
1

Algorytmy tekstowe: pojęcia

�
- skończony niepusty zbiór symboli zwany

alfabetem. Dowolny ciąg symboli ze zbioru
�

nazywamy słowem (nad alfabetem
�

).

Przykład. ������� jest słowem nad alfabetem� � � �	�
��� .

Przez
 oznaczamy słowo puste.

Przez
� �

oznaczamy (nieskończony) zbiór wszystkich
słów nad alfabetem

�
.

Przez ��� � będziemy oznaczać długość słowa � , np.
����������� � �

, ��
�� � �
.

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

2

Algorytmy tekstowe: pojęcia cd.

Konkatenacja słów � i � jest to słowo ��� powstałe po
dopisaniu słowa � za słowem � .

Słowo � jest prefiksem słowa � , jeśli � � � � dla
pewnego słowa � .

Słowo � jest sufiksem słowa � , jeśli � � ��� dla
pewnego słowa � .

Przykłady.

� � � jest prefiksem słowa �!�#"%$&�(' ; "%$&�(' jest jego
sufiksem.

�
 jest prefiksem i sufiksem każdego słowa.

� Każde słowo jest swoim własnym prefiksem i
sufiksem.

Jeśli � jest prefiksem � , ale �)� � to mówimy, że �
jest właściwym prefiksem � .

Analogiczne definiujemy właściwy sufiks.

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

3

Problem wyszukiwania wzorca

Dane: słowa * („wzorzec”) i � („tekst”) nad pewnym
alfabetem

�
.

�+*,� � -
, � � � � .

, �/*0��1 � � � .
Problem: znaleźć wszystkie wystąpienia wzorca * w
tekście � .
Przykład: wzorzec 2 ' występuje w tekście
2	2 '3' 2 ' 2 ' na pozycjach 2, 5 i 7.

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

4

Algorytm „naiwny”

Próbujemy dopasować wzorzec we wszystkich
miejscach:

1: 465 7
2: while 481 . 9 - : 7 do
3: ; 5 �
4: while *,<=; : 7&> � � <?4 : ;@> do
5: ; 5 ; : 7
6: if ; � -

then
7: Write(4)
8: 405 4 : 7

Uwaga! Do alfabetu
�

dodajemy dwa nowe, specjalne
symbole, powiedzmy $ i @. Przed uruchomieniem
algorytmu $ dopisujemy na końcu � , natomiast @ na
końcu * . Pełnią one rolę „strażników” w wewnętrznej
pętli while.

Złożonośc czasowa: A B B . 9 - : 7#C - C � A B .D- C .

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

5

Poprawianie alg. „naiwnego”

Załóżmy, że dla ; : 7 dostaliśmy niezgodność.
Wiemy, że *,<E7GFHFI;@> pasuje do � <J4KFHFL4 : ; 9 7�> . Ile symboli
możemy „przeskoczyć”?

Co się dzieje, gdy wzorzec występuje na jednej z
pozycji 4 : 7G��FMF�FN4 : ; 9 7 ?

p

t[i+j−1]=p[k]

t

p

p[1..j]

p[j]

p[1]=t[i+j−k]
t[i]

Prefiks *O<P7GFHFQ;@> jest równocześnie jego (właściwym)
sufiksem! tzn. *O<P7GFHF " > � *O<R; 9 " : 7GFHFQ;S> .
Jeśli to jest pierwsze miejsce, w którym występuje
taka sytuacja, możemy bezpiecznie przesunąć 4 do
4 : ; 9 " . Wystarczy znać " .

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

6

Poprawianie alg. „naiwnego”, cd.

Dla ; T �
chcemy więc znać liczbę:

U <=;S> �
długość największego właściwego sufiksu

*O<P7GFHFQ;S> , który jest równocześnie prefiksem * , czyli
U <R;@> � V W#XY��� 1 " Z ; [�*O<P7GF\F " > jest sufiksem *O<P7GF\FI;@>]�
Wtedy możemy bezpiecznie dopasowywać wzorzec w
miejscu 4 : ; 9 U <R;@> .
Dla ; � �

przyjmijmy
U <R;@> � �

. Ojej! Ale wtedy
4 : ; 9 U <R;@> � 4 i stoimy w miejscu. A więc
ostatecznie przesuwamy 4 na pozycję
4 : V W#X B^7@�_; 9 U <R;@>`C .
Zauważmy też, że nie musimy już sprawdzać
pierwszych

U <R;@> liter wzorca!

