
Ważniejsze twierdzenia, definicje i 
stwierdzenia z wykładu

Analiza Ι.2
M. Krycha

OSTRZEŻENIE!
Ta praca zawiera treści niebiezpieczne dla zdrowia, zwłaszcza przy  długim 

stosowaniu!

Autor nie ponosi żadnej odpowiedzialności za zapisane tu twierdzenia, gdyż  ta 
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Odległość funkcji w zbiorze funkcji całkowalnych
Definicja:  

f x g x dx
a

b

( ) ( )−∫

Długość wykresu krzywej
Długością wykresu nazywamy kres górny długości łamanych wpisanych w wykres

Pole między wykresami „porządnych” funkcji f i g

f x g x dx
a

b

( ) ( )−∫

Twierdzenie o R-całkowalności funkcji nieciągłej
Teza:  

f:[a,b] → ℜ ( ℜn ) jest R-całkowalna ⇔ f jest ograniczona i jej zbiór punktów nieciągłości 
ma miarę 0

Wniosek:  
f R-całkowalna ⇒ f R-całkowalna

Stwierdzenie: 
Kombinacja liniowa dwóch funkcji R-całkowalnych jest R-całkowalna i

( )af bg a f b g
a

b

a

b

a

b

+ = +∫ ∫ ∫
Iloczyn 2 funkcji R-całkowalnych jest R-całkowalny

Twierdzenie o gęstości zbioru funkcji ciągłych w zbiorze funkcji R-całkowalnych
Teza:  

Dla każdej funkcji R-całkowalnej f:[a,b]→ℜ i dla każdego ε>0 istnieje funkcja ciągła g:

[a,b]→ℜ t.ż. f x g x
a

b

( ) ( )−∫ < ε

Stwierdzenie: 

Jeśli f R-całkowalna na [a,b], to funkcja F:[a,b] → ℜ dana wzorem F x f x dx
a

x

( ) ( )= ∫  

jest ciągła, a nawet Lipschitzowska

Twierdzenie   Weierstrassa   o aproksymacji  
Założenia:

f:[a,b]→ℜ ciągła
Teza:

Dla każdego ε > 0 istnieje wielomian w t.ż. ∀ x ∈ [a,b] f(x)-w(x)< ε

Wniosek: 

f:[a,b]→ℜ R-całkowalna ⇒ ∀ε >0 istnieje wielomian w(x) t.ż. f x w x dx
a

b

( ) ( )− <∫ ε

Uwaga: 
Funkcja monotoniczna na przedziale domkniętym ma zbiór punktów nieciągłości miary 0 
i jest ograniczona, czyli jest R-całkowalna

Wniosek: 
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f:[a,b]→ℜ monotoniczna ⇒ ∀ε >0 istnieje wielomian w(x) monotoniczny na [a,b] t.ż. 

f x w x dx
a

b

( ) ( )− <∫ ε

II Twierdzenie o wartości średniej dla całek Riemanna
Założenia:  

f monotoniczna
g całkowalna

Teza:  

istnieje c ∈ [a,b] t.ż. f x g x dx f a g x dx f b g x dx
a

c

a

c

a

b

( ) ( ) ( ) ( ) ( ) ( )= +∫ ∫∫   

Twierdzenie o podstawianiu w całce Riemanna
Założenia:  

g:[a,b]→[A,B]
f:[A,B]→ ℜ
f R-całkowalna
g różniczkowalna, a g’ R-całkowalna

Teza:  

f g x g x dx f y dy
a

b

g a

g b

( ( )) '( ) ( )
( )

( )

=∫ ∫
Stwierdzenie: 

f ≤ g są R-całkowalne, to f x dx g x dx
a

b

a

b

( ) ( )∫ ∫≤  

Stwierdzenie: 

a ≤ b ⇒ f x dx f x dx
a

b

a

b

( ) ( )∫ ∫≤

Stwierdzenie: 
Jeśli f R-całkowalna na przedziale zawierającym a,b,c to 

f x dx f x dx f x dx
a

b

a

c

c

b

( ) ( ) ( )∫ ∫ ∫= +

Stwierdzenie: 

