
Fast 3-coloring Triangle-Free Planar Graphs∗

 Lukasz Kowalik
†

Abstract

Although deciding whether the vertices of a planar graph can be colored with three

colors is NP-hard, the widely known Grötzsch’s theorem states that every triangle-free

planar graph is 3-colorable. We show the first o(n2) algorithm for 3-coloring vertices

of triangle-free planar graphs. The time complexity of the algorithm is O(n log n).

Keywords: graph algorithms, triangle-free planar graphs, Grötzsch’s theorem, color-

ing, efficient algorithm

1 Introduction

The famous Four-Color Theorem says that every planar graph is vertex 4-
colorable. The paper of Robertson et al. [12] describes an O(n2) 4-coloring
algorithm. This seems to be very hard to improve, since it would probably
require a new proof of the 4-Color Theorem. On the other hand there are sev-
eral linear-time 5-coloring algorithms (see e.g. [4]). Thus efficient coloring planar
graphs using only three colors (if possible) seems to be the most interesting area
still open for research. Although the general decision problem is NP-hard [7]
the renowned Grötzsch’s theorem [9] guarantees that every triangle-free pla-
nar graph is 3-colorable. It seems to be widely known that the simplest known
proofs by Carsten Thomassen (see [13, 14]) can be easily transformed into O(n2)
algorithms. In this paper we improve this bound to O(n log n).

In Section 2 we present a new proof of Grötzsch’s theorem, based on a paper
of Thomassen [13]. The proof is inductive and it corresponds to a recursive
algorithm. The proof is written in such a way that it can be immediately
transformed into an algorithm. In fact the proof can be treated as a description
of the algorithm mixed with a proof of its correctness.

In Section 3 we discuss how to implement the algorithm efficiently. We
describe details of non-trivial operations as well as data structures needed to

∗A preliminary version of this paper [10] was presented at ESA 2004
†Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.

kowalik@mimuw.edu.pl. The research has been partially supported by KBN grant
4T11C04425. A part of the research was done during the author’s stay at BRICS, Aarhus
University, Denmark.

1

perform these operations fast. The description and analysis of the most involved
one, Short Path Data Structure (SPDS), is contained in Section 4. This data
structure deserves a separate interest. In our paper with Maciej Kurowski [11]
we presented a data structure built in linear time and enabling finding shortest
paths between given pairs of vertices in constant time, provided that the dis-
tance between the vertices is bounded. This data structure works also in the
dynamic environment and can be updated after adding or removing an edge
in polylogarithmic time. In our coloring algorithm here we need to find paths
only of length 1 and 2. Hence here we show a simplified version of the previous,
general structure. The SPDS is described from the scratch in order to make this
paper self-contained but also because we need to introduce some modifications
and extensions, like the identify operation, not described in [11].

1.1 Related work

Recently, two new Grötzsch-like theorems appeared. The first one says that
any planar graph without triangles at distance less than 4 and without 5-cycles
is 3-colorable (see [2]). The other theorem states that planar graphs without
cycles of length from 4 to 7 are 3-colorable (see [1]). We conjecture that our
techniques presented here with additional help of the general SPDS from [11]
can be adapted to transform these proofs to O(n polylog n) algorithms.

Also recently, Dvorak, Kral and Thomas [6] showed that for every surface Σ
there exists a polynomial-time algorithm that given an input triangle-free graph
G embedded in Σ correctly determines whether G is 3-colorable.

1.2 Terminology

We assume the reader is familiar with standard terminology and notation con-
cerning graph theory and planar graphs in particular (see e.g. [16]). Let us recall
here some notions that are not so widely used.

A separating cycle is a connected graph G is a cycle C such that removing
all the vertices of C makes graph G disconnected.

Let f be a face of a connected plane graph. A facial walk w corresponding
to f is the shortest closed walk induced by all edges incident with f . Note that
when there is a cutvertex incident with f the facial walk w is not a cycle. If
the boundary of f is a cycle the walk is called a facial cycle. The length of
walk w is denoted by |w|. We define the length of face f as the length of the
corresponding facial walk, and we denote it by |f |.

Let C be a simple cycle in a plane graph G. The length of C will be denoted
by |C|. The cycle C divides the plane into two disjoint open domains, D and E,
such that D is homeomorphic to an open disc. The set consisting of all vertices
of G belonging to D and of all edges crossing this domain is denoted by int C.
Observe that int C is not necessarily a graph, while C ∪ int C is a subgraph of
G. A k-path (k-cycle, k-face) refers to a path (cycle, face) of length k.

2

2 A Proof of Grötzsch’s Theorem

In this section we give a new proof of Grötzsch’s theorem. The proof is based
on ideas of C. Thomassen [13]. The reason for writing the new proof is that
the original one corresponds to an O(n log3 n) algorithm when we employ our
algorithmic techniques presented in the following sections. In the algorithm
corresponding to the proof presented below we don’t need to search for paths
of length 3 and 4, which reduces the time complexity to O(n log n). We could
also use the recent proof of Thomassen [14] but we suspect that the resulting
algorithm would be more complicated and harder to describe. We will need the
following lemma.

Lemma 2.1. Let G be a biconnected plane graph with every inner face of length
5, and the outer face C of length 4 ≤ |C| ≤ 6. Furthermore assume that every
vertex not in V (C) has degree at least 3 and that there is no pair of adjacent
vertices of degree 2. Then G has a facial cycle C′ such that V (C′) ∩ V (C) = ∅
and all the vertices of C′ are of degree 3 except, possibly one of degree at most
5.

Proof. We use the well-known discharging technique. We put a charge of
degG(v) − 4 on every vertex v of G. Moreover, each face q of G obtains a
charge of |q| − 4. The outer face receives additional 7 units of charge. Let
n, m, f denote the number of vertices, edges and faces of graph G, respectively
and let V, F be the sets of vertices and faces of G, respectively. Using Euler’s
formula we can easily calculate the total charge on G:

∑

v∈V

(degG(v)− 4) +
∑

q∈F

(|q| − 4) + 7 = 2m− 4n + 2m− 4f + 7 = −1

Note that the total charge is negative. In the sequel we will show that we
can redistribute the charge in the graph, without changing its total amount,
in such a way that if the graph contained no desired facial cycle then it would
imply that the total charge is nonnegative, which is a contradiction.

