WEAKER COUSINS OF RAMSEY'S THEOREM OVER A WEAK BASE THEORY

1

2

3

4

8

MARTA FIORI-CARONES, LESZEK ALEKSANDER KOŁODZIEJCZYK, AND KATARZYNA W. KOWALIK

ABSTRACT. The paper is devoted to a reverse-mathematical study of some well-known consequences of Ramsey's theorem for pairs, focused on the chain-antichain principle CAC, the ascending-descending sequence principle ADS, and the Cohesive Ramsey Theorem for pairs CRT_2^2 . We study these principles over the base theory RCA_0^* , which is weaker than the usual base theory RCA_0 considered in reverse mathematics in that it allows only Δ_1^0 -induction as opposed to Σ_1^0 -induction. In RCA_0^* , it may happen that an unbounded subset of N is not in bijective correspondence with N. Accordingly, Ramsey-theoretic principles split into at least two variants, "normal" and "long", depending on the sense in which the set witnessing the principle is required to be infinite.

We prove that the normal versions of our principles, like that of Ramsey's theorem for pairs and two colours, are equivalent to their relativizations to proper Σ_1^0 -definable cuts. Because of this, they are all Π_3^0 - but not Π_1^1 -conservative over RCA₀^{*}, and, in any model of RCA₀^{*} + ¬RCA₀, if they are true then they are computably true relative to some set. The long versions exhibit one of two behaviours: they either imply RCA₀ over RCA₀^{*} or are Π_3^0 -conservative over RCA₀^{*}. The conservation results are obtained using a variant of the so-called grouping principle.

We also show that the cohesion principle COH, a strengthening of CRT_2^2 , is never computably true in a model of RCA_0^* and, as a consequence, does not follow from RT_2^2 over RCA_0^* .

MSC: 03B30, 03F30, 03F35, 03H15, 05D10 5 Keywords: reverse mathematics, Ramsey's theorem, models of arithmetic, conservation 6 theorems 7

1. INTRODUCTION

The logical strength of Ramsey-theoretic principles has been one of the most important research topics in reverse mathematics for over two decades. Statements from Ramsey theory are an appealing subject for logical analysis, because they are often not equivalent to any of the usual set existence principles encountered in second-order arithmetic, and they form a complex web of implications and nonimplications (see [8] for an introduction to the area). Moreover, characterizing the first-order consequences of Ramsey-theoretic statements is frequently an interesting and demanding task.

As is the custom in reverse mathematics, the strength of such statements is usually investigated over the base theory RCA_0 , a fragment of second-order arithmetic that includes the Δ_1^0 -comprehension axiom and the mathematical induction scheme for Σ_1^0 definable properties. A weaker alternative to RCA_0 , introduced in [19] and known as RCA_0^* , allows induction only for Δ_1^0 properties. Working in a weak base theory makes it possible to track nontrivial uses of induction and to make some fine distinctions 21

Date: May 24, 2021.

The authors were supported by grant no. $2017/27/\mathrm{B}/\mathrm{ST1}/01951$ of the National Science Centre, Poland.

that disappear over RCA_0 , but it also comes with additional technical and conceptual challenges.

An issue of particular relevance to Ramsey-theoretic principles is that many of them 24 assert the existence of an *infinite* set $Y \subseteq \mathbb{N}$ that relates in a certain way to a given 25 colouring of tuples. RCA_0^* is weak enough that the precise definition of what it means 26 to be an infinite subset of \mathbb{N} becomes important. Usually, one only requires that Y be 27 unbounded in \mathbb{N} , and this gives rise to what we call "normal" versions of the principles. 28 However, over RCA°_{0} being unbounded is strictly weaker than being the range of a 29 strictly increasing map with domain \mathbb{N} . "Long" versions of principles can be obtained 30 by requiring Y to have the latter property. 31

The strength of Ramsey's Theorem over RCA_0^* was investigated in [23] and [11]. The upshot of that work is that in all nontrivial cases, the normal version of Ramsey's Theorem for a fixed length of tuples and number of colours is partially conservative but not Π_1^1 -conservative over RCA_0^* . On the other hand, the long version of Ramsey's Theorem is strong enough to imply RCA_0 .

In this paper, we ask the question whether the same general pattern also holds for 37 other Ramsey-theoretic principles, in particular the various natural weakenings of Ram-38 sey's Theorem for pairs that are commonly studied in reverse mathematics. Many of 39 our results could be stated in relatively general way, but for illustrative purposes, we 40 find it useful to concentrate on a small number of specific principles. We mostly consider 41 two statements about linear orders, namely the chain-antichain principle CAC and the 42 ascending-descending sequence principle ADS, as well as the cohesive version of Ram-43 sey's theorem for pairs and two colours CRT_2^2 . (The definitions are recalled in Section 44 2.1.) The statements CAC, ADS, and CRT_2^2 are not only combinatorially natural, but 45 also reasonably well-understood in the traditional reverse-mathematical setting: over 46 RCA_0 they form a strict linear order in terms of implication, and each of them is known 47 to be fully conservative over a classical fragment of first-order arithmetic. 48

We show that normal versions of our principles, just like those of RT_k^n , belong to 49 a class of statements that we call "pseudo-second-order". The behaviour of any such 50 statement in a model of $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$ is governed by the proper Σ_1^0 -definable cuts of 51 the model. As a consequence, normal versions of CAC, ADS, and CRT_2^2 are Π_3^0 - but not 52 Π_1^1 -conservative over RCA₀, and they have the curious feature that whenever they are 53 true in a structure satisfying $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$, they are actually computably true in that 54 structure relative to a set parameter witnessing the failure of $I\Sigma_1^0$. We also show that 55 CAC and ADS are significantly weaker than RT_2^2 in a technical sense related to closure 56 properties of cuts. The strength of CRT_2^2 in this sense is left open, as is the question 57 whether ADS or CAC imply CRT_2^2 over RCA_0^* . 58

We then show that long versions of Ramsey-theoretic principles tend to behave in 59 one of two ways. Some, like CAC, imply RCA_0 by an easy argument dating back to [23]. 60 Others, like CRT_2^2 , are equivalent to normal versions of the corresponding principles in 61 RCA_0^* or in its extension by Weak König's Lemma. As a result, these principles remain 62 Π_3^0 -conservative over RCA_0 . In the case of ADS, both behaviours are possible depending 63 on how exactly the principle is formalized. 64

We also study the cohesion principle COH, a well-known strengthening of CRT_2^2 that does not fit neatly into the classification into normal and long principles. It follows immediately from our results on CRT_2^2 that COH is not Π_1^1 -conservative over RCA_0^* , 67 which answers a question of Belanger [2]. Our main result about COH as such is that in contrast to many other statements we consider, it can never be computably true, even in a model of $RCA_0^* + \neg I\Sigma_1^0$. As a consequence, COH is not implied by CRT_2^2 , ADS, or even RT_2^2 provably in RCA_0^* .

22

The remainder of this paper is structured as follows. In Section 2, we discuss the necessary definitions and background, including precise formulations of the normal and long versions of our principles. We study the normal versions in Section 3, the long versions in Section 4, and COH in Section 5.

2. Preliminaries

We assume that the reader has some familiarity with the language of second-order 77 arithmetic and with the most common fragments of second-order arithmetic like RCA₀ 78 and WKL₀, as described in [18] or [8]. We also assume familiarity with the usual induction and collection (or bounding) schemes encountered in first- and second-order arithmetic. Background in first-order arithmetic that is not covered in [8] will be discussed below.

The symbol ω denotes the set of standard natural numbers, while \mathbb{N} denotes the set of natural numbers as formalized within an arithmetic theory. In other words, if (M, \mathcal{X}) is a model of some fragment of second-order arithmetic, then $\mathbb{N}^{(M,\mathcal{X})}$ is simply the first-order universe M. The symbol \leq denotes the usual order on \mathbb{N} .

We write $\Delta_n^0, \Sigma_n^0, \Pi_n^0$ to denote the usual formula classes defined in terms of first-order 87 quantifier alternations, but allowing second-order free variables. On the other hand, 88 notation without the superscript 0, like Δ_n , Σ_n , Π_n , represents analogously defined 89 classes of purely first-order, or "lightface", formulas, that do not contain any second-90 order variables at all. If we want to specify the second-order parameters appearing in 91 a Σ_n^0 formula, we use notation like $\Sigma_n(A)$. We extend these conventions to naming 92 theories. If Γ is a class of formulas, then $\forall \Gamma$ denotes the class of universal closures of 93 formulas from Γ . Note, for example, that $\forall \Sigma_n^0$ and $\forall \Pi_{n+1}^0$ are the same class. 94

The theory RCA_0^* , originally defined in [19], is obtained from RCA_0 by replacing the $I\Sigma_1^0$ axiom with the weaker axiom of Δ_0^0 -induction (by Δ_1^0 -comprehension, this immediately implies induction for all Δ_1^0 -definable properties) and adding a Π_2 axiom exp that explicitly guarantees the totality of exponentiation. The theory WKL_0^* is obtained from WKL_0 in an analogous way. RCA_0^* proves the collection scheme $\mathsf{B\Sigma}_1^0$, and the first-order consequences of RCA_0^* and of WKL_0^* are axiomatized by $\mathsf{B\Sigma}_1 + \exp$

When we consider a model $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ (or work in RCA_0^* without reference to a 101 specific model), a set is an element of the second-order universe \mathcal{X} . In contrast, a Σ_n^0 -102 definable set or simply Σ_n^0 -set is any subset of the first-order universe M that is definable 103 in (M, \mathcal{X}) by a Σ_n^0 formula (and likewise for Σ_n -sets, Π_n -sets etc.) A Δ_n^0 -definable set 104 or Δ_n^0 -set is a Σ_n^0 -set that is simultaneously a Π_n^0 -set. Since in general the models we 105 study only satisfy Δ_1^0 -comprehension, Δ_n^0 -sets for $n \ge 2$ and Σ_n^0 -sets for $n \ge 1$ will not 106 always be sets. We write Δ_1 -Def(M) for the collection of the Δ_1 -definable subsets of 107 M and Δ_1^0 -Def(M, A) for the collection of $\Delta_1(A)$ -definable subsets, where $A \subseteq M$. If 108 $(M, A) \models B\Sigma_1(A) + exp$, then $(M, \Delta_1^0 - Def(M, A))$ is a model of RCA_0^* . 109

Already $I\Delta_0 + \exp$ is strong enough to support a well-behaved universal Σ_1 formula 110 $\operatorname{Sat}_1(x, y)$. We can define the Σ_1 -set 0' as $\{e : \operatorname{Sat}_1(e, e)\}$.

A cut I in a model of arithmetic M is a downwards-closed subset of M which is 112 also closed under successor. M is then an *end-extension* of I, and it is common to 113 write $I \subseteq_e M$, or $I \subsetneq_e M$ if I is a proper cut. The cut I is a Σ_1^0 -cut exactly if it is 114 Σ_1^0 -definable.

A set A is unbounded if for every $x \in \mathbb{N}$ there exists $y \in A$ with $y \geq x$. We write 116 $A \subseteq_{cf} \mathbb{N}$ to indicate that A is unbounded, and more generally $A \subseteq_{cf} B$ to indicate that 117 A is an unbounded subset of B. The set A has cardinality \mathbb{N} if it contains an n-element 118 finite subset for each $n \in \mathbb{N}$, or equivalently if it can be enumerated in increasing order 119 as $\{a_n : n \in \mathbb{N}\}$. Provably in RCA_0^* , a set of cardinality \mathbb{N} is unbounded. However, it 120

was shown in [20, Lemma 3.2] that the statement "every unbounded set has cardinality 121 \mathbb{N} " implies RCA_0 over RCA_0^* . In other words, $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0$ proves the existence of an 122 unbounded set that does not have cardinality \mathbb{N} . Each such set can be enumerated in 123 increasing order as $A = \{a_i \mid i \in I\}$ for some proper Σ_1^0 -cut I. Conversely, given a Σ_1^0 124 cut I, we can use Δ_1^0 -comprehension to form the set $\{\langle w_0, \ldots, w_i \rangle : i \in I\}$, where each 125 w_i is the smallest element witnessing that $j \in I$. Thus, we have: 126

Proposition 2.1. Let $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$. For each Σ_1^0 -cut I there exists a set $A \in \mathcal{X}$ with $_{127} A \subseteq_{\mathrm{cf}} M$ that can be enumerated in increasing order as $A = \{a_i \mid i \in I\}$.

If $A = \{a_i \mid i \in I\}$ for some Σ_1^0 -cut I, we sometimes write a_{-1} for -1.

A bounded subset of a model $M \models I\Delta_0 + \exp$ is *coded* in M if it has the form 130 $(s)_{Ack} = \{x \in M \mid M \models x \in_{Ack} s\}$ for some $s \in M$, where $x \in_{Ack} s$ denotes the usual 131 Δ_0 formula expressing that the x^{th} digit in the binary expansion of s is 1. For a cut 132 $I \subsetneq_e M$ we let $\operatorname{Cod}(M/I) = \{I \cap (s)_{Ack} \mid s \in M\}$ stand for the collection of subsets of I 133 which are coded in M. Note that $\operatorname{Cod}(M/I)$ can be viewed as a second-order structure 134 on I. If I is closed under exponentiation, then $(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0^*$ [19, Theorem 135 4.8].

