APPOXIMATION & COMPLEXITY HOMEWORKS

Due date is November 18, 2019

(1) Show that the following space of infinite sequences

$$c_0 := \{ (x_1, x_2, \ldots) : x_i \in \mathbb{R}, \lim_{i \to \infty} x_i = 0 \}$$

with the norm $\max_{i \ge 1} |x_i|$ is not strictly convex.

- (2) Find the best approximation in $L_2([0, 1])$ for the function f(x) = x with respect to the space spanned by $v_1(x) = e^x i v_2(x) = e^{2x}$.
- (3) Suppose that none of the points a_1, a_2, \ldots, a_n is in the interval [a, b]. Show that then

$$\operatorname{span}\left(\frac{1}{x-a_1}, \frac{1}{x-a_2}, \dots, \frac{1}{x-a_n}\right)$$

is a Haar space in C([a, b]).

- (4) For what values of a < b the space spanned by the functions
 - (a) $\{1, \cos(x), \cos(2x), \dots, \cos(nx)\}$
 - (b) $\{\sin(x), \sin(2x), \dots, \sin(nx)\}$
 - is a Haar space in C([a, b])?
- (5) Let D be the unit sphere,

$$D = \{ \vec{x} \in \mathbb{R}^s : \| \vec{x} \|_2 = 1 \} \subset \mathbb{R}^s.$$

For what values of s and n one can find Haar spaces of dimension n that are subspaces of C(D)?

(6) Find a polynomial p of degree ≤ 3 that minimizes

$$\sup_{-1 \leqslant x \leqslant 1} ||x| - p(x)|$$

(7) Find a trigonometric polynomial of the form

$$v(t) = a_0 + a_1 \sin t + b_1 \cos t$$

that best approximates the function $\sin(t/2)$ in the uniform norm on the interval $[-\pi, \pi]$.

- (8) In the set of polynomials p of degree $\leq n$ such that p(0) = 1 find p^* that has minimal uniform norm on [1, 2].
- (9) Let p be a polynomial of degree at most n such that $||p||_{C([-1,1])} \leq 1$. Show that then for any $|x| \ge 1$ we have $|p(x)| \le |T_n(x)|$.
- (10) Show that among all the polynomials of degree at most n such that p'(1) = A, the polynomial AT_n/n^2 has the minimal uniform norm in [-1, 1].

Due date is December 9, 2019

(11) Let the operator $L: C([a, b]) \to C([a, b])$ be given as

$$(Lf)(x) = \sum_{\substack{i=1\\1}}^{n} f(x_i)g_i(x),$$

where $a \leq x_1 < \cdots < x_n \leq b$ and $g_i \in C([a, b])$. Show that L is positive if and only if all the functions g_i assume nonnegative values only.

- (12) Let $L: C([a, b]) \to C([a, b])$ be a positive linear operator satisfying Lw = w for all polynomials of degree at most 2. Show that then Lf = f for all $f \in C([a, b])$.
- (13) Show that if f is a polynomial of degree at most k then the same property possess all the Bernstein polynomials $B_n f$.
- (14) Let \mathcal{E} be the family of projections $L: C([a, b]) \to \mathcal{P}_{n+1}$, and $\hat{\mathcal{E}}$ be the family of projections $\hat{L}: C([-1, 1]) \to \mathcal{P}_{n+1}$. Show that

$$\inf_{L_n \in \mathcal{E}} \|L_n\| = \inf_{\hat{L}_n \in \hat{\mathcal{E}}} \|\hat{L}_n\|.$$

(15) Let $L : C([-1,1]) \to \mathcal{P}_3$ be the interpolation operator corresponding to some points x_i , i = 0, 1, 2. Show that

$$\min_{-1 \le x_0 < x_1 < x_2 \le 1} \|L\| = \frac{5}{4},$$

and for the Chebyshev points we have ||L|| = 5/3. What is $||L_2||$ for the equispaced points -1, 0, 1?

- (16) Show the following properties of the Chebyshev polynomial T_n .
 - (a) $(1 x^2)T_n''(x) xT_n'(x) + n^2T_n(x) = 0$
 - (b) $T_{2n}(x) = T_n(2x^2 1)$
 - (c) $T_n(T_m) = T_{nm}$
- (17) Let $f(x) = x^3$. Find possibly minimal n such that $B_n f$ approximates f with error at most 10^{-8} with respect to the uniform norm on [0, 1]?
- (18) Show that if f i f' are continuous on [0,1] then for any $\epsilon > 0$ there is a polynomial p such that $||f p|| \leq \epsilon$ and $||f' p'|| \leq \epsilon$, where the norm is uniform on [0,1].
- (19) Let $X = L_2([0,1]), f(x) = x^m$ and $v_k(x) = x^{p_k}, k = 1, 2, ..., n$, where

$$0 \leqslant m < p_1 < p_2 < \cdots < p_n.$$

Let $V_n = \operatorname{span}(v_1, v_2, \ldots, v_n)$. Show that

dist
$$(f, V_n)^2 = \frac{1}{2m+1} \prod_{k=1}^n \left(\frac{m-p_k}{m+p_k+1}\right)^2$$
.