We move the charge from vertices to faces in such a way that each vertex v

sends degG(v)−4
degG(v) units of charge to every face incident with v. Note that 3-vertices

send negative charge, and after this operation the charge in every vertex is equal
to 0. Let d4 and d5 denote the number of vertices of degree 4 and 5 in V (C),
respectively. Since there are at most 3 vertices of degree 2 the outer face has got
at least |C|−4+7+3 ·(−1)+3 ·(− 1

3)+d4 ·
1
3 +d5 ·(

1
3 + 1

5) = |C|−1+d4 ·
1
3 +d5 ·

8
15

charge. Note that if a 5-face has two 2-vertices then it must be the outer face,
since 2-vertices are nonadjacent and all are incident with f . It follows that the
faces have nonnegative charge except for, possibly, 5-faces with 4 vertices of
degree 3 and one vertex of degree from 3 to 5 (charge at least − 2

3) or 5-faces
with a vertex of degree 2 (charge at least − 4

3).
Then the outer face sends equal charge of 1 − 1

|C| ≥
3
4 units to each of the

|C| faces that share an edge with C. Observe that now all the faces having a
common edge with the outer face have positive charge: faces with a vertex of

3

degree 2 have got at least − 4
3 + 2 · 3

4 = 1
6 units of charge, while the other faces

end up with ≥ − 2
3 + 3

4 = 1
12 units of charge.

Note that if there is now a face q of negative charge sharing a vertex x with
C then deg x ∈ {4, 5} and the other vertices of q are not in C. The charge of
each such face becomes nonnegative after moving 1

3 of charge from the outer
face when deg x = 4 or 2

15 of charge when deg x = 5. As we move at most
d4 ·

1
3 + d5 · 2 ·

2
15 units of charge from the outer face it also ends up with

nonnegative charge. Now we see that if the desired face does not exist the total
charge in graph is nonnegative, which is a contradiction.

Instead of proving Grötzsch’s theorem it will be easier for us to show the
following more general result. (Although we obtained it independently, let us
note that it follows also from Theorem 5.3 in [8]). A 3-coloring of a cycle C is
called safe if |C| < 6 or the sequence of successive colors on the cycle is neither
(1, 2, 3, 1, 2, 3) nor (3, 2, 1, 3, 2, 1).

Theorem 2.2. Any connected triangle-free plane graph G is 3-colorable. More-
over, if the boundary of the outer face of G is a cycle C of length at most 6 then
any safe 3-coloring of G[V (C)] can be extended to a 3-coloring of G.

Proof. Either all vertices of graph G are uncolored or all vertices incident with
the outer face are colored while all the other vertices of G are uncolored. In
the first situation we will show that there is a 3-coloring of G. We assume
that the latter situation can appear only if the outer face is of length at most
6. Moreover we assume that the coloring of C is safe and the induced graph
G[V (C)] is properly colored. Then our goal is to show that this coloring can be
extended to a 3-coloring of the whole graph G.

The proof is by the induction on |V (G)|. We assume that G has at least
one uncolored vertex, for otherwise there is nothing left to do. We are going to
consider several cases. After each case we assume that none of the previously
considered cases applies to G.

Case 1. G has an uncolored vertex x of degree at most 2. Then we can
remove x and easily complete the proof by induction. If x is a cutvertex the
induction is applied to each of the connected components of the resulting graph.

1

3

2

3

1

2

x

· · ·

· · · · · ·

Fig. 1: Case 2.

Case 2. G has an uncolored vertex x joined to two or three colored vertices
(see Fig. 1). Observe that x 6∈ C. Moreover, if x has three colored neighbors then

4

|C| = 6 and the neighbors cannot have three different colors, as the coloring
of C is safe. Hence we extend the 3-coloring of G[V (C)] to a 3-coloring of
G[V (C) ∪ {x}]. Note that for every facial cycle of G[V (C) ∪ {x}] the resulting
3-coloring is safe. Then we can apply induction to each face of G[V (C) ∪ {x}],
i.e. when a face of G[V (C) ∪ {x}] has a facial cycle C′, we apply the induction
hypothesis to the subgraph of G defined by C′ ∪ int(C′).

Case 3. C is colored and has a chord. We proceed similarly as in Case 2.
Case 4. G has a facial walk C′ = x1x2 · · ·xkx1 such that k ≥ 6 and at least

one vertex of C′ is uncolored, say x1. As Case 2 is excluded we can assume that
x2 or xk is uncolored, w.l.o.g. assume x2 is uncolored. In what follows, we will
need the following claim several times1:

Claim 1. When G contains a separating cycle C′, 4 ≤ |C′| ≤ 6, then we can
finish the proof by induction.
Proof of the claim. Let G1 = G − int(C′). If C′ has a chord in int(C′), we
additionally put it in G1 (by planarity and absence of triangles C′ has at most
one chord in int(C′)). If C′ is of length 6 and it has no chord in G, we put
a chord of C′ in G1 between vertices at distance 3 in C′ (so that we do not
introduce a triangle). Now we use the induction hypothesis to get a 3-coloring
of G1. (If the vertices of the outer cycle C are colored we extend this coloring
to G1). The resulting 3-coloring of C′ is also a proper 3-coloring of G[V (C′)],
since G1 contains all the chords of C′. Note that the coloring of C′ is also
safe, because when |C′| = 6, there is a chord of C′ in G1 between vertices at
distance 3 in C′. It follows that we can use the induction to find a 3-coloring
of G2 = C′ ∪ int(C′). Together with the coloring of G1 it gives the requested
coloring of G, which ends the proof of Claim 1.

Case 4a. Assume that x3 is colored and x1 has a colored neighbor z (see
Fig. 2). As Case 2 is excluded, x2 and x1 have no colored neighbors, except for

x3

x2

x1

z

w

C ′

x2

x3

y2

y1

x1

Fig. 2: Cases 4a (left) and 4b (right).

x3 and z respectively. Then G[V (C) ∪ {x1, x2}] has precisely two inner faces,
each of length at least 4. Let C1 and C2 denote the facial cycles corresponding

1 Note that this is a claim, not a case. This is because we want this proof correspond to
an efficient algorithm. In the algorithm, one needs to verify which case applies very fast,
i.e. in O(log n) time, while it is unclear how to find a separating cycle that fast. This claim
corresponds to a procedure in the algorithm.

5

to these faces and let |C1| ≤ |C2|. We see that |C1| ≤ 6, because otherwise
|C| ≥ 7 and C is not colored. W.l.o.g. we can assume that C1 is separating in
G for otherwise C1 = C′, |C1| = 6, |C2| = 6 and C2 is separating. Hence we
can apply Claim 1.

Case 4b. There is a path x1y1y2x3 or x1y1x3 distinct from x1x2x3. Since G

does not contain a triangle, x2 6∈ {y1, y2}. Let C′′ be the cycle x3x2x1y1y2x3 or
x3x2x1y1x3 respectively. Then C′′ is separating because degG(x2) ≥ 3, so we
can use Claim 1.