The following lemma states an important special case of a more general result about 137 coding in models of $B\Sigma_n^0 + \exp$.

Lemma 2.2 (Chong-Mourad [4]). Let $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ and let I be a proper Σ_1^0 -cut in 139 (M, \mathcal{X}) . If $X \subseteq I$ is such that both X and $I \setminus X$ are Σ_1^0 -definable, then $X \in \mathrm{Cod}(M/I)$. 140

The iterated exponential function is defined inductively as follows: $\exp_0(y) = 1$, ¹⁴¹ $\exp_{x+1}(y) = y^{\exp_x(y)}$. The axiom supexp, provable in RCA₀ but not in RCA₀^{*}, states ¹⁴² that the iterated exponential function is total, i.e. $\exp_x(y)$ exists for every x and y. ¹⁴³

Proposition 2.3. For each countable $(M, \mathcal{X}) \models \mathsf{WKL}_0$ there exists $K \supseteq_e M$ such that 144 $K \models \mathsf{B}\Sigma_1 + \exp, M$ is a Σ_1 -cut of K, and $\operatorname{Cod}(K/M) = \mathcal{X}$. 145

Proof. Suppose that (M, \mathcal{X}) is a countable model of WKL₀. By [21], there exists a 146 structure $L \supseteq_e M$ such that $(L, \Delta_1 \operatorname{-Def}(L)) \models \operatorname{RCA}_0$ and $\operatorname{Cod}(L/M) = \mathcal{X}$. Fix some 147 $a \in L \setminus M$. Note that since L satisfies $\operatorname{I\Sigma}_1^0$ and therefore supexp, the value $\exp_b(a)$ 148 exists in L for each $b \in L$. Define $K \subseteq L$ so that $K = \sup(\{\exp_m(a) \mid m \in M\})$. Then 149 $K \models \operatorname{B\Sigma}_1 + \exp$ and M is a Σ_1 -cut in K since $m \in M$ if and only if $K \models \exists y (y = \exp_m(a))$. 150 Furthermore, $\operatorname{Cod}(K/M) = \operatorname{Cod}(L/M) = \mathcal{X}$. \Box 151

2.1. Normal and long versions of principles. Many Ramsey-theoretic statements 152 take the form $\forall X \subseteq \mathbb{N}(\alpha(X) \to \exists Y(Y \text{ is infinite } \land \beta(X,Y)))$, where α and β are 153 arithmetical. In this context X and Y are often called, respectively, "instance" and 154 "solution" of the statement. In RCA_0 , "Y is infinite" is usually formalized as "Y is 155 unbounded". However, "Y is infinite" could also be taken to mean "Y has cardinality 156 $\mathbb{N}^{"}$, and, as explained above, the two concepts are not equivalent in RCA_{0}^{*} . Accordingly, 157 over $\mathsf{RCA}^{\alpha}_{0}$ typical Ramsey-theoretic principles will have at least two versions: one that 158 we will take as the default and call the *normal* one, in which we only require the solution 159 Y to be infinite in the sense of being unbounded; and a *long* version, in which we require 160 Y to have cardinality \mathbb{N} . (The word "long" is intended to emphasize that Y has to be 161 enumerated using \mathbb{N} as opposed to a shorter cut.) When using standard abbreviations 162 for various principles, we will distinguish the long versions from the normal ones by 163 using the prefix ℓ -. 164

The distinction between the two versions of Ramseyan statements was first made 165 in the context of Ramsey's Theorem itself by Yokoyama [23]. For any $n, k \in \omega$, let 166 RT_k^n be the normal version of Ramsey's Theorem for *n*-tuples and *k* colours, "For every 167

 $c \colon [\mathbb{N}]^n \to k$ there exists an unbounded set $H \subseteq \mathbb{N}$ such that $c \upharpoonright [H]^n$ is constant", and 168 let ℓ -RTⁿ_k be the long version, which requires H to have cardinality \mathbb{N} (this is denoted 169 by RTⁿ⁺_k in [23]). It was shown in [23] that ℓ -RT²₂ implies I Σ_1^0 over RCA^{*}₀, while RCA^{*}₀ 170 extended by RTⁿ_k is Π_2 -conservative over I Δ_0 + exp. The study of RTⁿ_k over RCA^{*}₀ 171 was taken quite a bit further in [11]. Results obtained in that paper include the $\forall \Pi_3^0$ - 172 conservativity of RCA^{*}₀ + RTⁿ_k over RCA^{*}₀ for each n, k, a complete axiomatization of 173 RCA^{*}₀ + RT²₂ for each $n \ge 3$, and a complete axiomatization of RCA^{*}₀ + RT²₂ + $\neg I\Sigma_1^0$. 174

The emphasis in the present paper is on principles about ordered sets, CAC and ADS, 175 and on the Cohesive Ramsey Theorem CRT_2^2 . Let us, therefore, give precise formulations 176 of the normal and long versions for each of these principles in turn. 177

The chain-antichain principle CAC says that every partial order defined on \mathbb{N} contains the either an infinite chain or an infinite antichain. Over RCA_0^* , this gives rise to the following principles.

CAC : For every partial order (\mathbb{N}, \preceq) there exists an unbounded set $S \subseteq \mathbb{N}$ which is either a chain or an antichain in \preceq .

$\ell\text{-CAC: For every partial order } (\mathbb{N}, \preceq) \text{ there exists a set } S \subseteq \mathbb{N} \text{ of cardinality}$ $\mathbb{N} \text{ which is either a chain or an antichain in } \preceq.$ 183

It could be argued that a more natural formulation of CAC would require the existence 185 of an unbounded chain or antichain in any partial order on an unbounded set, not 186 necessarily on all of \mathbb{N} . However, we will prove in Lemma 3.2 that this is equivalent 187 to the version given above and that an analogous equivalence also holds for the normal 188 versions of other principles we study. 189

The ascending-descending sequence principle ADS says that every linear order on 190 N contains either an unbounded increasing sequence or an unbounded decreasing se-191 quence. There is a delicate issue here, as there can be more than one way of stating the 192 requirement that the solution to ADS has to satisfy. In the literature (see e.g. [8,9]) an 193 ascending sequence is usually taken to mean either (i) an infinite set $S \subseteq \mathbb{N}$ on which 194 the ordering \leq agrees with the natural number ordering \leq or (ii) a sequence $(s_i)_{i \in \mathbb{N}}$ 195 properly understood (that is, a map with domain \mathbb{N}) such that $s_0 \prec s_1 \prec s_2 \prec \ldots$ but 196 there is no requirement on how the s_i are ordered by \leq . One could refer to these as set 197 and sequence solutions to ADS, respectively. (Set and sequence solutions corresponding 198 to descending sequences are defined analogously.) Over RCA₀, versions of ADS formu-199 lated in terms of set and sequence solutions are equivalent: a set solution obviously 200 computes a sequence solution, but given a sequence solution $(s_i)_{i \in \mathbb{N}}$ we can also obtain 201 a set solution by taking the set of those numbers s_i that are \leq -greater than all s_i for 202 i < j. 203

Over RCA_0^n , such a thinning out argument works for the normal version of ADS : if we 204 are given a sequence solution $(s_i)_{i \in I}$ with $s_0 \prec s_1 \prec \ldots$ for some cut I, then the set S of 205 those s_j for $j \in I$ such that $s_j > s_i$ for all i < j can be obtained by Δ_1^0 -comprehension 206 and is unbounded provably in RCA_0^* . Thus, S is a set solution to ADS. However, if 207 $(s_i)_{i\in\mathbb{N}}$ is a sequence solution to the long version of ADS, then without $I\Sigma_1^0$ it may 208 happen that the set S obtained in this way is no longer of cardinality \mathbb{N} ; in other words, 209 S might not be a set solution to the long version of ADS. This leads us formulate the 210 following three variants of ADS: 211

ADS : For every linear order (\mathbb{N}, \preceq) there exists an unbounded set $S \subseteq \mathbb{N}$ such that either for all $x, y \in S$ it holds that $x \leq y$ iff $x \preceq y$ or for all $x, y \in S$ it holds that $x \leq y$ iff $x \succeq y$. 212

- $\ell\text{-ADS}^{\text{set}}: \text{ For every linear order } (\mathbb{N}, \preceq) \text{ there exists a set } S \subseteq \mathbb{N} \text{ of cardinal-} 15$ $ity \ \mathbb{N} \text{ such that either for all } x, y \in S \text{ it holds that } x \leq y \text{ iff } x \preceq y$ $or \text{ for all } x, y \in S \text{ it holds that } x \leq y \text{ iff } x \succeq y.$ 215
- ℓ -ADS^{seq}: For every linear order (N, \leq) there exists a sequence $(s_i)_{i \in \mathbb{N}}$ which is either strictly \leq -increasing or strictly \leq -decreasing.

Notice that ℓ -ADS^{set} clearly implies ℓ -ADS^{seq}. On the other hand, it will follow from 220 Theorem 4.2 and Corollary 4.10 that the converse implication does not hold over RCA₀^{*}. 221

The final principle we focus on is the Cohesive Ramsey Theorem CRT_2^2 . This says 222 that for every 2-colouring c of pairs of natural numbers, there is an infinite set S on 223 which c is *stable*, that is, for each $x \in S$, either c(x, y) = 0 for all sufficiently large $y \in S$ 224 or c(x, y) = 1 for all sufficiently large $y \in S$. Thus, we define the following principles. 225

- CRT_2^2 : For every $c: [\mathbb{N}]^2 \to 2$ there exists an unbounded set $S \subseteq \mathbb{N}$ such that for each $x \in S$ there exists $y \in S$ such that c(x, z) = c(x, y) holds for all $z \in S$ with $z \ge y$.
- $\ell\text{-CRT}_{2}^{2}: \text{ For every } c: [\mathbb{N}]^{2} \to 2 \text{ there exists a set } S \subseteq \mathbb{N} \text{ of cardinality } \mathbb{N} \text{ such}$ $that \text{ for each } x \in S \text{ there exists } y \in S \text{ such that } c(x, z) = c(x, y) \text{ holds}$ $for \text{ all } z \in S \text{ with } z \ge y.$ 229 230 231

We also recall some principles that are not the main focus of this work but will be 232 mentioned in one or more contexts. 233

Stable Ramsey's Theorem SRT_2^2 is RT_2^2 restricted to colourings c that are stable on 234 \mathbb{N} .

A colouring $c: [A]^2 \to n$ is transitive if c(x, y) = c(y, z) = i implies c(x, z) = i for all 236 i < n and all x < y < z elements of A. The colouring c is semitransitive if the above 237 implication holds for all i < n except at most one. The Erdös-Moser principle EM says 238 that for any $c: [\mathbb{N}]^2 \to 2$, there is an infinite set $A \subseteq \mathbb{N}$ on which c is transitive. 239

Over RCA_0^* , both SRT_2^2 and EM have normal and long versions, which are defined 240 in the natural way. RCA_0^* is able to prove the well-known equivalences of RT_2^2 with 241 $SRT_2^2 \wedge CRT_2^2$ and with $EM \wedge ADS$. 242

The cohesive principle COH is recalled and studied in Section 5.

3. NORMAL PRINCIPLES 244

Hirschfeldt and Shore [9] proved that the sequence of implications $RT_2^2 \rightarrow CAC \rightarrow ^{245}$ ADS $\rightarrow CRT_2^2$ holds over RCA₀. Moreover, they showed that the first and third implication do not in general reverse over RCA₀. The strictness of the implication from CAC ²⁴⁷ to ADS was shown in [15]. ²⁴⁸

It is easy to check that the proofs of the implications from RT_2^2 to CAC and CRT_2^2 , 249 and of the one from CAC to ADS , do not require $\mathrm{I\Sigma}_1^0$. We can thus state the following 250 lemma (see 4.1 for its "long" counterpart). 251

Lemma 3.1. Over RCA_0^* , the following sequences of implications hold:

$$\begin{split} \mathsf{RT}_2^2 \to \mathsf{CAC} \to \mathsf{ADS}, \\ \mathsf{RT}_2^2 \to \mathsf{CRT}_2^2. \end{split}$$

None of the implications can be provably reversed in RCA₀^{*}.

Two issues left open by the lemma are whether ADS or at least CAC implies CRT_2^2 253 over RCA_0^* , and whether the implications above are still strict over $RCA_0^* + \neg I\Sigma_1^0$. It 254

218

219

252

272

290

will be shown in Theorem 3.11 that RT_2^2 , CAC, ADS, and CRT_2^2 do in fact remain 255 pairwise distinct over $RCA_0^* + \neg I\Sigma_1^0$, and moreover, that they have pairwise distinct sets 256 of arithmetical consequences. Interestingly, this is related to the fact that the principles 257 are known to be distinct over WKL_0. 258

On the other hand, we were not able to determine whether RCA_0^* proves $\mathsf{CAC} \to \mathsf{CRT}_2^2$. 259 This question may be related to the problem whether CRT_2^2 is weaker than RT_2^2 in a 260 specific technical sense discussed in Section 3.3. 261

3.1. **Basic observations.** In this subsection, we verify that some well-known and useful properties of the Ramsey-theoretic principles we consider still hold over RCA_0^* . First, 263 we show that no generality is lost by restricting the principles to instances defined on 264 all of \mathbb{N} rather than on a more general infinite set. 265

Lemma 3.2. Over RCA_0^* , each of RT_k^n , CAC, ADS, CRT_2^2 is equivalent to its generalization to orderings/colourings defined on an arbitrary unbounded subset of \mathbb{N} .