Hint.

$$\det\left(\left[\frac{1}{a_k+b_k}\right]_{k,l=1}^n\right) = \frac{\prod_{k>l}(a_k-a_l)(b_k-b_l)}{\prod_{k,l}(a_k+b_l)}$$

(20) Let $0 \leq m < p_1 < p_2 < \cdots$. Show that

$$\lim_{n \to \infty} \prod_{k=1}^{n} \left(\frac{m - p_k}{m + p_k + 1} \right)^2 = 0$$

if and only if

$$\sum_{k=2}^{\infty} \frac{1}{p_k} = \infty.$$

- (21) (Münz theorem I) Show that the space spanned by the functions $v_k(x) = x^{p_k}$, where $0 \leq p_1 < p_2 < \cdots$, is dense in $L_2([0,1])$ if and only if $\sum_{k=2}^{\infty} 1/p_k = \infty$. **Hint.** Use Problems 19 i 20 and the fact that algebraic polynomials are dense in $L_2([0,1])$.
- (22) (Münz theorem II) Show that the space spanned by the functions $v_k(x) = x^{p_k}$, where $0 \leq p_1 < p_2 < \cdots$, is dense in C([0,1]) if and only if $p_1 = 0$ and $\sum_{k=2}^{\infty} 1/p_k = \infty$. **Hint.** Use Problem (21).
- (23) Is the space spanned by $1, x^{p_1}, x^{p_2}, \ldots, x^{p_n}, \ldots$, where p_n are successive primes, dense in C([0, 1])?

Due date is January 27, 2020

- (24) Let $1 \leq \alpha \leq 2$. Find an example of a normed space G and a set $A \subset G$ such that $d(A) = \alpha r(A)$.
- (25) Find an example of a normed space G and a set $A \subset G$ that does not have any center.
- (26) Suppose $A \subset G$ is symmetric about some $g^* \in G$; i.e., if $g \in A$ then $2g^* g \in A$. Show that then g^* is a center of A and d(A) = 2r(A).
- (27) Show that if for two linear information operators $N_1, N_2 : F \to \mathbb{R}$ we have $\ker N_1 = \ker N_2$ then for any solution operator $S : F \to G$ and for any class $\mathcal{F} \subset F$ of problem instances

$$\operatorname{rad}^{\operatorname{wor}}(N_1) = \operatorname{rad}^{\operatorname{wor}}(N_2).$$

(28) Consider the problem of uniform approximation of functions $f : [0,1] \to \mathbb{R}$ satisfying the Lipschitz condition with constant 1, based on information

$$N_n(f) = \left(f(t_1), f(t_2), \dots, f(t_n)\right),$$

where $0 \leq t_1 < t_2 < \cdots < t_n \leq 1$. Show that the natural spline of degree 1 with knots t_i interpolating f at the same points t_i , $1 \leq i \leq n$, provides an optimal algorithm. What would be the answer if the uniform approximation were replaced by L^2 -approximation?

(29) Consider the problem of weighted integration

$$S(f) = \int_0^{+\infty} f(x) e^{-x} dx,$$

for functions $f : \mathbb{R}_+ \to \mathbb{R}$ satisfying the Lipschitz condition with constant 1 and such that f(0) = 0, based on information

$$N_n(f) = \left(f(t_1), f(t_2), \dots, f(t_n)\right),$$

where $0 \leq t_1 < t_2 < \cdots < t_n < +\infty$. Find $\operatorname{rad}^{\operatorname{wor}}(N_n)$ and an optimal linear algorithm, if it exists.

- (30) Is the composed trapezoid rule an optimal algorithm for the problem (29)?
- (31) Let \mathcal{F} be the class of functions $f \in C^1([0,1])$ such that $|f'(x)| \leq \psi(x)$, where ψ is nonnegative, nonincreasing, and continuous. Let N(f) = (f(0), f(1)). Find, if exist, central algorithm and optimal linear algorithm for the problems of: (a) integration,

(b) uniform approximation.

What is the radius of information for both problems?

(32) Consider the problem of weighted integration as in the problem (29). Show that the *n*th optimal information is given as $N_n^*(f) = (f(t_1^*), \ldots, f(t_n^*))$, where

$$t_i^* = -2 \, \ln\left(1 - \frac{i}{n+1}\right), \qquad 1 \leqslant i \leqslant n,$$

and the nth minimal radius

$$r^*(n) = \operatorname{rad}^{\operatorname{wor}}(N_n^*) = \frac{1}{n+1}$$

(33) Let $F = C^1([0,1])$ and $N_n(f) = (f(0), f(1/n), f(2/n) \dots, f(1))$. How to construct a linear algorithm $\Phi_n : \mathbb{R}^n \to \mathcal{P}_{n+1}$ such that for all $f \in F$ it holds

$$||f - \Phi_n(N_n(f))||_C \leqslant \frac{\alpha}{n} ||f'||_C,$$

for some α independent of n and f.