Case 4c. Since Cases 4a and 4b are excluded, we can identify x1 and x3

without creating a chord in C or a triangle in the resulting graph G′. Hence we
can apply the induction hypothesis to G′.

Case 5. G has a facial cycle C′ of length 4. Furthermore if C is colored
assume that C′ 6= C. Observe that C′ has two opposite vertices u, v such that
one of them is not colored and identifying u with v does not create an edge
joining two colored vertices. For otherwise, there is a triangle in G or either of
cases 2, 3 occurs.

Case 5a. There is a path uy1y2v, y1 6∈ V (C′) (see Fig. 3). Then y2 6∈ V (C′),

u

v

y1

y2

Fig. 3: Case 5a.

for otherwise there is a triangle in G. Then the path together with one of the
two u, v-paths contained in C′ creates a separating cycle C′′ of length 5, so we
use Claim 1 again.

Case 5b. Since Case 5a is excluded, we can identify u and v without creating
a triangle. Observe that when C was colored and |C| = 6 then the coloring of
the outer cycle does not change, so it remains safe. Hence it suffices to apply
induction to the resulting graph.

Case 6 (main reduction). Observe that since inner faces of G have length 5,
G is triangle-free, and G is biconnected. Moreover there is no pair of adjacent
vertices of degree 2, for otherwise the 5-face containing this pair contains either
a vertex joined to two colored vertices or a chord of C (Case 2 or 3 respectively).
Hence by Lemma 2.1 there is a face C′ = x1x2x3x4x5x1 in G such that deg(x1) =
deg(x2) = deg(x3) = deg(x4) = 3, deg(x5) ≤ 5 and V (C) ∩ V (C′) = ∅. Then
the vertices xi, 1 ≤ i ≤ 5, are uncolored. Let yi be the neighbor of xi in G−C′,
for i = 1, 2, 3, 4. Moreover, let y5, . . . ym be the neighbors of x5 in G− C′.

Case 6a. yi = yj for i 6= j. Since G is triangle-free xi and xj are at distance
2 in C′ (see Fig. 4). Then there is a 4-cycle xiyixjzxi in G. As Case 5 is
excluded the cycle is separating and we use Claim 1.

6

x1

x2x3

x4

x5

y2 = y5

x1

x2x3

x4

x5

y2

y5

Fig. 4: Cases 6a (left) and 6b (right)

Case 6b. yiyj ∈ E(G) for some i 6= j (see Fig. 4). Then there is a separating
cycle of length 4 or 5 in G and we use Claim 1.

Case 6c. There are three distinct vertices xi, xj , xk ⊂ {x1, . . . x5} such that
each has a colored neighbor. Assume w.l.o.g. that xi, xj and xk appear in this
order around C′. Since Case 6b is excluded, the three pairs yi and yj , yj and
yk, yk and yi are connected in the outer cycle C by paths of length at least 2.
Since |C| ≤ 6 these paths have all length exactly 2. Now observe that at least
two of the vertices xi, xj , xk are at distance 2 in C′, say xi and xj . Then let C′′

be the cycle consisting of the 2-path between xi and xj in C′, edges xiyi and
xjyj , and the 2-path between yi and yj in C. We see that |C′′| = 6 and C′′ is
separating in G (as Case 4 is excluded), so we can apply Claim 1.

By symmetry we can assume that y1 or y2 is not colored (i.e. we change
denotations of vertices x1, . . . x4 and y1, . . . y4, if needed).

xkxi

yi

xj

yk

z

yj

x1

x2x3

x4

x5 y1

w1

w2

y2

Fig. 5: Cases 6d (left) and 6h (right).

Case 6d. yi, yj and z are colored and z is a neighbor of yk for distinct i, j, k.
Moreover, yi and z have the same color and xi is adjacent with xk (see Fig. 5).
Consider the cycle C′′ consisting of the path yixixkykz and of the path between
yi and z in C. Since yi and z have the same color they are at distance at least
2 in the outer cycle C. It follows that |C′′| ≥ 6. Since Case 4 is excluded, C′′ is
separating and we can use Claim 1.

Case 6e. y2 and a neighbor of y1 have the same color (or y1 and a neighbor

7

of y2 have the same color). As Case 6d is excluded y3 and y4 are uncolored.
Then we swap the denotations of x1 and x4, y1 and y4, x2 and x3, y2 and y3.
Note that then Case 6e does not apply any more and still y1 or y2 is uncolored
(actually then both of them are uncolored).

Case 6f. y3 is colored and x5 has a colored neighbor. As Case 6c is excluded,
y1, y2 and y4 are uncolored. As 6d is excluded y4 has no neighbor with the same
color as y3. Then we swap the denotations of x1 and x4, y1 and y4, x2 and x3,
y2 and y3. Note that then neither Case 6e nor Case 6f applies and y1 or y2 is
still uncolored.

Observe that after excluding Cases 6e and 6f one can identify y1 with y2 and
x5 with y3 without introducing an edge with both ends of the same color. We
are going to identify these pairs (additionally removing vertices x1, x2, x3 and
x4), but earlier we need to exclude the situations when identifying introduces a
triangle.

Case 6g. There is a path x5ykwy3 for some k ∈ {5, . . .m}, w ∈ V (G). Then
we consider the 6-cycle C′ = ykx5x4x3y3wyk. Since Case 4 is excluded, C′ is
separating and we use Claim 1.

Case 6h. There is a path y1w1w2y2 distinct from y1x1x2y2 (see Fig. 5).
Then we consider the 6-cycle C′ = y1w1w2y2x2x1y1. Since Case 4 is excluded,
C′ is separating and we use Claim 1.

Case 6i. Let G′ be the graph obtained from G by deleting x1, x2, x3, x4

and identifying x5 with y3 and y1 with y2. In both of these pairs at most one
vertex is colored and the new vertex inherits its color from this vertex. Since
we excluded cases 6e and 6f, the graph induced by the colored vertices of G′

is properly 3-colored. Since we excluded cases 6g and 6h, G′ is triangle-free.
Hence we can use the induction to get a 3-coloring c of G′. We then extend c to
a 3-coloring of G. As Case 6b is excluded, the (partial) coloring inherited from
G′ is proper. If c(y1) = c(x5) then we color x4, x3, x2, x1, in that order, always
using a free color. If c(y1) 6= c(x5) we put c(x2) = c(x5) and color x4, x3, x1 in
that order. This completes the proof.

3 The Algorithm

The proof of Grötzsch’s theorem presented in Section 2 can be treated as a
scheme of an algorithm. As the proof is inductive, the most natural approach
suggests that the algorithm should be recursive. In this section we describe
how to implement efficiently the recursive algorithm arising from the proof.
In particular we need to explain how to recognize successive cases and how to
perform relevant reductions efficiently. We start from describing data structures
used in our algorithm. Then we discuss how to use recursion efficiently and how
to implement non-trivial operations of the algorithm. Throughout the paper G

refers to the graph given in the input of our recursive algorithm and n denotes
the number of its vertices.