Proof. For RT_k^n , this is implicit in [11]. The proofs are similar for all principles; we 268 sketch them for ADS and CRT_2^2 .

Working in RCA_0^* , assume ADS and let (A, \preceq) be a linear order, where $A \subseteq_{\mathrm{cf}} \mathbb{N}$. 270 Thus, $A = \{a_i \mid i \in I\}$, for some Σ_1^0 -cut I in \mathbb{N} .

Define a linear order \preceq' on \mathbb{N} by

$$x \preceq' y \Leftrightarrow \exists i, j \in I \ (x \in (a_{i-1}, a_i] \land y \in (a_{j-1}, a_j] \land ((i \neq j \land a_i \prec a_j) \lor (i = j \land x \le y))) \quad \text{273}$$

That is, elements are \preceq' -ordered according to the the \preceq -ordering between the nearest 274 elements of A above them, if that makes sense, and according to the usual natural 275 number ordering otherwise. Since \preceq' is $\Delta_1(A, \preceq)$ -definable, it exists as a set. Let 276 $S' \subseteq_{\rm cf} \mathbb{N}$ be a strictly increasing or strictly decreasing sequence in \preceq' . Using $\Delta_1(S', A)$ - 277 comprehension, define $S \subseteq A$ by: 278

$$a \in S \Leftrightarrow a \in A \land \exists x \le a \ (x \in S' \land [x, a) \cap A = \emptyset).$$
 279

It is easy to check that S is unbounded and it is either a strictly increasing or a strictly decreasing sequence in \leq .

For CRT_2^2 , given $c: [\overline{A}]^2 \to 2$, use Δ_1^0 -comprehension to define $c': [\mathbb{N}]^2 \to 2$ by:

$$c'(x,y) = \begin{cases} c(a_i,a_j) & \text{if } \exists i,j \in I \ (i \neq j \land x \in (a_{i-1},a_i] \land y \in (a_{j-1},a_j]), \\ 0 & \text{otherwise.} \end{cases}$$
283

If $S' \subseteq_{cf} \mathbb{N}$ is such that c' is stable on S', then it is easy to define analogously as above 284 $S \subseteq_{cf} A$ on which c is stable by $\Delta_1(S', A)$ -comprehension.

We now check that in RCA_0^* , it is still true that ADS and CAC can be viewed as the restrictions of RT_2^2 to transitive and semitransitive colourings, respectively. 287

Proposition 3.3. Over RCA_0^* , CAC and ADS are equivalent to RT_2^2 restricted to semitransitive 2-colourings and to transitive 2-colourings, respectively. 289

Proof. This is just a verification that the arguments of [9] go through in RCA_0^* .

The implication from CAC to RT_2^2 for semitransitive 2-colourings is unproblematic. In 291 the other direction, CAC follows easily from RT_3^2 for semitransitive 3-colourings, which 292 is in turn derived from RT_2^2 for semitransitive 2-colourings. In the reduction from 3colourings to 2-colourings, at one point we have to obtain an unbounded homogeneous 294 set for a semitransitive 2-colouring defined on an unbounded subset of N rather than 295 on N. This is dealt with like in the proof of Lemma 3.2. 296

8

The implication from RT_2^2 for transitive 2-colourings to ADS is immediate. The other 297 direction is [9, Theorem 5.3], which requires a comment. Given a transitive colouring 298 $c \colon \mathbb{N}^2 \to 2$, we build a linear order \preceq by inserting numbers $0, 1, \ldots$ into it one-by-one. 299 When \leq is already defined on $\{0, \ldots, n-1\}$, we insert n into the order directly above 300 the \prec -largest k < n such that c(k,n) = 0; if there is no such k, we place n at the 301 bottom of \preceq . Then, we can check by induction on n that the ordering \preceq agrees with 302 c on $\{0,\ldots,n\}$ in the sense that for $i < j \leq n$, we have $i \prec j$ iff c(i,j) = 0. In [9], 303 $\mathrm{I}\Sigma_1^0$ is invoked for this purpose, but it will be clear from the above description that the 304 induction formula is actually bounded. The induction step uses the transitivity of c. \Box 305

3.2. Between models and cuts. In [11], it is shown that RT_k^n displays interesting 306 behaviour in models of $\mathsf{RCA}_0^* + \neg \mathsf{I\Sigma}_1^0$: if I is a proper Σ_1^0 -cut in a model (M, \mathcal{X}) , 307 then RT_k^n holds in the entire model (M, \mathcal{X}) if and only if it holds on the cut, that 308 is in the structure $(I, \operatorname{Cod}(M/I))$. This equivalence provides important information 309 about the first-order consequences of RT_k^n over RCA_0^* . It is apparent from the proof of 310 the equivalence that it is not highly specific to RT_k^n and should hold for many other 311 Ramsey-theoretic statements.

In Theorem 3.5 below, we identify a relatively broad syntactic class of sentences that all share the property of being equivalent to their own relativizations to Σ_1^0 -cuts. We then verify that Ramsey-theoretic statements such as RT_k^n , CAC, ADS, and CRT_2^2 are equivalent to sentences from that class. It follows, for instance, that all these statements fail to be Π_1^1 -conservative over RCA_0^* , and that they differ in their arithmetical consequences.

Definition 3.4. The \mathcal{L}_2 -sentence χ belongs to the class of sentences pSO if there exists as a sentence γ of second-order logic in a language (\leq, R_1, \ldots, R_k) , where $k \in \omega$ and each R_i is a relation symbol of arity $m_i \in \omega$, such that χ expresses: 321

for any relations
$$R_1, \ldots, R_k$$
 on \mathbb{N} and for each $D \subseteq_{\mathrm{cf}} \mathbb{N}$,
there exists $H \subseteq_{\mathrm{cf}} D$ such that $(H, \leq, R_1, \ldots, R_k) \models \gamma$.

In the definition above, we slightly abuse notation by writing $(H, \leq, R_1, \ldots, R_k)$ instead of the more cumbersome $(H, \leq \cap H^2, R_1 \cap H^{m_1}, \ldots, R_k \cap H^{m_k})$. The fact that this structure satisfies γ is expressed by relativizing each first-order quantifier in γ to Hand restricting each *m*-ary second-order quantifier to *m*-ary relations on *H*. Of course, when this is interpreted in a model of arithmetic (M, \mathcal{X}) , "*m*-ary relations on *H*" are understood as elements of $\mathcal{X} \cap \mathcal{P}(H^m)$.

The abbreviation pSO stands for "pseudo-second-order": pSO sentences appear to 330 use both first- and second-order quantification of \mathcal{L}_2 , but they are relativized to arbitrarily small unbounded subsets of \mathbb{N} in such a way that in cases where $I\Sigma_1^0$ fails their behaviour is closer to that of first-order sentences; cf. Corollary 3.6. 333

Theorem 3.5. If χ is a pSO sentence, then for every $(M, \mathcal{X}) \vDash \mathsf{RCA}_0^*$ and every proper 334 Σ_1^0 -cut I in (M, \mathcal{X}) , it holds that $(M, \mathcal{X}) \vDash \chi$ if and only if $(I, \operatorname{Cod}(M/I)) \vDash \chi$. 335

Proof. Let γ be a second-order sentence and for notational simplicity, assume that it 336 contains only one unary relation symbol R in addition to \leq , and that all second-order 337 quantifiers are unary. Let χ be a pSO sentence stating that for every set R and every 338 unbounded set D there exists an unbounded subset $H \subseteq_{cf} D$ such that $(H, \leq, R) \vDash \gamma$. 339 Let $(M, \mathcal{X}) \vDash \mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0$, and let $A \in \mathcal{X}$ be a cofinal subset of M enumerated by the 340 cut $I, A = \{a_i \mid i \in I\}$, as in Proposition 2.1. 341 Suppose first that $(M, \mathcal{X}) \vDash \chi$. Let $R, D \in \operatorname{Cod}(M/I)$ be such that $D \subseteq_{cf} I$. Define $R', D' \subseteq M$ by:

$$x \in R' \Leftrightarrow \exists i \in I \ (x = a_i \land i \in R),$$
$$x \in D' \Leftrightarrow \exists i \in I \ (x = a_i \land i \in D).$$

Since both R' and $M \setminus R'$ are Σ_1 -definable in A and (the code for) R, we know that 342 $R' \in \mathcal{X}$. Similarly, $D' \in \mathcal{X}$. Notice that $D' \subseteq_{cf} M$, since $D \subseteq_{cf} I$ and $A \subseteq_{cf} M$. 343

By our assumption that $(M, \mathcal{X}) \vDash \chi$, there exists $H' \in \mathcal{X}$ such that $H' \subseteq_{\mathrm{cf}} D'$ and $_{344}(H', \leq, R') \vDash \gamma$. Let $H = \{i \in I \mid a_i \in H'\}$. Notice that both H and $I \setminus H$ are $_{345}$ Σ_1 -definable in H' and A, so $H \in \mathrm{Cod}(M/I)$ by Lemma 2.2. Moreover, $H \subseteq_{\mathrm{cf}} D$.

To show that $(H, \leq, R) \vDash \gamma$, we show that the map $H' \ni a_i \mapsto i \in H$ induces an 347 isomorphism of the structures $(H', \leq, R'; \mathcal{X} \cap \mathcal{P}(H'))$ and $(H, \leq, R; \operatorname{Cod}(M/I) \cap \mathcal{P}(H'))$. 348 The fact that this map is an isomorphism between (H', \leq, R') and (H, \leq, R) follows 349 directly from the definitions. Thus, we only need to argue that this map also induces 350 an isomorphism of the second-order structures $\mathcal{X} \cap \mathcal{P}(H')$ and $\operatorname{Cod}(M/I) \cap \mathcal{P}(H')$. If 351 $X' \in \mathcal{X}$ is a subset of H', then $\{i \in I \mid a_i \in X'\}$ is in $\operatorname{Cod}(M/I)$ by Lemma 2.2. If 352 $X', Y' \in \mathcal{X}$ are distinct subsets of H', then $\{i \in I \mid a_i \in X'\}$ and $\{i \in I \mid a_i \in Y'\}$ are 353 clearly distinct. Finally, if $X \in \text{Cod}(M/I)$ is a subset of H, then $X' = \{a_i \mid i \in X\}$ is 354 in \mathcal{X} by Δ_1^0 -comprehension, and it is a subset of H'. 355

Now suppose that $(I, \operatorname{Cod}(M/I)) \models \chi$. Let $R, D \in \mathcal{X}$ be such that $D \subseteq_{\operatorname{cf}} M$. By replacing D with an appropriate unbounded subset if necessary, we may assume w.l.o.g. that $D \cap (a_{i-1}, a_i]$ has at most one element for each $i \in I$. We now transfer R, D to $R', D' \subseteq I$ defined as follows:

$$i \in R' \Leftrightarrow \exists x \in (a_{i-1}, a_i] \cap R,$$

 $i \in D' \Leftrightarrow \exists x \in (a_{i-1}, a_i] \cap D.$

By Lemma 2.2, $R', D' \in \operatorname{Cod}(M/I)$. Notice that $D' \subseteq_{\operatorname{cf}} I$, given that $D \subseteq_{\operatorname{cf}} M$. Since $(I, \operatorname{Cod}(M/I)) \vDash \chi$, there exists $H' \subseteq_{\operatorname{cf}} D'$ such that $(H', \leq, R') \vDash \gamma$. Define 357

$$H = \{ x \in D \mid \exists i \in H' \, (x \in (a_{i-1}, a_i]) \}.$$
358

Clearly $H \in \mathcal{X}$ and $H \subseteq_{cf} D$. To show that $(H, \leq, R) \vDash \gamma$, it remains to prove that the structures $(H', \leq, R'; \operatorname{Cod}(M/I) \cap \mathcal{P}(H'))$ and $(H, \leq, R; \mathcal{X} \cap \mathcal{P}(H))$ are isomorphic. The isomorphism is induced by the map that takes $i \in H'$ to the unique element of $H \cap (a_{i-1}, a_i]$. The verification that this is indeed an isomorphism is similar to the one in the proof of the other direction.

Corollary 3.6. Let χ be a pSO sentence and let $(M, \mathcal{X}) \vDash \mathsf{RCA}_0^*$. If $A \in \mathcal{X}$ is such that $(M, A) \vDash \neg \mathrm{IS}_1(A)$, then $(M, \mathcal{X}) \vDash \chi$ if and only if $(M, \Delta_1^0 \operatorname{-Def}(M, A)) \vDash \chi$.

