
Short Path Queries in Planar Graphs in Constant Time

[Extended Abstract]

Łukasz Kowalik
Institute of Informatics

Warsaw University
Banacha 2, 02-097 Warsaw, Poland

kowalik@mimuw.edu.pl

Maciej Kurowski
Institute of Informatics

Warsaw University
Banacha 2, 02-097 Warsaw, Poland

kuros@mimuw.edu.pl

ABSTRACT
We present a new algorithm for answering short path queries
in planar graphs. For any fixed constant k and a given
unweighted planar graph G = (V, E) one can build in O(|V |)
time a data structure, which allows to check in O(1) time
whether two given vertices are distant by at most k in G
and if so a shortest path between them is returned. This
significantly improves the previous result of D. Eppstein [5]
where after a linear preprocessing the queries are answered
in O(log |V |) time. Our approach can be applied to compute
the girth of a planar graph and a corresponding shortest
cycle in O(|V |) time provided that the constant bound on
the girth is known.

Our results can be easily generalized to other wide classes
of graphs – for instance we can take graphs embeddable in a
surface of bounded genus or graphs of bounded tree-width.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, path and circuit problems

General Terms
Algorithms

Keywords
planar graph, shortest path, queries

1. INTRODUCTION
Computing shortest paths in planar graphs is a funda-

mental problem with numerous practical applications – for
an extensive survey see [1, 7]. It is also often used as a black
box in other graph algorithms. In this case the complexity
of computing the shortest paths has often a crucial influence
on the overall complexity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-674-9/03/0006 ...$5.00.

Recently the following problem attracts a lot of attention:
for a given n-vertex planar graph, construct a data struc-
ture which allows to process quickly the queries concerning
shortest paths between vertices. Results in this area are of-
ten given in a form of a trade-off between the preprocessing
time and the time needed to answer the shortest path query.
For instance the following scheme is shown in [2]: the pre-

processing is performed in O(n + p2/
√

r + pr
3
4 ) time where

p depends on a graph structure (p = O(n)) and r is an arbi-
trarily chosen parameter in the range: 1 ≤ r ≤ p; the query
time is O(

√
rlog(r) + α(n)) where α(n) is the inverse of the

Ackermann’s function.

1.1 New Results
We study the following version of the shortest path prob-

lem. We fix a constant integer k. For an unweighted planar
graph G (without given plane embedding) we describe a pre-
processing which takes time O(n). Then we provide a query
algorithm which checks in O(1) time whether two given ver-
tices are distant by at most k and if so it computes a cor-
responding shortest path. The query algorithm searches for
paths in a structure computed in the preprocessing phase.
The structure can be updated in O(1) time after deleting
any edge of G thus it can work in a dynamic environment.

For any fixed constant k our approach can be used to
construct a linear time algorithm which verifies whether a
given graph has girth at most k and if so it computes the
corresponding shortest cycle.

1.2 Related Work
The shortest path problem described above was consid-

ered previously by David Eppstein [5]. His approach uses
also a linear preprocessing but the queries are answered in
O(log n) time. The algorithm of Eppstein combine methods
of tree decomposition with clustering techniques of Freder-
ickson [6] while our algorithms are much simpler and di-
rect. In the same paper, Eppstein presents another algo-
rithm, based on tree decomposition technique, which uses
O(n log n) time preprocessing and the queries are processed
in O(1) time. Both algorithms of Epptein need a plane em-
bedding of the input graph.

The results of D. Eppstein [5] can be used to compute the
girth of a bounded value in O(n) time. We obtain exactly
the same result but using simpler methods. If the constant
bound on the girth is not known the problem seems to be
harder – the best known algorithm is due to H. Djidjev [4]

and runs in O(n5/4 log n) time.



1.3 Generalizations
In this paper we focus on the class of planar graphs be-

cause it is particularly important in applications and offers
well-known terminology. Nevertheless our results can be fur-
ther generalized. It is very easy to observe that for arbitrary
constant number g instead of planar graphs we can take any
class of graphs embeddable in a surface of genus g. All the
results and proofs remain almost unchanged. Moreover all
introduced notions and proofs can be adapted to any class
C of graphs satisfying the following three conditions:

(i) C is sparse, i.e. there exists a constant c such that for
every G ∈ C, |E(G)| ≤ c|V (G)|.

