‘ Algorytmy tekstowe: pojecia I

. - skonczony niepusty zbior symboli zwany
alfabetem. Dowolny ciag symboli ze zbioru .

nazywamy stowem (nad alfabetem X.).

Przyklad. abba jest stowem nad alfabetem
Y. ={a,b}.

Przez e oznaczamy stowo puste.

Przez Y.* oznaczamy (nieskonczony) zbior wszystkich
stow nad alfabetem ..

Przez |w| bedziemy oznaczaé diugosc stowa w, np.
labba| = 4, |e| = 0.

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

Algorytmy tekstowe: pojecia cd.

Konkatenacja stow u i v jest to stowo uv powstate po
dopisaniu stowa v za stowem wu.

Stowo w jest prefiksem stowa u, jesli u = wo dla
pewnego stowa v.

Stowo w jest sufiksem stowa u, jeslh u = vw dla
pewnego stowa v.

Przykiady.

e te jest prefiksem stowa teksty; ksty jest jego
sufiksem.

® ¢ jest prefiksem 1 sufiksem kazdego stowa.

e Kazde stowo jest swoim wtasnym prefiksem 1
sufiksem.

Jesli w jest prefiksem u, ale w # u to méwimy, ze w

jest wltasciwym prefiksem wu.

Analogiczne definiuyjemy wiasciwy sufiks.

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

‘ Problem wyszukiwania wzorca I

Dane: stowa p (,,wzorzec”) 1t (,,tekst”) nad pewnym
alfabetem ..

p| =m, [t| =n, |p| < |t

Problem: znalez¢ wszystkie wystapienia wzorca p w
tekscie ¢.

Przyklad: wzorzec xy wystgpuje w tekscie
rxyyryxry na pozycjach 2, 51 7.

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

7 N
Algorytm ,,naiwny”’ I

Probujemy dopasowac wzorzec we wszystkich

miejscach:
1: 2+ 1
2: while?s <n—m+1do
3: 7+ 0
4: whilep[j + 1] = t[¢ + j] do
5 j<J+1
6: if j = m then
7 Write(2)
8: 1+ 1+1

Uwaga! Do alfabetu Y. dodajemy dwa nowe, specjalne
symbole, powiedzmy $ i @. Przed uruchomieniem
algorytmu $ dopisujemy na koncu ¢, natomiast @ na
koncu p. Petnig one rolg ,,straznikOw” w wewngtrznej
petli while.

ZYozonoSc czasowa: O((n —m + 1)m) = O(nm).

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

4 N

Zal6zmy, ze dla 5 + 1 dostaliSmy niezgodnosc.

Poprawianie alg. ,,naiwnego”

Wiemy, ze p[1..j] pasuje do t[i..i + 7 — 1]. Ile symboli
mozemy ,,przeskoczyC”’?
Co si¢ dzieje, gdy wzorzec wystepuje na jednej z
pozycjii+1,...1+ 75 — 17
t[i+j—1]=plk]
pl1]=t[i+j-k] p

tli]
\

pll.j] l |

» plj]

Prefiks p[1..7] jest rtwnoczesnie jego (wlasciwym)
sufiksem! tzn. p[l..k] = p[j — k + 1..7].

Jesli to jest pierwsze miejsce, w ktorym wystepuje
taka sytuacja, mozemy bezpiecznie przesunacC 2 do

\i—l— j — k. Wystarczy znaé k. /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

-

Dla 5 > 0 chcemy wigc znac liczbg:

~

Poprawianie alg. ,,naiwnego”’, cd.

[1[j] = dlugos¢ najwigkszego wiasciwego sufiksu
p[1..7], ktory jest rtéwnoczesnie prefiksem p, czyli

II[j] = max{0 < k < j : p[l..k] jest sufiksem p[1..5]}
Wtedy mozemy bezpiecznie dopasowywacC wzorzec w
miejscu ¢ + 5 — II[j].

Dla j = 0 przyjmijmy II[j] = 0. Ojej! Ale wtedy
i + 7 — II[j] = ¢ i stoimy w miejscu. A wigc
ostatecznie przesuwamy ¢ na pozycje

i + max(1, 7 — II[j]).

Zauwazmy tez, ze nie musimy juz sprawdzac
pierwszych I1[4] liter wzorca!

Przyklad. Tablica II dla wzorca p = abacabacaa.
7 1 2 3 4 5 6 7 8 9 10

b a ¢c a b a ¢ a
123451/

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

a

/
=
Rl
oS e
-
—
-

4 N
Algorytm KMP I

1: 1+ 1

2: 7+ 0

3: while: <n—m+1do

4 {p[l.I[j]] = plj —H[j] +1.4] =
tli..i + [j] — 1]}

5. j < II[j]

6: whileplj + 1] =t[i + j] do

7: 74+7+1

8 if 7 = m then

9 Write(2)

10: 4 < 7+ max(1,7 — I[j])

Powyzszy algorytm wymyslili panowie Knuth 1 Pratt
oraz (niezaleznie) Moris w 1977 roku.

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

4 N
‘ Wiasnosci tablicy 11 I

I1[j] = dtugos¢ najwigkszego wtasciwego sufiksu

p[l..5], ktory jest réwnoczesnie prefiksem p.

A gdybySmy chcieli zna¢ dtugosci wszystkich
wilasciwych sufikséw p|[1..j], ktdre sg prefiksami p?
Niech p = abababab.

p[1..8] ablab ab ab I1[8] =6
p[1..6] ablab ab I1[6] =4
p[l..4] ab|ab I1[4] =2
p[1..2] ab| II[2] =0
p[0..0 € II[0] =0

Whiosek. Z tablicy II mozna odczytac dtugosci
wszystkich wtasciwych sufikséw p[1..j], ktore sa
rOwnoczesnie prefiksami p: sg to liczby

II[j], T[], T[], - ..

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

/ Jak obliczy¢ tablice I1? I \

Skorzystamy z programowania dynamicznego.

p K,

P I 1J o

Jesli p[1..k] jest wiasciwym sufiksem i rownoczesnie
prefiksem p|1..5] to:

o p[l..k — 1] jest wiasciwym sufiksem i prefiksem
p]‘".] o]‘]’
o plk] = plj].

Czyli zeby obliczy¢ I1[j] trzeba znalez¢ najdtuzszy
sufiks p[1..7 — 1], bedacy r6znoczesnie prefiksem
p|l..7 — 1], ktéry da sig przedtuzyé, czyli najmniejsze
s takie ze:

plIlj — 1] + 1] = plj].

Jesli nie ma takiego s (tzn. zadnego, nawet pustego
prefiksu nie da si¢ przedluzy¢), to

_ II[5] = 0. -

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

Obliczanie tablicy 11 I

1: II[0] +- 0

2: I[1] «+ 0

3: for 5 < 2tomdo

4. {obliczamy II|j]}

x < I[j — 1]

while (z > 0) and (p[z + 1] # p[j]) do
x < II[x]| {probujemy kt6tszy sufiks}

if p[x + 1] = p[j] then
I[j] «x+1

10: else

11: II[5] < 0

% S W

ZYozonos¢ czasowa: O (m)

ZYozonos¢ czasowa KMP: O(n + m) Zlozonos¢
pamigciowa KMP: O(m)

o /

ASD 2003 Fukasz Kowalik, Instytut Informatyki UW