F x f x dx
a

x

( ) ( )= ∫  i f całkowalna na [a,b], to F’(x)=f(x) dla każdego x∈[a,b] w którym f 

jest ciągła. W szczególności jeśli f jest ciągła, to F jest jej funkcją pierwotną
Uwaga: 

Przeciwobraz zbioru miary 0 nie musi być miary 0

Całki niewłaściwe
Całka niewłaściwa

f:[a,b) → ℜ całkowalna na każdym przedziale [a,x], x∈[a,b]. Wtedy jeśli istnieje 

lim ( )
x b

a

x

f t dt
→ ∫ , to granicę tę nazywamy całką niewłaściwą. Jeśli jest ona skończona, to 

mówimy, że jest zbieżna, a f nazywamy całkowalną.

Warunek Cauchy’ego dla całek
Założenia:  

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
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f:[a,b) → ℜ

∀ c ∈[a,b) istnieje całka f x dx
a

c

( )∫  

Teza:  

f x dx
a

c

( )∫  jest zbieżna ⇔ ∀ε>0 ∃cε>0 ∀c1,c2>cε f x dx
c

c

( )
1

2

∫ < ε

Kryterium porównawcze zbieżności całek
Założenia:  

0 ≤ f(x) ≤ g(x) dla x ∈ [a,b)
f,g całkowalne na [a,c] gdzie c<b

Teza:  

1. ze zbieżności g x dx
a

b

( )∫  wynika zbieżność f x dx
a

b

( )∫

2. z rozbieżności  f x dx
a

b

( )∫ wynika rozbieżność  g x dx
a

b

( )∫

Twierdzenie o zbieżności całki bezwzględnie zbieżnej
Założenia:  

f x dx
a

b

( )∫  zbieżna

Teza:  

f x dx
a

b

( )∫  zbieżna

Twierdzenie   Abela-Dirichleta   dla całek  
Założenia:  

f,g są określone na [a,b)

na każdym przedziale [a,c]* istnieją f x dx
a

c

( )∫  i  g x dx
a

c

( )∫
f monotoniczna
zachodzi jeden z warunków:

1. lim ( )
x b
f x

→
= 0  i funkcja c → g x dx

a

c

( )∫  ograniczona

2. g x dx
a

b

( )∫  istnieje i jest skończona, a f ograniczona

Teza:  

f x g x dx
a

b

( ) ( )∫  zbieżna

Kryterium całkowe  (  *)     
Założenia:  

f:[0,∞) → [0,∞)

* Prawdopodobnie c<b
(*) Stosuje się raczej w drugą stronę
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f nierosnąca
Teza: 

f x dx( )
0

∞

∫  zbieżna ⇔ f n
n

( )∑  zbieżny

Stwierdzenie: 
Dla całki niewłaściwej sumy Riemanna nawet przy drobnym podziale mogą być bardzo 
odległe od całki

Szeregi liczbowe
Szeregi
Założenia:  

ak, ak+1,... ciąg
Definicja:  

Szeregiem an
n k=

∞

∑  nazywamy ciąg ak, ak+ak+1,..., an
n k

m

=
∑ .

Jeśli ciąg sum częściowych ma granicę, to nazywamy ją sumą szeregu an∑ .

Jeśli suma szeregu jest skończona, to szereg nazywamy zbieżnym, w przeciwnym 
wypadku rozbieżnym.

Jeśli szereg an∑  jest zbieżny, to mówimy że szereg an∑  jest zbieżny 

bezwzględnie.