(ii) C is closed under taking subgraphs.

(iii) If a graph G from C is a subdivision of a graph H, then
H ∈ C.

Observe that every class of sparse graphs closed under
taking minors satisfies the above conditions. For example
the graphs of bounded tree-width form such a class.

2. KEY IDEAS
We start with some basic definitions. A plane graph is

a planar graph G = (V, E) together with its fixed planar
drawing. In fact we assume that the set of graph vertices
V (G) is a set of points in the plane. When we refer to an
edge of a plane graph we can consider it as a pair of vertices
(v, w) or as a curve drawn in the plane. This ambiguity
should not lead to a confusion because it is always clear
from the context which meaning is used.

A graph in which edges are assigned directions is called
a digraph. For a vertex v in a digraph G we define the
outdegree as the number of edges outgoing from v and the
indegree as the number of edges ingoing into v. We denote
these values by in degG(v) and out degG(v) respectively. A
digraph is d-oriented when the outdegree of each vertex is
bounded by d.

It is well known that the edges of any planar graph G can
be oriented in linear time, obtaining a directed graph G1, in
such a way that the maximum outdegree in G1 is bounded
by 5 (this constant can be decreased to 3, see [3]). Then
u–v ∈ E(G) iff u → v ∈ E(G1) or v → u ∈ E(G1). Thus
after a linear preprocessing we can process the queries of the
form:“Are vertices v and w adjacent?” in O(1) time.

We generalize this result to much wider class of queries,
i.e. we can check in O(1) time whether given vertices are
distant by at most k and if so we can compute a shortest
path between them.

In this section we focus on the case k = 2 which reveals
some key ideas of our approach. The general case is con-
sidered in the latter sections. Assume that G1 is a planar
3-oriented digraph and v, w are vertices distant by 2. There
are 3 cases to be considered excluding the symmetrical ones
(see Fig. 1).

v w v w v
(1) (2)

w
(3)

Figure 1: Possible cases of directing a 2-path.

As one can see the cases 1 and 2 are easy to detect in O(1)
time. The main obstacle is to detect the last case because
the indegrees of v and w can be arbitrarily large. In order to
resolve this problem we extend G by adding edges of weight
2 between each pair of vertices v and w which match the
third case. The graph compound of edges with weight 2 is
denoted by G2. Formally v–w ∈ G2 iff there exists a vertex
x ∈ V (G1) such that x→ v ∈ E(G1) and x → w ∈ E(G1).
The vertex x is said to support the edge v–w. The above
construction can be described more conveniently in terms of
a special operation � defined in the latter section.

Our goal is to show that the graph G2 is a union of 15
plane graphs, hence it can be 45-oriented and subsequently
the third case can be detected in O(1) time.

We start with 5-coloring of the vertices of G and then we
divide graph G2 into 5 subgraphs. Each of them contains
edges supported by vertices from the same color class. Each
of the subgraphs can be further partitioned into 3 plane
graphs (since G is 3-oriented, see Fig. 2). Hence G2 is a
union of 15 plane graphs. Moreover each of these graphs
is a subdrawing of G: It can be drawn in such a way that
its drawing is completely contained in the drawing of G. In
another words its edges correspond with paths in G. The
notion of subdrawing plays a central role in our proof.

e1
e 2 e 3

e1

e 2

e 3

(2) (3) (4)

v

(1)

Figure 2: Edges e1, e2, e3 supported in G2 by v (1)
are partitioned into 3 plane graphs – (2), (3), (4).

