Probably Optimal Graph Motifs

Andreas Björklund1, Petteri Kaski2 and Łukasz Kowalik3 (speaker)

1 Lund University (Sweden)
2 Aalto University (Finland)
3 University of Warsaw (Poland)

STACS, Kiel, 28.02.2013
Graph Motif problem

Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a subset $S \subseteq V$ such that
- $G[S]$ is connected,
- $c(S)$ matches M?

$M = \{ \text{\textbullet} \}$
Graph Motif problem

Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \to \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a subset $S \subseteq V$ such that
- $G[S]$ is connected,
- $c(S)$ matches M?

$M = \{ \text{\textbullet, \textbullet, \textbullet, \textbullet, \textbullet, \textbullet, \textbullet} \}$
Graph Motif problem

Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a subset $S \subseteq V$ such that
- $G[S]$ is connected,
- $c(S)$ matches M?

$M = \{\text{blue, red, green}\}$

$G = \{\text{nodes, edges}\}$
Graph Motif: motivation, complexity

- Introduced in 2006 by Lacroix et al. as a model of functional motif search in metabolic networks

- NP-complete (even when G is a tree and M is a set)

- In bioinformatics applications $|V| < 10,000$, $|M| < 20$.

- So, maybe FPT?
Let k be the size (number of vertices) of the solution (here: $k = |M|$). Denote $O^*(f(k)) = O(f(k)\text{poly}(n))$.

Previous results

- $O^*(87^k)$ [Fellows, Fertin, Hermelin and Vialette 2007]
- $O^*(4.32^k)$ [Betzler, Fellows, Komusiewicz and Niedermeier 2008]
- $O^*(4^k)$ [Guillemot and Sikora 2010]
- $O^*(2.54^k)$ [Koutis 2012]

Our result (to be continued...)

- An $O(2^k mk)$-time algorithm for \textsc{Graph Motif},
- An $O^*((2 - \epsilon)^k)$-time algorithm for \textsc{Graph Motif} gives a $O((2 - \epsilon')^n)$-time algorithm for \textsc{Set Cover}

Note: All the algorithms above are randomized Monte-Carlo.
Graph Motif, optimization versions

What if there is no motif in the graph?

Is there something close to the motif?

There are three optimization versions (introduced by Dondi, Fertin, Vialette CPM’09, CPM’11):

- **Max Motif**,
- **Min-Add**,
- **Min-Substitute**
Max Motif problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \to \mathbb{N}$,
- a multiset of colors M

Optimization Problem
Find the largest subset $S \subseteq V$ s.t.
- $G[S]$ is connected,
- $c(S) \subseteq M$.

(Remove as few elements from M as possible to get a YES-instance.)
Max Motif problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \to \mathbb{N}$,
- a multiset of colors M
- $k \in \mathbb{N}$.

Decision Version
Is there a subset $S \subseteq V$ s.t.
- $|S| = k$,
- $G[S]$ is connected,
- $c(S) \subseteq M$?

\[M = \{ \text{sets of colors} \}\]
Min-Add problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \to \mathbb{N}$,
- a multiset of colors M

Optimization Problem
Find the smallest subset $S \subseteq V$ s.t.
- $G[S]$ is connected,
- $c(S) \supseteq M$.

(Add as few elements to M as possible to get a YES-instance.)
Min-Add problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M,
- $k \in \mathbb{N}$.

Decision Version
Is there a subset $S \subseteq V$ s.t.
- $|S| = k$,
- $G[S]$ is connected,
- $c(S) \supseteq M$?

$M = \{\}$
Min-Substitute problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M

Optimization Problem
Find a subset $S \subseteq V$ s.t.
- $G[S]$ is connected,
- $c(S)$ can be obtained from M by a minimum number of substitutions.

$M = \{\}$
$c(S) = \{}$
Min- Substitute problem

Input
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M
- $d \in \mathbb{N}$.

Decision Version
Is there a subset $S \subseteq V$ s.t.
- $G[S]$ is connected,
- $c(S)$ can be obtained from M by at most d substitutions?

