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Abstract. The paper is devoted to a reverse-mathematical study of some well-known
consequences of Ramsey’s theorem for pairs, focused on the chain-antichain principle
CAC, the ascending-descending sequence principle ADS, and the Cohesive Ramsey
Theorem for pairs CRT2

2. We study these principles over the base theory RCA∗0, which
is weaker than the usual base theory RCA0 considered in reverse mathematics in that
it allows only ∆0

1-induction as opposed to Σ0
1-induction. In RCA∗0, it may happen that

an unbounded subset of N is not in bijective correspondence with N. Accordingly,
Ramsey-theoretic principles split into at least two variants, “normal” and “long”,
depending on the sense in which the set witnessing the principle is required to be
infinite.

We prove that the normal versions of our principles, like that of Ramsey’s theorem
for pairs and two colours, are equivalent to their relativizations to proper Σ0

1-definable
cuts. Because of this, they are all Π0

3- but not Π1
1-conservative over RCA∗0, and, in any

model of RCA∗0 + ¬RCA0, if they are true then they are computably true relative to
some set. The long versions exhibit one of two behaviours: they either imply RCA0

over RCA∗0 or are Π0
3-conservative over RCA∗0. The conservation results are obtained

using a variant of the so-called grouping principle.
We also show that the cohesion principle COH, a strengthening of CRT2

2, is never
computably true in a model of RCA∗0 and, as a consequence, does not follow from RT2

2

over RCA∗0.
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1. Introduction 8

The logical strength of Ramsey-theoretic principles has been one of the most im- 9

portant research topics in reverse mathematics for over two decades. Statements from 10

Ramsey theory are an appealing subject for logical analysis, because they are often 11

not equivalent to any of the usual set existence principles encountered in second-order 12

arithmetic, and they form a complex web of implications and nonimplications (see [8] 13

for an introduction to the area). Moreover, characterizing the first-order consequences 14

of Ramsey-theoretic statements is frequently an interesting and demanding task. 15

As is the custom in reverse mathematics, the strength of such statements is usually 16

investigated over the base theory RCA0, a fragment of second-order arithmetic that 17

includes the ∆0
1-comprehension axiom and the mathematical induction scheme for Σ0

1- 18

definable properties. A weaker alternative to RCA0, introduced in [19] and known as 19

RCA∗0, allows induction only for ∆0
1 properties. Working in a weak base theory makes 20

it possible to track nontrivial uses of induction and to make some fine distinctions 21
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that disappear over RCA0, but it also comes with additional technical and conceptual 22

challenges. 23

An issue of particular relevance to Ramsey-theoretic principles is that many of them 24

assert the existence of an infinite set Y ⊆ N that relates in a certain way to a given 25

colouring of tuples. RCA∗0 is weak enough that the precise definition of what it means 26

to be an infinite subset of N becomes important. Usually, one only requires that Y be 27

unbounded in N, and this gives rise to what we call “normal” versions of the principles. 28

However, over RCA∗0 being unbounded is strictly weaker than being the range of a 29

strictly increasing map with domain N. “Long” versions of principles can be obtained 30

by requiring Y to have the latter property. 31

The strength of Ramsey’s Theorem over RCA∗0 was investigated in [23] and [11]. The 32

upshot of that work is that in all nontrivial cases, the normal version of Ramsey’s 33

Theorem for a fixed length of tuples and number of colours is partially conservative 34

but not Π1
1-conservative over RCA∗0. On the other hand, the long version of Ramsey’s 35

Theorem is strong enough to imply RCA0. 36

In this paper, we ask the question whether the same general pattern also holds for 37

other Ramsey-theoretic principles, in particular the various natural weakenings of Ram- 38

sey’s Theorem for pairs that are commonly studied in reverse mathematics. Many of 39

our results could be stated in relatively general way, but for illustrative purposes, we 40

find it useful to concentrate on a small number of specific principles. We mostly consider 41

two statements about linear orders, namely the chain-antichain principle CAC and the 42

ascending-descending sequence principle ADS, as well as the cohesive version of Ram- 43

sey’s theorem for pairs and two colours CRT2
2. (The definitions are recalled in Section 44

2.1.) The statements CAC, ADS, and CRT2
2 are not only combinatorially natural, but 45

also reasonably well-understood in the traditional reverse-mathematical setting: over 46

RCA0 they form a strict linear order in terms of implication, and each of them is known 47

to be fully conservative over a classical fragment of first-order arithmetic. 48

We show that normal versions of our principles, just like those of RTn
k , belong to 49

a class of statements that we call “pseudo–second-order”. The behaviour of any such 50

statement in a model of RCA∗0 + ¬IΣ0
1 is governed by the proper Σ0

1-definable cuts of 51

the model. As a consequence, normal versions of CAC, ADS, and CRT2
2 are Π0

3- but not 52

Π1
1-conservative over RCA0, and they have the curious feature that whenever they are 53

true in a structure satisfying RCA∗0 + ¬IΣ0
1, they are actually computably true in that 54

structure relative to a set parameter witnessing the failure of IΣ0
1. We also show that 55

CAC and ADS are significantly weaker than RT2
2 in a technical sense related to closure 56

properties of cuts. The strength of CRT2
2 in this sense is left open, as is the question 57

whether ADS or CAC imply CRT2
2 over RCA∗0. 58

We then show that long versions of Ramsey-theoretic principles tend to behave in 59

one of two ways. Some, like CAC, imply RCA0 by an easy argument dating back to [23]. 60

Others, like CRT2
2, are equivalent to normal versions of the corresponding principles in 61

RCA∗0 or in its extension by Weak König’s Lemma. As a result, these principles remain 62

Π0
3-conservative over RCA0. In the case of ADS, both behaviours are possible depending 63

on how exactly the principle is formalized. 64

We also study the cohesion principle COH, a well-known strengthening of CRT2
2 that 65

does not fit neatly into the classification into normal and long principles. It follows 66

immediately from our results on CRT2
2 that COH is not Π1

1-conservative over RCA∗0, 67

which answers a question of Belanger [2]. Our main result about COH as such is that in 68

contrast to many other statements we consider, it can never be computably true, even 69

in a model of RCA∗0 + ¬IΣ0
1. As a consequence, COH is not implied by CRT2

2, ADS, or 70

even RT2
2 provably in RCA∗0. 71
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The remainder of this paper is structured as follows. In Section 2, we discuss the 72

necessary definitions and background, including precise formulations of the normal and 73

long versions of our principles. We study the normal versions in Section 3, the long 74

versions in Section 4, and COH in Section 5. 75

2. Preliminaries 76

We assume that the reader has some familiarity with the language of second-order 77

arithmetic and with the most common fragments of second-order arithmetic like RCA0 78

and WKL0, as described in [18] or [8]. We also assume familiarity with the usual in- 79

duction and collection (or bounding) schemes encountered in first- and second-order 80

arithmetic. Background in first-order arithmetic that is not covered in [8] will be dis- 81

cussed below. 82

The symbol ω denotes the set of standard natural numbers, while N denotes the 83

set of natural numbers as formalized within an arithmetic theory. In other words, if 84

(M,X ) is a model of some fragment of second-order arithmetic, then N(M,X ) is simply 85

the first-order universe M . The symbol ≤ denotes the usual order on N. 86

We write ∆0
n, Σ0

n, Π0
n to denote the usual formula classes defined in terms of first-order 87

quantifier alternations, but allowing second-order free variables. On the other hand, 88

notation without the superscript 0, like ∆n, Σn, Πn, represents analogously defined 89

classes of purely first-order, or “lightface”, formulas, that do not contain any second- 90

order variables at all. If we want to specify the second-order parameters appearing in 91

a Σ0
n formula, we use notation like Σn(A). We extend these conventions to naming 92

theories. If Γ is a class of formulas, then ∀Γ denotes the class of universal closures of 93

formulas from Γ. Note, for example, that ∀Σ0
n and ∀Π0

n+1 are the same class. 94

The theory RCA∗0, originally defined in [19], is obtained from RCA0 by replacing 95

the IΣ0
1 axiom with the weaker axiom of ∆0

0-induction (by ∆0
1-comprehension, this 96

immediately implies induction for all ∆0
1-definable properties) and adding a Π2 axiom 97

exp that explicitly guarantees the totality of exponentiation. The theory WKL∗0 is 98

obtained from WKL0 in an analogous way. RCA∗0 proves the collection scheme BΣ0
1, and 99

the first-order consequences of RCA∗0 and of WKL∗0 are axiomatized by BΣ1 + exp 100

When we consider a model (M,X ) � RCA∗0 (or work in RCA∗0 without reference to a 101

specific model), a set is an element of the second-order universe X . In contrast, a Σ0
n- 102

definable set or simply Σ0
n-set is any subset of the first-order universe M that is definable 103

in (M,X ) by a Σ0
n formula (and likewise for Σn-sets, Πn-sets etc.) A ∆0

n-definable set 104

or ∆0
n-set is a Σ0

n-set that is simultaneously a Π0
n-set. Since in general the models we 105

study only satisfy ∆0
1-comprehension, ∆0

n-sets for n ≥ 2 and Σ0
n-sets for n ≥ 1 will not 106

always be sets. We write ∆1-Def(M) for the collection of the ∆1-definable subsets of 107

M and ∆0
1-Def(M,A) for the collection of ∆1(A)-definable subsets, where A ⊆ M . If 108

(M,A) � BΣ1(A) + exp, then (M,∆0
1-Def(M,A)) is a model of RCA∗0. 109

Already I∆0 + exp is strong enough to support a well-behaved universal Σ1 formula 110

Sat1(x, y). We can define the Σ1-set 0′ as {e : Sat1(e, e)}. 111

A cut I in a model of arithmetic M is a downwards-closed subset of M which is 112

also closed under successor. M is then an end-extension of I, and it is common to 113

write I ⊆e M , or I (e M if I is a proper cut. The cut I is a Σ0
1-cut exactly if it is 114

Σ0
1-definable. 115

A set A is unbounded if for every x ∈ N there exists y ∈ A with y ≥ x. We write 116

A ⊆cf N to indicate that A is unbounded, and more generally A ⊆cf B to indicate that 117

A is an unbounded subset of B. The set A has cardinality N if it contains an n-element 118

finite subset for each n ∈ N, or equivalently if it can be enumerated in increasing order 119

as {an : n ∈ N}. Provably in RCA∗0, a set of cardinality N is unbounded. However, it 120
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was shown in [20, Lemma 3.2] that the statement “every unbounded set has cardinality 121

