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Some NP-hard problems are really hard

We will focus on the following, natural problems:

e SET COVER

o BANDWIDTH

@ VERTEX COLORING

@ MAXIMUM INDEPENDENT SET
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Coping with NP-hardness

@ (poly-time) approximation.

tukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 3/28



Coping with NP-hardness

@ (poly-time) approximation.
o SET COVER: no (1 — €) log n-approximation, unless
NP C DTIME(n'oglen).
o BANDWIDTH: no O(1)-approximation, unless NP = P
o VERTEX COLORING: no n'~“-approximation, unless NP = ZPP
e MAXIMUM INDEPENDENT SET: no n'~¢-approximation, unless
NP = ZPP
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Coping with NP-hardness

@ (poly-time) approximation.
@ Fixed-parameter tractability
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Coping with NP-hardness

@ (poly-time) approximation.
@ Fixed-parameter tractability
o SET COVER: W][2]-complete.
o BANDWIDTH: W(t]-hard, for any t > 0.
@ k-COLORING: NP-complete for any k > 3.
o

MAXIMUM INDEPENDENT SET: W/[1]-complete
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Coping with NP-hardness

@ (poly-time) approximation.
@ Fixed-parameter tractability

© Moderately exponential-time exact algorithms
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Coping with NP-hardness

@ (poly-time) approximation.

@ Fixed-parameter tractability

© Moderately exponential-time exact algorithms

SET COVER: O*(2™), O*(4"), 0*(20:299(n+m)),

BANDWIDTH: O*(5")-time and O*(2")-space; O*(10") poly-space,.
k-COLORING: O*(2")-time and space.

MAXIMUM INDEPENDENT SET: O(2°-27%7)-time, exp-space;
0(2°-28m)_time, poly-space.

tukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 3 /28



Coping with NP-hardness

@ (poly-time) approximation.
@ Fixed-parameter tractability
© Moderately exponential-time exact algorithms

© Moderately exponential-time approximation algorithms
(our approach)
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Approach One

Approach One:
Reducing the Instance Size
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UNWEIGHTED SET COVER

Let us recall the UNWEIGHTED SET COVER problem:

Collection of sets 8 = {S1,...,5m}

The union |J 8 is called the universe and denoted by U.

Problem
Find the smallest possible subcollection € C 8 so that |J€ = U.
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UNWEIGHTED SET COVER, reducing the number of sets

Approximation algorithm:

@ Join the sets of § into pairs:
S/ = 551U Sy, fori=1,...,m/2 (assume m even),
Create new instance 8’ = {S/ | i=1,...,m/2}.

@ Solve the problem for instance 8’ by the exact algorithm, in time
O(2™/2). Let € be the solution.

© Transform € into a cover of 8: €= {Sy;i_1 U S, | S/ € €'}
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UNWEIGHTED SET COVER, reducing the number of sets

Approximation algorithm:

@ Join the sets of § into pairs:
Sl =5i_1US, fori=1,...,m/2 (assume m even),
Create new instance 8’ ={S/ | i=1,...,m/2}.

@ Solve the problem for instance 8’ by the exact algorithm, in time
0(2™/?). Let € be the solution.

© Transform € into a cover of 8: €= {Sy;i_1 US| S/ € €'}

Proposition
This is a 2-approximation

Let OPT be the size of the optimal cover for 8. In 8’ there is a cover of
size < OPT Hence |€'| < OPT and |C] < 20PT. O
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UNWEIGHTED SET COVER, reducing the number of sets

Approximation algorithm:

© Join the sets of § into pairs:
S/ =5i_1USy, fori=1,...,m/2 (assume m even),
Create new instance 8’ = {S/ | i=1,...,m/2}.

@ Solve the problem for instance 8’ by the exact algorithm, in time
0(2™/?). Let € be the solution.

© Transform € into a cover of 8: €= {51 U Sy | S € €'}

Does it work for the weighted case? \
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UNWEIGHTED SET COVER, reducing the number of sets

Approximation algorithm:

@ Join the sets of § into pairs:
S/ = 551Uy, fori=1,...,m/2 (assume m even),
Create new instance 8’ = {S/ | i=1,...,m/2}.

