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1 Introduction

These notes are for Scientific Computing course in University of Warsaw in 2020. Due to
the extraordinary situation there no real meetings.

In those notes I will briefly write what every participant should read.

2 Numerical Linear Algebra reminder and what can be
done in octave

1. Solving linear systems backslash or linsolve ()

2. How is an inverse of nonsingular matrix computed and octave’s function inv(A) -
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March 10

3. matrix factorization LU,LTL (Cholesky), QR and what are they used for. Octave:
lu (), qr (), chol() functions - March 10

4. LLSP (Linear Least Square Problem) a reminder, when there is a unique solution,
what the backslash operator return in case the matrix is not of maximal rank etc -
March 10.

5. SVD (Singular Value Decomposition) what’s this, what is ti used for etc - see below
a short description - can be read in these notes - March 24.

6. Sparse matrices formats in octave and in general - in these notes March 24.

2.1 SVD and LLSP

LLSP is to find u∗ s.t.
u∗ = argmin

u
‖Au− f‖2 (1)

for a given A m × n and f ∈ Rm. If the null space N(A) = {0} then there is a unique
solution, otherwise we have a set a solutions which is u+N(A) with u being any solution,
then usually to make a problem unique we want to get the solution of minimal second
norm. The main octave’s solver is the backslash operator: u=A\b.

In case of N(A) being a zero subspace the main way of solving LLSP is to get the
QR factorization of A and then there is a direct formula for the solution. Otherwise we
can apply SVD decomposition of A. What is it? Namely SVD are 2 orthogonal matrices
U, V and a diagonal matrix D such that

A = UDV T ,

the nonzero elements of D (assume that they are the first r elements of the diagonal of
D : σ1 ≥, . . . ≥ σr > 0 are strictly positive and are called the singular values of A. They
are unique. The orthogonal matrices U, V may or may not be unique depending on the
matrix A.

Then using SVD (what can be obtained in octave using the function svd(A)) we can
compute

• the 2nd norm of A: namely ‖A‖2 = σ1; in octave norm(A) or norm(A,2).

• if A n × n is quadratic nonsingular then we can get the cond number of A:
cond2(A) = σ1/σn (here all singular values are positive); in octave cond(A)
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• if A n× n is quadratic nonsingular then we can get the inverse of A−1 = V D−1UT

(here all singular values are positive so D is nonsingular); in octave inv(A) but it
is computed by a much cheaper algorithm...

• the rank of A - r the no of strictly positive singular values (naturally it is really
a numerical rank, we have to define a threshold such that the computed singular
values which are below it are considered as zero; in octave rank(A)

• the orhonormal basis of R(A)- the space spanned by the columns of A - the first r
column of U ; in octave orth(A)

• the orhonormal basis of N(A) - the null space of A - the last n− r columns of V ;
in octave null (A)

• the solution of LLSP with A m × n and a rhs vector ~b of minimal second norm,
namely:

u∗ = V ∗ (g1/σ1, . . . , gr/σr, 0, . . . , 0)T ~g = UT ∗~b

is the unique solution of the minimal second norm of this LLSP; in octave A\b.

All solutions of LLSP are given as

{V ∗ (g1/σ1, . . . , gr/σr, ur+1, . . . , um)T : ur+1, . . . , un ∈ R} ~g = UT ∗~b.

In octave A\b+null(A)∗v where v any vector of n− r dimension.

We leave as exercises to prove those assertions.

2.2 Sparse formats of matrices

In many applications there appear naturally matrices with a lot of zeros, e.g. in PDEs
discretizations, thus e.g. solving the linear system with such a matrix using standard
solvers like LU would require unnecessary memory usage and computational effort. Thus
there are special formats ways of storing only non-zeros of a matrix.

In general there are several sparse formats of matrices i.e. special ways of storing ma-
trices which have a lot of zeros elements. In octave there is possibility of storing a matrix
in a sparse format. In order to convert a standard matrix into a sparse one (actually
it stays the same matrix just the storage is changed) is octave’s function: sparse(). In
order to convert a sparse matrix to a standard one (again just the way the elements of the
matrix are stored is changed) is the function full (). Some functions automatically use
special usually cheaper algorithms when one of its argument is in the sparse format (in
octave there is one format, an user does not have to know it) e.g. backslash. There are
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several functions specially designed for sparse formats, e.g. spdiags() allows creating a
sparse banded matrices, spy() plots the pattern of the sparsity etc. I recommend reading
a chapter in the octave documentation on sparse formats.

The 4 most popular formats of sparse matrices are:

• diagonal format: only for banded matrices - the diagonals of a banded matrix are
kept in vectors e.g. tridiagonal matrix can be kept as 3 vectors with its diagonals
(one can claim it no really a sparse format)

• coordinate format (COO) or triple format or ijv format: nonzero elements of a
matrix A are kept in three vectors of NNZ (no of nonzeros) dimension : two integer
vectors: I, J of dimension NNZ and a real vector V of dimension NNZ in which
there are nonzero elements of the matrix - then we have the following

A(I[k], J [k]) = V [k] k = 1, . . . , NNZ,

i.e. the integer vectors have on the kth position the numbers of the row and col-
umn respectively of the kth element of V . This format is not used by octave but
surprisingly in a main creating sparse matrix function of octave it can be used for
creating a matrix i.e. an user have to prepare 3 vectors I, J, V as in COO and
then A=sparse(V,I,J,m,n) (m,n are optional - the dimension of the matrix A if not
provided m = maxk(I[k]), n = maxk(J [k])) creates a sparse matrix but in another
interior octave’s format.

• the compressed sparse row format (CSR): we have also 3 vectors for storing a
matrix A m × n of NNZ nonzero elements. A real vector V and integer vector
J of dimension NNZ. In V we have nonzero elements kept in packed rows and
in J indices of columns of the respective elements in V , i.e. an element V [k] is
in the J [k] column of A. In the 3rd integer vector IP of the dimension m + 1
we have the no of indices of V, J pointing to the first elements of respective rows.
Usually, the first entry of IP equals zero (assuming that vectors V, J are numbered
0, . . . , NNZ−1) and the last one NNZ (this is an additional auxiliary entry), then
IP [i+ 1]− IP [i] i = 0, . . . ,m− 1 equal to the no of non-zeros of the (i+1)-th row.
The (i+1)-th row nonzero elements are V [IP [i]] to V [IP [i+ 1]− 1], their columns
indices equal J [IP [i]] to J [IP [i+ 1]− 1]. Thus if IP [i] ≤ k < IP [i+ 1] then

A(i+ 1, J [k]) = V [k].

• compressed sparse column (CSC) format is analogous to CSR one - the place of the
rows is taken by the columns - the nonzero values are kept in packed columns, we
have an integer vector keeping the no of rows and an integer vector in which we
have numbers pointing to the first elements of respective columns in the other two
vectors. This is the format used by octave.
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There are other formats but we will not discuss them.

3 Nonlinear solvers in octave

In octave the main two nonlinear solvers are the function fzero () and fsolve ().

fzero () is the main solver for solving one equation, i.e finding a zero of univariate
function:

f(x) = 0

We must provide a function (in a form of a function handle to a function or the string
with its name) a two dimensional vector x0 = [x1;x2] such that f changes sign on the
interval x1 < x2, if an user gives x0 a scalar the solver tries to find another point x2 such
that the signs of f in x0 and x2 are different. The function returns an approximation of
the zero and optionally return code informing if everything is OK etc

fsolve () is a solver of any system of equations. A user must provide the function
which for a given vector x returns f(x) and an initial approximation x0. It returns an
approximation of a root and optionally an info etc

There also some minimizers in octave e.g. fminbnd(), fminunc().

I refer to the octave documentation for details.

3.1 Inverse function

It happens that we want to compute a value of an inverse of a given function f : [a, b] ⊂
R → R for y ∈ [f(a), f(b)], e.g. it is a usual case if we want to solve ODEs by the
separation of variables method. Usually we cannot explicitly represent a formula for f−1.
Then in order to compute f−1(y) we can try to solve the following equation (or a system
of equations): find x such that

f(x) = y or f(x)− y = 0

Naturally x solving such equation equals f−1(y). We have the same situation of we want
to compute a value of the inverse of multidimensional function F : D ⊂ Rm → Rm - then
we have to solve the system of equations

F (X)− Y = 0
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then X = F−1(Y ).

If we want to plot a graph of the inverse of an univariate function f then it is enough
to plot the points (f(x), x) for sufficiently dense points in x, but if the function is very
steep then the graph would not look nice. More details are in chapter 3 of the lecture
notes [? ].

In octave we have to use appropriate nonlinear solvers.

3.2 Implicit function

Sometimes we want to compute a value of implicitly given function: we want to compute
the value of f at x for an implicit function f given by

F (x, f(x)) = 0

where F : Rn ×Rm → Rm. The implicit function is unique if we have e.g. an additional
condition, e.g. we know one of its values F (x0, y0 = f(x0) = 0 plus some conditions on
the regularity and derivatives of F at (x0, y0). A surface in R3 or a curve in Rd d = 2, 3
may be defined that way, e.g. F (x, y) = x2 + y2 = 0 with F (0, 1) = 0 defines a curves
y(x) =

√
1− x2 on (−1, 1). Thus for a given x we have to solve the system of equations

for y:
g(y) := F (x, y) = 0

and y = f(x).

In octave we have to use appropriate nonlinear solvers.

3.3 A short introduction to the lab problem

We want to solve the problem described in chapter 3 of the lecture notes [? ]. Namely,
we want to plot a graph of the inverse function to

Σ(s) =

(
2

M − 1

)
∗ (1− (1− s)M−1)− s ∗ (1− s)M−1

for M = 0.5 on [0, 60]. It can be done by plotting (Σ(s), s) or by solving the respective
scalar equation Σ(s) − z = 0 for s = Σ−1(z). But specially for large z it is expensive,
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thus one can note that our scalar equation is equivalent to another one namely

Gz(s) = 1− s−
(
p− s
p+ z

)p/2
p = 2/(1−M)

which is easier to solve for standard solvers. The last way is to use a hammer, i.e. generate
a lot of points clustered near one and use the first method.

