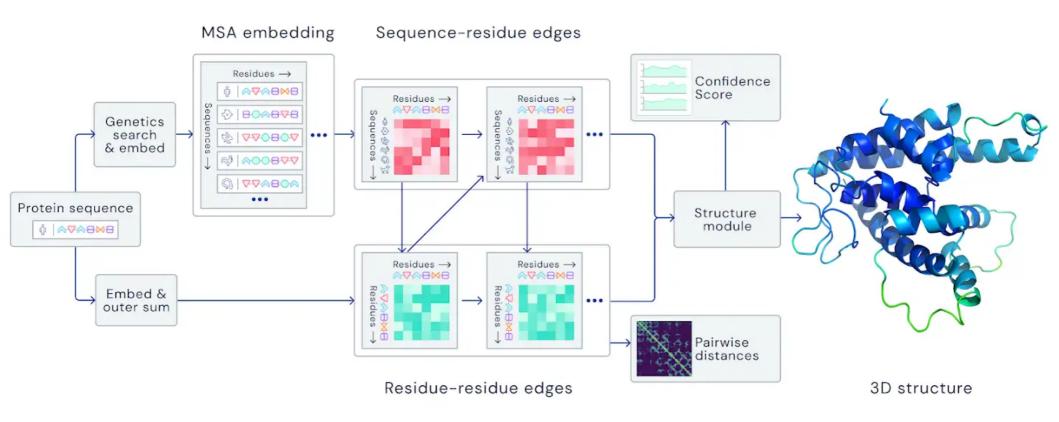
- tertiary structure prediction (all CASPs)
- secondary structure prediction (dropped a prediction of structure complexes (CASP2 a separate experiment - CAPRI—carries on t
- residue-residue contact prediction
- disordered regions prediction (starting CA SP5) Marcin Pawłowski
- domain boundary prediction (CASP6
- function prediction (starting CASP6)
- model quality assessment
- model refinement (starting CASP7)
- high-accuracy template-based predict