@ Solve the problem for instance 8’ by the exact algorithm, in time
0(2™/?). Let € be the solution.

© Transform € into a cover of 8: €= {Sy;i_1 US| S/ € C'}.

Does it work for the weighted case?
Not quite: light sets from OPT may join with heavy sets. Sorting sets 777
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SET COVER, reducing the number of sets

S51 <85 <53 <55 <85 <85 <5 <5 < S <510<511 <5102
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SET COVER, reducing the number of sets

(51 < 5)<(Ss < S)<(Ss < 59)<(57 < S9)<(So < S19<(Gu1 < S1)
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

(5 < 5)<(Ss < 59)<(Gs < S9)<(5r < 59)<(So < 519)<Gu1 < S1)
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

C=9)<G=9)<C =59<C = 5%9<G < 5)<Gu<5)
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

C=9)<G=9<C =59<C = 5%9<G < 5)<Gu<5)
N~
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

C=9)<G=9)<C =59<C = 5%9<G < 5)<Gu<5)
N N
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

C=9)<G=9)<C =9<C = %9<G < 5)<Gu<5)
N J
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SET COVER, reducing the number of sets

The sets from optimal solution are marked green.

7
C=9)<G=9)<C =9<C = 5%9<G < 5)<Gu<5)
N J
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WEIGHTED SET COVER, reducing the number of sets
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WEIGHTED SET COVER, summary

Assume we have an exact T(n)-time algorithm for SET COVER.

e For any r € N we have r-approximation in m- T(n/r) time
(We have just seen it for r = 2),

e For any r € Q we have (In r 4 1)-approximation in m- T(n/r) time
(We have seen it yesterday for unweighted version, for weighted
version again it requires additional trick),
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Example 2: SET COVER, reducing the universe

Recall the standard greedy O(log n)-approximation algorithm:

1. C«— @
while € does not cover U do
Find T € § so as to minimize AUE

C—CU{T}.

WD

w(T)
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Example 2: SET COVER, reducing the universe

Recall the standard greedy O(log n)-approximation algorithm:

1. C«— @
2: while € does not cover U do
3: Find T € 8§ so as to minimize |7‘1"\(J)€|
4; C—CU{T}.
5; for eachec T\ JC do
. : w(T)
6: price(e) « AU
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Example 2: SET COVER, reducing the universe

Recall the standard greedy O(log n)-approximation algorithm:

1. C«— @
2: while € does not cover U do
3: Find T € 8§ so as to minimize ‘7‘1"\(&)@‘
4; C—CU{T}.
5; for eachec T\ JC do
. : w(T)
6: price(e) «— AU

\

Lemma (from the standard analysis of greedy algorithm)

Let ey, ..., en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k € 1,...,n,
price(ex) < w(OPT)/(n— k + 1)

A,
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Example 2: SET COVER, reducing the universe

Lemma (from the standard analysis of greedy algorithm)

Let e1,...,e, be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k € 1,...,n,
price(ex) < w(OPT)/(n— k + 1)

Observation
In the early phase of Greedy elements are covered cheaply.
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Example 2: SET COVER, reducing the universe

Lemma (from the standard analysis of greedy algorithm)

Let ey, ..., en be the sequence of all elements of U in the order of covering
by Greedy (ties broken arbitrarily). Then, for each k € 1,...,n,
price(ex) < w(OPT)/(n— k + 1)

Observation
In the early phase of Greedy elements are covered cheaply.

Exponential-Time O(1)-approximation

Assume we have an exact T (n)-time algorithm for SET COVER.

© Run the greedy algorithm until t > n/2 elements are covered,

@ Cover the remaining elements by the exact algorithm, in time
T(n—t).
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Example 2: SET COVER, reducing the universe

Exponential-Time O(1)-approximation
Assume we have an exact T(n)-time algorithm for SET COVER.

© Run the greedy algorithm until t > n/2 elements are covered,

@ Cover the remaining elements by the exact algorithm, in time
T(n—t).
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Example 2: SET COVER, reducing the universe

Exponential-Time O(1)-approximation

Assume we have an exact T(n)-time algorithm for SET COVER.

© Run the greedy algorithm until t > n/2 elements are covered,

@ Cover the remaining elements by the exact algorithm, in time
T(n—t).