4 Solving ODEs or IVPs in octave

4.1 IVP in octave

The IVp is to find x(t) solving ODE: x′ = f(t, x) with an initial condition x(t0) = x0.
THe right hand side function fro a given time t and vector x returns a vector. The main
tool for solving Initial Value Problem in octave is the function lsode(). The simplest
call is X=lsode(f,x0,t) where f is a function handle to the vector field function, i.e.
function y=f(x,y) which for a given vector x and time t returns the vector of the same
length as x. x0 is the vector from the righ hand side of the initial condition, and t =
(t0, t1, . . . , tn)T is a vector of discrete times, note that the first entry is equal to t0 from
the initial condition. The function returns X a matrix n ×m with the approximations
of the solution at discrete times rom the vector t. The kth row contains an aproximation
of x(tk)

T .

x=lsode(@(x,t) x ,1,[0,1])

This call to lsode() computes the approximation of the solution of x′ = x, x(0) = 1 at
t = 1., the function returns two values (x0, x1)

T with x0 = 1, x1 ≈ x(1) = exp(1)),

If we want to compute numerical slution at more discrete times we have to give more
values at the vector t:

x=lsode(@(x,t) x,1,t=0:0.1:1)

Then we would get the approxiamtion of the solution at all tk = k∗0.1. It is important
to note that the exactness of the method is independent of the number of time points, it
is set in

lsode_options()
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function with some default tolerances values.

If we want to solve a hih=gher order ODE then we have to convert the ODE t othe
first order ODE by adding extra variables, e.g. let consider x′′ = −x, x(0) = 0, x′(0) = 1
then it is equivalent to the following first order ODE:

x′ = y
y′ = −x
x(0) = 0
y(0) = 1

This is a linear system X ′ = AX with

A =

(
0 1
−1 0

)
Then we can solve this system as folllows:

X=lsode(@(x,t) [0,1;−1,0]∗x ,[0;1],[0, pi ]) .

This would return matrix 2× 2 with an approximation of (x(1), x′(1))T in the second
row, in the first row we have the transpose of the initial condition.

4.2 Earthquake model

4.2.1 A model of earthquake

We have building with n floors. During an earthquake acts a force G sin(γt) on the 1st
floor. Between jth and j + 1th floor acts a restoration force fj proportional to relative
shift of the floors:

fj = kj+1(xj+1 − xj)
fj acts on jth floor - −fj on the j + 1th. On the first floor acts analogous force −f0 =
−k1x1 between ground and this floor. Thus on each floor we get

mjxj = fj − fj−1 = kj+1(xj+1− xj)− kj(xj − xj−1) = kjxj−1 + (−kj+1− kj)xj + kj+1xj+1

with kn+1 = 0 and x0 = 0 (we assume that earth does not move or rather that floor
moves vs ground).

All together we get the system :

Mx′′ = Sx
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with M = diag(m1, . . . ,mn) a diagonal matrix with the masses of the floors on the
diagonals and S the tridiagonal matrix with (−kj+1 − kj)j=1,...,n and the main diagonal
(kn+1 = 0), (kj)j=2,...,n on subdiagonal and (kj)j=1,...,n−1 on the superdiagonal:

S =


−k1 − k2 k2

k2 −k2 − k3 k3
. . . . . . . . .

kn−1 −kn−1 − kn kn
kn −kn


In case of an earthquake the system looks as:

Mx′′ = Sx+ F (t)

with

F =


G sin(γt)

0
...
0


γ is the frequancy of the earthquake, e.g. equal to 3 - and the period of the earthquake
T = 2π/γ usually in the range [2, 3], G its magnitude (in practise F should quickly
disappear but we consider a short time during the earthquake to see if the bldg collapse
or not).

We can multiply the system by M−1 and get

x′′ = M−1Sx = Ax x′′ = Ax+M−1F

We can compute the eigenvalues of A : λj and their square roots

ωi =
√
−λj

which we call the frequencies of the building and

Ti = 2π/ωj

the periods of the building. It is important that the periods are NOT in the range of the
earthquake period which is usually in [2, 3].

4.2.2 Resounance in 1th storey building

For simplicity consider the case of one floor building with e.g. m = 10000kg and k =
5000kg ∗ m/s2, thus our equation x′′ = (−k/m)x + (G/m)sin(γt) the general solution
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(why?) is
c1 sin(at) + c2 cos(at) + x0(t) (a = k/m)

where the sum of the 1st two =terms is called the general solution of the homogeneous
problem (rhs =0) and x0 is any specific solution of the equation - because the rhs is of
the form G/m can be found in the following form:

x(t) = d1 sin(γt) + d2 cos(γt)

if γ 6=
√
a! Substituting x0 into the ODE we get:

x′′0 + ax0 = d1(−γ2 + a) sin(γt) + d2(−γ2 + a) cos(γt) = (G/m) sin(γt)

We get d2 = 0 and d1 = (G/m)/(−γ2 + a). - we see that our assumption of γ 6=
√
a. The

constants ck can be computed from the initial values. Thus we get bounded oscillatory
solutions.

In case γ =
√
a - we know (ODE course)

x0(t) = (d1 + d2t) sin(γt) + (d3 + d4t) cos(γt)

Again after substitution we get the linear system for dk. Note that at least one of d2 or d4
have to be nonzero (why?). Thus we get that t0 is unbounded...this physical phenomenon
is called resonance...

In general for many storey building we obtain similar (much more complicated) for-
mulas and in case when the earthquake frequency equals (mathematically - in real life is
close) to one of frequency of the building we can resonance and the building may collapse.

4.3 Some info on schemes for ODEs or IVPs

We want to solve IVP:
x′ = f(t, x) x(t0) = x0

We introduce discrete times: thk = tk = t0 + k ∗ h for positive step h and we want to
approximate x(tk) by xhk = xk (we usually omit the superscript h if h is defined) computed
by some scheme.
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4.3.1 Some basics

If we replace the derivative by the forward difference:

x(t+ h)− x(t)

h
≈ x′(t) = f(t, x(t))

for t = tk then we obtain the simplest scheme: which is the Euler one (or explicit Euler
scheme):

xk+1 − xk
h

= f(tk, xk)

or
xk+1 = xk + hfk

where fk = fhk = f(tk, xk). Knowing xh0 = x0 from the initial condition we can compute
the succesive xk, k ≥ 1 as long as fk is properly defined (we can get outside the domain
of f) or get blow up.

The other way to obtain the Euler scheme (called also forward Euler or explicit Euler
scheme) is to use the Taylor formula:

x(t+ h) = x(t) + x′(t)h+O(h2) = x(t) + f(t, x(t))h+O(h2)

forgetting about the remainder we get:

x(tk+1) ≈ x(tk) + hf(tk, x(tk))

replacing x(tk) with xk we get our scheme.

One can ask why to to use forward difference - we can replace the derivative with a
backward difference:

x′(t) ≈ x(t)− x(t− h)

h

then we get the following scheme

xk − xk−1
h

= fk

or
xk+1 = xk + hfk+1

- the implicit (backward) Euler scheme. Implicit means that we have no a direct (explicit)
fomula for xk+1. There may be no solution for a given xk in general and it must be
computed by solving the following nonlinear system of equations:

g(x) := x− xk − hf(tk, x) = 0

13



Fortunately, under reasonable assumptions there is a solution for sufficiently small h and
the system is getting simpler to solve as h is getting smaller.

One might ask why at all consider such a scheme if we have explicit schemes? It is
not obvious but there is large class of IVPs such that implicit schemes work much better
for them than explicit ones.. They are called stiff equations.

Let’s go back to the Taylor expansion :

x(t+ h) = x(t) + x′(t)h+ 0.5x′′(t)h2 + ..

to get the explicit Euler scheme we took two terms but we could try to take three or
more, e.g.

x(t+ h) ≈ x(t) + x′(t)h+ 0.5x′′(t)h2

in order to construct a new scheme. The question how to compute e.g. x′′(t) for x the
solution of ODE: x′ = f(t, x)? We can differentiate the equation getting:

x′′(t) =
d

dt
x′(t) =

d

dt
f(t, x(t)) = ft(t, x(t))+fx(t, x(t))x′(t) = ft(t)+fx(t, x(t))∗f(t, x(t)).

Thus we can define the following scheme:

xk+1 = xk + hfk + 0.5h2 ∗ (ft(tk, xk) + fx(tk, xk)fk).

In order to compute xk+1 we have to compute the value of fk = f(tk, xk) (evaluating all
components, i.e. m univariate functions at (tk, xk)) ft(tk, xk) the same cost more or less
and fx(tk, xk) (evaluating m×m univariate functions in general).

Let define the concept of convergence of the scheme. Our scheme generates the
approximate solutions xk = xhk for any h which approximates x(tk) with tk = thk = t0+k∗h
on [0, T ] for k ≤ (T − t0)/h. We say that the scheme is convergent if

Eh = max
thk∈[0,T ]

‖xhk − x(thk)‖ → 0 h→ 0

and the convergence is of order p > 0 if additionally

Eh = O(hp).

Usually p is an integer but formally may be fractional.

Note that we do not define the norm as it can by any norm in Rm - we would like
to recall that all norms are equivalent in the finite dimensional spaces, however the
equivalence constants may be very arbitrarily large/small: just consider ‖x‖1 and ‖x‖∞,
then the (optimal) equivalence constants are

‖x‖∞ ≤ ‖x‖1 ≤ m‖x‖∞.
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Thus in practise we get the same convergence order in all norms, but the real errors
may be many orders larger/smaller for the same h but different norms.

There is also an important property of the so called the order of the scheme (not
the convergence order!). More or less we substitute the solution at any tn = t ∈ [t0, T )
into the scheme terms and measure the residue it as O(hp). As p larger then the error is
smaller. We define the order of the Euler schemes. Thus if for sufficiently smooth x we
have that

eh = max
t∈[t0,T−h)

‖x(t+ h)− x(t)

h
− f(t, x(t))‖ = O(hp)

we say that the Euler scheme is of order p, one can show that here p = 1. Equivalently
we can demand that:

heh = max
t∈[t0,T−h)

‖x(t+ h)− x(t)− hf(t, x(t))‖ = O(hp+1).

