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Abstract

We consider three relatively strong families of subsystems of AC0[2]-
Frege for which exponential lower bounds on proof size are known. In
order of increasing strength, these subsystems are: AC0-Frege with
parity axioms and the treelike and daglike versions of systems intro-
duced by Kraj́ıček which we call PKc

d(⊕). In a PKc
d(⊕)-proof, lines are

cedents in which all formulas have depth at most d, parity connectives
can only appear as the outermost connectives in formulas, and all but
c formulas contain no parity connective at all.

We give simple arguments proving that AC0[2]-Frege is exponen-

tially stronger than daglike PK
O(1)
O(1)(⊕), which is exponentially stronger

than treelike PK
O(1)
O(1)(⊕). On the other hand, we point out that the best

available technique for comparing the performance of such systems on
De Morgan formulas, due to Impagliazzo and Segerlind, only leads to

superpolynomial separations. In fact, we prove that treelike PK
O(1)
O(1)(⊕)
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is quasipolynomially but not polynomially equivalent to AC0-Frege
with parity axioms. This leads us to ask the question whether any
of our systems is quasipolynomially equivalent to AC0[2]-Frege on De
Morgan formulas; a positive answer would imply an exponential lower
bound for AC0[2]-Frege.

We also study Itsykson and Sokolov’s system Res-Lin. We prove
that an extension of treelike Res-Lin is polynomially simulated by a

system related to daglike PK
O(1)
O(1)(⊕), and obtain an exponential lower

bound for this system.

1 Introduction

The work presented in this paper is inspired by the following long-standing
open problem in propositional proof complexity:

Prove superpolynomial or better lower bounds
on proof size for AC0[2]-Frege.

Here AC0[2]-Frege systems are proof systems in which lines are constant-
depth formulas in the language of ¬, unbounded fan-in ∧ and ∨, and an
unbounded fan-in parity connective ⊕. The survey paper [6] considers this
to be one of the two main challenges currently facing Cook’s programme of
approaching the NP = coNP problem via lower bound proofs for increasingly
strong proof systems.

Our point of departure is the observation that there are relatively strong
subsystems of AC0[2]-Frege, combining the full power of AC0-Frege with
some ability to reason about parity, for which good lower bounds are known.
The most familiar of these systems is AC0-Frege with parity axioms, which
requires exponential size to prove the counting mod 3 principle Count3 [9]
and the pigeonhole principle PHP [4]. Two others are the treelike and daglike
versions of a system studied by Kraj́ıček [11] which we call PKc

d(⊕). The
idea of PKc

d(⊕) is that all formulas are required to have depth at most d,
and even though parity connectives are allowed, the parts of the syntactic
trees that are between the root and a parity must have constant size, as

specified by c. Treelike PK
O(1)
O(1)(⊕) requires exponential size to prove PHP

[11], and daglike PK
O(1)
O(1)(⊕) has no short proofs of Count3 ([11] combined

with [7]).
How plausible is it that lower bounds for systems such as those “already

imply” lower bounds for AC0[2]-Frege?
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For instance, how plausible is the following scenario? Take a suitable
model (M,⊕M ) of the (relativized) bounded arithmetic theory correspond-

ing to PK
O(1)
O(1)(⊕) such that M violates some combinatorial principle, for

instance, Count3. By [20], M satisfies the weak pigeonhole principle for
bounded formulas in the language with the usual quantifiers ∃, ∀ but without
the parity quantifier ⊕. Prove that M has some model-theoretic property
that makes either (M,⊕M ) or M expanded by a different interpretation of ⊕
satisfy WPHP in the language with ⊕. By doing this, you will have proved
that the principle violated in M is independent of bounded arithmetic with
the ⊕ quantifier, as that theory is provably equivalent to a subtheory of the

theory for PK
O(1)
O(1)(⊕) extended by certain instances of WPHP for functions

whose definitions involve ⊕ [10]. By doing this in a way that is sufficiently
uniform in M , you will have actually obtained the elusive lower bound for
AC0[2]-Frege.

In the authors’ opinion, the scenario is not all that likely, and has a “pigs
can fly” feel. However, what concrete arguments can we give against it? The
ideal argument would be to exhibit a uniform family of tautologies in the

language of ¬,∧,∨ separating PK
O(1)
O(1)(⊕) from AC0[2]-Frege: if M violates

the separating principle, it cannot be expanded so as to satisfy WPHP in
the language with ⊕. (On the other hand, if no such family of tautologies
exists, then AC0[2]-Frege has no short proofs of Count3 or PHP.)

At first glance, it might seem that we have the separation needed to rule
out the scenario above. In [15], Impagliazzo and Segerlind proved a separa-
tion of AC0-Frege with parity axioms from AC0[2]-Frege. Moreover, we show
that the technique they use can be adapted to prove that the strength of

PK
O(1)
O(1)(⊕), as a system for refuting CNFs, is strictly intermediate between

AC0-Frege with parity axioms and AC0[2]-Frege.
There is a catch, however. The method of [15] can only prove barely

superpolynomial separations, and that is not quite enough. In the context
of constant-depth systems, the right notion of simulation seems to be at
least quasipolynomial rather than polynomial: the translation from bounded
arithmetic to constant-depth proofs is quasipolynomial, and in general the
area abounds in results on quasipolynomial-size provability and/or simula-
tion that are either open or false in the polynomial-size case, e.g. [5, 18, 1, 10].

The main technical result of our paper is one more argument in favour of
demanding superquasipolynomial rather than merely superpolynomial sep-
arations: inspired by another paper by Impagliazzo and Segerlind, we prove

that AC0-Frege with parity axioms and treelike PK
O(1)
O(1)(⊕) are quasipolyno-

mially equivalent, even though they are not polynomially equivalent.
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While the possibility that this quasipolynomial equivalence extends all
the way to AC0[2]-Frege seems farfetched, it is nevertheless not disproved.
Thus, the main “ideological message” of our paper is that the following
question mentioned in [15] deserves more attention than it has received:
can the superpolynomial separation of AC0-Frege with parity axioms from
AC0[2]-Frege be improved—to superquasipolynomial, at the very least? The
follow-up question, of course, would be: can such an improved separation

be extended to systems such as PK
O(1)
O(1)(⊕)?

The paper is organized as follows. We introduce the necessary definitions

and background in Section 2. In Section 3, we verify that PK
O(1)
O(1)(⊕) is

complete and that the treelike version polynomially simulates AC0-Frege
with parity axioms. The proof of the quasipolynomial simulation of treelike

PK
O(1)
O(1)(⊕) by AC0-Frege with parity axioms takes up Sections 4–7. The

structure of that proof is described at the beginning of Section 4.
In Section 8, we provide exponential separations between treelike and

daglike PK
O(1)
O(1)(⊕) and AC0[2]-Frege as refutation systems for families of for-

mulas with ⊕; we sketch a proof of the superpolynomial separations without
⊕ in Section 9.

In Section 10, we consider the loosely related topic of a refutation system
introduced by Itsykson and Sokolov [17] in which proof lines are disjunctions
of parities of literals. [17] proves a lower bound on the treelike version of
this system. We point out that even a generalization of the treelike system
in which the parities can have arbitrary constant-depth formulas as inputs

is quasipolynomially simulated by daglike PK
O(1)
O(1)(⊕), and therefore unable

to give short proofs of Count3.

2 Preliminaries

Propositional formulas are built up from Boolean variables x and their nega-
tions x using the unbounded fan-in connectives

∨
,
∧
,⊕0,⊕1. The input to

an unbounded fan-in connective is a sequence of formulas. We allow the
input to be the empty sequence, ∅, in which case we will write ⊥ and > for∨
∅ and

∧
∅, respectively. The parity connective ⊕b, for b ∈ {0, 1}, is inter-

preted to be true if the number of its true inputs is congruent to b modulo
2. The negation operator is extended to all formulas by defining x to be x

for a variable x, and inductively defining
∨
i∈I ϕi,

∧
i∈I ϕi and ⊕bi∈Iϕi to be∧

i∈I ϕi,
∨
i∈I ϕi and ⊕1−b

i∈I ϕi, respectively. The depth, dp(ϕ), of a formula
ϕ, is the maximum number of alternating blocks of connectives along any
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branch in ϕ (viewed as a tree), except that we consider ⊥ and > to have
depth 0 and extend that to formulas containing ⊥ and >.

The propositional proof systems we consider are Tait-style systems, i.e.,
the lines in a proof are cedents. Our convention is that a cedent is a sequence
of formulas. We use capital Greek letters Γ,∆, . . . as names for both cedents
and inputs to the unbounded fan-in connectives. The intended meaning of
a cedent Γ is

∨
Γ.

The logical axioms are:

⊕0∅ and x, x

for a propositional variable x.
The inference rules are:

Γ Weakening
Γ,∆

Γ,∆,Λ,Ψ
Exchange

Γ,Λ,∆,Ψ

Γ,∆
OR

Γ,
∨

∆

Γ, ϕi for all i ∈ I
AND

Γ,
∧
i∈I ϕi

Γ, ϕ, ϕ
Contraction

Γ, ϕ

Γ, ϕ Γ, ϕ
Cut

Γ

Γ,⊕aΦ Γ,⊕bΨ
Add

Γ,⊕a+b(Φ,Ψ)

Γ,⊕a(Φ,Ψ) Γ,⊕bΨ
Subtract

Γ,⊕a−bΦ

Γ, ϕ,⊕b−1Φ Γ, ϕ,⊕bΦ
MOD

Γ,⊕b(Φ, ϕ)

for each a, b ∈ {0, 1}.
The unorthodox form of the exchange rule is intended to make the height

of proofs (see below) a more useful measure. The form of some of the rules,
for instance Subtract, is inspired by [19].

Let A be a set of non-logical axioms, that is, A is a set of cedents. The
intended meaning of A is

∧
{
∨

Ξ : Ξ ∈ A}. A PK(⊕)-derivation of Γ from
A is a finite sequence Θ1, . . . ,Θk of cedents such that the last cedent Θk is
Γ and every Θi either is a logical or non-logical axiom or is inferred from
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some of the earlier cedents Θj (j < i) using one of the inference rules. If Γ
is the empty cedent, then the derivation is called a PK(⊕)-refutation of A.
We mostly think of PK(⊕) and its subsystems as refutation systems, i.e. we
view a refutation of an unsatisfiable set of non-logical axioms A as a proof
of the tautology

∨
{
∨

Ξ : Ξ ∈ A}.
A PK(⊕)-derivation Θ1, . . . ,Θk is called treelike if every Θi is a premise

of at most one inference in the derivation.
The complexity of derivations will be measured in three ways. We define

the size of a derivation P , denoted by s(P ), to be the number of symbols
in P . By the cedent-size of P , denoted by cs(P ), we mean the number of
occurrences of cedents, i.e. the “number of steps”, in P . The height of P is
the maximum number h such that there is a sequence Φ0, . . . ,Φh of cedents
in P in which Φi is a premise of the inference yielding Φi+1, for each i < h.