Proof. The right-hand side of the equivalence in Theorem 3.5 does not depend on \mathcal{X} as $_{1}^{366}$ long as a given proper cut I is Σ_{1}^{0} -definable in (M, A).

Theorem 3.5 and Corollary 3.6 make it possible to prove a very simple criterion of Π_1^1 -conservativity over RCA₀^{*} for pSO sentences. We state the criterion in slightly greater 369 generality, for boolean combinations of pSO sentences, so as to be able to conclude that 370 some specific pSO sentences have distinct sets of first-order consequences over RCA₀^{*}. 371

Theorem 3.7. Let ψ be a boolean combination of pSO sentences. Then the following 372 are equivalent: 373

(i) $\mathsf{RCA}_0^* + \psi \ is \ \Pi_1^1 \text{-conservative over } \mathsf{RCA}_0^*,$ 374

$$(ii) \operatorname{RCA}_0^* + \neg I \Sigma_1^0 \vdash \psi, \tag{375}$$

(*iii*) $\mathsf{WKL}_0^* \vdash \psi$.

Moreover, if $\mathsf{WKL}_0 \not\vdash \psi$, then $\mathsf{RCA}_0^* + \psi$ is not arithmetically conservative over RCA_0^* . 377

Proof. The implication (iii) \rightarrow (i) is immediate from [19].

Assume that (i) holds. Note that by Corollary 3.6, $\mathsf{RCA}_0^* + \psi$ proves the Π_1^1 statement 379 "for every A, if $I\Sigma_1(A)$ fails, then ψ is true in the $\Delta_1(A)$ -computable sets". Thus, by 380 (i), this statement is provable in RCA_0^* . However, again by Corollary 3.6, in each model 381 of $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$ this Π_1^1 statement is equivalent to ψ . This proves that (i) implies (ii). 382

Now assume that (iii) fails, and let (M, \mathcal{X}) be a countable model of $\mathsf{WKL}_0^* + \neg \psi$. If $(M, \mathcal{X}) \models \neg \mathrm{I}\Sigma_1^0$, then clearly $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0 \not\models \psi$. Otherwise, (M, \mathcal{X}) is a model of WKL_0 , 384 so by Proposition 2.3 there exists a structure $(K, \Delta_1 \operatorname{-Def}(K)) \models \mathsf{RCA}_0^*$ in which M is a proper Σ_1^0 -cut and $\operatorname{Cod}(K/M) = \mathcal{X}$. By Theorem 3.5, we get $(K, \Delta_1 \operatorname{-Def}(K)) \models \neg \psi$. 386 This proves that (ii) implies (iii).

Note also that if we do have a countable model (M, \mathcal{X}) of WKL₀ + $\neg \psi$, then the 388 structure $(K, \Delta_1\text{-Def}(K))$ constructed as in the previous paragraph satisfies RCA₀^{*} but 389 does not satisfy the first-order statement " $\neg I\Sigma_1$ implies that the computable sets satisfy 390 ψ ". This proves that if WKL₀ $\nvDash \psi$, then RCA₀^{*} + ψ is not arithmetically conservative 391 over RCA₀^{*}.

Remark 3.8. The assumption of the "moreover" part of Theorem 3.7 could be weakened to $\mathsf{WKL}_0^* + \operatorname{supexp} \not\vdash \psi$, using essentially the same proof. Whether the assumption could be weakened simply to (iii) is related to the question whether every sufficiently saturated countable model of WKL_0^* is Σ_1 -definable in an end-extension satisfying $B\Sigma_1 + \exp$. Cf. [13, Section 5].

In [7], it is shown that every Π_2^1 sentence is Π_1^1 -conservative over $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$ if and only if it is provable from $\mathsf{WKL}_0^* + \neg I\Sigma_1^0$. Note, however, that the criterion provided by Theorem 3.7 applies to conservativity over RCA_0^* , without $\neg I\Sigma_1^0$ in the base theory.

We now show that the general facts about pSO sentences proved above apply in 401 particular to the Ramsey-theoretic principles we study. 402

Lemma 3.9. Let P be one of the principles RT_k^n , for $n, k \in \omega$, CAC, ADS, and CRT_2^2 . 403 Then there exists a pSO sentence χ which is provably in RCA_0^* equivalent to P, both in 404 the entire universe and on any proper Σ_1^0 -cut. 405

Proof. The proofs are similar for all the above principles P and rely on Lemma 3.2. 406 We give a somewhat detailed argument for ADS and restrict ourselves to stating the 407 appropriate χ for the other principles. 408

Let γ be the sentence

- either R is not a linear order 410
- or for every x, y it holds that R(x, y) iff $x \leq y$
- or for every x, y it holds that R(x, y) iff $x \ge y$,

and let χ say that for every set R and every unbounded set D, there is $H \subseteq_{cf} D$ such 413 that (H, \leq, R) satisfies γ . We claim that ADS is equivalent to χ provably in RCA₀^{*}. 414 Clearly, if \leq is a linear order on \mathbb{N} , then χ applied with $D = \mathbb{N}$ and $R = \leq$ implies the 415 existence of a set H witnessing ADS for \leq . Thus, χ implies ADS. In the other direction, 416 given a relation R and an unbounded set D, either R is a linear order on D or not. 417 In the latter case, H = D witnesses χ . In the former, Lemma 3.2 lets us apply ADS 418 to obtain either an ascending or a descending sequence in $R \cap D^2$, which witnesses χ . 419 Thus, ADS implies χ . 420

The above argument also works in a structure of the form $(I, \operatorname{Cod}(M/I))$ for I a 421 proper Σ_1^0 -cut I in a model of RCA₀^{*}. To verify this one has to check that an analogue 422 of Lemma 3.2 holds in $(I, \operatorname{Cod}(M/I))$, which is unproblematic. 423

378

409

411

For CAC, the corresponding pSO sentence χ says that for every set R and every 424 unbounded set D there exists an unbounded $H \subseteq_{cf} D$ such that $(H, \leq, R) \vDash \gamma$, where γ 425 states that if R is a partial order, than it is a chain or antichain. For RT_k^n , the sentence 426 γ states that if R_1, \ldots, R_k form a colouring of unordered *n*-tuples, i.e. they are disjoint 427 n-ary relations whose union is the set of all n-tuples that are strictly increasing with 428 respect to \leq , then all but one of the relations R_j are in fact empty. For CRT_2^2 , the 429 appropriate γ says that the binary relation R is a stable colouring when restricted to 430 the set of unordered pairs. 431

Theorem 3.5, Corollary 3.6, and Lemma 3.9 immediately give:

Corollary 3.10. Let P be one of: RT_k^n , for each $n, k \in \omega$, CAC, ADS, and CRT_2^2 . Then for every $(M, \mathcal{X}) \vDash \mathsf{RCA}_0^*$ and each proper Σ_1^0 -cut I of M it holds that $(M, \mathcal{X}) \vDash \mathsf{P}$ if and only if $(I, \operatorname{Cod}(M/I)) \vDash \mathsf{P}$. If $A \in \mathcal{X}$ is such that $(M, A) \vDash \neg \mathrm{I}\Sigma_1(A)$, then $(M, \mathcal{X}) \vDash \mathsf{P}$ if and only if $(M, \Delta_1^0 \operatorname{-Def}(M, A)) \vDash \mathsf{P}$.

For RT_k^n , the above result was shown in [11].

It follows from work of Towsner [22] that $WKL_0 + CAC$ does not prove RT_2^2 and 438 $WKL_0 + ADS$ does not prove CAC. Therefore, none of the implications $RT_2^2 \rightarrow CAC \rightarrow$ 439 $ADS \rightarrow CRT_2^2 \rightarrow \top$ (where \top is the constant True) available in RCA₀ can be reversed 440 provably in WKL₀. It thus follows from Theorem 3.7 and Lemma 3.9 that all principles 441 appearing in this sequence differ in strength over $RCA_0^* + \neg I\Sigma_1^0$ and that they can even 442 be distinguished by their first-order consequences over RCA_0^* . 443

Theorem 3.11. Let P be one of the principles RT_2^2 , CAC, ADS, CRT_2^2 , and let Q be a 444 principle to the right of P in this sequence or the constant \top . Then: 445

- (i) Q does not imply P over $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0$,
- (ii) there is a first-order statement provable in $RCA_0^* + P$ but not in $RCA_0^* + Q$, 447
- (iii) $\mathsf{RCA}_0^* + \mathsf{P}$ is not arithmetically conservative over RCA_0^* .

Proof. By Lemma 3.9 we can treat $P \rightarrow Q$ as a boolean combination of pSO sentences. 449 Since WKL₀ does not prove $Q \rightarrow P$, Theorem 3.7 gives (i) and additionally implies that 450 there is an arithmetical sentence θ provable in RCA₀^{*} + Q \rightarrow P but not in RCA₀^{*}. Then 451 RCA₀^{*} + P $\vdash \theta$ and RCA₀^{*} + $\neg Q \vdash \theta$, so RCA₀^{*} + Q $\nvDash \theta$, which proves (ii). Finally, (iii) is 452 a special case of (ii).

Together, Lemma 3.1 and Theorem 3.11 answer all questions about provability of 454 implications between our principles in RCA_0^* and $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0$ except the following. 455

Question 3.12. Does $\mathsf{RCA}_0^* + \mathsf{ADS}$ or $\mathsf{RCA}_0^* + \mathsf{CAC}$ prove CRT_2^2 ?

In the context of item (iii) of Theorem 3.11, note that CRT_2^2 is Π_1^1 -conservative over 457 RCA₀ [3], and while CAC and ADS are not Π_1^1 -conservative over RCA₀ because they 458 imply $B\Sigma_2^0$, they are Π_1^1 -conservative over RCA₀ + $B\Sigma_2^0$ [5]. 459

We turn now to a more fine-grained analysis of conservativity issues. By [11], RT_k^n is 460 $\forall \Pi_3^0$ -conservative over RCA_0^* . *A fortiori*, all the weaker principles studied in this paper 461 are also $\forall \Pi_3^0$ -conservative over RCA_0^* . (We remark in passing that the techniques of [11] 462 show that any pSO sentence that is true in some ω -model of WKL_0 is $\forall \Pi_3^0$ -conservative 463 over RCA_0^* .) 464

On the other hand, if P is one of RT_2^2 , CAC, and ADS, then the statement "If $I\Sigma_1$ fails, 465 then any computable instance of P has a computable solution" is a Π_4 sentence of firstorder arithmetic. So, essentially by Corollary 3.10, we get the following nonconservation 467 result (proved in [11] for RT_2^2).

Corollary 3.13. None of RT_2^2 , CAC, and ADS is Π_4 -conservative over RCA_0^* .

11

432

437

446

448

456

Thus, we have tight bounds on the amount of conservativity of RT_2^2 , CAC, and ADS 470 over RCA_0^* . On the other hand, the sentence "If $I\Sigma_1$ fails, then any computable instance 471 of CRT_2^2 has a computable solution" is only Π_5 . So, we get: 472

Corollary 3.14. CRT_2^2 is $\forall \Pi_3^0$ - but not Π_5 -conservative over RCA_0^* . 473

The following intriguing question remains open:

Question 3.15. Is $WKL_0^* + CRT_2^2 \forall \Pi_4^0$ -conservative over RCA_0^* ?