N” implies RCA0 over RCA∗0. In other words, RCA∗0 + ¬IΣ0
1 proves the existence of an 122

unbounded set that does not have cardinality N. Each such set can be enumerated in 123

increasing order as A = {ai | i ∈ I} for some proper Σ0
1-cut I. Conversely, given a Σ0

1 124

cut I, we can use ∆0
1-comprehension to form the set {〈w0, . . . , wi〉 : i ∈ I}, where each 125

wj is the smallest element witnessing that j ∈ I. Thus, we have: 126

Proposition 2.1. Let (M,X ) � RCA∗0. For each Σ0
1-cut I there exists a set A ∈ X with 127

A ⊆cf M that can be enumerated in increasing order as A = {ai | i ∈ I}. 128

If A = {ai | i ∈ I} for some Σ0
1-cut I, we sometimes write a−1 for −1. 129

A bounded subset of a model M � I∆0 + exp is coded in M if it has the form 130

(s)Ack = {x ∈ M | M � x ∈Ack s} for some s ∈ M , where x ∈Ack s denotes the usual 131

∆0 formula expressing that the xth digit in the binary expansion of s is 1. For a cut 132

I (e M we let Cod(M/I) = {I ∩ (s)Ack | s ∈M} stand for the collection of subsets of I 133

which are coded in M . Note that Cod(M/I) can be viewed as a second-order structure 134

on I. If I is closed under exponentiation, then (I,Cod(M/I)) � WKL∗0 [19, Theorem 135

4.8]. 136

The following lemma states an important special case of a more general result about 137

coding in models of BΣ0
n + exp. 138

Lemma 2.2 (Chong-Mourad [4]). Let (M,X ) � RCA∗0 and let I be a proper Σ0
1-cut in 139

(M,X ). If X ⊆ I is such that both X and I \X are Σ0
1-definable, then X ∈ Cod(M/I). 140

The iterated exponential function is defined inductively as follows: exp0(y) = 1, 141

expx+1(y) = yexpx(y). The axiom supexp, provable in RCA0 but not in RCA∗0, states 142

that the iterated exponential function is total, i.e. expx(y) exists for every x and y. 143

Proposition 2.3. For each countable (M,X ) � WKL0 there exists K )e M such that 144

K � BΣ1 + exp, M is a Σ1-cut of K, and Cod(K/M) = X . 145

Proof. Suppose that (M,X ) is a countable model of WKL0. By [21], there exists a 146

structure L )e M such that (L,∆1-Def(L)) � RCA0 and Cod(L/M) = X . Fix some 147

a ∈ L \M . Note that since L satisfies IΣ0
1 and therefore supexp, the value expb(a) 148

exists in L for each b ∈ L. Define K ⊆ L so that K = sup({expm(a) | m ∈ M}). Then 149

K � BΣ1+exp and M is a Σ1-cut in K since m ∈M if and only if K � ∃y (y = expm(a)). 150

Furthermore, Cod(K/M) = Cod(L/M) = X . � 151

2.1. Normal and long versions of principles. Many Ramsey-theoretic statements 152

take the form ∀X ⊆ N (α(X) → ∃Y (Y is infinite ∧ β(X,Y ))), where α and β are 153

arithmetical. In this context X and Y are often called, respectively, “instance” and 154

“solution” of the statement. In RCA0, “Y is infinite” is usually formalized as “Y is 155

unbounded”. However, “Y is infinite” could also be taken to mean “Y has cardinality 156

N”, and, as explained above, the two concepts are not equivalent in RCA∗0. Accordingly, 157

over RCA∗0 typical Ramsey-theoretic principles will have at least two versions: one that 158

we will take as the default and call the normal one, in which we only require the solution 159

Y to be infinite in the sense of being unbounded; and a long version, in which we require 160

Y to have cardinality N. (The word “long” is intended to emphasize that Y has to be 161

enumerated using N as opposed to a shorter cut.) When using standard abbreviations 162

for various principles, we will distinguish the long versions from the normal ones by 163

using the prefix `-. 164

The distinction between the two versions of Ramseyan statements was first made 165

in the context of Ramsey’s Theorem itself by Yokoyama [23]. For any n, k ∈ ω, let 166

RTn
k be the normal version of Ramsey’s Theorem for n-tuples and k colours, “For every 167
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c : [N]n → k there exists an unbounded set H ⊆ N such that c � [H]n is constant”, and 168

let `-RTn
k be the long version, which requires H to have cardinality N (this is denoted 169

by RTn+
k in [23]). It was shown in [23] that `-RT2

2 implies IΣ0
1 over RCA∗0, while RCA∗0 170

extended by RTn
k is Π2-conservative over I∆0 + exp. The study of RTn

k over RCA∗0 171

was taken quite a bit further in [11]. Results obtained in that paper include the ∀Π0
3- 172

conservativity of RCA∗0 + RTn
k over RCA∗0 for each n, k, a complete axiomatization of 173

RCA∗0 + RTn
2 for each n ≥ 3, and a complete axiomatization of RCA∗0 + RT2

2 + ¬IΣ0
1. 174

The emphasis in the present paper is on principles about ordered sets, CAC and ADS, 175

and on the Cohesive Ramsey Theorem CRT2
2. Let us, therefore, give precise formulations 176

of the normal and long versions for each of these principles in turn. 177

The chain-antichain principle CAC says that every partial order defined on N contains 178

either an infinite chain or an infinite antichain. Over RCA∗0, this gives rise to the 179

following principles. 180

CAC : For every partial order (N,�) there exists an unbounded set S ⊆ N 181

which is either a chain or an antichain in �. 182

`-CAC: For every partial order (N,�) there exists a set S ⊆ N of cardinality 183

N which is either a chain or an antichain in �. 184

It could be argued that a more natural formulation of CAC would require the existence 185

of an unbounded chain or antichain in any partial order on an unbounded set, not 186

necessarily on all of N. However, we will prove in Lemma 3.2 that this is equivalent 187

to the version given above and that an analogous equivalence also holds for the normal 188

versions of other principles we study. 189

The ascending-descending sequence principle ADS says that every linear order on 190

N contains either an unbounded increasing sequence or an unbounded decreasing se- 191

quence. There is a delicate issue here, as there can be more than one way of stating the 192

requirement that the solution to ADS has to satisfy. In the literature (see e.g. [8,9]) an 193

ascending sequence is usually taken to mean either (i) an infinite set S ⊆ N on which 194

the ordering � agrees with the natural number ordering ≤ or (ii) a sequence (si)i∈N 195

properly understood (that is, a map with domain N) such that s0 ≺ s1 ≺ s2 ≺ . . . but 196

there is no requirement on how the si are ordered by ≤. One could refer to these as set 197

and sequence solutions to ADS, respectively. (Set and sequence solutions corresponding 198

to descending sequences are defined analogously.) Over RCA0, versions of ADS formu- 199

lated in terms of set and sequence solutions are equivalent: a set solution obviously 200

computes a sequence solution, but given a sequence solution (si)i∈N we can also obtain 201

a set solution by taking the set of those numbers sj that are ≤-greater than all si for 202

i < j. 203

Over RCA∗0, such a thinning out argument works for the normal version of ADS: if we 204

are given a sequence solution (si)i∈I with s0 ≺ s1 ≺ . . . for some cut I, then the set S of 205

those sj for j ∈ I such that sj > si for all i < j can be obtained by ∆0
1-comprehension 206

and is unbounded provably in RCA∗0. Thus, S is a set solution to ADS. However, if 207

(si)i∈N is a sequence solution to the long version of ADS, then without IΣ0
1 it may 208

happen that the set S obtained in this way is no longer of cardinality N; in other words, 209

S might not be a set solution to the long version of ADS. This leads us formulate the 210

following three variants of ADS: 211

ADS : For every linear order (N,�) there exists an unbounded set S ⊆ N 212

such that either for all x, y ∈ S it holds that x ≤ y iff x � y or for 213

all x, y ∈ S it holds that x ≤ y iff x � y. 214
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`-ADSset: For every linear order (N,�) there exists a set S ⊆ N of cardinal- 215

ity N such that either for all x, y ∈ S it holds that x ≤ y iff x � y 216

or for all x, y ∈ S it holds that x ≤ y iff x � y. 217

`-ADSseq: For every linear order (N,�) there exists a sequence (si)i∈N which 218

is either strictly �-increasing or strictly �-decreasing. 219

Notice that `-ADSset clearly implies `-ADSseq. On the other hand, it will follow from 220

Theorem 4.2 and Corollary 4.10 that the converse implication does not hold over RCA∗0. 221

The final principle we focus on is the Cohesive Ramsey Theorem CRT2
2. This says 222

that for every 2-colouring c of pairs of natural numbers, there is an infinite set S on 223

which c is stable, that is, for each x ∈ S, either c(x, y) = 0 for all sufficiently large y ∈ S 224

or c(x, y) = 1 for all sufficiently large y ∈ S. Thus, we define the following principles. 225

CRT2
2 : For every c : [N]2 → 2 there exists an unbounded set S ⊆ N such that 226

for each x ∈ S there exists y ∈ S such that c(x, z) = c(x, y) holds for 227

all z ∈ S with z ≥ y. 228

`-CRT2
2: For every c : [N]2 → 2 there exists a set S ⊆ N of cardinality N such 229

that for each x ∈ S there exists y ∈ S such that c(x, z) = c(x, y) holds 230

for all z ∈ S with z ≥ y. 231

We also recall some principles that are not the main focus of this work but will be 232

mentioned in one or more contexts. 233

Stable Ramsey’s Theorem SRT2
2 is RT2

2 restricted to colourings c that are stable on 234

N. 235

A colouring c : [A]2 → n is transitive if c(x, y) = c(y, z) = i implies c(x, z) = i for all 236

i < n and all x < y < z elements of A. The colouring c is semitransitive if the above 237

implication holds for all i < n except at most one. The Erdös-Moser principle EM says 238

that for any c : [N]2 → 2, there is an infinite set A ⊆ N on which c is transitive. 239

Over RCA∗0, both SRT2
2 and EM have normal and long versions, which are defined 240

in the natural way. RCA∗0 is able to prove the well-known equivalences of RT2
2 with 241

SRT2
2 ∧ CRT2

2 and with EM ∧ ADS. 242

The cohesive principle COH is recalled and studied in Section 5. 243

3. Normal principles 244

Hirschfeldt and Shore [9] proved that the sequence of implications RT2
2 → CAC → 245

ADS → CRT2
2 holds over RCA0. Moreover, they showed that the first and third impli- 246

cation do not in general reverse over RCA0. The strictness of the implication from CAC 247

to ADS was shown in [15]. 248

It is easy to check that the proofs of the implications from RT2
2 to CAC and CRT2

2, 249

and of the one from CAC to ADS, do not require IΣ0
1. We can thus state the following 250

lemma (see 4.1 for its “long” counterpart). 251

Lemma 3.1. Over RCA∗0, the following sequences of implications hold:

RT2
2 → CAC→ ADS,

RT2
2 → CRT2

2.

