41. Które z następujących wzorów są prawdziwe, a które nie:
\[
\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u},
\]
\[
(\vec{u} \cdot \vec{v}) \cdot \vec{w} = \vec{u} \cdot (\vec{v} \cdot \vec{w}),
\]
\[
\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w},
\]
\[
(\vec{u} + \vec{v})^2 := (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \vec{u}^2 + 2\vec{u} \cdot \vec{v} + \vec{v}^2.
\]

42. Wykazać, że dla dowolnej liczby naturalnej \(n > 1 \) i dowolnych liczb \(a_1, a_2, \ldots, a_n \) oraz dowolnych liczb \(b_1, b_2, \ldots, b_n \) zachodzi nierówność:
\[
(a_1b_1 + a_2b_2 + \cdots + a_nb_n)^2 \leq (a_1^2 + a_2^2 + \cdots + a_n^2)(b_1^2 + b_2^2 + \cdots + b_n^2).
\]
Jaki warunek muszą spełniać liczby \(a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \), by nierówność stała się równością? Jaki jest sens geometryczny tego warunku w przypadku \(n = 2 \) i \(n = 3 \)?

43. Jaką liczbą (dodatnią, czy ujemną) jest:
- a) \(\sin 1 \), b) \(\sin 2 \), c) \(\sin 10 \), d) \(\cos 2 \),
- e) \(\cos 15 \), f) \(\cos(−8) \), g) \(\tan 1.5 \), h) \(\tan(−0.75) \),
- i) \(\tan 10 \), j) \(\cot 5 \), k) \(\cot 1.5 \), l) \(\cot 2.5 \)?

44. Która z liczb w każdej z podanych par jest większa:
- a) \(\sin 1 \), \(\tan 1 \), b) \(\cos 1 \), \(\cot 1 \), c) \(\sin 2 \), \(\cos 2 \), d) \(\sin \frac{\pi}{4} \), \(\sin \frac{\pi}{3} \),
- e) \(\cot \frac{3\pi}{4} \), \(\cot \frac{3\pi}{5} \), f) \(\sin 5\pi \), \(\cos 3\pi \), g) \(\tan \frac{11\pi}{12} \), \(\cot \frac{7\pi}{6} \), h) \(\sin 6 \), \(\cos 6 \).

45. Oblicz wartości pozostałych funkcji trygonometrycznych kąta \(\alpha \), jeżeli:
- a) \(\sin \alpha = \frac{15}{17} \) i \(90^\circ < \alpha < 180^\circ \), b) \(\cos \alpha = \frac{5}{13} \) i \(270^\circ < \alpha < 360^\circ \),
- c) \(\tan \alpha = \frac{7}{24} \) i \(180^\circ < \alpha < 270^\circ \), d) \(\sin \alpha = −\sqrt{127} \) i \(180^\circ < \alpha < 270^\circ \),
- e) \(\cos \alpha = \frac{2\sqrt{5}}{5} \) i \(0^\circ < \alpha < 90^\circ \), f) \(\tan \alpha = \cot \alpha \) i \(\sin \alpha > 0 \), \(\cos \alpha \).

46. Wykazać, że jeśli \(x = a \cos u \) i \(y = b \sin u \), to \(b^2x^2 + a^2y^2 = a^2b^2 \).

47. Wykazać, że dla każdej liczby naturalnej \(n \geq 1 \) zachodzi równość
\[
\cos \frac{2\pi}{2n+1} + \cos \frac{4\pi}{2n+1} + \cos \frac{6\pi}{2n+1} + \cdots + \cos \frac{2n\pi}{2n+1} = -\frac{1}{2}.
\]

48. Wykazać, że \(\sin 15^\circ = \frac{1}{4} \sqrt{2 - \sqrt{3}} = \frac{\sqrt{6} - \sqrt{2}}{4} \) i znaleźć \(\cos 15^\circ \).

49. Wykazać, że \(\tan 7.5^\circ = \sqrt{3} + \sqrt{3} - \sqrt{3} - 2 = (\sqrt{3} - \sqrt{2})(\sqrt{2} - 1) \).

50. Wykazać, że \(\sin 7.5^\circ = \sqrt{\frac{1}{8}(4 - \sqrt{2} - \sqrt{6})} \).

51. W trójkącie \(ABC \) mamy \(AC = BC = 1 \) i \(\angle C = 36^\circ \). Znaleźć \(AB \) oraz \(\sin 18^\circ \), \(\cos 18^\circ \), \(\sin 36^\circ \), \(\sin 54^\circ \). Można posłużyć się twierdzeniem o dwusiecznej. Któżego kąta?

52. Wykazać, że \(\tan^2 \frac{\pi}{7} \cdot \tan^2 \frac{2\pi}{7} \cdot \tan^2 \frac{3\pi}{7} = 7 \).

Zadania dla klasy 1\(^A\), część piąta