We are interested in subsystems of PK(⊕) which we call PKc
d(⊕), where

c, d are natural numbers. The systems PKc
d(⊕) are a variant of the family of

proof systems introduced in [11]1. A PK(⊕)-derivation is called a PKc
d(⊕)-

derivation if each formula in the derivation is of depth at most d, and further,
each cedent in the derivation contains at most c formulas of the form ⊕bΓ,
where b ∈ {0, 1} and the formulas in Γ do not contain any parity connective,
while all the remaining formulas in the cedent do not contain any parity
connective.

We can generalize the systems PKc
d(⊕) to PKf

d(⊕) for various functions

f : N → N. In a PKf
d(⊕) derivation P , each cedent may contain up to

f(s(P )) parities; the other syntactic conditions are as for PKc
d(⊕). For

instance, if id : N → N is the identity function, the system PKid
d (⊕) may

reason with arbitrary disjunctions (cedents) in which each disjunct is either
a depth d formula in the De Morgan language or a parity of depth d−1
formulas.

Subsystems of PK(⊕) in which there is an O(1) bound on the depth of
formulas, but there is no additional bound on the nesting of

∧
,
∨

, and ⊕
connectives, are collectively known as constant-depth Frege with parity or
AC0[2]-Frege. The systems PK0

O(1)(⊕) are collectively known as constant-

depth Frege or AC0-Frege. An important family of systems intermediate

1The systems Fcd(MODp) of [11] are Hilbert-style rather than Tait-style, and the restric-
tion on the shape of lines determined by c is somewhat more liberal than in our setting.
Besides, [11] does not explicitly consider the systems as refutation systems. Despite these

differences, our main results about PK
O(1)

O(1)(⊕)—Proposition 3, Theorems 11, 12, and 13—

hold for F
O(1)

O(1)(MODp) modulo the translation of cedents in one kind of system into lines
in the other.
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between AC0- and AC0[2]-Frege is AC0-Frege with parity axioms, in which
the syntactic conditions on cedents are as in AC0-Frege, but a derivation
from the set of non-logical axioms A is allowed to use additional parity
axioms, which are cedents of the form(∧

e3i
¬ϕe : 1 ≤ i ≤ n

)
, (ϕe ∧ ϕf : e⊥f) .

whenever n is some odd number, the ϕe’s are indexed by two-element subsets
of [n] = {1, . . . , n}, and the entire cedent satisfies the appropriate condition
on depth. Here e⊥f stands for ∅ ( e∩f ( e. Note that the axiom says that
the ϕe’s do not define a partition of the odd-sized set [n] into two-element
subsets.

We will need to refer to some results on the algebraic proof system known
as Polynomial Calculus over F2, first introduced under a different name
in [13]. This is a system for refuting unsatisfiable families of polynomial
equations over F2. Lines in a derivation are multivariate polynomials; each
such polynomial p is understood to represent the equation p = 0. In addition
to a given set of non-logical axioms A, a Polynomial Calculus derivation may
use axioms of the form x2−x for any variable x. The rules are: from p derive
xp where x is a variable; and from p, q derive p+q. The degree of a derivation
is the highest degree of a line in it. A refutation is a derivation whose last
line is the constant polynomial 1.

3 Basic properties of PKc
d(⊕)

The purpose of this section is verify that the PKc
d(⊕) systems have two

basic desirable properties. The first is that each PKc
d(⊕) is a complete proof

system, in a reasonably strong sense of the term.

Proposition 1. For all c, d ≥ 0, the system PKc
d(⊕) is implicationally

complete, in the sense that if A is a set of PKc
d(⊕) cedents, Γ is a PKc

d(⊕)
cedent, and A |= Γ, then there is a PKc

d(⊕) proof of Γ from A.

Proof. Let a set of PKc
d(⊕) cedents A semantically imply the PKc

d(⊕) cedent
Γ.

We first prove the following Claim: every PKc
d(⊕) cedent Γ can be de-

rived in PKc
d(⊕) from a set of non-logical axioms each of which: (i) either

is the logical axiom ⊕0∅ or contains no formulas with ⊕, (ii) semantically
follows from Γ, (iii) is falsified by at most one assignment to the variables
of Γ.
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We build the claimed PKc
d(⊕) derivation backwards from the endcedent

Γ. First, a series of cuts on literals derives Γ from cedents containing Γ
and, for each variable in Γ, either the variable itself or its negation. These
new cedents satisfy the properties (ii) and (iii) from the claim. Then, using
a series of MOD inferences, each of these cedents is derived from a set of
PKc

d(⊕) cedents containing no formulas with ⊕ other than ⊕0∅ or ⊕1∅. Since
the conclusion of a MOD inference implies each of its premises, properties
(ii) and (iii) are preserved. Finally, each cedent containing ⊕0∅ is derived
by weakening from a logical axiom, and each remaining cedent containing
⊕1∅ is derived by weakening from a semantically equivalent cedent without
⊕1∅. This gives us also property (i), thus proving the claim.

Now assume A semantically implies Γ and that Γ has the properties from
the claim. Since Γ has at most one falsifying assignment, it is semantically
implied by a single cedent ∆ ∈ A. Let ∆ be δ1, . . . , δk. By a series of cuts
on the δj ’s, we can derive Γ from the cedent Γ,∆ and cedents of the form
Γ, δ1, . . . , δj ,¬δj+1. This is a PKc

d(⊕) derivation because Γ contains no ⊕’s.
Now, the cedent Γ,∆ follows from ∆ by weakening. On the other hand, the
claim implies that each of the tautological cedents Γ, δ1, . . . , δj ,¬δj+1 can be
derived in PKc

d(⊕) from a set of tautological cedents without parities, which
are derivable in PK0

d(⊕) by the completeness of the latter system.

We now check that the treelike version of PK
O(1)
O(1)(⊕) polynomially simu-

lates AC0-Frege with parity axioms. This follows immediately from Propo-
sition 3 below.

Lemma 2. There is a polytime procedure which given a depth-d formula
⊕b(Γ, ϕ, ψ,∆) and the index of ϕ among the inputs to ⊕b produces a treelike
PK3

d(⊕) derivation of this formula from ⊕b(Γ, ψ, ϕ,∆).

Proof. Left to the reader as an (not entirely trivial) exercise. The reader
who eschews such low-brow diversions is free to add the corresponding rule
to the system.

Proposition 3. For each c ≥ 3, d ≥ 1, there is a polynomial-time procedure
which, given a PKc

d(⊕) cedent Γ which is a parity axiom, outputs a treelike
PK1

d+1(⊕) derivation P (Γ) of Γ.

Proof. Let Γ be (∧
e3i
¬ϕe : 1 ≤ i ≤ n

)
, (ϕe ∧ ϕf : e⊥f) .
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For each j = 0, . . . , n, we will refer to the sequence of formulas∨
e31

ϕe, . . . ,
∨
e3j

ϕe

as Θj , and to ∨
e31

e∩[j]6=∅

ϕe, . . . ,
∨
e3n

e∩[j] 6=∅

ϕe

as Ξj . Note that Θn is the same as Ξn.
The final inference of P (Γ) derives Γ by a cut on the formula

⊕0Θn.

The cedent Γ,⊕1Θn is obtained by successively deriving Γ,⊕j mod 2Θj for
j = 0, . . . , n. The cedent Γ,⊕0Θ0 follows by weakening from the logical
axiom ⊕0Θ0, and Γ,⊕bΘj+1 is easy to derive from (a single occurrence of)
Γ,⊕1−bΘj by a MOD inference involving the formula

∨
e3j+1 ϕe.

On the other hand, Γ,⊕0Θn, which coincides with Γ,⊕0Ξn, is obtained
by successively deriving Γ,⊕0Ξj for j = 0, . . . , n. The cedent Γ,⊕0Ξ0 follows
by weakening from ⊕0Ξ0, which can be derived by a balanced tree of addi-
tions from multiple copies of the constant-size tautology ⊕0⊥. The cedent
Γ,⊕0Ξj+1 is derived by the subtraction rule from Γ,⊕0Ξj and Γ,⊕0(Ξj ,Ξj+1).
Thus, we need to give a polysize treelike derivation of Γ,⊕0(Ξj ,Ξj+1).

It is easy to give a small treelike PK0
d(⊕) derivation of Γ from the cedents

Γ, ϕ{j+1,`} for ` = 1, . . . , j, j + 2, . . . , n. Using Lemma 2 and a balanced
tree of addition inferences, Γ, ϕ{j+1,`},⊕0(Ξj ,Ξj+1) can be derived from the
cedents

Γ, ϕ{j+1,`},⊕0

 ∨
e3i

e∩[j]6=∅

ϕe,
∨
e3i

e∩[j+1]6=∅

ϕe

 , (1)

for i different from j + 1, `, and the cedent

Γ, ϕ{j+1,`},⊕0

 ∨
e3j+1
e∩[j] 6=∅

ϕe,
∨
e3`

e∩[j]6=∅

ϕe,
∨

e3j+1
e∩[j+1]6=∅

ϕe,
∨
e3`

e∩[j+1]6=∅

ϕe

 . (2)

Each cedent (1) is obtained by a small treelike derivation formalizing the
argument “if Γ fails and j + 1 is matched to `, then the two formulas under
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⊕0 are equivalent”. The derivation of (2) depends on whether ` < j + 1 or
j+ 1 < `. In the first case, we formalize the argument “if Γ fails and j+ 1 is
matched to `, then all four formulas under ⊕0 are true”; in the second case,
it is “...the last two formulas under ⊕0 are true and the others false”.

4 Balancing

Over the next four sections, we prove that for each c, d the treelike version of
the system PKc

d(⊕) is quasipolynomially simulated by AC0-Frege with par-
ity axioms (a polynomial simulation is ruled out by [22], see Theorem 13 part
(b)). The simulation is inspired by the “counting axioms simulate Nullstel-
lensatz” argument of [16], but technically more complicated. The high-level
overview of the argument is as follows. In Section 4, we show by a stan-
dard argument that a treelike PKc

d(⊕) refutation can be transformed into
a balanced treelike refutation at the cost of allowing logarithmically many
⊕’s per cedent rather than a constant number. In Section 5 we transform a

balanced treelike PK
O(log)
O(1) (⊕) refutation into a balanced treelike refutation

in a system that has only one ⊕ per line, and some new rules. In Section 6,
we show how to eliminate the subtraction rule, at the cost of a quasipolyno-
mial increase in size and replacing the inputs Ψ to ⊕ by Ψ,Θ,Θ for various
Θ. In 7, we show how to simulate the single-⊕ system without subtraction
in AC0-Frege with parity axioms.

Lemma 4. Suppose that c ≥ 1 and P is a treelike PKc
d(⊕)-derivation of Γ

from A. Suppose further that P has size σ and cedent-size τ . Then Γ can
be derived from A ∪ {ϕ,ϕ : ϕ is an element of a cedent of P} by a treelike

PK2c+log τ
d+1 (⊕)-derivation of height O(c log τ) and size σlogO(c).