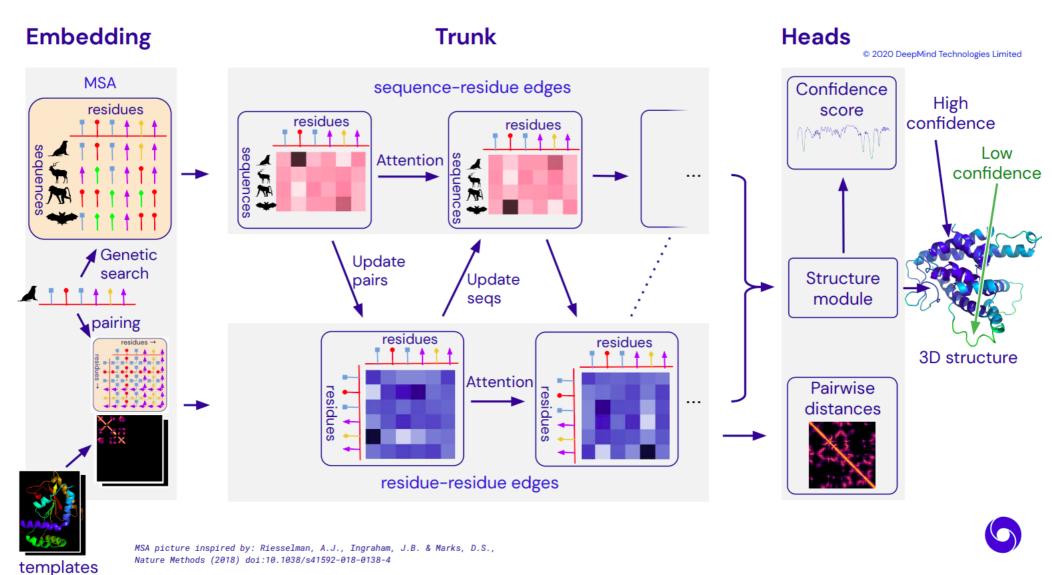

International Institute of Molecular and Cell Biology in Warsaw






Presentations & Videos from CASP15


https://predictioncenter.org/casp15/doc/presentations/

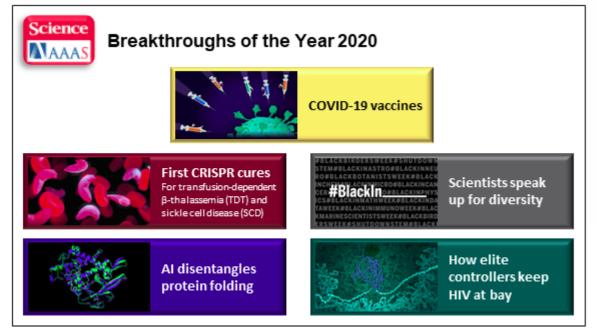


https://www.youtube.com/@CASP-Prediction-Center/videos

Extended Data Fig. 1 | Schematics of the folding system and neural network. a, The overall folding system. Feature extraction stages (constructing the MSA using sequence database search and computing MSA-based features) are shown in yellow; the structure-prediction neural network in green; potential construction in red; and structure realization in blue. **b**, The layers used in one block of the deep residual convolutional network. The dilated convolution is applied to activations of reduced dimension. The output of the block is added to the representation from the previous layer. The bypass connections of the residual network enable gradients to pass back through the network undiminished, permitting the training of very deep networks.

https://predictioncenter.org/casp14/doc/presentations/2020 12 01 TS predictor AlphaFold2.pdf

MENU ~ nature


Article | Published: 15 January 2020

Improved protein structure prediction using potentials from deep learning

Andrew W. Senior [⊡], Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Židek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu & Demis Hassabis

Nature (2020) | Cite this article 1835 Accesses | 245 Altmetric | Metrics

AlphaFold

MENU ~ nature

Article | Published: 15 January 2020

Improved protein structure prediction using potentials from deep learning

Andrew W. Senior [⊡], Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Židek, Alexander W. R. Nelson, Alex Bridgland, Hugo Penedones, Stig Petersen, Karen Simonyan, Steve Crossan, Pushmeet Kohli, David T. Jones, David Silver, Koray Kavukcuoglu & Demis Hassabis

Nature (2020) | Cite this article 1835 Accesses | 245 Altmetric | Metrics

AlphaFold

nature

Article | Published: 15 January 2020

Improved protein structure prediction using potentials from deep learning

Andrew W. Senior ⊡, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Židek, Alexander W. R. Nelson, Alex Bridgland,

The New York Times

London A.I. Lab Claims Breakthrough That Could Accelerate Drug Discovery

Researchers at DeepMind say they have solved "the protein folding problem," a task that has bedeviled scientists for more than 50 years.

AlphaFold

mature

Article | Published: 15 January 2020

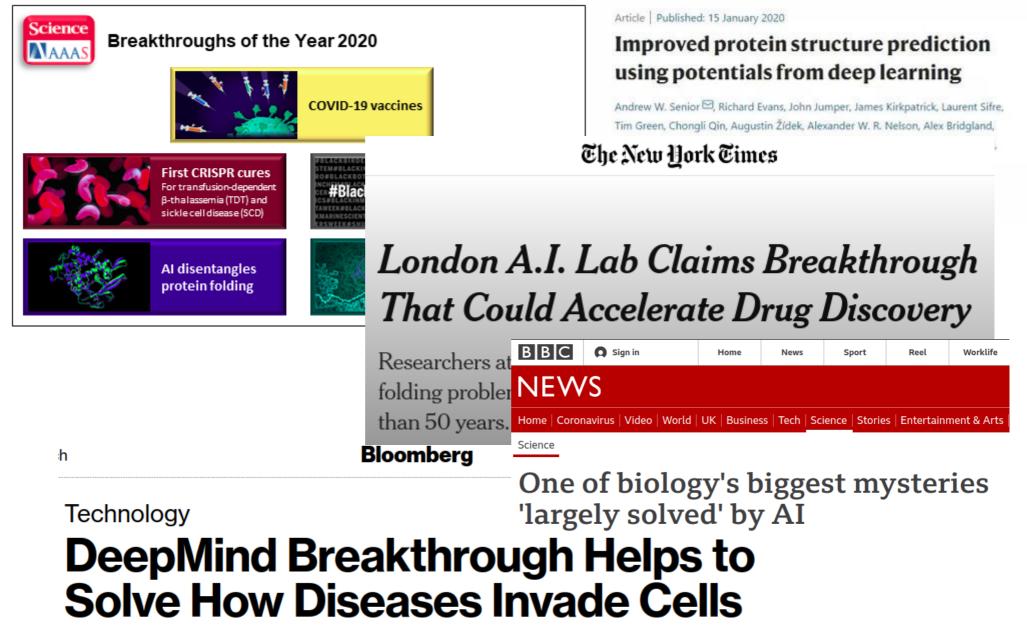
Improved protein structure prediction using potentials from deep learning

