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 CLASSROOM NOTES

 EDITED BY JACK W. MACKI

 This section contains brief notes which are essentially self-contained applications of mathematics that can
 be lused in the classroom. New applications are preferred, but examplary applications not well known or readily
 available are accepted.

 Both "modern " and "classical " applications are welcome, especially modern applications to current real world
 problems.

 Notes should be suibmitted to Jack W Macki, Department of Mathematics, University of Alberta, Edmonton,
 Alberta, Canada T6G 2G 1.

 A MOTIVATIONAL EXAMPLE FOR THE NUMERICAL SOLUTION

 OF TWO-POINT BOUNDARY-VALUE PROBLEMS*

 STEPHEN M. ALESSANDRINIt

 Abstract. This paper presents an example of a two-point boundary-value problem which can be used to motivate
 the study of numerical techniques for solving such problems by undergraduates. The problem is referred to as
 the putting problem and illustrates the shooting method for two-point boundary-value problems. The differential
 equations are developed and numerical results are given.

 Key words. shooting method, two-point boundary-value problem, golf, putting problem

 AMS subject classifications. 65L 10, 34B 15

 1. Introduction. Many times in a course in numerical analysis, numerical methods are
 introduced without any real world application for the technique. Usually an equation is given
 and we are asked to solve it not knowing what the equation represents. This leaves students
 with the feeling that they must memorize the material of the course so that they can fulfill a
 requirement. The best way to teach a course in numerical analysis is to motivate each technique
 by using a real world example which produces the type of problem to which the numerical
 method can be applied. This approach is sometimes difficult since many good examples
 require a background in mathematics and physics that is too advanced for undergraduates.
 The following example has been used to motivate the study of the numerical solution of two-
 point boundary-value problems and, in particular, is a very good way to visualize the shooting
 method for such problems. In addition, the example only requires a basic understanding of
 physics, differential equations, and calculus with which the student should already be familiar
 by the time a course in numerical analysis is taken.

 2. The example. This problem will be referred to as the putting problem. It is presented
 in the follow manner.

 Suppose that Arnold Palmer is on the 18th green at Pebble Beach. He needs to sink this
 putt to beat Jack Nicklaus and walk away with the $1,000,000 grand prize. What should he
 do? Solve a BVP! By modeling the surface of the green, Arnie sets up the equations of motion
 of his golf ball. Letting x(t) be the position of the ball at time t, he gets the BVP

 x = F(t, x, x), x(0) = 0, x(T) = XH,

 *Received by the editors September 16, 1992; accepted for publication July 19, 1994.
 tLockheed Martin Corporation, Moorestown, New Jersey 08057 (salessan@motown. ge. com).
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 424 CLASSROOM NOTES

 where T is unknown, the initial position of the ball is at the origin, and XH is the position of the
 hole relative to the origin. Solving this BVP, Arnie finds out how hard and in what direction
 to putt the ball. Of course, he can solve it in his head; we need a computer!

 3. The mathematical model. At this point we need to formulate F(t, x, x). It is sufficient
 for our purpose to assume that the ball is a point mass with mass m. Let

 mx =fG +fN +fF, x(0) = O, x(T) = XH,

 wherefG is the force due to gravity,fN is the normal force, andfF is the frictional force. The
 gravitational force is given byfG = -mg k, where g is the acceleration due to gravity and k =
 (0,0,1), the unit vector in the X3, or vertical, direction. The normal force is in the direction of
 the unit outward surface normal n and is the projection of -fG onto n. Thus,fN = m g (n *k) n.

 Assuming the surface is given explicitly as X3 = S(xl, x2) such that S(O, 0) = 0, we have

 N I as as
 n= IINII' where N= -a ,- ,1).

 Therefore,

 n k=n3= N and fN=mgn3n.
 IINII

 The frictional force is in the direction opposite the velocity of the ball x and its magnitude is

 IfF II = ILK IIfN I1, where tK is the kinetic coefficient offriction. Thus,

 fF = -IKlIfNII 1

 Combining all of these forces and noting that the mass of the ball m can be eliminated, we
 have

 x = F(t,x,x) = -gk+gn3n-uKgn3-.

 This second-order system can now be transformed into a first-order system in the usual
 way [4]. Letting Yi = XI, Y2 = X2, y3 = x3, y4 = x, y5 = -x2, and Y6 = X3, we get the
 first-order system y = G(t, y), where

 G(t, Y) = (Y4, Y5, Y6, gn I n3 - itA n, -, gn2 n3 - A K 5 3 ,gn3 n3 -,UAKg 3 Y6_g

 and s = iy + y5 + y6 is the speed of the ball.