Iloczyn Cauchy’ego szeregów
Definicja:  

a bn
n

n
n=

∞

=

∞

∑ ∑















0 0

= a bj k j
j

k

k

n

−
==

∑∑










00

Twierdzenie   Cauchy’ego   dla szeregów  
Teza:    

an∑  zbieżny ⇔ ∀ε>0 ∃nε ∀n≥nε ∀k an+an+1+...+an+k<ε 

Twierdzenie o zbieżności szeregu bezwzględnie zbieżnego
Założenia: 

an∑  zbieżny bezwzględnie

Teza:  

an∑  zbieżny i a an n∑ ∑≤

Twierdzenie o przestawianiu wyrazów ciągu bezwzględnie zbieżnego
Założenia:  

an∑  zbieżny bezwzględnie

Teza:  

suma an∑  nie zmienia się w wyniku zmiany kolejności wyrazów

Stwierdzenie: 
Zmiana kolejności wyrazów szeregu może prowadzić do zmiany sumy, gdy szereg nie 
jest bezwzględnie zbieżny

Twierdzenie Riemanna
Założenia:  

an∑  zbieżny

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
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an∑ = ∞
A ≤ B
A,B ∈ ℜ*

Teza:  

Istnieje permutacja p:N→N t.ż. granicą górną ciągu sum częściowych ap n( )∑  jest B, a 

dolną A

Twierdzenie 
Założenia:  

∀n an ≥ 0
Teza:  

n=

∞

∑
0

an = sup { an
n F∈
∑ : F ∈ N jest podzbiorem skończonym }

Twierdzenie 
Założenia:   

Nj dzielą N(*) 

an∑  zbieżny

Teza:  

an∑ = an
n Nj j∈
∑∑











Twierdzenie Cauchy’ego o iloczynie szeregów
Założenia:  

an∑  zbieżny bezwzględnie

bn∑  zbieżny bezwzględnie

Teza:  

Iloczyn Cauchy’ego jest zbieżny i iloczyn szeregów jest równy a bj n j
j

n

n
−

==

∞

∑∑










00

 

Twierdzenie   Mertensa  
Założenia:  

an∑  zbieżny

bn∑  zbieżny

jeden z nich zbieżny bezwzględnie
Teza:  

Iloczyn Cauchy’ego jest zbieżny i iloczyn szeregów jest równy a bj n j
j

n

n
−

==

∞

∑∑










00

 

Twierdzenie   Cesaro  
Założenia:  

an∑  zbieżny

bn∑  zbieżny

(*) j chyba powinno być zbiorem skończonym
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Sn = a bj k j
j

k

k

n

−
==

∑∑










00

Teza:  

( )lim ...
n

n n
n

n
nn

S S S a b
→ ∞

=

∞

=

∞

+
+ + + =















∑ ∑1

1 0 1
0 0

I Kryterium porównawcze dla szeregów
Założenia:  

∀n 0≤an≤bn 
Teza:  

Jeśli an∑  rozbieżny, to bn∑  rozbieżny

Jeśli bn∑  zbieżny, to an∑  zbieżny

II kryterium porównawcze dla szeregów
Założenia:  

an , bn >0

istnieje lim
a

b
n

n

 i należy do przedziału (0, ∞)

Teza:  

an∑  zbieżny ⇔ bn∑  zbieżny

Kryterium porównawcze
Założenia:  

an , bn >0

∀n 
a

a

b

b
n

n

n

n

+ +≤1 1

Teza:  

Ze zbieżności bn∑  wynika zbieżność an∑  

Z rozbieżności an∑  wynika rozbieżność bn∑  

Kryterium ilorazowe   d’Alemberta  
Założenia: 

∀n an >0
Teza:  

1. limsup
a

a
n

n

+ <1 1 to an∑  zbieżny

2. liminf
a

a
n

n

+ >1 1 to an∑  rozbieżny i 
n→ ∞
lim an = ∞

Kryterium pierwiastkowe   Cauchy’ego  
Założenia:  

∀n an ≥0
Teza:  

1. limsup ann < 1  to an∑  zbieżny

2. limsup ann > 1  to an∑ = ∞ i dla nieskończenie wielu n an >1

Kryterium kondensacyjne
Założenia:  

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
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∀n an ≥0
an nierosnący

Teza:  

an∑  zbieżny ⇔ 2
2

na n∑  zbieżny

Kryterium   Raabego  
Założenia:  

∀n an ≥0
Teza:  

