
Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 1

Algorytmy tekstowe na przykładzie KMP

Postawowe pojęcia
Niech

�
będzie dowolnym skończonym niepustym zbiorem symboli. Zbiór

�
nazywamy alfa-

betem. Dowolny ciąg symboli ze zbioru
�

nazywamy słowem (nad alfabetem
�

).

Przykład. ������� jest słowem nad alfabetem
���	� ��
���
 .

Przez � oznaczamy słowo puste, przez
���

oznaczamy (nieskończony) zbiór wszystkich słów
nad alfabetem

�
. Przez � ��� będziemy oznaczać długość słowa � , np. � ��������� ���

, ����� ���
.

Konkatenacja słów � i � jest to słowo ��� powstałe po dopisaniu słowa � za słowem � . Słowo �
jest prefiksem słowa � , jeśli � � ��� dla pewnego słowa � . Analogicznie, słowo � jest sufiksem
słowa � , jeśli � � ��� dla pewnego słowa � .
Przykłady.

 "!$# jest prefiksem słowa !$#&%(')!+* ; %(')!+* jest jego sufiksem.

 � jest prefiksem i sufiksem każdego słowa.

 Każde słowo jest swoim własnym prefiksem i sufiksem.

Jeśli � jest prefiksem � , ale �-,� � to mówimy, że � jest właściwym prefiksem � . Analog-
iczne definiujemy właściwy sufiks.

Problem wyszukiwania wzorca

Dane: słowa . („wzorzec”) i ! („tekst”) nad pewnym alfabetem
�

, � ./��01� ! � .
Problem: znaleźć wszystkie wystąpienia wzorca . w tekście ! .
Przykład: wzorzec 2 * występuje w tekście 232 *�* 2 * 2 * na pozycjach 2, 5 i 7.

Przyjmiemy oznaczenia � ./� �54
i � ! � �56

. Alg. 1 przedstawia algorytm „naiwny” rozwiązu-
jący problem wyszukiwania wzorca. Algorytm dopasowuje wzorzec we wszystkich możliwych
miejscach.

Algorithm 1 „naiwny”
1: 798 :
2: while 7;0 6=<>4@? : do
3: AB8 �
4: while .DC A ? :)E � ! C�7 ? AFE do
5: AG8�A ? :
6: if A �H4 then
7: Write(7)
8: 798I7 ? :

Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 2

Uwaga! Do alfabetu
�

dodajemy dwa nowe, specjalne symbole, powiedzmy $ i @. Przed
uruchomieniem algorytmu 1 $ dopisujemy na końcu ! , natomiast @ na końcu . . Pełnią one rolę
„strażników” w wewnętrznej pętli while.

Złożonośc czasowa: oczywiście JLKMK 6N<>41? :&O 4 O � JLK 6P4 O .

Poprawianie alg. „naiwnego”
Załóżmy, że dla A ? : dostaliśmy niezgodność. Wiemy, że .DCQ:FRSR AFE pasuje do ! C�7TRURV7 ? A < :)E .
Czy warto sprawdzać od nowa, czy wzorzec występuje na następnej pozycji (7 ? :)? A może
możemy „przeskoczyć” kilka symboli? Zobaczmy co się dzieje, gdy wzorzec występuje na
jednej z pozycji 7 ? :F
)RWRWRT7 ? A < : (Rys. 1).

p

t[i+j−1]=p[k]

t

p

p[1..j]

p[j]

p[1]=t[i+j−k]
t[i]

Rysunek 1: Wzorzec . występuje na jednej z pozycji 7 ? :F
)RWRWRT7 ? A < : .

Widzimy, że w takiej sytuacji prefiks .DCX:YRSR AFE jest równocześnie jego (właściwym) sufiksem!
tzn. .DCQ:FRUR % E � .DC A < % ? :FRUR AFE . Jeśli to jest pierwsze miejsce, w którym występuje taka sytuacja,
możemy bezpiecznie przesunąć 7 do 7 ? A < % . Wystarczy znać % . Innymi słowy, dla A�Z �
chcemy więc znać liczbę:

[C A\E � długość największego właściwego sufiksu .DCQ:FRSR AFE ,
który jest równocześnie prefiksem .

albo inaczej: [C A\E �^]`_�a���� 0 %Lb A`c).dCX:FRUR % E jest sufiksem .dCX:FRUR A\Ee

Wtedy możemy bezpiecznie dopasowywać wzorzec w miejscu 7 ? A <	[C AFE . Zauważmy, że
ponieważ

[C AFE b A więc 7 ? A <f[C AFEgZh7 . Dla A �5�
przyjmijmy

[C A\E �i�
. Wtedy nie ma

sensu dopasowywać wzorca w miejscu 7 ? A <j[C AFE � 7 , bo miejsce dopasowania nie zmieni się.
W takiej sytuacji przesuwamy się tylko o jedną pozycję (7g8 7 ? :), ale niewiele tracimy, bo
skoro A �H� to dla poprzedniej wartości 7 wykonano tylko jedno porównanie. A więc ostatecznie
przesuwamy 7 na pozycję 7 ?k]`_�a K+:F
lA <k[C AFEmO . Zauważmy też, że nie musimy już sprawdzać
pierwszych

[C AFE liter wzorca!

Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 3

Przykład. Tablica
[

dla wzorca . � ������no������no��� .
7 1 2 3 4 5 6 7 8 9 10
.DC�7pE a b a c a b a c a a[C�7pE 0 0 1 0 1 2 3 4 5 1

Załóżmy, że tablicę
[

mamy już obliczoną. Wykorzystując powyższe rozważania możemy
poprawić algorytm „naiwny” tak, żeby spożytkować informację zawartą w tablicy

[
. Poniższy

algorytm wymyślili panowie Knuth i Pratt oraz (niezależnie) Moris w 1977 roku.

Algorithm 2 Algorytm KMP (Knutha-Morisa-Pratta)
1: 798 :
2: AB8 �
3: while 7;0 6=<>4@? : do
4: {.DCQ:FRSR [C AFESE � .DC A <q[C AFE ? :FRUR A\E � ! Cr7MRSRs7 ?t[C AFE < :)E }
5: AB8 [C AFE
6: while .DC A ? :)E � ! C�7 ? AFE do
7: AG8�A ? :
8: if A �H4 then
9: Write(7)

10: 798I7 ?"]u_�a K$:F
vA <q[C AFEmO

Twierdzenie. Niech . i ! będą dowolnymi słowami, � ./�P0 ! , � ./� �w4
, � ! � �16

. Algorytm KMP,
który na wejściu dostaje słowa . i ! oraz tablicę

[
działa w czasie JLK 6 O .

Uzasadnienie. Przyjmujemy, że porównanie dowolnych dwóch liter wykonuje się w czasie stałym.
Wtedy porównanie dwóch liter możemy traktować jako operację dominującą.

Porównania liter wzorca z literami tekstu możemy podzielić na dwie kategorie: porówania
pozytywne (równość zachodzi) i negatywne (litery są różne). Ponieważ na końcu każego obrotu
zewnętrznej pętli while wartość zmiennej 7 rośnie, a w każdym obrocie tej pętli tylko raz wys-
tępuje porównanie negatywne, podczas wykonania całego algorytmu całkowita liczba porównań
negatywnych nie przekracza

6N<q41? : .
Równie łatwo policzyć pozytywne porównania. Przyjrzyjmy się jednemu obrotowi zewnętrznej

pętli while. Załóżmy, że po wykonaniu wewnętrznej pętli while AxZ � . Niech 7ly oznacza nową
wartość 7 (po wykonaniu 7z8I7 ?{]`_�a K+:F
lA <|[C AFE}O), natomiast A�y nową wartość A (po wykonaniu
A~8 [C AFE na początku kolejnego obrotu pętli). Wtedy 7vy � 7 ? A <f[C AFE oraz A\y ��[C A\E czyli
7 y ? A y � 7 ? A . Jeśli natomiast po wykonaniu wewnętrznej pętli while A ���

, to 7 y � 7 ? : ,
AFy ��[C AFE ���

czyli 7py ? AFy � 7 ? :�Z^7 ? A . Widzimy, że podczas działania algorytmu wartość
wyrażenia 7 ? A nie maleje. Tymczasem po każdym pozytywnym porównaniu wartość 7 ? A
rośnie. A więc żadna litera tekstu nie będzie więcej niż raz pozytywnie porównana. Stąd wszys-
tkich pozytywnych porównań jest nie więcej niż liter tekstu czyli

6
. To kończy uzasadnienie.

Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 4

Jak obliczyć tablicę � ?
Przypomnijmy:

[C A\E � długość największego właściwego sufiksu .DCQ:FRSR AFE ,
który jest równocześnie prefiksem .

A gdybyśmy chcieli znać długości wszystkich właściwych sufiksów .dCX:FRUR A\E , które są prefik-
sami . ? Niech . � ��������������� i A �-�

. Najdłuższym takim sufiksem jest �F� � ����������� . Jego
długość to

[C � E ���
. Zastanówmy się nad następnym pod względem długości takim sufiksem

(oznaczmy go przez ���). Ponieważ ��� i �)� są sufiksami . i �W� jest krótszy niż ��� , a więc �W� jest
właściwym sufiksem �Y� . Co więcej, ponieważ ��� był następny pod względem długości, jest on na-
jdłuższym właściwym sufiksem �Y� , który jest równocześnie prefiksem . . A więc � ���Y� �H[C [C � ESE .
Analogicznie postępujemy przy obliczaniu długości kolejnych sufiksów (patrz Rys 2).

