
Projects Scie-Computing 2019-20

Leszek Marcinkowski

May 23, 2020

In case of errors, typos please inform me.

1 Introduction
I present two problems modeling the same situation - stationary i.e. modeling the situation after
the temperature stabilize and evolutionary - time dependent.

The easiest is 1D stationary with finite difference discretization. And this one is really recom-
mended unless somebody is more ambitious or interested in doing more. Naturally, if one picks
more complicated version I will be more lenient in the evaluating process - but anyway any not
finished project will be not be graded high good (by many points) so any version you choose try
to make it working.

2 Optimal control problem
A room (0, a1) × (0, a2) with the height H > 0 is heated by setting a temperature on a part pf
the wall. We want to know how to control the temperature in a part of the room by changing
the temperature of the heater. The temperature is controlled by a given PDE. We have to set
the boundary values such that the temperature in the room is as close as possible to a given
function.

We have two cases - stationary and time-dependent. The simplest is 1D version where we
assume that we heat one wall and control the temperature along the room (so the temperature
equals u(x) where x is the distance from the wall).

We can use different discretizations for given models: I propose to use standard finite difference
method (FDM) (the domain is an interval, rectangle (or a cuboid in 3D - but I stick to 1 or 2D)).
So we can use equidistant mesh in each direction.

2.1 Stationary case

Let Ω = Πd
k=1(0, ak)d d = 1, 2, we heat Γ1 = {0} in 1D or

Γ1 = {(0, s) : 0 ≤ s ≤ a2},

1

we assume that u satisfies:

−Lu− S(u) = −
d∑

k=1

∂

∂xk
ak(t, x)

∂

∂xk
u(x)− S(u) = f(x) x ∈ Ω (1)

λ
∂

∂n
u(s) + u(s) = g(s) x ∈ Γ1 (2)

∂

∂n
u(s) = 0 x ∈ Γ2 = ∂Ω \ Γ1 (3)

Let simplify the model and set ak(t, x) = α > 0 a positive constant, λ is also a positive constant,
S(u) a given function (we should be able to use any univariate function, u - the solution depends
on the function g defined over Γ1, we assume gmin ≤ g(s) ≤ gmax. We want to compute g0 such
that

F (g0) = min
g
F (g) F (g) =

∫
D

|u(x)− h(x)|2dx

where h is a given function defined over D = Πd
k=1[bk, ak], here 0 ≤ bk < ak, further for simplicity

may assume that ak = m∗bk for some positive integer m - it is a technical assumption simplifying
computations in the case FDM discretization on a uniform mesh.

Summing up - we define the function F (g) =
∫
D
|u(x)−h(x)|2dx with u solving the BVP and

we would like to find g0 minimizing this function.
Possible discretizations:

• FDM - the derivative in the Robin bnd condition may be approximated by the simplest 2
point finite difference (forward or backward) - that’s the simplest and recommended project

• linear continuous finite element method (FEM)

• quadratic continuous finite element method (FEM) (more difficult)

• another method e.g. spectral collocation method or a finite volume method (only if you are
really interested in those methods or for some reason know them well or have to implement
one of them anyway)

Note that g ∈ [gmin, gmax] is just a scalar so our minimizing problem is also in 1D over a
closed bounded interval, but in 2D we minimize over a set of bounded (by gmin from below or
gmax from above) continuous functions defined over Γ1... In practice we have to discretize this
set too, the simplest straightforward approach in the case of FDM discretization is to take all
the set of discrete

{gh : Γ1,h → R : gmin ≤ gh ≤ gmax}.
We also have to discretize the function F , i.e. use some quadrature rule. In the FDM case we
could use a prolongation: ph : Uh → C(Ω), where Uh is the FDM discrete mesh space in our
FDM discretization, e.g. we can interpolate uh the FDM solution at the mesh points getting a
bilinear function, or the simplest just approximate the integral of the rhs of F by a quadrature
which uses only the values of h, u at the mesh points of the FDM method, e.g. we can use a
trapezoidal quadrature rule (once in 1D or twice in 2D): in 1d we might define:

Fh(g) =
N−1∑
k=l+1

h|h(xk)− uh(xk)|2 + 0.5h|h(xl)− uh(xl)|2 + 0.5h|h(xN)− uh(xN)|2

where xk = h ∗ k with h = ak/N , we assume that b1 = xl = l ∗ h. Here uh is a discrete FDM
solution of the discrete problem defined over the mesh: Ωh = {xk}Nk=0.

2

2.2 Non-stationary case

We heat the same part of the boundary, cf. Section 2.1 and that u(t, x) satisfies: equation:

∂

∂t
u−

∑
k=1

∂

∂xk
ak(t, x)

∂

∂xk
u(t, x)− S(u) = 0 x ∈ Ω t ∈ (0, TMax) (4)

λ
∂

∂n
u(t, s) + u(t, s) = g(t, s) x ∈ Γ1 t ∈ (0, TMax) (5)

∂

∂n
u(t, s) = 0 x ∈ Γ2 = ∂Ω \ Γ1 t ∈ (0, TMax) (6)

S, ak are the same as in Section 2.1
u is controlled by g∗(t, x) defined for x ∈ D s.t. gmin ≤ g∗ ≤ gmax and

F (g∗) = min
g
F (g) F (g) =

∫ Tmax

0

∫
D

|u(t, x)− h(t, x)|2dx dt

where h is a given function defined on (0, Tmax)×D for D = Πd
k=1[bk, ak], 0 < bk < ak d = 1, 2.

We will further simplify the model in 2D i.e. we take

g(t, (0, s)) =

{
g0(t) s ∈ [0, 0.25 ∗ a2]
g0(t)(1− 0.5 s−0.25∗a2

0.75∗a2) s ∈ [0.25 ∗ a2, a2]
(7)

Thus really we are looking for g0 : (0, TMax) → R which minimizes F . In 1D we also have that
g(t, 0) = g0(t) so we have to find analogous g0.

We introduce a space discretization (FDM or FEM) obtaining a IVP which we solve

• using any octave solver e.g. lsode() (default)

• using implicit Euler or Crank-Nicholson scheme

In case of using lsode() we have to define g0(t) for any time t ≤ TMax even if we set discrete
times since the octave solver may need to compute the vector field also at auxiliary times. The
most reasonable is to take g0 as a linear spline defined by the values at our discrete times (e.g.
equidistant points on [0, TMAX]. So our unknowns will be the values of g0 at discrete times. The
other option is to look for g0 in a polynomial space of not too large degree or to take a linear
spline but with fewer nodes e.g .we can take every discrete time point which differ by a constant
time span e.g. 3 seconds, as a node defining a linear spline in t. Paradoxically, it is reasonable
as the device requires some time to switch from e.g. heating to cooling.

2.2.1 Tests

Please test your code for a1 = 2, a2 = 4, b1 = 1, b2 = 2, ak = α ≡ 1, S(u) ≡ 0 with f = 2 or
S(u) = −atan(u)/π z f = 0, λ = 1, h ≡ 20. In 1D case take d = 1 a1 = 2, b1 = 1.

One can show me the code - how it works and write a 2-3 pages long report, describing the
discretization and used tools (e.g. what optimization or ODE solver were used etc). You should
also test parts of the solver e.g. if the solver for the respective PDE works for some known
solutions etc. I can ask that during the exam.

3

	Introduction
	Optimal control problem
	Stationary case
	Non-stationary case
	Tests