$M = \{\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}\}$
$c(S) = \{\text{\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet\textbullet}\}$
Previous best results for optimization versions (all by Koutis 2012):

- **Max Motif** = **Min-Delete** $O^*(2.54^k)$
- **Min-Add** $O^*(2.54^k)$
- **Min-Substitute** $O^*(5.08^k)$
1. We introduce a new variant, **Closest Motif**: minimize the *edit distance* between M and $c(S)$,

2. **Closest Motif** encompasses all the three optimization versions,

3. We show a $O^*(2^k)$-time algorithm for **Closest Motif**.
Sketch of our approach. A toy problem

Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a path $P \subseteq G$ such that $c(V(P))$ matches M?

$M = \{\text{ }\}$
Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \rightarrow \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a path $P \subseteq G$ such that $c(V(P))$ matches M?

$M = \{ \text{color set} \}$
Approach: testing whether a polynomial is nonzero

The plan

We construct a multivariate polynomial P over $GF(2^\beta)$ such that:

- $P \not\equiv 0$ iff YES-instance.
- We can evaluate P at a given point (vector) fast.

Schwartz-Zippel Lemma

- Polynomials over fields have few zeroes.
- So, we can test whether a polynomial $P(x_1, \ldots, x_n)$ is nonzero w.h.p. by evaluating it in a random vector (x_1, \ldots, x_n).

The plan continued

So, we will get a randomized Monte-Carlo one-sided error algorithm running in time of evaluating P.
Shades and consistent labelling

Shades

- Set of colors: $C = c(V)$
- Let $m : C \to \mathbb{N}$ be the multiplicity function of M.
- For $c \in C$ let $D(c) = \{(c, i) : i = 1, \ldots, m(c)\}$ be the set of shades of color c
- Let $D = \bigcup_c D(c)$.

Example:

$M = \{ \bullet \bullet \bullet \bullet \bullet \bullet \}, \quad D = \{ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \}$

Consistent labellings

- Let $W = v_1, \ldots, v_k$ be a walk.
- Labelling $\ell : \{1, \ldots, k\} \to D$ is consistent if for every $i = 1, \ldots, k$ we have $\ell(i) \in D(c(v_i))$.
\[P(x, y) = \sum_{\text{walk } W = v_1, \ldots, v_k} \sum_{\ell: \{1, \ldots, k\} \rightarrow D} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)} \]

\(\ell \) is bijective
\(\ell \) is consistent
\(\text{mon}(W, \ell) \)
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.

\[
\ell' : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\} \\
\begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise}
\end{cases}
\]

ℓ' is bijective and consistent. $(W, \ell) \neq (W, \ell')$ since ℓ is injective.

If we start from (W, ℓ') and follow the same way of assignment we get (W, ℓ) back.

Since the field is of characteristic 2, mon(W, ℓ) and mon(W, ℓ') cancel out!
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \to \{1, \ldots, k\}$ as follows:

$$\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise}.
\end{cases}$$
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \to \{1, \ldots, k\}$ as follows:

$$
\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise.}
\end{cases}
$$

- ℓ' is bijective and consistent.
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$ as follows:

\[
\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise.}
\end{cases}
\]

- ℓ' is bijective and consistent.
- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
Monomials corresponding to non-simple walks cancel-out

- Let $\mathcal{W} = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \to \{1, \ldots, k\}$ as follows:
 $$\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise}.
\end{cases}$$

- ℓ' is bijective and consistent.
- $(\mathcal{W}, \ell) \neq (\mathcal{W}, \ell')$ since ℓ is injective.

$$\text{mon}(\mathcal{W}, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)} = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \left(\prod_{i \in \{1, \ldots, k\} \setminus \{a, b\}} y_{v_i, \ell(i)} \right) \underbrace{y_{v_a, \ell(a)}}_{\text{this factor}} \underbrace{y_{v_b, \ell(b)}}_{\text{this factor}} = \text{mon}(\mathcal{W}, \ell')$$
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \to \{1, \ldots, k\}$ as follows:

$$
\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise}.
\end{cases}
$$

- ℓ' is bijective and consistent.
- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $\text{mon}(W, \ell) = \text{mon}(W, \ell')$
Monomials corresponding to non-simple walks cancel-out