.DCX:YRSR � E ���\� ����������� [C � E �H�
.DCX:YRSR � E ���F� ������� [C � E �^�
.DCX:YRSR � E ���F� ��� [C � E ���
.DCX:YRSR � E ���F� [C � E �H�
.DC � RSR � E � [C � E �H�

Rysunek 2: Długości wszystkich właściwych sufiksów .DCX:YRSR � E , które są równocześnie prefiksami
. można znaleźć w tablicy

[
.

Wniosek 1. Z tablicy
[

można odczytać długości wszystkich właściwych sufiksów .DCQ:FRUR AFE , które
są równocześnie prefiksami . : są to liczby

[C AFE�
 [C [C A\EUEp
 [�� C AFE�
)RWRWR)R

Jak obliczyć tablicę
[

? Skorzystamy z programowania dynamicznego.

k

j

p

p

Rysunek 3: .DCQ:FRSR % E jest właściwym sufiksem i równocześnie prefiksem .DCQ:FRSR AFE .

Jeśli .dCX:FRUR % E jest właściwym sufiksem i równocześnie prefiksem .DCQ:FRUR AFE (patrz Rys. 3) to:

 .DCQ:FRUR % < :)E jest właściwym sufiksem i prefiksem .dCX:FRUR A < :)E ,
 .DC % E � .DC AFE .

Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 5

A więc żeby obliczyć
[C AFE trzeba znaleźć najdłuższy sufiks .dCX:FRUR A < :oE , będący róznocześnie

prefiksem .DCQ:FRUR A < :)E , który da się przedłużyć, czyli najmniejsze ' takie że:

.DC [�� C A < :oE ? :)E � .DC A\EpR
Jeśli nie ma takiego ' (tzn. żadnego, nawet pustego prefiksu nie da się przedłużyć), to

[C A\E �H� R

Algorithm 3 Obliczanie tablicy
[

1:
[C � E�8 �

2:
[CX:)E�8 �

3: for AB8 �
to
4

do
4: {obliczamy

[C AFE }
5: 2N8 [C A < :)E
6: while K�2{Z � O and KX.DC 2 ? :)E�,� .DC AFEmO do
7: 2N8 [C�23E {próbujemy któtszy sufiks}
8: if .DC 2 ? :)E � .DC AFE then
9:

[C AFE�8�2 ? :
10: else
11:

[C AFE�8 �

Twierdzenie. Złożoność czasowa algorytmu 3 dla słowa . długości
4

wynosi ��K 4 O .

Algorithm 4 Obliczanie tablicy
[

– wersja II
1:
[C � E�8 �

2:
[CX:)E�8 �

3: 2N8 �
4: for AB8 �

to
4

do
5: {obliczamy

[C AFE }
6: while K�2{Z � O and KX.DC 2 ? :)E�,� .DC AFEmO do
7: 2N8 [C�23E {próbujemy któtszy sufiks}
8: if .DC 2 ? :)E � .DC AFE then
9: 2N8I2 ? :

10:
[C AFE�8�2

11: else
12:

[C AFE�8 �

Uzasadnienie. Spójrzmy na algorytm 4. Powstał on na podstawie algorytmu 4 po dodaniu linii
3, 9 i usunięciu linii 5. Zauważmy, że działa on dokładnie tak samo jak pierwotny algorytm,

Łukasz Kowalik, ASD 2003: Algorytmy tekstowe na przykładzie KMP 6

tylko wartości zmiennej 2 zmieniają się w innych momentach. Łatwiej nam będzie analizować
algorytm 4. Znowu przyjmujemy, że porównanie dowolnych dwóch liter wykonuje się w czasie
stałym. Żeby oszacować złożoność algorytmu wystarczy obliczyć liczbę wykonań instrukcji
2=8 [C 23E .

Zauważmy, że wartości zmiennej 2 zmieniają się tylko w liniach 7 i 9. W linii 7 zawsze
maleją, natomiast w linii 9 zawsze rosną. Podczas całego algorytmu 2 rośnie o

4w< : jednostek,
a więc maleć może co najwyżej

4�< : razy (maleje co najmniej o 1). To kończy uzasadnienie.

Wniosek 2. Złożoność czasowa algorytmu KMP jest rzędu ��K 6�?H4 O , złożoność pamięciowa
algorytmu KMP jest rzędu ��K 4 O .