3.3. Closure properties. To conclude our discussion of normal versions of combinato-476 rial principles, we will show that over RCA_0^* the principle CAC and all of its consequences 477 are significantly weaker than RT_2^2 in a technical sense related to the closure properties 478 of cuts. 479

Working in RCA_0^* , we write I_1^0 to denote the definable cut consisting of those numbers 480 x such that each unbounded set $S \subseteq_{cf} \mathbb{N}$ contains a finite subset of cardinality x. Note 481 that by the correspondence between unbounded subsets of \mathbb{N} and Σ_1^0 -cuts stated in 482 Proposition 2.1, I_1^0 is simply the intersection of all Σ_1^0 -cuts. Thus, $I_1^0 = \mathbb{N}$ exactly if $I\Sigma_1^0$ 483 holds. 484

It is easy to show in RCA_0^* that I_1^0 is closed under multiplication: let S be an infinite 485 set that does not contain a finite set of cardinality a^2 and compute a set S' by taking 486 "every a-th element" of S. If S' is finite, then some infinite end-segment of S does not 487 contain any finite subset of cardinality a. If S' is infinite, then S' itself is an infinite set 488 with no subset of cardinality a, because otherwise we would find at least a^2 elements of 489 S. 490

In [12, Section 3], it is shown that RT_2^2 implies a stronger closure property, namely that 491 I_1^0 is closed under exponentiation. The proof of this result makes use of the well-known 492 almost exponential lower bounds on finite Ramsey numbers for 2-colourings of pairs. 493 The result has some interesting consequences, among them the fact that $RCA_0^* + RT_2^2$ 494 has nonelementary proof speedup over RCA_{0}^{*} . (This was, in fact, the original motivation 495 for studying connections between Ramsey-theoretic principles and closure properties of 496 I⁰₁.) Another consequence is that the theory $\mathsf{RCA}_0 + \mathsf{RT}_2^2 + \neg I\Sigma_2$ does not prove that 497 RT_2^2 holds in the family of Δ_2 -definable sets [11]; this rules out a potential approach to 498 separating the arithmetical consequences of $\mathsf{RCA}_0 + \mathsf{RT}_2^2$ from $\mathrm{B}\Sigma_2$. 499

Below, we show that ADS and CAC are weaker than RT_2^2 in this respect, as they 500 do not imply the closure of I_1^0 under any superpolynomially growing function. Our 501 argument will be a typical initial segment construction, resembling for instance the one 502 in [14, Theorem 3.3], and it will once again make use of bounds on the finite version 503 of the appropriate combinatorial principle. In this case, we will take advantage of the 504 fact that, for $k \ge 2$, a partial order with $k^2 - k$ elements contains either a chain or an 505 antichain of size at least k. Indeed, by Dilworth's theorem, if the largest antichain in a 506 finite order has at most k-1 elements, then the order can be presented as the union 507 of k-1 chains. If the order contains at least $k^2 - k$ elements, then one of those chains 508 must have length at least k. 509

Theorem 3.16. Let q be a Σ_1 -definable function such that for every $k \in \omega$ there exists 510 $n \in \omega$ such that $\mathsf{RCA}_0^* \vdash \forall x \ge n \ (g(x) \ge x^k)$. Then neither $\mathsf{WKL}_0^* + \mathsf{CAC} \ nor \ \mathsf{WKL}_0^* + \mathsf{ADS}$ 511 proves that I_1^0 is closed under g. 512

Proof. Of course, since CAC implies ADS over RCA_0^* , it is enough to show that WKL_0^* + 513 CAC does not imply the closure of I_1^0 under any superpolynomially growing function g. 514

Let M be a countable nonstandard model of $I\Delta_0$ + supexp and let $a \in M \setminus \omega$. We 515 will construct a cut $I \subseteq_e M$ in such a way that $(I, \operatorname{Cod}(M/I)) \vDash \mathsf{WKL}_0^* + \mathsf{CAC}$ and 516

474

 $I_1^0(I, \operatorname{Cod}(M/I)) = \sup\{a^k \mid k \in \omega\}$. This will suffice to prove the theorem since it 517 will hold that $a \in I_1^0(I, \operatorname{Cod}(M/I))$ and for any superpolynomially growing function g, 518 $g(a) \notin I_1^0(I, \operatorname{Cod}(M/I))$. 519

Let $(S_n)_{n\in\omega}$ be an enumeration of all *M*-finite sets with cardinality below a^k for some 520 $k \in \omega$, let $(c_n)_{n\in\omega}$ be an enumeration of all nonstandard elements of *M* and let $(\preceq_n)_{n\in\omega}$ 521 be an enumeration of all *M*-coded partial orders with domain $[0, \exp_{a^a}(2)]$. 522

By induction on $n \in \omega$, we will construct a decreasing chain $F_0 \supseteq F_1 \supseteq F_2 \ldots$ of 523 *M*-finite sets, maintaining the condition that for each *n* there is some $c \in M \setminus \omega$ such 524 that $|F_n| \ge a^c$. Moreover, we will also make sure that for each $n \in \omega$, $|F_{3n}| \le a^{c_n}$, that 525 $[\min(F_{3n+1}), \max(F_{3n+1})] \cap S_n = \emptyset$, and that F_{3n+2} is either a chain or an antichain in 526 the partial order \preceq_n .

We initialize the construction by setting $F_{-1} := \{1, 2, 4, 16, 2^{16}, \dots, \exp_{a^a}(2)\}$. In 528 step 3*n*, if $|F_{3n-1}| > a^{c_n}$, let $F_{3n} \subsetneq F_{3n-1}$ be such that $|F_{3n}| = a^{c_n}$ and $\min(F_{3n}) > 529$ $\min(F_{3n-1})$. Otherwise, let $F_{3n} = F_{3n-1} \setminus \{\min(F_{3n-1})\}$.

In step 3n + 1, consider the set S_n . Let $k \in \omega$ be such that $|S_n| = a^k$. Assume 531 w.l.o.g. (by taking a proper subset of F_{3n} if necessary) that F_{3n} has exactly a^c elements 532 for some nonstandard $c \in M$, and let $(f_i)_{1 \le i \le a^c}$ be the increasing enumeration of F_{3n} . 533 Then F_{3n} can be split into a^{k+1} "intervals" as follows: 534

$$\{f_1, \dots, f_{a^d}\} \cup \{f_{a^d+1}, \dots, f_{2a^d}\} \cup \dots \cup \{f_{(a^{k+1}-1)a^d+1}, \dots, f_{a^{k+1}a^d}\}$$
535

where d = c - k - 1. Since $a^{k+1} > a^k$, the pigeonhole principle implies that there is some side $i_0 < a^{k+1}$ such that $[f_{i_0a^d+1}, f_{(i_0+1)a^d}] \cap S_n = \emptyset$. Let F_{3n+1} be the set $\{f_j \mid i_0a^d+1 \le j \le S_{37} (i_0+1)a^d\}$. Notice that $|F_{3n+1}| \ge a^{c-k-1}$ and that $[\min(F_{3n+1}), \max(F_{3n+1})] \cap S_n = \emptyset$ side as wanted.

In step 3n + 2, consider $\leq_n \upharpoonright F_{3n+1}$. By construction, $|F_{3n+2}| \geq a^c$ for some nonstandard c. Dilworth's theorem guarantees that there exists $C \subseteq F_{3n+2}$ such that $|C| \geq a^{c/2}$ suc

Finally, let I be the initial segment $\sup\{\min(F_n) \mid n \in \omega\}$. We check that I satisfies 543 the requirements of our construction. 544

Notice that $I \subsetneq_e M$, given that $\max(F_0) \in M \setminus I$. By the construction of step 3n, 545 I is a cut (that is, contains no greatest element) and for every $k \in \omega$, $F_k \cap I \subseteq_{cf} I$. 546 Moreover, $I \models$ exp because $F_{-1} \cap I \subseteq_{cf} I$, and if x < y are two elements of F_{-1} , then 547 $2^x \leq y$. Hence, $(I, \operatorname{Cod}(M/I)) \models \mathsf{WKL}_0^*$ by [19, Theorem 4.8]. 548

If \preceq is a partial order in $\operatorname{Cod}(M/I)$, then $\preceq = \preceq' \cap I$ for some *M*-finite set \preceq' . Note 549 that there must exist $b \in M \setminus I$ such that $\preceq' \upharpoonright [0, b]$ is a partial order; otherwise, I 550 would be $\Delta_0(\preceq')$ -definable as the set of $i \in M$ for which $\preceq' \upharpoonright [0, i]$ is a poset. It is thus 551 possible to extend \preceq' to an order \preceq'' over M by making every element \leq -greater than 552 b incomparable in \preceq'' with all other elements of M. The order \preceq'' is Δ_0 -definable in 553 M, so there exists $n \in \omega$ such that $\preceq'' \upharpoonright [0, \exp_{a^a}(2)] = \preceq_n$. At step 3n + 2, we chose 554 F_{3n+2} as a chain or antichain in \leq_n . Thus, $F_{3n+2} \cap I \in \operatorname{Cod}(M/I)$ is either a chain or 555 an antichain in \leq , and moreover $F_{3n+2} \cap I \subseteq_{cf} I$. So, $(I, \operatorname{Cod}(M/I)) \models \mathsf{CAC}$. 556

It remains to check that $I_1^0(I, \operatorname{Cod}(M/I)) = \sup\{a^k \mid k \in \omega\}$. To prove the \subseteq 557 inclusion, let $c \in M$ be nonstandard and let $n \in \omega$ be such that $c = c_n$. Consider 558 $F_{3n} \cap I \in \operatorname{Cod}(M/I)$, which is a cofinal subset of I. Since F_{3n} has at most a^c elements, 559 then $F_{3n} \cap I$ has no finite subset of cardinality a^c . To prove the reverse inclusion, we have 560 to show that for each $k \in \omega$ and each $U \in \operatorname{Cod}(M/I)$ such that $U \subseteq_{cf} I$, there exists 561 an *M*-finite set $V \subseteq U$ such that $|V| = a^k$. Let $U = U' \cap I$ for some *M*-finite set U'. 562 Note that $|U'| \ge a^k$, because otherwise $|U'| = S_n$ for some $n \in \omega$ and the construction 563 of step 3n + 1 guarantees that $[\min(F_{3n+1}), \max(F_{3n+1})] \cap U' = \emptyset$, so $U = U' \cap I \not\subseteq_{cf} I$. 564 So, let $V \subseteq U'$ be the set consisting of the first a^k elements of U'. Again, $V = S_n$ 565 for some $n \in \omega$. The construction of step 3n + 1 guarantees that $V' \cap I \not\subseteq_{cf} I$. This 566 means that we must have $V \subseteq U$, because otherwise there would be a largest element 567 of $V \cap U$, then an element $u \in U \setminus V$ above it, and then an element $v \in V \setminus U$ above 568 u, contradicting the definition of V'. Therefore, V is an M-finite set of cardinality a^k 569 contained in U.

Remark 3.17. The technique used in the proof of Theorem 3.16 can also be used 571 to show that $WKL_0^* + RT_k^n$ does not imply the closure of I_1^0 under any function of 572 nonelementary growth rate. With a more careful choice of the initial model M, it can 573 also be used to prove slight refinements of the theorem such as the $\forall \Pi_3^0$ -conservativity 574 of $WKL_0^* + CAC + "I_1^0$ is not closed under any superpolynomially growing function" over 575 RCA_0^*. We do not pursue this topic further in this paper. 576

Combining the techniques used above with the ones of [12, Section 3], one can show 577 that over RCA_0^{α} the Erdös-Moser principle EM, or even a weakening that only requires 578 the solution to be an unbounded set on which a given colouring is semitransitive, implies 579 the closure of I_1^0 under exponentiation. This is because the lower bounds on general 580 Ramsev numbers for pairs, along with the upper bounds on Ramsey numbers associated 581 to orderings provided by Dilworth's theorem, imply that given $k \in \omega$, the smallest n 582 such that any 2-colouring of pairs from $\{1, \ldots, n\}$ is semitransitive on a set of size k has 583 size $2^{\Omega(\sqrt{k})}$. 584

On the other hand, it is quite unclear what closure properties of I_1^0 , if any, are implied by CRT_2^2 .

Question 3.18. Does CRT_2^2 imply that I_1^0 is closed under exp?

A positive answer to this question would give negative answers to Question 3.12 and 588 Question 3.15. For the latter, notice that " I_1^0 is closed under exp" can be expressed by a 589 $\forall \Pi_4^0$ sentence, and " I_1^0 in the computable sets is closed under exp" can even be expressed 590 by a purely first-order Π_4 sentence. 591

One reason why it is not clear whether the techniques of Theorem 3.16 can be applied to CRT_2^2 is that this principle does not have an obvious "finite version" because of the relatively high quantifier complexity of its first-order part (what is a meaningful notion of "stable set" in the finite?). Answering Question 3.18 might require devising such a finite version of CRT_2^2 (or of SRT_2^2) and finding bounds on Ramsey numbers associated with it.

4. Long principles

598

604

587

We now focus our attention on the long versions of Ramsey-theoretic principles. 599 As in the case of normal versions, many implications with an easy proof in RCA_0 600 transfer to RCA_0^* with no particular difficulty. Additionally, as discussed in Section 2.1, 601 it is straightforward to prove that ℓ -ADS^{set} implies ℓ -ADS^{seq}. The following result summarizes the "easy" implications between our principles, as well as the non-implications 603

Lemma 4.1. Over RCA_0^* , the following sequences of implications hold:

known from RCA_0 .

$$\ell\text{-}\mathsf{RT}_2^2 \to \ell\text{-}\mathsf{CAC} \to \ell\text{-}\mathsf{ADS}^{\mathrm{set}} \to \ell\text{-}\mathsf{ADS}^{\mathrm{seq}},$$

 $\ell\text{-}\mathsf{RT}_2^2 \to \ell\text{-}\mathsf{CRT}_2^2.$

None of the implications ℓ -RT²₂ $\rightarrow \ell$ -CAC $\rightarrow \ell$ -ADS^{set} and ℓ -RT²₂ $\rightarrow \ell$ -CRT²₂ can be for provably reversed in RCA^{*}₀.

647

In the rest of this section, we describe some results obtained in an attempt to answer 607 questions left open by Lemma 4.1. It will follow from these results (specifically from 608 Theorem 4.2 and Theorem 4.8) that also the implication ℓ -ADS^{set} $\rightarrow \ell$ -ADS^{seq} cannot 609 be provably reversed in RCA₀^{*}, and that ℓ -ADS^{set} implies ℓ -CRT₂².