Andrew W. Senior ⊡, Richard Evans, John Jumper, James Kirkpatrick, Laurent Sifre, Tim Green, Chongli Qin, Augustin Židek, Alexander W. R. Nelson, Alex Bridgland,

The New York Times

London A.I. Lab Claims Breakthrough That Could Accelerate Drug Discovery

Researchers at DeepMind say they have solved "the protein folding problem," a task that has bedeviled scientists for more than 50 years.

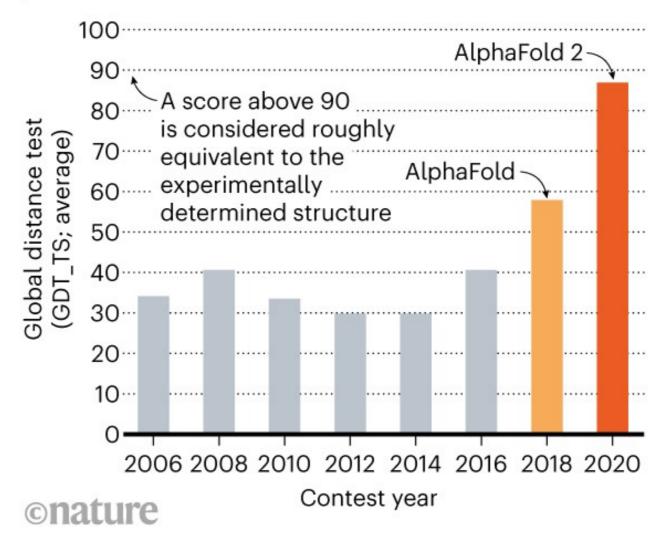

Bloomberg

Technology

h

DeepMind Breakthrough Helps to Solve How Diseases Invade Cells

AlphaFold



nature

MENU Y

STRUCTURE SOLVER

DeepMind's AlphaFold 2 algorithm significantly outperformed other teams at the CASP14 proteinfolding contest — and its previous version's performance at the last CASP.