Proof. First we prove that P can be transformed into a treelike PK2c+log τ
d+1 (⊕)-

derivation P ′ which has height ≤ (2c + 6) log τ , cedent-size τ log(6c+6), and
uses as non-logical axioms A∪sa(P ), where sa(P ) is the set of cedents of the
form ⊕aΦ,⊕aΦ such that ⊕aΦ is an element of some cedent of P , or of the
form

∧
i γi,Φ such that Φ is a cedent in P and γ1, . . . , γ` is the subsequence

of Φ consisting of all formulas that do not contain any parity connective. (In
this proof we write log τ to mean max{1, log2 τ}.) We shall prove the state-
ment by induction on τ in a Brent-Spira divide-and-conquer fashion. To
simplify the inductive argument, we actually show that P ′ can be a treelike

PK
2c+log(τ−1)
d+1 (⊕)-derivation of height ≤ (2c+ 6) log(τ − 1).
This is obviously true for τ ≤ (2c+ 6) log(τ − 1). In the inductive step,

we find an inference I in P with lower cedent Ψ and with the following
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properties:

(a) for each premise Π of I, the subderivation HΠ of P with endcedent Π
has cedent-size ≤ dτ/2e,

(b) if we remove from P the subderivation ending with I, leaving Ψ as an
initial cedent, then the resulting derivation (call it D) has cedent-size
≤ τ/2.

By the induction hypothesis, for each premise Π of the inference I there is a

treelike PK
2c+log(τ−1)−1
d+1 (⊕)-derivation of Π fromA∪sa(HΠ) which has height

≤ (2c+6)(log(τ−1)−1). Put these derivations together with the inference I,

and let Q denote the resulting derivation. Q is a treelike PK
2c+log(τ−1)−1
d+1 (⊕)-

derivation of Ψ from A with height ≤ (2c + 6)(log(τ − 1) − 1) + 1 = (2c +
6) log(τ − 1)− 2c− 5.

Now we move on to the other part of the derivation P . As defined
in (b), D is a treelike derivation of Γ from the hypotheses A ∪ {Ψ}, and
1 ≤ cs(D) ≤ τ/2. In the case where cs(D) = 1, we have Ψ = Γ, and we
define the desired derivation P ′ to be just Q. Assume cs(D) > 1. By the

induction hypothesis, there is a treelike PK
2c+log(τ−1)−1
d+1 (⊕)-derivation R of

Γ from A∪ {Ψ} ∪ sa(D) of height ≤ (2c+ 6)(log(τ − 1)− 1). The idea is to
transform R into several derivations from (only) the hypotheses A ∪ sa(D)
and combine them with Q by a repeated use of the cut rule to derive Γ.

Let ∆ be the subsequence δ1, . . . , δm of Ψ consisting of all formulas that
do not contain any parity connective. Denote by ∆′ the sequence δ1, . . . , δm.
Let ⊕a1Φ1, . . . ,⊕akΦk be the subsequence of Ψ consisting of all formulas
with parities. We have k ≤ c. For i ∈ {0, . . . , k} denote the sequence
⊕a1Φ1, . . . ,⊕aiΦi by Θi. (Hence Θ0 is the empty sequence.) We will mod-
ify R to construct derivations R′ and Ri, i = 1, . . . , k, of Γ,Θk,

∧
∆′ and

Γ,Θi−1,⊕aiΦi, respectively.
Construction of R′: First, wherever Ψ occurs as an initial cedent in R,

replace it with the cedent
∧

∆′,Ψ. Second, replace every other initial cedent
Ξ in R with

Ξ
Ξ,
∧

∆′∧
∆′,Ξ

Third, add the formula
∧

∆′ to the left of every other cedent in R. Finally,
apply to the endcedent

∧
∆′,Γ of the resulting derivation a weakening with

Θk and one exchange to derive Γ,Θk,
∧

∆′.
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The construction of Ri, i = 1, . . . , k, is similar. Every occurrence of Ψ
as an initial cedent in R is now replaced with the derivation

⊕aiΦi,⊕aiΦi

one weakening,

one exchange

⊕aiΦi,Ψ

and every other initial cedent Ξ of R is replaced with

Ξ
Ξ,⊕aiΦi

⊕aiΦi,Ξ

To the left of every other cedent in R we add the formula ⊕aiΦi, hence ob-
taining a derivation with endcedent ⊕aiΦi,Γ. By one additional weakening
and one exchange we get the derivation Ri of Γ,Θi−1,⊕aiΦi.

Finally, we combine the derivations Q,R′ and Ri, i = 1, . . . , k with
k + 1 cut inferences to get the desired derivation P ′, as shown in Figure 1.
Notice that just below the endcedent of the subderivation Q we inserted
some necessary exchanges, a weakening, and a

∨
-inference to make the

cedent ready for cutting.
By their construction, each of the derivations R′ and Ri, i = 1, . . . , k, has

at most 2c+log(τ −1) parities per cedent and contains formulas of depth at

most d+ 1. We checked that Q is a treelike PK
2c+log(τ−1)−1
d+1 (⊕)-derivation.

Therefore, by construction, P ′ is a treelike PK
2c+log(τ−1)
d+1 (⊕)-derivation.

The heights of R′ and Ri, i = 1, . . . , k, are at most four greater than
the height of R, hence they are ≤ (2c + 6)(log(τ − 1) − 2c − 2. From the
height bound for Q and the construction it follows that P ′ has height at
most (2c+ 6) log(τ − 1) as desired. The same is, of course, true in the case
cs(D) = 1 (which has P ′ = Q).

Next, we bound the cedent-size of P ′. Denote t := log(6c + 6). By the
induction hypothesis, we have

cs(Q) ≤ 1 +
∑

Π

cs(HΠ)t ≤ 1 + (
∑

Π

cs(HΠ))t ≤ 1 + (τ − cs(D))t,

where Π in the sums ranges over the premises of the inference I. Each of
R′, Ri, i = 1, . . . , k, has cedent-size ≤ 3cs(R). Hence, by construction,

cs(P ′) ≤ cs(Q) + (c+ 1)3cs(R) + 2c+ 4

< (τ − cs(D))t + (3c+ 3)cs(D)t + 2c+ 6.
(3)
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R1
. . .

... . .
.

Γ,Θ0,⊕a1Φ1

Rk−1
. . .

... . .
.

Γ,Θk−2,⊕ak−1Φk−1

Rk . . .
... . .

.

Γ,Θk−1,⊕akΦk

R′ . . .
... . .

.

Γ,Θk,
∧

∆′

Q . . .
... . .

.

Ψ
at most k

exchanges

Θk,∆

Θk,∆,Γ

Γ,Θk,∆

Γ,Θk,
∨

∆

Γ,Θk

Γ,Θk−1

Γ,Θk−2

. .
.

Γ,Θ1

Γ

Figure 1: The derivation P ′.

This is true in the case cs(D) = 1 as well. The definition of t and some
elementary calclulus implies that, as a function of cs(D), the last expression
in (3) is decreasing on the interval [1, . . . , τ/3]. So, assume cs(D) = 1. We
have

τ t − (τ − 1)t ≥ τ t − τ t + tτ t−1 −
(
t

2

)
τ t−2 = τ t−2t(τ − (t− 1)/2)

= τ log( 3c+3
2

) log(6c+ 6) (τ − log(3c+ 3)/2) ≥ 5c+ 9.

Here the last inequality holds because we assumed τ to be large enough
(τ ≥ (2c + 6) log τ). Thus cs(P ′) ≤ τ t for 1 ≤ cs(D) ≤ τ/3. Now assume
τ/3 ≤ cs(D) ≤ τ/2. Then

(τ − cs(D))t + (3c+ 3)cs(D)t ≤ (τ − τ/3)t + (3c+ 3)(τ/2)t

= τ log(6c+6)
(

(2/3)log(6c+6) + 1/2
)
≤ τ log(6c+6) − (2c+ 6).

Again, the last inequality follows from our assumption on τ , and it gives
cs(P ′) ≤ τ t for τ/3 ≤ cs(D) ≤ τ/2. Thus, we have verified cs(P ′) ≤ τ t for
1 ≤ cs(D) ≤ τ/2, as was required.
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It remains to transform P ′, which is a derivation from the axioms A ∪
sa(P ), into a derivation fromA∪{ϕ,ϕ : ϕ is an element of some cedent of P}.
The only axioms of P ′ that are not as required are those of the form

∧
i γi,Φ

such that Φ is a cedent in P and γ1, . . . , γ` is the subsequence of Φ con-
sisting of all formulas that do not contain parity connectives. We construct
a derivation P ′′ by attaching to P ′ the following derivation of each such
cedent:

γi, γi

one weakening,

two exchanges

Φ, γi , i = 1, . . . , `

Φ,
∧
γi∧

γi,Φ

Let λ denote the maximum length of any cedent in P . Then

cs(P ′′) ≤ cs(P ′) + (4λ+ 1)cs(P ′) ≤ (4λ+ 2)τ log(6c+6).

It follows from the construction that every cedent in P ′, and hence in P ′′,
has size ≤ 2σ. So, P ′′ has size ≤ 2σ(4λ+ 2)τ log(6c+6) = σlogO(c).

By construction, P ′′ is a treelike PK2c+log τ
d+1 (⊕)-derivation of Γ from the

required set of axioms and has height ≤ 5 + (2c+ 6) log τ = O(c log τ).

Lemma 5. Let Φ be a cedent of length ` of formulas which do not contain
parity connectives and have depth d. Let ϕ be a formula in Φ. Let S and
Sϕ be the sizes of Φ and ϕ, respectively. There exist:

(a) a treelike PK0
d(⊕)-derivation of ϕ,ϕ of height O(d) and size O(S2

ϕ),

(b) a treelike PK2
d(⊕)-derivation of ⊕0ϕ,⊕1ϕ of height O(d) and size

O(S2
ϕ),

(c) a treelike PK3
d(⊕)-derivation of ⊕0Φ,⊕1Φ of height O(d + log `) and

size O(`log 3S2).

Proof. Using the first four rules of inference it is easy to construct (a).
There is a height O(1) size O(Sϕ) treelike PK2

d(⊕)-derivation of ⊕0ϕ,⊕1ϕ
from ϕ,ϕ. Together with (a) this gives (b). Let Φ be Φ1,Φ2 where the
length of Φ1 is b`/2c. There is a height O(1) size O(S) treelike PK3

d(⊕)-
derivation of ⊕0Φ,⊕1Φ which has six initial cedents: three ⊕0Φ1,⊕1Φ1

and three ⊕0Φ2,⊕1Φ2. Iterating this dlog `e times gives a height O(log `)

14



size O(S`log 3) treelike PK3
d(⊕)-derivation of ⊕0Φ,⊕1Φ which has as initial

cedents O(`log 3) copies of ⊕0ψ,⊕1ψ for each occurrence of ψ in Φ. Together
with (b) this gives (c).

Theorem 6. Suppose that c ≥ 1 and P is a treelike PKc
d(⊕)-derivation of Γ

from A. Suppose further that P has size σ and cedent-size τ . Then there is a
treelike PK2c+log τ

d+1 (⊕)-derivation of Γ from A which has height O(d+c log σ)

and size σlogO(c).

Proof. By Lemma 4, there is a treelike PK2c+log τ
d+1 (⊕)-derivation P1 of Γ from

A∪{ϕ,ϕ : ϕ is an element of a cedent of P} which has height O(c log τ) and
size σlogO(c). Using derivations (a) and (c) of Lemma 5 to derive the non-
logical axioms in P1 that are not in A we obtain the desired derivation.

5 Translation into a one-parity system

We want to transform a PKc
d(⊕)-derivation into a derivation in a similar

proof system which allows only one parity connective per line.