- Let $W = v_1, \ldots, v_k$ be a walk, and a consistent bijection $\ell \in S_k$.
- Assume $v_a = v_b$ for some $a < b$, if many such pairs take the lexicographically first.
- We define $\ell' : \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$ as follows:

$$\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise.}
\end{cases}$$

- ℓ' is bijective and consistent.
- $(W, \ell) \neq (W, \ell')$ since ℓ is injective.
- $\text{mon}(W, \ell) = \text{mon}(W, \ell')$
- If we start from (W, ℓ') and follow the same way of assignment we get (W, ℓ) back.
Monomials corresponding to non-simple walks cancel-out

- Let \(W = v_1, \ldots, v_k \) be a walk, and a consistent bijection \(\ell \in S_k \).
- Assume \(v_a = v_b \) for some \(a < b \), if many such pairs take the lexicographically first.
- We define \(\ell' : \{1, \ldots, k\} \to \{1, \ldots, k\} \) as follows:

\[
\ell'(x) = \begin{cases}
\ell(b) & \text{if } x = a, \\
\ell(a) & \text{if } x = b, \\
\ell(x) & \text{otherwise.}
\end{cases}
\]

- \(\ell' \) is bijective and consistent.
- \((W, \ell) \neq (W, \ell')\) since \(\ell \) is injective.
- \(\text{mon}(W, \ell) = \text{mon}(W, \ell') \)
- If we start from \((W, \ell')\) and follow the same way of assignment we get \((W, \ell)\) back.
- Since the field is of characteristic 2, \(\text{mon}(W, \ell) \) and \(\text{mon}(W, \ell') \) cancel out!
If $P \neq 0$ then we have a YES-instance.

Observation

- Every labelled walk which is a path gets a \textit{unique} monomial.
- So, monomials of simple paths do not cancel-out.
- So, if we have a YES-instance then $P \neq 0$.

Corollary

If there is a k-path in G then $P \neq 0$.
Evaluating $P(x, y) = \sum \sum_{\text{walk } W} \prod_{\ell: \{1, \ldots, k\} \rightarrow D} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)}$

- ℓ is bijective
- ℓ is consistent

By the Inclusion-Exclusion Principle one can show that

$P(x, y) = \sum_{X \subseteq \{1, \ldots, k\}} \sum_{\text{walk } W} \sum_{\ell: \{1, \ldots, k\} \rightarrow X} \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{v_i, \ell(i)}$

- ℓ is consistent

$P_X(x, y)$

- By dynamic programming P_X can be evaluated in polynomial time.
Corollary

The toy problem can be solved by a $O^*(2^k)$-time polynomial space one-sided error Monte-Carlo algorithm.
Graph Motif, equivalent formulation

Input:
- Graph $G = (V, E)$,
- (not necessarily proper) coloring $c : V \to \mathbb{N}$,
- a multiset of colors M.

Question:
Is there a tree $T \subseteq G$ such that $c(V(T))$ matches M?

$M = \{ \cdot \cdot \cdot \cdot \cdot \cdot \cdot \}$
It suffices to replace walks by "tree-like walks". They are called branching walks.

Details skipped.
Maximum Graph Motif Hero (path version)

\[P(x, y) = \sum_{W = x_1, \ldots, x_k} \sum_{s: \{1, \ldots, k\} \rightarrow D} \sum_{\ell: \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}} \text{mon}(W, s, \ell) \]

\[\text{mon}(W, s, \ell) = \prod_{i=1}^{k-1} x_{v_i, v_{i+1}} \prod_{i=1}^{k} y_{h(x_i), s(i)} z_{s(i), \ell(i)} \]
... and finally ...
the one everybody is waiting for ...
Closest Motif Hero

\[P(x, y) = \sum_{W=(T,h)} \sum_{f:V(T)\to\{0,1\}} \sum_{s:V(T)\to D} \sum_{\ell:V(T)\to \{1,...,k\}} \text{mon}(W, s, \ell, f) \eta^\kappa(f,s) \]

\[\text{mon}(W, s, \ell, f) = \prod_{uv \in E(T)} \chi_{h(u),h(v)} \prod_{v \in V(T)} \gamma_{h(v),s(v),z(s(v)),\ell(v)} \prod_{u \in V(T)} W_{h(u)}^{f(u)}. \]

Don’t even try to parse it!