 This BVP is an example of afree boundary-value problem since the final time T must also
 be determined [3], [4]. To handle this, we let y7 = T, V7 = 0, and define a new independent
 variable r by setting t = Ty7 for 0 < r < 1. Thus,

 dt dy dy _dy di
 d = T = y7 and dY = G(t, y) becomes - - = G(T,Y)Y7. dr y ad dt dtr dt dT

 We then get a new system of seven first-order differential equations which requires another
 boundary condition. For simplicity, we choose to force the ball to have zero speed at the final
 time T; that is, lli(T) 11 = 0.

 Remarks. The boundary condition x(T) = XH is somewhat artificial. In reality the hole
 is not a point but is a circle of radius RH. Thus, a more appropriate test is llx(T) -XH 11 < RH.
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 CLASSROOM NOTES 425

 The boundary condition lli(T) 11 = 0 is also not realistic. We should actually test ILix(T) 11 < ST,
 where ST is the maximum final speed. See [2] for more details. In this simple model, we are

 not modeling the possibility of the ball leaving the surface of the green when rolling over a

 steep hill. In this case, the ball becomes a projectile with fF = fN = 0 and we must also

 model the bouncing of the ball as it falls and collides with the green.

 4. Numerical results. We now present numerical results of three examples based on a

 C implementation of the above model using the shooting method as described in [3]. All

 floating point computations where performed using the double type. For completeness,

 we briefly summarize the shooting method for nonlinear problems. Given the n-dimensional

 boundary-value problem

 y = G(r, y) for 0 < T < 1, A (y(O)) = yo, B(y(l)) = yl,

 whereyo is a p-vector, A(y) is a p-vector-valued function,y, is a q-vector, B(y) is a q-vector-
 valued function, and p + q = n, we consider the initial-value problem

 y=G(T,y) for 0 < 1r C(y(O))=x,

 where x is a q-vector and C(y) is a q-vector-valued function. We express the solution of such

 a problem as y(r; x). Using this and the above boundary condition at T = 1, we getf(x) =

 B(y(l; x)) - Yi = 0. To evaluate this function we need to integrate the equations of motion
 to r = 1. Thus, we see that the boundary-value problem is reduced to a multidimensional

 root-finding problem. In [3] a multidimensional Newton-Raphson method is employed which

 uses the finite difference approximation

 a fi 1; f (xl e . , exj + Axj , . , Xn )-f (XI, **, Xn )
 axj Axj

 to compute the Jacobian matrix. The initial conditions for our first-order system are y(O) =

 (x(O), x(O), To) = (0, vo, To), where vo is the guess for the initial velocity of the ball and To
 is the initial guess for T, which we take to be one second. The shooting method then tries to

 improve the values for vo and To.
 In all of the following examples values of RH = 0.005 feet, ST = 0.005 feet per second,

 Axj = 10-10, AK = 0.2, and g = 32 feet per second squared have been used to produce
 the data in Tables 4.1-4.3. The Attempt column represents each iteration of the shooting

 method with the first attempt representing the initial guess and the final attempt representing

 the solution. The Speed and Direction are the magnitude and direction of the velocity vector

 at the beginning of each iteration where a direction of zero degrees is shooting directly at the
 hole with positive angles to the left of the hole and negative angles to the right. Finally, the

 Time column is the value of the final time T used for solving the initial-value problem during

 that particular iteration. The hole is positioned at XH = (20, 0, 0) in all examples and all
 distances are in feet.

 Example I (Existence of a unique solution). Here the green is described by the function

 S(x1, x2) = 0, which is a perfectly flat green. Clearly the only solution this green can have is
 to putt directly at the hole. The equations of motion become

 .. K x
 X =-/LKg 1-

 For the initial conditions x(O) = 0, x(O) = xo, we have the solution

 x(t) = t(211xoll - Kgt) with x(t) = ,11-OII -l -Kgt),
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 426 CLASSROOM NOTES

 TABLE 4.1

 Putting problem numerical results. Example 1I

 [Attempt I Speed I Direction | Time
 1 10.00 10.00 1.00

 2 17.80 -6.71 2.65

 3 16.16 -0.69 2.50

 4 16.05 0.00 2.49

 TABLE 4.2

 Putting problem numerical results. Example 2.