Definition. Let ϕ be a formula. Define cnj(ϕ) to be Θ if ϕ is of the form∧
Θ, and (ϕ) otherwise. Let Φ and Ψ be (ϕi)i∈I and (ψi)i∈J , respectively.

Φ × Ψ denotes the sequence (
∧

(cnj(ϕi), cnj(ψj)))i∈I,j∈J . Further, define
recursively

0∏
i=1

Φi = (
∧
∅) = (>) and

k∏
i=1

Φi =

(
k−1∏
i=1

Φi

)
× Φk

for sequences Φ1, . . . ,Φk of formulas.

The depth d one-parity system, denoted by PKone⊕
d , has lines of the form

Γ,⊕Φ

where Γ and Φ are sequences of formulas that do not contain parity connec-
tives and have depth at most d, and moreover the formulas in Φ have

∧
as

their topmost connective. The intended meaning is
∨

(Γ,⊕0Φ).
The logical axioms are:

∅,⊕∅ and x, x,⊕(>)

for a propositional variable x.
The inference rules are:
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Γ,⊕Φ
Weakening

Γ,∆,⊕Φ

Γ,∆,Λ,Ψ,⊕Φ
Exchange

Γ,Λ,∆,Ψ,⊕Φ

Γ,∆,⊕Φ
OR

Γ,
∨

∆,⊕Φ

Γ, ϕi,⊕Φ for all i ∈ I
AND

Γ,
∧
i∈I ϕi,⊕Φ

Γ, ϕ, ϕ,⊕Φ
Contraction

Γ, ϕ,⊕Φ

Γ, ϕ,⊕Φ Γ, ϕ,⊕Φ
Cut

Γ,⊕Φ

Γ,⊕Φ Γ,⊕Ψ
Add

Γ,⊕ (Φ,Ψ)

Γ,⊕ (Φ,Ψ) Γ,⊕Ψ
Subtract

Γ,⊕Φ

Γ, ϕ,⊕Φ Γ, ϕ,⊕ (Φ,>)
MOD

Γ,⊕ (ϕ,Φ,>)

Γ,⊕Φ
Multiply

Γ,⊕ (Φ×Ψ)

Γ,⊕Φ
Permute

Γ,⊕π(Φ)

where π(Φ) is a permutation of the formulas in Φ.

Lemma 7. Each of the following cedents of the system PKone⊕
d has a treelike

PKone⊕
d -derivation of height O(d) and size O(S2), where S is the size of the

cedent.

(a) ϕ,ϕ,⊕(>)

(b) ∅,⊕ (
∧

(Γ,Φ),
∧

(Γ,Φ,Φ))

(c) ∅,⊕ (
∧

(Γ,Φ,Ψ),
∧

(Γ,Ψ,Φ))

(d)
∧

Φ,⊕ (
∧

(Ψ,Φ),
∧

Ψ)

(e)
∧

Φ,⊕
∧

(Ψ,Φ)

Proof. (a) is proved in the same way as Lemma 5 (a). Each of (b) - (e)
reduces by a height O(1) size O(S) treelike PKone⊕

d -derivation to constantly
many cedents of the form ∅,⊕(>,>) or of the form (ϕi)i∈I ,

∧
i∈I ϕi,⊕(>);

the latter are proved in the same way as (a).

Definition. We map each cedent Γ of the system PKc
d(⊕) to a cedent

(Γ)one⊕ of the system PKone⊕
d+1 in the following way. Let ΓM be the subse-
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quence of Γ consisting of all formulas that do not contain any parity connec-
tive (M stands for de Morgan), and let ⊕a1Γ1, . . . ,⊕akΓk be the subsequence
of Γ consisting of all formulas with parities. (Γ)one⊕ is the cedent

ΓM,⊕
k∏
i=1

ΓP
i

where for i = 1, . . . , k we put ΓP
i to be Γi if ai = 0 and Γi,> if ai = 1.

Lemma 8. Let P be a treelike PKc
d(⊕)-derivation of Ω from A. Suppose

that P has size σ and height h. Then there is a treelike PKone⊕
d+1 -derivation

of (Ω)one⊕ from {(Ξ)one⊕ : Ξ ∈ A} which has size O(σ2c) and height O(h+
d+ c log σ).

Proof. Obtain P ′ by replacing each cedent Γ of P by its translation (Γ)one⊕.
Note that the logical axioms in P translate into logical axioms of PKone⊕

d+1 .

To make P ′ a PKone⊕
d+1 -derivation we need to derive for every inference rule of

PKc
d(⊕) the translation of its conclusion from the translations of its premises.
The Contraction rule either translates into Contraction or, if a parity is

being contracted, becomes

ΓM,⊕
((∏k−2

i=1 ΓP
i

)
× ΓP

k−1 × ΓP
k

)
ΓM,⊕

((∏k−2
i=1 ΓP

i

)
× ΓP

k

) (4)

where ΓP
k−1 = ΓP

k . Denote
∏k−2
i=1 ΓP

i by Θ and let ΓP
k be (ϕj)j∈I . By Lemma

7 (b), for each γ in Θ and j ∈ I, there is a treelike PKone⊕
d -derivation of

∅,⊕
(∧

(cnj(γ), cnj(ϕj)) ,
∧

(cnj(γ), cnj(ϕj), cnj(ϕj))
)
.

Attach these derivations to the leaves of a balanced tree of Adds whose root
is (after one Permute) the cedent

∅,⊕
(

Θ× ΓP
k ,Θ× (cnj(ϕj) ∧ cnj(ϕj))j∈I

)
.

Call this derivation Q1. Similarly, for each γ in Θ and i < j ∈ I, there is,
by Lemma 7 (c), a treelike PKone⊕

d -derivation of

∅,⊕
(∧

(cnj(γ), cnj(ϕi), cnj(ϕj)) ,
∧

(cnj(γ), cnj(ϕj), cnj(ϕi))
)
.
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Put these derivations together with a balanced tree of Adds and one Permute
to derive

∅,⊕
(

Θ× (cnj(ϕi) ∧ cnj(ϕj))i<j∈I ,Θ× (cnj(ϕj) ∧ cnj(ϕi))i<j∈I

)
.

Denote this derivation by Q2. We derive (4) by:

Q1
. . .

... . .
. Q2

. . .
... . .

.

Add & Permute
∅,⊕

(
Θ× ΓP

k ,Θ× ΓP
k × ΓP

k

)
Weakening

ΓM,⊕
(
Θ× ΓP

k ,Θ× ΓP
k × ΓP

k

)
ΓM,⊕

(
Θ× ΓP

k × ΓP
k

)
Subtract

ΓM,⊕
(
Θ× ΓP

k

)
One of the two MOD rules translates into

ΓM, ϕ,⊕
((∏k

i=1 ΓP
i

)
× Φ

)
ΓM, ϕ,⊕

((∏k
i=1 ΓP

i

)
× (Φ,>)

)
ΓM,⊕

((∏k
i=1 ΓP

i

)
× (ϕ,Φ,>)

) (5)

The other MOD rule translates into

ΓM, ϕ,⊕
((∏k

i=1 ΓP
i

)
× (Φ,>)

)
ΓM, ϕ,⊕

((∏k
i=1 ΓP

i

)
× Φ

)
ΓM,⊕

((∏k
i=1 ΓP

i

)
× (ϕ,Φ)

) (6)

Denote
∏k
i=1 ΓP

i by Θ. Let us derive (5) first. We use Lemma 7 (d) and (e)
to get for each γ in Θ a treelike PKone⊕

d -derivation of

ϕ,⊕
(∧

(cnj(γ), cnj(ϕ)) ,
∧

cnj(γ)
)

and ϕ,⊕
∧

(cnj(γ), cnj(ϕ)) ,

respectively, and we attach each of these two sets of derivations to a balanced
tree of Adds to obtain derivations Q3 and Q4 of

ϕ,⊕ (Θ× (ϕ,>)) and ϕ,⊕ (Θ× (ϕ)) ,

respectively. Denote the left premise of (5) by L and the right premise by

R . We can derive (5) by:
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Q3
. . .

... . .
.

ϕ,⊕ (Θ× (ϕ,>))
Weak.

ΓM, ϕ,⊕ (Θ× (ϕ,>)) L
Add

ΓM, ϕ,⊕ (Θ× (ϕ,>),Θ× Φ)
Perm.

ΓM, ϕ,⊕ (Θ× (ϕ,Φ,>))

Q4
. . .

... . .
.

ϕ,⊕ (Θ× (ϕ))
Weak.

ΓM, ϕ,⊕ (Θ× (ϕ)) R
Add

ΓM, ϕ,⊕ (Θ× (ϕ),Θ× (Φ,>))
Perm.

ΓM, ϕ,⊕ (Θ× (ϕ,Φ,>))
Cut

ΓM,⊕ (Θ× (ϕ,Φ,>))

To derive (6), we can proceed (up to some permutations and weakenings) as
follows: first add ⊕ (Θ× (>,>)) to its right premise, then use the derivation
of (5) (with Φ replaced by Φ,>), and then subtract ⊕ (Θ× (>,>)).

Deriving the translations of the remaining rules is easier. The translation
of the Exchange rule is derived with the help of Lemma 7 (c) together with a
balanced tree of Adds to deal with the parity part of the premise and using
one Exchange for the part outside parity. The translation of the Weakening
rule is derived by one Weakening and one Multiply. The Cut rule either
becomes Cut or, if the cut formula contains a parity, is derived by one
Permute and one Subtract. The translations of the Add rules and Subtract
rules are derived using the corresponding rule and Permute, possibly also
requiring an addition and subtraction of ⊕ (Θ× (>,>)).

Fill P ′ with the described derivations to obtain a treelike PKone⊕
d+1 -derivation

P ′′. Note that for any cedent Γ in P of size S the size of (Γ)one⊕ is O(Sc).
Consider the inference J in P of which Γ is the conclusion. Any balanced tree
of Adds that we had to attach to the translation of J has height O(log(Sc))
and size O(Sc log(Sc)). To the leaves of this tree we appended derivations
of height O(d) and of total size O(S2c). Hence, what we added to the trans-
lation of J has height O(d + c logS) and size O(S2c). Thus, P ′′ has the
required properties.

6 Delay of subtractions

Our strategy for obtaining the simulation of treelike PK
O(1)
O(1)(⊕) by AC0-

Frege with parity axioms is to show that, given a balanced treelike small
PKone⊕

O(1) derivation from a set of (translations of) ⊕-free axioms A, there
is a family of small constant-depth formulas which describe matchings wit-
nessing that if the cedents in A are satisfied, then each cedent Γ,⊕Φ in the
derivation is also satisfied—i.e. either Γ holds or there is a perfect match-
ing on the satisfied elements of Φ. For this, the translation to PKone⊕

O(1)
was needed because a constant-depth definable matching for a disjunction
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⊕Φ1, . . . ,⊕Φc of parities should try to witness the entire disjunction rather
than try to choose one of the disjuncts (e.g., (⊕0Φ,⊕1Φ)one⊕ is easy to wit-
ness, but trying to witness either ⊕0Φ or ⊕1Φ would in general require a
small constant-depth formula for parity).