Perhaps more interestingly, it turns out that all of the long principles we consider 611 behave in one of two contrasting ways. Some of them are like ℓ -RT₂², in that they are 612 rather easily seen to imply Σ_1^0 -induction. On the other hand, other long principles are 613 partially conservative over RCA₀^{*}, which makes them closer to normal principles in a 614 well-defined technical sense. We begin by discussing the former type of behaviour. 615

Theorem 4.2. Over RCA_0^* , each of the principles ℓ - RT_2^2 , ℓ - CAC , ℓ - $\mathsf{ADS}^{\text{set}}$ implies $I\Sigma_1^0$. 616

Proof. The proof for ℓ -RT² was given by Yokoyama in [23], and it uses a transitive 617 colouring, so essentially the same argument works for each of the principles listed above. 618 We describe the argument for the weakest of these principles, namely ℓ -ADS^{set}. 619

Working in RCA_0^* , suppose that $\mathrm{I\Sigma}_1^0$ fails, and that an unbounded set A is enumerated in increasing order as $\{a_i \mid i \in I\}$ for I a proper Σ_1^0 -cut. We define a linear order \preceq on \mathbb{N} in the following way:

$$x \preceq y \Leftrightarrow \begin{array}{l} \exists i \in I \ (x \in (a_{i-1}, a_i] \land y \in (a_{i-1}, a_i] \land x \ge y) \\ \lor \exists i, j \in I \ (i < j \land x \in (a_{i-1}, a_i] \land y \in (a_{j-1}, a_j]). \end{array}$$

That is, we invert the usual ordering \leq on each interval $(a_{i-1}, a_i]$, but we compare 624 elements from different intervals in the usual way. The order \leq is a set by $\Delta_1(A)$ - 625 comprehension. 626

If $S \subseteq \mathbb{N}$ is such that any two elements $x, y \in S$ satisfy $x \preceq y \leftrightarrow y \leq x$, then S has 627 to be contained in an interval of the form $(a_{i-1}, a_i]$, so it is finite. On the other hand, if 628 all $x, y \in S$ satisfy $x \preceq y \leftrightarrow x \leq y$, then S can contain at most one element from each 629 $(a_{i-1}, a_i]$, so the cardinality of S is strictly less than N. \Box 630

Remark 4.3. Note that the ordering \leq used in the proof of Theorem 4.2 is *stable*, in 631 the sense that for every x, there are only finitely many y such that $y \leq x$. Thus, $I\Sigma_1^0$ 632 is implied already by what one could call " ℓ -SADS^{set}", the long, set-solution version of 633 the stable ADS principle SADS from [9]. 634

To show that the long versions of other principles are logically weak, we introduce 635 an auxiliary statement, a version of the grouping principle GP_2^2 considered in [17]. The 636 original grouping principle is a weakening of RT_2^2 stating that, for any 2-colouring of 637 pairs and any notion of largeness of finite sets (suitably defined), there is an infinite 638 sequence of large finite sets G_0, G_1, \ldots (the groups) such that for each i < j the colouring 639 is constant on $G_i \times G_j$. We consider a weaker version tailored to RCA₀, in which the 640 number of groups can be a proper cut, but the cardinality of individual groups should 641 eventually exceed any finite number. 642

Definition 4.4. The growing grouping principle GGP_2^2 states that for every colouring $c: [\mathbb{N}]^2 \to 2$ there exists a sequence of finite sets $(G_i)_{i \in I}$ such that 644

(i) for every $i < j \in I$ and every $x \in G_i, y \in G_j$ it holds that x < y, 645

(ii) for every $i < j \in I$, the colouring $c \upharpoonright (G_i \times G_j)$ is constant, 646

(iii) for every $i \in I$, $|G_i| \le |G_{i+1}|$ and $\sup_{i \in I} |G_i| = \mathbb{N}$.

Note that $\mathsf{RCA}_0 + \mathsf{RT}_2^2 \vdash \mathsf{GGP}_2^2$. We prove a possibly surprising result on the behaviour 648 of GGP_2^2 under $\neg \mathrm{I}\Sigma_1^0$.

Lemma 4.5. $\mathsf{WKL}_0^* + \neg \mathrm{I}\Sigma_1^0$ implies GGP_2^2 . Moreover, GGP_2^2 restricted to transitive 650 colourings is provable in $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0$.

Remark 4.6. Lemma 4.5 implies in particular that GGP_2^2 is Π_1^1 -conservative over 652 $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$. In contrast, Yokoyama [private communication] has pointed out that 653 GGP_2^2 is not arithmetically conservative over RCA_0 . This can be seen as follows. It is 654 shown in [17, Theorem 5.7 & Corollary 5.9] that RCA_0 extended by a statement $\mathsf{GP}(\mathsf{L}_\omega)$ 655 intermediate between GGP_2^2 and GP_2^2 proves the principle known as 2-DNC and, as a 656 consequence, an arithmetical statement $C\Sigma_2$ unprovable in RCA₀. However, it is clear 657 from the proof of [17, Theorem 5.7] that $\mathsf{RCA}_0 + \mathsf{GGP}_2^2$ is enough for the argument to 658 go through. 659

Proof of Lemma 4.5. The proof uses the technique of building a grouping by thinning 660 out a family of finite sets first "from below" and then "from above". This method was 661 applied to construct large finite groupings in [14].

Work in $\mathsf{WKL}_0^* + \neg \mathrm{I}\Sigma_1^0$, and assume that $A = \{a_i \mid i \in I\}$ is an unbounded set, where 663 *I* is a proper Σ_1^0 -cut. By possibly thinning out *A* (which can only decrease *I*), we may 664 also assume that for each $i \in I$, $a_0 > 2^i$ and $|(a_i, a_{i+1}]| \ge a_0 a_i 2^{a_i}$. 665

Let $c: [\mathbb{N}]^2 \to 2$. We want to obtain a sequence of sets $(G_i)_{i \in I}$ witnessing GGP_2^2 such that $G_i \subseteq (a_{i-1}, a_i]$ for each *i*. We proceed in two main stages.

(1) We stabilize the colour "from below". For each $i \in I$, build a finite sequence of 668 finite sets $B_{-1}^i \supseteq B_0^i \supseteq \ldots \supseteq B_{a_{i-1}}^i$ in the following way. Let $B_{-1}^i = (a_{i-1}, a_i]$, and for 669 each $0 \le x \le a_{i-1}$ let $B_x^i = \{y \in B_{x-1}^i \mid c(x,y) = k\}$, where $k \in \{0,1\}$ is such that 670 $|\{y \in B_{x-1}^i \mid c(x,y) = k\}| \ge |\{y \in B_{x-1}^i \mid c(x,y) = 1 - k\}|$. We can choose for instance 671 k = 0 if the two values are equal. Let $G_i' = B_{a_{i-1}}^i$.

At this point, for each $i \in I$ and each $x \leq a_{i-1}$ the colouring c is constant on $\{x\} \times G'_i$. 673 Moreover, we have $G'_0 = [0, a_0]$ and $|G'_i| \geq a_0 a_i 2^{a_i - a_{i-1} - 1} \geq a_0 a_i$ for each $0 < i \in I$. 674 Note that the sequence $(G'_i)_{i \in I}$ is $\Delta_1(A)$ -definable. 675

(2) We stabilize the colour "from above". For each $i \in I$, we can construct an infinite 676 sequence of finite sets $G'_i = D^i_i \supseteq D^i_{i+1} \supseteq D^i_{i+2} \supseteq \dots$ indexed by $i \leq j \in I$, with a 677 single step of the construction essentially like in stage (1). That is, given j > i, we 678 let D_j^i be $|\{x \in D_{j-1}^i \mid c(x, \min G_j') = k\}|$ for that k for which this set is larger. We 679 only need to compare each $x \in D_{j-1}^i$ with one element of G'_j , because we have already 680 arranged for c to be constant on $\{x\} \times G'_j$. Note that for each $i < j \in I$ the colouring 681 c is constant on $D_i^i \times G'_i$. Also, each D_j^0 is nonempty, while for $0 < i \le j \in I$ we have 682 $|D_{i}^{i}| \geq a_{0}a_{i}2^{-j} \geq 2a_{i}.$ 683

Intuitively, we would want to define $G_i = \bigcap_{i \leq j \in I} D_j^i$, but then being a member of G_i 684 might not be Δ_1^0 -definable. However, if we fix $m \in I$ and consider only the sets $\bigcap_{j=i}^m D_j^i$ 685 for $i \leq m$, we obtain a node of length $a_m + 1$ in the computable binary tree T defined as follows. A finite 0-1 sequence τ belongs to T if the largest m such that $\ln(\tau) > a_m$ 687 satisfies (if we identify τ with the finite set it codes): 688

(i)
$$\tau \cap [0, a_m] \subseteq \bigcup_{i=0}^m G'_i$$

- (ii) for every $i < j \leq m$, the colouring c is constant on $(G'_i \cap \tau) \times (G'_i \cap \tau)$,
- (iii) $|\tau \cap G'_i| > a_i$ for every $i \leq m$.

The tree T is infinite because for arbitrary $m \in I$ there exists a node in T of length a_m , 692 and the set $A = \{a_i \mid i \in I\}$ is unbounded. By WKL T has an infinite path G and we 693 get the desired grouping $(G_i)_{i \in I}$ by taking $G_i = G \cap (a_{i-1}, a_i]$. 694

Now assume additionally that c is a transitive colouring. By the argument from the from proof of Proposition 3.3, we can think of c as given by a linear ordering \preceq . The first from stage of the construction, "from below", is exactly as before. In the "from above" stage, for we will make a small change. If we built the sets D_j^i for c as in the previous construction, for the mathematical provides the position of min G'_i in the \preceq -ordering relative for the set for d_j in the \preceq -ordering relative for the mathematical provides the position of min G'_i in the \preceq -ordering relative for d_j for c as in the previous construction, for d_j for d_j in the \preceq -ordering relative for d_j for d_j in the \preceq -ordering relative for d_j for d_j in the \preceq -ordering relative for d_j for d

689

690

to the elements of D_{j-1}^i . This would split D_{j-1}^i into a "top part" and a "bottom part" 700 with respect to \preceq , and we would take whichever of these two parts were larger. Now, 701 we will take the \preceq -bottom *half* of D_{j-1}^i if min G'_j lies above it, and the top \preceq -*half* if it 702 does not. (Do this in a way that includes the \preceq -midpoint in case $|D_{j-1}^i|$ is odd, so that 703 $|D_j^i|$ is exactly $\lceil |D_{j-1}^i|/2 \rceil$.) 704

By Lemma 2.2, there is an element s > I coding the set of those pairs $\langle i, j \rangle$ with 705 $i < j \in I$ for which D_j^i is the \preceq -top half of D_{j-1}^i . We can think of s as a subset of 706 $[0,b] \times [0,b]$ for some $b < \log a_0$. We can use s to generalize the new definition of D_j^i to 707 $i \in I$ and $j \in [i,b]$: D_j^i is the \preceq -top half of D_{j-1}^i if $\langle i,j \rangle \in s$, and the \preceq -bottom half 708 otherwise. Let $G_i = \bigcap_{j=i}^b D_j^i$. It is easy to check that $(G_i)_{i \in I}$ is Δ_1^0 -definable and that 709 it witnesses GGP_2^2 for \preceq . \Box 710

Remark 4.7. Note that the reason why the proof of GGP_2^2 for transitive colourings 711 does not obviously generalize to arbitrary ones is that in general, if $i \in I < j$, then it 712 is not clear how to split a subset of $(a_{i-1}, a_i]$ into a "more red" and a "more blue" half 713 with respect to a (nonexistent) element of G'_j . If the colouring is transitive and given by 714 an ordering \leq , then even though we cannot actually compare the elements of $(a_{i-1}, a_i]$ 715 to a nonexistent element, we can say which ones form the top and bottom half. 716

Theorem 4.8. RCA_0^* proves ℓ -ADS^{seq} \leftrightarrow ADS, and WKL_0^* proves ℓ -CRT²₂ \leftrightarrow CRT²₂. 717

Proof. Let us first consider the case of ADS. Clearly, ℓ -ADS^{seq} implies ADS, and the 718 two principles are equivalent over RCA₀. So, we only need to prove ℓ -ADS^{seq} from ADS 719 working in RCA₀^{*} + \neg I Σ ₁⁰. 720

Let (\mathbb{N}, \preceq) be an instance of ℓ -ADS^{seq}. By Lemma 4.5, we can apply GGP_2^2 to the 721 colouring given by \leq , obtaining a sequence of finite sets $G_0 < G_1 < \ldots < G_i < \ldots$, 722 where $i \in I$ for some Σ_1^0 -cut I. By Lemma 3.2, we can apply ADS to the order \preceq 723 restricted to the set $A = {\min(G_i) \mid i \in I}$. Without loss of generality, assume that 724 this gives us an unbounded set $S \subseteq A$ such that for any $x, y \in S, x \preceq y$ iff $x \geq y$. 725 Assume $S = \{\min(G_{i_j}) \mid j \in J\}$ for some cut $J \subseteq I$. Now consider the descending 726 sequence in \leq defined as follows: first list the elements of G_{i_0} in \leq -descending order, 727 then the elements of G_{i_1} in \preceq -descending order, and so on. This sequence can be 728 obtained using $\Delta_1(S, \preceq)$ -comprehension, and it has length \mathbb{N} , because $S \subseteq_{\mathrm{cf}} A \subseteq_{\mathrm{cf}} \mathbb{N}$, 729 so $\sup_{i \in J} |G_{i_i}| = \sup_{i \in I} |G_i| = \mathbb{N}.$ 730

A similar argument shows that $\mathsf{RCA}_0^* + \mathsf{GGP}_2^2$ proves $\mathsf{CRT}_2^2 \to \ell\text{-}\mathsf{CRT}_2^2$. However, 731 the instance to which we apply GGP_2^2 in that argument is not necessarily transitive, so 732 Lemma 4.5 only implies $\mathsf{WKL}_0^* + \neg \mathrm{I\Sigma}_1^0 \vdash \mathsf{CRT}_2^2 \to \ell\text{-}\mathsf{CRT}_2^2$ and thus $\mathsf{WKL}_0^* \vdash \mathsf{CRT}_2^2 \leftrightarrow$ 733 $\ell\text{-}\mathsf{CRT}_2^2$.