The implicit Euler scheme is also of the first order and the above Taylor scheme is of
second order.

4.3.2 One step schemes - Runge-Kutta schemes

The major class of one step schemes i.e. the schemes given as :

xk = Φ(h, tn, xn, xn+1)

for some function Φ is the class of Runge-Kutta schemes.

We will present the idea of the simplest Runge’s scheme.

We want t ouse an extra value of f . I.e. we compute the value of f at

x̂ = xk + ahf(tk, xk)

which is a one step of the explicit Euler scheme with the step ah. We get f̂ = f(t+ah, x̂)
and then we define

xk+1 = xk + h ∗ f(c1fk + c2f̂)

i.e. we add to xk the linear combination of fk and f̂ in such a way to obtain a better
scheme. To get a Runge scheme we select c1, c2 to get a scheme of the highest possible
order. Here we can get only the scheme of order two - there is a whole family of explicit
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Runge schemes of order two. Here we give formulas for two most popular ones: the Heun
scheme: c1 = c2 = 0.5 and a = 1

xk+1 = xk + 0.5h ∗ (fk + f(t+ h, xk + hfk))

and the modified Euler scheme: c1 = 0, c2 = 1, a = 0.5:

xk+1 = xk + hf(t+ 0.5h, xk + 0.5hfk).

Sometimes any explicit second order Runge scheme is called a modified Euler scheme.
There are also higher order Runge schemes, e.g.: here we see an example of a fourth order
Runge scheme:

xk+1 = xk + h
6
∗ (K1 + 2K2 + 2K3 +K4)

K1 = f(tk, xk)
K2 = f(tk + 0.5h, xk + 0.5hK1)
K3 = f(tk + 0.5h, xk + 0.5hK2)
K4 = f(tk + h, xk + h ∗K3)

which is a scheme of order four. There are also implicit Runge schemes.

4.3.3 Linear multistep schemes - Adams schemes

Another important schemes are so called linear multistep schemes. The main examples
of this class are Adams schemes.

They are derived form the formula:

x(t+ h) = x(t) +

∫ t+h

t

x′(s)ds = x(t) +

∫ t+h

t

f(s, x(s))ds

If we substitute x(t+h) by xk+1 and x(t) by xk and f(s, x(s)) by a simple approximation
Qp(s) ≈ f(s, x(s)) which can be computed knowing the values of f(tl, xl) for l = 0,−1, .., p
getting an explicit scheme or l = 1, 0,−1, .. getting an implicit one. In Adams scheme Qp

is a Lagrange interpolation polynomial interpolating fl = f(tl, xl) at the previous p + 1
time steps , i.e.

xk+1 = xk +

∫ tk+1

tk

Qp(s)ds

where Qp is a polynomial of degree less or equal p such that

Qp(tl) = fl l = k, k − 1, k − 2, . . . , k − p

getting an explicit Adams-Bashford schemes or

Qp(tl) = fl l = k + 1, k, k − 1, k − 2, . . . , k − p+ 1
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getting an implicit Adams-Moulton scheme. Note that the coefficients of Qp in (t− xk)r
basis of the polynomial space of degree less or equal p. are uniquely defined by fl and h
i.e .the values at the interpolation nodes. Thus after integrating we get:

xk+1 = xk + h ∗ (βpfk + . . .+ β0fk−p) (Adams−Bashford)

or
xk+1 = xk + h ∗ (β̂pfk+1 + . . . β̂0fk−p+1) (Adams−Moulton)

After renumbering we get a p+ 1 step explicit scheme:

xk+1+p = xk+p + h ∗ (βpfk+p + . . .+ β0fk) (Adams−Bashford)

or a p-step implicit scheme:

xk+p = xk+p−1 + h ∗ (β̂pfk+p + . . .+ β̂0fk) (Adams−Moulton)

Let’s compute the first two A-B schemes: let take p = 0 then Q0(s) = fk and we get

xk+1 = xk +

∫ tk+1

tk

Q0(s)ds = xk + h ∗ fk

the explicit Euler scheme. Take p = 2 we get

Q1(s) = fk ∗
s− xk−1

h
+ fk−1 ∗

s− xk
−h

after integrating we get

xk+1 = xk + 0.5h ∗ (3 ∗ fk − fk−1)

the two-step Adams-Bashford scheme of order two.

Now let consider Adams-Moulton examples, take p = 0 and analogously we get the
implicit Euler scheme:

Q0 = fk+1

after integrating we get that

xk+1 = xk +

∫ tk+1

tk

Q0(s)ds = xk + h ∗ fk+1

Let’s take p = 1 then
Q1 = fk

s− xk+1

−h
+ fk+1

s− xk
h

After integrating we get the trapezoid scheme:

xk+1 = xk + 0.5h ∗ (fk + fk+1)
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which is of order two.

Note that in each successive steps we have to compute ONLY ONE value of f since
the previous ones were computed in previous steps.

However we need some x1 an extra starting value. So multistep schemes are not
self-starting. In practise we use a starting procedure using some one-step scheme of
sufficiently high order. in order to compute starting values x1, . . . , xq−1 for q-step scheme
(x0 is given in the initial condition). Surprisingly it is OK to use a one step scheme of
order k − 1 for starting multistep scheme of order k.

The linear multistep schemes are cheaper than e.g .Runge schemes but less stable and
less useful for being use as a base for a construction of an adaptive step scheme. They
also require extra starting procedure, what is not a serious fault but is necessary.

4.3.4 Convergence theory

For one step scheme
xk+1 = xk + hΦ(h, tk, xk, xk+1)

is convergent if is consistent i.e.

1. Φ continuous

2. Φ(0, t, x) = f(t, x)

3. Φ is Lipschitz with respect to the last two variables

If additionally the scheme is of order p we can get the convergence of order p for sufficiently
smooth solutions.

There is a separate convergence theory for linear multistep schemes. We introduce a
concept of 0-stability of a such scheme. Namely if we consider the following linear q-step
scheme:

αqxk+q + . . .+ α0xk = h(βqfk+q + . . . β0fk)

with αq 6= 0 then this scheme is 0-stable (or just stable) if all the roots of the following
polynomial:

ρ(x) = αqx
q + . . .+ α0

are bounded by one, moreover the roots with the absolute value one are single roots.
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If the q-step linear scheme is of order p ≥ 1, is stable, and the starting values are such
that ‖xk − x(tk)‖ = O(hp) for k = 0, . . . , q − 1, then we get the convergence of order p is
the solutions is sufficiently smooth.

4.3.5 Stiffness

What is stiffness or stiff equation? In 1950ties it was noticed that for some system of
ODEs explicit schemes work very bad or do not work at all, but the implicit schemes
work much better. So the practical definition of stiff systems is that they the ones for
which explicit schemes do not work. Below we will give also a more mathematical one
however this practical one very well explains what stiffness is.

First consider a very simple 1D IVP: x′ = ax with x(0) = 1 for a < 0 and apply the
explicit Euler scheme:

xn = xn−1 + axn−1 = (1 + ha)n

The solution of this IVP is exp(at) which is positive and limt→0 x(t) = 0 we would expect
that our numerical solution preserve those properties, but to get xn > 0 for all n we
should have

h <
1

−a
then also xn tends to zero for n tending to infinity. This condition is very restrictive
for a with large |a| when the solution exp(at) convrge to zero very fast. If we apply the
implicit Euler scheme we get that scheme:

xn = xn−1 + ahxn,

(1− ah)xn = xn−1,

xn = (1− ah)−1xn−1

xn = (1− ah)−n.

We see that xn > 0 and converging to zero with n tending to infinity for any h. We
have no condition on the step.x’=

Let now consider the linear system

x′ = Ax x() = x0

Let assume that A is m×m diagonal matrix in a certain basis i.e.

A = CDC−1
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for a nonsingular matrix C. The diagonal matrix D contains eigenvalues of A on the
diagonal.

Then the solution of IVP is:

x(t) =
∑
k

~ck exp(λkt)αk

where ~ck is the k-th column of the matrix C, ~α = (α1, . . . , αm)T = C−1~x0.

Let assume that all those eigenvalues are negative of different order: λ1 < . . . ≤ λm <
0. Then all the components of the solution converge to zero with t→ 0. If we apply the
explicit Euler scheme we get:

xn =
∑
k

~ck(1 + ah)nαk

in order to get that the k-th discrete component converge to zero we have to take the
step h:

h <
2

−λk
k = 1, . . . ,m.

This the largest in the absolute value component of the solution (here it is the one for λ1)
vanishes very very quickly but force us to use very small restrictive step h < 1/(−λ1). If
we apply the implicit Euler scheme we get:

xn =
∑
k

~ck(1− ah)−nαk

thus we get no restriction pn the step.

Thus we can define that the system of ODEs

x′ = Ax

is stiff if

• all eigenvalues of A : λk are negative

• the following is satisfy
maxk |λk|
mink |λk|

>> 1

How it is large more or less measure how the system is stiff

In case of nonlinear ODEs: x′ = f(t, x) we can define stiffness analogously for the
linearized equation i.e. for eigenvalues of Jacobian of f with respect to x, naturally for
certain domains, i.e. the ODE may be stiff in some domains and non-stiff in some other
ones.
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4.3.6 Adaptive step schemes

In practice adaptive step schemes are used. The idea is very simple if the error is small,
i.e. below some tolerance we can take relatively large step h in case of problems, i,e,
when the r=error is too large we take much smaller one. The question is how to estimate
the error not knowing the real solution? There a few different approaches however the
main idea is the same, we get two approximations of the solution at given time t: x1 and
x2 - the first one much better the other worse, they can be obtained by using schemes of
different order or using the same scheme but with different step sizes. Then actually we
assume that the better one is as a real solution for the worse one and we can estimate
the error for the worse one i.e. we assume that

‖x1(t)− x∗(t)‖ ≈ ‖x1(t)− x2(t)‖

and we teke then ‖x1(t)− x2(t)‖ as our error estimator.