A further problem with this strategy is caused by the Subtract rule

Γ,⊕ (Φ,Ψ) Γ,⊕Ψ

Γ,⊕Φ

which is the one-parity system’s way of rendering both subtractions and
cuts on parities. The issue is that some ϕ∈Φ may be matched in the left
premise to ψ ∈ Ψ, which cannot be maintained in the conclusion since ψ
does not appear in it. We could try to match ϕ to the ϕ′ ∈ Φ such that
ϕ′ is matched to ψ′ ∈ Ψ in the left premise and ψ′ is matched to ψ in the
right premise. However, keeping track of this by means of constant-depth
formulas leads to exponential blowup. The following lemma helps us deal
with the problematic rule.

Lemma 9. Let P be a treelike PKone⊕
d -derivation of Γ,⊕Φ from A. Suppose

that P has size σ and height h. Then for some sequence Θ there is a treelike
PKone⊕

d -derivation of Γ,⊕ (Θ,Θ,Φ) from A which does not use the Subtract
rule and which has size O(σh) and height O(h).

Proof. The lemma is clear for h = 1, and we will proceed by induction on
height. Let h > 1 and let J be the last inference of P . First, we apply the
induction hypothesis to each of the subderivations Pi of the premises Γi,⊕Φi

of J , for i = 1, . . . , k, to obtain derivations P ′i of Γi,⊕ (Θi,Θi,Φi). Then we
form the desired derivation P ′ by putting the derivations P ′i together with
a simple derivation Q which depends on J .

If J is Weakening, Exchange, OR, Contraction, or Permute, then we
apply the same rule to Γ1,⊕ (Θ1,Θ1,Φ1) to derive Γ,⊕ (Θ1,Θ1,Φ) and we
let Θ be Θ1.

If J is Add, apply Add to the premises Γ,⊕ (Θi,Θi,Φi), i = 1, 2, and
use one Permute to derive Γ,⊕ (Θ,Θ,Φ), where Θ is Θ1,Θ2.

If J is Subtract with premises Γ,⊕ (Φ,Ψ) and Γ,⊕Ψ, then Q is

Γ,⊕ (Θ1,Θ1,Φ,Ψ) Γ,⊕ (Θ2,Θ2,Ψ)
Add

Γ,⊕ (Θ1,Θ1,Φ,Ψ,Θ2,Θ2,Ψ)
Permute

Γ,⊕ (Θ1,Θ2,Ψ,Θ1,Θ2,Ψ,Φ)

So Θ is Θ1,Θ2,Ψ.
If J is Multiply with premise Γ,⊕Φ1 and conclusion Γ,⊕ (Φ1 ×Ψ), then

Q is
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Γ,⊕ (Θ1,Θ1,Φ1)
Multiply

Γ,⊕ (Θ1 ×Ψ,Θ1 ×Ψ,Φ1 ×Ψ)

So Θ is Θ1 ×Ψ.
For the remaining rules, AND, Cut and MOD, we obtain Γ,⊕ (Θ,Θ,Φ)

by the same rule (plus one Permute in the case of MOD), but in order to use
this rule we must first equalize the overheads Θi. Let us consider only the
AND rule with premises Γi,⊕Φ, i = 1, . . . , k; Cut and MOD are easier. Let
Θ̃i denote the sequence Θ1, . . . ,Θi−1,Θi+1, . . . ,Θk and let Θ be Θ1, . . . ,Θk.
Define Q to be the following derivation:

Γi,⊕ (Θi,Θi,Φ)

R . . .
... . .

.

Γi,⊕
(

Θ̃i, Θ̃i

)
Add & Permute

Γi ⊕ (Θ,Θ,Φ) i = 1, . . . , k
AND

Γ,⊕ (Θ,Θ,Φ)

Here R is a short derivation which first derives ⊕(>,>) and then applies
Multiply and Weakening to it.

The size and height bounds on P ′ follow easily from the construction.

7 Simulation by parity axioms

We are now ready to complete our simulation of treelike PK
O(1)
O(1)(⊕) by AC0-

Frege with parity axioms. For a sequence Ψ of formulas we denote its length
by lh(Ψ), and we will often list the members of Ψ as ψ1, . . . , ψlh(Ψ).

Definition. Let Ψ be a sequence of formulas and lh(Ψ) = k. For each
e ∈ [k]2 let µe be a formula. We say that the µe’s define a matching on the
satisfied elements of Ψ if the following formula holds:

∧
{u,v}∈[k]2

(
µ{u,v} → (ψu ∧ ψv)

)
∧

 ∧
e,f∈[k]2

e⊥f

µe ∨ µf

∧ ∧
u∈[k]

ψu → ∨
e∈[k]2

u∈e

µe

 .

Lemma 10. Let A be a set of cedents consisting of formulas which do
not contain parity connectives. Let P be a treelike PKone⊕

d -derivation of
∆,⊕ (Θ,Θ,>) from {(Υ)one⊕ : Υ ∈ A} which does not use the Subtract
rule. Suppose that P has size σ. Then there is a AC0-Frege with parity
axioms derivation of ∆ from A with size polynomial in σ.
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Proof. For each cedent Ω,⊕Ξ in P , we will construct constant-depth for-
mulas which attempt to define a matching on the satisfied elements of Ξ.
Using A as a hypothesis, we prove in AC0-Frege that if Ω is false, then the
formulas do in fact define a matching.

In the particular case of the final cedent ∆,⊕ (Θ,Θ,>), we will be able to
conclude that if ∆ is false, then there is a matching on the satisfied elements
of (Θ,Θ,>). However, there is an obvious matching on the satisfied elements
of (Θ,Θ) defined by formulas νe = θi for e = {i, i + lh(Θ)}, i ∈ [lh(Θ)],
and νe = ⊥ for all other e ∈ [2 · lh(Θ)]2. It is not difficult to rule out
the coexistence of these two contradictory matchings by a polysize proof in
AC0-Frege with parity axioms (see [16]), and this is actually the only place
where we use the parity axioms.

We now describe how to construct the formulas defining the matchings.
It will be clear from the construction that we need only a polynomial number
of polysize constant-depth formulas, and that the proofs of their properties
also need only size poly(σ).

If C denotes the line Ω,⊕Ξ of P , call any u ∈ [lh(Ξ)] a parity input index
of C, and let ξC,u denote the formula in Ξ with this index.

First, we define an obvious notion of a predecessor of a parity input index
u, intended to be the index of a direct ancestor of ξu in a premise of the rule
used to derive C. Let J be an inference rule of PKone⊕

d , denote by C the
conclusion of J and let C ′ be some premise of J . Let u, u′ be some parity
input indices of C,C ′, respectively. The binary relation (C, u)R (C ′, u′), the
parity input index u′ of C ′ is a predecessor of the parity input index u of C,
is defined as follows (referring to the rules as stated in Section 5):

If J is one of the rules Weakening, Exchange, OR, AND, Contraction, Cut,
then (C, u)R (C ′, u′) iff u = u′.
If J is Add, then (C, u)R (C ′, u′) iff either u = u′ and C ′ is the left premise,
or u = u′ + lh(Φ) and C ′ is the right premise.
If J is MOD, then (C, u)R (C ′, u′) iff u = u′ + 1.
If J is Multiply, then (C, u)R (C ′, u′) iff du/ lh(Ψ)e = u′.
If J is Permute, then (C, u)R (C ′, u′) iff u = π(u′).

Observe that, with the exception of the Multiply rule, the formulas ξC,u
and ξC′,u′ are identical.

Next, let 0 < m ∈ N, and suppose that for each i ∈ [m], Ci = Ωi,⊕Ξi is
a line in P obtained by a rule Ji, which has Ci+1 as a premise in case i < m.
Let ei = {ui, vi} ∈ [lh(Ξi)]

2 for i ∈ [m]. We say that the sequence

B = (C1, e1), (C2, e2), . . . , (Cm, em)
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is a matching branch of (C1, e1) if and only if Jm is MOD, em = {1, lh(Ξm)},
and for each i ∈ [m− 1],

(Ci, ui)R (Ci+1, ui+1) ∧ (Ci, vi)R (Ci+1, vi+1);

and additionally, if Ji is Multiply with Ψ := Ψi, then ui ≡ vi (mod lh(Ψi)).
So, a matching branch leads to a line where some ancestors of u1, v1

appeared together for the first time. Moreover, we insist on a specific form
of the line and of um, vm: ξCm,um should be the formula entering inside ⊕
in the conclusion of a MOD inference, and ξCm,vm should be the final >
inside that ⊕. We want B to give rise to an edge between u1, v1 only if the
following condition βB holds:

ξCm,1 ∧
∧

i∈[m−1]

αJi,Ci+1 ,

where αJi,Ci+1 is a formula justifying the choice of premise Ci+1 made by B
if Ji was one of the rules Cut, MOD, AND, and it is defined (only for these
rules) as follows:

αCut,C′ =

{
ϕ if C ′ is the right premise

ϕ if C ′ is the left premise

αMOD,C′ =

{
ϕ if C ′ is the left premise

ϕ if C ′ is the right premise

αAND,C′ = ϕ` ∧
`−1∧
j=1

ϕj if C ′ is the `th premise.

Here ϕ is, respectively, the cut formula in case of Cut and the formula
entering inside ⊕ in case of MOD; and ϕj is the jth auxiliary formula of the
AND rule.

Now, for a line C = Ω,⊕Ξ in P with k = lh(Ξ) ≥ 2 and for e = {u, v} ∈
[k]2, let µC,e be the formula

ξC,u ∧ ξC,v ∧
∨
B∈B

βB,

where B is the set of all matching branches of (C, e). We prove by induction
that if

∨
Ω is false, then the formulas µC,e define a matching on the satis-

fied formulas of Ξ. This means that we have to give constant-depth Frege
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derivations from A of the following cedents:

Ω, µC,e, ξC,u for each u ∈ e ∈ [k]2, (7)

Ω, ξC,u, (µC,e)e3u for each u ∈ [k], (8)

Ω, µC,e, µC,f for each e, f ∈ [k] such that e⊥f. (9)

Using Lemma 5 (a) we derive ξC,u, ξC,u from which (7) follows easily. So we
now concentrate on (8) and (9). If C is an axiom, both are obvious.

Assume that C is obtained from C ′ = Ω′,⊕Ξ′ by one of the rules Weak-
ening, Exchange, OR, Contraction. For u ∈ [k] we have µC,e = µC′,e for each
e ∈ [k]2 with u ∈ e, so (8) and (9) are easily obtained from the induction
hypothesis.

Assume that C is obtained by AND. If the rule has no premises, (8) is
obvious and (9) as well, since Ω is >. So assume that the AND inference
has n ≥ 1 premises and k ≥ 2 (the case k ≤ 1 is straightforward), and let
u ∈ e ∈ [k]2. Notice that for each premise C`, to each matching branch B′

of (C`, e) corresponds a unique matching branch B of (C, e), such that βB is
equivalent to αAND,C` ∧ βB

′
. Denote by Be` the set of matching branches of

(C`, e). To obtain (8), one may use, for each ` ∈ [n], the induction hypothesis

Γ, ϕ`, ξC,u,

ξC,u ∧ ξC,v ∧ ∨
B∈B{u,v}`

βB


v∈{u,v}∈[k]2

to derive

Γ, αAND,C` , ξC,u,

ξC,u ∧ ξC,v ∧ αAND,C` ∧
∨

B∈B{u,v}`

βB


v∈{u,v}∈[k]2

.