None of the implications can be provably reversed in RCA∗0. 252

Two issues left open by the lemma are whether ADS or at least CAC implies CRT2
2 253

over RCA∗0, and whether the implications above are still strict over RCA∗0 + ¬IΣ0
1. It 254
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will be shown in Theorem 3.11 that RT2
2, CAC, ADS, and CRT2

2 do in fact remain 255

pairwise distinct over RCA∗0 +¬IΣ0
1, and moreover, that they have pairwise distinct sets 256

of arithmetical consequences. Interestingly, this is related to the fact that the principles 257

are known to be distinct over WKL0. 258

On the other hand, we were not able to determine whether RCA∗0 proves CAC→ CRT2
2. 259

This question may be related to the problem whether CRT2
2 is weaker than RT2

2 in a 260

specific technical sense discussed in Section 3.3. 261

3.1. Basic observations. In this subsection, we verify that some well-known and use- 262

ful properties of the Ramsey-theoretic principles we consider still hold over RCA∗0. First, 263

we show that no generality is lost by restricting the principles to instances defined on 264

all of N rather than on a more general infinite set. 265

Lemma 3.2. Over RCA∗0, each of RTn
k , CAC, ADS, CRT2

2 is equivalent to its general- 266

ization to orderings/colourings defined on an arbitrary unbounded subset of N. 267

Proof. For RTn
k , this is implicit in [11]. The proofs are similar for all principles; we 268

sketch them for ADS and CRT2
2. 269

Working in RCA∗0, assume ADS and let (A,�) be a linear order, where A ⊆cf N. 270

Thus, A = {ai | i ∈ I}, for some Σ0
1-cut I in N. 271

Define a linear order �′ on N by 272

x �′ y ⇔ ∃i, j ∈ I (x ∈ (ai−1, ai] ∧ y ∈ (aj−1, aj ] ∧ ((i 6= j ∧ ai ≺ aj) ∨ (i = j ∧ x ≤ y))) 273

That is, elements are �′-ordered according to the the �-ordering between the nearest 274

elements of A above them, if that makes sense, and according to the usual natural 275

number ordering otherwise. Since �′ is ∆1(A,�)-definable, it exists as a set. Let 276

S′ ⊆cf N be a strictly increasing or strictly decreasing sequence in �′. Using ∆1(S′, A)- 277

comprehension, define S ⊆ A by: 278

a ∈ S ⇔ a ∈ A ∧ ∃x≤a (x ∈ S′ ∧ [x, a) ∩A = ∅). 279

It is easy to check that S is unbounded and it is either a strictly increasing or a strictly 280

decreasing sequence in �. 281

For CRT2
2, given c : [A]2 → 2, use ∆0

1-comprehension to define c′ : [N]2 → 2 by: 282

c′(x, y) =

{
c(ai, aj) if ∃i, j ∈ I (i 6= j ∧ x ∈ (ai−1, ai] ∧ y ∈ (aj−1, aj ]) ,

0 otherwise.
283

If S′ ⊆cf N is such that c′ is stable on S′, then it is easy to define analogously as above 284

S ⊆cf A on which c is stable by ∆1(S′, A)-comprehension. � 285

We now check that in RCA∗0, it is still true that ADS and CAC can be viewed as the 286

restrictions of RT2
2 to transitive and semitransitive colourings, respectively. 287

Proposition 3.3. Over RCA∗0, CAC and ADS are equivalent to RT2
2 restricted to semi- 288

transitive 2-colourings and to transitive 2-colourings, respectively. 289

Proof. This is just a verification that the arguments of [9] go through in RCA∗0. 290

The implication from CAC to RT2
2 for semitransitive 2-colourings is unproblematic. In 291

the other direction, CAC follows easily from RT2
3 for semitransitive 3-colourings, which 292

is in turn derived from RT2
2 for semitransitive 2-colourings. In the reduction from 3- 293

colourings to 2-colourings, at one point we have to obtain an unbounded homogeneous 294

set for a semitransitive 2-colouring defined on an unbounded subset of N rather than 295

on N. This is dealt with like in the proof of Lemma 3.2. 296



WEAKER COUSINS OF RAMSEY’S THEOREM OVER A WEAK BASE THEORY 8

The implication from RT2
2 for transitive 2-colourings to ADS is immediate. The other 297

direction is [9, Theorem 5.3], which requires a comment. Given a transitive colouring 298

c : [N]2 → 2, we build a linear order � by inserting numbers 0, 1, . . . into it one-by-one. 299

When � is already defined on {0, . . . , n− 1}, we insert n into the order directly above 300

the �-largest k < n such that c(k, n) = 0; if there is no such k, we place n at the 301

bottom of �. Then, we can check by induction on n that the ordering � agrees with 302

c on {0, . . . , n} in the sense that for i < j ≤ n, we have i ≺ j iff c(i, j) = 0. In [9], 303

IΣ0
1 is invoked for this purpose, but it will be clear from the above description that the 304

induction formula is actually bounded. The induction step uses the transitivity of c. � 305

3.2. Between models and cuts. In [11], it is shown that RTn
k displays interesting 306

behaviour in models of RCA∗0 + ¬IΣ0
1: if I is a proper Σ0

1-cut in a model (M,X ), 307

then RTn
k holds in the entire model (M,X ) if and only if it holds on the cut, that 308

is in the structure (I,Cod(M/I)). This equivalence provides important information 309

about the first-order consequences of RTn
k over RCA∗0. It is apparent from the proof of 310

the equivalence that it is not highly specific to RTn
k and should hold for many other 311

Ramsey-theoretic statements. 312

In Theorem 3.5 below, we identify a relatively broad syntactic class of sentences that 313

all share the property of being equivalent to their own relativizations to Σ0
1-cuts. We 314

then verify that Ramsey-theoretic statements such as RTn
k , CAC, ADS, and CRT2

2 are 315

equivalent to sentences from that class. It follows, for instance, that all these state- 316

ments fail to be Π1
1-conservative over RCA∗0, and that they differ in their arithmetical 317

consequences. 318

Definition 3.4. The L2-sentence χ belongs to the class of sentences pSO if there exists 319

a sentence γ of second-order logic in a language (≤, R1, . . . , Rk), where k ∈ ω and each 320

Ri is a relation symbol of arity mi ∈ ω, such that χ expresses: 321

for any relations R1, . . . , Rk on N and for each D ⊆cf N, 322

there exists H ⊆cf D such that (H,≤, R1, . . . , Rk) � γ. 323

In the definition above, we slightly abuse notation by writing (H,≤, R1, . . . , Rk) in- 324

stead of the more cumbersome (H,≤ ∩ H2, R1 ∩ Hm1 , . . . , Rk ∩ Hmk). The fact that 325

this structure satisfies γ is expressed by relativizing each first-order quantifier in γ to H 326

and restricting each m-ary second-order quantifier to m-ary relations on H. Of course, 327

when this is interpreted in a model of arithmetic (M,X ), “m-ary relations on H” are 328

understood as elements of X ∩ P(Hm). 329

The abbreviation pSO stands for “pseudo–second-order”: pSO sentences appear to 330

use both first- and second-order quantification of L2, but they are relativized to arbi- 331

trarily small unbounded subsets of N in such a way that in cases where IΣ0
1 fails their 332

behaviour is closer to that of first-order sentences; cf. Corollary 3.6. 333

Theorem 3.5. If χ is a pSO sentence, then for every (M,X ) � RCA∗0 and every proper 334

Σ0
1-cut I in (M,X ), it holds that (M,X ) � χ if and only if (I,Cod(M/I)) � χ. 335

Proof. Let γ be a second-order sentence and for notational simplicity, assume that it 336

contains only one unary relation symbol R in addition to ≤, and that all second-order 337

quantifiers are unary. Let χ be a pSO sentence stating that for every set R and every 338

unbounded set D there exists an unbounded subset H ⊆cf D such that (H,≤, R) � γ. 339

Let (M,X ) � RCA∗0 +¬IΣ0
1, and let A ∈ X be a cofinal subset of M enumerated by the 340

cut I, A = {ai | i ∈ I}, as in Proposition 2.1. 341



WEAKER COUSINS OF RAMSEY’S THEOREM OVER A WEAK BASE THEORY 9

Suppose first that (M,X ) � χ. Let R,D ∈ Cod(M/I) be such that D ⊆cf I. Define
R′, D′ ⊆M by:

x ∈ R′ ⇔ ∃i ∈ I (x = ai ∧ i ∈ R),

x ∈ D′ ⇔ ∃i ∈ I (x = ai ∧ i ∈ D).

Since both R′ and M \ R′ are Σ1-definable in A and (the code for) R, we know that 342

R′ ∈ X . Similarly, D′ ∈ X . Notice that D′ ⊆cf M , since D ⊆cf I and A ⊆cf M . 343

By our assumption that (M,X ) � χ, there exists H ′ ∈ X such that H ′ ⊆cf D
′ and 344

(H ′,≤, R′) � γ. Let H = {i ∈ I | ai ∈ H ′}. Notice that both H and I \ H are 345

Σ1-definable in H ′ and A, so H ∈ Cod(M/I) by Lemma 2.2. Moreover, H ⊆cf D. 346

To show that (H,≤, R) � γ, we show that the map H ′ 3 ai 7→ i ∈ H induces an 347

isomorphism of the structures (H ′,≤, R′;X ∩P(H ′)) and (H,≤, R; Cod(M/I)∩P(H ′)). 348

The fact that this map is an isomorphism between (H ′,≤, R′) and (H,≤, R) follows 349

directly from the definitions. Thus, we only need to argue that this map also induces 350

an isomorphism of the second-order structures X ∩ P(H ′) and Cod(M/I) ∩ P(H ′). If 351

X ′ ∈ X is a subset of H ′, then {i ∈ I | ai ∈ X ′} is in Cod(M/I) by Lemma 2.2. If 352

X ′, Y ′ ∈ X are distinct subsets of H ′, then {i ∈ I | ai ∈ X ′} and {i ∈ I | ai ∈ Y ′} are 353

clearly distinct. Finally, if X ∈ Cod(M/I) is a subset of H, then X ′ = {ai | i ∈ X} is 354

in X by ∆0
1-comprehension, and it is a subset of H ′. 355

Now suppose that (I,Cod(M/I)) � χ. Let R,D ∈ X be such that D ⊆cf M .
By replacing D with an appropriate unbounded subset if necessary, we may assume
w.l.o.g. that D ∩ (ai−1, ai] has at most one element for each i ∈ I. We now transfer
R,D to R′, D′ ⊆ I defined as follows:

i ∈ R′ ⇔ ∃x ∈ (ai−1, ai] ∩R,
i ∈ D′ ⇔ ∃x ∈ (ai−1, ai] ∩D.