We will present the idea on two Runge’s schems: Heun and explicit Euler.We will
estimate the error localy. Let consider IVP:

x′ = f(t, x) x(t) = xn

where xn is a given value then we approximate the solution at the time t + h. The step
size h is obtained from the previous step (or just given at the first one). We have two
tolerances TOLMIN and TOLMAX, we want to get the numerical solution such that
the error is between those two. In practice we take TOLMAX = 2 ∗ TOLMIN or
3 ∗ TOLMIN so the error is on more or less given level.

So we compute two approximations:

x1 = xn + hf(t, xn) (Euler)

and
x2 = xn + 0.5h(f(t, xn) + f(t+ h, xn + hf(t, xn))) (Heun)

Note that actually we should compute first fn := f(t, xn) and then

x1 = xn + hfn
x2 = xn + 0.5h(fn + f(t+ h, x1))

Thus the main cost is to compute two f evaluation - it is the same cost as using Heun
scheme.

Then we compute the error estimator Est = ‖x1 − x2‖ for the Euler scheme If
TOLMIN ≤ Est ≤ TOLMAX then we restart the procedure at t + h with the same
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step size h, If Est ≤ TOLMIN we decrease the step size to e.g. 2 ∗ h and restart the
procedure at t + h. If Est ≥ TOLMAX we decrease h, e.g. to 0.5h and recompute the
numerical solution starting at the old time t and repeating the estimation.

Naturally in practice we should have some minimal size of the step hmin and a
maximal size of the step hmax < 1.

That’s the simplest adaptivity approach, there also other ones like estimating the size
of the right step, or using the same scheme twice with h and e.g. h0.5.

Note that we make only assumption that he Heun scheme gives us much better ap-
proximation than the Euler scheme. The other observation is less obvious but we have
only an estimate of the Euler scheme error, this approach does not give us any informa-
tion about the Heun scheme error which has to be much less than the Euler one..e big O
notation. The last remark is about locality of the estimation, namely we estimate local
errors at each step, but we should remember that more or less local error is one order more
than the global error in case of the constant step size or order of the scheme, i.e. we can
expect that ‖x1− x(t)‖ = O(h2) for the Euler scheme (naturally with unknown constant
in the big O notation...). We should take it into account when we set the tolerances.

Practically we should estimate Euler scheme error but take Heun approximation as a
better solution.

5 C language, numerical libraries etc

Using ready systems like matlab or octave is vey convenient, but we have to pay. The
codes are slower cannot run on super computers with thousands of processors etc Thus
if we want very fast codes we probably have to write codes in lower level languages like
C or C++. Naturally we could write everything form scratch but it would take a lot of
time, testing also is difficult and our codes still might not be so much faster comparing
to e.g. octave which has overhead of the system but use well tested and very efficient
numerical packages. Thus it seems the most reasonable to use well tested and optimised
libraries whenever it is possible. Usually our numerical code is built from blocks which
use well known methods which can be taken form numerical libraries (packages).
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5.1 Using numerical fortran libraries in C

Many numerical libraries are pretty old, are being developed for 40 or even more years
and were and are written in fortran. Fortunately it is relatively easy to call a fortran
function in C (or C++). Only we have to use analogous data types as in fortran.

5.1.1 Real types in fortran and C

we should know hwat real types are in Fortran and their respective counterparts in C.

SO the basic real types in Fortran are:

• REAL this types represents single precision numbers. Its counterpart type in C is
float .

• DOUBLE PRECISION this types represents double precision numbers. Its coun-
terpart type in C is double.

• COMPLEX this types represents single precision complex numbers i.e. represented
by two single numbers. There is no direct counterpart type in C, but we can
represent it as a structure with two float fields.

• COMPLEX∗16 represents a complex type with two real numbers on 8 bytes -
together 16 bytes i.e. two double precision numbers. Again there is no direct
counterpart type in C, but again we can use a structure type with two double type
fields.

We need also integer and string types:

• INTEGER is a standard integer type, in C can be represented by int type.

• CHARACTER∗1 represents a character type, in C : char which is one byte integer
type.

A real or integer vector is represented as a respective array:

• INTEGER ip (∗) declares an integer array, in C we declare: int ∗ip,
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• a real vector REAL x (∗) in single precision, in C we have that float ∗x;

• a real double precision vector DOUBLE PRECISION x (∗), in C, we declare double ∗x;

5.1.2 Matrix types in Fortran and C

In C language a matrix is represented as a double arrray: float ∗∗A a pointer to a float
pointer. Then an access to an element A(i, j) we get as A[i][j], anyway what is important
is that the matrix is stored rowwise in the memory.

But in fortran a matrix is stored column wise as a single array. A standard declaration
of a matrix m× n:
double p r e c i s i o n A (LDA, ∗ )

Here LDA is an integer less or equal m (no of rows of A - the length of a column of A).
In order to calla fortran function from C we have to represent a matrix a single index
array columnwise, i.e. we declare a single real array as

f l o a t ∗A;

Then we have to allocate memory using e.g. malloc() function and we define elements
columnwise e.g. to define the following matrix:1 4

2 5
3 6


we can write in C:

f o r ( k=0;k<6;k++){
A[ k]=k+1;
}

5.1.3 Prototype

In order to use a fortran function we have to write a proper C function prototype of this
fortran function which will be called later by us - as a call to the given fortran function.
The general rule is - all parameters of the prototypes must be respective pointers, e.g.
if a parameter is an integer type then - a pointer to int etc If a parameter is a vector
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of e.g. double precision then a pointer to double type. The naming convention is to use
the fortran function name plus an extra underline character i.e. if a fortran function has
the name dnrm2() then our prototype name is: dnrm2_(). If this function is real ortran
function i.e. it returns a value of a specific type our prototype should be of a respective
type, too. If it is a subroutine not returning any value then our prototype should return
the void type.

We will present two simple examples: the simplest is the fortran function dnrm2() -
which computes the 2nd norm of a double precision vector, its fortran few 1st lines are:

DOUBLE PRECISION FUNCTION DNRM2(N,X, INCX)
∗ . . S ca l a r Arguments . .

INTEGER INCX,N
∗ . .
∗ . . Array Arguments . .

DOUBLE PRECISION X(∗ )
∗ . .
∗
∗ Purpose
∗ =======
∗
∗ DNRM2 re tu rn s the euc l i d ean norm of a vec to r v ia the func t i on
∗ name , so that
∗
∗ DNRM2 := sq r t ( x ’∗ x )
∗
∗

The function returns a double precision value and has 3 parameters, two integer type and
one double precision vector.

Then our C prototype must return C counterpart of double precision, i.e. double,
and has 3 parameters of respective pointer types:

double dnrm2_( i n t ∗ , double ∗ , i n t ∗ ) ;

Then if we want to use this function we have to call it as in prototype, e.g.:

nrm=dnrm2_(&N,X,&INCX) ;

naturally N, INCX must be integer variables and X a double array of length equal to the
value of N (a pointer to double), INCX may be equal to one to compute the standard
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second norm. For other possible values of INCX in a call this function we refer to BLAS
documentaion of this function, it can be easily found on-line.

The whole examplary simplest code:

/∗ l e t i t be a f i l e named b l a s s imp l e s t . c ∗/
#inc lude<s td i o . h>
/∗ the header f i l e o f input /output f unc t i on s standard C l i b ∗/

double dnrm2_( i n t ∗ , double ∗ , i n t ∗ ) ; /∗ our prototype ∗/

void main ( void ){

i n t N=3,INCX=1;
double X[ 3 ] , nrm ;

X[0 ]=X[1]=X[ 2 ]=1 . 0 ;

nrm=dnrm2_(&N,X,&INCX) ;
/∗ a c a l l to the f o r t r an func t i on as in prototype ∗/

p r i n t f ("2nd norm o f [%g;%g;%g]=%g\n" ,X[ 0 ] ,X[ 1 ] ,X[ 2 ] , nrm ) ;
r e turn ;

}/∗ end o f main ()∗/

Naturally, we have to compile it - in linux gcc is GNU compiler collection and contains
both C and fortran ocompilers so it is enough to write gcc blassimplest .c −lblas , here
−lblas means that the compiler will use the library blas, our fortran function is a part of
this library.

If we have an older linux system we may need some extra libraries as −lgfortran or
−lg2c, or even −lm - the last command says that our program uses math library when
one can find a square root function necessary for computing the 2nd norm. Anyway we
also assume that blas lib is installed, which should be easy to do in linux, it is usually a
part of standard distributions. If not, it should be in any distribution as a package and
can be easily installed. We will need it later anyway.

If all fails one can download dnrm2.f fortran source file and just compile it using e.g.
the following command: gcc −c dnrm2.f to the object file: dnrm2.o which can be later
linked with our C file:

gcc name . c dnrm2 . o
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where name.c is our source file with the function main().

The next example is the following fortran function SGEMV() which is again a BLAS
level 2 function. BLAS level 2 functions contains functions computing matrix-vector
basic operations of linear algebra. The naming conventions of BLASfunction we will
explain later in one of following sections. Here it is enough to know that the first letter
means precision, i.e. s single (REAL in fortran, float type in C) and d double one
(DOUBLE PRECISION type in fortran and double type in C).

The first few lines of the source of this function are the following:

SUBROUTINE SGEMV(TRANS,M,N,ALPHA,A,LDA,X, INCX,BETA,Y, INCY)
∗ . . S ca l a r Arguments . .

REAL ALPHA,BETA
INTEGER INCX, INCY,LDA,M,N
CHARACTER TRANS

∗ . .
∗ . . Array Arguments . .

