Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 1

Algorytmy tekstowe na przyktadzie KMP

Postawowe pojecia

Niech ¥ bedzie dowolnym skoficzonym niepustym zbiorem symboli. Zbiér 3. nazywamy alfa-
betem. Dowolny ciag symboli ze zbioru Y nazywamy stowem (nad alfabetem).

Przyklad. abba jest stowem nad alfabetem X = {a, b}.

Przez e oznaczamy stowo puste, przez >.* oznaczamy (nieskoiczony) zbiér wszystkich stow
nad alfabetem Y. Przez |w| bedziemy oznaczaé diugos¢ stowa w, np. |abba| = 4, |e|] = 0.
Konkatenacja stow u i v jest to stowo uv powstate po dopisaniu stowa v za stowem u. Stowo w
jest prefiksem stowa u, jesli v = wv dla pewnego stowa v. Analogicznie, stowo w jest sufiksem
stowa u, jesli u = vw dla pewnego stowa v.

Przyklady.
e te jest prefiksem stowa teksty; ksty jest jego sufiksem.
e ¢ jest prefiksem i sufiksem kazdego stowa.
e Kazde stowo jest swoim wiasnym prefiksem i sufiksem.
Jesli w jest prefiksem u, ale w # u to méwimy, ze w jest wiasciwym prefiksem u. Analog-

iczne definiujemy wiasciwy sufiks.

Problem wyszukiwania wzorca

Dane: stowa p (,,wzorzec”) it (,tekst”) nad pewnym alfabetem X, |p| < [¢].
Problem: znaleZ¢ wszystkie wystapienia wzorca p w tekscie ¢.
Przyklad: wzorzec ry wystgpuje w tekscie rzyyzryry na pozycjach 2,51 7.

Przyjmiemy oznaczenia |[p| = m i |[t| = n. Alg. 1 przedstawia algorytm ,,naiwny” rozwiazu-
jacy problem wyszukiwania wzorca. Algorytm dopasowuje wzorzec we wszystkich mozliwych
miejscach.

Algorithm 1 ,,naiwny”

I: 2+ 1

2: while: <n—m+1do

3: 740

4: while p[j + 1] = t[i + j] do
5: J+—J+1

6: if 7 = m then

7: Write(z)

8 1+ 1+1

Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 2

Uwaga! Do alfabetu ¥ dodajemy dwa nowe, specjalne symbole, powiedzmy $ i @. Przed
uruchomieniem algorytmu 1 $ dopisujemy na koncu ¢, natomiast @ na koricu p. Pelnia one role
»straznikow” w wewngetrznej petli while.

ZYozonosc czasowa: oczywiscie O((n — m + 1)m) = O(nm).

Poprawianie alg. ,,naiwnego”

Zalézmy, ze dla j + 1 dostaliSmy niezgodno$é. Wiemy, ze p[l..j] pasuje do t[i..i + j — 1].
Czy warto sprawdza¢ od nowa, czy wzorzec wystgpuje na nastgpnej pozycji (z + 1)? A moze
mozemy ,,przeskoczy¢” kilka symboli? Zobaczmy co si¢ dzieje, gdy wzorzec wystgpuje na
jednej z pozycjii+1,...74+ 7 — 1 (Rys. 1).

tli+j—1]=p[k]
plIT=ili+j-k] [
ti]

t __'\\ \TI I'I ‘

pll1.j] I

Rysunek 1: Wzorzec p wystgpuje na jednej z pozycjit + 1,...24+ 7 — 1.

Widzimy, ze w takiej sytuacji prefiks p[1..j] jest rtéwnoczesnie jego (wlasciwym) sufiksem!
tzn. p[l..k] = p[j — k + 1..5]. Jesli to jest pierwsze miejsce, w ktérym wystepuje taka sytuacja,
mozemy bezpiecznie przesunaé ¢ do 7 + j — k. Wystarczy znaé k. Innymi stowy, dla j > 0
chcemy wigc znac liczbe:

I1[j] = dlugos¢ najwigkszego wtasciwego sufiksu p[1..7],
ktory jest rownoczesnie prefiksem p

albo inaczej:
I1[j] = max{0 < k < j : p[1..k] jest sufiksem p[1..7]}

Wtedy mozemy bezpiecznie dopasowywaé wzorzec w miejscu ¢ + j — II[j]. Zauwazmy, ze
poniewaz II[j] < j wigc i + j — II[j] > 4. Dla j = 0 przyjmijmy II[j] = 0. Wtedy nie ma
sensu dopasowywaé wzorca w miejscu i + j — I1[j] = 4, bo miejsce dopasowania nie zmieni sig.
W takiej sytuacji przesuwamy si¢ tylko o jedna pozycje (z <— ¢ + 1), ale niewiele tracimy, bo
skoro j = 0 to dla poprzedniej wartosci ¢ wykonano tylko jedno poréwnanie. A wigc ostatecznie
przesuwamy ¢ na pozycje ¢ + max(1, j — II[j]). Zauwazmy tez, ze nie musimy juz sprawdzac
pierwszych II[j] liter wzorca!

Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 3

Przykltad. Tablica II dla wzorca p = abacabacaa.

1 1 23 45 6 7 8 9 10
plif a b a ¢ a b a c a a
M 0 01 01 2 3 45 1

Zatézmy, ze tablice I mamy juz obliczona. Wykorzystujac powyzsze rozwazania mozemy
poprawi¢ algorytm ,,naiwny” tak, zeby spozytkowac informacj¢ zawarta w tablicy II. Ponizszy
algorytm wymyslili panowie Knuth i Pratt oraz (niezaleznie) Moris w 1977 roku.

Algorithm 2 Algorytm KMP (Knutha-Morisa-Pratta)
1: 1+ 1
2: 5«0
3: while: <n—m+1do

4 Ap[l.0[j]] = plj — T[5] 4+ 1..5] = t[é.i + T[] — 1]}
50 7« I[j]

6: while p[j + 1] =t[i + j] do

7: JjJ+1

8: if 5 = m then

0: Write(z)

10: 4« i+ max(1, 75— II[j])

Twierdzenie. Niech p i t bedq dowolnymi stowami, |p| < t, |p| = m, |t| = n. Algorytm KMP,
ktory na wejsciu dostaje stowa p i t oraz tablice 11 dziata w czasie O(n).

Uzasadnienie. Przyjmujemy, ze poréwnanie dowolnych dwdch liter wykonuje si¢ w czasie statym.
Wtedy poréwnanie dwoch liter mozemy traktowac¢ jako operacje dominujaca.

Poréwnania liter wzorca z literami tekstu mozemy podzieli¢ na dwie kategorie: porowania
pozytywne (réwnoS¢ zachodzi) 1 negatywne (litery sa r6zne). Poniewaz na koncu kazego obrotu
zewngtrznej petli while warto$¢ zmiennej ¢ ro$nie, a w kazdym obrocie tej petli tylko raz wys-
tepuje poréwnanie negatywne, podczas wykonania catego algorytmu catkowita liczba poréwnan
negatywnych nie przekracza n — m + 1.

Réwnie fatwo policzy¢ pozytywne poréwnania. Przyjrzyjmy si¢ jednemu obrotowi zewngtrznej
petli while. Zat6zmy, ze po wykonaniu wewngtrznej petli while j > 0. Niech i’ oznacza nowa
wartos¢ ¢ (po wykonaniu i < i+ max(1, 7 —II[5])), natomiast j' nowa warto$¢ j (po wykonaniu
j < II[j] na poczatku kolejnego obrotu petli). Wtedy ¢/ = i + j — II[j] oraz j' = Il[j] czyli
i' + 7' = i+ j. Jesli natomiast po wykonaniu wewngtrznej petli while j = 0, to i’ = i + 1,
j'=M[j] =0czylii +j" =i+ 1 > i+ j. Widzimy, ze podczas dziatania algorytmu warto$é
wyrazenia ¢ + j nie maleje. Tymczasem po kazdym pozytywnym poréwnaniu wartos$¢ ¢ + j
roSnie. A wigc zadna litera tekstu nie bedzie wigcej niz raz pozytywnie poréwnana. Stad wszys-
tkich pozytywnych poréwnan jest nie wigcej niz liter tekstu czyli n. To kofczy uzasadnienie. [J

Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 4

Jak obliczy¢ tablice I1?
Przypomnijmy:

I1[j] = dlugos¢ najwigkszego wiasciwego sufiksu p[1..7],
ktory jest rownoczesnie prefiksem p