The reasoning described above can be extended to any
fixed natural number k. We build successively graphs:
G2, G3, . . . , Gk. An edge u–v belongs to Gt iff there ex-
ists x ∈ V (G) such that x→ u ∈ E(Gi) and x→ v ∈ E(Gj)
for some i, j satisfying i + j = t. The edges in Gt have
weights equal to t. In order to assure that the scheme works
properly the following conditions should be satisfied:

(i) Each graph Gi is a union of a constant number of plane
graphs and therefore it can be O(1)-oriented. Notice
that after such an orientation only a constant number
of vertices is reachable from any vertex v by paths of
weight at most k in the graph G1 ∪G2 ∪ . . .∪Gk (this
set is referred as Reachk(v)).

(ii) For vertices v and w which are distant by at most k a
shortest path between v and w is completely contained
in the subgraph of G induced by the set of vertices
Reachk(v) ∪ Reachk(w).



The first constraint is satisfied as a consequence of Corol-
lary 2 while the other one follows from Theorem 3. They
are presented in the latter sections.

3. PRELIMINARIES
In this section we give necessary definitions and we show

some useful facts concerning the introduced notions.
Consider plane graphs G and H. We call H a subdrawing

of G when the following two conditions are satisfied: (i)
V (H) ⊆ V (G); (ii) each edge in graph H is a curve
compound of a sequence of edges of G (see Fig. 3). We call
H a t-subdrawing of G, if H is a subdrawing of G and each
edge is a concatenation of at most t edges of G.

Figure 3: An exemplary subdrawing of the 4 × 4
mesh.

Let G and H be undirected graphs. If H can be decom-
posed into s t-subdrawings of G then such a decomposition is
called (G, t)-representation of H of thickness s. In the case
when H is directed (G, t)-representation of H of thickness s
is a decomposition of H into s 3-oriented t-subdrawings of
G.

Let G and H be a pair of plane digraphs. We define a
relation on the set of edges of G. We say that an edge e1 =
(v, w) ∈ E(G) points with H to a different edge e2 ∈ E(G)
when there exists an edge h = (v, x) ∈ H that intersects the
interior of e2 (see Fig. 4).

e2

e1

e2

e1

x

x

v

w

v

w

Figure 4: Edge e1 points to edge e2.

The following lemma binds the notions of the subdrawing
and the pointing relation.

Lemma 1. Let G be a fixed plane graph. Let A and B be
1-oriented, plane digraphs such that A is subdrawing of G
and B is b-subdrawing of G. Let e be an edge in graph A.
Then e points with B to at most b edges in A.

Proof. Suppose that e = (v, w) points to b′ > b edges.
The outdegree of v in B is equal 1. Consider the only edge
h in B outgoing from v. Edge h intersects the interiors of b′

edges of A. Because both A and B are subdrawings of G the
only candidates for the intersection points are the vertices of
G. Due to assumption that B is a b-subdrawing of G there

are at most b + 1 vertices of G on the edge h. Therefore we
have only b candidates for intersection points (the vertex v
is excluded). It is a contradiction because some edges of A
would have to share a common internal point and A would
not be planar.

Lemma 2. Every c-oriented graph can be vertex (2c + 1)-
colored in linear time.

Proof. Let G be an arbitrary c-oriented graph. We use
induction on the number of vertices. Since

�
v in deg(v) =�

v out deg(v) there exists in G a vertex v such that
in deg(v) ≤ out deg(v). Thus deg(v) ≤ 2c. We can color
inductively G− {v} and assign to v a free color.

4. OPERATION �
Consider an operation � which takes as its arguments two

digraphs G, H. The result is an undirected simple graph.
Its vertex set is V (G) ∪ V (H) and two distinct vertices u
and v are connected in G�H iff there exists a vertex x such
that x → u ∈ E(G) and x → v ∈ E(H). We say that an
edge u–v is supported by x. Observe that one edge can be
supported by many vertices.

G Hu v

HG
x

Figure 5: An edge supported by x in operation G�H.

We will show a few useful facts concerning the introduced
operation.

Theorem 1. Let G be a plane graph. Let A and B be
plane, 1-oriented digraphs. Moreover let A and B be a-
subdrawing and b-subdrawing of G respectively. The numbers
a and b are bounded by a fixed constant k. Then graph A � B
has a (G, a+b)-representation of thickness 5 ·(2a+1)(2b+1)
which can be computed in linear time.