By Lemma 2.2, R′, D′ ∈ Cod(M/I). Notice that D′ ⊆cf I, given that D ⊆cf M . 356

Since (I,Cod(M/I)) � χ, there exists H ′ ⊆cf D
′ such that (H ′,≤, R′) � γ. Define 357

H = {x ∈ D | ∃i ∈ H ′ (x ∈ (ai−1, ai])}. 358

Clearly H ∈ X and H ⊆cf D. To show that (H,≤, R) � γ, it remains to prove that 359

the structures (H ′,≤, R′; Cod(M/I)∩P(H ′)) and (H,≤, R;X ∩P(H)) are isomorphic. 360

The isomorphism is induced by the map that takes i ∈ H ′ to the unique element of 361

H ∩ (ai−1, ai]. The verification that this is indeed an isomorphism is similar to the one 362

in the proof of the other direction. � 363

Corollary 3.6. Let χ be a pSO sentence and let (M,X ) � RCA∗0. If A ∈ X is such that 364

(M,A) � ¬IΣ1(A), then (M,X ) � χ if and only if (M,∆0
1-Def(M,A)) � χ. 365

Proof. The right-hand side of the equivalence in Theorem 3.5 does not depend on X as 366

long as a given proper cut I is Σ0
1-definable in (M,A). � 367

Theorem 3.5 and Corollary 3.6 make it possible to prove a very simple criterion of 368

Π1
1-conservativity over RCA∗0 for pSO sentences. We state the criterion in slightly greater 369

generality, for boolean combinations of pSO sentences, so as to be able to conclude that 370

some specific pSO sentences have distinct sets of first-order consequences over RCA∗0. 371

Theorem 3.7. Let ψ be a boolean combination of pSO sentences. Then the following 372

are equivalent: 373

(i) RCA∗0 + ψ is Π1
1-conservative over RCA∗0, 374

(ii) RCA∗0 + ¬IΣ0
1 ` ψ, 375

(iii) WKL∗0 ` ψ. 376
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Moreover, if WKL0 6` ψ, then RCA∗0 + ψ is not arithmetically conservative over RCA∗0. 377

Proof. The implication (iii) → (i) is immediate from [19]. 378

Assume that (i) holds. Note that by Corollary 3.6, RCA∗0 +ψ proves the Π1
1 statement 379

“for every A, if IΣ1(A) fails, then ψ is true in the ∆1(A)-computable sets”. Thus, by 380

(i), this statement is provable in RCA∗0. However, again by Corollary 3.6, in each model 381

of RCA∗0 + ¬IΣ0
1 this Π1

1 statement is equivalent to ψ. This proves that (i) implies (ii). 382

Now assume that (iii) fails, and let (M,X ) be a countable model of WKL∗0 + ¬ψ. If 383

(M,X ) � ¬IΣ0
1, then clearly RCA∗0 +¬IΣ0

1 6` ψ. Otherwise, (M,X ) is a model of WKL0, 384

so by Proposition 2.3 there exists a structure (K,∆1-Def(K)) � RCA∗0 in which M is 385

a proper Σ0
1-cut and Cod(K/M) = X . By Theorem 3.5, we get (K,∆1-Def(K)) � ¬ψ. 386

This proves that (ii) implies (iii). 387

Note also that if we do have a countable model (M,X ) of WKL0 + ¬ψ, then the 388

structure (K,∆1-Def(K)) constructed as in the previous paragraph satisfies RCA∗0 but 389

does not satisfy the first-order statement “¬IΣ1 implies that the computable sets satisfy 390

ψ”. This proves that if WKL0 6` ψ, then RCA∗0 + ψ is not arithmetically conservative 391

over RCA∗0. � 392

Remark 3.8. The assumption of the “moreover” part of Theorem 3.7 could be weak- 393

ened to WKL∗0 + supexp 6` ψ, using essentially the same proof. Whether the assump- 394

tion could be weakened simply to (iii) is related to the question whether every suffi- 395

ciently saturated countable model of WKL∗0 is Σ1-definable in an end-extension satisfying 396

BΣ1 + exp. Cf. [13, Section 5]. 397

In [7], it is shown that every Π1
2 sentence is Π1

1-conservative over RCA∗0 +¬IΣ0
1 if and 398

only if it is provable from WKL∗0 +¬IΣ0
1. Note, however, that the criterion provided by 399

Theorem 3.7 applies to conservativity over RCA∗0, without ¬IΣ0
1 in the base theory. 400

We now show that the general facts about pSO sentences proved above apply in 401

particular to the Ramsey-theoretic principles we study. 402

Lemma 3.9. Let P be one of the principles RTn
k , for n, k ∈ ω, CAC, ADS, and CRT2

2. 403

Then there exists a pSO sentence χ which is provably in RCA∗0 equivalent to P, both in 404

the entire universe and on any proper Σ0
1-cut. 405

Proof. The proofs are similar for all the above principles P and rely on Lemma 3.2. 406

We give a somewhat detailed argument for ADS and restrict ourselves to stating the 407

appropriate χ for the other principles. 408

Let γ be the sentence 409

either R is not a linear order 410

or for every x, y it holds that R(x, y) iff x ≤ y 411

or for every x, y it holds that R(x, y) iff x ≥ y, 412

and let χ say that for every set R and every unbounded set D, there is H ⊆cf D such 413

that (H,≤, R) satisfies γ. We claim that ADS is equivalent to χ provably in RCA∗0. 414

Clearly, if � is a linear order on N, then χ applied with D = N and R = � implies the 415

existence of a set H witnessing ADS for �. Thus, χ implies ADS. In the other direction, 416

given a relation R and an unbounded set D, either R is a linear order on D or not. 417

In the latter case, H = D witnesses χ. In the former, Lemma 3.2 lets us apply ADS 418

to obtain either an ascending or a descending sequence in R ∩D2, which witnesses χ. 419

Thus, ADS implies χ. 420

The above argument also works in a structure of the form (I,Cod(M/I)) for I a 421

proper Σ0
1-cut I in a model of RCA∗0. To verify this one has to check that an analogue 422

of Lemma 3.2 holds in (I,Cod(M/I)), which is unproblematic. 423
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For CAC, the corresponding pSO sentence χ says that for every set R and every 424

unbounded set D there exists an unbounded H ⊆cf D such that (H,≤, R) � γ, where γ 425

states that if R is a partial order, than it is a chain or antichain. For RTn
k , the sentence 426

γ states that if R1, . . . , Rk form a colouring of unordered n-tuples, i.e. they are disjoint 427

n-ary relations whose union is the set of all n-tuples that are strictly increasing with 428

respect to ≤, then all but one of the relations Rj are in fact empty. For CRT2
2, the 429

appropriate γ says that the binary relation R is a stable colouring when restricted to 430

the set of unordered pairs. � 431

Theorem 3.5, Corollary 3.6, and Lemma 3.9 immediately give: 432

Corollary 3.10. Let P be one of: RTn
k , for each n, k ∈ ω, CAC, ADS, and CRT2

2. Then 433

for every (M,X ) � RCA∗0 and each proper Σ0
1-cut I of M it holds that (M,X ) � P if and 434

only if (I,Cod(M/I)) � P. If A ∈ X is such that (M,A) � ¬IΣ1(A), then (M,X ) � P 435

if and only if (M,∆0
1-Def(M,A)) � P. 436

For RTn
k , the above result was shown in [11]. 437

It follows from work of Towsner [22] that WKL0 + CAC does not prove RT2
2 and 438

WKL0 + ADS does not prove CAC. Therefore, none of the implications RT2
2 → CAC→ 439

ADS → CRT2
2 → > (where > is the constant True) available in RCA0 can be reversed 440

provably in WKL0. It thus follows from Theorem 3.7 and Lemma 3.9 that all principles 441

appearing in this sequence differ in strength over RCA∗0 + ¬IΣ0
1 and that they can even 442

be distinguished by their first-order consequences over RCA∗0. 443

Theorem 3.11. Let P be one of the principles RT2
2,CAC,ADS,CRT

2
2, and let Q be a 444

principle to the right of P in this sequence or the constant >. Then: 445

(i) Q does not imply P over RCA∗0 + ¬IΣ0
1, 446

(ii) there is a first-order statement provable in RCA∗0 + P but not in RCA∗0 + Q, 447

(iii) RCA∗0 + P is not arithmetically conservative over RCA∗0. 448

Proof. By Lemma 3.9 we can treat P→ Q as a boolean combination of pSO sentences. 449

Since WKL0 does not prove Q→ P, Theorem 3.7 gives (i) and additionally implies that 450

there is an arithmetical sentence θ provable in RCA∗0 + Q → P but not in RCA∗0. Then 451

RCA∗0 + P ` θ and RCA∗0 + ¬Q ` θ, so RCA∗0 + Q 0 θ, which proves (ii). Finally, (iii) is 452

a special case of (ii). � 453

Together, Lemma 3.1 and Theorem 3.11 answer all questions about provability of 454

implications between our principles in RCA∗0 and RCA∗0 + ¬IΣ0
1 except the following. 455

Question 3.12. Does RCA∗0 + ADS or RCA∗0 + CAC prove CRT2
2? 456

In the context of item (iii) of Theorem 3.11, note that CRT2
2 is Π1

1-conservative over 457

RCA0 [3], and while CAC and ADS are not Π1
1-conservative over RCA0 because they 458

imply BΣ0
2, they are Π1

1-conservative over RCA0 + BΣ0
2 [5]. 459

We turn now to a more fine-grained analysis of conservativity issues. By [11], RTn
k is 460