Jeśli lim
n

n

n

n
a

a→ ∞
+

−








1

1 >1 to an∑  zbieżny

Jeśli lim
n

n

n

n
a

a→ ∞
+

−








1

1 <1 to  an∑ =∞ 

Kryterium całkowe
Założenia:  

f:[0,∞) → [0,∞)
f nierosnąca

Teza: 

f x dx( )
0

∞

∫  zbieżna ⇔ f n
n

( )∑  zbieżny

Kryterium   Abela-Dirichleta  
Założenia:  

(an) monotoniczny
Zachodzi jeden z warunków:

1. 
n→ ∞
lim an =0 i bn∑  ograniczony

2. (an) zbieżny i bn∑  zbieżny

Teza:  

a bn n∑  zbieżny

Kryterium   Leibniza  
Założenia:  

(an) monotoniczny i zbieżny do 0
Teza:  

( )−∑ 1
n

na  zbieżny

Stwierdzenie (warunek konieczny zbieżności szeregu) 

Jeśli an∑  zbieżny, to 
n→ ∞
lim an =0

Stwierdzenie: 

Jeśli an∑  i bn∑  zbieżne, to dla dowolnych a,b ∈ ℜ(C) szereg ( )aa bbn n+∑  jest 

zbieżny i ( )aa bb a a b bn n n n+ = +∑ ∑ ∑
Iloczyny nieskończone

Produkt
Definicja: 

a g a gn
n

n
k

k

n

=

∞

→ ∞
=

∏ ∏= ⇔ =
0 0

lim
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Jeśli g∈ℜ\{0} to iloczyn an∏  jest zbieżny

Twierdzenie 
Założenia:  

∀n an>0
Teza:  

an∑  zbieżny ⇔ ( )1 +∏ an  ⇔ ∀n an≠-1 ( )1 −∏ an  jest zbieżny

Stwierdzenie: 

Jeśli ∀n an>0 to iloczyn an∏ jest zbieżny ⇔ lnan∑  jest zbieżny

Stwierdzenie: 

sin x x
x

nn

= − 















=

∞

∏ 1
2

1 π

Szeregi i ciągi funkcyjne
Zbieżność ciągów funkcyjnych
Definicja:  

Jeśli dla każdego x ciąg (fn(x)) jest zbieżny, to mówimy że ciąg jest zbieżny punktowo.
Definicja:  

Jeśli ciąg jest zbieżny punktowo poza pewnym zbiorem miary 0, to mówimy, że jest 
zbieżny prawie wszędzie.

Definicja: 
Ciąg funkcji  (fn) fn:A→C jest jednostajnie zbieżny do funkcji f:A→C ⇔ ∀ε>0 ∃nε>0 ∀n>nε 

∀x∈A fn(x)-f(x)<ε
Definicja: 

Jeśli (fn) jest jednostajnie zbieżny na każdym podzbiorze zwartym dziedziny, to mówimy, 
że jest niemal jednostajnie zbieżny.

Twierdzenie o ciągłości granicy ciągu jednostajnie zbieżnego
Założenia: 

fn dąży jednostajnie do f 
∀n fn jest ciągła w x0  

Teza:  
f jest ciągła w x0 

Twierdzenie   Diniego  
Założenia:  

(fn) jest monotonicznym ciągiem funkcji ciągłych na przedziale [a,b] [lub zbiorze 
zwartym]
(fn) jest zbieżny punktowo do funkcji ciągłej f

Teza:  
(fn) jest jednostajnie zbieżny do f

Twierdzenie   Weierstrassa   o aproksymacji jednostajnie zbieżnym ciągiem wielomianów  
Założenia: 

f:[a,b]→ℜ ciągła
Teza:  

istnieje jednostajnie zbieżny ciąg wielomianów (wn) o granicy f

Twierdzenie o zbieżności pochodnych ciągu funkcyjnego  (  *)     
Założenia:  

(*)[1] str. 382 Twierdzenie 8*. Różnica jest w niemal jednostajnej zbieżności

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
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(f’n) jest niemal jednostajnie zbieżny na przedziale P do funkcji g
(fn(x0)) jest zbieżny w x0∈P