Cutting these n cedents against the tautology αAND,C1 , . . . , αAND,Cn ,
∧
`∈[n] ϕ`,

which has a small proof, we obtain

Γ,

 ∧
`∈[n]

ϕ`

 , ξC,u,

ξC,u ∧ ξC,v ∧ αAND,C` ∧
∨

B∈B{u,v}`

βB


v∈{u,v}∈[k]2,

`∈[n]

from which the desired

Γ,

 ∧
`∈[n]

ϕ`

 , ξC,u,

ξC,u ∧ ξC,v ∧ ∨
`∈[n]

∨
B∈B{u,v}`

αAND,C` ∧ β
B


v∈{u,v}∈[k]2
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follows using OR rules and some easily derivable regrouping and distribu-
tivity properties. To obtain (9), let e = {u, v}⊥f = {u,w} ∈ [k]2 and use
the induction hypothesis

Γ, ϕ`, ξC,u ∧ ξC,v ∧
∨
B∈Be`

βB, ξC,u ∧ ξC,w ∧
∨
B∈Bf`

βB.

for every ` ∈ [n], to derive

Γ, ξC,u, ξC,v,
∨
B∈Be`

αAND,C` ∧ βB, ξC,u, ξC,w,
∨
B∈Bf`

αAND,C` ∧ βB. (10)

For ` 6= `′, the tautology αAND,C` , αAND,C`′ has a small proof, and we can
use it to derive

Γ, ξC,u, ξC,v,
∨
B∈Be`

αAND,C` ∧ βB, ξC,u, ξC,w,
∨

B∈Bf
`′

αAND,C`′ ∧ βB. (11)

Applying the AND rule n + 1 many times to the sets of cedents (10), (11)
and the OR rule twice, we obtain

Γ, ξC,u ∧ ξC,v ∧
∨
`∈[n]

∨
B∈Be`

αAND,C` ∧ βB, ξC,u ∧ ξC,w ∧
∨
`∈[n]

∨
B∈Bf`

αAND,C` ∧ βB,

from which (9) follows by a weakening with
∧
`∈[n] ϕ`.

If C is one of the remaining rules, Cut, Add, MOD, Multiply, Permute,
the verifications of (8) and (9) are easier than for the AND rule and use
similar ideas, so we will omit them.

Theorem 11. For each c, d ∈ N, there is a quasipolynomial-time proce-
dure which, given a treelike PKc

d(⊕) refutation of a set of ⊕-free cedents A,
produces a refutation of A in AC0-Frege with parity axioms.

Proof. Assuming that A has a treelike PKc
d(⊕) refutation of size σ:

(i) apply Theorem 4 to obtain a treelike PK
log σ+O(1)
d+1 (⊕) refutation of A

of size σO(1) and height O(log σ),

(ii) apply Lemma 8 to obtain a treelike PKone⊕
d+2 refutation of {(Ξ)one⊕ :

Ξ ∈ A} of size σO(log σ) and height O(log2 σ),
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(iii) apply Lemma 9 to obtain a treelike PKone⊕
d+2 derivation of ⊕(Θ,Θ) from

{(Ξ)one⊕ : Ξ ∈ A} which has size σO(log3 σ), height O(log2 σ) and does
not use the Subtract rule,

(iv) apply Lemma 10 to obtain a refutation of A in AC0-Frege with parity

axioms which has size polynomial in σO(log3 σ).

All the results used in the simulation are proved by explicit constructions
which can be carried out in time polynomial in σO(log3 σ).

Remark. By part (b) of Theorem 13, the simulation in Theorem 11 cannot
be improved to polynomial.

8 Exponential separations for formulas with
⊕

In this section we show that it is easy to separate treelike and daglike

PK
O(1)
O(1)(⊕) from each other and from AC0[2]-Frege if we treat them as refu-

tation systems, and, crucially, if the refuted sets of cedents are allowed to
contain ⊕ connectives.

Theorem 12. There exist families {An}n∈ω and {Bn}n∈ω of unsatisfiable
sets of PK1

2(⊕) cedents such that:

(a) each An has a poly(n)-size refutation in PKid
2 (⊕), but requires 2n

Ω(1)
-

size refutations in PKc
d(⊕) for any constants c, d,

(b) each Bn has a poly(n)-size refutation in PK
O(1)
O(1)(⊕), but requires 2n

Ω(1)
-

size refutations in treelike PKc
d(⊕) for any constants c, d.

Proof. We prove (a). The idea is to take a family of narrow CNF’s which
have small constant-depth Frege refutations but no low-degree Polynomial
Calculus refutations, and to replace each variable by a parity of fresh vari-
ables. For concreteness, consider the ordering principle restricted to an ex-
pander graph as formulated in [14] (weak PHP would do just as well except
that it is only known to have a quasipolynomial-size constant-depth proof).
Given a degree 9 expander G = (V,E) on n vertices, the CNF GOP(G)
consists of the following clauses in the variables xij , i<j∈ [n]:

xij , xjk, xik, i<j<k∈ [n],

xij , xjk, xik i<j<k∈ [n],

(xji : (i, j)∈E, j<i) , (xij : (i, j)∈E, j>i) i∈ [n]
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Intuitively, if we think of the variables as describing a linear ordering on
[n], where xij means that i is below j in the ordering, GOP(G) says that
each element of [n] is smaller than one of its neighbours in G. The algebraic
reformulation of GOP(G) is the following set of polynomials over F2:

xijxjk(1 + xik), i<j<k∈ [n],

(1 + xij)(1 + xjk)xik, i<j<k∈ [n],∏
(i,j)∈E
j<i

xji ·
∏

(i,j)∈E
j>i

(1 + xij) i∈ [n]

We obtain An by replacing each xij with
∑

` xij` for distinct fresh variables
xij`, `∈ [n], and rewriting the resulting polynomials as ⊕’s of conjunctions.
So, An consists of the formulas:

⊕0({xij`1 ∧ xjk`2 : `1, `2∈ [n]},
{xij`1 ∧ xjk`2 ∧ xik`3 : `1, `2, `3∈ [n]}),

i<j<k∈ [n],

⊕0({xik`3 : `3∈ [n]},
{xij`1 ∧ xik`3 : `1, `3∈ [n]},
{xjk`2 ∧ xik`3 : `2, `3∈ [n]},
{xij`1 ∧ xjk`2 ∧ xik`3 : `1, `2, `3∈ [n]}),

i<j<k∈ [n],

and the somewhat messy formulas corresponding to the width-9 clauses of
GOP(G).

A polysize refutation of An in PKid
2 (⊕) can be obtained by first deriving

the clauses of the CNF statement of GOP(G) with ⊕1
`xij`’s substituted for

the xij ’s, and then performing the same substitution in a polysize resolution
refutation of GOP(G) [23].

On the other hand, any PKc
d(⊕) refutation of An requires size 2n

Ω(1/d)
.

To see this, let P be a PKc
d(⊕) refutation of size S = 2n

a·(1/d)
where the

constant a is small enough, as determined by the argument below. Let
n0 =

(
n
2

)
n and ni+1 = ni/(O(logS)). Apply a series of random restrictions

ρ1 . . . ρd+1 as in [2, Sections 2 and 6.1], with ρi leaving ni out of ni−1 variables
unassigned. Assuming S is small enough, w.h.p. ρ = ρ1 . . . ρd+1 switches all
⊕-free subformulas of formulas appearing in P , as well as all the formulas∨

Γ for Γ,⊕Ψ1, . . . ,⊕Ψc a cedent in P , into canonically defined decision
trees of height logS = na·(1/d). Also w.h.p. assuming S is small enough,
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ρ1 . . . ρd+1 leaves at least one xij` unassigned for each i<j∈ [n]. Apply an
additional restriction τ which for each i and j sets all xij`’s except one, for
instance to 0. Simplify the decision trees accordingly.

As a result of the above procedure, each cedent Γ,⊕Ψ1, . . . ,⊕Ψc in P
gets mapped to a product of canonically defined polynomials pΓpΨ1 . . . pΨc

obtained from the decision trees for
∨

Γ and for the elements of Ψ1, . . . ,Ψc:
pΓ is 0 exactly if

∨
Γ holds, and pΨm is 0 exactly if ⊕Ψm holds for m ∈

[c]. Each polynomial pΓpΨ1 . . . pΨc has degree at most h = (c + 1)na·(1/d).
Moreover, a tedious but straighforward verification reveals that for every
inference in P , the polynomial representing the conclusion can be derived
from the polynomials representing the premises in degree-O(h) Polynomial
Calculus (in fact, these derivations are treelike and their number of lines
is polynomial in max(number of premises, 2h)). This gives a degree-O(h)
PC refutation of An�ρτ . However, An�ρτ is essentially GOP(G), which by
[14, Theorem 2] has no Polynomial Calculus refutation of degree less than
n/108—a contradiction if a was chosen small enough.

Part (b) is proved analogously, except that to define Bn we need tau-
tologies that have low degree proofs in Polynomial Calculus but not in the
Nullstellensatz proof system of [3]—for instance, the housesitting tautologies
of [13, 8].

9 The Impagliazzo-Segerlind argument

We now verify that some superpolynomial separations between the systems
we are studying can be witnessed by formulas in the De Morgan language.
In particular, this is the case for AC0-Frege with parity axioms and tree-

like PK
O(1)
O(1)(⊕), which are quasipolynomally equivalent by Theorem 11 and

Proposition 3.

Theorem 13. There exist families {An}n∈ω and {Bn}n∈ω of unsatisfiable
CNF’s such that:

(a) each An has a poly(n)-size refutation in PK2(⊕), but requires nω(1)-
size refutations in PKc

d(⊕) for any constants c, d,

(b) each Bn has a poly(n)-size refutation in treelike PK
O(1)
O(1)(⊕), but re-

quires nω(1)-size refutations in AC0-Frege with parity axioms.

Proof. Both parts of the theorem are proved using a technique of Impagli-
azzo and Segerlind presented in [15] and described in full detail in [22, Chap-
ter VI]. We expect the reader to have those two texts at hand.
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Part (b) is actually witnessed by Bn = IS(U), where U is what [15]
would call an (n, n)-universe and the IS(U)’s are CNF’s used in to separate
constant-depth Frege with parity axioms from constant-depth Frege with
parity gates. For a fixed n, the formula Bn has variables xi` for i, `∈ [n] as
well as some auxiliary variables, and claims in an obfuscated way that all of

⊕0(x1` : `∈ [n]), (12)

⊕0(xi` : `∈ [n])⇒ ⊕0(x(i+1)` : `∈ [n]), i∈ [n], (13)

⊕1(xn` : `∈ [n]), (14)

are satisfied. Each Bn has size poly(n) and has a polysize Polynomial Cal-
culus refutation, but requires superpolynomial-size refutations in constant-
depth with parity axioms. However, it is straightforward to give a polysize
treelike PK3

2(⊕) refutation of Bn: first, derive the formulas (12)-(14) from
the clauses of Bn, and then arrange a refutation of (12)-(14) into a balanced
tree of cuts.