REAL A(LDA, ∗ ) ,X(∗ ) ,Y(∗ )
∗ . .
∗
∗ Purpose
∗ =======
∗
∗ SGEMV performs one o f the matrix−vec to r ope ra t i on s
∗
∗ y := alpha∗A∗x + beta∗y , or y := alpha∗A’∗ x + beta∗y ,
∗
∗ where alpha and beta are s c a l a r s , x and y are ve c to r s and A i s an
∗ m by n matrix .
∗
∗ Arguments
∗ ==========
∗
∗ TRANS − CHARACTER∗1 .
∗ On entry , TRANS s p e c i f i e s the opera t i on to be performed as
∗ f o l l ow s :
∗
∗ TRANS = ’N’ or ’n ’ y := alpha∗A∗x + beta∗y .
∗
∗ TRANS = ’T’ or ’ t ’ y := alpha∗A’∗ x + beta∗y .
∗
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∗ TRANS = ’C’ or ’ c ’ y := alpha∗A’∗ x + beta∗y .
∗
∗ Unchanged on ex i t .
∗
∗ M − INTEGER.
∗ On entry , M s p e c i f i e s the number o f rows o f the matrix A.
∗ M must be at l e a s t ze ro .
∗ Unchanged on ex i t .
∗
∗ N − INTEGER.
∗ On entry , N s p e c i f i e s the number o f columns o f the matrix A.
∗ N must be at l e a s t ze ro .
∗ Unchanged on ex i t .
∗
∗ ALPHA − REAL .
∗ On entry , ALPHA s p e c i f i e s the s c a l a r alpha .
∗ Unchanged on ex i t .
∗
∗ A − REAL array o f DIMENSION ( LDA, n ) .
∗ Before entry , the l ead ing m by n part o f the array A must
∗ conta in the matrix o f c o e f f i c i e n t s .
∗ Unchanged on ex i t .
∗
∗ LDA − INTEGER.
∗ On entry , LDA s p e c i f i e s the f i r s t dimension o f A as dec l a r ed
∗ in the c a l l i n g ( sub ) program . LDA must be at l e a s t
∗ max( 1 , m ) .
∗ Unchanged on ex i t .
∗
∗ X − REAL array o f DIMENSION at l e a s t
∗ ( 1 + ( n − 1 )∗ abs ( INCX ) ) when TRANS = ’N’ or ’n ’
∗ and at l e a s t
∗ ( 1 + ( m − 1 )∗ abs ( INCX ) ) otherwi s e .
∗ Before entry , the incremented array X must conta in the
∗ vec to r x .
∗ Unchanged on ex i t .
∗
∗ INCX − INTEGER.
∗ On entry , INCX s p e c i f i e s the increment f o r the e lements o f
∗ X. INCX must not be zero .
∗ Unchanged on ex i t .
∗
∗ BETA − REAL .
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∗ On entry , BETA s p e c i f i e s the s c a l a r beta . When BETA i s
∗ supp l i ed as zero then Y need not be s e t on input .
∗ Unchanged on ex i t .
∗
∗ Y − REAL array o f DIMENSION at l e a s t
∗ ( 1 + ( m − 1 )∗ abs ( INCY ) ) when TRANS = ’N’ or ’n ’
∗ and at l e a s t
∗ ( 1 + ( n − 1 )∗ abs ( INCY ) ) otherw i s e .
∗ Before entry with BETA non−zero , the incremented array Y
∗ must conta in the vec to r y . On ex i t , Y i s ove rwr i t t en by the
∗ updated vec to r y .
∗
∗ INCY − INTEGER.
∗ On entry , INCY s p e c i f i e s the increment f o r the e lements o f
∗ Y. INCY must not be zero .
∗ Unchanged on ex i t .
∗
∗
∗ Level 2 Blas rou t in e .

The function computes y = α∗Ax+β∗y or y = α∗ATx+β∗y, where α, β are scalars,
x, y a vector, A matrix, the result is given in the vector y (so its value is overwritten!).
Thus we the C prototype might look as follows:

void rgemv_( i n t ∗ ) ;

Naturally if called the respective variables must be properly declared, memory (in case
of dynamical allocation) allocated etc The returned type void means that the function
does nor return any value. Below we present a very simple C code in which we multiply
a vector by a matrix.

/∗ f i l e name : exAx . c ∗/
#inc lude<s td i o . h>
void sgemv_( char ∗ , i n t ∗ , i n t ∗ , f l o a t ∗ , f l o a t ∗ , i n t ∗ ,

f l o a t ∗ , i n t ∗ , f l o a t ∗ , f l o a t ∗ , i n t ∗ ) ;
void main ( void ){
f l o a t alpha =1.0 , beta =0.0 ; /∗ s i n g l e prec s c a l a r s ∗/

char t rans=’N’ ;

i n t M=3,N=2,INCX=1,INCY=1,LDA=M;

f l o a t x [ 2 ] , y [ 3 ] ; /∗ vec to r s ∗/
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f l o a t A [ 6 ] ; /∗ our matrix 3x2 kept as a f l o a t vec to r ∗/

i n t k ;

/∗we have to d e f i n e the va lues o f e n t r i e s o f A and vec to r s x , y∗/
f o r ( k=0;k<6;k++)
A[ k]=k+1;

x [0 ]=x [ 1 ]=1 . 0 ;
y [0 ]=y [1 ]=y [ 2 ]=0 . 0 ;

/∗we compute y=A∗x ∗/
sgemv_(&trans ,&M,&N,&alpha ,A,&LDA, x,&INCX,&beta , y,&INCY) ;

p r i n t f ("y=A[%g;%g]=[%g;%g;%g ] \ n" , x [ 0 ] , x [ 1 ] , y [ 0 ] , y [ 1 ] , y [ 2 ] ) ;

r e turn ;
}/∗ main ()∗/

Then if we execute gcc −c exAx.c then the precompiler will find syntax errors or create
an object file exAx.o which can further linked with BLAS library. ebra libraries: BLAS
and LAPACK.

5.2 Numerical libraries

We will discuss in details two linear algebra libraries: BLAS and LAPACK.

Both comprise fortran functions: BLAS solving simple linear algebra operations which
are blocks of any more serious linear algebra solvers which contains LAPACK. More
details below.

5.2.1 Basic Linear Algebra Subprograms (BLAS)

This fortran library contains fortran functions with absolutely basic operations of linear
algebra like adding scaled vectors, standard scalar product, second norm of a vector,
multiplication of vector by a matrix, or multiplication of two matrices - that’s the most
complicated. Anyway all operations are very simple but they are crucial blocks in any
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more complicated linear algebra solver. If they are executed fast i.e. BLAS functions
are executed in optimal way - we say that we have optimized BLAS, then the more
complicated solvers work also much faster.

The function of BLAS lib are divided into 3 levels:

1. Level 1: basic vector operations like a 2nd norm of a vector, a scaling of a vector
etc, e.g.

• xNRM2 - computes the 2nd norm of a vector: nrm2← ‖x‖2.
• xSCAL - scales a vector ~x← α ∗ ~x.
• xAXPY - computes generalized vector addition

~y ← α ∗ ~x+ ~y

2. Level 2: matrix vector operations e.g. multiplication of a vector by a matrix

• xGEMV - computes generalized matrix vector multiplication

~y ← α ∗ A ∗ ~x+ β ∗ ~y

or
~y ← α ∗ AT ∗ ~x+ β ∗ ~y

or
~y ← α ∗ AH ∗ ~x+ β ∗ ~y

The last version works for complex precisions.
• xGER - creating a rank one modified matrix:

A← α ∗ ~x~yT + A

3. Level 3: matrix matrix operations like multiplication of two matrices, e.g.

• xGEMM - computes generalized matrix matrix multiplication

C ← α ∗ op(A) ∗ op(B) + β ∗ C

where op(X) = X,XT , XH . The last version works for complex precisions.
• xSYRK - computes generalized matrix matrix multiplication

C ← α ∗ A ∗ AT + β ∗ C

or
C ← α ∗ AT ∗ A+ β ∗ C

where C is n× n matrix.
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The prefix x in the name means precision for which the function works.

The naming scheme of BLAS library is the following: the name of a function is either
xZZZ in case of vector operations or xYYZ(ZZ) where x is the precision of the function
(type of floting point variables), Z(ZZ) is the name of the operation, e.g. NRM2 in the
function DNRM2 means the second norm, and YY is the type of a matrix, e.g. GE in
DGEMV is GEneral type - any full matrix, the prefix D means double precision, and
MV is matrix times vector operation. There are four precisions prefixes in BLAS (and
LAPACK as well):

1. S - single precision, i.e. real variables

2. D - double presicion

3. C - complex single precision

4. Z - complex double presicion

Not all functions work for all precisions. Thus DNRM2 computes 2nd norm of a real
double precision vector, while CNRM2 computes 2nd norm of a complex single precision
vector (each entry is single precision complex number).

5.2.2 Linear Algebra PACKage (LAPACK)

The LAPACK fortran library comprise a selection of linear algebra solvers.

The naming scheme is similar to BLAS namely: the name of a function is xYYZZ(Z)
where x is the precision of the function (type of floating point variables), YY is the type
of the matrix, ZZ(Z) is the name of the problem or method, and YY is the type of a
matrix, e.g. in DGESVX - D is a prefix menaing double precision, GE is GEneral type -
any full matrix, SVX means solving linear system - a ’for expert’ routine.

There are the same four precisions prefixes in LAPACK, same as in BLAS, see above.

The function are divided into 3 classes:

• driver routines: solving major computational problems of linear algebra, e.g com-
puting eigenvalue, solving a linear system etc
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• computational routines: computing the main computational tasks, e.g. LU
decomposition of a matrix, which can be calld by a driver routine solving a linear
system of equations. In general an user or specially a developer may need them to
wite a driver type routine. A driver routine call usually a sequence of computational
routines.