Article

Accurate structure prediction of biomolecular interactions with AlphaFold 3

https://doi.org/10.1038/s41586-024-07487-w

Received: 19 December 2023

Accepted: 29 April 2024

Published online: 8 May 2024

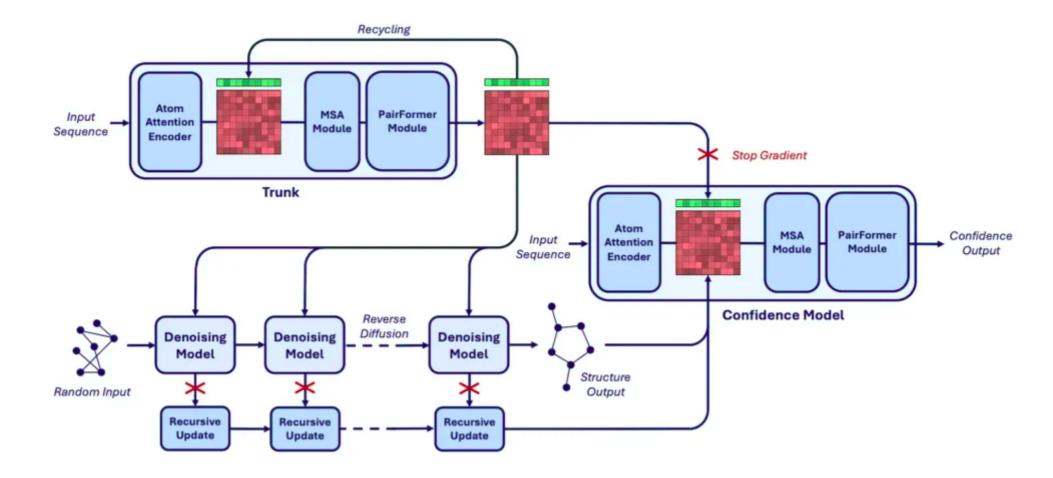
Open access

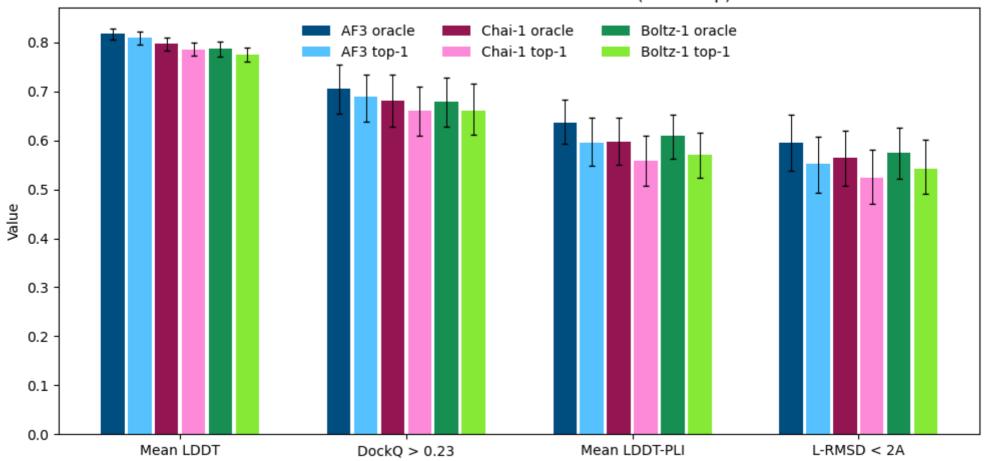
Check for updates

Josh Abramson^{1,7}, Jonas Adler^{1,7}, Jack Dunger^{1,7}, Richard Evans^{1,7}, Tim Green^{1,7}, Alexander Pritzel^{1,7}, Olaf Ronneberger^{1,7}, Lindsay Willmore^{1,7}, Andrew J. Ballard¹, Joshua Bambrick², Sebastian W. Bodenstein¹, David A. Evans¹, Chia-Chun Hung², Michael O'Neill¹, David Reiman¹, Kathryn Tunyasuvunakool¹, Zachary Wu¹, Akvilė Žemgulytė¹, Eirini Arvaniti³, Charles Beattie³, Ottavia Bertolli³, Alex Bridgland³, Alexey Cherepanov⁴, Miles Congreve⁴, Alexander I. Cowen-Rivers³, Andrew Cowie³, Michael Figurnov³, Fabian B. Fuchs³, Hannah Gladman³, Rishub Jain³, Yousuf A. Khan^{3,5}, Caroline M. R. Low⁴, Kuba Perlin³, Anna Potapenko³, Pascal Savy⁴, Sukhdeep Singh³, Adrian Stecula⁴, Ashok Thillaisundaram³, Catherine Tong⁴, Sergei Yakneen⁴, Ellen D. Zhong^{3,6}, Michal Zielinski³, Augustin Žídek³, Victor Bapst^{1,8}, Pushmeet Kohli^{1,8}, Max Jaderberg^{2,8}, Demis Hassabis^{1,2,8} & John M. Jumper^{1,8}

David Baker

Demis Hassabis and John M. Jumper





HeliXonProtein/ **OmegaFold**

Protenix: Protein + X

Boltz-1

Performances on PDB Test with 95% CI (Bootstrap)