Proof. From Lemma 1 each edge of A points with B to
at most b other edges. In another words the set of edges
of A and the pointing relation define a b-oriented digraph.
By Lemma 2 we can (2b + 1)-color the edges of A in such a
way that if one edge points to another then they are given
different colors. Hence we can partition A in linear time into
2b + 1 graphs:

A = A1 ∪ A2 ∪ . . . ∪A2b ∪A2b+1,

each formed by the edges from the same color class. Simi-
larly we can divide graph B in linear time into 2a+1 graphs:

B = B1 ∪B2 ∪ . . . ∪B2a ∪B2a+1.

The above decomposition guarantees that in each graph Ai

(respectively Bj) there is no edge which points to another
edge with B (respectively A). In order to compute (G, a+b)-
representation of A�B we use the following formula:

A�B = �
1≤i≤2b+1

1≤j≤2a+1

Ai �Bj .

Now it suffices to show that each component Ai � Bj is a
union of at most five (a+b) - subdrawings of G. To this end



we need one more decomposition. Consider an arbitrary
graph Ai ∪ Bj . Observe that it is 2-oriented. Applying
Lemma 2 we get that Ai ∪ Bj is 5-colorable. The vertices
from the same color class are neither connected in Ai nor in
Bj .

Let c be one of the color classes. Denote by Ai,c graph Ai

restricted to the edges outgoing from the vertices colored c.
Similarly we denote by Bj,c graph Bj restricted to the edges
outgoing from the vertices colored c. This partition can be
done in linear time. Of course:

Ai �Bj = �
1≤c≤5

Ai,c �Bj,c.

Notice that the latest decomposition guarantees that for
each vertex v ∈ Ai,c ∪ Bj,c, out deg(v) > 0 implies
in deg(v) = 0.

Now it suffices to show that every graph Ri,j,c = Ai,c �
Bj,c is a (a+b)-subdrawing of G. According to the definition
of the operation � two distinct vertices v and w are adjacent
in Ri,j,c iff there exists a vertex x such that x → v is an
edge in Ai,c and x → w is an edge in Bj,c. Denote by
x′ the last point on the edge x → v shared with x → w
(possibly x′ = x). Clearly we can draw an edge v − w as a
concatenation of drawings x′ → v (we call this part of the
edge v − w an A-part) and x′ → w (we call this part of the
edge v−w a B-part). In the resulting graph Ri,j,c each edge
is compound of at most a+b edges of G. It remains to prove
that Ri,j,c is a plane graph. Assume on the contrary that the
interior of edge e1 ∈ E(Ri,j,c) is intersected by another edge
e2 ∈ E(Ri,j,c). There are several cases to be considered:

1a

x

b1

’

2b b1

x’
b2

a2
a

a
2

1

a1
2b

a2
b1

x’

1a

x

b2 b1

a2

’

Figure 6: Case 1.

(i) The interior of the A-part of e1 is intersected by the
A-part of e2. This is impossible because Ai,c is planar.
Similarly it is impossible that the interior of the B-part
of e1 is intersected by the B-part of e2 (see Fig. 6).

(ii) The interior of the A-part of e1 is intersected by the
B-part of e2. Denote the edges in Ai,c corresponding
to the A-parts of e1 and e2 as a1 and a2 respectively.
Denote the edges in Bj,c corresponding to the B-parts
of e1 and e2 as b1 and b2 respectively. We have assumed
that the interior of a1 is intersected by b2. It means
that a2 points with B to a1. A contradiction. We
can also exclude the symmetrical case: the interior of
the B-part of e1 is intersected by the A-part of e2 (see
Fig. 7).

1a

x

b1

’

b1

x’
a2

b2
a2

a1b2

1a

x

b1

b2

a2

’

a1
b1

a2
b2

x’

Figure 7: Case 2.

(iii) The common endpoint x′ of the A-part and B-part
of e1 is intersected by e2. This is impossible because
indegree of x′ is 0 in Ri,j,c.

We have shown that no internal point of e1 (which was an
arbitrarily chosen edge) can be intersected by another edge.
This completes the proof of planarity of Ri,j,c.