 Attempt Speed [ Direction [ Time [ Attempt | Speed I Direction Time
 I 10.00 0.00 1.00 I 10.00 -90.00 1.00
 2 13.83 -21.54 2.45 2 23.58 -2.80 3.04
 3 16.48 -12.15 2.66 3 16.79 -12.43 2.98
 4 16.85 -13.71 3.78 4 17.28 -14.36 4.57
 5 16.57 -13.21 3.51 5 17.36 -14.62 4.76
 6 16.64 -13.35 3.64 _

 TABLE 4.3

 Putting problem numerical results. Example 3.

 a | Speed I Direction Time
 0.0 16.05 0.00 2.49

 0.1 16.35 -15.47 2.95

 0.15 17.19 -26.58 4.08

 0.175 18.50 -35.72 6.02

 0.19 20.81 -45.87 10.53

 0.1925 21.63 -48.69 12.61

 0.195* 22.87 -52.40 16.28

 for O < t < lliO II/(gKg). Solving x(T) = XH = (20,0,0) and IIx(T) II = O forxo and T, we
 get.xo = (16, 0, 0) and T = 2.5. Table 4.1 shows the results of initially putting 10 degrees to
 the left of the hole.

 Example 2 (Nonuniqueness). A green that has a least two solutions is given by

 (xI - 10)2 (x2 - 5)2
 125 125

 which is a paraboloid with a minimum at (10,5). Because the green has a minimum to the
 left of the hole at (20,0,0), one would expect to have a solution with a negative direction. We
 might also expect that there may be multiple solutions, since if we putt slightly more to the
 right with an increase in initial speed, the ball could roll uphill a little more and then roll back
 to the hole. In fact, there are at least two such solutions which are illustrated in Table 4.2. To
 obtain the first, we initially putt directly at the hole and to obtain the second we initially putt

 90 degrees to the right of the hole.
 Example 3 (Nonexistence). A very simple green for which a solution can fail to exist is

 given by S(xI, X2) = axX2, where (x > 0 is the slope of the plane tilted along the xl-axis. We
 have already seen that the case x = 0 has a unique solution. The equations of motion are now

 X= -g (?~ 1 ;a2' 1 +a2) -(1 2)1/2 IIAII

 Since x must lie in the tilted plane, we have X3 = axx2. Now the only way a solution can exist
 with x(T) = 0 is if the frictional force is large enough to overcome the force causing the ball
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 to roll down the plane. Comparing the x2 components of the acceleration, we see that we must
 have

 Ol 'LLKX2 11K
 ot < AV~~~2 -* K as 0-+ .

 + a2 - (1 + 2)/2(*2 + (1 + a2)j2)1/2 1 +Ua2

 From this inequality, we can see that in order for the frictional force to slow the ball down

 in the x2 and X3 directions, we must have ax < ,i K If ax > ,i K then no solution can exist.
 In fact, even if ax < ,UK but is very close to ,aK the numerical solution may not converge.
 Table 4.3 shows the results of slowly increasing the slope from 0 toward 0.2. The inital guess
 for a given ax is the solution of the previous ax. The hole is again at (20,0,0). For a = 0.195
 the initial speed, direction, and T converge after five iterations but the final speed remains
 slightly above the tolerance of 0.005 preventing convergence even after 100 iterations due to
 the finite precision of the computations. For the case ax = 1.0 which has no solution, the
 iteration process diverged before reaching 50 iterations for every initial guess used.

 5. Conclusion. The above simple model has been used successfully in the classroom to
 motivate the study of numerical techniques for solving two-point boundary-value problems
 and for dynamically illustrating the shooting method using computer graphics to display each
 iteration as it is computed. Further study for students could include modeling the sliding (the
 ball most likely slides initially) and rolling motion of the ball, modeling the surface by a more
 realistic function as in [2], modeling the ball leaving the surface and bouncing, and trying
 to determine realistic values for itK. Such a study could be performed by students working
 in groups with each student assigned a specific task. This gives students some experience
 working on a project such as they might do in industry.

 Note. At the time of this writing, the author has become aware of a paper by Lorensen
 and Yamrom [2] where the putting problem is examined for the purpose of visualizing a putt
 using computer graphics. The authors applied the problem to the real world by surveying golf
 greens and replaying putts during golf tournaments to help viewers better understand how
 the golf green topography affects putting. This application reinforces the use of this example
 in the classroom to motivate the shooting method. The same F(t, x, x) is used except that
 the authors model the surface of the green as a mesh of polygons with a surface normal at
 each vertex computed by averaging as in the Gouraud shading technique [1] and compute the
 normal in the interior by averaging the vertex normals to obtain a continuous right-hand side
 to the above differential equations.

 Acknowledgments. The author would like to thank Mike DeFeo, the student who pro-
 duced the numerical and graphics programs used to obtain the above results and demonstrate
 the example to other students. The author would also like to thank the referee for many helpful
 comments.
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