• auxiliary routines: BLAS extensions, routines performing block operations, some
low level computations like e.g. scaling of a matrix etc

We have the following types of matrices (YY in the name of a function)

• BD bidiagonal

• DI diagonal

• GB general band

• GE general (i.e., unsymmetric, in some cases rectangular)

• GG general matrices, generalized problem (i.e., a pair of general matrices)

• GT general tridiagonal

• HB (complex) Hermitian band

• HE (complex) Hermitian

• HG upper Hessenberg matrix, generalized problem (i.e a Hessenberg and a trian-
gular matrix)

• HP (complex) Hermitian, packed storage

• HS upper Hessenberg

• OP (real) orthogonal, packed storage

• OR (real) orthogonal

• PB symmetric or Hermitian positive definite band

• PO symmetric or Hermitian positive definite

• PP symmetric or Hermitian positive definite, packed storage

• PT symmetric or Hermitian positive definite tridiagonal

• SB (real) symmetric band
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• SP symmetric, packed storage

• ST (real) symmetric tridiagonal

• SY symmetric

• TB triangular band

• TG triangular matrices, generalized problem (i.e., a pair of triangular matrices)

• TP triangular, packed storage

• TR triangular (or in some cases quasi-triangular)

• TZ trapezoidal

• UN (complex) unitary

• UP (complex) unitary, packed storage

Next we present main computational problems which are solved by LAPACK routines:

• solving linear equations: a simple driver i.e. ending with SV and expert drivers
ending with SVX, e.g.:

– : xGESV -solving general matrices linear system

– : xGESVX which can also solve ATX = B or AHX = B, check for near
singularity, estimate of the pivot growth, estimate for the condition number
of the matrix, refine the solution, estimate forward or backward errors etc

• Linear Least Square (LLS) Problem - xGELSX, xGELSY, xGELSS, and xGELSD,
solve LLSP, even if it happens that A is rank-deficient; xGELSX and xGELSY are
based on a complete orthogonal factorization of A, xGELSS and xGELSD utilize
the singular value decomposition (SVD) of A, but xGELSD uses SVD computed
by an algorithm which is divide and conquer.

– xGELSX -retained for compability with older LAPACK versions

– xGELSY faster than xGELSX but requires more workspace - it calls a block
algorithm to perform the orthogonal factorization.

– xGELSD is faster than xGELSS but may require a tiny bit larger workspace

• Generalized Linear Least Squares (LSE and GLM) Problems
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– linear equality-constrained least squares problem (LSE) is a problem to find:

arg min
x
‖Ax− f‖2 subject to Bx = d

If A is m × n and B is p × n matrix, with p ≤ n ≤ m + p then the problem
has a unique solution under the assumption that B has a full row rank, and(

A
B

)
has full column rank n. Then, the routine xGGLSE finds the solution using
the generalized RG (GRQ) factorization.

– A general (Gauss-Markov) liner model problem (GLM) is the second type of
generalized linear lest square problem. We want to find y and x

arg min
x
‖y‖2 subject to d = Ax+By

where A is an n×m matrix, B is an n× p matrix, with m ≤ n ≤ m+ p. The
problem has unique solutions x and y if A has full column rank m, and the
matrix (

A B
)

has full row rank n. The routine xGGGLM finds the solutions using the
generalized QR (GQR) factorization.

• Symmetric eigenvalue problem (SEP) -matrix is symmetric (if real) or hermitian (if
complex)

– A simple driver (name ending -EV) computes all eigenvalues and as an option
eigenvectors, e.g. SSYEV, CHEEV, DSYEV, ZHEEV.

– AN expert driver (nam ending -EVX) solves the same problem, but can also
compute a selected cluster of the eigenvalues (and optionally eigenvectors)
and is much faster then, e.g. DSYEVX. -A divide-and-conquer driver (name
ending -EVD) works as a simple driver but is much faster for larger matrices
than the simple one but requires larger workspace. The name comes from the
algorithm, e.g. DSYEVD.
-A relatively robust representation (RRR) driver (name ends as -EVR) com-
putes all or a subset of eigenvalues (optionally eigenvectors) and it is usually
the fastes algorithm of all and uses the smallest workspace, e.g. DSYEVR.

• Nonsymmetric Eigenproblems (NEP) - the matrix can be nonsymmetric or non-
hermitian (if complex). In this case if A the matrix is real then it may have a
conjugate complex pair of eigenvalues. The problem may be solved by the Schur
factorization:

A = QUQT
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where Q is an orthogonal matrix, U is an upper quasi-triangular matrix with 1× 1
and 2 × 2 diagonal blocks (in case of all real eigenvalues the matrix is real upper
triangular). If A complex

A = QUQH

where Q is a unitary matrix QHQ = I, and U is a complex upper triangular. The
columns of Q are the Schur vectors of A.

– A simple driver xGEES computes all or part of the Schur factorization of A,
optionally the eigenvalues are ordered.

– An expert driver xGEESX which can also additionally compute condition num-
bers for the average of some selected eigenvalues and the corresponding invari-
ant subspace.

– A simple driver xGEEV computes all eigenvalues and optionally right or left
eigenvectors.

– An expert driver xGEEVX can additionally balance the matrix in order to
improve the conditioning of the eigenapairs, it also computes the condition
numbers of the eigenvalues and left or right eigenvectors.

• Singular Value Decomposition (SVD)

SVD of any matrix A is given as

A = QΣV T

where Q, V orthogonal matrices, Σ non-negative diagonal one, or

A = QΣV H

if A complex, then Q, V unitary.

– xGESVD a simple driver computes all singular values -diagonal of the diagonal
matrix Σand optionally left (columns of Q) or right (columns of V ) singular
vectors (SVD: A = QΣV T or AV = QΣ or ATQ = V Σ)

– xGESDD a divide-and-conquer driver computes the same result as the sim-
ple driver but is much faster for large matrices but utilizes larger workspace.
Underlying algorithm is a divide-and-conquer one.

• Generalized Eigenvalue and Singular Value Problems

– Generalized Symmetric Definite Eigenproblems (GSEP), we want to compute:

1. Ax = λBx

2. ABz = λz

3. BAz = λz,
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A,B are symmetric or Hermitian and B is positive definite. Simple Drivers
e.g. xSYGV (real), xHEGV (complex).

– Generalized Nonsymmetric Eigenproblems (GNEP), e.g. simple drivers xGGES,
(Schur factorization) or xGGEV for eigenvalues/eigenvectors.

– Generalized Singular Value Decomposition (GSVD), e.g. a driver xGGSVD.

As a data we have here two matrices A and B and we want to find generalized
eigenpairs: A~v = λB~v in GSEP or GNEP or a pair of factorizations in case of
GSVD.

5.2.3 Other numerical libraries

We just list the names of some libraries:

• eigenvalue problem for sparse matrices: ARPACK

• ode solving libraries: e.g. lsode lib, cvode, odeint etc

• nonlinear solvers e.g. kinsol, minpack, petsc etc

• sparse numerical linear algebra packages; sparse direct solver e.g. umfpack, sparse,

• iterative linear solvers e.g. Petsc (actually just a part of PETSC contains linear
iterative solvers and preconditioners), hypre etc

• PDEs - PETSC - Portable, Extensible Toolkit for Scientific Computation (PETSc),
is a suite of data structures and routines for the scalable (parallel) solution of
scientific applications modeled by partial differential equations.

• general numerical libs NAG (many languages in particular C,Fortran,C++) , GNU
scientific library, Harwell Subroutine Library (fortran) etc

• FFTW- (FFT in the West) fast fourier and related transforms c©

• QUADPACK- numerical integration in one dimension (octave use it in the function
quad())

• Intel MKL, Intel Math Kernel Library (in C), a library of optimized math routines
for science, engineering, and financial applications, written in C/C++ and Fortran.
Core math functions include BLAS, LAPACK, ScaLAPACK, sparse solvers, fast
Fourier transforms, and vector math.
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6 Solving boundary value problems in 1D

We will consider a model linear boundary value problem:

−u′′ + d(t)u′ + c(t)u = f(t) t ∈ (a, b) (1)
u(a) = α, (2)
u(b) = β. (3)

The first equation is a linear 2nd order scalar equation, and two next two lines are
Dirichlet boundary conditions.

This problem may have no solutions, i.e. the ODE always have a so called general
solution, the Initial Value Problem (IVP) :

−u′′ + d(t)u′ + c(t)u = f(t) t ∈ (a, b) (4)
u(a) = α, (5)
u′(a) = ν. (6)

also has a unique solution.

THe simples example is:

−u′′ − u = 0 t ∈ (a, b) (7)
u(0) = 1, (8)
u(π) = 0. (9)

The general solution of this ODE:

ug(t) = γ1 sin(x) + γ2 cos(x)

thus we see that the boundary values give us two equations ug(0) = γ1 = 1 and ug(π) =
−γ1 = 0 which cannot be satisfied. Even if there is a solution it canno be unique e.g. if
α = −β = 1 since u(t) = cos(t) + γ2 sin(t) for any γ2.

Try to find values of d, c, a, b (Assuming that d(t), c(t) are constant) such that

−u′′ + du′ + cu = 0 t ∈ (a, b) (10)
u(a) = α, (11)
u(b) = β. (12)

has a unique solution for any α, β.
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6.1 Shooting method

If there is a unique solution od BVP, then this solution solves Initial Value Problem (IVP)
with the same ODE but with the following initial values:

−u′′ + d(t)u′ + c(t)u = f(t) t ∈ (a, b) (13)
u(a) = α, (14)
u′(a) = s0 (15)

The shooting method more or less is based on finding such s0 that the solution of
IVP with s0: u(t, s0) solves the BVP.

How to do it...

In linear case it is simple just solve IVP for two different s, e.g. s1 = 0 and s2 = 1
getting u(t, s1) and u(t, s2), in particular we get u(b, 0) and u(b, 1) then the solution is of
the form: (all of such IVP - theory of ODE)

u(t, s) = u0(t) + s ∗ u1(s) (16)

Then substituting at t = b we get

u(b, 0) = u0(b) u(b, 1) = u0(b) + u1(b)

i.e.
u1(b) = u(b, 1)− u(b, 0).

Now we get s0 solving a liner scalar equation:

β = u(b, s0) = u0(b) + s0 ∗ u1(b)

getting
s0 = (be− u1(b))/u1(b) = (β − u(b, 0))/(u(b, 1)− u(b, 0)).