The set of all graphs in decomposition of A�B is a (G, a+
b)-representation of A�B:

{Ri,j,c : 1 ≤ i ≤ 2b + 1; 1 ≤ j ≤ 2a + 1; 1 ≤ c ≤ 5}.

Corollary 1. Let G be a plane graph. Let A and B
be plane, 3-oriented digraphs. Moreover let A and B be a-
subdrawing and b-subdrawing of G respectively. The numbers
a and b are bounded by a fixed constant k. Then A�B has
a (G, a + b)-representation of thickness 45 · (2a + 1)(2b + 1)
which can be computed in linear time.

Proof. We decompose A into a union of 1-oriented sub-
drawings of G: A1, A2, A3. Similarly we decompose B into
a union of 1-oriented subdrawings of G: B1, B2, B3. Notice
that:

A�B = �
1≤i,j≤3

Ai �Bj .

Now we apply Theorem 1 to each of 9 components of the
union.

Corollary 2. Let G be a n-vertex plane graph. Let A be
a graph with given (G, a)-representation of thickness sa and
let B be a graph with given (G, b)-representation of thickness
sb. The numbers a, b are bounded by a fixed constant k.
Then the graph A � B has a (G, a + b)-representation of
thickness 45 · sa · sb · (2a + 1) · (2b + 1). Moreover such a
representation can be computed in O(n · sa · sb) time.

Proof. Let A = A1 ∪A2 ∪ . . . ∪Asa and B = B1 ∪B2 ∪
. . . ∪ Bsb

be (G, a)-representation and (G, b)-representation
of graphs A and B berespectively.

Notice that the following holds:

A�B =

sa�
i=1

sb�
j=1

Ai �Bj .

It suffices to apply Corollary 1 to each component of the
union.



Since in the following sections we operate on planar graphs
without given plane embeddings, we need to define (G, t)-
representation of a graph H in the case when G is planar.
Let G and H be planar graphs. H is t-subdrawing of G when
there exist plane graphs G′ and H ′ such that they are plane
embeddings of G and H respectively and H ′ is t-subrawing
of G′. Now the notion of (G, t)-representation is well defined
even if G is a planar graph. Observe that all the results from
this section hold also if we consider planar graphs instead of
plane ones.

5. THE SHORTCUT GRAPH STRUCTURE
In this section we assume that k is a fixed constant and G

is a planar graph with n vertices. We describe a data struc-
ture Sk(G) called a shortcut graph of G with the following
properties:

(i) construction of Sk(G) takes O(n) time and space,

(ii) for arbitrary vertices u and v one can check in O(1)
time whether u and v are distant by at most k′ in
graph G (k′ ≤ k).

5.1 Construction
Sk(G) is a directed multigraph with the vertex set V (G).

Edges have integer weights from set {1 . . . k}. We denote by
Gi the subgraph of Sk(G) containing all edges with weight
i. The undirected version of Gi is denoted as Gu

i .
We build Sk(G) by constructing successively the graphs

G1, G2, . . . Gk. For each graph Gi we compute and main-
tain its (G, i)-representation. This is achieved by repeating
alternately the following two steps:

5.1.1 Step 1 – Computation of Gu
i

The initial graph Gu
1 is simply equal to G. For i > 1 we

compute the graph Gu
i applying operation � to the previ-

ously constructed graphs:

Gu
i = �

1≤p≤q<i
p+q=i

Gp �Gq

Each of the operations Gp � Gq is performed separately
by applying Corollary 2. As the result we obtain a (G, i)-
representation of the graph Gu

i . Notice that the thickness
of the representation is a function of i but independent of
n, therefore it is O(1).

5.1.2 Step 2 – Directing the Edges of Gu
i

We are given the graph Gu
i and its (G, i)-representation of

thickness O(1). Edges of each member of the representation
are directed by applying the following result:

Theorem 2 (Chrobak, Eppstein [3]). Every planar
graph can be 3-oriented in linear time.

After directing all edges of Gu
i we obtain the resulting graph

Gi. Notice that we have computed also a relevant (G, i)-
representation for Gi. The thickness of this representation
is O(1) therefore the outdegrees in Gi are also bounded by
O(1).

