Utility of the concept bottleneck model in a CT scans analysis

Jakub Binda

University of Warsaw, Faculty of Mathematics, Informatics and Mechanics.

April 2024

Jakub Binda Utility of the concept bottleneck model in a CT scans analysis

Table of contents

- Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI)
- Publicly available database.
- Contains 1018 chest CT scans from 1010 patients.

LIDC-IDRI Dataset

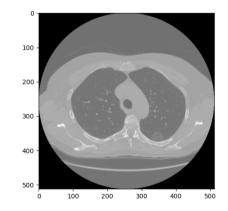


Figure: Slice of an exemplary CT scan.

LIDC-IDRI Dataset

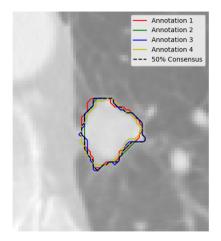


Figure: Slice of an exemplary CT scan with an annotations.

LIDC-IDRI Dataset

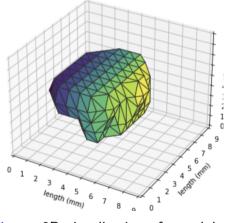


Figure: 3D visualisation of a nodule.

- Olustering nodule's annotations with the Pylidc package.
- Extracting small volumes around nodules.
- Extracting nodule's features.
- Assigning benign or malignant label.
- In summary 854 nodules (442 benign) after preprocessing.

- Olustering nodule's annotations with the Pylidc package.
- Extracting small volumes around nodules.
- Extracting nodule's features.
- Assigning benign or malignant label.
- In summary 854 nodules (442 benign) after preprocessing.

Dataset preparation

Examples of the original images

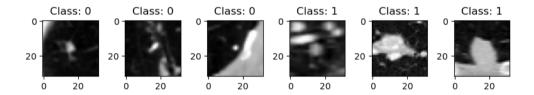
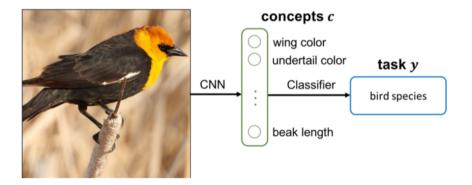


Figure: Slices of examples from prepared dataset.

- Why model is predicting that nodule is malignant?
- Explainability is especially important in medicine.
- Concept Bottleneck Model

- Why model is predicting that nodule is malignant?Explainability is especially important in medicine.
- Concept Bottleneck Model

Concept Bottleneck Model



Koh et al, (2020) [2]

Let's take a regression task as an example, then formally:

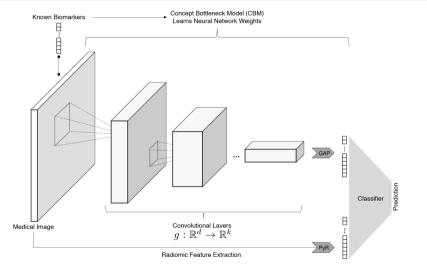
 $egin{aligned} & x \in \mathbb{R}^d \ & c \in \mathbb{R}^k \ & y \in \mathbb{R} \end{aligned}$ training points: $& (x^{(i)}, y^{(i)}, c^{(i)})_{i=1}^n \end{aligned}$

$$CBM = f(g(x))$$
, where
 $g : \mathbb{R}^d \to \mathbb{R}^k$
 $f : \mathbb{R}^k \to \mathbb{R}$

• ConRad model is based on the Concept Bottleneck Model.

- CNN predicts biomarkers from a nodule slice. (8 biomarkers)
- Radiomics features are computed from an segmented image with PyRadiomics package. (107 features)

ConRad - general architecture



NYDZ

VFORMA

- ConRad model is based on Concept Bottleneck Model.
- CNN predicts biomarkers from a nodule slice. (8 biomarkers)
- Radiomics features are computed from an segmented image with PyRadiomics package. (107 features)

Biomarkers which are predicted with CNN:

- subtlety
- calcification
- sphericity
- margin
- All biomarkers are numeric.

- Iobulation
- spiculation
- texture
- diameter

- ConRad model is based on Concept Bottleneck Model.
- CNN predicts biomarkers from a nodule slice. (8 biomarkers)
- Radiomics features are computed from an segmented image with PyRadiomics package. (107 features)

Utilized classifiers:

- Non-linear/linear SVM
- Random Forest
- Logistic Regression
- Logistic Regression with the Lasso

Biomarkers and radiomics in the concept's space.

Final Layer Classifier	Recall	Precision	Accuracy
Non-linear SVM	0.886	0.899	0.897
Linear SVM	0.886	0.893	0.893
Random Forest	0.879	0.883	0.881
Logistic Regression	0.884	0.893	0.892
Logistic Regression with the Lasso	0.896	0.893	0.896

Baseline results for End2End CNN classifier.

Classifier		Accuracy
End-to-end	CNN	0.891

• ConRad model performs as good as End2End CNN model.

• However, thanks to concept's space ConRad is much more interpretable.

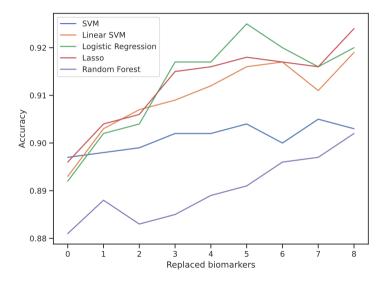
- ConRad model performs as good as End2End CNN model.
- However, thanks to concept's space ConRad is much more interpretable.

- Adding L1 penalty (Lasso) to Logistic regression drastically reduced number of features.
- From 107 **PyRadiomics** features only 13 have non-zero weights.
- However, all biomarkers were preserved.

- Adding L1 penalty (Lasso) to Logistic regression drastically reduced number of features.
- From 107 **PyRadiomics** features only 13 have non-zero weights.
- However, all biomarkers were preserved.

- Adding L1 penalty (Lasso) to Logistic regression drastically reduced number of features.
- From 107 **PyRadiomics** features only 13 have non-zero weights.
- However, all biomarkers were preserved.

Simulation of human in the loop



Jakub Binda Utility of the concept bottleneck model in a CT scans analysis

Lennart Brocki and Neo Christopher Chung. Integration of Radiomics and Tumor Biomarkers in Interpretable Machine Learning Models. *Cancers*, 15(9):2459, January 2023.

Number: 9 Publisher: Multidisciplinary Digital Publishing Institute.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy Liang.

Concept Bottleneck Models.

In *Proceedings of the 37th International Conference on Machine Learning*, pages 5338–5348. PMLR, November 2020. ISSN: 2640-3498.

Thank you!