∀Π0
3-conservative over RCA∗0. A fortiori, all the weaker principles studied in this paper 461

are also ∀Π0
3-conservative over RCA∗0. (We remark in passing that the techniques of [11] 462

show that any pSO sentence that is true in some ω-model of WKL0 is ∀Π0
3-conservative 463

over RCA∗0.) 464

On the other hand, if P is one of RT2
2, CAC, and ADS, then the statement “If IΣ1 fails, 465

then any computable instance of P has a computable solution” is a Π4 sentence of first- 466

order arithmetic. So, essentially by Corollary 3.10, we get the following nonconservation 467

result (proved in [11] for RT2
2). 468

Corollary 3.13. None of RT2
2, CAC, and ADS is Π4-conservative over RCA∗0. 469
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Thus, we have tight bounds on the amount of conservativity of RT2
2, CAC, and ADS 470

over RCA∗0. On the other hand, the sentence “If IΣ1 fails, then any computable instance 471

of CRT2
2 has a computable solution” is only Π5. So, we get: 472

Corollary 3.14. CRT2
2 is ∀Π0

3- but not Π5-conservative over RCA∗0. 473

The following intriguing question remains open: 474

Question 3.15. Is WKL∗0 + CRT2
2 ∀Π0

4-conservative over RCA∗0? 475

3.3. Closure properties. To conclude our discussion of normal versions of combinato- 476

rial principles, we will show that over RCA∗0 the principle CAC and all of its consequences 477

are significantly weaker than RT2
2 in a technical sense related to the closure properties 478

of cuts. 479

Working in RCA∗0, we write I0
1 to denote the definable cut consisting of those numbers 480

x such that each unbounded set S ⊆cf N contains a finite subset of cardinality x. Note 481

that by the correspondence between unbounded subsets of N and Σ0
1-cuts stated in 482

Proposition 2.1, I0
1 is simply the intersection of all Σ0

1-cuts. Thus, I0
1 = N exactly if IΣ0

1 483

holds. 484

It is easy to show in RCA∗0 that I0
1 is closed under multiplication: let S be an infinite 485

set that does not contain a finite set of cardinality a2 and compute a set S′ by taking 486

“every a-th element” of S. If S′ is finite, then some infinite end-segment of S does not 487

contain any finite subset of cardinality a. If S′ is infinite, then S′ itself is an infinite set 488

with no subset of cardinality a, because otherwise we would find at least a2 elements of 489

S. 490

In [12, Section 3], it is shown that RT2
2 implies a stronger closure property, namely that 491

I0
1 is closed under exponentiation. The proof of this result makes use of the well-known 492

almost exponential lower bounds on finite Ramsey numbers for 2-colourings of pairs. 493

The result has some interesting consequences, among them the fact that RCA∗0 + RT2
2 494

has nonelementary proof speedup over RCA∗0. (This was, in fact, the original motivation 495

for studying connections between Ramsey-theoretic principles and closure properties of 496

I0
1.) Another consequence is that the theory RCA0 + RT2

2 + ¬IΣ2 does not prove that 497

RT2
2 holds in the family of ∆2-definable sets [11]; this rules out a potential approach to 498

separating the arithmetical consequences of RCA0 + RT2
2 from BΣ2. 499

Below, we show that ADS and CAC are weaker than RT2
2 in this respect, as they 500

do not imply the closure of I0
1 under any superpolynomially growing function. Our 501

argument will be a typical initial segment construction, resembling for instance the one 502

in [14, Theorem 3.3], and it will once again make use of bounds on the finite version 503

of the appropriate combinatorial principle. In this case, we will take advantage of the 504

fact that, for k ≥ 2, a partial order with k2 − k elements contains either a chain or an 505

antichain of size at least k. Indeed, by Dilworth’s theorem, if the largest antichain in a 506

finite order has at most k − 1 elements, then the order can be presented as the union 507

of k − 1 chains. If the order contains at least k2 − k elements, then one of those chains 508

must have length at least k. 509

Theorem 3.16. Let g be a Σ1-definable function such that for every k ∈ ω there exists 510

n ∈ ω such that RCA∗0 ` ∀x≥n (g(x) ≥ xk). Then neither WKL∗0+CAC nor WKL∗0+ADS 511

proves that I0
1 is closed under g. 512

Proof. Of course, since CAC implies ADS over RCA∗0, it is enough to show that WKL∗0 + 513

CAC does not imply the closure of I0
1 under any superpolynomially growing function g. 514

Let M be a countable nonstandard model of I∆0 + supexp and let a ∈ M \ ω. We 515

will construct a cut I (e M in such a way that (I,Cod(M/I)) � WKL∗0 + CAC and 516
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I0
1(I,Cod(M/I)) = sup{ak | k ∈ ω}. This will suffice to prove the theorem since it 517

will hold that a ∈ I0
1(I,Cod(M/I)) and for any superpolynomially growing function g, 518

g(a) /∈ I0
1(I,Cod(M/I)). 519

Let (Sn)n∈ω be an enumeration of all M -finite sets with cardinality below ak for some 520

k ∈ ω, let (cn)n∈ω be an enumeration of all nonstandard elements of M and let (�n)n∈ω 521

be an enumeration of all M -coded partial orders with domain [0, expaa(2)]. 522

By induction on n ∈ ω, we will construct a decreasing chain F0 ⊇ F1 ⊇ F2 . . . of 523

M -finite sets, maintaining the condition that for each n there is some c ∈ M \ ω such 524

that |Fn| ≥ ac. Moreover, we will also make sure that for each n ∈ ω, |F3n| ≤ acn , that 525

[min(F3n+1),max(F3n+1)] ∩ Sn = ∅, and that F3n+2 is either a chain or an antichain in 526

the partial order �n. 527

We initialize the construction by setting F−1 := {1, 2, 4, 16, 216, . . . , expaa(2)]. In 528

step 3n, if |F3n−1| > acn , let F3n ( F3n−1 be such that |F3n| = acn and min(F3n) > 529

min(F3n−1). Otherwise, let F3n = F3n−1 \ {min(F3n−1)}. 530

In step 3n + 1, consider the set Sn. Let k ∈ ω be such that |Sn| = ak. Assume 531

w.l.o.g. (by taking a proper subset of F3n if necessary) that F3n has exactly ac elements 532

for some nonstandard c ∈ M , and let (fi)1≤i≤ac be the increasing enumeration of F3n. 533

Then F3n can be split into ak+1 “intervals” as follows: 534

{f1, . . . , fad} ∪ {fad+1, . . . , f2ad} ∪ . . . ∪ {f(ak+1−1)ad+1, . . . , fak+1ad} 535

where d = c−k−1. Since ak+1 > ak, the pigeonhole principle implies that there is some 536

i0 < ak+1 such that [fi0ad+1, f(i0+1)ad ]∩Sn = ∅. Let F3n+1 be the set {fj | i0ad+1 ≤ j ≤ 537

(i0 + 1)ad}. Notice that |F3n+1| ≥ ac−k−1 and that [min(F3n+1),max(F3n+1)] ∩ Sn = ∅ 538

as wanted. 539

In step 3n+ 2, consider �n �F3n+1. By construction, |F3n+2| ≥ ac for some nonstan- 540

dard c. Dilworth’s theorem guarantees that there exists C ⊆ F3n+2 such that |C| ≥ ac/2
541

and C is either a chain or an antichain in �n. Set F3n+2 = C. 542

Finally, let I be the initial segment sup{min(Fn) | n ∈ ω}. We check that I satisfies 543

the requirements of our construction. 544

Notice that I (e M , given that max(F0) ∈ M \ I. By the construction of step 3n, 545

I is a cut (that is, contains no greatest element) and for every k ∈ ω, Fk ∩ I ⊆cf I. 546

Moreover, I � exp because F−1 ∩ I ⊆cf I, and if x < y are two elements of F−1, then 547

2x ≤ y. Hence, (I,Cod(M/I)) � WKL∗0 by [19, Theorem 4.8]. 548

If � is a partial order in Cod(M/I), then � = �′ ∩ I for some M -finite set �′. Note 549

that there must exist b ∈ M \ I such that �′ � [0, b] is a partial order; otherwise, I 550

would be ∆0(�′)-definable as the set of i ∈ M for which �′ � [0, i] is a poset. It is thus 551

possible to extend �′ to an order �′′ over M by making every element ≤-greater than 552

b incomparable in �′′ with all other elements of M . The order �′′ is ∆0-definable in 553

M , so there exists n ∈ ω such that �′′ � [0, expaa(2)] = �n. At step 3n + 2, we chose 554

F3n+2 as a chain or antichain in �n. Thus, F3n+2 ∩ I ∈ Cod(M/I) is either a chain or 555

an antichain in �, and moreover F3n+2 ∩ I ⊆cf I. So, (I,Cod(M/I)) � CAC. 556

It remains to check that I0
1(I,Cod(M/I)) = sup{ak | k ∈ ω}. To prove the ⊆ 557

inclusion, let c ∈ M be nonstandard and let n ∈ ω be such that c = cn. Consider 558

F3n ∩ I ∈ Cod(M/I), which is a cofinal subset of I. Since F3n has at most ac elements, 559

then F3n∩I has no finite subset of cardinality ac. To prove the reverse inclusion, we have 560

to show that for each k ∈ ω and each U ∈ Cod(M/I) such that U ⊆cf I, there exists 561

an M -finite set V ⊆ U such that |V | = ak. Let U = U ′ ∩ I for some M -finite set U ′. 562

Note that |U ′| ≥ ak, because otherwise |U ′| = Sn for some n ∈ ω and the construction 563

of step 3n+ 1 guarantees that [min(F3n+1),max(F3n+1)]∩U ′ = ∅, so U = U ′ ∩ I 6⊆cf I. 564

So, let V ⊆ U ′ be the set consisting of the first ak elements of U ′. Again, V = Sn 565
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for some n ∈ ω. The construction of step 3n + 1 guarantees that V ′ ∩ I 6⊆cf I. This 566

means that we must have V ⊆ U , because otherwise there would be a largest element 567

of V ∩ U , then an element u ∈ U \ V above it, and then an element v ∈ V \ U above 568

u, contradicting the definition of V ′. Therefore, V is an M -finite set of cardinality ak 569

contained in U . � 570

Remark 3.17. The technique used in the proof of Theorem 3.16 can also be used 571

to show that WKL∗0 + RTn
k does not imply the closure of I0

1 under any function of 572

nonelementary growth rate. With a more careful choice of the initial model M , it can 573

also be used to prove slight refinements of the theorem such as the ∀Π0
3-conservativity 574

of WKL∗0 +CAC+ “I0
1 is not closed under any superpolynomially growing function” over 575