We sketch a proof of (a). The idea is essentially the same as that of
[15] and [22], except that instead of considering (and suitably modifying)
formulas that are easy for Polynomial Calculus but somewhat hard for Null-
stellensatz, we work with formulas that are easy for constant-depth systems
but hard for Polynomial Calculus. Since the technical part of the lower
bound proof is quite involved2 but conceptually almost identical to the one
described by Impagliazzo and Segerlind, we focus on describing the construc-
tion of An and explain the lower bound argument only briefly, outsourcing
the details to [22, Chapter VI].

As in the case of Theorem 12 part (a), our starting point is a family of
tautologies that are hard for Polynomial Calculus but not for constant-depth
systems. Once again, we want to replace individual variables by parities,
but now the resulting formulas are not allowed to contain ⊕ connectives, so
every statement of the form “an even number of ϕ1, . . . , ϕk are true” has to
be reexpressed using auxiliary variables that give a perfect matching on the
satisfied elements of {ϕ1, . . . , ϕk}. Moreover, in doing this we have to avoid
making too many parity statements implicitly definable by constant-depth
formulas in the new variables; otherwise, An will be easy for AC0-Frege.

As our underlying family of tautologies, this time we choose the weak

2Chapter VI of [22] is almost 60 pages.
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pigeonhole principle PHP2m
m . As a set of polynomials, this consists of:

1 +
∑
j∈[m]

xij , i∈ [2m],

xi1j · xi2j , i1<i2∈ [2m], j∈ [m]

The reason for preferring weak PHP to the GOP formulas used in Theorem
12 part (a) is that it leads to a definition of An that is more perspicuous
and easier to work with, whereas the fact that GOP has slightly smaller
constant-depth refutations is no longer helpful because we are only proving
a superpolynomial separation.

Now, given n, where w.l.o.g. n is even, choose m quasipolynomially
smaller than n such that there exist constant-depth refutations of PHP2m

m of
size n. Replacing each xij by a sum of n variables xijk, k∈ [n], and rewriting
the polynomials as ⊕’s of conjunctions, leads to the set of formulas:

⊕1 ({xijk : j∈ [m], k∈ [n]}) , i∈ [2m], (15)

⊕0 ({xi1jk ∧ xi2j` : k, `∈ [n]}) , i1<i2∈ [2m], j∈ [m] (16)

To obtain An, we introduce an additional set of nm + 1 “type-1 extra
points” for each i, and a set of n2 “type-2 extra points” for each triple
(i1, i2, j); note that nm + 1 is an odd number and n2 is even. We then
reexpress (15) for a given i by saying that there is a perfect matching on the
union of the set of type-1 extra points and the set of xijk’s with value 1. We
reexpress (16) for (i1, i2, j) by saying that there is a perfect matching on the
union of the set of type-2 extra points and the set of pairs (k, `) such that
both xi1jk and xi2j` evaluate to 1. In both cases, it helps to simplify things
if all edges in the matchings are required to contain at least one extra point.

In more detail, An is a CNF in the variables:

xijk, i∈ [2m], j∈ [m], k∈ [n],

yijkp, i∈ [2m], j∈ [m], k∈ [n], p∈ [mn+ 1],

vie, i∈ [2m], e∈ [[mn+ 1]]2,

zi1i2jk`q, i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2],

wi1i2jf , i1<i2∈ [2m], j∈ [m], f ∈ [[n2]]2.

Intuitively, yijkp says that xijk is matched to the type-1 extra point p; vie
says that the two extra points in e are matched for the given i; zi1i2jk`q says
that the pair of xi1jk and xi2j` is matched to the type-2 extra point q; and
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wi1i2jf says that the two extra points in f are matched for (i1, i2, j). The
clauses of An are:

xijk ∨
∨

p∈[nm+1]

yijkp i∈ [2m], j∈ [m], k∈ [n],

yijkp ∨ xijk i∈ [2m], j∈ [m], k∈ [n], p∈ [mn+ 1],∨
j∈[m],k∈[n]

yijkp ∨
∨
e3p

vie i∈ [2m], p∈ [mn+ 1],

yijkp ∨ yij′k′p i∈ [2m], (j, k) 6= (j′, k′), p∈ [mn+ 1],

yijkp ∨ yijkp′ i∈ [2m], j∈ [m], k∈ [n], p 6=p′,

yijkp ∨ vie i∈ [2m], j∈ [m], k∈ [n], p∈e,
vie ∨ vie′ i∈ [2m], e⊥e′,

xi1jk ∨ xi2j` ∨
∨

q∈[n2]

zi1i2jk`q i1<i2∈ [2m], j∈ [m], k, `∈ [n],

zi1i2jk`q ∨ xi1jk i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2],

zi1i2jk`q ∨ xi2j` i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈ [n2],∨
k,`∈[n]

zi1i2jk`q ∨
∨
f3q

wi1i2jf , i1<i2∈ [2m], j∈ [m], q∈ [n2],

zi1i2jk`q ∨ zi1i2jk′`′q i1<i2∈ [2m], j∈ [m], (k, `) 6=(k′, `′), q∈ [n2],

zi1i2jk`q ∨ zi1i2jk`q′ i1<i2∈ [2m], j∈ [m], k, `∈ [n], q 6=q′,

zi1i2jk`q ∨ wi1i2jf i1<i2∈ [2m], j∈ [m], k, `∈ [n], q∈f,
wi1i2jf ∨ wi1i2jf ′ i1<i2∈ [2m], j∈ [m], f⊥f ′.

A poly(n)-size AC0[2]-Frege refutation of An can be obtained by first
deriving the clauses of PHP2m

m with ⊕1({xijk : k∈ [n]}) substituted for xij ,
and then making the same substitution in the size-n AC0-Frege refutation
of PHP2m

m .
To prove that An cannot have polynomial-size PKc

d(⊕) refutations P for
any c, d we employ a switching lemma argument. As in [15, 22], in order to
make the switching work, we have to consider not just random restrictions
but random simplifications, which allow some variables to be replaced by
other variables rather than by 0, 1 values. More specifically, we consider
random (n, nε)-simplifications, where ε is sufficiently small and it is assumed
w.l.o.g. that n− nε is divisible by 4. Performing such a simplification splits
into the following steps:

(i) for each i, j:
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(a) set n−nε
2 randomly chosen xijk’s to 1 and n−nε

2 randomly chosen
xijk’s to 0; set all y, z variables involving the latter xijk’s to 0;
leave the nε remaining xijk’s unset;

(b) choose at random a perfect matching on the set of xijk’s that
have been set to 1;

(ii) for each i:

(a) choose at random an injection which assigns a type-1 extra point
to each pair (j, k) such that xijk has been set to 1; set all corre-
sponding y variables to 1 and all conflicting y and v variables to
0;

(b) choose at random a set of mn−nε
2 hitherto unused type-1 extra

points and a perfect matching on it; set all corresponding v vari-
ables to 1 and all conflicting y and v variables to 0; thus, mnε+1
type-1 extra points remain unmatched;

(iii) for each i1, i2, j:

(a) choose at random an injection which assigns a type-2 extra point
to each pair (k, `) such that both xi1jk and xi2j` have been set to
1; set all corresponding z variables to 1 and all conflicting z and
w variables to 0;

(b) choose at random an injection which assigns a type-2 extra point
to each pair (k, `) such that one of xi1jk and xi2j` has been set
to 1 and the other is unset; set all conflicting z variables to 0 (w
variables are dealt with in steps (c), (d) below);

(c) for each k such that xi1jk remains unset: for each ` such that
xi2j` has been set to 1, substitute xi1jk for zi1jk`p, where p is the
extra point assigned to (k, `) in step (b); substitute ¬xi1jk for
the wi1i2jf such that f consists of the extra points assigned to
(k, `) and (k, `′) where xi2j`′ has been set to 1 and xi2j`, xi2j`′ are
matched in step (i)(b); set all wi1i2jf ′ variables for f⊥f ′ to 0;

(d) perform a step analogous to (c) with the roles of i1 and i2 inter-
changed;

(e) choose at random a set of n2−
(

(n−nε)2

4 + nε(n− nε) + n2ε
)

hith-

erto unused extra points and a perfect matching on it; set all
corresponding w variables to 1 and all conflicting z and w vari-
ables to 0; thus, n2ε extra points remain unmatched through steps
(a)-(e).
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A decision tree for An is allowed to ask one of the following: whether
an x variable is true—and get a yes/no answer; for a given i, what an xijk
is matched to—and get as an answer either “xijk is 0” or a yijkp together
with “xijk is 1”; for a given i, what a type-1 extra point p is matched
to—and get as an answer either a vie or a yijkp together with “xijk is 1”;
for given i1, i2, j, what (xi1jk, xi2j`) is matched to—and get as an answer
either a list of values for xi1jk, xi2j` which are not both 1 or a z variable
and the information that both x’s are 1; finally, for given i1, i2, j, what a
type-2 extra point q is matched to—and get as an answer either a w variable
or a z variable together with the information that the appopriate two x’s
are both 1. A decision tree strongly represents a DNF ϕ if each branch of
the tree either contains a term of ϕ or is inconsistent with each term of ϕ
(in the natural loose sense of inconsistency where a y or w variable can be
inconsistent with a negated x variable, two y’s can be inconsistent with each
other etc.).

Since P has only polynomial size, we can apply a switching lemma anal-
ogous to [15, Theorem 7.3.1]/[22, Theorem 83] d+1 times3. Let ρ stand for
the simplification (simplifying restriction in the terminology of [15]) built
during the iteration of the lemma. This ρ induces a mapping from all ⊕-free

3We use this opportunity to point out two apparent issues with [22], at least one of
which is not addressed in [15]. Firstly, the definition of presimplification used in [22] is
missing a step analogous to our (i)(b). To use our setting and notation, this is as if the
mapping between xi2j`’s set to 1 induced in (iii)(c) by replacing some z’s by an xi1jk,
some w’s by ¬xi1jk and some other w’s by 0’s was defined separately for each xi1jk that
remains unset; and similarly for (iii)(d) (cf. [22, Definition VI.G.2, part 7.]). The effect
is that the first paragraph of the proof of [22, Lemma 89]—specifically, the claim “the
number of L-presimplifications which are extended by a given (L − e)-presimplification
depends only on L and e”—fails, and the statement of that lemma is actually false. The
fix we know is to add a step analogous to (i)(b). This leads to a factor of 1

2
appearing in

the statement of the corrected version of [22, Lemma 89], but that has no bearing on the
eventual statement of [22, Theorem 83].

