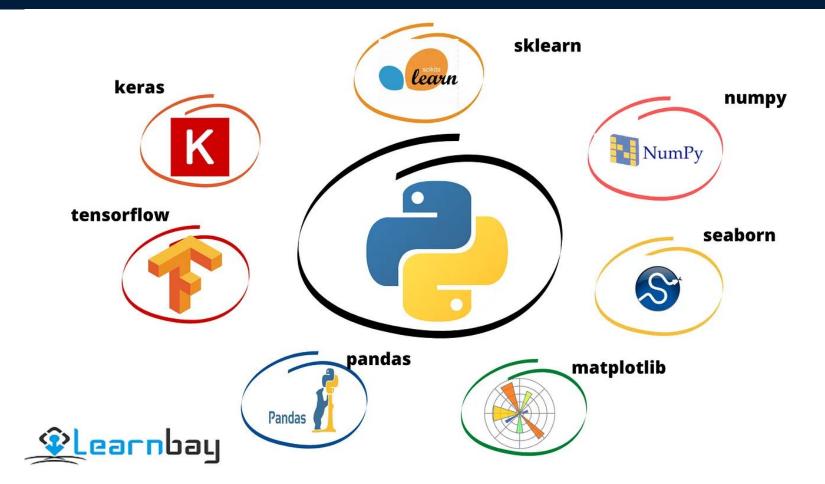
Essential python libraries for single cell data analysis

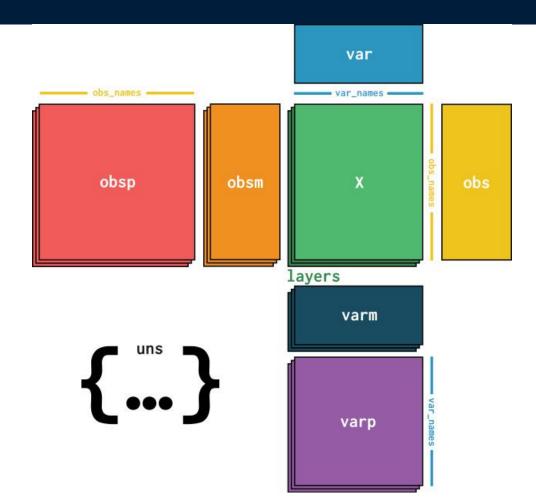

Bruno Puczko-Szymański

Warszawa 09.04.2024

Essential libraries for everything

What informations do we need for single cell data analysis?

Expression data

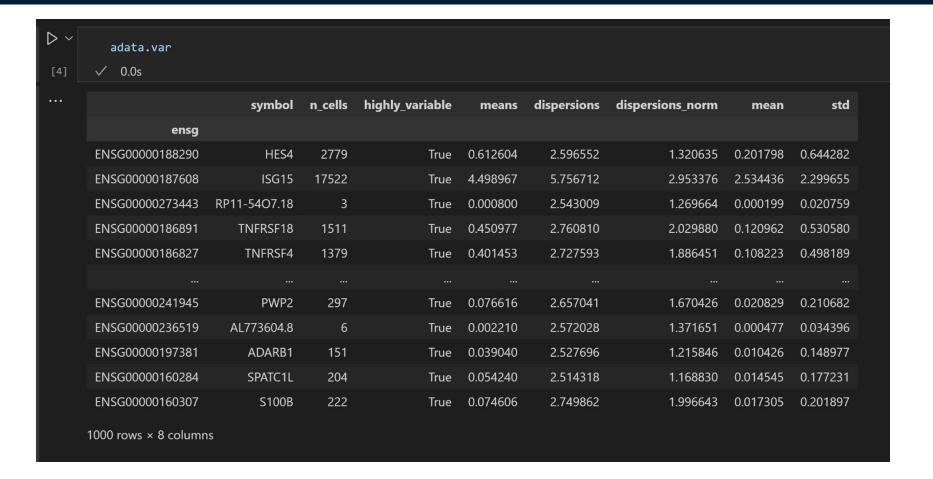

But also:

- patient ID
- sample ID
- condition
- cell type
- time
- and many many more...

	Gene_0	Gene_1	Gene_2	Gene_3	Gene_4	Gene_5	Gene_6
Cell_0	0.693147	0.000000	1.386294	1.386294	0.693147	0.000000	0.693147
Cell_1	1.098612	1.098612	0.000000	0.000000	0.000000	0.693147	0.000000
Cell_2	0.693147	0.693147	1.098612	0.693147	1.386294	1.386294	0.693147
Cell_3	0.000000	0.000000	0.000000	0.693147	0.693147	0.000000	1.386294
Cell_4	0.000000	0.693147	0.000000	1.609438	1.098612	0.693147	0.000000
Cell_95	0.693147	1.098612	0.693147	1.386294	1.098612	0.693147	0.000000
Cell_96	0.693147	0.000000	0.000000	1.098612	0.000000	0.693147	0.693147