RCA∗0. We do not pursue this topic further in this paper. 576

Combining the techniques used above with the ones of [12, Section 3], one can show 577

that over RCA∗0 the Erdös-Moser principle EM, or even a weakening that only requires 578

the solution to be an unbounded set on which a given colouring is semitransitive, implies 579

the closure of I0
1 under exponentiation. This is because the lower bounds on general 580

Ramsey numbers for pairs, along with the upper bounds on Ramsey numbers associated 581

to orderings provided by Dilworth’s theorem, imply that given k ∈ ω, the smallest n 582

such that any 2-colouring of pairs from {1, . . . , n} is semitransitive on a set of size k has 583

size 2Ω(
√
k). 584

On the other hand, it is quite unclear what closure properties of I0
1, if any, are implied 585

by CRT2
2. 586

Question 3.18. Does CRT2
2 imply that I0

1 is closed under exp? 587

A positive answer to this question would give negative answers to Question 3.12 and 588

Question 3.15. For the latter, notice that “I0
1 is closed under exp”can be expressed by a 589

∀Π0
4 sentence, and “I0

1 in the computable sets is closed under exp” can even be expressed 590

by a purely first-order Π4 sentence. 591

One reason why it is not clear whether the techniques of Theorem 3.16 can be applied 592

to CRT2
2 is that this principle does not have an obvious “finite version” because of the 593

relatively high quantifier complexity of its first-order part (what is a meaningful notion 594

of “stable set” in the finite?). Answering Question 3.18 might require devising such a 595

finite version of CRT2
2 (or of SRT2

2) and finding bounds on Ramsey numbers associated 596

with it. 597

4. Long principles 598

We now focus our attention on the long versions of Ramsey-theoretic principles. 599

As in the case of normal versions, many implications with an easy proof in RCA0 600

transfer to RCA∗0 with no particular difficulty. Additionally, as discussed in Section 2.1, 601

it is straightforward to prove that `-ADSset implies `-ADSseq. The following result sum- 602

marizes the “easy” implications between our principles, as well as the non-implications 603

known from RCA0. 604

Lemma 4.1. Over RCA∗0, the following sequences of implications hold:

`-RT2
2 → `-CAC→ `-ADSset → `-ADSseq,

`-RT2
2 → `-CRT2

2.

None of the implications `-RT2
2 → `-CAC → `-ADSset and `-RT2

2 → `-CRT2
2 can be 605

provably reversed in RCA∗0. 606
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In the rest of this section, we describe some results obtained in an attempt to answer 607

questions left open by Lemma 4.1. It will follow from these results (specifically from 608

Theorem 4.2 and Theorem 4.8) that also the implication `-ADSset → `-ADSseq cannot 609

be provably reversed in RCA∗0, and that `-ADSset implies `-CRT2
2. 610

Perhaps more interestingly, it turns out that all of the long principles we consider 611

behave in one of two contrasting ways. Some of them are like `-RT2
2, in that they are 612

rather easily seen to imply Σ0
1-induction. On the other hand, other long principles are 613

partially conservative over RCA∗0, which makes them closer to normal principles in a 614

well-defined technical sense. We begin by discussing the former type of behaviour. 615

Theorem 4.2. Over RCA∗0, each of the principles `-RT2
2, `-CAC, `-ADSset implies IΣ0

1. 616

Proof. The proof for `-RT2
2 was given by Yokoyama in [23], and it uses a transitive 617

colouring, so essentially the same argument works for each of the principles listed above. 618

We describe the argument for the weakest of these principles, namely `-ADSset. 619

Working in RCA∗0, suppose that IΣ0
1 fails, and that an unbounded set A is enumerated 620

in increasing order as {ai | i ∈ I} for I a proper Σ0
1-cut. We define a linear order � on 621

N in the following way: 622

x � y ⇔ ∃i ∈ I (x ∈ (ai−1, ai] ∧ y ∈ (ai−1, ai] ∧ x ≥ y)
∨ ∃i, j ∈ I (i < j ∧ x ∈ (ai−1, ai] ∧ y ∈ (aj−1, aj ]).

623

That is, we invert the usual ordering ≤ on each interval (ai−1, ai], but we compare 624

elements from different intervals in the usual way. The order � is a set by ∆1(A)- 625

comprehension. 626

If S ⊆ N is such that any two elements x, y ∈ S satisfy x � y ↔ y ≤ x, then S has 627

to be contained in an interval of the form (ai−1, ai], so it is finite. On the other hand, if 628

all x, y ∈ S satisfy x � y ↔ x ≤ y, then S can contain at most one element from each 629

(ai−1, ai], so the cardinality of S is strictly less than N. � 630

Remark 4.3. Note that the ordering � used in the proof of Theorem 4.2 is stable, in 631

the sense that for every x, there are only finitely many y such that y � x. Thus, IΣ0
1 632

is implied already by what one could call “`-SADSset”, the long, set-solution version of 633

the stable ADS principle SADS from [9]. 634

To show that the long versions of other principles are logically weak, we introduce 635

an auxiliary statement, a version of the grouping principle GP2
2 considered in [17]. The 636

original grouping principle is a weakening of RT2
2 stating that, for any 2-colouring of 637

pairs and any notion of largeness of finite sets (suitably defined), there is an infinite 638

sequence of large finite sets G0, G1, . . . (the groups) such that for each i < j the colouring 639

is constant on Gi × Gj . We consider a weaker version tailored to RCA∗0, in which the 640

number of groups can be a proper cut, but the cardinality of individual groups should 641

eventually exceed any finite number. 642

Definition 4.4. The growing grouping principle GGP2
2 states that for every colouring 643

c : [N]2 → 2 there exists a sequence of finite sets (Gi)i∈I such that 644

(i) for every i < j ∈ I and every x ∈ Gi, y ∈ Gj it holds that x < y, 645

(ii) for every i < j ∈ I, the colouring c�(Gi ×Gj) is constant, 646

(iii) for every i ∈ I, |Gi| ≤ |Gi+1| and supi∈I |Gi| = N. 647

Note that RCA0+RT2
2 ` GGP2

2. We prove a possibly surprising result on the behaviour 648

of GGP2
2 under ¬IΣ0

1. 649

Lemma 4.5. WKL∗0 + ¬IΣ0
1 implies GGP2

2. Moreover, GGP2
2 restricted to transitive 650

colourings is provable in RCA∗0 + ¬IΣ0
1. 651
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Remark 4.6. Lemma 4.5 implies in particular that GGP2
2 is Π1

1-conservative over 652

RCA∗0 + ¬IΣ0
1. In contrast, Yokoyama [private communication] has pointed out that 653

GGP2
2 is not arithmetically conservative over RCA0. This can be seen as follows. It is 654

shown in [17, Theorem 5.7 & Corollary 5.9] that RCA0 extended by a statement GP(Lω) 655

intermediate between GGP2
2 and GP2

2 proves the principle known as 2-DNC and, as a 656

consequence, an arithmetical statement CΣ2 unprovable in RCA0. However, it is clear 657

from the proof of [17, Theorem 5.7] that RCA0 + GGP2
2 is enough for the argument to 658

go through. 659

Proof of Lemma 4.5. The proof uses the technique of building a grouping by thinning 660

out a family of finite sets first “from below” and then “from above”. This method was 661

applied to construct large finite groupings in [14]. 662

Work in WKL∗0 +¬IΣ0
1, and assume that A = {ai | i ∈ I} is an unbounded set, where 663

I is a proper Σ0
1-cut. By possibly thinning out A (which can only decrease I), we may 664

also assume that for each i ∈ I, a0 > 2i and |(ai, ai+1]| ≥ a0ai2
ai . 665

Let c : [N]2 → 2. We want to obtain a sequence of sets (Gi)i∈I witnessing GGP2
2 such 666

that Gi ⊆ (ai−1, ai] for each i. We proceed in two main stages. 667

(1) We stabilize the colour “from below”. For each i ∈ I, build a finite sequence of 668

finite sets Bi
−1 ⊇ Bi

0 ⊇ . . . ⊇ Bi
ai−1

in the following way. Let Bi
−1 = (ai−1, ai], and for 669

each 0 ≤ x ≤ ai−1 let Bi
x = {y ∈ Bi

x−1 | c(x, y) = k}, where k ∈ {0, 1} is such that 670

|{y ∈ Bi
x−1 | c(x, y) = k}| ≥ |{y ∈ Bi

x−1 | c(x, y) = 1− k}|. We can choose for instance 671

k = 0 if the two values are equal. Let G′i = Bi
ai−1

. 672

At this point, for each i ∈ I and each x ≤ ai−1 the colouring c is constant on {x}×G′i. 673

Moreover, we have G′0 = [0, a0] and |G′i| ≥ a0ai2
ai−ai−1−1 ≥ a0ai for each 0 < i ∈ I. 674

Note that the sequence (G′i)i∈I is ∆1(A)-definable. 675

(2) We stabilize the colour “from above”. For each i ∈ I, we can construct an infinite 676

sequence of finite sets G′i = Di
i ⊇ Di

i+1 ⊇ Di
i+2 ⊇ . . . indexed by i ≤ j ∈ I, with a 677

single step of the construction essentially like in stage (1). That is, given j > i, we 678

let Di
j be |{x ∈ Di

j−1 | c(x,minG′j) = k}| for that k for which this set is larger. We 679

only need to compare each x ∈ Di
j−1 with one element of G′j , because we have already 680

arranged for c to be constant on {x} ×G′j . Note that for each i < j ∈ I the colouring 681

c is constant on Di
j ×G′j . Also, each D0

j is nonempty, while for 0 < i ≤ j ∈ I we have 682

|Di
j | ≥ a0ai2

−j ≥ 2ai. 683

Intuitively, we would want to define Gi =
⋂

i≤j∈I D
i
j , but then being a member of Gi 684

might not be ∆0
1-definable. However, if we fix m ∈ I and consider only the sets

⋂m
j=iD

i
j 685

for i ≤ m, we obtain a node of length am + 1 in the computable binary tree T defined 686

as follows. A finite 0-1 sequence τ belongs to T if the largest m such that lh(τ) > am 687

satisfies (if we identify τ with the finite set it codes): 688

(i) τ ∩ [0, am] ⊆
⋃m

i=0G
′
i, 689

(ii) for every i < j ≤ m, the colouring c is constant on (G′i ∩ τ)× (G′j ∩ τ), 690