8

3.1 Data Structures

3.1.1 Input Graph, Adjacency Lists

W.l.o.g. we can assume that the input graph is connected, for otherwise the
algorithm is executed separately in each connected component. Moreover, the
input graph is given in the form of adjacency lists. We also assume that there
is given a planar embedding of the graph, i.e. neighbors of each vertex appear
in the relevant adjacency list in the clockwise order given by the embedding.

3.1.2 Faces and Face Queues

Observe that using a planar embedding stored in adjacency lists we can easily
compute the faces of the input graph. As the graph is connected each face
corresponds to a certain facial walk. For every edge uv there are at most two
faces incident to uv. A face is called the right face incident to (u, v) when v

succeeds u in the sequence of successive vertices of the facial walk corresponding
to the face given in the clockwise order. Otherwise the face is called the left face
incident to (u, v). Each face f is stored as the corresponding facial walk, i.e. a
list of pointers to adjacency lists elements corresponding to the successive edges
of the walk. For each such element e corresponding to neighbor v of vertex u,
face f is the right face incident to (u, v). Additionally, e stores a pointer to f .
Each face stores also its length, i.e. the length of the corresponding facial walk.

We will also use three queues Q4, Q5, Q≥6 storing faces of length 4, 5, and
≥ 6 respectively, satisfying conditions described in cases 5, 6, 4 of the proof of
Theorem 2.2, respectively.

3.1.3 Low Degree Vertices Queue

In order to recognize Case 1 fast we maintain a queue storing the vertices of
degree at most 2.

3.1.4 Short Path Data Structure (SPDS)

In order to search efficiently for 2-paths joining a given pair of vertices we
maintain the Short Path Data Structure described in Section 4.

3.2 Recursion

Note that in the recursive algorithm induced by the proof given is Section 2 we
need to split G into two parts. Then each of the parts is processed separately
by a recursive call. By splitting the graph we mean splitting the adjacency
lists and all the other data structures described in the previous section. As
the worst-case depth of the recursion is Θ(n) the näıve approach would involve
Θ(n2) total time spent on splitting the graph. Instead, before splitting the
information on G our algorithm finds the smaller of the two parts. It can be
easily done using two DFS calls run in parallel in each of the parts, i.e. each
time we find a new vertex in one part, we suspend the search in this part and

9

continue searching in the another. Such an approach finds the smaller part A

in linear time with respect to the size of A. The other part will be denoted by
B. Then we can easily split adjacency lists, face queues and low degree vertices
queue. The vertices of the separating cycle (or path) are copied and the copies
are added to A. Note that there are at most 6 such vertices. Next, we delete
all the vertices of V (A) \ V (B) from the SPDS. We will refer to this operation
as Cut. As a result of Cut we obtain an SPDS for B. A Short Path Data
Structure for A is computed from scratch. In Section 4 we show that deletion
of an edge from the SPDS takes O(1) time and the new SPDS can be built in
O(|A|) time. Thus the splitting is performed in O(|V (A)|) worst-case time.

Proposition 3.1. The total time spent by the algorithm on splitting data struc-
tures before recursive calls is O(n log n).

Proof. We can assume that each time we split the graph into two parts – the
possible split into three ones described in Case 2 is treated as two successive
splits. Let us call the vertices of the separating cycle (or path) outer vertices
and the remaining ones from the smaller part A are called inner vertices. The
total time spent on splitting data structures is linear with the total number
of inner and outer vertices. As there are O(n) splits, and each split involves
at most 6 outer vertices the total number of outer vertices to be considered is
O(n). Moreover, as during each split of a k-vertex graph there are at most ⌊k

2 ⌋
inner vertices each vertex of the input graph becomes an inner vertex at most
log n times. Hence the total number of inner vertices is O(n log n).

3.3 Non-trivial Operations

3.3.1 Identifying Vertices

In this section we describe how our algorithm updates the data structures de-
scribed in Section 3.1 during the operation of identifying a pair of vertices
u, v. Identifying two vertices can be performed using deletions and insertions.
More precisely, the operation Identify(u,v) is executed using the following
algorithm. First it compares degrees of u and v in graph G. Assume that
degG(u) ≤ degG(v). Then for each neighbor x of u we delete edge ux from G

and add a new edge vx, unless it is already present in the graph.

Lemma 3.2. The total number of pairs of delete/insert operations performed
by Identify algorithm is bounded by O(n log n).

Proof. For now, assume that there are no other edge deletions performed by
our algorithm, except for those involved with identifying vertices. The oper-
ation of deleting edge ux and adding vx during Identify(u,v) will be called
moving edge ux. We see that each edge of the input graph can be moved at
most ⌈log n⌉ times, for otherwise there would appear a vertex of degree > n.
Subsequently, there are O(n log n) pairs of delete/insert operations performed
during Identify operation.

10

It is clear that when we consider also edge deletions, any identify operation
moves at most that many edges as when the deletions were ignored (although
then a single edge can be moved even Ω(n) times). Hence, even with dele-
tions allowed, the total number of delete/insert operations performed during
Identify operation is O(n log n).

As we always identify a pair of vertices in the same facial walk it is straight-
forward to update adjacency lists. Lemma 3.2 shows that we need O(n log n)
time in total for these updates including updating the information about the
faces incident to x and y. Each of affected faces is then placed in appropriate
face queue (if one has to be changed). In Section 4 we show how to update the
Short Path Data Structure efficiently after Identify. To sum up, identifying
vertices takes O(n log n) time including updating data structures.

3.3.2 Finding Short Paths

In our algorithm we need to find paths of length 1, 2 or 3 between given pairs of
vertices. Observe that there are O(n) such queries during an execution of the
whole algorithm. As we show in Section 4 paths of length 1 (edges) or 2 can be
found in O(1) time using the Short Path Data Structure. It remains to focus
on paths of length 3.

Let us describe an algorithm Path3 that will be used to find a 3-path be-
tween a pair of vertices u, v, if there is any. Finding paths of length 3 is used
in (recognizing) the cases 4b, 5a and 6h. (Note that recognizing case 6g can be
done by checking at most m ≤ 5 paths of length 2.) We can assume that we
are given a path p of length 2 (cases 4b and 5a) or of length 3 (Case 6h) joining
u and v. W.l.o.g. we assume that deg(u) ≤ deg(v). Let A(u), A(v) denote
the adjacency lists of u and v, respectively. We start from assigning variables
x1 and x2 to the element of A(u) corresponding to the edge of p incident with
u. Similarly, we assign x3 and x4 to the element of A(v) corresponding to the
edge of p incident with v. Then we start a loop. We assign x1 to the preceding
element and x2 to the succeeding element in A(u). Similarly, we assign x3 to
the preceding element and x4 to the succeeding element in A(v) (see Fig. 6).

x1

u

v

p

?

x1

x2

u

v

p

?

x1

x2

x3

u

v

p

?

x1

x2

x3

x4

u

v

p
?