Teza:  
(fn) jest niemal jednostajnie zbieżny do pewnej funkcji G:P→ℜ i G’=g

Twierdzenie o całce z granicy ciągu funkcyjnego
Założenia:  

fn są R-całkowalne na [a,b]
fn dążą jednostajnie do f na [a,b]

Teza:  

f jest R-całkowalna i f x dx f x dx
a

b

n
n

a

b

( ) lim ( )∫ ∫=
→ ∞

Twierdzenie o całce z granicy ciągu zbieżnego
Założenia:  

(fn) są wspólnie ograniczone na [a,b] i R-całkowalne
fn→f 
f R-całkowalna

Teza: 

f x dx f x dx
a

b

n
n

a

b

( ) lim ( )∫ ∫=
→ ∞

Twierdzenie 
Założenia:  

fn są niemalejące
fn → f na [a,b]
f ciągła na [a,b]

Teza:  
fn zbiega jednostajnie do f na [a,b]

Kryterium   Weierstrassa   dla szeregów funkcyjnych  
Założenia: 

an∑  zbieżny

∀x ∀n fn(x)≤an 
Teza:  

fn∑  zbieżny jednostajnie

Zbiór funkcji ciągłych na przedziale
Zbiór funkcji ciągłych
Definicja:  

C([a,b]) zbiór funkcji ciągłych (ℜ lub C) określonych na przedziale [a,b]

{ }f f x x a b= ∈sup ( ): [ , ]

Odległość między funkcjami f i g = f g−

Mnożenie przez stałą tf t f=  dla t∈ℜ(C) f∈C([a,b])

Stwierdzenie: 

f g f g+ ≤ +

f = 0  ⇔ ∀x f(x)=0

Twierdzenie 
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Teza:  
(fn) zbieżny w C([a,b]) (*) ⇔ (fn) spełnia warunek Cauchy’ego

Twierdzenie   Arzela-Ascotiego  
Teza:  

F ⊂ C([a,b]) zwarty ⇔ 

1. jest ograniczony (tzn. ist. M ≥ 0 t.ż. f ∈ F ⇒ f M≤ )

2. jest domknięty (tzn. jeśli ∀n fn∈F lim fn =f, to f ∈ F)(**) 
3. rodzina F jest jednakowo ciągła (tzn. ∀ε>0 ∃δ >0 ∀x,y∈[a,b] ∀f∈F x-y<δ⇒f(x)-
f(y)< ε

Stwierdzenie: 

f g f g+ ≤ +

f
x
f x= ⇔ ∀ =0 0( )

Szeregi potęgowe
Szereg potęgowy
Definicja: 

Szeregiem potęgowym o środku w x0 i współczynnikach a0, a1,... nazywamy szereg 

postaci ( )a x xn

n

n

−
=

∞

∑ 0
0

Twierdzenie o promieniu zbieżności szeregu potęgowego
Teza:  

Zbiór punktów zbieżności szeregu ( )a x xn

n∑ − 0  zawiera koło otwarte o środku w x0 t.ż. 

poza kołem domkniętym o środku x0 i tym samym promieniu szereg jest rozbieżny

Twierdzenie Abela
Założenia:  

funkcja x → a xn
n∑  ciągła w x1

Teza:

 a xn
n∑ 1 zbieżny po obcięciu do dowolnego zbioru K(*) (ciągłość kątowa)

Stwierdzenie: 

Jeśli ( )a x xn

n∑ −1 0  jest zbieżny i x-x0< x1-x0, to szeregi ( )a x xn

n∑ − 0  i 

( )na x xn

n∑ − −
0

1
 są bezwzględnie zbieżne. Zbieżność na zbiorze {x: x-x0< x1-x0} 

jest niemal jednostajna
Wzór: 

Promień zbieżności szeregu potęgowego R wyraża się wzorami:

R
ann

= 1

limsup

R
a

a
n

n

=
+

lim
1

(*) tzn. istnieje f ∈ C([a,b]) t.ż. f fn − → 0
(**) mam tu jakąś uwagę o jednostajnej zbieżności fn do f
(*) Patrz definicje. To twierdzenie jest dla przypadku x0=0