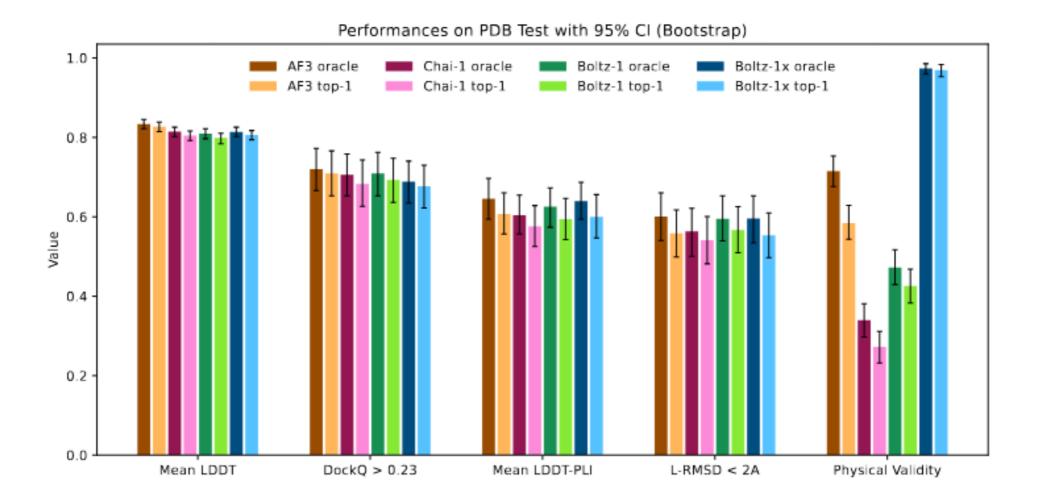


Figure 5: Visual summary of the performance of ALPHAFOLD3, CHAI-1, BOLTZ-1 and BOLTZ-1x on the test set.

AlphaFold – like programs

DeepFold https://pubmed.ncbi.nlm.nih.gov/36112717/ RGN2 https://www.nature.com/articles/s41587-022-01432-w ProtGPT2 https://www.nature.com/articles/s41467-022-32007-7

https://github.com/RosettaCommons/RoseTTAFold

equifold

https://www.biorxiv.org/content/10.1101/2022.10.07.511322v1

DMPfold

https://github.com/psipred/DMPfold2 https://www.pnas.org/doi/10.1073/pnas.2113348119

ESMFold

https://www.biorxiv.org/content/10.1101/2022.07.20.500902v1.abstract https://github.com/facebookresearch/esm https://www.nature.com/articles/d41586-022-03539-1 esmatlas.com

omegafold

https://www.biorxiv.org/content/10.1101/2022.07.21.500999v1.abstract

HelixFold

https://arxiv.org/pdf/2207.05477.pdf

ProteinBERT

https://www.biorxiv.org/content/10.1101/2021.05.24.445464v1 http://dx.doi.org/10.1093/bioinformatics/btac020

trRosettaX-Single https://doi.org/10.1038/s43588-022-00373-3 https://yanglab.nankai.edu.cn/trRosetta/benchmark_single/

https://analyticsindiamag.com/protein-wars-its-esmfold-vs-alphafold/

AlphaFold – like programs

#protein seq from backbone

ProteinMPNN paper: https://t.co/BLPg2XdmYE

https://colab.research.google.com/github/sokrypton/ColabDesign/blob/v1.1.0/mpnn/examples/proteinmpnn_in_jax.ipynb#scrollTo=GjdIxO4j-Hnn