. . .

x2

x1

x3

x4

u

v

p

Fig. 6: Order of queries in algorithm Path3.

11

Then we use the Short Path Data Structure to search for paths of length
2 between x1 and v, x2 and v, x3 and u, x4 and u. If a path is found, the
algorithm stops, otherwise we repeat the loop. If no 3-path exists at all, the
loop stops when all the neighbors of u are checked.

Lemma 3.3. The total time spent on performing Path3 algorithm is O(n log n).

Proof. We can divide these operations into two groups. Operation Path3(u,v,p)
is called successful if there exists a 3-path joining u and v, distinct from p when
|p|=3, and failed in the other case. Recall that when there is no such 3-path,
vertices u and v are identified (when the condition of Case 4b does not hold,
Case 4c applies and the relevant vertices are identified; similar situation ap-
pears in Case 5a and Case 6h). As the time complexity of a single execution of
Path3 algorithm is O(deg u) and all the edges incident with u are deleted during
Identify(u,v) operation, the total time spent on performing failed Path3 op-
erations is linear in the number of edge deletions caused by identifying vertices.
By Lemma 3.2 there are O(n log n) such edge deletions.

Now it remains to estimate the time used by successful operations. Let us
consider one of them. Let C′ be the separating cycle compound of the path p

and the 3-path that was found. Let H be the graph C′ ∪ int(C′). Recall that
one of vertices u, v is not colored, say v. Then the number of queries sent to the
SPDS is at most 4 · degH(v). Observe that v will be colored in graph H , just
before the recursive call for graph H . Hence the total number of queries asked
during executions of successful Path3 operations is at most 8 times larger than
the total number of edges appearing in G (to each edge we assign 8 queries, 4
queries to each of the ends). The number of such edges, including these added
during Identify operation, is bounded by O(n log n). Thus the time used by
the successful operations is O(n log n).

3.3.3 Removing a Vertex of Degree at Most 3

In cases 1 and 6i we remove vertices of degrees 1, 2 or 3. There are at most
O(n) such operations in total. As the degrees are bounded the total time spent
on updating the Short Path Data Structure and adjacency lists is O(n). We
also need to update information about incident faces. We may need to join
two or three of them. It is easy to update the facial walk of the resulting face
in O(1) time by joining the walks of the faces incident to the deleted vertex.
The problem is that edges contained in the walk corresponding to the new face
store pointers to two different faces. To deal with it we use the well-known Find
and Union algorithm (see e.g. [5]) for finding the right face incident to a given
edge and for joining faces. The amortized time of the search is O(α(n)), where
α(n) is the inverse of the Ackerman’s function. As the total number of all these
searches is O(n) it does not increase the overall time complexity of our coloring
algorithm.

Before deleting an edge we additionally need to check whether it is a bridge.
The check can be easily done by verifying whether the edge has the right face

12

equal to its left face. If so, after deleting the edge the face is split into two faces
in O(1) time and we process each of the connected components recursively.

3.3.4 Searching for Faces

To search for the faces described in the cases 5, 6, 4 of the proof from Section 2
we use queues Q4, Q5, Q≥6, respectively. The queues are initialized in O(n) time
and the searches and updates are performed in O(1) time.

3.3.5 Additional Remarks

To recognize cases 2, 3, 4a, 6c–6f efficiently it suffices to pass down the outer
cycle in the recursion, when the cycle is colored. Then it takes only O(1) time
to recognize each case (in some cases we use Short Path Data Structure) since
there are at most 6 colored vertices.

4 Short Path Data Structure

In this section we describe the Short Path Data Structure (SPDS) which can
be built in linear time and enables finding shortest paths of length at most 2 in
planar graphs inO(1) time. Moreover, we show here how to update the structure
after deleting an edge, adding an edge and after identifying a pair of vertices.
Then we analyze the total time needed for updates of the SPDS during the
particular sequence of operations appearing in our 3-coloring algorithm. This
total time turns out to be bounded by O(n log n).

4.1 The Structure and Processing the Queries

The Short Path Data Structure consists of two elements, denoted as
−→
G1 and

−→
G2.

We will describe them after introducing some basic notions.
A directed graph is said to be k-oriented if its every vertex has the out-degree

at most k. If one can orient edges of an undirected graph H obtaining k-oriented
graph H ′ we say that H can be k-oriented. In particular, when k = O(1) we

will say that H ′ is O(1)-oriented and H can be O(1)-oriented.
−→
H will denote a

certain orientation of a graph H . The arboricity of a graph H is the minimal
number of forests needed to cover all the edges of H . Observe that a graph with
arboricity a can be a-oriented.

4.1.1 Graph ~G1 and Adjacency Queries

In this section G1 denotes a planar graph for which we build a SPDS (recall
from Section 3.2 that it is not always the input graph). It is widely known that
planar graphs have arboricity at most 3. Thus G1 can be O(1)-oriented. Let
−→
G1 denote such an orientation of G1. Then xy ∈ E(G1) iff (x, y) ∈ E(

−→
G1) or

(y, x) ∈ E(
−→
G1). Hence, providing that we can maintain bounded out-degrees in

13

−→
G1 during our coloring algorithm, we can process in O(1) time queries of the
form: “Are vertices x and y adjacent?”.

4.1.2 Graph ~G2

Let G2 be a graph with the same vertex set as G1. Moreover, edge vw is in G2

iff there exists vertex x ∈ V (
−→
G1) such that (x, v) ∈ E(

−→
G1) and (x, w) ∈ E(

−→
G1).

Vertex x is said to support edge vw. Since
−→
G1 has bounded out-degree every

vertex supports O(1) edges in G2. Hence G2 is of linear size. The following
lemma states even more:

Lemma 4.1. Let
−→
G1 be a directed planar graph with out-degree bounded by d.

Let G2 be an undirected graph with V (G2) = V (
−→
G1) and E(G2) = {vw : (x, v) ∈

E(
−→
G1) and (x, w) ∈ E(

−→
G1)}. Then G2 is a union of at most 4 ·

(

d

2

)

planar
graphs.