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
Krzysztof Lichota
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Gdzie 
1

0
 przyjmujemy za ∞, a 

1

∞
 za 0

Stwierdzenie: 

Wewnątrz koła zbieżności funkcja ( )x a x xn

n→ −∑ 0  jest klasy C∞ 

Stwierdzenie: 
Wewnątrz koła zbieżności szereg potęgowy jest zbieżny bezwzględnie

Funkcje analityczne
Funkcja analityczna
Definicja:  

f:D→ℜ(C) jest funkcją analityczną w x0 ⇔ ∃r>0 i (an) t.ż. x-x0<r⇒ f(x)= ( )a x xn

n

n

−
=

∞

∑ 0
0

 

Twierdzenie o otoczeniu funkcji analitycznej
Założenia:  

f analityczna w x0 
r - promień zbieżności szeregu związanego z f
x1-x0<r

Teza:  
f jest analityczna w x1 i promień zbieżności szeregu f o środku w x1 jest większy bądź 
równy r-x1-x0

Zasada identyczności
Założenia:  

f,g analityczne w x0 
istnieje xn t.ż. 
∀n f(xn)= g(xn)
∀n xn≠x0 

n→ ∞
lim xn=x0

Teza:  
f(x)=g(x) na części wspólnej kół zbieżności

Twierdzenie 
Założenia:  

g analityczna w x0

f analityczna w y0=g(x0)
Teza:  

fοg analityczna w x0

Twierdzenie 
Założenia:  

f analityczna w x0

f’(x0) ≠ 0
Teza:  

f -1 analityczna w f(x0)

Stwierdzenie: 
Kombinacja liniowa, iloczyn i iloraz funkcji analitycznych w x0 jest funkcją analityczną w 
x0 

x  jest analityczna w x ≠ 0

ex  jest analityczna wszędzie
sinx jest analityczna wszędzie
lnx jest analityczna wszędzie

12



tgx jest analityczny(*)

funkcje wymierne są analityczne

x ea a x= ln  jest analityczna poza 0
Stwierdzenie: 

Jeśli f jest analityczna w x0 i ma promień zbieżności r, to f jest analityczna w w kole 
{x:x-x0<r} i jest tam klasy C∞ 

Uwaga: 
Istnieją funkcje klasy C∞ , które nie są analityczne (np. funkcja idealnie gładka)

Szeregi Fouriera
Szeregi Fouriera
Definicja: 

Iloczyn skalarny dwóch funkcji f,g ( )f g f x g x dx=
−
∫ ( ) ( )

π

π

Taki iloczyn utożsamia funkcje różniące się na zbiorze miary 0

( )f f f f x f x dx= =
−
∫ ( ) ( )

π

π

Definicja: 

a f t dt0 =
−
∫ ( )

π

π

- długość rzutu prostopadłego f na przestrzeń rozpiętą przez 1

a f f t ktdtk ( ) ( ) cos=
−
∫

1

π π

π

 - długość rzutu prostopadłego f na przestrzeń rozpiętą przez 

coskx

b f f t ktdtk ( ) ( ) sin=
−
∫1π π

π

- długość rzutu prostopadłego f na przestrzeń rozpiętą przez 

sinkx

Definicja: 

( )δ n k k
k

n

f x
a

a kx b kx( )( ) cos sin= + +
=

∑0

12
 rzut f na pierwsze 2n+1 wektorów 

przestrzeni
Jeśli s=x-t i funkcja podcałkowa jest określona, to 

( )δ
π π

π

n

s

s
f x f x s

n
ds( )( )

sin( )

sin
= −

+

−
∫1

2 1

2
2

2

Definicja: 

Wielomian trygonometryczny, to wielomian ( )a
a kx b kxk k

k

n
0

12
+ +

=
∑ cos sin

Nierówność Bessela
Teza:  

( )f t dt
a

a bk k
k

n

( )
2 0 2 2

14− =
∫ ∑≥ + + +

π

π

π π (*)  Równość zachodzi, gdy f leży w przestrzeni 

rozpiętej przez pierwsze 2n+1 wektorów bazy
Lemat 1
Założenia:  