Corollary 3. The structure Sk(G) satisfies the follow-
ing conditions:

(i) Edge u→ v in Sk(G) with weight t indicates that there
is a walk in G from u to v of length t.

(ii) The graph Sk(G) is d-oriented, d = O(1).

(iii) The construction of Sk(G) takes time O(n) .

5.2 Processing the Queries
Weight of a path p in Sk(G) is the sum of weights of all

edges that form p. A t-path is a path of weight less or equal
t. We denote by Reacht(v) the set of vertices which are
reachable in Sk(G) from v via t-paths. For any directed
graph D the statement u − v ∈ E(D) means that u →
v ∈ E(D) or v → u ∈ E(D). We start from the following
theorem:

Theorem 3. Let G be a planar graph and let Sk(G) be
a shortcut graph of G. For any l ≤ k, vertices u and v are
distant by at most l in G if and only if the set Reacht(u) ∩
Reachl−t(v) is not empty for some t ∈ {0, . . . l}.

Proof. The implication (←) is obvious. We show the
other one. The proof is by the induction on l. As u − v ∈
E(G1) the theorem holds for l = 1.

If the distance between u and v is less than l we can
use the induction hypothesis so we assume that dist(u, v) =
l. Let p be a u-v path in G of length l. Let u1 be the
neighbor of u on the path p. By the induction hypothesis
there is an integer t1, 0 ≤ t1 < l, and a vertex x such that
Reacht1(u1)∩Reachl−1−t1(v) 3 x. Hence there are directed
paths in Sk(G) from u1 to x and from v to x.

u
1

u
2

u
3

vx

...u

Figure 8: Proof of Theorem 3.

Let u1, u2, . . . un = x be successive vertices of u1 → x path
in Sk(G). We define a set Z as follows:

Z = {i : 1 ≤ i ≤ n and ui − u ∈ E(Sk(G))}
As u− u1 ∈ E(G1), u1 ∈ Z and Z 6= ∅. Let i∗ = maxZ.
If i∗ = n, i.e. ui∗ = x we are done, because either x ∈
Reacht1+1(u) or u ∈ Reachl(v). Assume i∗ < n. Let ui∗ →
ui∗+1 has weight a. If ui∗ → u ∈ E(Sk(G)) and it has
weight b, ui∗+1 − u ∈ E(Ga+b) ⊆ E(Sk(G)) and i∗ + 1 ∈ Z,
a contradiction. Finally u → ui∗ ∈ E(Sk(G)) and x ∈
Reacht1+1(u).

5.2.1 The Algorithm
Theorem 3 yields a simple O(1) time algorithm which ver-

ifies whether dist(u, v) ≤ k and if so it computes a relevant
shortest path between u and v. As it was proved the outde-
gree in the shortcut graph Sk(G) is bounded by O(1). Let us
denote the maximum outdegree in Sk(G) by max out deg:

max out deg = max{out deg(v) : v ∈ Sk(G)}.
The computation of Reacht(u), for t = 1, 2 . . . k, can be

done easily using dynamic programming: for every vertex
x ∈ Reachi(u), i < t, and every edge x → y with weight
(t − i), we add vertex y to Reacht(u). Simultaneously we
can build T (u) – the tree of the shortest paths from u to
the vertices of Reacht(u) in the graph Sk(G). As one can
see the tree T (u) contains at most max out degk = O(1)
vertices. Similarly we build the shortest-paths tree T (v) for
the vertex v.



Theorem 3 shows that if dist(u, v) = l ≤ k then there ex-
ists a vertex x ∈ Sk(G) such that distSk(G)(u, x) +
distSk(G)(v, x) = l. Therefore it is enough to check all the
vertices from T (v) ∩ T (u) and find a vertex x for which the
value distSk(G)(u, x)+distSk(G)(v, x) is minimal. The short-
est path between u and v in G can be easily reconstructed
in O(1) time from the following shortest paths in Sk(G) –
the path from u to x and the path from v to x (we obtain
the paths from the trees T (u) and T (v) resp.).