(iii) |τ ∩G′i| > ai for every i ≤ m. 691

The tree T is infinite because for arbitrary m ∈ I there exists a node in T of length am, 692

and the set A = {ai | i ∈ I} is unbounded. By WKL T has an infinite path G and we 693

get the desired grouping (Gi)i∈I by taking Gi = G ∩ (ai−1, ai]. 694

Now assume additionally that c is a transitive colouring. By the argument from the 695

proof of Proposition 3.3, we can think of c as given by a linear ordering �. The first 696

stage of the construction, “from below”, is exactly as before. In the “from above” stage, 697

we will make a small change. If we built the sets Di
j for c as in the previous construction, 698

then, in terms of �, we would look at the position of minG′j in the �-ordering relative 699
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to the elements of Di
j−1. This would split Di

j−1 into a “top part” and a “bottom part” 700

with respect to �, and we would take whichever of these two parts were larger. Now, 701

we will take the �-bottom half of Di
j−1 if minG′j lies above it, and the top �-half if it 702

does not. (Do this in a way that includes the �-midpoint in case |Di
j−1| is odd, so that 703

|Di
j | is exactly d|Di

j−1|/2e.) 704

By Lemma 2.2, there is an element s > I coding the set of those pairs 〈i, j〉 with 705

i < j ∈ I for which Di
j is the �-top half of Di

j−1. We can think of s as a subset of 706

[0, b]× [0, b] for some b < log a0. We can use s to generalize the new definition of Di
j to 707

i ∈ I and j ∈ [i, b]: Di
j is the �-top half of Di

j−1 if 〈i, j〉 ∈ s, and the �-bottom half 708

otherwise. Let Gi =
⋂b

j=iD
i
j . It is easy to check that (Gi)i∈I is ∆0

1-definable and that 709

it witnesses GGP2
2 for �. � 710

Remark 4.7. Note that the reason why the proof of GGP2
2 for transitive colourings 711

does not obviously generalize to arbitrary ones is that in general, if i ∈ I < j, then it 712

is not clear how to split a subset of (ai−1, ai] into a “more red” and a “more blue” half 713

with respect to a (nonexistent) element of G′j . If the colouring is transitive and given by 714

an ordering �, then even though we cannot actually compare the elements of (ai−1, ai] 715

to a nonexistent element, we can say which ones form the top and bottom half. 716

Theorem 4.8. RCA∗0 proves `-ADSseq ↔ ADS, and WKL∗0 proves `-CRT2
2 ↔ CRT2

2. 717

Proof. Let us first consider the case of ADS. Clearly, `-ADSseq implies ADS, and the 718

two principles are equivalent over RCA0. So, we only need to prove `-ADSseq from ADS 719

working in RCA∗0 + ¬IΣ0
1. 720

Let (N,�) be an instance of `-ADSseq. By Lemma 4.5, we can apply GGP2
2 to the 721

colouring given by �, obtaining a sequence of finite sets G0 < G1 < . . . < Gi < . . ., 722

where i ∈ I for some Σ0
1-cut I. By Lemma 3.2, we can apply ADS to the order � 723

restricted to the set A = {min(Gi) | i ∈ I}. Without loss of generality, assume that 724

this gives us an unbounded set S ⊆ A such that for any x, y ∈ S, x � y iff x ≥ y. 725

Assume S = {min(Gij ) | j ∈ J} for some cut J ⊆ I. Now consider the descending 726

sequence in � defined as follows: first list the elements of Gi0 in �-descending order, 727

then the elements of Gi1 in �-descending order, and so on. This sequence can be 728

obtained using ∆1(S,�)-comprehension, and it has length N, because S ⊆cf A ⊆cf N, 729

so supj∈J |Gij | = supi∈I |Gi| = N. 730

A similar argument shows that RCA∗0 + GGP2
2 proves CRT2

2 → `-CRT2
2. However, 731

the instance to which we apply GGP2
2 in that argument is not necessarily transitive, so 732

Lemma 4.5 only implies WKL∗0 + ¬IΣ0
1 ` CRT2

2 → `-CRT2
2 and thus WKL∗0 ` CRT2

2 ↔ 733

`-CRT2
2. � 734

Remark 4.9. There is version of ADS, called ADC in [1], in which the solution is an 735

infinite set S such that either each element of S has only finitely many predecessors 736

or each element of S has only finitely many successors. This principle is known to be 737

equivalent to ADS in RCA0, but strictly weaker in terms of Weihrauch reducibility. It 738

is not hard to verify using the techniques of Section 3 that the normal version of ADC 739

is provably in RCA∗0 equivalent to ADS. Moreover, a slight modification of the previous 740

proof shows that the long version of ADC is also equivalent to ADS. 741

Theorem 4.8 allows us to show that `-ADSseq and `-CRT2
2 are weak principles in the 742

sense that they are partially conservative over RCA∗0. 743

Corollary 4.10. Both WKL∗0 +`-ADSseq and WKL∗0 +`-CRT2
2 follow from WKL∗0 +RT2

2. 744

As a consequence, these theories are ∀Π0
3-conservative over RCA∗0 and do not imply IΣ0

1. 745
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`-RT2
2

RT2
2

`-CAC

CAC

`-ADSset

`-ADSseq ADS

`-CRT2
2

CRT2
2

Figure 1. Summary of relations between the various versions of RT2
2,

CAC, ADS and CRT2
2 over RCA∗0. Solid arrows represent implications

provable in RCA∗0 that do not provably reverse in RCA∗0. The dashed
arrow represents an implication for which the reversal is open. Also the
implications from CAC and ADS to CRT2

2 and from any of RT2
2,CAC,ADS

to `-CRT2
2 are open. All indicated theories above the thick dashed line

imply IΣ0
1, and all indicated theories below the line are ∀Π0

3-conservative
over RCA∗0.

Proof. It is immediate from Theorem 4.8 and Lemma 3.1 that both WKL∗0 + `-ADSseq
746

and WKL∗0 + `-CRT2
2 follow from WKL∗0 + RT2

2. 747

To prove the ∀Π0
3-conservativity of WKL∗0 + RT2

2 over RCA∗0, note that the proof of 748

∀Π0
3-conservativity of RCA∗0 +RTn

k over RCA∗0 in [11] in fact shows that any Σ0
3 sentence 749

consistent with RCA∗0 is satisfied in some model of RCA∗0+RTn
k of the form (I,Cod(M/I)) 750

for I a proper Σ0
1-cut in a model M � I∆0

1 + exp. By [19, Theorem 4.8], any such model 751

(I,Cod(M/I)) satisfies WKL∗0 as well. 752

Of course, each theory that is at least Π1-conservative over RCA∗0 is consistent with 753

¬Con(I∆0) and thus cannot imply even I∆0 + supexp, where supexp expresses the 754

totality of the iterated exponential function. � 755

Our results from Sections 3 and 4 on the relationships between the normal and long 756

versions of RT2
2,CAC,ADS, and CRT2

2 are summarized in Figure 1. One phenomenon 757

apparent from the figure is that all of the principles considered up to this point either 758

imply IΣ0
1 or are ∀Π0

3-conservative over RCA∗0. 759

The main open problems related to normal versions of our principles concern CRT2
2 760

and have already been stated in Section 3. Among the long principles, questions about 761

those that imply IΣ0
1 move us back to the traditional realm of reverse mathematics over 762

RCA0. As for the weaker long principles, an important matter is to settle the status of 763

GGP2
2. 764

Question 4.11. Does RCA∗0 + ¬IΣ0
1 imply GGP2

2? Is GGP2
2 equivalent to WKL∗0 over 765

RCA∗0 + ¬IΣ0
1? 766

A more specialized but related group of problems concerns `-CRT2
2. 767

Question 4.12. Is `-CRT2
2 equivalent to CRT2

2 over RCA∗0? Does it follow from RCA∗0 + 768

RT2
2? 769
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By the argument used to prove Theorem 4.8, if GGP2
2 is provable in RCA∗0 + ¬IΣ0

1, 770

then both parts of Question 4.12 have a positive answer. 771

In the context of Question 4.11, we mention a potentially interesting connection 772

between GGP2
2 and the long version of the Erdös-Moser principle: over RCA∗0 + ¬IΣ0

1, 773

`-EM is equivalent to EM∧GGP2
2. This equivalence implies in particular that `-EM does 774

not prove IΣ0
1 and is in fact ∀Π0

3-conservative over RCA∗0. However, we do not know if 775

the ∀Π0
3-conservative long principles considered earlier also imply GGP2

2. 776

To prove the equivalence, note that, on the one hand, an argument like the one in 777

Theorem 4.8 proves `-EM in RCA∗0 + GGP2
2 + EM. Given c : [N]2 → 2, we can use GGP2

2 778

to obtain (Gi)i∈I such that c � (Gi × Gj) is constant for each i < j ∈ I, thin out each 779

Gi at most exponentially to obtain G′i on which c is constant, and then apply EM to 780

c � {min(G′i | i ∈ I} in order to find S = {min(G′ij | j ∈ J} on which c is transitive. 781

Then
⋃

j∈J G
′
ij

is a set of cardinality N on which c is transitive. On the other hand, 782

RCA∗0 +¬IΣ0
1 +`-EM implies GGP2

2. Given a colouring c : [N]2 → 2, we can apply `-EM to 783

obtain a set S of cardinality N such that c is transitive on S. Then Lemma 4.5 applied 784

to c� [S]2 provides a solution to GGP2
2. 785

5. The curious case of COH 786

In the final section of the paper, we consider the behaviour over RCA∗0 of the cohesion 787

principle COH. Recall that a set C ⊆ N is cohesive for a sequence (Rn)n∈N of subsets 788

of N if, for each n ∈ N , either all but finitely many elements of C belong to Rn or all 789

but finitely many elements of C belong to N\Rn. We write C ⊆∗ Rn in the former case 790

and C ⊆∗ Rn in the latter. 791

COH : For each sequence (Rn)n∈N of subsets of N, there exists an unbounded 792

set C which is cohesive for (Rn)n∈N. 793

`-COH: For each sequence (Rn)n∈N of subsets of N, there exists a set C of 794

cardinality N which is cohesive for (Rn)n∈N. 795

Belanger [2] asked whether COH is Π1
1-conservative over RCA∗0. A negative answer to 796

this question follows from the results of Section 3. This is because COH implies CRT2
2, 797

and the implication remains provable in RCA∗0: for a colouring c : [N]2 → 2, any set 798