(*) Mam pewne wątpliwości do tg i niewielkie do ln
(*) Z dokładnością do stałej

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
Krzysztof Lichota
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f∈C1([a,b])
Teza:  

( )f x nxdx
a

b

sin∫  i ( )f x nxdx
a

b

cos∫  dążą do zera przy n→∞  

Lemat 2
Założenia:  

f R-całkowalna na [a,b] 
Teza:  

( )f x nxdx
a

b

sin∫  i ( )f x nxdx
a

b

cos∫  dążą do zera n→∞

Lemat 3
Teza:    

sinnx

x
dx

0 2

∞

∫ = π

Lemat 4
Założenia: 

f’ jest całkowalna na [-π,π]
f(-π)=f(π)

Teza:  

1

n
a f b fn n( ' ) ( )=  i 

1

n
b f a fn n( ' ) ( )= −

Twierdzenie Carlesona
Założenia: 

C⊂[-π,π] 
C=0

Teza:  

Istnieje funkcja ciągła f t.ż. ( )f x
a

a nx b nx x Cn n( ) cos sin= + + ⇔ ∈∑0

2
Twierdzenie 
Założenia:  

f ciągła na [-π,π] 
f(-π)=f(π)

Teza:  

Dla prawie wszystkich x∈[-π,π] ( )f x
a

a nx b nxn n( ) cos sin= + +∑0

2
Kryterium Diniego
Założenia: 

Dla pewnego x funkcja s
f x s f x s f x

s
→ + + − −( ) ( ) ( )2

 jest całkowalna na pewnym 

przedziale [0,δ]
Teza: 

δ n f x f x( )( ) ( )→
Twierdzenie Fej  é  ra  
Założenia: 

f ciągłą
f 2π-okresowa

Teza: 

( ) ( ) ( )( )1
0 1 1n
f f fnδ δ δ+ + + −...  zbiega jednostajnie do f

Równość Parsewala
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Teza:  

( )( ) ( )f x dx
a

a bn n

2 0 2 2

2−
∫ ∑= + +





π

π

π

Stwierdzenie: 
1, cosx,sinx, ..., cosnx, sinnx - są wzajemnie prostopadłe względem tego iloczynu 
skalarnego

Uwaga: 
Założenie kryterium Diniego jest spełnione np. w punktach różniczkowalności funkcji f, a 
nawet w takich, w których f ma pochodne jednostronne, niekoniecznie równe, ale 
skończone

Uwaga: 
Załóżmy, że f i f’ mają jednostronne granice w punkcie x: f(x+), f(x-), f’(x+), f’(x-) . Wtedy 

δ n f x
f x f x

( )( )
( ) ( )→ −+ −

2
Wniosek: 

Jeśli f’ jest całkowalna (f - 2π okresowa) to δn(f) zbiega jednostajnie do f
Twierdzenie o lokalizacji (tylko informacja)

Jeśli f’ jest całkowalna na [a,b]⊂[-π,π], to δn(f) zbiega jednostajnie do f na przedziale [a,b]
Wniosek: 

Wielomiany trygonometryczne są gęste w zbiorze funkcji ciągłych i 2π okresowych na ℜ

Inne
Wzór Stirlinga
Wzór: 

 n n
n

e

n

! ≈ 





2 π

Reszta wzoru   Taylora   w postaci całkowej  
Definicja: 

Rn= ( )R h
h

n
t f x ht dtn

n
n n( )

!
( )( )= − +

+
+∫

1
1

0

0

1

1

Uwaga: 

Jeśli ∀an>0 i lim
a

a
gn

n

+ =1
, to lim a gn

n = , ale nie odwrotnie!

Stwierdzenie: 

( )1
0

+ =








=

∞

∑x
a

n
x

a

n

n  dla x<1

 

Autor nie ponosi żadnej odpowiedzialności za zapisane tu definicje, twierdzenia  itp., gdyż  ta praca została stworzona tylko na jego potrzeby i ku jego wygodzie.
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