Naturally, u(b, 0) and u(b, 1) are computed by some numerical approximated scheme. In
case of the the coefficients d(t), c(t) which are not constant we may not know if there is
a unique solution, but (16) is true. Thus if computed u1(b) = u(b, 1)− u(b, 0) is non-zero
we know that there is a unique s0 such that IVP with that s0 solves our BVP, thus we
can practically check if we have a unique solution. Since in practise we cannot usually
get exact values but approximations. Thus in practise we compute an approximation of
u1b(b) as above, and the if this value is above some level (depending on the fl accuracy
and our ODE solver accuracy) we may assume that there is an unique solution, otherwise
even if our approximation is nonzero and formally we can compute s0 we cannot be sure
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if the real solution exits... If we write code then we may issue a worning to the output
e.g. show a warning on a display.

In a more complicated nonlinear case e.g.

u′′ = F (t, u, u′) t ∈ (a, b) (17)
u(a) = α, (18)
u(b) = β. (19)

we may do the same, namely, pose an IVP for the same ODE, same left boundary value
(we could also use the right one and integrate the ODE backward...) and try to find the
right initial value of the derivative:

u′′ = F (t, u, u′) t ∈ (a, b) (20)
u(a) = α, (21)
u′(a) = s. (22)

That is find s0 such that the solution of this IVP with u′(a) = s0 solves our BVP.

How to find numerically this s0?

Again refering to general theory of ODEs we know that the solution of IVP: u(t; b) is
as smooth as the function F . So really we want to solve a nonlinear univariate equation:

g(s) := u(b; s) = β.

If F is C1 smooth then g is also C1 function and we can apply any nonlinear solver e.g.
the Newton method, or a bisection method if we find two s1, s2 such that g(s1)∗g(s2) < 0.

Note that (20) may be multidimensional, i.e. u(t) ∈ Rm and then we get a system
of nonlinear equations g(s) = β ∈ Rm, and we have apply a nonlinear solver for multi-
dimensional nonlinear system of equations, i.e .in practise we apply some ODE solver in
order to compute g(s) for any s. If we want to use the Newton or similar method we
have to know how to compute the value (or its aproximation) of ∂g

∂s
. Again to do it we
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may apply an ODE solver (or ratehr IVP solver) to

u′′ = F (t, u, u′) t ∈ (a, b) (23)
∂u

∂s

′′
=

∂F

∂u
(t, u, u′)

∂u

∂s
+
∂F

∂u′
(t, u, u′)

∂u′

∂s
t ∈ (a, b) (24)

u(a) = α, (25)
u′(a) = s (26)
∂u

∂s
= 0 (27)

∂u

∂s

′
= Id (28)

(29)

Note, that this ODE system is m + m ∗m dimensional... however is linear with respect
to ∂u

∂s
. Instead of the standard Newton method we may use its version wit hthe Jacobian

approximated by finite differences or some other nonlinear solver. Whatever method we
use we always have to compute the solutions of IVP for iterations in s we are sometimes
called "shoots", the name of the method comes form this.

It may also happen that the boundary values conditions are nonlinear e.g.:

u′′ = F (t, u, u′) t ∈ (a, b) (30)
u(a) = α, (31)

f(u(b)) = 0. (32)

for some nonlinear function f : D ⊂ Rm → Rm. Then our nonlinear equation or system
of equations is just:

g(s) := f(u(b; s)) = 0,

it is nonlinear even if the ODE is linear.

6.2 Finite Difference Method (FDM) in 1D

We want again to solve a model linear problem:

−u′′ + cu = f t ∈ (a, b), (33)
u(a) = α, (34)
u(b) = β. (35)

where c(x) is nonengaive continuous function.
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The second derivative may be approximated by three point finite difference:

∂∂u(x) = ∂∂u(x) =
u(x− h)− 2u(x) + u(x+ h)

h2
≈ u′′(x)

which is the composition of the forward difference

∂hu(x) =
u(x+ h)− u(x)

h
≈ u′(x),

and the backward difference:

∂hu(x) =
u(x)− u(x− h)

h
≈ u′(x).

If u sufficiently smooth we have that:

∂∂u(x) = ∂∂u(x) =
u(x− h)− 2u(x) + u(x+ h)

h2
= u′′(x) +O(h2).

In finite difference method we have to introduce a mesh in [a, b], the simplest here is
the equidistantly spaced one:

xhk = a+ b ∗ h k = 0, . . . , N h =
b− a
N

.

Then we pose our discrete problem on the interior mesh points replacing the derivative
by its finite difference approximation and getting the following discrete problem: find
uh : {xhk}Nk=0 → R

uh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h2
+ c(xk)uh(xk) = f(xk) k = 1, . . . , N − 1

uh(xN) = β

If we introduce a simpler notations:

uk := uhk := uh(xk) k = 0, . . . , N, F0 = α, Fk := f(xk), k = 1, . . . , N − 1, FN = β,

we get the following system:

u0 = F0 = α,
−uk−1 + 2uk − uk+1

h2
+ c(xk)uk = Fk k = 1, . . . , N − 1, (36)

uN = FN = β.
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The 1st and the last equations define u0 = α, uN = β so we can reduce the system into:

2u1 − u2
h2

+ c(x1)u1 = F1 +
α

h2
,

−uk−1 + 2uk − uk+1

h2
+ c(xk)uk = Fk k = 2, . . . , N − 2,

−uN−2 + 2uN−1
h2

+ c(uN−1)uN−1 = FN−1 +
β

h2
.

This is a system of the form: (
1

h2
A+ C

)
û = F̂

where

A =


2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

 , C =


c(x1)

c(x2)
. . .

c(xN−2)
c(xN−1)

 ,

i.e. A is tridiagonal symmetric matrix of constant diagonals (having two on the main
one, and minus one on the super-diagonal and sub-diagonal), C is a diagonal matrix,
which has the main diagonal vector equal to (c(x1), c(x2), . . . , c(xN−1))

T , and

F̂ =


F1 + α

h2

F2

. . .
FN−2

FN−1 + β
h2

 , û =


u1
u2
. . .
uN−2
uN−1


i.e the vector û is our discrete solution restricted to interior mesh points.

We can also solve the original whole system (36) which is also a tridiagonal linear
system.

Both systems can solved by a direct solver for banded systems e.g. the version of
LU factorization (Gauss elimination) in O(N) operations. In octave we should define the
matrix of the system in sparse format and just apply backslash u=B\F, where B is the
matrix of the system and F the rhs, then octave will use its sparse direct solver.

If we plug in the solutions into the scheme we get (please, recall−u′′(xk)+c(xk)u(xk) =
f(xk) for xk ∈ (a, b))
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|u(x0)− α| = 0,∣∣∣∣−u(xk − h) + 2uh(xk)− u(xk + h)

h2
+ cu(xk)− f(xk)

∣∣∣∣ = O(h2) k = 1, . . . , N − 1,

|u(xN)− β| = 0.

Taking maximum over all we get the so called local truncation error which is like O(h2),
and we can say (not defining it precisely) that the scheme is of the second order.

We will not discuss the convergence theory of the FDM method, it is enough if you
know that

max
k
|u(xhk)− uhk| = O(h2)

as long as the u the solution of the original BVP is smooth enough. We say that the
convergence in the discrete maximum norm is of the second order.

6.2.1 Neumann and Robin boundary condition in 1D

. We want again to solve a model linear problem but with different boundary condition:

−u′′ + cu = f t ∈ (a, b), (37)
u(a) = α, (38)
u′(b) = β (Neumann). (39)

where c(x) is nonengaive continuous function or

−u′′ + cu = f t ∈ (a, b), (40)
u(a) = α, (41)

u′(b) + d ∗ u(b) = β (Robin). (42)

We will focus on the Neumann condition, then in any FDM scheme we have to approx-
imate somehow the derivative at b by finite differences defined by the values of the FDM
discrete function at the mesh point. In our example it is natural to use the backward
difference on two last mesh points:

∂uh(xN) = β.

44



so we get the following FDM scheme: find uh : {xhk}Nk=0 → R

uh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h2
+ c(xk)uh(xk) = f(xk) k = 1, . . . , N − 1

∂uh(xN) = β

Everything looks fine, but it is only first order scheme, if we substitute the solution to
the scheme and shift everything to the left side we get O(h) in the last equation since:

∂u(x)− u′(x) = O(h).

The queston arises if we can change the FDM scheme in order t o preserve the 2nd
order of it?

The answer is YES and there are different methods, namely:

1. Adding a ghostpoint at the right end. If we assume that our equation can or
precisely the coefficients function are continuous up to the right end b and u can be
extended smoothly outside the interval we can add a ghostpoint: xN+1 = b+h and
replacing the backward diffirence at b by the central one what gives us a different
FDM scheme last equation:

uN+1 − uN−1
2h

= β.

Naturally, then we get an extra unknown - the value of uh at the ghostpoint uN+1

so we need an extra FDM scheme equation: we approximate

−u′′ + c(b)u(b) = f(b)

by the 3 point stencil getting:

−uh(xN − h) + 2uh(xN)− uh(xN + h)

h2
+ c(xN)uh(xN) = f(xN)

Finally givig us the following FDM scheme:

uh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h2
+ c(xk)uh(xk) = f(xk) k = 1, . . . , N

uN+1 − uN−1
2h

= β.

This a 2nd order scheme.
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2. Using the differential equation at b UNder same assumption as in the previous item,
i.e .that u, f, c can be exended right we note that if we substitute the solution to
the backward difference (the lst FDM equaion) we get that

∂u(b)− u′(b) = −0.5u′′(b)h+O(h2).

But using the differential equation wehave that:

−u′′(b) = f(b)− c(b)u(b)

Substituting this to the previous eqution we get:

∂u(b)− u′(b) = 0.5h(f(b)− c(b)u(b)) +O(h2).

so
∂u(b)− β − 0.5h(f(b)− c(b)u(b)) = O(h2).