6. DYNAMIC EDGES DELETIONS AND
THE GIRTH

An important asset of our data structure is that it can
be adapted to work in a dynamic environment. We show in
this section that after deleting an arbitrary edge from G the
shortcut graph Sk(G) can be updated in O(1) time.

The idea behind the edge deletion algorithm is very sim-
ple. Each time we delete an edge e in G we also have to
remove all the edges in G2 which were caused by e. To
make the shortcut graph up to date we have also to delete
recursively unnecessary edges from graphs G3, . . . , Gk. To
this end we have to answer two questions: (i) how numer-
ous can be the set of deleted edges; (ii) how to find those
edges quickly. It can be seen that the number of deleted
edges is O(1) and they can be found in O(1) time.

To be more precise we introduce the following definitions:
Let e1 = x → v, e2 = x → w be edges in graphs Gi, Gj

respectively. Let e be an edge of Gi+j equal v → w or
w → v. We say that the pair of edges (e1, e2) is a parent
of e and e is a child of (e1, e2). Notice that each edge can
have more than one parent.

6.1 The Extension of the Shortcut Graph
We assume that during the construction of Sk(G) for each

edge e ∈ Sk(G) the following information are stored: (i)
the number of parents of e; (ii) the list L(e) of pairs (pi, ci)
where ci is a child of (pi, e).

Theorem 4. Let G be a planar graph and Sk(G) a short-
cut graph for G. Each edge e = v → w ∈ Sk(G) has O(1)
children.

Proof. Let us denote the maximum outdegree in Sk(G)
by max out deg (recall that it is bounded by a constant
number). The number of the edges outgoing from v different
from e is at most max out deg − 1. It implies that the
number of children of e is bounded by max out deg − 1 =
O(1).

Assume than e is an edge of Gt and it is going to be
deleted. For each pair (pi, ci) ∈ L(e) we have to perform
the following operations: remove the pair (e, ci) from the list
L(pi), decrease the counter of parents of ci. If the counter
reaches 0 we delete the edge ci recursively. As each edge
has O(1) children and the depth of recursion is bounded by
a constant k the whole operation takes O(1) time. In order
to delete an edge from the initial graph G it is enough to
delete the directed edge from G1.

6.2 The Girth of a Planar Graph
Let k be a fixed constant and G a planar graph. In order to

check whether the girth of G is ≤ k we perform the following
three operations for each edge e = (v, w) ∈ G:

(i) delete e from G;

(ii) check whether dist(v, w) ≤ k−1 and if so compute the
cycle compound of e and the shortest path between v
and w;

(iii) restore the original state of Sk(G) (undo the deletion
of e).

Each step can be performed in O(1) time. Therefore in a
case when the girth of G is at most k the shortest cycle in
G can be found in linear time.

7. ACKNOWLEDGEMENTS
We thank Krzysztof Diks for comments on early versions

of this paper and many fruitful discussions.

8. REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network

Flows: Theory, Algorithms and Applications. Prentice
Hall, Englewood Cliffs, 1993.

[2] D. A. Chen and J. Xu. Shortest path queries in planar
graphs. In Proc. of the 32nd Annual ACM Symposium
on Theory of Computing, pages 469–478, 2000.

[3] M. Chrobak and D. Eppstein. Planar orientations with
low out-degree and compaction of adjacency matrices.
Theoretical Computer Science, 86(2):243–266, 1991.

[4] H. Djidjev. Computing the girth of a planar graph. In
Proc. 27th International Colloquium on Automata,
Languages and Programming, pages 821–831, 2000.

[5] D. Eppstein. Subgraph isomorphism in planar graphs
and related problems. J. Graph Algorithms &
Applications, 3(3):1–27, 1999.

[6] G. N. Frederickson. Ambivalent data structures for
dynamic 2-edge-connectivity and k smallest spanning
trees. SIAM Journal on Computing, 26(2):484–538,
April 1997.

[7] G. Ramalingam. Bounded Incremental Computation,
volume 1089 of LNCS. Springer, 1996.