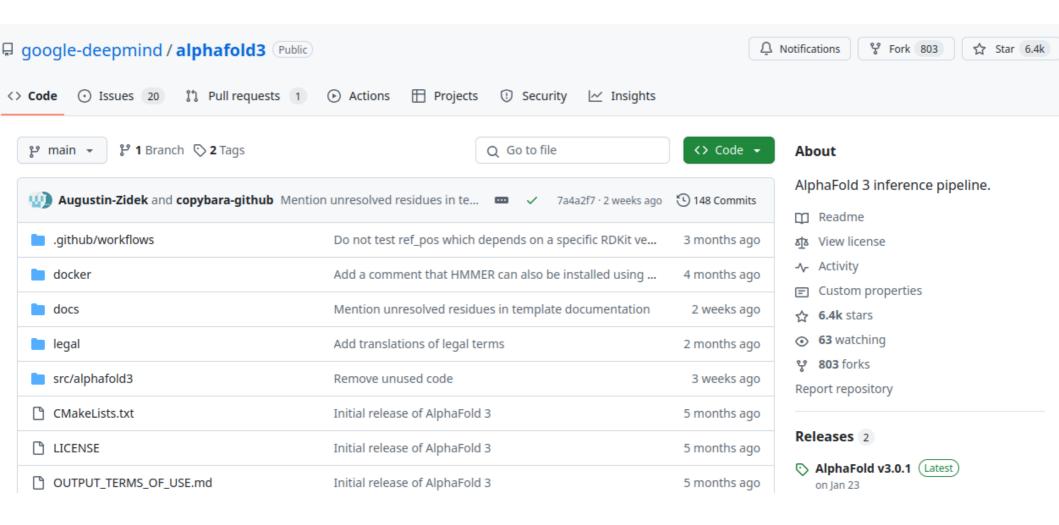
ProGen2: Exploring the Boundaries of Protein Language Models https://arxiv.org/pdf/2206.13517.pdf

RITA: a Study on Scaling Up Generative Protein Sequence Models https://arxiv.org/pdf/2205.05789.pdf https://github.com/lightonai/RITA

ProT-VAE: Protein Transformer Variational AutoEncoder for Functional Protein Design https://www.biorxiv.org/content/10.1101/2023.01.23.525232v1

RSA

Retrieved Sequence Augmentation for Protein Representation Learning https://www.biorxiv.org/content/10.1101/2023.02.22.529597v2.abstract https://github.com/HKUNLP/RSA


Uni-Fold

https://github.com/dptech-corp/Uni-Fold#download-from-volcengine https://colab.research.google.com/github/dptech-corp/Uni-Fold/blob/main/notebooks/unifold.ipynb

AlphaLink

https://www.nature.com/articles/s41587-023-01704-zProtein structure prediction with in-cell photo-crosslinking mass spectrometry and deep learning

EigenFold Generative Protein Structure Prediction with Diffusion Models https://arxiv.org/abs/2304.02198 https://github.com/bjing2016/EigenFold

alphafoldserver.com

Collective experiment for blind RNA structure prediction (RNA-Puzzles)

Critical Assessment of Prediction of Interactions (CAPRI)

Critical Assessment of Functional Annotation (CAFA)

Critical Assessment of Microarray Data Analysis (CAMDA)

Genome Annotation Assessment Project (GASP)

Bone X-Ray Deep Learning Competition

LUng Nodule Analysis 2016

kaggle

Competitions

Grow your data science skills by competing in our exciting competitions. Find help in the <u>documentation</u> or learn about Community Competitions.

Host a Competition

Research Code Competition

UW-Madison GI Tract Image Segmentation

Track healthy organs in medical scans to improve cancer treatment

UW Madison - 155 teams - 3 months to go (2 months to go until merger deadline)