Using this we note that if we replace the backward difference from ourt scheme by
the following FDM equation:

∂uh(b)− β − 0.5h(f(b)− c(b)uh(b)) = 0

or
∂uh(b)− 0.5hc(b)uh(b) = beta+ 0.5hf(b)

we get a second order scheme:

uh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h2
+ c(xk)uh(xk) = f(xk) k = 1, . . . , N − 1

∂uh(b) + 0.5hc(b)uh(b) = β + 0.5hf(b).

3. The last the simplest approach is to approximate the derivative at b on the 3
point stencil b− 2h, b− h, b by a 2nd order finite difference getting a FDM scheme.
Thus only one the last equation in the FDM scheme is changed without any extra
assumptions. The details are left for a reader.

6.2.2 The pure Neumann condition

In case we have the following BVP:

−u′′ = f t ∈ (a, b), (43)
−u′(a) = α, (Neumann) (44)
u′(b) = β (Neumann). (45)
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The solution exists if the following compability condition α+
∫ b
a
fdx+ β = 0 is satisfied,

but we have no uniqueness - it is obvious for any solution u we see that u + c is also a
solution with c any constant. (f, α and β also must satisfy special conditions to get a
solution at all).

Consider then FDM scheme (for simplicity with low order approximation)

∂huh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h2
= f(xk) k = 1, . . . , N − 1

∂huh(b) = β.

which can be rescaled into:

∂huh(x0) = α

−uh(xk − h) + 2uh(xk)− uh(xk + h)

h
= h ∗ f(xk) k = 1, . . . , N − 1

∂huh(b) = β.

and then rewritten into the linear system:

A~u = ~F

with A = AT - one can also show (not straightforward - a problem) that A ≥ 0. We know
the kernel of A, namely, Ker(A) = Span(~1) with ~1 the constant vector with value one.
(Problem: show that kernel has indeed the dimension equal to one). Thus we represent
each vector as: ~u = u0~1 + (0, u1 − u0, . . . , uN − u0). Considering our system in a new
basis: (~1, ~e1, . . . , ~eN) i.e. representing ~u = C~v and multiplying the system by CT we get
that

CTACv = CT ~F =: ~G

and the matrix in a block form:

CTAC =

(
0 0
0 A(1 : N, 1 : N)

)
If G0 = 0 i.e. ~1TF = α + h

∑N−1
k=1 f(xk) + β = 0, the system has a solution unique

up to the value v0 whichcan be defined arbitrarily. Note that the term h
∑N−1

k=1 f(xk)

approximates (not too well)
∫ b
a
f(x)dx so our discrete compability condition is a kind of

approximation of the original one for the BVP. Please, recall that this FDM scheme of
the very low order, so this approximation is very weak.

Then the new problem has a unique solution for its unknown no: 1, . . . , N - the
solution of the following linear system:

A(1 : N, 1 : N)

v1
...
vN

 =

G1
...
GN

 . (46)
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The matrix of the system A(1 : N, 1 : N) as a minor - a submatrix of A is symmetric,
tridiagonal and non-negative definite, and it can be shown that also positive definite (a
problem) so ti can be solved by a proper version of Cholesky decomposition method with
the cost O(N).

• We check if G0 = ~1TF = α + h
∑N−1

k=1 f(xk) + β = 0, if not there is no discrete
solution.

• we solve the system: (46) getting (v1, . . . , vN)T . The value v0 can be assigned
arbitrarily, the simplest is to take v0 = 0

• The solution ~u = C~v = v0~1 + (0, v1, . . . , vN)T

6.3 Finite Element Method (FEM) in 1D

Another discretization method for BVP - FInite Element Metho.

6.3.1 BVP in a variational formulation

We consider the same problem:

− u′′ + c(x)u = f(x) ∈ (a, b) (47)

and Dirichlet zero boundary conditions:

u(a) = u(b) = 0 (48)

c nonnegative function Weak formulation: We reformulated the problem is so called
weak or variational formulation, namely we take a function v such that v(a)=v(b)=0 and
multiply the equation then integrate and use integration y parts formulas: find u ∈ V
s.t. (details in the script notes soon):∫ b

a

u′v′ + cuvdx =

∫ b

a

fvdx ∀v ∈ V. (49)

V is a sufficiently large space of functions which are zero at a and b (e.g. think about
piecewise C1 functions) Mesh: Then to get a discrete problem we introduce: mesh (not
necessarily equidistant):

a = x0 < x1 < ... < xN = b, h = max
k
|xk − xk+1| (50)
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6.3.2 Discrete linear FEM space

We introduce a linear discrete FEM space:

Vh = {u ∈ C([a, b]) : u linear on [xk, xk+1, u(a) = u(b) = 0} (51)

and replace the original weak formulation of BVP with the discrete one: Discrete FEM
problem: find uh ∈ Vh s.t.∫ b

a

u′hv
′ + cuhvdx =

∫ b

a

fvdx ∀v ∈ Vh (52)

i.e. we replace the original functional space V by Vh (which in the simplest case is a
subspace of V ) and naturally we get a different discrete solution uh. Nodal basis of Vh:
In our case we introduce a natural so called nodal basis:

(gk)
N−1
k=1 (53)

of functions in Vh s.t.

gk(xl) = 1 k = l, or gk(xl) = 0 k 6= l (54)

Then we can represent uh =
∑

k ykgk and if we substitute it into the discrete variational
equation and gl for the test function v we get:∫ b

a

∑
k

(ykg
′
kg
′
l + cgkgl)dx =

∫ b

a

fgldx ∀ l = 1, . . . , N − 1 (55)

getting a linear systems
A~y = ~F (56)

with a symmetric, tridiagonal (why?), positive definite matrix

A = (

∫ b

a

g′lg
′
k + c(x)glgkdx)N−1l,k=1 (57)

(Problem - compute its nonzero entries), sough after vector of entries of uh, the rhs vector:

~F = (

∫ b

a

fgldx)N−1l=1

- naturally the integrals are computed in an approximated numerical way... Note that
(problem) in case of equidistant points: xk = a + k ∗ h with h = (b − a)/N we get that
A is tridiagonal with constant diagonals: 2/h on the main diagonal and −1/h on super-
and -sub diagonals.. i.e we get the same matrix only scaled by h if we compare our FEM
system with the standard FDM one.. (3 point stencil)
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6.3.3 Right hand side of the system - integration

How to approximate integrals ∫ b

a

fgkdx

- the simplest is to take a quadrature rule which use only the nodal points: (xk)k i.e. the
trapezoidal rule seems the most reasonable. The trapezoidal quadrature on [c, d]:∫ d

c

fdx ≈ 0.5(d− c)(f(c) + f(d)) (58)

The trapezoidal rule for mesh a = x0 < . . . < xN = b: we apply the trapezoidal rule on
each subinterval: [xk−1, xk]:∫ b

a

gdx ≈
N∑
k=1

0.5(g(xk−1) + g(xk))(xk − xk−1) (59)

In our case we have that: (fgk)(xl) is nonzero only for l = k:∫ b

a

fgkdx =

∫ xk+1

xk−1

fgkdx ≈ 0.5f(xk) ∗ |xk+1 − xk−1| (60)

if we have equaidistant mesh: |xk+1 − xk−1| = 2 ∗ h and we get that∫ b

a

fgkdx ≈ f(xk) ∗ h (61)

i.e. we get that the linear FEM system for equidistant mesh with the RHS vector approx-
imated by the trapezoidal rule is the same as the system obtained by the FDM 3point
stencil approximation of the same problem, anyway FEM is much more flexible and with
well developed convergence theory, FDM can be usually considered as a special version
of FEM (after using quadratures etc)

6.3.4 Neumann boundary condition at the right end

We consider another type of mixed boundary condtions, namely, a boundary value prob-
lem:

− u′′ + c(x)u = f(x) ∈ (a, b) (62)

and left Dirichlet zero boundary condition:

u(a) = 0 (63)
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and a right Neumann one:
u′(b) = β (64)

We then consider a new space Vl with functions being zero at the left end (Dirichlet bnd
condition - in general in FEM- Dirichlet conditions go into the definition of the space)
and the weak formulation (again integrating by parts):

u ∈ Vl
∫ b

a

u′v′ + cuvdx =

∫ b

a

fvdx+ u′(b)v(b) ∀v ∈ Vl (65)

New linear FEM space (functions that are zero at the left end only):

Vh,l = {u ∈ C([a, b]) : u(a) = 0, u linear on [xk, xk+1]} (66)

and variational problem:

u ∈ Vh,l
∫ b

a

u′hv
′ + cuhvdx =

∫ b

a

fvdx+ β ∗ v(b) ∀v ∈ Vh,l (67)

Nodal basis (gk)k=1,...,N (one more extra nodal function related to the end b.) and we get
the system

Al ∗ ~U = ~Fl (68)

Al has an extra row and column (but is still symmetric and positive definite and tridiag-
onal - problem) Fl has also an extra entry i.e ~F T

l = (~F T ;Fl(N)) the last one namely:

Fl(N) =

∫ b

a

fgNdx+ β ∗ gN(b)

which can be approximated (integral by trapezoidal rule on [xN−1, xN ]) as

0.5f(b)(xN − xN−1) + β

in case of equidistant mesh:
0.5 ∗ f(b)h+ β

- we get that this equation (the whole one not just the rhs..) is equivalent to the FDM
approximation equation of Neumann condition by the backward difference + correction
by utilizing the ODE equation at b. Thus in FEM we get straightforwardly a good
approximation of the Neumann type conditions.

6.3.5 Other classical FEM spaces

We can get a higher order approximations of both problems by just exchanging discrete
spaces, e.g. for zero Dirichlet boundary conditions we can take a space of continuous
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piecewise quadratic functions which are zero at the ends getting classical quadratic FEM
space and then method... The unknowns are usually taken as the values at the nodes
and at the midpoints. The order of convergence is higher than the one of the linear
FEM in an appropriate norm if the solution is smooth enough. Naturally we have to
use a quadrature rule which utilizes all respective nodal points, i.e. the nodes xk and
midpoints 0.5(xk + xk+1). The most natural seems the composite Simpson rule.
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