Remark 4.9. There is version of ADS, called ADC in [1], in which the solution is an 735 infinite set S such that either each element of S has only finitely many predecessors 736 or each element of S has only finitely many successors. This principle is known to be 737 equivalent to ADS in RCA₀, but strictly weaker in terms of Weihrauch reducibility. It 738 is not hard to verify using the techniques of Section 3 that the normal version of ADC 739 is provably in RCA₀ equivalent to ADS. Moreover, a slight modification of the previous 740 proof shows that the long version of ADC is also equivalent to ADS. 741

Theorem 4.8 allows us to show that ℓ -ADS^{seq} and ℓ -CRT²₂ are weak principles in the respective over RCA^{*}₀. respectively. respect

Corollary 4.10. Both $WKL_0^* + \ell$ -ADS^{seq} and $WKL_0^* + \ell$ -CRT² follow from $WKL_0^* + RT^2_2$. 744 As a consequence, these theories are $\forall \Pi_3^0$ -conservative over RCA^{*} and do not imply $I\Sigma_1^0$. 745

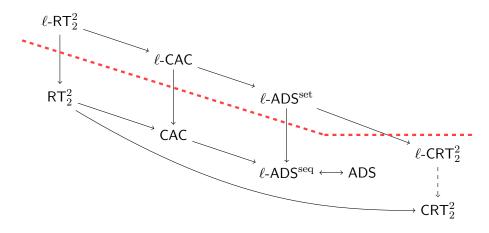


FIGURE 1. Summary of relations between the various versions of RT_2^2 , CAC, ADS and CRT_2^2 over RCA_0^* . Solid arrows represent implications provable in RCA_0^* that do not provably reverse in RCA_0^* . The dashed arrow represents an implication for which the reversal is open. Also the implications from CAC and ADS to CRT_2^2 and from any of RT_2^2 , CAC, ADS to ℓ -CRT₂² are open. All indicated theories above the thick dashed line imply $I\Sigma_1^0$, and all indicated theories below the line are $\forall \Pi_3^0$ -conservative over RCA_0^* .

Proof. It is immediate from Theorem 4.8 and Lemma 3.1 that both $WKL_0^* + \ell - ADS^{seq}$ 746 and $WKL_0^* + \ell - CRT_2^2$ follow from $WKL_0^* + RT_2^2$. 747

To prove the $\forall \Pi_3^0$ -conservativity of $\mathsf{WKL}_0^* + \mathsf{RT}_2^2$ over RCA_0^* , note that the proof of 748 $\forall \Pi_3^0$ -conservativity of $\mathsf{RCA}_0^* + \mathsf{RT}_k^n$ over RCA_0^* in [11] in fact shows that any Σ_3^0 sentence 749 consistent with RCA_0^* is satisfied in some model of $\mathsf{RCA}_0^* + \mathsf{RT}_k^n$ of the form $(I, \operatorname{Cod}(M/I))$ 750 for I a proper Σ_1^0 -cut in a model $M \models \mathrm{I\Delta}_1^0 + \exp$. By [19, Theorem 4.8], any such model 751 $(I, \operatorname{Cod}(M/I))$ satisfies WKL_0^* as well. 752

Of course, each theory that is at least Π_1 -conservative over RCA_0^* is consistent with 753 $\neg \operatorname{Con}(\mathrm{I\Delta}_0)$ and thus cannot imply even $\mathrm{I\Delta}_0$ + supexp, where supexp expresses the 754 totality of the iterated exponential function.

Our results from Sections 3 and 4 on the relationships between the normal and long 756 versions of RT_2^2 , CAC, ADS, and CRT_2^2 are summarized in Figure 1. One phenomenon 757 apparent from the figure is that all of the principles considered up to this point either 758 imply $\mathrm{I\Sigma}_1^0$ or are $\forall \Pi_3^0$ -conservative over RCA_0^n .

The main open problems related to normal versions of our principles concern CRT_2^2 related and have already been stated in Section 3. Among the long principles, questions about relations those that imply $I\Sigma_1^0$ move us back to the traditional realm of reverse mathematics over respectively. As for the weaker long principles, an important matter is to settle the status of respectively. GGP₂².

Question 4.11. Does $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$ imply GGP_2^2 ? Is GGP_2^2 equivalent to WKL_0^* over 765 $\mathsf{RCA}_0^* + \neg I\Sigma_1^0$?

A more specialized but related group of problems concerns ℓ -CRT²₂.

Question 4.12. Is ℓ -CRT₂² equivalent to CRT₂² over RCA₀^{*}? Does it follow from RCA₀^{*} + ⁷⁶⁸ RT₂²?

By the argument used to prove Theorem 4.8, if GGP_2^2 is provable in $RCA_0^* + \neg I\Sigma_1^0$, 770 then both parts of Question 4.12 have a positive answer. 771

In the context of Question 4.11, we mention a potentially interesting connection 772 between GGP_2^2 and the long version of the Erdös-Moser principle: over $RCA_0^* + \neg I\Sigma_1^0$, 773 ℓ -EM is equivalent to $EM \wedge GGP_2^2$. This equivalence implies in particular that ℓ -EM does 774 not prove $I\Sigma_1^0$ and is in fact $\forall \Pi_3^0$ -conservative over RCA_0^* . However, we do not know if 775 the $\forall \Pi_3^0$ -conservative long principles considered earlier also imply GGP_2^2 . 776

To prove the equivalence, note that, on the one hand, an argument like the one in 777 Theorem 4.8 proves ℓ -EM in RCA₀^{*} + GGP₂² + EM. Given $c: [\mathbb{N}]^2 \to 2$, we can use GGP₂² 778 to obtain $(G_i)_{i \in I}$ such that $c \upharpoonright (G_i \times G_j)$ is constant for each $i < j \in I$, thin out each 779 G_i at most exponentially to obtain G'_i on which c is constant, and then apply EM to 780 $c \upharpoonright \{\min(G'_i \mid i \in I)\}$ in order to find $\check{S} = \{\min(G'_{i_j} \mid j \in J)\}$ on which c is transitive. 781 Then $\bigcup_{i \in J} G'_{i_i}$ is a set of cardinality \mathbb{N} on which c is transitive. On the other hand, 782 $\mathsf{RCA}_0^* + \neg \mathrm{I}\Sigma_1^0 + \ell$ -EM implies GGP_2^2 . Given a colouring $c \colon [\mathbb{N}]^2 \to 2$, we can apply ℓ -EM to 783 obtain a set S of cardinality \mathbb{N} such that c is transitive on S. Then Lemma 4.5 applied 784 to $c \upharpoonright [S]^2$ provides a solution to GGP_2^2 . 785

5. The curious case of COH

786

In the final section of the paper, we consider the behaviour over RCA_0^* of the cohesion 787 principle COH. Recall that a set $C \subseteq \mathbb{N}$ is *cohesive* for a sequence $(R_n)_{n \in \mathbb{N}}$ of subsets 788 of \mathbb{N} if, for each $n \in N$, either all but finitely many elements of C belong to R_n or all 789 but finitely many elements of C belong to $\mathbb{N} \setminus R_n$. We write $C \subseteq^* R_n$ in the former case 790 and $C \subseteq^* \overline{R_n}$ in the latter. 791

- COH : For each sequence $(R_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} , there exists an unbounded respective for $(R_n)_{n \in \mathbb{N}}$.
- ℓ -COH: For each sequence $(R_n)_{n \in \mathbb{N}}$ of subsets of \mathbb{N} , there exists a set C of cardinality \mathbb{N} which is cohesive for $(R_n)_{n \in \mathbb{N}}$. 794

Belanger [2] asked whether COH is Π_1^1 -conservative over RCA₀^{*}. A negative answer to 796 this question follows from the results of Section 3. This is because COH implies CRT₂², 797 and the implication remains provable in RCA₀^{*}: for a colouring $c: [\mathbb{N}]^2 \to 2$, any set 798 C that is cohesive for the sequence $(\{y \mid c(n, y) = 1\})_{n \in \mathbb{N}}$ is also stable for c. Thus, 799 Corollary 3.14 immediately implies the following result.

Corollary 5.1. $\mathsf{RCA}_0^* + \mathsf{COH}$ is not Π_5 -conservative over RCA_0^* .

801

Of course, ℓ -COH implies ℓ -CRT²₂ over RCA^{*}₀ in an analogous way. Below we focus on ⁸⁰² COH, as we have no results to report on ℓ -COH beyond immediate consequences of the ⁸⁰³ easy implications from ℓ -COH to COH and to ℓ -CRT²₂. ⁸⁰⁴

In terms of our classification of Ramsey-theoretic statements into normal and long grinciples, COH has some aspects of both. On the one hand, the solution C is only required to be unbounded but not to have cardinality \mathbb{N} . On the other hand, C is required to behave in a certain way with respect to *each* element of the sequence $(R_n)_{n \in \mathbb{N}}$, which solutions behave in a certain \mathbb{N} . We will show that the latter feature of COH has an interesting some consequence: the well-known implication from RT_2^2 to COH [3]¹ is not provable over sine RCA_0^n . A fortiori, this means that neither the implications from CAC and ADS to COH sine RI_2^n .

¹The proof of $\mathsf{RT}_2^2 \to \mathsf{COH}$ given in [3] actually requires $\mathrm{I}\Sigma_2^0$ but Mileti [16] gave another proof which goes through in RCA_0 .

known to hold over RCA_0 nor the equivalence between COH and CRT_2^2 known to hold over $\mathsf{RCA}_0 + \mathrm{B}\Sigma_2^0$ [9] are provable in RCA_0^* .

To prove that the implication $\mathsf{RT}_2^2 \to \mathsf{COH}$ breaks down over RCA_0^* , we will show that, in contrast to all the "normal" Ramsey-theoretic principles considered in Section 3, COH sis is never computably true, i.e. it never holds in a model of the form $(M, \Delta_1 - \mathrm{Def}(M))$. We will prove this by means of a detour through what is called the Σ_2^0 -separation principle in [2].

 Σ_2^0 -separation: For every two disjoint Σ_2^0 -sets A_0, A_1

there exists a
$$\Delta_2^0$$
-set B such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$.

It was shown in [2] that COH is equivalent to Σ_2^0 -separation over $\mathsf{RCA}_0 + \mathsf{B}\Sigma_2^0$ and that the implication from COH to Σ_2^0 -separation works over RCA_0 . Below, we verify that this implication remains valid over RCA_0^* . On the other hand, we show that $\mathsf{B}\Sigma_1 + \exp$ is enough to prove the existence of two disjoint lightface Σ_2 -sets that cannot be separated by a Δ_2 -set. That is the same thing as saying that in any structure $M \models \mathsf{B}\Sigma_1 + \exp$, the second-orded universe consisting exclusively of the Δ_1 -definable sets satisfies the negation of the Σ_2^0 -separation principle and hence also $\neg \mathsf{COH}$.

Lemma 5.2. RCA_0^* proves that COH implies Σ_2^0 -separation.

Proof. We will follow the structure of the proof in RCA_0 described in [2] (which is based on [10]), pointing out where we have to depart from it. We work in $\mathsf{RCA}_0^* + \mathsf{COH}$ and prove the dual formulation of Σ_2^0 -separation: if A_0 and A_1 are Π_2^0 sets such that $A_0 \cup A_1 = \mathbb{N}$, then there exists a Δ_2^0 -set B such that $B \subseteq A_0$ and $\overline{B} \subseteq A_1$.

Assume that:

$$A_0 = \{ x \mid \forall y \exists z \, \theta_0(x, y, z) \}, A_1 = \{ x \mid \forall y \exists z \, \theta_1(x, y, z) \},$$

where θ_0 , θ_1 are Δ_0^0 , and for each $n \in \mathbb{N}$ it holds that $n \in A_0$ or $n \in A_1$.

The argument in RCA_0 would now make use of a Δ_1^0 -definable function $f: \mathbb{N} \times \mathbb{N} \to 2$ 834 such that for every n, 835

$$\{s \mid f(n,s) = i\}$$
 is infinite iff $n \in A_i$.

It seems unclear whether we can have access to such a function in RCA_0^* . However, we can use a witness comparison argument to find a Δ_1^0 -definable $f: \mathbb{N} \times \mathbb{N} \to 2$ such that for every n, say

if
$$\{s \mid f(n,s) = i\}$$
 is infinite, then $n \in A_i$.