The other issue is to some extent fixed in [15], but some of the details are not present in
that extended abstract. We explain the problem in the language of [22]. The proof of [22,
Lemma 91], specifically the argument justifying the claim “there is a literal of Tt+1 not
set by Bρ”, does not seem to work under the current definitions of independent set and of
s-encoding [22, Definitions VI.G.10, VI.G.11]. A solution is to change those definitions by
requiring the terms in a “B-independent set for F with respect to ρ” to be ρ-consistent
with B and not just with each other (this change is already made in [15, Definition 7.3.5])
and requiring an “s-encoding for ρ with respect to F” to satisfy not just the s terms of
an independent set but also the associated set B (this is not discussed in [15]). However,
the size of B—w.l.o.g., at most O(r2s2)—must then be taken into account in the proof
and statement of [22, Lemma 90]. Eventually, this results in much worse bounds in [22,

Lemma 84]: the term LCr has to be replaced by LCr
2s. Once again, though, no changes

to the statement of [22, Theorem 83] are needed.
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subformulas of formulas in P , as well as all formulas
∨

Γ for Γ the ⊕-free
part of a cedent in P , to constant-height decision trees strongly representing
them. Given a bound h∈N on the height of the decision trees, the mapping
is an h-evaluation in a sense analogous to [22, Definition VI.H.1] or of [4].
Each line of P �ρ can be viewed as a degree-h polynomial. Moreover, using
the properties of h-evaluations, one verifies that for each inference in P ,
the polynomial representing the conclusion restricted by ρ can be derived in
constant-degree Polynomial Calculus from the polynomials representing the
premises restricted by ρ together with An�ρ. Apply a further substitution of
variables by constants, τ , so that An�ρτ becomes identical to PHP2m

m . Now
P �ρτ is a constant-degree Polynomial Calculus refutation of PHP2m

m , which
does not exist by [21].

Remark. In all likelihood, applying the techniques of [15] to a suitable family
of formulas hard for Nullstellensatz/treelike Polynomial Calculus but not
for daglike Polynomial Calculus would give a family of DNFs with polysize

refutations in daglike but not treelike PK
O(1)
O(1)(⊕). However, we have not

investigated this in detail.

10 The Itsykson-Sokolov system

In [17], Itsykson and Sokolov study a refutation system they call Res-Lin in
which lines are cedents of ⊕’s of literals. They obtain strong lower bounds
on refutation size for the treelike version of their system, but leave lower
bounds for the daglike version as an open problem. Kraj́ıček [12] has recently
developed a randomized version of the feasible interpolation method aimed
at attacking the problem.

In this section, we prove a simple result that illustrates a difference be-
tween the treelike and daglike versions of systems like Res-Lin in which lines
express disjunctions of parities, and suggests that proving a lower bound for
daglike Res-Lin might require special-purpose techniques. Namely, we show
that treelike PKid

O(1)(⊕), which strengthens treelike Res-Lin by allowing ar-
bitrary constant-depth formulas rather than just literals as inputs to the ⊕
connectives, is simulated by (daglike) PKlog

O(1)(⊕), which yields lower bounds

proved in more or less the same way as for PK
O(1)
O(1)(⊕). As we explain in

a remark below, such lower bounds are unlikely to be easily provable for
daglike PKid

O(1)(⊕).
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Theorem 14. Suppose that A is a set of PKid
d (⊕) cedents each of which con-

tains at most p formulas with an ⊕ connective. If A has a treelike PKid
d (⊕)-

refutation of size σ and cedent-size τ , then it also has a PKlog τ+p+3
d (⊕)-

refutation of size poly(σ).

Proof. Let us refer to the number of formulas with ⊕ occurring in the cedent
as the ⊕-width of the cedent. For a set of cedents A and a derivation P
we denote by AP the set of cedents of the form Θ,Ω or of the form Θ, ϕ, ϕ,
where Ω ∈ A and ϕ and each element of Θ occurs (possibly negated) as an
element of a line in P .

By induction on τ we prove the following: if A is a set of cedents of
⊕-width p and Ξ = ξ1, . . . , ξk has a treelike PKid

d (⊕)-derivation P from A
of size σ and cedent-size τ , then there is a PKlog τ+p+3

d (⊕)-refutation P ′

of AP ∪ {(ξi) : i ∈ [k]} of cedent-size 5στ , such that for each occurrence
of a formula in P there are at most two occurrences of the same formula
(possibly negated) in each line of P ′, and such that each element of a line
in P ′ occurs (possibly negated) as an element of a line in P .

If τ = 1 and Ξ ∈ A, we obtain a refutation of ⊕-width at most p by
cutting Ξ against each (ξi). The case where Ξ is a logical axiom is obvious.

For the inductive step, if Ξ is derived by Weakening, Exchange, or Con-
traction, then the induction hypothesis applied to the premise of the rule
already gives the refutation P ′ we need.

In considering the other rules, we write Γ to stand for the side formulas
of the conclusion Ξ and assume that Γ = γ1, . . . , γk.

If Ξ = Γ,
∨

∆ is derived by the OR rule, denote by Q the subderivation
of P with endcedent Γ,∆. Let ∆ = δ1, . . . , δ`. By the induction hypothesis,

we have a PK
log(τ−1)+p+3
d (⊕)-refutation Q′ of AQ ∪ {(γi) : i ∈ [k]} ∪ {(δi) :

i ∈ [`]}. Obtain P ′ by attaching 5 cedents above each axiom (δi) of Q′ to
form its derivation from (

∧
i∈[`] δi) and (δi, δi). The refutation P ′ has the

required properties, in particular cs(P ′) ≤ cs(Q′) + 5` ≤ 5s(Q)cs(Q) + 5` ≤
5(s(Ξ) + s(Q))(1 + cs(Q)) = 5στ .

If Ξ = Γ,
∧
j∈[m] ϕj is derived by the AND rule, denote by Qj the sub-

derivation of P with endcedent Γ, ϕj . By the induction hypothesis, we

have for each j ∈ [m] a PK
log(τ−1)+p+3
d (⊕)-refutation Q′j of AQj ∪ {(γi) :

i ∈ [k]} ∪ {(ϕj)}. Obtain Q′′j by adding (ϕ1, . . . , ϕj−1) in front of every
line in Q′j , and arrange these derivations so that for j ∈ [m − 1] the ax-
iom (ϕ1, . . . , ϕj) of Q′′j is the endcedent of Q′′j+1. Add at most km ce-
dents so that each axiom of Q′′j , 2 ≤ j ≤ m, containing some γi is de-
rived from (γi) by a weakening and exchange. Attach 4m + 2 cedents
to the axiom (ϕ1, . . . , ϕm) of Q′′m to form its derivation from (

∨
j∈[m] ϕj)
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and {(ϕj , ϕj) : j ∈ [m]}. The resulting refutation P ′ satisfies cs(P ′) ≤∑
j∈[m] cs(Q′j) + km + 4m + 2 ≤ 5

∑
j∈[m] s(Qj)cs(Qj) + (k + 4)m + 2 ≤

5(s(Ξ) +
∑

j∈[m] s(Qj))(1 +
∑

j∈[m] cs(Qj)) = 5στ as well as the remaining
requirements.

If Ξ = Γ,⊕b(Φ, ϕ) is derived by the MOD rule, let Q1 and Q2 de-
note, respectively, the subderivation of P with endcedent (Γ, ϕ,⊕b−1Φ) and
(Γ, ϕ,⊕bΦ). Suppose that cs(Q1) ≤ cs(Q2) (the opposite case is treated
analogously). So cs(Q1) < τ/2 and cs(Q2) < τ − 1. By the induc-

tion hypothesis, there is a PKlog τ+p+2
d (⊕)-refutation Q′1 of AQ1 ∪ {(γi) :

i ∈ [k]} ∪ {(ϕ), (⊕bΦ)}, and there is a PK
log(τ−1)+p+3
d (⊕)-refutation Q′2

of AQ2 ∪ {(γi) : i ∈ [k]} ∪ {(ϕ), (⊕b−1Φ)}. Obtain a derivation Q′′1 of ϕ
by adding ϕ in front of every line in Q′1, and similarly obtain a deriva-
tion Q′′′1 of ⊕b−1Φ by adding ⊕b−1Φ in front of each line in Q′1. Attach
Q′2 to Q′′1 and Q′′′1 . Add at most 3k cedents so that each axiom of Q′′1
and Q′′′1 containing some γi is derived from (γi) by a weakening and ex-
change. Attach 9 cedents to the axiom (ϕ,⊕bΦ) of Q′′1 to form its deriva-
tion from cedents (⊕b−1(Φ, ϕ)), (⊕bΦ,⊕b−1Φ) and (ϕ,ϕ). Similarly, attach
8 cedents to the axiom (⊕b−1Φ, ϕ) of Q′′′1 to form its derivation from ce-
dents (⊕b−1(Φ, ϕ)), (ϕ,ϕ), and (⊕b−1Φ,⊕bΦ). Call the resulting refuta-
tion P ′. Because of the assumption cs(Q1) ≤ cs(Q2), we have cs(P ′) ≤
cs(Q′2) + 2cs(Q′1) + 3k + 17 ≤ 5s(Q2)cs(Q2) + 10s(Q1)cs(Q1) + 3k + 17 ≤
5(s(Q2) + s(Q1) + s(Ξ))(1 + cs(Q2) + cs(Q1)) = 5στ . The ⊕-width of Q′′′1 is
one greater than the ⊕-width of Q′1, hence it is at most log τ + p+ 3. This
number also bounds the ⊕-width of the additional derivations of axioms of
Q′′1 and Q′′′1 . The remaining requirements on P ′ are easy to check.

In the remaining cases, when Ξ is derived by Cut, Add, or Subtract, we
can utilize the ideas used in the case of MOD, and the derivations are in
fact simpler, so we will omit them.

Taking for P the refutation from the statement of the theorem, we thus
obtain a PKlog τ+p+3

d (⊕)-refutation P ′ of AP of cedent-size 5στ , such that
each line has size at most 2σ2. Attach to each axiom of P ′ at most two ce-
dents forming its derivation fromA∪{(ϕ,ϕ) : ϕ is an element of a cedent in P}.
Finally, derive each axiom of the form (ϕ,ϕ) using Lemma 5. The resulting

PKlog τ+p+3
d (⊕)-refutation has size ≤ 10στ · σ2 + 5στ ·O(σ4) = O(σ6).

Theorem 14 implies:

Corollary 15. For every d there is some ε > 0 such that formulas ex-
pressing the counting principle Countn3 require 2n

ε
-size refutations in treelike

PKid
d (⊕).
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Proof. For an appropriate δ, a 2n
δ

lower bound on PKlog
d (⊕) refutations of

Countn3 can be obtained by combining an argument analogous to that of [11]
with the degree lower bounds of [7].

Remark. It would be possible to prove Corollary 15 via a quasipolynomial
simulation of treelike PKid

d (⊕) by daglike PK3
O(1)(⊕). To obtain the simula-

tion, one combines the simulation of Theorem 14 with the translation (·)one⊕

of Section 5. The resulting sequence of PK1
O(1)(⊕) cedents can be made

into a PK3
O(1)(⊕)-derivation by adding a polysize derivation of the (·)one⊕-

translation of the conclusion of each inference from the (·)one⊕-translations
of the premises.

Remark. We do not expect that a result analogous to Corollary 15 can be
easily obtained for daglike PKid

O(1)(⊕). In fact, already bounds for a subsys-

tem of PKid
2 (⊕) in which the inputs to ⊕ are log-sized conjunctions will prob-

ably be hard to prove. That system corresponds to the apparently strong
bounded arithmetic theory T 2,⊕P

2 (α) [10], which has not been separated
from full bounded arithmetic with parity quantifiers. In particular, the sys-
tem has quasipolynomial-size refutations of the surjective weak pigeonhole
principle for functions defined in terms of ⊕’s of log-sized conjunctions—a
principle which seems to be a major source of the strength of AC0[2]-Frege.

Acknowledgement. The authors are grateful to Nathan Segerlind for some
clarifications concerning the status of [15] and [22].
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