Proof. It is well known that every planar graph is 4-colorable. Hence let us take

an arbitrary 4-coloring of
−→
G1. Subsequently we can partition edges of G2 into

4 ·
(

d

2

)

graphs in such a way that if two edges belong to the same graph they are
supported by two different vertices of the same color. Then it is easy to show
that each of the 4 ·

(

d

2

)

graphs has a plane embedding: we consider an arbitrary

plane embedding E of
−→
G1, we draw the vertices of G2 in the same points as in

E , while the embedding of every edge in G2 is equal to the embedding of the

corresponding path in
−→
G1.

Corollary 4.2. If the out-degree in graph
−→
G1 is bounded by d then graph G2

has arboricity bounded by 12 ·
(

d
2

)

.

Corollary 4.3. Graph G2 can be O(1)-oriented.

Corollary 4.2 follows immediately since the arboricity of a planar graph is

at most 3. By
−→
G2 we will denote an O(1)-orientation of G2. Let e be an edge

in
−→
G2 with ends v and w. Let x be a vertex that supports e and let e1 = (x, v)

and e2 = (x, w), e1, e2 ∈ E(
−→
G1). We say that edges e1 and e2 are parents of e

and e is a child of e1 and e2. We say that a pair {e1, e2} is a couple of parents
of e. Notice that each edge can have more than one couple of parents. We
additionally store the following information:

• for each e ∈ E(
−→
G2) a list P (e) of all pairs {e1, e2} such that e is a common

child of e1 and e2,

• for each e ∈ E(
−→
G1) a list C(e) of pairs (c, p) where c ∈ E(

−→
G2) is a common

child of e and a certain edge f and p is a pointer to {e, f} in the list P (c).

14

4.1.3 Queries About 2-paths

It is easy to see that when
−→
G1 and

−→
G2 are O(1)-oriented we can find a path uxv

of length 2 joining a pair of given distinct vertices u, v in O(1) time as follows:

(i) check whether there is an oriented path uxv or vxu in
−→
G1,

(ii) check whether there is a vertex x such that (u, x), (v, x) ∈ E(
−→
G1),

(iii) check whether there is an edge e = (u, v) or e = (v, u) in
−→
G2. If so, pick

any of its couples of parents {(x, u), (x, v)} stored in P (e).

4.2 Inserting and Deleting Edges

Algorithm 1 Maintaining D-orientation of graph H

1: procedure Reorient(w)
2: S ← {w}
3: while S 6= ∅ do

4: x← Pop(S)

5: for all (x, y) ∈ E(
−→
H) do

6: Change the orientation of edge (x, y) to (y, x).
7: if outdeg(y) = D + 1 then

8: Push(S, y)

4.2.1 Maintaining Bounded Out-degrees in ~G1 and ~G2

As graph G1 is dynamically changing we will need to add and remove edges

from
−→
G1 and

−→
G2. Assume that H is an arbitrary graph. Assume that we want

to maintain a D-orientation of H , denoted by
−→
H . While removing is easy, after

adding an edge there may appear a vertex of outdegree larger than D. Then we
need to reorient some edges to leave the graph D-oriented. We use the approach

of Brodal and Fagerberg [3]. As long as graph
−→
H contains a vertex of outdegree

larger than D we pick such a vertex x and we change orientation of all the edges
leaving x. We will denote this routine as Reorient(w), where w is the initial
vertex of degree larger than D (see Alg. 1). We will use algorithm Reorient

for maintaining bounded orientation in
−→
G1 and

−→
G2.

4.2.2 Updating the SPDS After a Deletion

Note that after deleting an edge from
−→
G1 we need to find out which edges in

−→
G2

should be deleted, if any. Assume that e is an edge of
−→
G1 and it is going to be

deleted. For each pair (c, p) ∈ C(e) we have to perform the following operations:
remove the pair {e, f} referenced by pointer p from list P (c), remove the pair
(c, p) from the list C(f). If list P (c) becomes empty we delete edge c from G2.

15

We will refer to this routine as DeleteShortcut(e). Since both e and f have
at most d = O(1) children, the following proposition holds:

Proposition 4.4. After deletion of an edge the SPDS can be updated in O(1)
time using DeleteShortcut routine.

4.2.3 Updating the SPDS After an Insertion

To update the SPDS after adding an edge uv to G1 we start from adding (u, v)

to
−→
G1. If then outdeg(u) = D + 1 we perform Reorient(u). Whenever any

edge e in
−→
G1 changes its orientation we act as if it was deleted and we perform

DeleteShortcut(e). Moreover, when any edge (u, v) appears in
−→
G1, both

after Insert(u,v) and after reorienting (v, u), we add an edge (v, w) to
−→
G2

for each edge (u, w) present in
−→
G1. When we add an edge to

−→
G2 we also use

Reorient if needed. We will refer to this routine as InsertShortcut(uv).

4.2.4 Building the SPDS

One could build the SPDS by adding successive edges of the input graph, each
time updating the structure like in the previous paragraph. However, this does
not give a linear-time algorithm. To get linear time we should first build graph
−→
G1 and then

−→
G2. More precisely, we start from creating two graphs with the

same vertices as G1 but no edges. Then for every edge uv of G1 we add (u, v)

to
−→
G1 and perform Reorient if needed. After adding all edges we build graph

−→
G2. To this end, for each pair of edges (x, u), (x, v) in graph

−→
G1 we add (u, v) to

−→
G2 and perform Reorient if needed. In what follows we will show that these
two steps take only O(|V (G1)|) time.

4.2.5 Updating the SPDS After Identifying Vertices

Now we describe a routine IdentifyShortcut(u,v) for updating the SPDS
after identifying u and v. W.l.o.g. we assume that degG1

(u) ≤ degG1
(v). We

start from identifying u and v in
−→
G1. More precisely, for each edge (x, u) we

find the relevant element of vertex x adjacency list and replace u by v2. We
also join adjacency lists of u and v and store the resulting list in v. Clearly it
takes O(degG1

u) time. As a result it may happen that outdeg−→
G1

(v) is too large.

Then we perform Reorient(v). Similarly we identify u and v in
−→
G2. Finally,

for each pair of edges (v, x), (v, y) ∈ E(
−→
G1) we add xy to G2 unless it is already

present in G2.

Lemma 4.5. Performing IdentifyShortcut(u,v) routine takes O(degG1
(u)+

r) time, where r is the number of reorientations performed by Reorient algo-
rithm.

2 One such operation takes only O(1) time, provided that with each vertex a we store
pointers to adjacency lists elements corresponding to edges entering a.

16

Proof. Let D1 denote the bound on outdegrees in
−→
G1, D1 = O(1). It it straight-

forward to see that the time is O(degG1
(u) + degG2

(u) + r). However, since

any edge uz ∈ G2 corresponds to a pair (x, u), (x, z) in
−→
G1 it follows that

degG2
(u) ≤ D1 · degG1

(u) = O(degG1
(u)).