Namely, for every n at least one of $\forall y \exists z \, \theta_0(n, y, z)$ and $\forall y \exists z \, \theta_1(n, y, z)$ holds. So, by 841 B Σ_1^0 , for every n and s there must exist some w_0 such that $\forall y \leq s \exists z \leq w_0 \, \theta_0(n, y, z)$ or 842 some w_1 such that $\forall y \leq s \exists z \leq w_1 \, \theta_1(n, y, z)$. Define f(n, s) = 0 if the smallest such w_0 843 is at most equal to the smallest such w_1 , and f(n, s) = 1 otherwise. 844

Now consider the Δ_1^0 -definable sequence of sets $(R_n)_{n \in \mathbb{N}}$ where $R_n = \{s \mid f(n, s) = 0\}$. Let C be a cohesive set for this sequence. Notice that if $C \subseteq^* R_n$, then R_n is infinite and hence $n \in A_0$, and analogously if $C \subseteq^* \overline{R}_n$ then $n \in A_1$.

Let

$$B = \{n \mid \exists k \,\forall \ell \geq k \,(\ell \in C \to \ell \in R_n)\}.$$

Since C is cohesive for $(R_n)_{n \in \mathbb{N}}$, both B and its complement are Σ_2^0 -definable. Moreover, 850 it follows from the construction that if $n \in B$ then $n \in A_0$ and if $n \notin B$ then $n \in A_1$. \Box 851

Lemma 5.3. $B\Sigma_1 + \exp$ proves that there exist two disjoint Σ_2 -sets that cannot be separated by a Δ_2 -set.

828

Proof. We verify that an essentially standard proof of the existence of Δ_2 -inseparable disjoint Σ_2 -sets goes through in $B\Sigma_1 + \exp$. The recursion-theoretic facts and notions needed for the proof to work were formalized within $B\Sigma_1 + \exp$ in [6].

A Turing functional Φ is a Σ_1 -set of tuples $\langle x, y, P, N \rangle$, where $x, y \in \mathbb{N}$ and P, N set are disjoint finite sets. Turing functionals are constrained to be well-defined in the sense that for fixed x, P, N there is at most one y such that $\langle x, y, P, N \rangle \in \Phi$, and to be monotone in the sense that increasing P or N preserves membership in Φ . Given a Turing functional Φ , we say that $\Phi^{0'}(x) = y$ if there exist $P \subseteq 0'$ and $N \subseteq \overline{0'}$ such that $\langle x, y, P, N \rangle \in \Phi$.

Work in $B\Sigma_1 + \exp$, and let $(\Phi_e)_{e \in \mathbb{N}}$ be an effective listing of all Turing functionals. 863 Let A_0 be the Σ_2 -set $\{e \in \mathbb{N} : \Phi_e^{0'}(e) = 0\}$, and let A_1 be the Σ_2 -set $\{e \in \mathbb{N} : \Phi_e^{0'}(e) = 1\}$. 864 Clearly, A_0 and A_1 are disjoint. We claim that they cannot be separated by a Δ_2 -set. 865

Suppose that B is a Δ_2 -set such that $A_0 \subseteq B$ and $A_1 \subseteq \overline{B}$. By [6, Corollary 3.1], see provably in $B\Sigma_1 + \exp$ the Δ_2 -set B is *weakly recursive* in 0' in the following sense: see there is some Turing functional Φ_{e_0} such that for every x, if $x \in B$ then $\Phi_{e_0}^{0'}(x) = 1$, and see if $x \notin B$ then $\Phi_{e_0}^{0'}(x) = 0$. By the definition of A_0 and A_1 , this implies that $\Phi_{e_0}^{0'}(e_0) = 0$ see iff $\Phi_{e_0}^{0'}(e_0) = 1$, which is a contradiction because $\Phi_{e_0}^{0'}$ is defined on every input and takes see 0/1 values.

Theorem 5.4. Any model $(M, \Delta_1^0 \operatorname{-Def}(M, A)) \vDash \mathsf{RCA}_0^*$, where $A \subseteq M$, satisfies $\neg \mathsf{COH}$. 872

Proof. This is an immediate consequence of Lemma 5.2 and Lemma 5.3 relativized to A. Lemma 5.2 says that if the structure $(M, \Delta_1^0 \text{-Def}(M, A))$ satisfied COH, then it would also satisfy the Σ_2^0 -separation principle. The latter would contradict Lemma 5.3, because in $(M, \Delta_1^0 \text{-Def}(M, A))$ the Σ_2^0 -sets are exactly the $\Sigma_2(A)$ -definable sets and the Δ_2^0 -sets are exactly the $\Delta_2(A)$ -definable sets. \square 877

Corollary 5.5. $\mathsf{RCA}_0^* + \mathsf{RT}_2^2$ does not imply COH.

Proof. By Theorem 5.4, it is enough to note that there exists a model of $\mathsf{RCA}_0^* + \mathsf{RT}_2^2$ s79 of the form $(M, \Delta_1^0 \operatorname{-Def}(M, A))$ for some $A \subseteq M$. The existence of such a model follows s80 from the existence of a model of $\mathsf{RCA}_0^* + \mathsf{RT}_2^2 + \neg \mathrm{I}\Sigma_1^0$ [11] and Corollary 3.6.

Corollary 5.6. RT_2^2 , CAC, and ADS are incomparable with COH with respect to implications over RCA_0^* .

Another consequence of Theorem 5.4 is that an analogue of Theorem 3.5 does not hold for COH. In particular, it is not true that if $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ and $(I, \operatorname{Cod}(M/I)) \models \mathsf{COH}$ for some Σ_1^0 -cut I of M, then $(M, \mathcal{X}) \models \mathsf{COH}$, since in a model of $\neg I\Sigma_1$ this would work in particular for $\mathcal{X} = \Delta_1$ -Def(M). On the other hand, using methods in the style of Section 3 it is easy to show that the converse implication still holds.

Proposition 5.7. For every $(M, \mathcal{X}) \models \mathsf{RCA}_0^*$ and every proper Σ_1^0 -cut I in (M, \mathcal{X}) , if ⁸⁸⁹ $(M, \mathcal{X}) \models \mathsf{COH}$, then $(I, \operatorname{Cod}(M/I)) \models \mathsf{COH}$.

Proof. Suppose $(M, \mathcal{X}) \vDash \mathsf{RCA}_0^* + \mathsf{COH}$ and I is a proper Σ_1^0 -cut in (M, \mathcal{X}) . Let $A \in \mathcal{X}$ solution be a cofinal subset of M enumerated as $A = \{a_i \mid i \in I\}$, as in Proposition 2.1.

Let $(R_i)_{i \in I}$ be a sequence of subsets of I that belongs to Cod(M/I). Define a sequence $(R'_n)_{n \in M}$ in the following way. If $n \in (a_{i-1}, a_i]$ for some $i \in I$, let 894

$$R'_{n} = \{ x \in M \mid \exists j \in I \ (x \in (a_{j}, a_{j+1}]) \land j \in R_{i}) \}.$$

The sequence $(R'_n)_{n \in M}$ is Δ_1 -definable in A and the code for $(R_i)_{i \in I}$, so it belongs to 896 \mathcal{X} . By COH in (M, \mathcal{X}) , there exists $C' \in \mathcal{X}$ such that $C' \subseteq_{\mathrm{cf}} M$ and C' is cohesive for 897 $(R'_n)_{n \in M}$. Define $C = \{i \in I \mid C' \cap (a_i, a_{i+1}] \neq \emptyset\}$. Both C and $I \setminus C$ are Σ_1 -definable in 898

C' and A, so $C \in \operatorname{Cod}(M/I)$ by Lemma 2.2. Moreover, $C \subseteq_{\operatorname{cf}} I$ and it is easy to check support that C is cohesive for $(R_i)_{i \in I}$.

Results such as Theorem 5.4 and Corollary 5.5 provide some new information about $_{901}$ COH, but the strength of this principle in RCA^{*}₀ is still to a large extent mysterious. $_{902}$ Some rather basic problems remain open. $_{903}$

Question 5.8. Does COH, or at least ℓ -COH, imply $I\Sigma_1^0$ over RCA_0^* ? Is ℓ -COH, or at 904 least COH, $\forall \Pi_3^0$ -conservative over RCA_0^* ?

Question 5.9. Does RCA_0^* , or at least WKL_0^* , prove $\mathsf{COH} \leftrightarrow \ell\text{-}\mathsf{COH}$?

Acknowledgement. The authors are grateful to Tin Lok Wong and Keita Yokoyama for valuable comments on an early draft version of this work. 908

References

909

912

924

939

906

[1]	Eric P. Astor, Damir D. Dzhafarov, Reed Solomon, and Jacob Suggs, The uniform content of partial	910
	and linear orders, Annals of Pure and Applied Logic 168 (2017), no. 6, 1153–1171.	911

[2] David R. Belanger, Conservation theorems for the cohesiveness principle, 2015. Preprint.

- [3] Peter A. Cholak, Carl G. Jockusch, and Theodore A. Slaman, On the strength of Ramsey's theorem 913 for pairs, The Journal of Symbolic Logic 66 (2001), no. 1, 1–55.
- [4] C. T. Chong and Joe K. Mourad, *The degree of a* Σ_n *cut*, Annals of Pure and Applied Logic **48** 915 (1990), no. 3, 227–235.
- [5] C. T. Chong, Theodore A. Slaman, and Yue Yang, Π¹₁-conservation of combinatorial principles 917 weaker than Ramsey's theorem for pairs, Advances in Mathematics 230 (2012), 1060–1077.
- [6] C. T. Chong and Yue Yang, The jump of a Σ_n -cut, Journal of the London Mathematical Society 919 (2) **75** (2007), no. 3, 690–704. 920
- [7] Marta Fiori-Carones, Leszek A. Kołodziejczyk, Tin Lok Wong, and Keita Yokoyama, An isomorphism theorem for models of Weak König's Lemma without primitive recursion, 2021. In preparation.
- [8] Denis R. Hirschfeldt, Slicing the Truth, World Scientific, 2015.
- [9] Denis R. Hirschfeldt and Richard A. Shore, Combinatorial principles weaker than Ramsey's theorem 925 for pairs, Journal of Symbolic Logic 72 (2007), 171–206.
- [10] Carl Jockusch and Frank Stephan, A cohesive set which is not high, Mathematical Logic Quarterly
 39 (1993), no. 4, 515–530.
- [11] Leszek A. Kołodziejczyk, Katarzyna W. Kowalik, and Keita Yokoyama, How strong is Ramsey's 929 theorem if infinity can be weak?, 2021. Submitted. Available at arXiv:2011.02550.
- [12] Leszek A. Kołodziejczyk, Tin Lok Wong, and Keita Yokoyama, Ramsey's theorem for pairs, collection, and proof size, 2020. Submitted. Available at arXiv:2005.06854.
 932
- [13] Leszek A. Kołodziejczyk and Keita Yokoyama, Categorical characterizations of the natural numbers 933 require primitive recursion, Annals of Pure and Applied Logic 166 (2015), no. 2, 219–231.
 934

[14] _____, Some upper bounds on ordinal-valued Ramsey numbers for colourings of pairs, Selecta 935
 Mathematica (N.S.) 26 (2020), no. 4, paper No. 56, 18 pages. 936

- [15] Manuel Lerman, Reed Solomon, and Henry Towsner, Separating principles below Ramsey's theorem 937 for pairs, Journal of Mathematical Logic 13 (2013), no. 02, 1350007.
- [16] Joseph R. Mileti, Partition theorems and computability theory, Ph.D. Thesis, 2004.
- [17] Ludovic Patey and Keita Yokoyama, The proof-theoretic strength of Ramsey's theorem for pairs 940 and two colors, Advances in Mathematics 330 (2018), 1034–1070.
- [18] Stephen G. Simpson, Subsystems of Second Order Arithmetic, Association for Symbolic Logic, 2009. 942
- [19] Stephen G. Simpson and Rick L. Smith, Factorization of polynomials and Σ_1^0 induction, Annals of 943 Pure and Applied Logic **31** (1986), 289–306. 944

[20] Stephen G. Simpson and Keita Yokoyama, *Reverse mathematics and Peano categoricity*, Annals of
 Pure and Applied Logic 164 (2013), no. 3, 284–293.

- [21] Kazuyuki Tanaka, The self-embedding theorem of WKL₀ and a non-standard method, Annals of 947
 Pure and Applied Logic 84 (1997), no. 1, 41–49.
- [22] Henry Towsner, Constructing sequences one step at a time, Journal of Mathematical Logic 20 949 (2020), no. 3, 2050017, 43.

[23] Keita Yokoyama, On the strength of Ramsey's theorem without Σ_1 -induction, Mathematical of Logic Quarterly 59 (2013), 108–111.	951 952
INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSZAWA, POLAND	953
Email address: marta.fioricarones@outlook.it	954
URL: https://martafioricarones.github.io	955
Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland <i>Email address</i> : lak@mimuw.edu.pl	956 957
INSTITUTE OF MATHEMATICS, UNIVERSITY OF WARSAW, BANACHA 2, 02-097 WARSZAWA, POLAND	958
Email address: katarzyna.kowalik@mimuw.edu.pl	959