C that is cohesive for the sequence ({y | c(n, y) = 1})n∈N is also stable for c. Thus, 799

Corollary 3.14 immediately implies the following result. 800

Corollary 5.1. RCA∗0 + COH is not Π5-conservative over RCA∗0. 801

Of course, `-COH implies `-CRT2
2 over RCA∗0 in an analogous way. Below we focus on 802

COH, as we have no results to report on `-COH beyond immediate consequences of the 803

easy implications from `-COH to COH and to `-CRT2
2. 804

In terms of our classification of Ramsey-theoretic statements into normal and long 805

principles, COH has some aspects of both. On the one hand, the solution C is only re- 806

quired to be unbounded but not to have cardinality N. On the other hand, C is required 807

to behave in a certain way with respect to each element of the sequence (Rn)n∈N, which 808

obviously has length N. We will show that the latter feature of COH has an interesting 809

consequence: the well-known implication from RT2
2 to COH [3]1 is not provable over 810

RCA∗0. A fortiori, this means that neither the implications from CAC and ADS to COH 811

1The proof of RT2
2 → COH given in [3] actually requires IΣ0

2 but Mileti [16] gave another proof which
goes through in RCA0.
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known to hold over RCA0 nor the equivalence between COH and CRT2
2 known to hold 812

over RCA0 + BΣ0
2 [9] are provable in RCA∗0. 813

To prove that the implication RT2
2 → COH breaks down over RCA∗0, we will show that, 814

in contrast to all the “normal” Ramsey-theoretic principles considered in Section 3, COH 815

is never computably true, i.e. it never holds in a model of the form (M,∆1-Def(M)). We 816

will prove this by means of a detour through what is called the Σ0
2-separation principle 817

in [2]. 818

Σ0
2-separation : For every two disjoint Σ0

2-sets A0, A1 819

there exists a ∆0
2-set B such that A0 ⊆ B and A1 ⊆ B. 820

It was shown in [2] that COH is equivalent to Σ0
2-separation over RCA0+BΣ0

2 and that 821

the implication from COH to Σ0
2-separation works over RCA0. Below, we verify that this 822

implication remains valid over RCA∗0. On the other hand, we show that BΣ1 + exp is 823

enough to prove the existence of two disjoint lightface Σ2-sets that cannot be separated 824

by a ∆2-set. That is the same thing as saying that in any structure M � BΣ1 + exp, 825

the second-orded universe consisting exclusively of the ∆1-definable sets satisfies the 826

negation of the Σ0
2-separation principle and hence also ¬COH. 827

Lemma 5.2. RCA∗0 proves that COH implies Σ0
2-separation. 828

Proof. We will follow the structure of the proof in RCA0 described in [2] (which is based 829

on [10]), pointing out where we have to depart from it. We work in RCA∗0 + COH 830

and prove the dual formulation of Σ0
2-separation: if A0 and A1 are Π0

2 sets such that 831

A0 ∪A1 = N, then there exists a ∆0
2-set B such that B ⊆ A0 and B ⊆ A1. 832

Assume that:

A0 ={x | ∀y ∃z θ0(x, y, z)},
A1 ={x | ∀y ∃z θ1(x, y, z)},

where θ0, θ1 are ∆0
0, and for each n ∈ N it holds that n ∈ A0 or n ∈ A1. 833

The argument in RCA0 would now make use of a ∆0
1-definable function f : N×N→ 2 834

such that for every n, 835

{s | f(n, s) = i} is infinite iff n ∈ Ai. 836

It seems unclear whether we can have access to such a function in RCA∗0. However, we 837

can use a witness comparison argument to find a ∆0
1-definable f : N×N→ 2 such that 838

for every n, 839

if {s | f(n, s) = i} is infinite, then n ∈ Ai. 840

Namely, for every n at least one of ∀y ∃z θ0(n, y, z) and ∀y ∃z θ1(n, y, z) holds. So, by 841

BΣ0
1, for every n and s there must exist some w0 such that ∀y≤s∃z≤w0 θ0(n, y, z) or 842

some w1 such that ∀y≤ s ∃z≤w1 θ1(n, y, z). Define f(n, s) = 0 if the smallest such w0 843

is at most equal to the smallest such w1, and f(n, s) = 1 otherwise. 844

Now consider the ∆0
1-definable sequence of sets (Rn)n∈N where Rn = {s | f(n, s) = 0}. 845

Let C be a cohesive set for this sequence. Notice that if C ⊆∗ Rn, then Rn is infinite 846

and hence n ∈ A0, and analogously if C ⊆∗ Rn then n ∈ A1. 847

Let 848

B = {n | ∃k ∀`≥k (` ∈ C → ` ∈ Rn)}. 849

Since C is cohesive for (Rn)n∈N, both B and its complement are Σ0
2-definable. Moreover, 850

it follows from the construction that if n ∈ B then n ∈ A0 and if n /∈ B then n ∈ A1. � 851

Lemma 5.3. BΣ1 + exp proves that there exist two disjoint Σ2-sets that cannot be 852

separated by a ∆2-set. 853
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Proof. We verify that an essentially standard proof of the existence of ∆2-inseparable 854

disjoint Σ2-sets goes through in BΣ1 + exp. The recursion-theoretic facts and notions 855

needed for the proof to work were formalized within BΣ1 + exp in [6]. 856

A Turing functional Φ is a Σ1-set of tuples 〈x, y, P,N〉, where x, y ∈ N and P,N 857

are disjoint finite sets. Turing functionals are constrained to be well-defined in the 858

sense that for fixed x, P,N there is at most one y such that 〈x, y, P,N〉 ∈ Φ, and to 859

be monotone in the sense that increasing P or N preserves membership in Φ. Given a 860

Turing functional Φ, we say that Φ0′(x) = y if there exist P ⊆ 0′ and N ⊆ 0′ such that 861

〈x, y, P,N〉 ∈ Φ. 862

Work in BΣ1 + exp, and let (Φe)e∈N be an effective listing of all Turing functionals. 863

Let A0 be the Σ2-set {e ∈ N : Φ0′
e (e) = 0}, and let A1 be the Σ2-set {e ∈ N : Φ0′

e (e) = 1}. 864

Clearly, A0 and A1 are disjoint. We claim that they cannot be separated by a ∆2-set. 865

Suppose that B is a ∆2-set such that A0 ⊆ B and A1 ⊆ B. By [6, Corollary 3.1], 866

provably in BΣ1 + exp the ∆2-set B is weakly recursive in 0′ in the following sense: 867

there is some Turing functional Φe0 such that for every x, if x ∈ B then Φ0′
e0(x) = 1, and 868

if x /∈ B then Φ0′
e0(x) = 0. By the definition of A0 and A1, this implies that Φ0′

e0(e0) = 0 869

iff Φ0′
e0(e0) = 1, which is a contradiction because Φ0′

e0 is defined on every input and takes 870

0/1 values. � 871

Theorem 5.4. Any model (M,∆0
1-Def(M,A)) � RCA∗0, where A ⊆M , satisfies ¬COH. 872

Proof. This is an immediate consequence of Lemma 5.2 and Lemma 5.3 relativized to 873

A. Lemma 5.2 says that if the structure (M,∆0
1-Def(M,A)) satisfied COH, then it 874

would also satisfy the Σ0
2-separation principle. The latter would contradict Lemma 5.3, 875

because in (M,∆0
1-Def(M,A)) the Σ0

2-sets are exactly the Σ2(A)-definable sets and the 876

∆0
2-sets are exactly the ∆2(A)-definable sets. � 877

Corollary 5.5. RCA∗0 + RT2
2 does not imply COH. 878

Proof. By Theorem 5.4, it is enough to note that there exists a model of RCA∗0 + RT2
2 879

of the form (M,∆0
1-Def(M,A)) for some A ⊆M . The existence of such a model follows 880

from the existence of a model of RCA∗0 + RT2
2 + ¬IΣ0

1 [11] and Corollary 3.6. � 881

Corollary 5.6. RT2
2, CAC, and ADS are incomparable with COH with respect to impli- 882

cations over RCA∗0. 883

Another consequence of Theorem 5.4 is that an analogue of Theorem 3.5 does not hold 884

for COH. In particular, it is not true that if (M,X ) � RCA∗0 and (I,Cod(M/I)) � COH 885

for some Σ0
1-cut I of M , then (M,X ) � COH, since in a model of ¬IΣ1 this would work 886

in particular for X = ∆1-Def(M). On the other hand, using methods in the style of 887

Section 3 it is easy to show that the converse implication still holds. 888

Proposition 5.7. For every (M,X ) � RCA∗0 and every proper Σ0
1-cut I in (M,X ), if 889

(M,X ) � COH, then (I,Cod(M/I)) � COH. 890

Proof. Suppose (M,X ) � RCA∗0 + COH and I is a proper Σ0
1-cut in (M,X ). Let A ∈ X 891

be a cofinal subset of M enumerated as A = {ai | i ∈ I}, as in Proposition 2.1. 892

Let (Ri)i∈I be a sequence of subsets of I that belongs to Cod(M/I). Define a sequence 893

(R′n)n∈M in the following way. If n ∈ (ai−1, ai] for some i ∈ I, let 894

R′n = {x ∈M | ∃j ∈ I (x ∈ (aj , aj+1]) ∧ j ∈ Ri)}. 895

The sequence (R′n)n∈M is ∆1-definable in A and the code for (Ri)i∈I , so it belongs to 896

X . By COH in (M,X ), there exists C ′ ∈ X such that C ′ ⊆cf M and C ′ is cohesive for 897

(R′n)n∈M . Define C = {i ∈ I | C ′∩ (ai, ai+1] 6= ∅}. Both C and I \C are Σ1-definable in 898
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C ′ and A, so C ∈ Cod(M/I) by Lemma 2.2. Moreover, C ⊆cf I and it is easy to check 899

that C is cohesive for (Ri)i∈I . � 900

Results such as Theorem 5.4 and Corollary 5.5 provide some new information about 901

COH, but the strength of this principle in RCA∗0 is still to a large extent mysterious. 902

Some rather basic problems remain open. 903

Question 5.8. Does COH, or at least `-COH, imply IΣ0
1 over RCA∗0? Is `-COH, or at 904

least COH, ∀Π0
3-conservative over RCA∗0? 905

Question 5.9. Does RCA∗0, or at least WKL∗0, prove COH↔ `-COH? 906
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