4.3 The Time Complexity of Building and Updating the
SPDS

In this section we show that for the particular sequence of updates appear-
ing in our coloring algorithm the total time needed for updating the SPDS is
O(n log n). The following lemma is a slight generalization of Lemma 1 from the
paper [3]. Their proof remains valid even for the modified formulation presented
below.

Roughly, this lemma says that if we want to maintain a bounded outdegree
orientation of a bounded arboricity dynamic graph, and we know that it can
be done using r edge reorientations, then algorithm Reorient performs only
O(k + r) edge reorientations, where k is the number of insertions.

Lemma 4.6. Let σ be a sequence of edge insertions/deletions and vertices iden-
tify operations performed on some graph. Assume that after inserting edges and
identifying vertices we use algorithm Reorient to maintain a D-orientation

of this graph. Let H0 be the initial graph and let
−→
H0 be its initial orientation.

Assume that
−→
H0 is δ-oriented, for some δ such that D ≥ 2δ. Let Hi be the graph

after i-th operation in sequence σ and let k denote the number of insertions in
σ.

If there exists a sequence
−→
H1,
−→
H2, . . . ,

−−→
H|σ| of δ-orientations with at most r

edge reorientations in total then algorithm Reorient performs at most

(k + r)
D + 1

D + 1− 2δ

edge reorientations in total on the sequence σ.

Lemma 4.7. For any graph H with arboricity a one can build its (3a − 1)-

orientation
−→
H in O(|V (H)| + |E(H)|) time by adding successive edges to

−→
H ,

each time using algorithm Reorient to keep outdegrees bounded.

Proof. We will describe a sequence of a-orientations needed in Lemma 4.6.
−−→
H|σ|

is an arbitrary a-orientation of H|σ|. For each i = 1, . . . , |σ| − 1 we get
−→
Hi from

−−−→
Hi+1 by removing the relevant edge. Clearly there is not a single reorientation
in this sequence. It suffices to apply Lemma 4.6 to finish the proof. We get that
the total number of reorientations performed by Reorient during all insertions
is bounded by (|E(H)|+ 0) 3a−1+1

3a−1+1−2a
= 3|E(H)|.

Corollary 4.8. For any planar graph G1 the Short Path Data Structure can be
constructed in O(|V (G1)|) time.

17

Proof. As it was mentioned in Section 4.2.4 we first build
−→
G1, which takes

O(|E(G1)|) time by Lemma 4.7, which can be bounded by O(|V (G1)|), since

G1 is planar. Then we build
−→
G2, also using Lemma 4.7. Note that since

−→
G1 is

O(1)-oriented,
−→
G2 has O(|V (G1)|) edges, hence the corollary follows.

Lemma 4.9. Let σ be the sequence of insert, delete and identify operations
performed in graph G1 by the 3-coloring algorithm, not including the initial
inserts performed to build the SPDS. Let k be the number of insertions in σ.

Then the total number of reorientations in
−→
G1 used by Reorient algorithm is

O(k).

Proof. Let Gi be the graph G1 after the i-th operation. We will construct a

sequence of 6-orientations G =
−→
G1,
−→
G2, . . . ,

−→
Gk. It follows from the proof of

Theorem 2.2 that the last graph in this sequence has no uncolored vertices.
Hence it contains at most 6 vertices and it is trivial to find its 6-orientation.
For each i = 1, . . . , t− 1 we will describe

−→
Gi using

−−−→
Gi+1.

If σi+1 is an insertion of edge uv,
−→
Gi is obtained from

−−−→
Gi+1 by deleting uv.

If σi+1 = Identify(u,v) the edges incident with the identified vertex x in
−−−→
Gi+1 are partitioned into two groups in

−→
Gi without changing their orientation.

(Recall that u and v are not adjacent in
−→
Gi.) Clearly, outdeg−→

Gi
u ≤ outdeg−−−→

Gi+1
x

and outdeg−→
Gi

v ≤ outdeg−−−→
Gi+1

x.

Now assume that σi is an edge deletion. First let us consider the case when
it is not a deletion involved with a Cut operation. Recall from the proof of
Theorem 2.2 (cases 1 and 6i) that such a deletion is caused by removing a

vertex of degree at most 3. Denote this vertex by x. Hence to get
−→
Gi it suffices

to copy
−−−→
Gi+1 and add an edge leaving x.

Finally let us consider a sequence of edge deletions caused by a Cut opera-
tion. Let Gi and Gj denote the graph before and after Cut operation, respec-
tively. All edges of Gi that are present in Gj inherit their orientations. Now
we will describe how to orient the remaining ones. Let A be the graph induced
by the vertices removed from Gi. As A is planar there exists its 3-orientation
−→
A . The remaining edges, joining a vertex from A, say x, with a vertex from
Gj , say y, are oriented from x to y. Observe that a vertex in A can be adjacent
with at most 3 vertices in Gj , since there are no triangles and A is bounded by

a cycle in Gj of length at most 6 (see Fig 7). Clearly, the resulting graph
−→
Gi is

6-oriented. For each t = i, . . . , j−2 graph
−−−→
Gt+1 is obtained from

−→
Gt by deleting

a successive edge.

Thus we have described a sequence of 6-orientations
−→
G1, . . . ,

−−→
G|σ|. Observe

that there is not a single edge reorientation in this sequence. Let
−→
G0 be the

initial orientation of graph G1. By Lemma 4.7
−→
G0 is 8-oriented. Now we consider

the sequence
−→
G0, . . . ,

−−→
G|σ|. Orientations

−→
G0 and

−→
G1 can differ very much. In

order to avoid this situation we modify the orientations
−→
G1, . . . ,

−−→
G|σ|. For each

18

A

Fig. 7: Vertices of graph A are adjacent to at most 3 vertices of Gj .

i = 1, . . . , |σ| each edge from graph Gi which is also present in G0 is oriented

exactly like in
−→
G0. Thus we obtain a sequence of (6+8)-orientations

−→
G0, . . . ,

−−→
G|σ|.

Clearly this sequence contains no edge reorientations. Now we use Lemma 4.6,
putting δ = 14 and D = 3δ − 1. It implies that the total number of edge
reorientations performed by algorithm Reorient in our sequence of operations
is bounded by O(k).

Lemma 4.10 (see Lemma 2 in [3]). Let H = (V, E) be a graph with arboricity

at most a and let
−→
H be an orientation of H. If u ∈ V (

−→
H) has out-degree at

least 2a then there exists a vertex v with out-degree smaller than 2a such that

there is a directed path from u to v of length ⌈log2 |V |⌉ in
−→
H .