.

(Lucky) analysis
Assume we are lucky and t = n/2 (not bigger).
© We pay (H, — H,/2)OPT = (Inn—In(n/2))OPT = In2- OPT for the
first phase,
@ we pay < OPT for the second phase.

Together we get (1+ In2)OPT.
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Example 2: SET COVER, reducing the universe

Exponential-Time O(1)-approximation
Assume we have an exact T(n)-time algorithm for SET COVER.

© Run the greedy algorithm until t > n/2 elements are covered,

@ Cover the remaining elements by the exact algorithm, in time
T(n—t).

Q@ We pay < (H, — H,/2)OPT =~ In2- OPT for the elements covered in
phase 1, excluding the last set (that covers e, ),

@ We pay < OPT for the set that covers e/,
© we pay < OPT for the second phase.

Together we get (2 + In2)OPT.
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Example 2: SET COVER, reducing the universe

Exponential-Time -approximation

Assume we have an exact T(n)-time algorithm for SET COVER.

© Run the greedy algorithm until t > n/2 elements are covered,
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Example 2: SET COVER, reducing the universe

Exponential-Time -approximation
Assume we have an exact T (n)-time algorithm for SET COVER.

© Run Greedy until there are < n/r elements not covered,

@ Cover the remaining elements by the exact algorithm, in time T(n/r).

Remark 1

By stopping the Greedy algorithm when there are < n/r uncovered
elements, we get (In r + 2)-approximation in T(n/r) time.

Remark 2

We show an improved algorithm with (In r + 1)-approximation in
m x T(n/r) time.

| A\

.
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Our results via instance reduction

Let T*(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

© (WEIGHTED) SET COVER:
e r-approximation in T*(m/r) time,
o (14 Inr)-approximation in T*(n/r) time.
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Our results via instance reduction

Let T*(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

© (WEIGHTED) SET COVER:

e r-approximation in T*(m/r) time,

o (14 Inr)-approximation in T*(n/r) time.
@ BANDWIDTH:

e 9-approximation in T*(n/2) time.
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Our results via instance reduction

Let T*(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

© (WEIGHTED) SET COVER:

e r-approximation in T*(m/r) time,

o (14 Inr)-approximation in T*(n/r) time.
@ BANDWIDTH:

e 9-approximation in T*(n/2) time.
© MAXIMUM INDEPENDENT SET:

e r-approximation in T*(n/r)-time.
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Our results via instance reduction

Let T*(n) denote the time of the relevant exact algorithm, up to a
polynomial factor.

© (WEIGHTED) SET COVER:
e r-approximation in T*(m/r) time,
o (14 Inr)-approximation in T*(n/r) time.
@ BANDWIDTH:
e 9-approximation in T*(n/2) time.
© MAXIMUM INDEPENDENT SET:
e r-approximation in T*(n/r)-time.
©Q VERTEX COLORING:

e Bjorklund & Husfeldt:

(1 + In r)-approximation in max{T*(n/r), 0*(2°2887)}_time.
o (1+0.247rIn r)-approximation in T*(n/r)-time

(best for r € [4.05,58)).
e r-approximation in T*(n/r)-time

(best for r > 58).
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Reducing the instance: Summary

o If faster exact algorithm appears, immediately we have faster
approximation.

@ Approximation via instance reduction extends the applicability of
(exact) exponential-time algorithms:

Don't have enough time for running your algorithm for n = 2007
Get approximate solution.
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Reducing the instance: Open Problems

@ For COLORING, in exponential time you can reduce the instance r
times and get (In r 4 1)-approximation (Bjorklund and Husfeldt).
Can you do it for INDEPENDENT SET?

e Can reduction of the instance size be applied to BANDWIDTH?
(Yes, but we have 9-approximation for reducing the graph by a half.)
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Approach Two

Approach Two:
Cutting the Search Tree
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The BANDWIDTH problem

INPUT: Graph G = (V, E), integer b.
PROBLEM: Find an ordering of vertices

m:V—={1,...,n},
such that “edges have length at most b", i.e.

for every uv € E, |m(u) —n(v)| < b.
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Our results: Bandwidth

@ 3/2-approximation in O*(5") time (poly-space),
@ 2-approximation in O*(3") time (poly-space),
o Main result: (4r — 1)-approximation in O*(2"/") time (poly-space).
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Warm-up: 2-approximation in O*(3") time

(Inspired the exact O(10")-time algorithm by Feige and Kilian.)