A gdybysSmy chcieli zna¢ diugosci wszystkich wtasciwych sufikséw p[1..7], ktére sa prefik-
sami p? Niech p = abababab i j = 8. Najdluzszym takim sufiksem jest r; = ababab. Jego
dtugosé to TI[8] = 6. Zastanéwmy si¢ nad nastgpnym pod wzgledem dtugosci takim sufiksem
(oznaczmy go przez ry). Poniewaz r; 1 ro sa sufiksami p i ro jest krétszy niz r1, a wigc o jest
wiasciwym sufiksem r;. Co wigcej, poniewaz ro byt nastgpny pod wzgledem dtugosci, jest on na-
jdtuzszym wtasciwym sufiksem ry, ktéry jest rtéwnoczesnie prefiksem p. A wigc |ry| = TI[I1[8]].
Analogicznie postgpujemy przy obliczaniu dtugosci kolejnych sufikséw (patrz Rys 2).

p[1..8] ablab ab ab I1[8] =6
p[1..6] ablab ab I1[6] = 4

p[1.4] ablab Ij4] = 2
p[1..2] ab| 2] =0
p[0..0] € 1[0} =0

Rysunek 2: Dtugosci wszystkich wtasciwych sufikséw p[1..8], ktére sa réwnoczesnie prefiksami
p mozna znalez¢ w tablicy II.

Wnhiosek 1. Z tablicy Il mozna odczytaé dlugosci wszystkich wiasciwych sufiksow p[1..7], ktére
sq rownoczesnie prefiksami p: sq to liczby

I[5], MI[5]], T3], ...

Jak obliczy¢ tablice I[1? Skorzystamy z programowania dynamicznego.

k, \

Rysunek 3: p[1..k] jest wlasciwym sufiksem i réwnoczesnie prefiksem p[1..j].

Jesli p[1..k] jest wtasciwym sufiksem i réwnocze$nie prefiksem p[1..j] (patrz Rys. 3) to:

e p[l..k — 1] jest wiasciwym sufiksem i prefiksem p[1..7 — 1],

e plk] = p[j].

Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 5

A wigc zeby obliczy¢ I1[j] trzeba znalez¢ najdtuzszy sufiks p[1..j — 1], bedacy réznoczes$nie
prefiksem p[1..j — 1], ktdry da sig przedtuzyé, czyli najmniejsze s takie ze:

plI[j — 1] + 1] = plj].
Jesli nie ma takiego s (tzn. zadnego, nawet pustego prefiksu nie da si¢ przedtuzy¢), to

m[j] = o.

Algorithm 3 Obliczanie tablicy 11

I: I[0] « 0

2: T[1] +- 0

3: for j < 2tom do

4. {obliczamy II[j]}

50 x <« I[j —1]

6: while (x > 0)and (p[z + 1] # p[j]) do
7: x < I[x] {prébujemy ktStszy sufiks}
8: ifplx + 1] = p[j] then

9: j] +z+1
10: else
11: II[j] < 0

Twierdzenie. Ztozonos¢ czasowa algorytmu 3 dla stowa p dtugosci m wynosi ©(m).

Algorithm 4 Obliczanie tablicy II — wersja 11

1: TI[0] - 0

2: I[1] +- 0

3: 2+ 0

4: for j <+ 2tomdo

5. {obliczamy II[j]}

6: while (x > 0)and (p[z + 1] # p[j]) do
7: x < Il[z] {prébujemy ktStszy sufiks}
8: if p[z + 1] = p[j] then

9: r+—z+1
10: I[j] =«
11: else
12: II[5] « 0

Uzasadnienie. Spbéjrzmy na algorytm 4. Powstal on na podstawie algorytmu 4 po dodaniu linii
3, 9 1 usunigciu linii 5. Zauwazmy, ze dziala on dokladnie tak samo jak pierwotny algorytm,

Fukasz Kowalik, ASD 2003: Algorytmy tekstowe na przyktadzie KMP 6

tylko wartoSci zmiennej x zmieniaja si¢ w innych momentach. Latwiej nam bedzie analizowad
algorytm 4. Znowu przyjmujemy, ze porownanie dowolnych dwéch liter wykonuje si¢ w czasie
stalym. Zeby oszacowaé zlozono$é algorytmu wystarczy obliczyé liczbe wykonari instrukcji
x <+ M[zx].

Zauwazmy, ze wartosSci zmiennej x zmieniaja si¢ tylko w liniach 71 9. W linii 7 zawsze
maleja, natomiast w linii 9 zawsze rosna. Podczas catego algorytmu x ros$nie o m — 1 jednostek,
a wigc male¢ moze co najwyzej m—1 razy (maleje co najmniej o 1). To koiczy uzasadnienie. [

Whiosek 2. Ziozonos¢ czasowa algorytmu KMP jest rzedu ©(n + m), ztoZonosé pamigciowa
algorytmu KMP jest rzedu ©(m).