Lemma 4.11. Let H be an arbitrary n-vertex graph of arboricity a and let
−→
H

be its initial δ-orientation, δ ≥ 2a. For arbitrary sequence of p edge insertions,
q edge deletions and r identify operations and such that the arboricity of the
graph after each operation does not exceed a algorithm Reorient maintains
(3δ − 1)-orientation, performing O((p + rδ) log n) edge reorientations.

Proof. For each i = 1, . . . , p + q + r let Hi denote the graph after the i-th oper-

ation and let H0 = H ,
−→
H0 =

−→
H . We will describe a sequence of δ-orientations

needed in Lemma 4.6.
For each i = 1, . . . , p + q + r we get

−→
Hi from

−−−→
Hi−1 as follows. If the i-th

operation is delete we simply remove the relevant edge from
−−−→
Hi−1. If the i-th

operation is an insertion of an edge uv, we add edge (u, v) to
−−−→
Hi−1. Then if the

outdegree of u is larger than δ we pick the path described in Lemma 4.10 and
reverse all edges in this path. Clearly the resulting graph is δ-oriented and we

choose it as
−→
Hi. Finally, if the i-th operation is identifying vertices u and v we

start from identifying u and v in graph
−−−→
Hi−1. Let x be the new vertex. In the

resulting graph outdeg(x) ≤ 2δ. Then if outdeg(x) > δ we apply Lemma 4.10
outdeg(x) − δ times each time reversing the edges of the relevant path. The

resulting graph is δ-oriented and we choose it as
−→
Hi. The description of the

sequence of orientations is finished now. The total number of reorientations in
this sequence is bounded by (p + rδ)⌈log n⌉. It suffices to apply Lemma 4.6 to
finish the proof.

19

Corollary 4.12. The total number of reorientations in
−→
G2, performed by algo-

rithm Reorient during a sequence of operations containing t edge insertions
and identify operations, performed on an n-vertex graph G1, is O(t log n).

Proof. Graph G2 is n-vertex graph of bounded arboricity. Hence
−→
G2 is initially

O(1)-oriented. Lemma 4.9 implies that there areO(t) insertions in G2 caused by

insertions and identify operations in
−→
G1. Apart from that there can be at most

t identifyings in G2. Then it follows from Lemma 4.11 that the total number of

reorientations in
−→
G2 is bounded by O(t log n).

The following theorem follows immediately from lemmas 4.5, 3.2, 4.9 and
3.2.

Theorem 4.13. Let n be the number of vertices of the graph on the input of the
coloring algorithm. The total time spent by our 3-coloring algorithm in updating
the Short Path Data Structures is O(n log n).

5 Conclusions and Further Research

In this paper we showed a new algorithm for 3-coloring triangle-free planar
graphs. Our algorithm is almost linear, i.e. its time complexity is O(n log n).
It raises a natural question about a linear-time algorithm for this problem. We
suppose that this situation is similar to 4-coloring planar graphs. It is known
how to 4-color planar graphs in O(n2) time [12] and it seems that to get a
faster algorithm we need a significantly new proof of the four color theorem.
Analogously, we suppose that we need a really new proof of Grötzsch’s theorem
to design a linear-time algorithm for 3-coloring triangle-free planar graphs. Re-
cently, Carsten Thomassen published a new proof of the theorem saying that
each planar graph with no triangles and 4-cycles is 3-colorable [14]. It seems
that basing on this proof one can design a complicated but linear-time algorithm
for coloring such graphs. Nevertheless analogous proof for triangle-free planar
graphs is not yet known [15].

Acknowledgments I would like to thank Krzysztof Diks and anonymous
referees for reading this paper carefully and helpful comments. Thanks go also
to Maciej Kurowski for many interesting discussions in Århus, not only these
on Grötzsch’s theorem.

References

[1] O. V. Borodin, A. N. Glebov, A. Raspaud, and M. R. Salavatipour. Planar
graphs without cycles of length from 4 to 7 are 3-colorable. J. Comb.
Theory, Ser. B, 93(2):303–311, 2005.

[2] O. V. Borodin and A. Raspaud. A sufficient condition for planar graphs to
be 3-colorable. Journal of Combinatorial Theory, Series B, 88:17–27, 2003.

20

[3] G. S. Brodal and R. Fagerberg. Dynamic representations of sparse graphs.
In Proc. 6th Int. Workshop on Algorithms and Data Structures, volume
1663 of LNCS, pages 342–351. 1999.

[4] N. Chiba, T. Nishizeki, and N. Saito. A linear algorithm for five-coloring
a planar graph. J. Algorithms, 2:317–327, 1981.

[5] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT, 2001.

[6] Z. Dvorak, D. Král, and R. Thomas. Coloring triangle-free graphs on
surfaces. In Algorithms and Computation, 18th International Symposium,
ISAAC 2007, Sendai, Japan, December 17-19, 2007, Proceedings, volume
4835 of LNCS, pages 2–4, 2007.

[7] M. R. Garey and D. S. Johnson. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237–267, February 1976.

[8] J. Gimbel and C. Thomassen. Coloring graphs with fixed genus and girth.
Transactions of the AMS, 349(11):4555–4564, November 1997.

[9] H. Grötzsch. Ein dreifarbensatz fur dreikreisfreie netze auf der kuzel. Tech-
nical report, Wiss. Z. Martin Luther Univ. Halle Wittenberg, Math.-Nat.
Reihe 8, 1959.

[10] L. Kowalik. Fast 3-coloring triangle-free planar graphs. In S. Albers and
T. Radzik, editors, Proc. 12th Annual European Symposium on Algorithms
(ESA 2004), volume 3221 of Lecture Notes in Computer Science, pages
436–447. Springer-Verlag, 2004.

[11] L. Kowalik and M. Kurowski. Oracles for bounded-length shortest paths
in planar graphs. ACM Trans. Algorithms, 2(3):335–363, 2006.

[12] N. Robertson, D. P. Sanders, P. Seymour, and R. Thomas. Efficiently four-
coloring planar graphs. In Proc. 28th Symposium on Theory of Computing,
pages 571–575. ACM, 1996.

[13] C. Thomassen. Grötzsch’s 3-color theorem and its counterparts for the
torus and the projective plane. Journal of Combinatorial Theory, Series
B, 62:268–279, 1994.

[14] C. Thomassen. A short list color proof of Grötzsch’s theorem. Journal of
Combinatorial Theory, Series B, 88:189–192, 2003.

[15] C. Thomassen. Private communication, 2004.

[16] D. West. Introduction to Graph Theory. Prentice Hall, 1996.

21