(A) Research Code Competition

Mechanisms of Action (MoA) Prediction

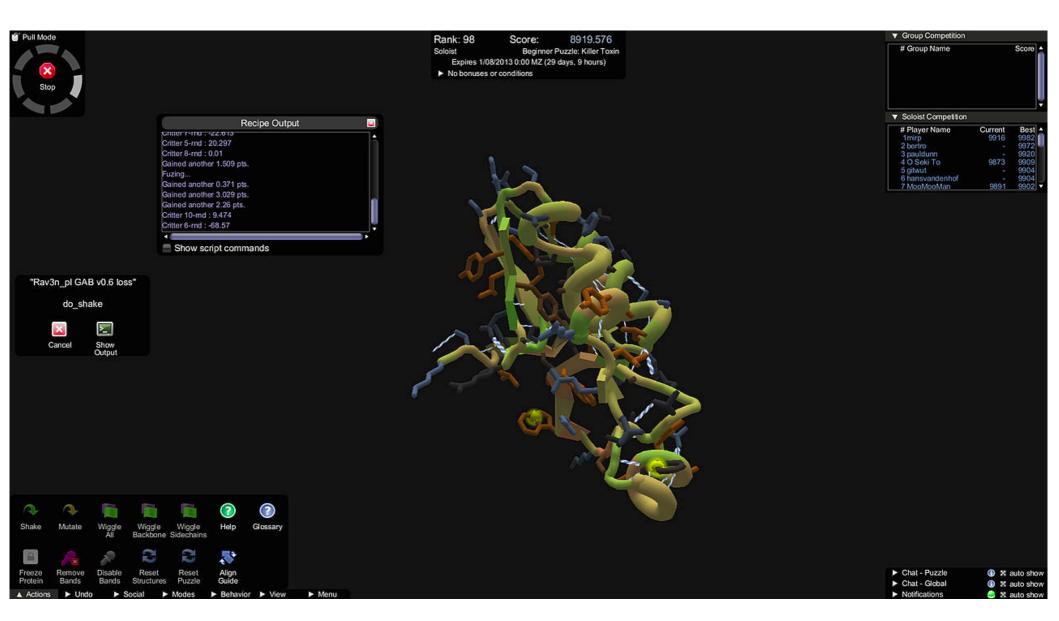
Can you improve the algorithm that classifies drugs based on their biological activity?

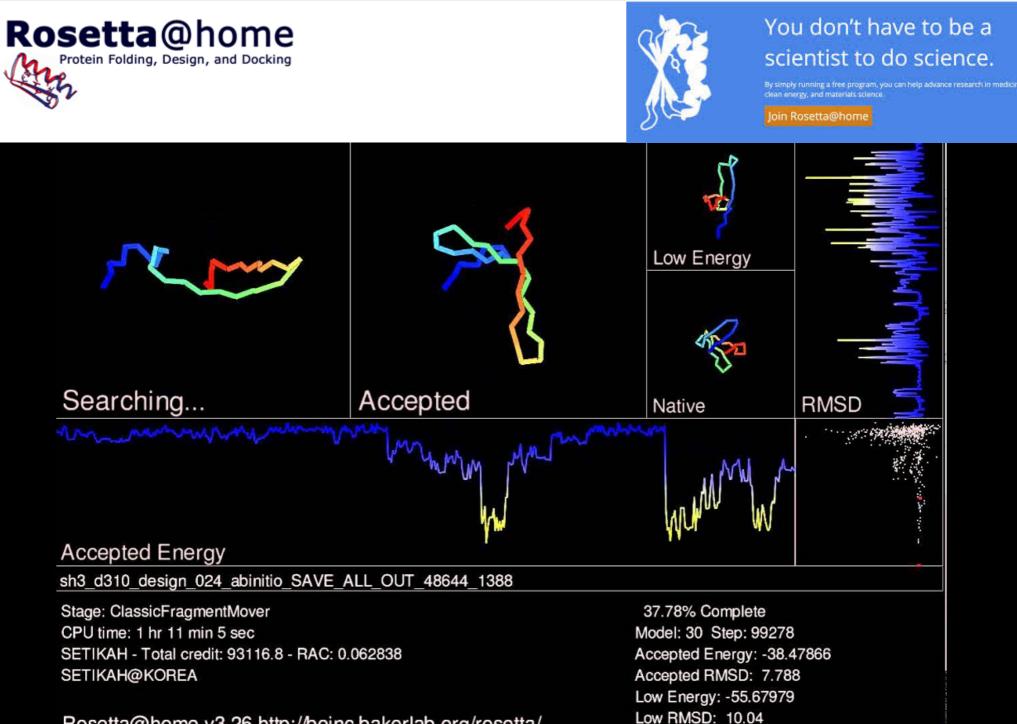
\$30,000 Prize Money

\$25,000

Prize Money

W WISCONS




Laboratory for Innovation Science at Harvard · 4,373 teams · a year ago

FoldIt - online puzzle video game about protein folding

Rosetta@home v3.26 http://boinc.bakerlab.org/rosetta/

Thank you for your time and See you at the next lecture

Any other questions & comments

lukaskoz@mimuw.edu.pl