
Nilearn

Python library for MRI data analysis



What is Nilearn?

● open-source Python package with a 
set of tools for loading, 
preprocessing, analyzing, and 
visualizing neuroimaging data

● it builds upon Python libraries such 
as NumPy, SciPy, scikit-learn, and 
matplotlib, providing a high-level 
interface for working with 
neuroimaging data

● accessible to users with varying 
levels of expertise in neuroimaging 
and programming



● branch of medical imaging that focuses on 
the brain

● used for: 
○ diagnosing disease
○ assessing brain health
○ studying how the brain works
○ studying how various activities 

impact the brain

Nilearn is mostly used for MRI and fMRI data:

● structural MRI scan uses a magnet, radio 
waves and computer processing to 
generate 3D pictures of the brain

● fMRI scan uses the same MRI machine, but 
it tracks blood flow in different parts of the 
brain

https://share.baptisthealth.com/difference-between-mri-and-fmri-scans

What is neuroimaging?

https://my.clevelandclinic.org/health/diagnostics/4876-magnetic-resonance-imaging-mri


Nilearn simplifies the process of analyzing and interpreting neuroimaging data, making it a valuable tool for 
researchers in neuroscience, psychology, and related fields.

It provides a wide range of functionalities for brain images, including:

● Preprocessing
e.g motion correction, spatial smoothing

● Statistical analysis
● Machine learning

integration with machine learning libraries such as scikit-learn
● Visualization

tools for plotting brain images, statistical maps, and connectivity matrices
● Connectivity analysis

functional connectivity in brain networks



neuroimaging data

● NIfTI (Neuroimaging Informatics Technology 
Initiative) format for handling neuroimaging data

● NIfTI files typically have the extension ".nii"

● NifTi data structure is the standard way of sharing 
data in neuroimaging research. Three main 
components are:

○ raw scans in form of a numpy array 
nilearn.image.get_data()

○ affine transformation matrix 
nilearn.image.affine

○ header
nilearn.image.header

● Nilearn supports 3D and 4D image objects









Atlases and templates

Nilearn includes multiple built-in atlases and templates commonly used in neuroimaging research, particularly in 
the context of region-based analyses and spatial normalization.

They enable users to perform a wide range of neuroimaging analyses and visualize results in a standardized and 
interpretable manner.



A) Adult MNI template brain commonly used as the standard space image for MRI analysis.
B) Paediatric template brain created using images from 112 children of ages between 7 and 11 years. 
Use of an age appropriate template is important because of differences between the brains of adults 
and children.

Example brain templates



Regions of a reference atlas



Functional connectome

functional connectivity - statistical relationship between 
specific physiological signals in time

functional connectome - set of connections representing 
brain interactions between regions

By combining functional connectome data with machine learning techniques, one can use Nilearn to 
build models that can be used to understand cognitive states, predict clinical outcomes, or identify 
biomarkers of disease.

Nilearn's visualization capabilities aid in interpreting connectivity patterns and understanding the 
underlying neural mechanisms.



Obtaining functional connectiome with 
Nilearn

1. Extract time series representing 
the average activity within each ROI 
over the course of the fMRI scan
(transform 4D data into 2D data)



2. Calculate functional connectivity between 
pairs of ROIs (typically done using correlation-based 
measures) and organize the values into a 
connectivity matrix, representing the functional 
connectome of the brain

nilearn.connectome.ConnectivityMeasure

3. Use connectivity matrices as 
features in machine learning algorithms 
to build predictive models



connectivity matrix represented as a network graph, where nodes represent 
ROIs and edges represent functional connections between them

nilearn.plotting.plot_connectome



The End