ANNDATA

Anndata


Anndata

```
import anndata as ad
   adata = ad.read h5ad('path')
   adata
AnnData object with n_obs × n_vars = 28871 × 1000
    obs: 'sample id', 'condition', 'cluster', 'cell type', 'multiplets', 'n genes'
    var: 'symbol', 'n_cells', 'highly_variable', 'means', 'dispersions', 'dispersions_norm', 'mean', 'std'
    uns: 'cell type colors', 'condition colors', 'hvg', 'pca', 'rank genes groups', 'sample id colors'
    obsm: 'X_pca', 'X_tsne', 'X_umap'
    varm: 'PCs', 'marker_genes-condition-rank', 'marker_genes-condition-score'
```

Anndata - cells

[3]	adata.obs ✓ 0.0s						
[2]	V 0.0s						
•••		sample_id	condition	cluster	cell_type	multiplets	n_genes
	barcode						
	AAACATACAATGCC-1	107	ctrl	5	CD4 T cells	doublet	852
	AAACATACATTTCC-1	1016	ctrl	9	CD14+ Monocytes	singlet	878
	AAACATACCAGAAA-1	1256	ctrl	9	CD14+ Monocytes	singlet	713
	AAACATACCAGCTA-1	1256	ctrl	9	CD14+ Monocytes	doublet	950
	AAACATACCATGCA-1	1488	ctrl	3	CD4 T cells	singlet	337
	TTTGCATGCTAAGC-1	107	stim	6	CD4 T cells	singlet	523
	TTTGCATGGGACGA-1	1488	stim	6	CD4 T cells	singlet	503
	TTTGCATGGTGAGG-1	1488	stim	6	CD4 T cells	ambs	448
	TTTGCATGGTTTGG-1	1244	stim	6	CD4 T cells	ambs	422
	TTTGCATGTCTTAC-1	1016	stim	5	CD4 T cells	singlet	421
8	28871 rows × 6 columns						

Anndata - genes

SCANPY

Scanpy

Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with annuata.

It includes preprocessing, visualization, clustering, trajectory inference and differential expression testing.

The Python-based implementation efficiently deals with datasets of more than one million cells.

Scanpy - preprocessing

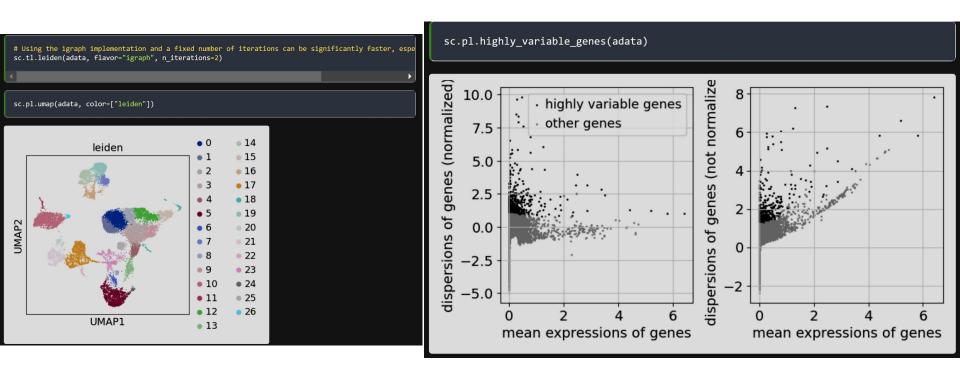
Filtering:

```
sc.pp.filter_cells(adata, min_genes=100)
sc.pp.filter_genes(adata, min_cells=3)
```

Doublet detection:

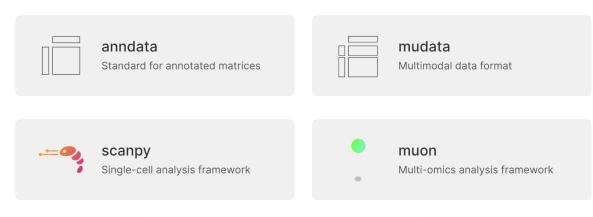
```
sc.pp.scrublet(adata, batch_key="sample")
```

Normalization:


```
# Normalizing to median total counts
sc.pp.normalize_total(adata)
# Logarithmize the data
sc.pp.log1p(adata)
```

Feature selection:

```
sc.pp.highly_variable_genes(adata, n_top_genes=2000, batch_key="sample")
```


Scanpy - visualization

Many already implemented dimensionality reduction, and clustering algorithms like pca, t-sne, umap, laiden and many more.

Scverse

Foundational tools for single-cell omics data analysis

Bibliography

- https://www.sc-best-practices.org/introduction/analysis_tools.ht ml
- https://anndata.readthedocs.io/en/latest/tutorials/notebooks/get ting-started.html
- https://scverse.org/
- https://scanpy.readthedocs.io/en/latest/tutorials/basics/clustering.html