© Divide {1,...,n} into [n/b] intervals of length b:
i={b+1,jb+2,....,+1)b}Nn{1,...,n}
@ Find an assignment of vertices to intervals such that

o each interval [; is assigned |/;| vertices,
e adjacent vertices are assigned to the same interval or to neighboring
intervals.
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Warm-up: 2-approximation in O*(3") time

1. procedure GENERATEASSIGNMENTS(A)

2 if for all j, |[A~1(j)| = |/;| then

3 return A

4 else

5: v «— a vertex with a neighbor w already assigned.
6 if A(w) > 0 then

7 GENERATEASSIGNMENTS(AU {(v,A(w) — 1)}
8 GENERATEASSIGNMENTS(A U {(v, A(w))})

9 if A(w) < [n/b]—1 then

10: GENERATEASSIGNMENTS(A U {(v,A(w) + 1)}

11: procedure MAIN
12: for j — 0to [n/b] — 1 do
13: GENERATEASSIGNMENTS ({(r,/)})
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Warm-up: 2-approximation in O*(3") time

© Divide {1,...,n} into [n/b] intervals of length b:
i={b+1jb+2,...,+1)b}Nn{1,...,n}
@ Find an assignment of vertices to intervals such that

o Each interval /; is assigned |/;| vertices,
e Adjacent vertices are assigned to the same interval or to neighboring
intervals.

© Order the vertices in each interval arbitrarily.
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3-approximation in O*(2") time

Let A be an assignment of vertices to intervals. If one can order the
vertices in each interval to get an ordering 7, we say 7 is consistent with A.

v

Algorithm

© Divide {1,...,n} into [n/b] intervals of length 2b:
={b+1,jb+2,...,(+2)b}Nn{1,...,n}.
(Note that intervals overlap.)

@ Generate a set of O(n-2") assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

© ... (to be continued) ...

\
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3-approximation in O*(2") time

1. procedure GENERATEASSIGNMENTS(A)

2 if all vertices are assigned then

3 “TEST(A)"

4 else

5: v < a vertex with a neighbor w already assigned.
6 if A(w) > 0 then

7 GENERATEASSIGNMENTS(A U {(v,A(w) — 1)}
8 if A(w) < [n/b]—1 then

9 GENERATEASSIGNMENTS(A U {(v, A(w) + 1)}

10: procedure MAIN
11: for j— 0to [n/b] — 1 do
12: GENERATEASSIGNMENTS ({(r,/)})
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3-approximation in O*(2") time

Lemma (,, Testing A")

Let A be an assignment of vertices to the intervals of size 2b.

Then there is a polynomial time algorithm such that if there is an ordering
7" of bandwidth b consistent with A, the algorithm finds an ordering m of
bandwidth 3b consistent with A.

© For every edge uv, if maxA(u) = min A(v) — 1, then:
o if |A(u)| = 2b, replace A(u) by its right half,
o if |JA(v)| = 2b, replace A(v) by its left half.
o (Note that 7* is still consistent with A.)

@ (now, for every edge uv, |max A(u) — min A(v)| < 3b)

© Perform the standard greedy scheduling algorithm to find any
ordering m consistent with A.
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3-approximation in O*(2") time

Algorithm

© Divide {1,...,n} into [n/b] intervals of length 2b:
={b+1,jb+2,...,(+2)b}Nn{1,...,n}.
(Note that intervals overlap.)

@ Generate a set of O(n-2") assignments of vertices to intervals so that
if the bandwith is b, then at least one of the assignments is consistent
with an ordering of bandwidth b.

© Apply the lemma to each of the assignments.

26 / 28
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Approximation scheme

For any r € N, there is a (4r — 1)-approximation algorithm in O*(2"/")
time.

(Details skipped here)

tukasz Kowalik (University of Warsaw) Exponential-Time Approximation Dagstuhl 2008 27 / 28



Thank you for your attention!
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