Przykład. Tablica
U

dla wzorca * � �����ba������ba��b� .

4 1 2 3 4 5 6 7 8 9 10

*O<?4c> a b a c a b a c a aU <?4]> 0 0 1 0 1 2 3 4 5 1

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

7

Algorytm KMP

1: 465 7
2: ; 5 �
3: while 481 . 9 - : 7 do
4: {*,<E7@F\F U <R;@>H> � *O<R; 9 U <=;S> : 7GFHFI;@> �

� <?4KF\Fd4 : U <=;S> 9 7�> }
5: ; 5 U <R;@>
6: while *,<=; : 7&> � � <?4 : ;@> do
7: ; 5 ; : 7
8: if ; � -

then
9: Write(4)

10: 405 4 : V W#X B^7@�_; 9 U <R;@>`C
Powyższy algorytm wymyślili panowie Knuth i Pratt
oraz (niezależnie) Moris w 1977 roku.

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

8

Własności tablicy e

U <=;S> �
długość największego właściwego sufiksu

*O<P7GFHFQ;S> , który jest równocześnie prefiksem * .

A gdybyśmy chcieli znać długości wszystkich
właściwych sufiksów *,<E7GFHFI;@> , które są prefiksami * ?
Niech * � ��������������� .

*O<P7GF\Fgf�> ���G�����h���h��� U <�f�> � i
*O<P7GF\F i > ���G�j���h��� U < i > � �
*O<P7GF\F � > ���G����� U < � > � k
*O<P7GF\F k > ���G� U < k > � �
*O< � F\F � >
 U < � > � �

Wniosek. Z tablicy
U

można odczytać długości
wszystkich właściwych sufiksów *O<P7GFHFQ;@> , które są
równocześnie prefiksami * : są to liczby

U <R;@>l� U < U <R;@>H>_� U m <R;@>l�MF�FMF&F

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

9

Jak obliczyć tablicę e ?

Skorzystamy z programowania dynamicznego.

k

j

p

p

Jeśli *,<E7@F\F " > jest właściwym sufiksem i równocześnie
prefiksem *O<P7GFHFQ;@> to:

� *O<P7GFHF " 9 7&> jest właściwym sufiksem i prefiksem
*O<P7GFHFQ; 9 7&> ,

� *O< " > � *,<=;S> .
Czyli żeby obliczyć

U <R;@> trzeba znaleźć najdłuższy
sufiks *O<P7GF\FI; 9 7�> , będący róznocześnie prefiksem
*O<P7GFHFQ; 9 7&> , który da się przedłużyć, czyli najmniejsze$ takie że:

*,< U n <R; 9 7�> : 7�> � *,<=;S>_F
Jeśli nie ma takiego $ (tzn. żadnego, nawet pustego
prefiksu nie da się przedłużyć), to

U <=;S> � � F
ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

10

Obliczanie tablicy e

1:
U < � >o5 �

2:
U <P7�>o5 �

3: for ; 5 k
to

-
do

4: {obliczamy
U <R;@> }

5: 2 5 U <=; 9 7�>
6: while Bp2 T � C and Bq*O<?2 : 7�>r)� *O<R;@>sC do
7: 2 5 U <?2t> {próbujemy któtszy sufiks}
8: if *,<J2 : 7�> � *O<R;@> then
9:

U <R;@>o5 2 : 7
10: else
11:

U <=;S>o5 �

Złożoność czasowa: u B - C
Złożoność czasowa KMP: u B . : - C Złożoność
pamięciowa KMP: u B - C

ASD 2003 Łukasz Kowalik, Instytut Informatyki UW

